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ABSTRACT

GRAPH REPRESENTATION LEARNING FOR HETEROGENEOUS

MULTIMODAL BIOMEDICAL DATA

Nhat Chau Tran, Ph.D.

The University of Texas at Arlington, 2022

Supervising Professor: Jean X. Gao

The emergence of high-throughput sequencing technology has generated a wealth

of “multi-omics” data, capturing information about different types of biomolecules at

multiple levels. Since large-scale genomics, transcriptomics, and proteomics data are

becoming publicly available, integrated systems analysis utilizing these data sources

has taken the front seat in deriving valuable insights for identifying cancer biomark-

ers or predicting interactions and functions for novel molecules such as LncRNAs.

The graph representation learning paradigm can address these challenging tasks as

among the most promising approaches to improve predictions over sparsely anno-

tated molecular entities and to provide representation capacity and interpretability

over heterogeneous and hierarchically structured data. This dissertation investigates

novel graph machine learning approaches for biomarker discovery in microRNA co-

expression graphs, functional representation of LncRNA sequences for link prediction,

aggregation of heterogeneous relations to predict protein functions, and the pipelines

to enable reproducible graph integration of public biological databases.
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Prior works on multi-omics integrative analysis have had significant shortcom-

ings in addressing the challenges due to the heterogeneity and scale of graph-based

datasets. For instance, univariate analyses cannot produce robust results when identi-

fying biomarkers for genetically heterogeneous cancer diseases with multi-omics data

without considering the interconnectivity between the various omics. We constructed

the MicroRNA Dysregulatory Synergistic Network to extract features from aberrant

MicroRNA-MessengerRNA interactions and applied a multivariate technique that

considers the grouping effect of biomarkers. Aside from inferring gene-disease as-

sociations, we also proposed the rna2rna method to predict the regulatory interac-

tions and the functional similarities of non-coding RNAs (ncRNAs) where there are

non-existent annotations for novel sequences. By leveraging the diverse array of in-

teraction, sequence, annotation, and expression multimodal data, our method can

characterize the functional similarity and interaction topologies of a novel ncRNA

from sequence. Then, we formulated a generalized algorithm named LATTE to deal

with the complexity of heterogeneous networks, where multiple node types are con-

nected in various ways. This graph neural network method is applied to the automatic

protein function prediction problem in an architecture called LATTE2GO that aims

to aggregate information from higher-order relations to extract integrated represen-

tations of protein-protein networks and the hierarchical Gene Ontology. Finally, as

data integration and feature engineering are vital steps in large-scale bioinformatics

projects, we developed an open-source software called OpenOmics. Our tool assists

in systematically integrating heterogeneous multi-omics datasets and interfacing with

popular public annotation and interaction databases for increased reproducibility and

standardization of biomedical data integration. The performance evaluation of our

proposed methods, algorithms, and tools validates the utility and effectiveness com-

pared to existing state-of-the-art methods.

vii



viii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 4

2. MICRORNADYSREGULATIONAL SYNERGISTIC NETWORK: DISCOV-

ERINGMICRORNADYSREGULATORYMODULES ACROSS SUBTYPES

IN NON-SMALL CELL LUNG CANCER . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Dataset and Notations . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Identification of miRNA Biomarkers for Lung Cancer . . . . . 9

2.2.3 Step 1: Identifying miRNA-Target Dysregulations Between Sub-

types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Step 2: Building the miRNA-Target Dysregulation Association

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Step 3: Calculating miRNA-miRNA Dysregulation Functional

Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ix



2.2.6 Step 4: Constructing the MDSN and Pruning with Scale-free

Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.7 Step 5: Identifying miRNA Dysregulation Modules with Com-

munity Detection . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.8 Step 6: Classification of Cancer Stage with Identified miRNA

Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Applications in TCGA Non-Small Cell Lung Adenocarcinoma

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Applications in the TCGA Lung Squamous Cell Carcinoma

Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Extracted miRNA Modules are Consistent Between Indepen-

dent Subtypes Dysregulation Analyses . . . . . . . . . . . . . 20

2.3.4 Incorporating miRNA Modules Information Improves Predic-

tion of LUAD Lung Cancer Stage . . . . . . . . . . . . . . . . 23

2.3.5 MicroRNA Groups Lead to Higher Recall and Precision of Can-

didate miRNA Biomarkers . . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. NETWORKREPRESENTATIONOF LARGE-SCALE HETEROGENEOUS

RNA SEQUENCESWITH INTEGRATIONOF DIVERSEMULTI-OMICS,

INTERACTIONS, AND ANNOTATIONS DATA . . . . . . . . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

x



3.3.1 Defining the Heterogeneous lncRNA-miRNA-mRNA Interac-

tion Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Directed lncRNA-miRNA-mRNA Interaction Edges by Inte-

grating Various Data Sources . . . . . . . . . . . . . . . . . . 33

3.3.3 Undirected RNA-RNA Functional Affinity Edges . . . . . . . 35

3.4 Network Embedding with Source-Target Contexts . . . . . . . . . . . 37

3.4.1 Representation Learning for RNA Sequences to Reconstruct the

Interactions and Functional Topology . . . . . . . . . . . . . . 39

3.4.2 Convolutional Recurrent Network to Obtain Embeddings from

Variable-length RNA Sequences . . . . . . . . . . . . . . . . . 41

3.4.3 Model Optimization with Batch Sampling Strategy . . . . . . 41

3.4.4 Predicting Interaction or Functional Similarity Between Two

RNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Large-scale Data Integration of lncRNA-miRNA-mRNA Inter-

actions, Annotations, and Sequences . . . . . . . . . . . . . . 43

3.5.2 Comparison Methods . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.3 Graph Reconstruction. . . . . . . . . . . . . . . . . . . . . . . 49

3.5.4 Novel Link Predictions. . . . . . . . . . . . . . . . . . . . . . . 50

3.5.5 Inferring Functional Similarity From Embeddings . . . . . . . 53

3.5.6 Subnetwork of LncRNAs Shows Promising Novel Function In-

teractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. OPENOMICS: TOOLS FOR INTEGRATING MULTI-OMICS, ANNOTA-

TION, AND INTERACTION DATA . . . . . . . . . . . . . . . . . . . . . 64

xi



4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 The OpenOmics Library . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Multi-omics Integration . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Annotation Interface . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.3 Network Integration . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.4 Ad-hoc Query . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.5 Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Software Requirements . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Open-source Development Operations . . . . . . . . . . . . . . 79

4.6 Budget Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 Human Resources . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Infrastructures . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. LAYER-STACKED ATTENTION FOR HETEROGENEOUS NETWORK

EMBEDDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Multiplex graph Embedding . . . . . . . . . . . . . . . . . . . 86

5.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.2 LATTE: Higher-order Heterogeneous Graph Embedding . . . 88

xii



5.4.3 Preserving Proximities with Attention Scores . . . . . . . . . . 93

5.4.4 Model Optimization . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.5 Analysis of the Proposed Model . . . . . . . . . . . . . . . . . 94

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5.3 Node Classification Experiment Results . . . . . . . . . . . . . 99

5.5.4 Clustering Experiment Results . . . . . . . . . . . . . . . . . . 100

5.5.5 Interpretation of the Attention Mechanism . . . . . . . . . . . 101

5.6 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6. PROTEIN FUNCTION PREDICTION BY INCORPORATING KNOWL-

EDGE GRAPH REPRESENTATION OF HETEROGENEOUS RNA AND

PROTEIN INTERACTIONS WITH GENE ONTOLOGY . . . . . . . . . 109

6.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Data integration . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 LATTE2GO GNN architecture . . . . . . . . . . . . . . . . . 116

6.4.3 Model training and implementation details . . . . . . . . . . . 122

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.1 Dataset characteristics . . . . . . . . . . . . . . . . . . . . . . 123

6.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . 124

6.5.3 Comparison results . . . . . . . . . . . . . . . . . . . . . . . . 126

xiii



6.5.4 Ablation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.5.5 Interpretation of relation attention scores . . . . . . . . . . . . 128

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiv



LIST OF ILLUSTRATIONS

Figure Page

2.1 Overview of the MicroRNA Dysregulational Synergism Network pipeline. 10

2.2 Graph force-layout of the MDSN. . . . . . . . . . . . . . . . . . . . . . 18

2.3 The R2 scale-free criterion fit score at different hard-thresholds. . . . . 21

2.4 Comparison of extracted miRNA modules from the LUAD cohort and

the LUSC cohort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 ROC area under the curve scores for prediction of LUAD stages. . . . 23

2.6 Precision and recall rates of candidate miRNAs selected by SGL. . . . 25

3.1 An illustration of the heterogeneous lncRNA-miRNA-mRNA tri-module

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 The rna2na network embedding method utilizing Siamese architecture. 39

3.3 Precision-Recall Curve in Graph Reconstruction evaluations. . . . . . . 49

3.4 Precision-Recall Curves for Link Prediction. . . . . . . . . . . . . . . . 51

3.5 (a) Inductive link prediction results for 47 novel lncRNA sequences not

seen at training time. (b) Comparison analysis of the power-law degree

distribution fit score across multiple RNA-RNA interactions predicted

by each methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Visualization of the lncRNA-miRNA-mRNA regulatory interaction net-

work across different methods. . . . . . . . . . . . . . . . . . . . . . . 58

3.7 HOTAIR predicted interaction subnetwork . . . . . . . . . . . . . . . . 59

4.1 Overall OpenOmics System Architecture, Data Flow, and Use Cases. . 68

xv



5.1 Conceptual illustration of the LATTE architecture demonstrating the

layer-stacking operations that aggregates first-order and second-order

meta relations. The heterogeneous graph contains Paper-Author (PA),

Paper-Conference (PC) and Paper-Term (PT) relations and their re-

verse relations (i.e. AP, CP, TP). The node feature inputs for each

node types are p0, a0, c0, and t0, and the LATTE-t embedding outputs

for each respective node types are pr, ar, cr, and tr. . . . . . . . . . . 105

5.2 Average and standard deviation of the 1st and 2nd-order meta relation

attention weights over each node types. A single-letter relation (e.g. M,

M1 ) denotes the “self” choice. . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Correlation between nodes degrees and relation weights for each first-

order meta relationLA the three datasets. . . . . . . . . . . . . . . . . 107

5.4 Clustering results showing the normalized mutual information score

across three datasets in the inductive setting. . . . . . . . . . . . . . . 107

5.5 Ablation study measuring across 3 datasets. Each bar measures the

average and standard deviation of Macro F1 (test) scores across a total

of 15 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Accuracy v. training time on the ACM inductive dataset. Each line

shows the mean and its surrounding area shows the standard devia-

tion over 10 runs. Runs were stopped early when the accuracy on the

validation set doesn’t improve after 10 epochs. . . . . . . . . . . . . . 108

6.1 LATTE2GO architecture diagram. . . . . . . . . . . . . . . . . . . . . 117

xvi



6.2 Ablation analysis reporting differences on AUPR metric on the node

types used in the heterogeneous graph (top left), on separating protein-

protein associations in STRING-db (top right), on generating higher-

order meta-relations (bottom left), and on whether to concatenate layer

embeddings (bottom right). . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Sankey flow plot showing the aggregation of meta-relations and self

connections for LATTE2GO-2 predicting protein-BPO functions. Each

block represents either a node type or meta relation, and the links width

represent the attention weight in-proportion to other links of the same

target node type. The first- and second-order meta relation attention

weights were averaged over all nodes of each node types in a subgraph

batch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xvii



LIST OF TABLES

Table Page

2.1 Sample size characteristics of the TGCA LUAD dataset . . . . . . . . 16

2.2 Sample size characteristics of the TGCA LUAD dataset . . . . . . . . 20

3.1 Overview of interaction databases used for data selection, harmoniza-

tion, and integration for prospective evaluations. . . . . . . . . . . . . 44

3.2 Clustering Comparison Over 2343 Ground-Truth RNA Functional Fam-

ily Annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Clustering Comparison Over 24 Ground-Truth RNA Locus Type Anno-

tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Gene set enrichment analysis over 2000 k-mean clusters. . . . . . . . . 56

4.1 Public annotation databases and availability of data in the Human

genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Public interactions databases accessible from OpenOmics. . . . . . . . 72

5.1 Sample characteristics for the heterogeneous graph datasets. . . . . . . 93

5.2 Performance comparison of Macro F1 over trans-ductive and induc-tive

node classifications of the test dataset. . . . . . . . . . . . . . . . . . . 96

6.1 Sample size characteristics of dataset splits . . . . . . . . . . . . . . . 124

6.2 Performance comparison results of LATTE2GO with DeepGraphGO . 126

xviii



CHAPTER 1

INTRODUCTION

1.1 Background and Preliminaries

Regulatory long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) that

influence gene expression post-transcriptionally by interacting with target messen-

ger RNAs (mRNA) form a complex network of transcriptomic interactions. These

heterogeneous families of non-coding RNAs (ncRNAs) are associated with nearly all

cellular processes, including cell division, senescence, differentiation, stress response,

immune activation, and apoptosis [49, 45, 20, 82]. Studying the interconnectivity of

these biomolecules has enabled researchers to understand the intricacies of regulatory

mechanisms where protein-coding RNAs alone do not offer the complete picture.

MicroRNAs are approximately 22nt long and post-transcriptionally target messenger-

RNAs (mRNAs) to regulate the translation of target genes. Recently, it has been

found that microRNAs have the potential as both biomarkers and therapeutic targets

for lung cancer [70, 138]. On the other hand, lncRNAs are also gaining considerable

attention as the largest and most diverse non-coding RNA class, encompassing nearly

30,000 discovered transcripts in humans. They are classified as > 200nt transcribed

RNA molecules, which has a diverse influence upon the function of other ncRNAs

and regulation of protein-coding RNAs. Among many of their known functional in-

teraction mechanisms, lncRNAs are known to act as miRNA decoys, derepress gene

expression by competing with miRNAs for shared mRNA targets, or directly regulate

gene expression [149]. Additional studies have indicated that miRNAs can regulate
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lncRNAs by triggering decay [88], and some processed lncRNAs can even generate

miRNAs [39].

These types of functional interactions between lncRNAs and miRNAs to co-

regulate gene expressions highlight the complexity of the non-coding RNA regulatory

network. Although the miRNA’s regulatory mechanisms and a few lncRNAs have

been studied, the discovery of the functional roles for a large number of ncRNAs

in the human transcriptome is still at a preliminary stage. Determining the func-

tion of individual ncRNAs remains challenging as most of these RNA transcripts are

currently unannotated, and their known interactions are sparse. Recent advances in

RNA sequencing (RNA-Seq), deep sequencing (CLIP-seq, LIGR-Seq), and other high-

throughput methods have allowed for an unprecedented analysis of such transcripts

and enabled researchers to generate large-scale interaction and annotation databases.

However, the interaction networks generated from such experimental data are often

scant and incomplete in the number of ncRNAs covered. For instance, although many

long non-coding RNAs (lncRNAs) have been identified, only a few hundred have had

functional and molecular mechanisms determined to date, as observed in annotation

databases such as lncRNAdb [6]. Thus, in silico prediction of RNA-RNA interac-

tions has been widely applied in the task of predicting or inferring missing functional

interactions, where experimental studies are in short supply due to time and cost.

1.2 Motivation and Challenges

As the vast array of ncRNAs datasets are becoming available in the public repos-

itories, several computational challenges are being imposed on bioinformaticians. To

infer functions of novel ncRNAs, many graph-theoretic methods have been applied

to biological networks with the intuition that RNAs close together in the interaction

topology are more likely to be involved in many of the same functions [33]. Typically,

2



the approach is mining the neighborhood structure of nodes in the network topology

to suggest that two nodes are likely to be functionally similar if they share many

of the same co-interacting neighbors. Additionally, results [78] have shown that ge-

nomic and functional annotation information can facilitate the process of suggesting

the interactions of the presently unknown RNAs. Other results have shown that in-

tegrating multi-omics data provides information on heterogeneous biomolecules from

different layers, rather than considering each biological feature independently, which

seems promising to understand complex biology systematically and holistically [145].

Most prior works on multi-omics analysis have had significant shortcomings in

addressing the challenges due to the heterogeneity and scale of integrated datasets.

The reasons for this include: 1) the RNA-RNA interaction network can be highly

sparse; 2) there is a lack of consideration for the directionality of RNA-RNA inter-

actions; 3) a lack of an integrative approach for sequence and annotation data; and

4) the predictions are transductive, i.e., constrained among only nodes with a con-

nection to existing nodes in the training set. These shortcomings can often affect the

model’s capacity to model heterogeneous relationships, limit the capacity to capture

multi-modal representations or hinder its generalizability for inductive predictions.

To address these challenges, this dissertation explores the application of recent

advancements in machine learning called “network embedding.” I aim to study vari-

ous approaches to learn from transcriptome-wide RNAs’ interaction topology and at-

tributes to predict RNA-RNA functional interactions accurately. Mathematically, our

ground truth knowledge about RNA interactions can be represented by a directed ad-

jacency matrix, whose rows and columns correspond to individual lncRNAs, miRNAs,

and mRNAs. This matrix’s binary entries indicate whether an RNA was observed

to have a functional interaction with another RNA, supported by experimentally-

validated interaction databases. The matrix is exceptionally sparse, especially among

3



lncRNAs, i.e., out of millions of possible interactions, only a few thousand have been

identified. A significant fraction of newly discovered ncRNAs lacks any identified in-

teractions or functional annotations besides its basic genomic attributes such as locus

biotype, and primary transcript sequence [37]. These genes might support essential

biological cell functions and potentially serve as targets for genomic, diagnostic, or

therapeutic studies. Thus, to functionally characterize these “hypothetical” ncR-

NAs, the essential tasks are integrating the various multi-modal attributes and the

representation of the multi-omics interactions.

1.3 Dissertation Organization

In Chapter 2, I proposed a pipeline to analyze the deviation in miRNA-mRNA

interactions between various lung cancer subtypes to assess their potential as a pre-

dictor of this heterogeneous disease. Integrating the MicroRNA and MessengerRNA

transcriptomics data have the potential to pinpoint biomarkers for the development

of novel prognostic and therapeutic targets in lung cancer diseases. However, most

prior approaches relied only on univariate differential analyses, examining individual

RNAs for the significant deviation between normal and tumor samples. Instead, our

method integrated miRNA and mRNA expression profiles, extracted features from

miRNA regulatory interactions, and constructed a network of functional similari-

ties to identify miRNA synergistic modules. The predicted synergistic microRNA

modules lead to a more relevant selection of microRNA biomarkers and considerably

improved early-stage lung cancers’ prediction accuracy. Our method’s overall result

demonstrated that considering the interaction pattern between microRNAs and their

targets led to a more robust selection of miRNA biomarkers for tumors of all subtypes

rather than considering each class of transcriptomics individually.
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In Chapter 3, I proposed a novel deep learning framework, rna2rna, which ex-

tracts features from RNA sequences to produce a low-dimensional embedding that

preserves proximities in the interaction topology and the functional affinity topology.

In this proposed embedding space, the two-part “source and target context” captures

the receptive fields of each RNA transcript to encapsulate heterogeneous cross-talk

interactions between lncRNAs and microRNAs. The proximity between RNAs in

this embedding space also uncovers the second-order relationships that allow for ac-

curate inference of novel directed interactions or functional similarities between RNA

sequences. Our method performs better in a prospective evaluation than state-of-

art approaches at predicting missing interactions from several RNA-RNA interaction

databases. Additional results suggest that our proposed framework can capture a

manifold for heterogeneous RNA sequences to discover novel functional annotations.

In Chapter 4, I developed a Python library named OpenOmics for integrating

heterogeneous multi-omics data and interfacing it with popular public annotation

databases, e.g., GENCODE, Ensembl, BioGRID. The library is designed to be highly

flexible to allow the user to parameterize the construction of integrated datasets,

interactive to assist complex data exploratory analyses, and scalable to facilitate

working with large datasets on standard machines. OpenOmics can also facilitate

network-based and graph-theoretic analyses of DNA, RNA, and protein interactions

in a high-throughput manner. Along with the wide-ranging use cases of OpenOmics,

modern software practices were implemented to maximize the integrated framework’s

usability and reproducibility.

In Chapter 5, I explored an architecture–Layer-stacked ATTention Embedding

(LATTE)–that automatically decomposes higher-order meta relations at each layer

to extract the relevant heterogeneous neighborhood structures for each node. Addi-

tionally, by successively stacking layer representations, the learned node embedding
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offers a more interpretable aggregation scheme for nodes of different types at differ-

ent neighborhood ranges. I conducted experiments on several benchmark heteroge-

neous network datasets. In both transductive and inductive node classification tasks,

LATTE can achieve state-of-the-art performance compared to existing approaches

while offering a lightweight model. With extensive experimental analyses and visu-

alizations, the framework can demonstrate the ability to extract informative insights

on heterogeneous networks.

In Chapter 6, I extended the proposed LATTE model to the problem of au-

tomatic protein function prediction. As current graph-based methods aim to learn

protein representation only by considering homogeneous protein-protein interaction

(PPI) networks, more information can be encoded by specifying the semantics of

specific types of protein-protein association. Thus, using the OpenOmics framework,

relationships among genes, transcripts, and proteins can be integrated with Gene

Ontology hierarchical structure as a heterogeneous graph. With this data struc-

ture, Layer-stacked ATTEntion for protein-function predictions on Gene Ontology

(LATTE2GO) was developed to aggregate information among multiple relations to

learn representation for proteins and GO terms within the same graph neural network.

In experiments on the standardized CAFA benchmark, LATTE2GO achieved a signif-

icant performance boost compared to methods that do not consider multi-relational

PPI or higher-order relations.

6



CHAPTER 2

MICRORNA DYSREGULATIONAL SYNERGISTIC NETWORK:

DISCOVERING MICRORNA DYSREGULATORY MODULES ACROSS

SUBTYPES IN NON-SMALL CELL LUNG CANCER

2.1 Introduction

Lung cancer accounts for more than 1.5 million deaths globally per year and is

the leading cause of cancer-related mortality. About 87% of the lung cancer cases are

classified as Non-Small Cell Lung Cancer, and the 5-year survival rate of all stages is

below 17% because the majority of lung cancer patients (57%) are diagnosed at later

stages since the early stage is typically asymptomatic [38]. Even when diagnosed

early, the only recommended treatment is surgical resection, despite that up to 30%

of those successfully treated will still die within five years of initial diagnosis [24].

Therefore, the development of early diagnosis and treatment strategy is critical and

essential for the control of this deadly disease. Recently, it has been found that

microRNAs have the potential as both biomarkers and therapeutic targets for lung

cancer [70, 138].

MicroRNAs (miRNAs) are a recently discovered class of small noncoding RNA.

Approximately 22nt, miRNAs post-transcriptionally target messenger-RNAs (mR-

NAs) to regulate the translation of target genes. They have been found to play a

critical role in various biological functions such as proliferation, differentiation, and

apoptosis [20]. Thus, abnormal miRNA regulatory events can cause a significant im-

pact on various cellular functions, ultimately resulting in complex events leading to
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cancer. Increasing evidence suggests that miRNAs can have a causal role in tumori-

genesis [43].

Due to the significant role of miRNAs found in cancer biology, many existing

lung cancer studies use miRNA expression profiles for accurate prediction of lung

cancer stages or subtypes [11, 112]. In a typical differential expression analysis, a

univariate statistical method (e.g., student’s t-test, false discovery rate threshold) is

performed to select miRNAs with a significant deviation between normal and tu-

mor sample groups. However, the results are not always satisfactory, as large-scale

multi-omics analysis of non-small cell lung adenocarcinoma (LUAD) revealed distinct

interactions of miRNA to target mRNA that are specific to histological subtypes [98].

In other words, an identified miRNA biomarker may correctly classify tumor based on

analyses done on one particular subtype but may misclassify cases of other subtypes,

where it may target a different set of mRNAs. Therefore, for a more robust selec-

tion of miRNA biomarker, analysis of the deviation in miRNA-target interactions

between various lung cancer subtypes should be considered to assess their potential

as predictor to this heterogeneous disease.

Experimental evidence has shown that multiple miRNAs can potentially tar-

get a gene through synergism, in which two or more miRNAs can cooperatively co-

regulate an individual gene [141]. Studying the synergism of miRNAs within a spe-

cific cellular environment is another critical step to determine their disease-specific

functions at the system level. Construction of the miRNA co-regulation network by

considering regulatory targets with similar functions [142] revealed a miRNA-miRNA

functional synergistic network; however, the study of the changes in miRNA-target

interactions between different cancer subtypes has mainly left uncovered.

To further our understanding of the role of miRNAs in lung cancers, we aim

to identify differentially expressed miRNAs while considering miRNA-target dysreg-
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ulations among different cancer subtypes. We extended the brilliant miRNA-target

dysregulation idea from Xu et al. [143] and proposed a novel miRNA clustering strat-

egy to identify miRNA dysregulatory modules. We hypothesize that by identifying

the context-specific group structures among the miRNAs, the differential analysis

procedure can benefit from a more robust selection of miRNA biomarkers that can

accurately predict cancer stages across different subtypes.

2.2 Methods

2.2.1 Dataset and Notations

We denote the miRNA and mRNA expression profiles as column vectors xi =

[x1
i , x

2
i , . . . , x

s
i ]
⊤ and yj = [y1j , y

2
j , . . . , y

s
j ]

⊤ to represent the expression level of miRNA i

and mRNA j across s samples, respectively. To represent miRNA and mRNA expres-

sions for a specific group of samples, we denote column vectors xC
i = [x1

i , x
2
i , . . . , x

nC
i ]⊤

and yC
j = [y1j , y

2
j , . . . , y

nC
j ]⊤, respectively, where nC is the number of samples at-

tributed with a particular phenotype C, e.g., normal, stage I cancer, stage II cancer,

etc. Note, boldface variables are to represent vectors and non-boldface for scalars.

Also, for expression data, we use subscripts to identify a specific miRNA or mRNA

expression level, and superscripts to identify a sample group.

2.2.2 Identification of miRNA Biomarkers for Lung Cancer

As an overview of our pipeline, illustrated in Fig. 2.1, we developed a novel

approach to identify miRNA dysregulation modules by detecting changes in miRNA-

target associations between different cancer subtypes. First, we identify significant de-

viations in miRNA-target correlations between two sample groups. For each miRNA-

target pair found significantly deviated, we form a connection to build a miRNA-

target dysregulation association matrix. From the identified miRNA-target dysregu-
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Figure 2.1: Overview of the MicroRNA Dysregulational Synergism Network
pipeline. In the first step, multiple differential analyses between different subtype
groups identified miRNA-target dysregulations. Then, the miRNA dysregulations
across multiple subtype analyses is used to form the miRNA-target dysregulation
association matrix. Next, the MDSN network is constructed by computing miRNA-
miRNA similarity measures, and is used to extract miRNA modules by a graph
partitioning method. Finally, provided the extracted miRNA modules, the Sparse
Group Lasso performs classification of the cancer stage given a sample’s miRNA
expression profile.

lations, miRNA modules are extracted such that functionally similar miRNAs belong

in the same module if they dysregulate similar targets across multiple cancer sub-

types. To accomplish this, a miRNA-miRNA Dysregulational Synergism Network

(MDSN) is constructed, and a graph partitioning method is applied to identify signif-

icant miRNA modules. At the final step, classification analysis predicts cancer stage

and selects relevant biomarkers only from miRNA expression profile data. A Sparse

Group Lasso regularization is applied with the intuition that if a miRNA is relevant,

the rest of miRNAs in the same module are probably also relevant.

2.2.3 Step 1: Identifying miRNA-Target Dysregulations Between Subtypes

For every putative miRNA-target pairs, we incorporated sample-matched miRNA

expression and mRNA expression data from distinct sample groups to identify aber-

rant miRNA-target interactions. More specifically, the aim is to find regulatory
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changes by differential analysis of the miRNA-target pair’s correlation values between

two sample groups of different lung cancer subtypes. This Dysregulation criterion was

proposed by Xu et al. [143], which defines the difference of the Pearson’s correlations

between a tumor and a non-tumor group for miRNA i and target j as:

DysAB
ij =

cov(xA
i ,y

A
j )

(nA − 1)σxA
i
σyAj

−
cov(xB

i ,y
B
j )

(nB − 1)σxB
i
σyBj

(2.1)

where σxA
i
and σxB

i
denote the standard deviation of miRNA i expressions of sample

groups A and B, respectively. To determine whether the deviation of the correlation

between the two groups is significant, Xu et al. randomly assigned patients to the two

groups and recalculated Dys 10,000 times, and obtained a p-value by the frequency

of the random Dys being higher than the actual Dys.

To improve the computational performance of obtaining a significance value

for the deviation between two correlation coefficients, we instead applied Fisher’s

transformation [36] as utilized in our previous publication [127]. To summarize, for

a given miRNA i and target j, we calculated the two Pearson’s correlation values rA

and rB from each sample group then obtained their corresponding z-values zA and zB

through Fisher’s transformation z = 1
2
ln(1+r

1−r
). The z-value for the difference between

zA and zB is obtained by

zAB =
zA − zB!

1/(nA − 3) + 1/(nB − 3)

Finally, we can convert the absolute value of zAB to a p-value (two-tailed) and thereby

obtain a statistical significance of the difference between two miRNA-target correla-

tions. The cut-off for the p-value threshold was chosen at 0.001, as it has been

commonly used as a threshold in several correlation studies.
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2.2.4 Step 2: Building the miRNA-Target Dysregulation Association Matrix

One primary function of miRNAs is the cleavage of the transcript of its target

gene to regulate gene expression. Thus, in the task of identifying aberrant miRNA-

target interactions, the inverse correlation should be a prerequisite for candidate

miRNA and target pairs to avoid false-positives. In other words, only miRNA-target

pairs which have a negative Pearson’s correlation in at least one of the sample groups,

A or B, were considered.

Furthermore, since the primary goal of this study is to discover novel miRNA

biomarkers to help understand cancer stage progression, it is essential to consider as

many miRNAs as possible. In this study, the miRNA-target relationship prediction

algorithms, e.g., TargetScan 7.1 [89] and miRanda [55], were not utilized as the in-

teraction databases only covered a total of 263 miRNAs out of 1881 miRNAs present

in the miRNA expression profiles.

For each putative miRNA i and target j considered, we repeated the dysregu-

lation analysis procedure in Step 1 between all pairs of different lung cancer subtypes

as independent dysregulation analyses. Then, all miRNA-target dysregulations found

significant were encoded by constructing a matrix A with entry Aij equal to 1 if the

p-value of the miRNA i and target j dysregulation passes the p-value threshold and

0 otherwise. For each independent dysregulation analyses, the matrix A is concate-

nated. This matrix is interpreted as a new feature set, where each row characterizes

a miRNA’s dysregulation targets that were present across multiple cancer subtypes

dysregulation analyses.

2.2.5 Step 3: Calculating miRNA-miRNA Dysregulation Functional Similarity

As it has been reported, miRNAs that are functionally similar tend to have

the same targets. Using the identified miRNA-target dysregulations, we inferred
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the context-specific functional similarity between two miRNAs by considering their

mutual dysregulated targets. The functional similarity score between two miRNAs p

and q is calculated by cosine similarity, defined as

s(p, q) =
Ap.A

⊤
q.

‖Ap.‖2 ‖Aq.‖2
(2.2)

where Ai. is a row vector indicating the dysregulated targets of miRNA i. The cosine

similarity value ranges [0, 1] and can be interpreted as the number of mutual dysregu-

lation targets shared between two miRNAs normalized by their total connections. By

calculating the similarity between every miRNA-miRNA pairs, an adjacency matrix

is produced to construct a miRNA-miRNA similarity network. Since it is difficult

to uncover cluster structures when the network is dense, it is necessary to prune the

weaker miRNA-miRNA connections.

2.2.6 Step 4: Constructing the MDSN and Pruning with Scale-free Thresholding

The scale-free topology property exists in most biological graphs, including

miRNAs [159], which indicates that the miRNA-miRNA network connections follow

a power-law distribution in which more miRNAs tend to have fewer neighbors and

fewer miRNAs tend to have more neighbors. A well-known framework, Weighted

Gene Co-expression Network Analysis (WGCNA) is utilized to prune lower weight

edges with a threshold chosen such that the graphs scale-free property still holds while

preserving as many edges as possible.

After all miRNA-miRNA pairs’ cosine similarity scores are computed, they are

used as edge weights in the MDSN. This is constructed by an adjacency matrix M

with entries Mpq = s(p, q) for all miRNAs p, g. Similar to the approach used in

most biological networks, the miRNA node degrees is expected to exhibit a scale-free

distribution under some thresholding. We applied the hard-thresholding technique in
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WGCNA [154] by removing from the network any edge with weight lower than the

threshold, which was chosen to be the least stringent threshold such that the degree

distribution maintains a desirable power-law fitting score.

2.2.7 Step 5: Identifying miRNA Dysregulation Modules with Community Detection

After pruning of the MDSN, we utilized the graph partitioning approach to

extract miRNA modules by assigning miRNA nodes into communities using a mod-

ularity objective proposed in the Louvain method [12]. Using a fast greedy iterative

procedure, the Louvain method assigns nodes into communities by optimization of

the modularity objective, which measures the density of links inside communities

compared to links between communities.

To summarize the algorithm, initially, each node is assigned to its own commu-

nity. At the first phase, node i consider each of its neighbor j and evaluate the gain

of modularity if i is placed in j’s community, and then selects the neighbor j with the

maximum modality gain. This first phase repeats iteratively until convergence. The

algorithm then alternates to the second phase to build a new network whose nodes are

the newly formed communities found in the first phase. The first and second phase

are repeated iteratively until there is only one community that includes all nodes. In

the final result, the algorithm gives a hierarchical community structure of all nodes in

the MDSN network. The partition in this dendrogram with the highest modularity

value by the Louvain algorithm is selected as the miRNA modules assignment.

2.2.8 Step 6: Classification of Cancer Stage with Identified miRNA Modules

It is known that a classifier with ℓ-1 norm regularization is typically used for

feature selection in problems with ”small n, large p.” However, for problems known

to have grouped features, adding group information as prior knowledge can improve
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feature selection and classification performance. We applied a multi-class logistic

classifier with Sparse Group Lasso (SGL) with the intuition that if a miRNA predictor

to cancer stage is found relevant, other miRNAs in the same group are also likely

relevant since they share similar dysregulation targets across the cancer subtypes.

SGL is a linear logistic classifier with combined ℓ-1 and Group Lasso ℓ-2 norm

regularization to achieve a sparse solution at both the group and within group level

[117]. We used an indicator vector ci ∈ {0, 1}k to represent the ith sample’s reported

cancer stage. In this study, k is 5, indicating whether a sample is labeled as normal,

stage I, II, III, or IV. The objective function is as follows:

min
W

1

s

s"

i=1

log(1 + e−ci(W
⊤xi)) + λα||W ||1 + λ(1− α)GL(W ) (2.3)

where λ is the sparsity coefficient, α is the mixing coefficient between ℓ-1 and Group

Lasso ℓ-2 norm, which is defined as:

GL(W ) =
G"

g=1

!
|g| · ||Wg||2 (2.4)

where |g| is the size of the group. The Python package pylearn-parsimony was used

to train the logistic regression classifier with SGL regularization.

2.3 Result

2.3.1 Applications in TCGA Non-Small Cell Lung Adenocarcinoma Dataset

We downloaded miRNA and mRNA expression data of the LUAD cohort from

The Cancer Genome Atlas (TCGA) [98], utilizing the TCGA-Assembler tool [165].

Expression quantitation of miRNAs was calculated from the BCGSC miRNA profiling

pipeline. The mRNA expression profiles were obtained using Illumina HiSeq RNA-Seq

(v2). The Read Per Million miRNA Mapped (RPKM) values were log2 transformed

and scaled to zero-mean and standard deviation. In total, there were 1881 miRNA
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Table 2.1: Sample size characteristics of the TGCA LUAD dataset

Phenotype Sample size
normal (matched) 20

stage I 277
stage II 121
stage III 84
stage IV 24

Acinar∗ 18
Bronchioloalveolar∗ 24

Clear Cell 2
Colloid∗ 10

Micropapillary 3
Mucinous 2
Papillary∗ 23
Signet Ring 1

Solid 5
Mixed Subtype 107

Not Otherwise Specified 320
∗Histological subtypes selected for dysregulation
analysis for their sufficient sample size.

expressions and 20,484 mRNA expressions profiled. The sample size characteristics

of LUAD subjects are shown in Table 2.1.

2.3.1.1 Identified miRNA-Target Dysregulations Between LUAD Subtypes

We identified significant dysregulations for every miRNA-target pair between

1881 miRNAs and 20,484 mRNAs. Each miRNA-target pair is tested for significant

change in correlations between different subtype sample groups. Due to insufficient

sample size in some subtypes, only four histological LUAD subtypes were selected for

subtypes dysregulation analysis, as outlined in Table 2.1. To build the miRNA-target

dysregulation matrix, we performed an independent dysregulation analysis for each

pair-wise combination of the four subtypes.
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Setting the p-value threshold parameter at p < 0.001, we obtained a sum of

1,896,631 miRNA-target dysregulations from a union of six independent dysregula-

tion analyses for the Acinar, Bronchioloalveolar, Colloid, and Papillary subtypes. In

other words, we identified miRNA-target dysregulations between Acinar vs. Bron-

chioloalveolar, Bronchioloalveolar vs. Colloid, Acinar vs. Colloid, and so on. Since it

is very likely that false-positives exist among the identified miRNA-target dysregula-

tions, we accounted for this by careful selection of the threshold parameter to prune

weaker miRNA synergism similarities.

2.3.1.2 Selection of Threshold Parameter for the Scale-free Topology of MDSN for

LUAD Cohort

After identifying miRNA-target dysregulations among the lung cancer subtypes,

we computed the miRNA-miRNA cosine similarity score for every pair of miRNAs

to construct the MDSN. For every pair of the 1314 miRNAs (found dysregulated),

we computed a total of 754, 086 cosine similarity scores. The power law fitting score

[154] is defined as corr(log10(s), log10(p(s)))
2 where s is the similarity scores and the

distribution p(s) is modeled by a histogram of binned data samples. The R2 score

computed over all miRNA-miRNA pairs was 0.9135, which satisfies the R2 > 0.8

criterion and indicates the network has a scale-free topology. The similarity score

power parameter was kept at β = 1.

Next, we proceeded to select a hard-threshold parameter to prune edges from

the MDSN with a trade-off between maximizing the scale-free topology fit score and

maintaining information in the network for modules discovery. The trade-off can be

visualized in Fig. 2.3a. We selected the threshold at 0.55, where the scale-free topol-

ogy score is above 0.8, and pruned all edges which have cosine similarity score lower

than 0.55. After edge pruning, the number of non-isolate miRNA nodes remaining
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in the MDSN was 423. From the reduced MDSN network, we applied the Louvain

community detection method to identify miRNA modules, and the assignment of

miRNAs to the module is indicated by color as shown in Fig. 2.2.

Figure 2.2: Graph force-layout of the MDSN. Nodes are positioned closer to-
gether if their interconnectivity is high. MiRNA modules assignment, denoted by
node color, is determined from the Louvain community detection method which max-
imizes the modularity objective. It is observed that miRNAs in the same family tend
to be grouped as a clique.

2.3.2 Applications in the TCGA Lung Squamous Cell Carcinoma Dataset

We also obtained matched miRNA and mRNA expression profiles from the

TCGA Lung Squamous Cell Carcinoma (LUSC) cohort [97]. The preprocessing pro-

cedure of miRNA and mRNA expression profiles are the same as in the LUAD cohort.

An overview of the sample sizes and clinical characteristics is summarized in Table

18



2.2. According to the clinical data compiled by TCGA-Assembler [165], only less

than 20 samples had a histologic subtype labeled, and the majority of samples were

labeled as Not Otherwise Specified. Thus, we could not perform the miRNA-target

dysregulation analyses from the provided LUSC histological subtypes information due

to the insufficient sample size of labeled data.

One reason for this issue is that it has been known the lung squamous cell

carcinoma is clinically and genetically heterogeneous, and it is challenging to sub-

stratify this heterogeneity. However, a study by Wilkerson et al. [139] discovered

reproducible and clinically significant LUSC subtypes that can be predicted from the

mRNA expression profiles. A representative expression profile for each of the four

subtypes, Primitive, Classical, Basal, and Secretory, were summarized by a cluster

centroid consisting of 196 genes. Using the cluster centroids representing the four

LUSC subtypes, we performed subtype prediction for all LUSC samples using the

nearest-centroid classification algorithm proposed in [64].

2.3.2.1 Identified miRNA-Target Dysregulations Between LUSC Subtypes

After the subtype prediction of the LUSC samples were obtained, we tested

for significant dysregulation for every miRNA-target pair between 1870 miRNAs and

20,472 mRNAs. Six independent dysregulation analyses were performed for every

pairwise combination of the four subtypes, e.g., Primitive vs. Classical, Basal vs.

Secretory, Primitive vs. Basal, and so on. A union of the six analyses revealed a sum

of 1,560,419 miRNA-target dysregulations found at the p-value cut-off of 0.001.
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Table 2.2: Sample size characteristics of the TGCA LUAD dataset

Phenotype Sample size
normal (matched) 37

stage I 155
stage II 125
stage III 50
stage IV 3

Lung Basaloid SCC 10
Lung Papillary SCC 5
Lung Small Cell SCC 2

Not Otherwise Specified 353

Primitive* 59
Classical* 96
Basal* 156

Secretory* 53
∗Predicted lung squamous cell carcinoma
subtypes selected for dysregulation analyses.

2.3.2.2 Selection of Threshold Parameter for the Scale-free Topology of the MDSN

for LUSC Cohort

For every pair of the 1490 miRNAs found with dysregulation patterns across

multiple LUSC subtypes, we computed a total of 754,086 cosine similarity scores.

Similar to the procedure applied to the network in LUAD cohort, we selected the

edge-prune threshold at 0.50, where the scale-free topology criterion R2 score is higher

than 0.8, shown in Fig. 2.3b. The number non-isolate miRNA nodes that remained

in the MDSN is 391.

2.3.3 Extracted miRNA Modules are Consistent Between Independent Subtypes

Dysregulation Analyses

To evaluate the consistency of the extracted miRNA modules resulting from

independent differential analyses, we compared the miRNA module assignments be-
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(a) R2 scores under hard-thresholding for LUAD cohort 

(b) R2 scores under hard-thresholding for LUSC cohort 

Figure 2.3: The R2 scale-free criterion fit score at different hard-
thresholds. Edges in the MDSN are pruned if their cosine similarity score is
lower than the threshold.

tween different pairwise subtypes dysregulation analyses, combined analyses of all

subtypes, normal-tumor dysregulation analysis, and miRNA family information. The

score which measures the agreement between two clustering assignments is the Nor-

malized Mutual Information (NMI) metric. As shown in Fig. 2.4, the extracted

miRNA modules showed agreement in some of the independent subtypes dysregula-

tion analyses for both LUAD and LUSC cohorts. For example, in Fig. 2.4a, after

identifying dysregulations between Bronchio vs. Colloid subtypes and forming the

MDSN, the extracted miRNA modules have a similar clusters structure to that of

the modules extracted in Acinar vs. Colloid. This may indicate the same groups
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of miRNA are dysregulated in the Acinar, Bronchioloalveolar, and Colloid subtypes.

Similarly in the LUSC cohort shown in Fig. 2.4b, extracted miRNAmodules identified

from ”Classical vs. Primitive” are highly similar to those from ”Basal vs. Primitive,”

indicating the same groups of miRNA are dysregulated in these three subtypes. No-

tably, tumor vs. normal miRNA modules were not similar to any of the subtypes

dysregulation analyses.

(a) Comparison of extracted miRNA modules from 
the LUAD cohort

(b) Comparison of extracted miRNA modules from 
the LUSC cohort

Figure 2.4: Comparison of extracted miRNA modules from the LUAD cohort and
the LUSC cohort
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2.3.4 Incorporating miRNA Modules Information Improves Prediction of LUAD

Lung Cancer Stage

(a) ROC curves for SGL with miRNA modules

(b) ROC curves for L1 regularized logistic regression

Figure 2.5: ROC area under the curve scores for prediction of LUAD stages.
Comparison result in multi-stage classification performance shows improved accuracy
when incorporating learned miRNA modules to the SGL classifier.

We applied the logistic classifier with SGL using the extracted miRNA modules

as prior information to the Sparse Group Lasso regularization. Using a one-vs-rest

scheme for multi-class classification, SGL classifies between normal, stage I, stage II,
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stage III, and stage IV samples, with numbers of samples corresponding to the first

column of Table 2.1. We empirically set the sparsity parameters λ = 1.0 and α = 0.5

that were found to give the best prediction performance from 5-fold cross-validation

tests.

To assess whether adding miRNA clusters information improves stage predic-

tion performance, we compared cross-validation scores between SGL and a logistic

regression classifier with only ℓ-1 regularization. With each classifier, we computed

the area under the ROC curve rates for each stage from a train-test split of 20%, as

shown in Fig. 2.5.

2.3.5 MicroRNA Groups Lead to Higher Recall and Precision of Candidate miRNA

Biomarkers

To validate whether the extracted miRNA modules aid the SGL classifier in se-

lecting relevant miRNA biomarkers, we investigated how many of candidate miRNA

biomarkers selected are known LUAD-associated miRNAs. We utilized a benchmark

database of differentially expressed LUAD miRNAs from the dbDEMC [148]. Last

updated June 2014 as of this writing, the dbDEMC contains 545 miRNAs reported

by high-throughput experiments to be differentially expressed in LUAD. In a nor-

mal vs. tumor binary classification experiment using SGL which incorporates the

extracted miRNA modules, we showed high precision and recall rates of top-ranked

candidate miRNAs to known differentially expressed LUAD miRNAs from the db-

DEMC database in Fig. 2.6.

2.4 Discussion

In this study, we integrated paired miRNA and mRNA expression data to detect

aberrant miRNA-target interactions between lung cancer subtypes to discover novel
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Figure 2.6: Precision and recall rates of candidate miRNAs selected by SGL.
Among all 246 candidate miRNAs selected by SGL to classify normal vs. tumor, we
selected k top-ranked miRNAs by sorting top k coefficients by absolute value. The
left y-axis (black bars) represents the percentage of known LUAD miRNAs in the
top-ranked set. The right y-axis (gray bars) represents the percentage of miRNAs
recalled from known LUAD miRNAs.

miRNA biomarkers to predict lung cancer stages. We have developed an efficient

method to identify dysregulations among millions of potential regulatory relationships

between 1,881 miRNAs and more than 20,000 mRNAs across multiple lung cancer

subtypes. Among all the regulatory relationships considered, 4.9% of the miRNA-

target pairs were found to have aberrant behavior across the different subtypes of

the lung cancer diseases. Since the LUAD and LUSC are clinically and genetically

heterogeneous diseases, utilizing this information would provide a glimpse into the

miRNAs’ role in cancer pathogenesis in some specific lung cancer subtypes. This was

apparent in Fig. 2.4, which shows that some specific lung cancer subtypes possessed

similar groups of dysregulated miRNA modules across multiple independent subtypes

dysregulation analyses. For instance, note that the Primitive subtype in LUSC has

high NMI values between the Secretory vs. Primitive, Classical vs. Primitive, and
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Basal vs. Primitive analyses. This indicates that in the Primitive subtype samples,

there are possibly a few groups of miRNAs that have a consistent set of dysregulated

targets, exclusive to all other LUSC subtypes. It would be interesting to report an

analysis on such group of miRNA-target dysregulations in this Primitive subtype,

which coincidently has the worst survival outcome (p < 0.05) than the other three

subtypes [139]. Such an observation may not be apparent with only a normal vs.

tumor differential analysis, as it is shown in Fig. 2.4 where the NMI values are near

zero in the normal vs. tumor dysregulation analysis compared to all other subtypes

dysregulation analyses.

Despite that a growing number of miRNAs have been rigorously studied, the

functions of most miRNAs are still unknown. Furthermore, only a small fraction of

miRNAs were considered in the target prediction algorithms that provide a database

of putative miRNA-mRNA relationships. By considering all potential miRNAs and

their targets, our method can be used for novel miRNA functions discovery. How-

ever, a primary concern of this task is that selection of various thresholding hyper-

parameters may produce unstable results. We performed the miRNA-target dysreg-

ulation analysis with varying p-value threshold at 0.01 and 0.001 and found similar

patterns in the NMI similarity comparison from extracted miRNA modules in Fig.

2.4. Furthermore, all subtypes dysregulation analyses showed high NMI similarity

with the miRNA family assignments without having incorporated this prior knowl-

edge. This implies that despite possible false-positives in identifying miRNA-target

dysregulations, the pruned MDSN can still be an excellent tool to reveal miRNA-

miRNA functional synergism when inferring novel miRNA functions.
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2.5 Conclusions

By utilizing a dysregulation metric that allows for analysis of multiple cancer

subtypes, we proposed a pipeline to cluster miRNAs with high functional synergism.

The extracted miRNA modules, when applied to grouped feature selection, can im-

prove phenotype prediction and result in biomarkers with high precision and recall

rate to known LUAD-associated miRNAs. Furthermore, the predicted miRNA mod-

ules extracted from different subtype analyses can be used to reveal common miRNA

dysregulations across multiple subtypes in heterogeneous cancer types. Since miRNA-

target dysregulations are implicated in many cancers, where multi-modal differential

analyses between multiple cancer subtypes have mainly left undiscovered, we believe

this tool can have broad applications in the development of new diagnosis and treat-

ment strategies.
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CHAPTER 3

NETWORK REPRESENTATION OF LARGE-SCALE HETEROGENEOUS RNA

SEQUENCES WITH INTEGRATION OF DIVERSE MULTI-OMICS,

INTERACTIONS, AND ANNOTATIONS DATA

3.1 Introduction

Regulatory long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) that

influences gene expression post-transcriptionally by interacting to target messenger

RNAs (mRNA) form a complex network of transcriptomic interactions. These hetero-

geneous families of noncoding RNAs are associated with nearly all cellular processes,

including cell division, senescence, differentiation, stress response, immune activation,

and apoptosis [82, 49, 45]. Recently, lncRNAs are gaining considerable attention as

the largest and most diverse class of non-coding RNA, encompassing nearly 30,000

discovered transcripts in human. They are classified as > 200 nt transcribed RNA

molecules which has a diverse influence upon the function of other non-coding RNAs

as well as regulation of protein-coding RNAs. Among many of their known functional

interaction mechanisms, lncRNAs are known to act as miRNA decoys, derepress gene

expression by competing with miRNAs for shared mRNA targets, or directly regulate

gene expression [149]. Additional studies have also indicated that miRNAs can reg-

ulate lncRNAs by triggering decay [88], and moreover, some processed lncRNAs can

even generate miRNAs [39]. These types of cross-talk functional interactions between

lncRNAs and miRNAs to co-regulate gene expressions highlight the complexity of the

non-coding RNA regulatory network. Despite that miRNA’s repression to target mR-
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NAs has been well studied, the discovery of functional interactions for a large number

of lncRNAs in the human transcriptome is still at a rather preliminary stage.

Determining the function of the individual lncRNAs remains a challenge as most

of these RNA transcripts are currently unannotated, and their known interactions are

sparse. Recent advances in RNA sequencing (RNA-Seq), deep sequencing (CLIP-seq,

LIGR-Seq), and computational methods allow for an unprecedented analysis of such

transcripts and have enabled researchers to generate large-scale interaction and an-

notation databases. However, the interaction networks generated from such data are

often scant and incomplete in the number of lncRNAs covered. Although a large

number of lncRNAs have been identified, only a few hundreds have had functional

and molecular mechanisms determined to date, as observed in annotation databases

such as lncRNAdb [6]. Thus, in silico prediction of RNA-RNA interactions have been

widely applied in the task of predicting or inferring missing functional interactions,

where experimental studies are in short supply due to time and cost. Many graph-

theoretic methods have been applied to biological networks with the intuition that

RNAs close together in the interaction topology are more likely to be involved in many

of the same functions [33]. Typically, the approach is mining the neighborhood struc-

ture of nodes in the network topology, in order to suggest that two nodes are likely

to be functionally similar if they share many of the same co-interacting neighbors.

The positive results utilizing this approach [78] give the motivation that perhaps if

ground-truth functional annotation information can be incorporated, it can facilitate

the process of suggesting the interactions of the presently unknown RNAs.

To address this challenge, this paper explores the application of a recent ad-

vancement in machine learning called ”network embedding”. It enables learning from

the interaction topology and attributes of transcriptome-wide RNAs to accurately pre-

dict RNA-RNA functional interactions. Mathematically, our ground truth knowledge
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about RNA interactions can be represented by a directed adjacency matrix, whose

rows and columns correspond to individual lncRNAs, miRNAs, and mRNAs. In this

matrix, its binary (1 or 0) entries can indicate whether or not an RNA was observed

to have a functional interaction to another RNA, supported from experimentally-

validated interaction databases. The matrix is exceptionally sparse, especially among

lncRNAs, i.e., out of millions of possible interactions, only a few thousands have been

identified. Currently, a signification fraction of newly discovered lncRNAs lack any

identified interactions or functional annotations besides its basic genomic informa-

tion such as locus biotype and primary transcript sequence [37]. These genes might

support important biological cell functions and could potentially serve as targets for

genomic, diagnostic, or therapeutic studies. Thus, in the effort to functionally char-

acterize these ”hypothetical” lncRNAs, an essential task is to accurately predict their

RNA-RNA interactions from sequence.

We propose an algorithm that integrates various existing biological annotation

data while simultaneously identifies the complex patterns in the RNA transcript se-

quences that would allow for accurate prediction of the missing interactions. In this

work, we present rna2rna, a novel framework that combines the network-based and

deep learning-based approaches to extract a latent representation from nucleotide

sequence in order to accurately predict RNA-RNA interaction and identify func-

tional similarity. Our framework processes human lncRNA, miRNA, and mRNA on

a transcriptome-wide scale, and was shown to out perform state-of-the-art methods

at predicting future interactions for RNA with presently unknown interactions. In

summary, the main contributions of our method include:

1. A low-dimensional representation for heterogeneous RNA transcript sequences

by integrating existing biological annotation databases, which captures a func-

tional affinity between RNA embeddings.
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2. A two-part embedding space to represent the ”source context” and ”target

context” of an individual RNA. The learned embeddings can simultaneously

preserve directed cross-talk functional interactions and undirected functional

affinities in the lncRNA-miRNA-mRNA topology.

3. An inductive prediction model for novel RNA sequences of any length, applica-

ble for tasks such as inferring missing interactions and clustering of functional

similar RNAs.

To our knowledge, no other tool can simultaneously predict heterogeneous lncRNA-

miRNA, miRNA-lncRNA, lncRNA-mRNA, miRNA-mRNA, and mRNA-RNA inter-

actions from sequence, while integrate various biological annotation data to charac-

terize RNA-RNA functional similarity.

3.2 Related Work

Several network embedding methods have been proposed to predict unobserved

links in a network by learning the high-order proximity in its topology. The state-of-

the-art network embedding methods, e.g., LINE [125] and node2vec [56] utilizes the

second-order proximity, which assume that nodes sharing many of the same second-

order neighbors have a high affinity to each other. By learning the neighborhood

structure similarity between nodes, their semantic similarity can be identified and

is used to predict novel connections. Although such techniques have demonstrated

competitive link prediction performance in networks of various domains [53], their

prediction performance in biological networks is rather subpar. The reasons for this

include: 1) the gene-gene interaction network can be extremely sparse; 2) there is

lack of consideration for directionality of RNA-RNA interactions; 3) a lack of an

integrative approach for sequence and annotation data; and/or 4) the predictions

are transductive in nature, i.e., constrained among only nodes with a connection to
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existing nodes in the training set. The method proposed in this paper tackles these

limitations and aim to accurately estimate the association strength between every

possible RNA-RNA pair.

A number of network embedding methods have been applied to biological net-

works to either predict gene-gene interactions or to infer biological functions. Due to

the extreme sparsity of the known interaction network among lncRNAs to miRNAs

and mRNAs, it is pertinent to unravel the functional association between lncRNAs

by considering its gene/transcript annotation, functional family annotations, gene-

disease association, and sequence similarity [27]. Several efforts in recent studies have

already been made to meet the urgent need in this area. For example, Kishan et al.

[81] uncovered the second-order proximity relationship between interacting genes by

integration of the gene regulatory network and gene expression as side information.

Additionally, Cho et al. [29] proposed a diffusion-based method to predict a protein’s

function by propagating information through direct and indirect associations in the

interaction network. It is important to note that our method differs from these tech-

niques in that it incorporate heterogeneous directed RNA-RNA interaction types,

as well as RNA sequence data and annotation attributes as side information. On

the other hand, several structure-free sequence-based methods [7, 108, 101] have also

been proposed for prediction of protein binding sites, family classification, structure

prediction, or RNA-RNA interaction prediction from RNA sequence. These methods

utilize machine learning models to learn a latent feature representation of target se-

quences. Motivated by these works, our method aims to unravel the complex hidden

features from the RNA sequence that plays a factor in characterizing its functional

similarity and interaction to other RNAs.
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3.3 Methods

3.3.1 Defining the Heterogeneous lncRNA-miRNA-mRNA Interaction Network

We formally define the heterogeneous network of lncRNA, miRNA, and mRNA

interactions and functional similarity as two networks of directed and undirected

edges. We denote the two networks, G1(V,E
d) and G2(V,E

u), having the same set

of nodes V (also called vertices) and two set of edges Ed and Eu. The set of nodes

V = {v1, . . . , vn} can also be expressed as V = {L,M,N} s.t. |L| + |M | + |N | = n,

where L,M,N are the sets containing the lncRNA, microRNA, and mRNA heteroge-

neous nodes, respectively. The set of directed edges Ed = {edij}ni,j=1 represent directed

regulatory interactions that each specify a source and a target. The undirected edges

Eu = {euij}ni,j=1 s.t. euji = euji represents the undirected functional affinity associated

with the heterogeneous RNA nodes. Each edge eij is associated with a weight such

that 0 ≤ eij ≤ 1, indicating the strength of the connection between RNA i and RNA

j. If eij > 0, we consider the edge a positive interaction/affinity, and if eij = 0, we con-

sider the edge a negative (non)interaction/affinity. In this paper, we consider weights

eij to be binary, indicating whether RNA i and RNA j has an interaction/affinity.

Furthermore, every node also has an associated RNA sequence in a condensed

word embedding representation. An RNA sequence is denoted as xi ∈ {1, 2, 3, 4}li ,

where li is the sequence length of RNA vi, and the integer number at each entry

indexes the four RNA nucleotides.

3.3.2 Directed lncRNA-miRNA-mRNA Interaction Edges by Integrating Various

Data Sources

The directed edges represent the directed regulatory interactions between lncR-

NAs, miRNAs, and mRNAs. Some interactions can be considered as bi-directional,

however, in this study, we interpret the directionality as the regulatory effect of
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Figure 3.1: An illustration of the heterogeneous lncRNA-miRNA-mRNA tri-module
network.

one RNA transcript’s abundance causing a direct inhibition/repression/promotion

to another RNA transcript’s abundance. For instance, we can effectively encode

miRNA-lncRNA interactions (e.g., miRNA inducing lncRNA decay) to be separate

from lncRNA-miRNA interactions (e.g., lncRNAs acting as miRNA decoys) by using

directed edges to represent different types of functional interaction. In this study, the

different types of interaction collected from various experimentally-verified interaction

databases in the lncRNA-miRNA-mRNA interactome considered are:

• lncRNA-miRNA interaction via miRNA-sponging decoy function of competing

endogenous lncRNAs.

• lncRNA-mRNA post-transcriptional gene regulation.

• miRNA-lncRNA interaction by where a binding miRNA causes decay of a

lncRNA transcript.

• miRNA-mRNA post-transcriptional interactions causing degradation of target

mRNAs.

• mRNA-mRNA interactions in the gene regulatory network.

These heterogeneous interactions are combined into an integrated network, and the

associated set of edges is Ed, where the binary edge weight edij ∈ {0, 1} indicates

whether a regulatory interaction from RNA node vi to RNA node vj has been observed
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in the literature. A conceptual illustration of lncRNA-miRNA-mRNA regulatory

interactions is realized in Fig. 3.1.

3.3.3 Undirected RNA-RNA Functional Affinity Edges

Although the directed interaction edges Ed are given, the set of undirected

functional affinity edges Eu must be derived from various biological annotation data

associated with the RNA nodes. Each node can have up to K annotation data

associated with it. For an annotation k ∈ Ki that is associated with a node vi, we

denote a feature vector aki of binary entries representing the presence/absence of a

particular attribute in this annotation field.

We aim to capture the functional similarity between two RNA nodes by calcu-

lating an affinity score as a similarity measure of characteristics, suggesting a resem-

blance in RNA function or structure. The approach we take to calculate an affinity

between pairs of same-class RNA nodes is by examining the matching annotation

attributes that both shares. For any categorical text annotation (e.g., disease associ-

ation, transcript biotype, RNA structure family, or GO terms) that two RNA nodes

vi and vj both have been annotated, the attributes in this annotation are first trans-

formed to binary feature representation. For a categorical annotation denoted as k,

the binary 1-D feature vector associated with RNA node vi is denoted as aki . In this

vector contains m binary entries that indicate whether or not the RNA node vi has

been associated with each of the m total possible attributes of this annotation. Using

the Sørensen-Dice coefficient score [40], a similarity score between two binary vectors

for node vi and node vj for feature k can be obtained by:

skij =
2(aki · akj )

2(aki · akj ) + |aki |1 + |akj |1
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This similarity measure ranges [0, 1] and gives higher weight to the common attributes

present in both RNAs than by the attributes present in only one RNA. Since most

RNAs have null annotations, we computed the Dice coefficient score only between

pairs of RNA nodes that have both been annotated.

To obtain an aggregate affinity score between a pair of RNA nodes across all K

similarity values, we utilized a modified version of the Gower’s Similarity score [52].

For each RNA-RNA pair, Gower’s similarity aggregates similarity scores across all the

annotation features and perform a weighted average. Typically, a similarity score for a

pair of RNA nodes that do not have any associated annotation would be considered a

0, but in this study, we remove these null pairwise similarity from consideration. Thus,

Gower’s similarity will only aggregate the available pairwise similarity scores from

annotation that exists between both nodes to compute the average. Among the RNA

node pairs that have only one associated annotation pairwise similarity, we further

compute the global pairwise sequence alignment [118] score between these pairs of

sparsely annotated RNAs. The Needleman-Wunsch algorithm is used to computes the

highest score for matching sequence alignment, normalized by the sequence length, to

approximately measure the homology between transcript sequences. The RNA node

pairs that do not have any matching annotations were not included in the pairwise

calculation.

This Gower’s similarity score is computed between all pairs of same-class RNA

nodes, and the resulting pairwise affinity matrix is A, where entries Aij =
#Kij

k

skij
|Kij |

with Kij being the set of annotations present in both nodes vi and vj. The entries Aij

will then be selected as edge weights euij that represent the functional similarity edges

between node. Since our model currently only considers unweighted binary edges, we

selected undirected edges with affinity score close to 1.0 or higher than a chosen hard-

threshold to be considered as a positive edge. In our experiments, the hard-threshold
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was arbitrarily chosen where the number of positive affinity edges covers no more

than 0.1% sparsity of the entire affinity matrix. Then, we also uniformly sampled a

set of undirected affinity edges with a weight close to 0, indicating a negative edge

that suggests functional dissimilarity between a pair of RNA nodes. The number

of negative edges chosen such that the ratio of negative edges to positive edges is

between 2.0 and 5.0.

3.4 Network Embedding with Source-Target Contexts

A network embedding is mapping from each RNA node to a low-dimensional

representation, denoted as a mapping function f : vi → yi ∈ ℜd, ∀vi ∈ V , where d is

the dimensionality of the embedding such that d ≪ n. The embedding yi associated

with each node vi is learned such that, in this embedding space, nodes preserve

some meaningful proximities to other nodes according to the given topology in the

networks Gd and Gu. Given the learned embeddings for all of the nodes, Y ∈ Rn×d,

various downstream prediction tasks can be applied, such as graph reconstruction,

visualization, clustering, link prediction, and node classification [53].

We aim to obtain a biologically meaningful embedding representation that si-

multaneously captures both the regulatory interactions and functional affinities be-

tween RNAs. In other words, we train the embeddings to fit both sets of edges from

the networks Gd and Gu. To accomplish this, we propose the embedding space to have

two components: source context and target context. That is, each embedding vector

yi = [si, ti]
⊤ is represented as a concatenation of the ”source context”, si ∈ ℜd/2,

and ”target context”, ti ∈ ℜd/2. This embedding representation can simultaneously

capture directed and undirected edges by the following definition of proximities:
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First-order directed proximity to represent the directed regulatory interac-

tion between node i’s source context and node j’s target context, with:

d1(vi, vj) =
$

(si − tj)2 (3.1)

Second-order undirected proximity to represent the functional affinity be-

tween node i and node j, with:

d2(vi, vj) =
$

(yi − yj)2 (3.2)

The value of these proximities is the Euclidean distance, where the embeddings are

selected such that if two nodes have a positive (directed or undirected) edge, its

respective embeddings will be more similar, i.e. having a smaller distance. Otherwise,

if two nodes have a negative or non-interactions, their embeddings should be more

dissimilar, incurring a greater distance. Note, d1(vi, vj) can take on a different value

than d1(vj, vi).

Conceptually, the desired effects of applying both directed and undirected prox-

imities using the source-context and target-context in the embedding space are two-

fold. First, the embeddings can automatically possess the second-order directed prox-

imity, where nodes having similar functional annotations (i.e., a high second-order

undirected proximity) will also have a similar set of interacting partners (i.e., first-

order directed proximities to other nodes). Likewise, the second-order undirected

proximity between a pair of nodes having a similar set of directed interactions will

also have a high functional affinity. These two desired effects are in line with the

primary intuition that RNAs sharing the same interacting partners are more likely to

be involved in many of the same functions. Furthermore, as each of two networks, Gd

and Gu, are highly sparse and incomplete, training the complementary sets of edges

Ed and Eu can help to connect the functional affinities between known RNA’s to novel
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Figure 3.2: The rna2na network embedding method utilizing Siamese ar-
chitecture. Note, the convolutional recurrent network outputs an embedding from a
sequence input, while the siamese network takes in two sequence inputs and outputs
one number for the (directed or undirected) proximity.

RNA sequences. In the following sections, we demonstrate a methodology to simul-

taneously apply the two proximity definitions to characterize both the interactions

and functional affinity to each RNA transcripts.

3.4.1 Representation Learning for RNA Sequences to Reconstruct the Interactions

and Functional Topology

Aside from the interaction topology data, each RNA vi also has an associated

transcript sequence, extracted into a one-hot vector representation denoted by xi ∈

{1, 2, 3, 4}li , where li is the length of the sequence. We propose the network embedding

function f : xi → yi ∈ ℜd to be a deep neural network that maps RNA sequence input

xi to an embedding yi of dimension d that preserves the proximities defined in Eq.

3.1, 3.2. Motivated by its recent successes in facial recognition [115] and speech

modeling [123], we repurposed the Siamese network architecture as an interaction

network embedding framework in our method rna2rna.

Originally proposed for signature verification [18], Siamese network is an ar-

chitecture containing an identical pair of the same neural network which shares the

same configuration and parameters. A pair of objects can be fed into the two sub-
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networks to be encoded, where its resulting embeddings can determine if the two

objects are similar or dissimilar. Our goal is to decide the relationship between two

RNA sequences by using a convolutional recurrent network to output a real-valued

multi-dimensional vector that captures the hidden representation of RNA sequences.

More specifically, the network learns to output the embeddings for a pair of RNA se-

quences, guided by edge euij as the label that indicates whether the pair is functionally

similar or dissimilar. For similar pairs of inputs, their embedding is expected to be

closer in proximity, and with dissimilar pairs of inputs, their embeddings are to be far-

ther in proximity. Additionally, for an interacting pair of RNAs, the directed edge edij

would indicate whether RNA i interacts with RNA j using the corresponding directed

proximity. In order for the output embeddings to preserve the proximities across all

edges in both Gd and Gu network topologies, we utilize the binary cross-entropy loss

function [83], defined as,

L1(X,Ed, f) =
"

edij∈Ed

edij log(d1(f(xi), f(xj)))

+ (1− edij) log(1− d1(f(xi), f(xj)))

L2(X,Eu, f) =
"

euij∈Eu

euij log(d2(f(xi), f(xj)))

+ (1− euij) log(1− d2(f(xi), f(xj)))

(3.3)

The network weights in f(x) are trained with Stochastic Gradient Descent

(SGD) with the standard back-propagation algorithm. Since the subnetworks yield

two outputs and their weights are shared, the gradient is summed over the network

processing input xi and network processing input xj. We utilized the RMSprop [126]

optimizer to train recurrent network model until convergence. At each SGD itera-

tion, a batch of RNA nodes are sampled along with its associated sets of positive and

negative, directed and undirected edges, described further in section 3.4.3.
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3.4.2 Convolutional Recurrent Network to Obtain Embeddings from Variable-length

RNA Sequences

The network inside the Siamese architecture (illustrated in Fig. 3.2) encodes the

variable-length RNA sequence inputs through a series of non-linear transformations.

Each RNA sequence is represented as a sequence of integers where each element

indexes a A,C,T,G nucleotide. The lncRNA, miRNA, mRNA transcript sequences

can vary widely in length, between 20 nt to a few thousand nt long. For the network to

accept such input, the first layers are 1-D convolutional and pooling layers that yield

feature tensors with a timestep dimension that is proportional to the input sequence

length. Then, these tensors are passed to a Bidirectional LSTM layer [63], which

outputs a fixed-size hidden states vector, and is passed to the next fully-connected

layers. With this architecture design, the network is not constrained to only RNA

samples with a fixed sequence length specified at training time.

3.4.3 Model Optimization with Batch Sampling Strategy

At each training iteration, the model samples a set of training edges and fit

the neural network on the RNA sequences associated with these edges. The choice of

sampling strategy is hugely important, as the computational complexity is a factor

when determining the sampling method that gives the best estimation of the degree

distribution in the ground-truth network. It is well-established that most biological

interaction networks exhibit the scale-free topology property, apparent in the nodes’

degree distribution to follow a power-law degree distribution [4]. In other words, it

was frequently observed that a few nodes may have a lot of interactions, and a lot

of nodes may have very few interactions. If a set of edges were sampled uniformly,

the sampled sub-network would be biased toward nodes with a higher number of

connections and nodes with a lower number of connections will be poorly represented.
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This problem is further exacerbated by the size imbalance between the interaction

sets of well-studied RNA classes and newly-emerged RNA classes. Furthermore, as

the size of the network grows, the training approach that iterates through all possible

pairs of nodes may become quickly intractable. We instead implement a random node

sampling strategy where we first randomly select a set of nodes, then train on the

set of edges induced by this sub-graph. However, it was shown that sampling nodes

uniformly at random does not retain the power-law distribution [120]. Thus, we

employed a biased sampling, where the probability of picking a node vi is a function

of its degree, ri. The probability function proposed by Riad et al. [?] is:

P (vi) =
φ(ri)#

vj∈V φ(rj)
(3.4)

The sampling compression function is chosen to be the square-root function, where

φ(n) =
√
n, to retain the power-law degree distribution while keeping the linear

weighting as a ranking for the frequency of each node.

When a batch of nodes S is sampled without replacement from this distribution,

each node and its set of positive edges is {(vi, vj) | vi ∈ S, vj ∈ Pi, Pi ⊂ S}, and

negative edges is {(vi, vk) | vi ∈ S, vk ∈ Ni, Ni ⊂ S − Pi}. In the case of undirected

edges, both Pi and Ni are given, however, for directed edges, only Pi are given. To

obtain the negative directed edges, we then sample Ni by adopting the approach of

negative sampling as proposed in [93], where the ratio of negative edges to that of

positive edges incident to each node is between 2.0 and 5.0. To sample the set of nodes

Ni, we use the distribution given in Eq. 3.4, normalized over nodes in S. We allow

the negative sampling ratio to be a free parameter to be tuned in our experiments.
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Given S, the sampled batch of nodes, and Ed
S, E

u
S, the set of directed and

undirected edges containing both positive and negative interactions incident to S, we

train the loss function with batch optimization with

L(S,Ed
S, E

u
S, f) = L1(S,E

d
S, f) + λL2(S,E

u
S, f) (3.5)

where λ is the coefficient parameter to control the effect of the second-order undirected

proximity.

3.4.4 Predicting Interaction or Functional Similarity Between Two RNAs

After training is complete, given two RNA sequence inputs xi and xj, the learned

model can output the embeddings yi and yj, which is used to predict whether a

relationship exists between them by computing the respective proximity. Either to

predict the existence of an interaction or functional similarity, we use the proximity

score d1(vi, vj) or d2(vi, vj), respectively, and then compute a pairwise affinity using

a Gaussian kernel:

P (vi, vj) = exp(−γ ∗ d(vi, vj)2)

In our experiments, we calculated all pairwise Euclidean distances and solved for

γ given Eu, Ed, and Y . By fitting γ to the training set’s interactions edges and

the predicted pairwise affinity matrix, this method can accurately approximate the

distribution of interactions over the whole network.

3.5 Results

3.5.1 Large-scale Data Integration of lncRNA-miRNA-mRNA Interactions, Anno-

tations, and Sequences

We integrated various experimentally verified interaction databases to build a

large-scale lncRNA-miRNA-mRNA interaction network. Additionally, various func-
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Table 3.1: Overview of interaction databases used for data selection, har-
monization, and integration for prospective evaluations. Training sets are
comprised of interactions from database versions released before 2015, while valida-
tion sets are comprised of updates from the latest database versions. Note, the number
source and target RNA nodes listed for validation set are from novel interactions only,
which are disjoint from the training set.

Interaction database Training Sets
Version # interactions # source nodes # target nodes

miRTarBase 6.0 377,318 1,618 miRNAs 14,666 mRNAs
DIANA-lncBase v2 53,926 631 miRNAs 2530 lncRNAs
NPInter v2.0 85,335 12 lncRNAs 5023 mRNAs
lncRNA2Target v1.0 1308 79 lncRNAs 471 mRNAs
BioGRID v3.4 313,724 13,318 mRNAs 19,429 mRNAs

Interaction database Validation Sets
Version # interactions # novel sources # novel targets

miRTarBase 7.0 64,749 12 miRNAs 702 mRNAs
DIANA-lncBase Predicted 337,031 0 miRNAs 0 lncRNAs
NPInter v3.0 123,054 499 lncRNAs 2346 mRNAs
lncRNA2Target v2.0 65,624 1037 lncRNAs 10,825 mRNAs
BioGRID v3.5 33,522 178 mRNAs 178 mRNAs

tional annotation, sequence, disease association, were also integrated to enable ex-

traction of the undirected attribute affinity edges. To maximize the number of genes

matched between the different databases, miRNA and mRNA transcripts are indexed

by standard gene symbols specified by the MirBase [54] and HUGO Gene Nomen-

clature Community (HGNC)[106]. LncRNA transcripts are indexed by its Ensembl

gene name provided by GENCODE Release 29 [61]. In total, there are 12725 lncR-

NAs, 1870 microRNAs, and 20284 mRNAs considered in this study, comprised of a

comprehensive integration of the various databases illustrated in Table 4.2.

To accomplish the primary task of predicting novel interactions not seen at

training time, we propose an experimental setup using prospective evaluation. All

models were trained exclusively using the prior version of each interactions databases.

Then, we validate the link prediction model by using the set of new interactions

44



from the latest database version update. This type of evaluation, rarely done in the

literature, is extremely important as it allows us to mimic a realistic scenario where

the task is to discover novel RNA-RNA interactions, based on our current knowledge.

3.5.1.1 Integration of multiple interaction databases.

In this section, we list the databases utilized for both training and prospective

evaluation. In all databases, we selected only the human-species regulatory RNA-

RNA interactions and harmonized all miRNA, mRNA, and lncRNA gene names to

standardized MirBase, HGNC, and GENCODE gene names.

• microRNA-target interactions obtained from miRTarBase [32] database.

For training, miRTarBase version 6.0 has a total of 377,318 interactions matched

between 1618 microRNAs and 14,666 target mRNAs. For testing, version 7.0

has a total of 64,749 new interactions, of which includes interactions data for

12 novel miRNAs.

• microRNA-lncRNA interactions obtained from experimentally verified databases

DIANA-lncBase Experimental v2 [102]. There are a total of 53,926 matched

interactions between 631 miRNAs and 2530 lncRNAs. Since this database does

not have an updated version since the v2 release, we use the DIANA-lncBase

Predicted module for evaluation and selected 337,031 interactions with a confi-

dence score greater than 0.9.

• ncRNA-RNA interactions from NPInter v2.0 [60], where we filtered only

lncRNA-miRNA, lncRNA-mRNA, and miRNA-lncRNA interactions, which re-

sulted in 85,355 interactions between 170 matching lncRNAs and 5023 mRNAs.

NPInter v3.0 sharply increased in data and contained 123,486 new interactions

between 499 novel lncRNAs and 2346 mRNAs.
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• lncRNA-mRNA interactions containing lncRNA-mRNA functional regula-

tory interaction from lncRNA2Target [28], where its latest version v2.0 con-

tained a total of 65,655 interactions between 1037 lncRNAs and 28,866 genes,

and its previous version v1.0 contains 1277 interactions between 79 lncRNAs

and 471 mRNAs. Note that in this instance, lncRNA2Target v1.0 contained

interaction data derived from microarray experiments while v2.0 is from high-

throughput RNA-seq experiments, and there is no overlap between the two

versions.

• mRNA-mRNA interactions obtained from the BioGRID v3.4 database [25],

which included more than 313,724 matched interactions among 19,429 mRNAs.

For the validation set, BioGRID v3.5 contained 33,522 novel interactions that

included 178 novel mRNAs.

After integration of the training databases, self-interactions and redundant interac-

tions edges are removed, and only interactions between RNAs with an associated

transcript sequence will be considered. In the validation databases, we selected only

interactions that do not overlap with interactions from the training set.

3.5.1.2 Integration of annotation databases to extract undirected attribute affinity

edges.

In this section, we outline the annotation databases utilized to provide func-

tional attributes to individual RNAs. After all RNA-RNA pairwise functional affini-

ties were computed, a number of undirected affinity edges were then added to the

undirected interactions training set.

• lncRNA annotations obtained from the GENCODE Release 28 [61] which

contains the transcript biotype annotation. In addition, GO terms for 162

matched lncRNAs were obtained from RNAcentral [34] which aggregated data
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from NONCODE [19] and lncipedia [132]. Also, disease associations for 150

lncRNAs were obtained from the LncRNADisease database [26]. After comput-

ing the affinities A for all lncRNA pairs and filtering second-order undirected

affinities at a 0.8 threshold, 65,864 undirected edges were added. With the

negative sampling ratio set at 5.0 per positive edge, a total of 329,320 negative

edges were added to the undirected edges training set.

• microRNA annotations containing miRNA family classified from its seed

regions were obtained from the TargetScan Release 7.2 (March 2018) [3]. RNA

structure family annotation obtained from Rfam 13.0 [73] and GO terms from

RNAcentral were also included. In addition, disease associations for 553 miR-

NAs were obtained from HMDDmiRNA-disease database [68]. After computing

the affinities A for all miRNA pairs and filtering at a 0.8 threshold, 405 positive

edges were added. With the negative sampling ratio set at 5.0 per positive edge,

2025 negative edges were included.

• mRNA annotations were obtained from the GENCODE Release 28 [61], and

gene annotations were obtained from the HUGO Gene Names database [44].In

addition, disease associations for 7577 mRNA genes were obtained from Dis-

GeNet [105]. After computing the affinities A for all mRNA pairs and filtering

at a 0.8 threshold, 362,362 edges were added. At the negative sampling ratio of

2.0 per positive edge, 724,724 negative edges were included.

3.5.1.3 Preprocessing of RNA Transcript Sequences.

We collected genome-wide human reference lncRNA and mRNA primary se-

quences from GENCODE Release 29 [61] and miRNA hairpin sequences from miR-

Base [54]. A transcript is indexed by their gene name, however, many lncRNAs can

encode multiple transcript isoform variants. Since some interaction databases do not
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identify the specific transcript when referring to the interacting lncRNA, at every

training iteration, we uniformly sample from the set of different RNA isoforms for

each RNA gene.

In order to speed up the training of the interactions between RNA sequence

pairs in the convolutional network, we use batch optimization across multiple GPUs.

Due to memory limitations, at training time, we must pad all sequences within the

same training batch to one maximum length. The max length was chosen to be 8000

nt long, which would fully represent more than 95% of the longest RNA transcript

variants without needing to truncate. For the RNA transcripts exceeding 8000 nt

in length, it is important for the network to learn motifs from all regions of the

sequence in order to generalize to very long RNA sequences. For this purpose, at

each SGD iteration where sequences are sampled, we implement a strategy where a

long RNA sequence is truncated either from the first portion or the last portion at

random. After training, our model can then process variable-length sequences of any

arbitrary length at prediction time. From empirical results, we found this technique

does not diminish prediction performance but allows the model to generalize to any

RNA sequence length at test time.

3.5.2 Comparison Methods

Our experiments include comparative analysis in different evaluation tasks with

existing state-of-the-art methods in both varieties of network-based and sequence-

based embedding methods. A brief description of the different methods considered

are:

• node2vec [56]: A method which preserves higher-order proximity as well as

community structure and structural equivalence between nodes.
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Figure 3.3: Precision-Recall Curve in Graph Reconstruction evaluations to the
ground-truth training set of various interaction databases.

• LINE [125]: A method which jointly captures first- and second-order proximities

by minimizing the Kullback-Leibler divergence between predicted joint proba-

bility distribution for each pair of vertices and the given distribution of training

edges.

• HOPE [99]: A method which uses a two-part embedding to reconstruct a di-

rected adjacency matrix, while preserving asymmetric transitive proximity.

• SDNE [133]: An autoencoder-based method that preserves neighborhood prox-

imity between nodes given the network topology.

• BioVec [7]: A word2vec-based model which learns a distributed representation

of individual RNA nucleotide sequences by training from a corpus of 3-mers.

The corpuses of k-mers were calculated separately for each RNA classes.

In the following experiments, each method were assessed by learning a 128-dimensional

embedding representation from the training network. All other free parameters are

set according to the default value mentioned in the method’s respective papers.

3.5.3 Graph Reconstruction.

To assess whether the given methods can efficiently embed nodes from the net-

work to a low-dimensional space while preserving all interactions, we evaluate whether

each method can accurately reconstruct the original adjacency matrix of the network
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from the training set. After training each method on the training set of interaction

databases, all pairwise proximities between the node’s embeddings were computed

to reconstruct an estimated adjacency matrix. Then, we compute the Precision-

Recall Curve of predicted (positive) interactions by validation with the ground-truth

positive interactions from the training set. In addition to measuring the recall of

the positive interactions, we also sample for non-positive interactions to measure the

precision rate, which penalizes for false-positives. Candidate sampling was utilized,

where for each node, a number of non-positive interactions are sampled in propor-

tion to the number of positive interactions, where the ratio is 1 : 1. Random edges

were sampled according to the non-uniform distribution given by Eq. (4) to generate

non-interactions for each node, while preventing accidental hits of existing positive in-

teractions. Fig. 3.3 shows a precision-recall curve comparison analysis for the training

set across different interaction databases. Additionally, Fig. 3.5 shows the power-law

degree distribution of the reconstructed network for each method. Since it is also im-

portant for the predicted network to preserve the scale-free topology property from

the original interaction network, this result shows rna2rna can reconstruct an inter-

action network with a power-law degree fit score approximately matching that of the

ground-truth training network.

3.5.4 Novel Link Predictions.

To evaluate the predictive performance of our model at inferring novel RNA-

RNA interactions not seen at training time, we perform a prospective evaluation

on the validation set containing future version databases. We compose our training

set for this prediction task by a union of all ground-truth interactions set from the

miRTarBase 6.0, lncBase v2, NPInter v2.0, lncRNA2Target v1.0, and BioGRID v3.4

databases. All methods then train its model on this combined network. The undi-

50



Figure 3.4: Precision-Recall Curves for Link Prediction. For each database,
each line indicates the Precision-Recall evaluation of a network embedding method
to the set of novel ground-truth interactions in that database.

rected functional affinity edges were not included in the training data for any methods

besides rna2rna. After the models have been trained, its estimated adjacency matrix

is computed and evaluated on the novel interactions from miRTarBase v7.0, lncBase

predicted module, NPInter v3.0, lncRNA2Target v2.0, and BioGRID v3.5 databases

separately. The set of interactions from the validation set is entirely disjoint from

the training set. For a test to differentiate between positive interactions and random

noise interactions, we also uniformly sample a number of interactions from the set

of all possible pairwise interactions to consider as negative interaction. To do this,

we sample from the distribution defined by P (x, y) = P (x) ∗ P (y), x ∈ A, y ∈ B,

where P (x) is from Eq. (4), A and B are the set of source and target RNA nodes

respective of the database. This set is denoted as En, and the number of negative

interactions is sampled such that the ratio of negative to positive interactions is 1.0.

At evaluation time, the set of ground truth validation edges Ed and random noise En

edges is used to calculate the precision and recall rates. The true positives are the

correctly predicted true interactions, and the false positives are the predicted inter-

actions that are present in the random noise En interactions set. Since most network

embedding algorithms can yield a predicted probability of the connection, we show

the precision-recall curve to evaluate the precision rate at different thresholds of the

probability prediction. An area under the precision-recall curve (AUPR) is used to
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give a single number indicating the performance of the classifier, which is a good

criterion considering it punishes for false-positive predictions. Fig. 3.4 highlights the

comparison analysis across five different interaction databases.

In the comparison analysis, all methods were evaluated on the same set of pos-

itive and sampled negative interactions. It can be observed that LINE and SDNE do

not tend to perform well in this heterogeneous lncRNA-miRNA-mRNA interactions

network. For the performance evaluation of predicting the BioGRID mRNA-mRNA

gene regulatory interaction set, the interactions between lncRNA and miRNA to

mRNA are removed from consideration. It was observed that rna2rna also achieved

a superior result in this subnetwork.

3.5.4.1 Inductive Link Prediction to Novel RNA Sequences

In addition to evaluation of predicting missing edges between connected nodes

present in the training set, it is also important for our model to infer interactions

for novel lncRNAs from sequence. We evaluated the link prediction performance

for novel RNA sequences not present in the training set. In this experiment, there

are 47 novel lncRNAs with interactions in the validation set that is not present in

the training set. We attempt to recall these true interactions only from processing

its RNA sequence input and computing their associated interaction to all existing

miRNAs and mRNAs. We follow the same procedure proposed above to sample for

random negative interactions. Since our method is the only method that can yield

an embedding given a novel RNA sequence, the methods node2vec, LINE, HOPE,

and SDNE cannot predict from this evaluation as their link prediction is transductive

and constrained to only nodes in the largest connected component. After holding

out 47 lncRNAs and attempting to recall 3086 its associated true interactions, our

method has achieved an average precision score of 0.85, shown in Fig 3.5. Note

52



(a) (b)

Figure 3.5: (a) Inductive link prediction results for 47 novel lncRNA sequences not
seen at training time. (b) Comparison analysis of the power-law degree distribution
fit score across multiple RNA-RNA interactions predicted by each methods. The
”Databases” bars indicate the scale-free topology fit score of the network composed
by the ground-truth edges from lncBase, NPInter, lncRNA2Target, miRTaRBase, and
BioGRID, respectively.

that among the 3086 true interactions, which includes lncRNA-miRNA and lncRNA-

mRNA interactions, they are comprised of interaction set from the LncRNA2Target

v2.0 and NPInter v3.0 updates.

3.5.5 Inferring Functional Similarity From Embeddings

The source-target embedding is not only effective at encoding directed RNA-

RNA interactions, but it can also capture the undirected functional affinity of RNAs.

Since a pair of functionally similar RNAs would have a small Euclidean distance in

the embedding space, we can expect a cluster of RNAs to have the same biological

functions. To evaluate whether a network embedding method can effectively identify

functional similarity, we performed K-means clustering on the learned embeddings

and compared the predicted node’s clusters to the ground-truth RNA annotations.

The ground-truth annotations used for evaluation are RNA functional family [73],
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Table 3.2: Clustering Comparison Over 2343 Ground-Truth RNA Functional Family
Annotations.

Method Homogeneity Completeness NMI # nodes

node2vec 0.641 0.602 0.621 11735
LINE 0.689 0.614 0.650 11735
HOPE 0.525 0.571 0.570 11735
SDNE 0.613 0.588 0.600 11735
BioVec 0.376 0.467 0.417 14311
rna2rna* 0.508 0.530 0.519 14312
rna2rna 0.685 0.620 0.651 14312

rna2rna* denotes the model trained on the directed interactions data alone, without the undirected functional

affinity information.

and RNA locus type annotations (e.g., sense intronic lncRNAs, lincRNAs, miRNAs,

protein-coding, etc.). If an RNA is known to belong in more than one functional

family, we select only the first annotation and discard the rest.

In comparison analysis, we first obtained the embeddings from each of the

methods and performed K-Means clustering only on the nodes that have an associated

functional annotation. The number of clusters in K-Means is the same as the total

number of unique labels in a particular annotation. The evaluation measures used

are Homogeneity (higher if nodes are of the same type in each cluster), Completeness

(higher if all nodes of the same type are only in one cluster), and Normalized Mutual

Information (a mean of the two previous scores). The clustering result of different

methods are compared over the RNA family and RNA type annotations in Table 3.2

and Table 3.3. The result shows that although there is a greater number of RNA

nodes to assign to clusters, rna2rna embeddings can achieve the highest NMI score

over the RNA functional family annotations. In Table 3.3, other methods besides

BioVec achieved a lower score, because the local structure of the interaction topology

typically contains a mixture of RNA biotypes.
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Table 3.3: Clustering Comparison Over 24 Ground-Truth RNA Locus Type Annota-
tions.

Method Homogeneity Completeness NMI # nodes

node2vec 0.147 0.089 0.111 23940
LINE 0.268 0.158 0.199 23940
HOPE 0.109 0.111 0.110 23940
SDNE 0.079 0.076 0.078 23940
BioVec 0.391 0.298 0.338 32707
rna2rna* 0.178 0.138 0.155 32530
rna2rna 0.355 0.235 0.283 32530

rna2rna* denotes the model trained on the directed interactions data alone, without the undirected functional

affinity information.

3.5.5.1 Training on Interactions Alone Can Reveal RNA Functional Similarity

Here, we test our hypothesis about whether two RNAs are functionally similar

if they share the same interacting targets and interacting sources. Since two nodes

would have similar embeddings if they have the same set of interacting partners, we

can investigate whether training the embeddings from directed interactions alone can

produce an embedding that effectively preserves the undirected functional affinity

between RNAs. In this evaluation, we trained a rna2rna model on the directed RNA-

RNA interaction edges only, while excluding the functional affinities edges. Results

in Table 3.3 shows that despite holding out functional annotation information, the

resulting RNA embeddings can still approximately preserve cluster structures when

compared to ground-truth RNA type annotations.
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3.5.5.2 Clustering of RNA Embeddings Reveal Highly Enriched Gene Sets

Since rna2rna embeddings have demonstrated functionally similarity in the ex-

periments above, an important next step is to assign putative biological functions to

novel lncRNAs. To do this, we perform gene set enrichment analysis on clusters of

RNAs, select the cluster with the highest enriched functional term, then associate

the lncRNAs belonging in this cluster with this term. In this experiment, the embed-

dings are trained from both training set and validation set, which includes all known

functional interactions and Gene Ontology annotation terms associated with the lncR-

NAs, miRNAs, and mRNAs. We performed k-means clustering over the embeddings

of 32,741 different RNAs, where the number of clusters is 2000. We then performed

enrichment analysis on these 2000 clusters using Enrichr [84] over the KEGG Hu-

man 2019 [74] terms, which includes both functional and disease pathways. Some

of the highest enriched clusters are shown in Table 3.4. Among the 2000 clusters,

559 have an adjusted P-value of less than 0.01, and 139 have an adjusted P-value of

less than 0.001. Interestingly, the highest scoring gene sets often contain some lncR-

NAs not previously associated with these functional terms. It warrants additional

experimental studies to verify the functional associations of these lncRNAs.

3.5.5.3 Learned Projection of RNA Embeddings Demonstrates an Organized Distri-

bution

We further visualize the learned 128-dimensional embedding to 2-dimensional

space using t-SNE [90]. It can be expected that the RNA nodes in this manifold can

preserve the local structure of the interactions and functional annotations, as well as

exhibit good separation based on their transcript biotype classification. In Fig. 3.6,

nodes are colored based on RNA biotype, and only the 5000 top-scoring interaction
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(a) node2vec (b) HOPE (c) BioVec

(d) SDNE (e) LINE (f) rna2rna

Figure 3.6: Visualization of the lncRNA-miRNA-mRNA regulatory inter-
action network across different methods, where RNA nodes are mapped to a
2-D projection using t-SNE from the learned 128-D embeddings. Color of a node
indicates the RNA locus type, and grayscale lines indicate the top-5000 interactions
predicted by each method.

edges are shown to increase visibility. It is observed that the microRNAs are well

separated from the rest of the nodes, but the mRNAs and lncRNAs may have some

overlap, which is expected since the sequence structure of these two RNA classes is

similar. In comparison to other methods, rna2rna can map a much higher number

of lncRNAs and a more extensive variety of different RNA classes to the embedding

representation.

3.5.6 Subnetwork of LncRNAs Shows Promising Novel Function Interactions

We visualize sub-networks of some well-studied lncRNAs including HOTAIR,

GAS5, H19, CASC15, SNHG1, SNHG5, PINK1-AS, UCA1, XIST, and ZFAS1. Each

of these subnetworks contains ground-truth interactions between the lncRNA and its
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Figure 3.7: HOTAIR predicted interaction subnetwork. Nodes placement are
determined based on the learned network embeddings. Blue lines represent ground-
truth directed regulatory interactions. Red lines represent the top-25 predicted inter-
actions.

miRNA and mRNA interacting neighbors, while predicted interactions are highlighted

in red. An illustration of the HOTAIR subnetwork is shown in Fig. 3.7, while

others are in the Supplementary Materials. For other well-studied lncRNAs such

as H19, GAS5, and SNHG1, the number of interacting partners reached to nearly

one thousand, so we selected only interactions supported by two or more databases

for better visibility. In each visualization, the placement of the nodes is determined

from the force-directed layout of the subnetwork, with the exception of the HOTAIR

subgraph, which obtained node placements from the t-SNE transform. In SNHG5,

CASC15, and HOTAIR, it was interesting that they are accompanied by another
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lncRNA partner. This partner has an interaction to/from the main lncRNA, and

also shares some of the same neighbors that the lncRNA is connected to.

3.6 Discussion

In this study, we have proposed a method to encode the heterogeneous lncRNA-

miRNA-mRNA interaction network, being the union of lncRNA-miRNA, miRNA-

lncRNA, lncRNA-mRNA, miRNA-mRNA, and mRNA-mRNA interactions databases.

With the framework we have developed, existing annotation data as well as heteroge-

neous interactions are integrated to enable characterization of RNA sequences using

an embedding representation. While this method of integrating different functional

annotation sources is simple, its purpose is to allow for characterizing the functional

affinities for an extensive number of RNAs, even among sparsely annotated ones.

While very few lncRNAs have been annotated for all of its attributes, especially func-

tional annotation or disease association attributes, most have already been annotated

with the basic transcript biotype and a transcript sequence. Since we did not con-

strain the calculations to only RNAs that have all non-empty annotations, we can

utilize a less stringent affinity scoring method where a similarity measure between

sparsely annotated RNAs can be calculated.

To the best of our knowledge, utilizing the two-part source & target embed-

dings to model both directed interaction and undirected affinities is novel concept

among the network embedding methods. It has a direct purpose at the task of mod-

eling the directed regulatory interactions between biological entities. Considering

the node2vec, LINE, and SDNE methods that model the first-order proximity with-

out considering the direction of the edge, the directed regulatory interactions may

produce the embeddings to represent functional similarity incorrectly. For instance,

suppose there exists a directed edge to represent microRNA i targeting mRNA j. If
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we model undirected first-order proximity, the resulting embedding representation yi

and yj would be selected to be similar. This would be misleading because although

we know microRNA i targets mRNA j, mRNA j does not target microRNA i, they

belong to different classes of RNA transcripts, and is unlikely to be involved in the

same biological functions. By modeling each node’s embedding representation with

both si and ti separately, we can conceptualize a representation for a biological entity

by modeling its functional targeting information and receptive field information.

In the prospective evaluations of recalling the interactions from a future version

of various databases, it was shown our method could achieve comparable, and in some

cases, superior performance, with other state-of-the-art methods. Rna2rna was able to

achieve this accuracy even when predicting more interactions over a more extensive

range of RNA nodes since it can obtain embeddings for 32530 unique interacting

lncRNA, miRNA, and mRNA nodes. In other methods, only the interactions among

a subset of 17905 RNA nodes were considered for link prediction analysis. This is

because most other network embedding methods typically only consider the nodes

within the largest connected component of the network, while rna2rna can provide a

functionally consistent embedding for all nodes in the network that’s associated with

an RNA sequence. Since it can also handle sequences of various length, rna2rna can

provide this mapping for a wide range of RNA transcripts of different structures.

Additionally, since our method was able to map the functional affinity between

RNA nodes belonging in disconnected components in the interaction topology, we hy-

pothesize rna2rna could effectively map individual RNA’s to a functional manifold in

the embedding representation. It is observed in the t-SNE visualization of the embed-

dings in Fig. 3.6(f) that there is a clear separation between miRNAs, lncRNAs, and

mRNAs, albeit overlaps between lncRNAs and mRNAs. Note that although no neg-

ative undirected edges between RNAs of different types (e.g., lncRNAs v.s. miRNAs)
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were sampled to explicitly indicate different RNA types to have dissimilar embed-

dings, the network can still make a distinction between their functional roles. This

shows that the source-target embedding representation that can effectively encode an

RNA’s biological function only by its given directed interactions.

3.7 Conclusion

Our main contribution proposes a highly versatile architecture aimed at pre-

dicting interactions between heterogeneous RNA transcripts while characterizing the

functional landscape of non-coding RNAs. Although rna2rna have demonstrated

promising performance at various interaction prediction and clustering tasks in ex-

perimental results, we believe further improvements to the framework can help it

achieve even better performance and usability. Firstly, it cannot be easy to identify

the specific binding region from the learned convolutional filters for a given RNA-

RNA functional interaction. A future implementation of an attention-based network

architecture [129] can provide more power to the framework. Additionally, rna2rna’s

calculation of the RNA-RNA functional affinity using the Dice distance can be im-

proved, as it simply counts the number of matching functional terms a pair of RNA

shares. In this aspect, we plan to apply a method that can calculate a semantic

functional similarity, even between non-matching terms. Moreover, while rna2rna

was designed to tackle the task of broadening the general knowledge in the human

non-coding transcriptome, we also look forward to a modification of the model to

allow analysis of the interactome within a specific biological context such as a tissue

type or disease condition. Toward this end, we can integrate RNA expression data

as additional node attributes to identify specific RNA-RNA interacting pairs within

a sample cohort.
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In conclusion, we intend this method to be the groundwork for further down-

stream analysis tasks, where various other downstream genomic prediction tasks such

as prediction of gene annotation, gene-disease association, and discovery of unknown

gene cluster families can be readily applicable by directly processing the learned em-

beddings. Further works to this framework can provide an invaluable tool to support

significant discoveries in systems biology, especially for newly identified lncRNAs.
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CHAPTER 4

OPENOMICS: TOOLS FOR INTEGRATING MULTI-OMICS, ANNOTATION,

AND INTERACTION DATA

4.1 Abstract

Recent advances in sequencing technology and computational methods have

generated a variety of heterogeneous genetic and phenotypic characterizations. Lever-

aging these large-scale multi-omics data is emerging as the primary approach for sys-

temic research of human diseases and general biological processes. As data integration

and feature engineering are the vital steps in these bioinformatics projects, there cur-

rently lacks a tool for standardized preprocessing of heterogeneous multi-omics and

annotation data within the context of a clinical cohort. OpenOmics is a Python

library for integrating heterogeneous multi-omics data and interfacing with popular

public annotation databases, e.g., GENCODE, Ensembl, BioGRID. The library is

designed to be highly flexible to allow the user to parameterize the construction of

integrated datasets, interactive to assist complex data exploratory analyses, and scal-

able to facilitate working with large datasets on standard machines. OpenOmics is

also designed to facilitate network-based and graph-theoretic analyses of DNA, RNA,

and protein interactions in a high-throughput manner. We demonstrate the wide-

ranging use cases of OpenOmics using the Galaxy interfaces to our tool with the goal

of maximizing usability and reproducibility of the data integration framework.

Availability and implementation: OpenOmics is available in the Galaxy

Tool Shed. The source code, example usage and datasets, and documentation are
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made freely available under a MIT License at the repository: https://github.com/

BioMeCIS-Lab/OpenOmics.

4.2 Introduction

Recent advances in sequencing technology and computational methods have

enabled the means to generate large-scale, high-throughput multi-omics data [87],

providing unprecedented research opportunities for cancer and other diseases. These

methods have already been applied to a number of problems within bioinformatics,

and indeed several integrative disease studies [155, 98, 110, 62]. In addition to the

genome-wide measurements of different genetic characterizations, the growing public

knowledge-base of functional annotations [34, 37], experimentally-verified interactions

[31, 152, 32, 100], and gene-disease associations [68, 105, 26] also provides the prior-

knowledge essential for system-level analyses. Leveraging these data sources allow for

a systematic investigation of disease mechanisms at multiple molecular and regulatory

layers; however, such task remains nontrivial due to the complexity of multi-omics

data.

While researchers have developed several mature tools to access or analyze a

particular single omic data type [140, 119], the current state of integrative data plat-

forms for multi-omics data is lacking due to three reasons. First, pipelines for data

integration carry out a sequential tasks that does not process multi-omics datasets

holistically. Second, the vast size and heterogeneity of the data poses a challenge on

the necessary data storage and computational processing. And third, implementa-

tions of data pipelines are close-ended for down-stream analysis or not conductive

to data exploration use-cases. Additionally, there is currently a need for increased

transparency in the process of multi-omics data integration, and a standardized data

preprocessing strategy is important for the interpretation and exchange of bioin-
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formatic projects. Currently, there exist very few systems that, on the one hand,

supports standardized handling of multi-omics datasets but also allows to query the

integrated dataset within the context of a clinical cohort.

We have developed OpenOmics for the systematic integration and processing of

multi-omics datasets. The framework supports various data types, including patient’s

clinical data, gene/RNA expression, variants, copy number variation, DNA methyla-

tion, and even whole slide images. It can cross-reference IDs between different an-

notation systems to provide an interface that integrates with public interactions and

annotations databases. Moreover, it provides an integrated data structure for network

analysis to aid biomarker discovery and clinical outcome predictions. In addition to

the accessible application programing interface (API), an interactive dashboard web

interface is easily deployed by the user to perform exploratory analysis of the data

while providing intuitive visualizations. To power the computational load, the back-

end system utilizes a distributed framework to efficiently parallelize data processing

tasks and handle large data that does not fit in memory. To our knowledge, this is the

first Python library for multi-omics data integration with a web dashboard interface.

The source code and documentation for the package are hosted on GitHub, where it

is actively maintained, tested, and deployed as open-source software.

4.3 Related Works

There are several existing platforms that aids in the integration of multi-omics

data, such as Galaxy, Anduril, MixOmics and O-Miner. First, Galaxy [13] and An-

duril [23] are mature platforms and has an established workflow framework for ge-

nomic and transcriptomic data analysis. Galaxy contains hundreds of state-of-the-art

tools of these core domains for processing and assembling high-throughput sequencing

data. Second, MixOmics [111] is an R library dedicated to the multivariate analysis
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of biological data sets with a specific focus on data exploration, dimension reduc-

tion and visualisation. Third, O-Miner [113] is web tool that provides a pipeline

for analysis of both transcriptomic and genomic data starting from raw image files

through in-depth bioinformatics analysis. However, as large-scale multi-omic data

analysis demands continue to grow, the technologies and data analysis needs contin-

ually change to adapt with “big data”. For instance, the data manipulation required

for multi-omics integration requires a multitude of complex operations, but the point

and click interface given in existing Galaxy tools can be limiting or not computation-

ally efficient. Although the MixOmics toolkit provides an R programming interface,

it doesn’t yet leverage high-performance distributed storage or computing resources.

Finally, while O-Miner can perform end-to-end analysis in an integrated platform, its

interim analysis results cannot be exported elsewhere for down-stream analysis.

Aside from integrated analysis platforms, several specialized tools exists for han-

dling single omics data, such as AnnData [140] and Loom1 files. These Python-based

libraries provide an intuitive data structure for expression arrays and side annota-

tions. Loom additionally provides an efficient hdf5-based data format that allows

for out-of-memory data processing. While these data structures have been popular

for general purpose single-omics analytics, they doesn’t yet provide mechanisms for

multi-omics data integration.

4.4 The OpenOmics Library

OpenOmics consists of five core modules: multi-omics integration, annotation

interface, network integration, ad-hoc query, and visualization modules. An overview

visualization of the OpenOmics system architecture is provided in Figure 4.1.

1https://loompy.org
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Figure 4.1: Overall OpenOmics System Architecture, Data Flow, and Use Cases.

4.4.1 Multi-omics Integration

Tabular data are everywhere in bioinformatics. To record expression quantifi-

cations, annotations, or variant calls, data are typically stored in various tabular-like

formats, such as BED, GTF, MAF, and VCF, which can be preprocessed and nor-

malized to row indexed formats. Given any processed single-omic dataset, the library

generalizes the data as a tabular structure where rows correspond to observation

samples and columns correspond to measurements of different biomolecules. The

core functionality of the Multi-omics Integration module is to integrate the multiple

single-omic datasets for the overlapping samples. By generating multi-omics data for
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the same set of samples, our tool can provide the necessary data structure to develop

insights into the flow of biological information across multiple genome, epigenome,

transcriptome, proteome, metabolome and phenome levels. The user can import and

integrate the following supported omic types:

• Genomics: single nucleotide variants (SNV), copy number variation (CNV)

• Epigenomics: DNA methylation

• Transcriptomics: RNA-Seq, single-cell RNA-Seq, miRNA expression, lncRNA

expression, microarrays

• Proteomics: reverse phase protein array (RPPA), iTRAQ

After importing each single omics data, OpenOmics stores a Pandas Dataframe that

is flexible for a wide range of tabular operations. For instance, the user is presented

with several functions for preprocessing of the expression quantifications to normalize,

filter outliers, or reduce noise.

Within a study cohort, the clinical characteristics are crucial for the study of

a disease or biological phenomenon. The user can characterize the set of samples

using the Clinical Data structure, which is comprised of two levels: Patient and

Biospecimen. A Patient can have attribute fields on demographics, clinical diagnosis,

disease progression, treatment responses, and survival outcomes. Typically, multi-

omics data observations are captured at the Biospecimen level and each Patient can

have multiple Biospecimens. OpenOmics tracks the ID’s of biospecimens and the

patient it belongs to, so the multi-omics data are organized in a hierarchical order to

enable aggregated operations.

After integrating the multi-omics data with the clinical data, the Multi-omics

Integration constructs a data structure that indexes all single-omics data associated

with the samples clinical data. The data structure is computationally efficient to

enable various data operations for down-stream data analysis tasks, rather than re-
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Data Repository Annotation Data Available Index # entries
GENCODE Genomic annotations, primary sequence RNAs 60660
Ensembl Genomic annotations Genes 232,186
MiRBase MicroRNA sequences and annotatinos MicroRNAs 38589
RNA Central ncRNA sequence and annotation collection ncRNAs 14,784,981
NONCODE lncRNA sequences LncRNAs 173,112
lncrnadb lncRNA functional annotations LncRNAs 100
Pfam Protein family annotation Proteins 18,259
Rfam RNA family annotations ncRNAs 2,600
Gene Ontology Functional, cellular, and molecular annotations Genes 44,117
KEGG High-level functional pathways Genes 22,409
DisGeNet gene-disease associations Genes 1,134,942
HMDD microRNA-disease associations MicroRNAs 35547
lncRNAdisease lncRNA-disease associations LncRNAs 3000
OMIM Ontology of human diseases Diseases 25,670

Table 4.1: Public annotation databases and availability of data in the Human genome.

stricting to predefined analyses. For instance, the user can select and group the

associated multi-omics data based on customizable criteria on any clinical attributes

at the Patient and Biospecimen levels. Finally, processed multi-omics data objects

can then be exported as a collection of feature vectors and target labels for machine

learning tasks, saved to disk as a compressed dataset, or exported to a compatible

Galaxy [71] data structure for other downstream analysis.

4.4.2 Annotation Interface

After importing and integrating the multi-omic data, the user can supplement

their dataset with various annotation attributes from public data repositories such as

GENCODE, Ensembl, and RNA Central. With just a few operations, the user can

easily download a data repository of choice, select relevant attributes, and efficiently

join a variable number of annotation columns to their genomics, transcriptomics,

and proteomics data. The full list of databases and the availability of annotation

attributes is listed in Table 4.1.
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For each public database, the Annotation Interface module provides a series of

interfaces to perform specific importing, preprocessing, and annotation tasks. At the

import step, the module can either fetch the database files via a file-transfer-protocol

(ftp) URL or load a locally downloaded file. At this step, the user can specify the

species, genome build, and version of the database by providing a ftp URL of choice.

To streamline this process, the module automatically caches downloaded file to disk,

uncompress them, and handle different file extensions, including FASTA, GTF, VCF,

and other tabular formats. Then, at the preprocessing step, the module selects only

the relevant attribute fields specified by the user and perform necessary data cleanings.

Finally, the annotation data can be annotated to an omics dataset by performing a

SQL-like join operation on a user-specified index of the biomolecule name or ID. If the

user wishes to import an annotation database not yet included in OpenOmics, they

can extend the Annotation Dataset API to specify their own importing, preprocessing,

and annotation tasks in an object-oriented manner.

An innovative feature of our integration module is the ability to cross-reference

the gene IDs between different annotation systems or data sources. When importing a

dataset, the user can specify the level of genomic index, such as at the gene, transcript,

protein, or peptide level, and whether it is a gene name or gene ID. Since multiple

single-omics datasets can use different gene nomenclatures, the user is able to convert

between the different gene indexing methods by reindexing the annotation data frame

with an index column of choice. This not only allows the Annotation Interface to

select and join the annotation data to the correct index level, but also allow the user

to customize the selection and aggregation of biological measurements at different

levels.
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Data Repository Interactions Data # entries
BioGRID v3.5 DNA & protein interactions 313,724
lncRNA2Target v2.0 lncRNA-mRNA interactions 65,624
miRTarBase 7.0 miRNA-mRNA interactions 377,318
DIANA-lncBase v2 miRNA-lncRNA interactions 53,926
NPInter v3.0 ncRNA-RNA interactions 123,054

Table 4.2: Public interactions databases accessible from OpenOmics.

4.4.3 Network Integration

Leveraging the interconnections between the multi-omics levels is necessary

to have a holistic view of a biological system. After constructing an integrated

multi-omic dataset and annotating the side information, the user can supplement

their dataset with various DNA, RNA, and Protein interactions from experimentally-

verified data repositories. A full list of interaction databases that is accessible from

OpenOmics is listed in Table 4.2.

The primary goal of this feature is to assist users in downstream graph-theoretic

analysis by providing an integrated network data structure. The Network Integra-

tor module provides a series of functions to perform import, selection, and network

construction tasks. Similar to the Annotation modules, the user can load a public

interaction database via a ftp URL or a local file. Then, the user can filter the subset

of interactions based on user-defined criteria, such as species, tissue-site, interaction

type, and more. The Network Integrator module then constructs an interaction sub-

network from the filtered list of interactions. The resulting output is a sparse network

object, where “nodes” are individual biomolecules from one or more -omics data, and

each “edges” are tagged with interaction type, directed-ness, database source, and

any other relevant metadata.

With multiple subnetworks, the user also has the ability to combine them to

form an integrated network data structure. This network integration forms a “hetero-
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geneous network”, where there are multiple types of interactions between biomolecules

of different types. These data snapshots essentially contain sets of differently typed

edges and the nodes attributes data, and are conductive any graph-theoretical or

machine learning analysis tasks. To aid down-stream analysis on this complex data

structure, OpenOmics can export the integrated data in multiple formats, such as

NetworkX [58], DGL Heterogeneous Graphs [161], PyTorch Geometric Dataset [46],

or saved to disk in a compressed format.

4.4.4 Ad-hoc Query

With an integrated data structure, OpenOmics provides a framework to perform

in-memory tabular computations on the multi-omics dataset. Given the collection of

single omics dataframes, the user is able to select and filter the subset of samples or

genes which has matching values on any number of clinical or annotation attributes.

For any selection queries, the module performs the data selection by constructing a

SampleIndex and a GeneIndex. The SampleIndex selects the subset samples from all

Biospecimen samples within the clinical cohort, while the GeneIndex selects the subset

biomolecules from each of the multi-omics types. Given a specific attribute-matching

query, the SampleIndex and the GeneIndex is computed and returns a Multi-Omics

DataView, containing a subset of the expression and the annotation data table. As an

example on a TCGA multi-omics cancer dataset, a user may filter the data with only

samples from patients with a certain survival outcomes and filter gene expressions

from a subset of genes, then export the data subset into a file.

Since all data tables utilize the Pandas dataframes, the queried data structure

comes with a wide range of tabular computations at the user’s disposal. Using the

Pandas API on our MultiOmics DataView structure, the user can perform aggrega-

tion, sort, select, and operations on any numerical, string, or categorical datatypes.
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They are designed to offer quick response time and useful diagnostic feedback on

ad-hoc computing operations.

4.4.5 Data Visualization

Using the Ad-hoc Query API, OpenOmics contains several data visualization

components aimed to provide an interactive data exploration dashboard using the

Dash framework2. This component is a standalone web server which can be launched

on the user’s own server in one command line, i.e. openomics web dataset.omics,

where dataset.omics is the path of the dataset saved on disk as in Section 4.5.0.2.

Given a Multi-Omics dataset with integrated clinical data, genomics annotation, and

network interaction, the following interactive visualization components are available:

• Pivot table: build interactive pivot tables on the Clinical data that allows se-

lecting for a SampleIndex.

• DataTable: an interactive component designed for viewing, selecting, editing,

and exploring large expression tables for each of the -omics data type. Selecting

on the columns with a substring match allows for selecting on the GeneIndex.

• Network: plot a network containing genes, RNAs, and proteins, along their

heterogeneous interactions within the integrated network, where the user can

easily choose network layouts and move the view. Node selection with drag-

and-click operations allows for selecting on the GeneIndex.

• Interactive Genome Viewer: visualize sequences and overlay feature highlights

such as annotations, methylation patterns, variants and mutations. Selecting

the genomic region allows for selecting on the GeneIndex.

• NGL MoleculeViewer: 3D visualization of biomolecules such as DNA/RNA and

proteins from given sequence of annotation data.

2https://plotly.com/dash/
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This data-driven interactive dashboard has a grid layout designed to create

beautiful and functional visualization components that are draggable, resizable, and

responsive. At any selection event on the SampleIndex or GeneIndex in a certain

component, OpenOmics instantly queries the data subset and asynchronously update

the visuals on all other components. This allows the user to have an interactive

data exploration platform where they can perform step-by-step filter operations on

different facets of the multi-omics dataset. After the final data selection, the user can

export the data subset to another .omics file for downstream analysis.

4.4.5.1 Galaxy Tool Interfaces

To increase usability for users with diverse programming backgrounds, we have

also developed several interfaces of our toolset to the Galaxy platform. Administrators

of a Galaxy server can install the suite of OpenOmics tools via the public Galaxy

Tool Shed3. Users of a Galaxy instance can use the OpenOmics tools to perform the

following use cases:

1. Import single-omics data tables into Parquet data structures.

2. Construct a multi-omics dataset by integrating and indexing multiple single-

omics datasets.

3. Select, filter, and group samples by clinical attributes.

4. Select and download relevant public annotate or interaction databases.

5. Export integrated multi-omics dataset and interaction networks for down-stream

analysis within Galaxy.

6. Automated provenance tracking saves all OpenOmics operations steps in a his-

tory for reproducibility.

3https://toolshed.g2.bx.psu.edu/
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With an easy-to-use and robust Galaxy-based GUI interface to the primary function-

alities of the package, users can reproduce the experiments and integrate them into

their own workflow.

4.5 System Design

This chapter describes the various implementation details behind the scalable

processing and efficient data storage, and the design choices in the development op-

erations.

4.5.0.1 Distributed and Scalable Processing

While the in-memory Pandas dataframes utilized in our data structures are fast,

they have size and speed limitations when the dataset size approaches the system

memory limit. When this is an issue, the user can enable out-of-memory distributed

data processing on all OpenOmics operations, implemented by the Dask framework4.

When memory resources is limited, data in a Dask dataframe can be read directly

from disk and is only brought into memory when needed during computations (also

called lazy evaluations). When performing data query operations on Dask dataframes,

a task graph containing each operation is built and is only evaluated on command,

in a process called lazy loading. Operations on Dask dataframes are the same as

Pandas dataframes, but can utilize multiple workers and can scale up to clusters

by connecting to a cluster client with minimal configuration. To enable this feature

in OpenOmics, the user simply needs to explicitly enable an option when import-

ing an omics dataset, importing an annotation/interaction database, or importing a

MultiOmics file structure on disk.

4https://dask.org/
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There is an argument that conventional data integration systems should instead

be designed with a database, which stores all persistent data on disk and only brings

data to memory during computations. OpenOmics takes the approach by handling

all data in-memory, which allows for faster computations with a wide-range of data

processing features. Since data that lives in memory can be computed faster, it allows

researchers to perform more interactive and ad-hoc data explorations than traditional

SQL-based systems.

4.5.0.2 Data Storage

OpenOmics provides an efficient file format for large-scale integrated multi-

omics datasets. It consists of multiple omics data-frames of variable sizes, clinical

samples, annotations, and sparse graph objects. The data structure is packaged

in a single folder, where OpenOmics can make read and write operations with a

collection of highly optimized and compressed binary Parquet5 files. The Parquet

dataset structure for a OpenOmics dataset has the following schema:

• dataset.omics - A folder structure for the multi-omics data.

– clinical.parq - Patients and Biospecimen data-frames, containing cate-

gorical data types.

– For each omic type X :

∗ X omics.parq - A data-frame containing numerical data types for a

single omics.

∗ X annotations.parq - Annotation data for the single-omic, contain-

ing categorical and string data types.

– network.parq - Sparse graph data, containing a list of edges and the

annotations for each edge.

5https://parquet.apache.org
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A Parquet file structure can be created after the user constructs an integrated dataset

either with the Python API or the Dash dashboard.

4.5.1 Software Requirements

OpenOmics is distributed as a readily installable Python package from the

Python Package Index (PyPI) repository. For users to install OpenOmics in their own

Python environment, several software dependencies are automatically downloaded to

reproduce the computing environment. We list the primary package dependencies

and describe their uses below:

• pandas: Core data manipulation operations such as select, filter, and join.

• dask: Distributed and out-of-core data manipulation.

• dash: Python-based web framework for data-driven visualization.

• validators,typing,gtfparse: Automated preprocessing and parsing for a

variety of file types.

• biopython: Tools for biological computation.

• astropy,bioservices,requests: Offline caching of downloaded public datasets.

• goatools,obonet: Parsing of gene-ontology structures.

• networkx: Construction and manipulation interaction graphs.

OpenOmics is compatible with Python 3.6 or higher, and is operational on

both Linux and Windows operating systems. The software requires as little as 4

GB of RAM and 2 CPU cores, and can computationally scale up to large-memory

multi-worker distributed systems such as a compute cluster. To take advantage of

increased computational resource, OpenOmics simply requires one line of code to

activate parallel computing functionalities.
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4.5.2 Open-source Development Operations

We developed OpenOmics following modern software best-practices and package

publishing standards. For the version control of our source-code, we utilized a public

GitHub repository which contains two branches, master and develop. The master

branch contains stable and well-tested releases of the package, while the develop

branch is used for building new features or software refactoring. Before each version

is released, we utilizes Travis CI for continuous integration, building, and testing

for version and dependency compatibility. Our automated test suite covers essential

functions of the package and a reasonable range of inputs and conditions.

For increased visibility and quality of this scientific software, our package was

reviewed according to the pyOpenSci [137] standards. Installation instructions, doc-

umentation and vignette with examples of the API’s essential functions are provided

via Read The Docs6.

4.6 Budget Justification

4.6.1 Human Resources

While the core data manipulation functionalities of OpenOmics has been com-

pleted, several future works remains to be done to further enhance the usability of

the library. The first item is to develop an interactive dashboard visualization where

users without a programming background can access various data manipulation func-

tions through a web-application interface. The web-based server utilizes the Dash

framework 7 which operates with the OpenOmics functional interfaces to generate

data-driven visualizations. The analytics interface, named the Ad-hoc Query Engine,

will be a stand-alone tool with efficient data pipelines where users can experiment

6https://openomics.readthedocs.io/
7https://plotly.com/dash/
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with various input parameters, data manipulation operations, and see live updates

to the multi-omics data. We estimate the software development of the web inter-

face design to cost 40 man-hours and the data analytics functionalities to cost 60

man-hours.

The second item in our list is to increase reproducibility and compatibility

with other systems. When performing data manipulations OpenOmics primarily

stores the multi-omics data structures as in-memory data-frames. When exporting

the preprocessed data for down-stream analysis, it is desirable write the data to disk as

a single file for data versioning and sharing. We plan to develop a memory-mappable

file structure for the various Multi-Omics, Clinical, and Annotated data structures

that is efficient for out-of-core data operations. We estimate the development of this

feature to cost 30 man-hours.

4.6.2 Infrastructures

OpenOmics can trivially scale to multi-core parallel processing on a single work-

station. However, to develop and test distributed operations for OpenOmics to scale

to large-memory multi-worker computing clusters, we must have access to a cloud

computing platform. To manage and connect to distributed computing instances, we

plan to utilize the Dask framework on the Kubernetes platform. We estimate the

ideal computational resource for testing to be a AWS EC2 Servers environment that

contains at least 10 workers, each with at least 16 GB RAM, 128 GB hard-drive disk,

and 4 CPU cores.

4.7 Conclusion

A standardized data preprocessing strategy is essential for the interpretation

and exchange of bioinformatics research. OpenOmics provides researchers with the
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means to consistently describe the processing and analysis of their experimental

datasets. It equips the user, a bioinformatician, with the ability to preprocess, query,

and analyze data with modern and scalable software technology. As the wide array

of tools and methods available in the public domain are largely isolated, OpenOmics

aims toward a uniform framework that can effectively process and analyze multi-

omics data in an end-to-end manner along with biologist-friendly visualization and

interpretation.
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CHAPTER 5

LAYER-STACKED ATTENTION FOR HETEROGENEOUS NETWORK

EMBEDDING

5.1 Abstract

The heterogeneous graph is a robust data abstraction that can model entities of

different types interacting in various ways. Such heterogeneity brings rich semantic

information but presents nontrivial challenges in aggregating the heterogeneous rela-

tionships between objects – especially those of higher-order indirect relations. Recent

graph neural network approaches for representation learning on heterogeneous graphs

typically employ the attention mechanism, which is often only optimized for predic-

tions based on direct links. Furthermore, even though most deep learning methods

can aggregate higher-order information by building deeper models, such a scheme

can diminish the degree of interpretability by conflating relations with different se-

mantics. To overcome these challenges, we explore an architecture, Layer-stacked

ATTention Embedding (LATTE), designed to explore all possible higher-order meta

relations at each layer to extract the relevant heterogeneous neighborhood structures

for each node type. Additionally, by successively stacking layer representations, the

learned node embedding offers a more interpretable aggregation scheme for nodes of

different types at different neighborhood ranges. We conducted experiments on sev-

eral benchmark heterogeneous graph datasets. In both transductive and inductive

node classification tasks, LATTE can achieve state-of-the-art performance compared

to existing approaches, all while offering a lightweight model. With extensive ex-
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perimental analyses and visualizations, the architecture demonstrates the ability to

extract informative insights on heterogeneous graphs.

5.2 Introduction

Heterogeneous graphs have been commonly used to model complex systems

where there are multiple types of relationships among objects of different types. Such

a rich semantic structure brings ripe graph mining opportunities for various real-world

systems, including knowledge bases, academic graphs, social graphs, biomolecular in-

teractomes, and other multimodal abstractions. Recently, a significant line of research

has been explored for representation learning of heterogeneous graphs [42]. The ba-

sic principle behind these dimensionality-reduction approaches is to aggregate the

high-dimensional information about a node’s heterogeneous neighborhood to an em-

bedding vector representation. These node embeddings can then aid in downstream

machine learning tasks such as node classification, clustering, and link prediction.

Among the most effective approaches for representation learning on graphs,

graph neural network (GNN) methods has gained a dramatic increase in popularity

in recent years [80, 59, 130]. While these powerful methods were designed for homoge-

neous graphs, one can apply them to heterogeneous graphs by ignoring the link/node

type distinction and assuming the graph structure to be homogeneous. However, this

would be suboptimal, as it’s been proven that neglecting the structural dependencies

between relations by combining the multi-relations into a single graph will omit im-

portant topological properties of the system [9]. Therefore, the primary challenges

for heterogeneous graph embedding are maintaining the semantic information and

aggregating the multi-relations for respective node types.

There have been several attempts to adopt GNNs to learn multi-relational

graphs [114, 156]. More recently, several GNN models designed for heterogeneous
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graphs have introduced the attention mechanism for increased interpretation of the

aggregation of heterogeneous structures [135, 153, 65]. However, these approaches for

heterogeneous graphs face at least one of the following issues. First, some of them are

only fitted to aggregate the multi-relations for a single primary node type; thus, they

may require a manual design of meta paths. Second, they only optimize for prediction

between directly interacting nodes, which is insufficient to capture the heterogeneous

graph’s global properties [?] and higher-order structures. Third, although GNNs with

the message-passing paradigm can flexibly propagate high-order information across

multiple layers, they do not explicitly preserve the semantics of higher-order meta

relations. These shortcomings can often affect the model’s scalability, hinder the its

generalizability for inductive predictions, or limit the interpretability of the learned

model parameters.

In consideration of these current limitations and challenges, we aim to design

an approach for heterogeneous GNNs to extract higher-order structures by leveraging

the semantic information of all relations and node types. To handle heterogeneity in

the graph, we introduce a relation-specific attention mechanism, i.e., depending on

the types and direction of a link. As each node type is involved in a subset of all

relations, only the relevant relations are aggregated. The mechanism can then capture

individual node heterogeneity, where each node is allowed to selectively determine

which of its relation-specific neighborhoods contain a more salient signal for a given

task.

To generate higher-order meta path connections between nodes of different

types, we propose a novel scheme that combines transitive meta relations at each

layer successively. As a result, all meta relation sequences of arbitrary length can be

enumerated while retaining their semantic context. This process allows the model

to distill the unique global structure of each node type by decomposing its hetero-
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geneous neighborhoods at different ranges. With a combination of the mechanisms

proposed generate higher-order meta paths, our approach can infer the most effective

meta paths for inductive prediction even when the full graph data is not available.

Our main contributions with the proposed Layer-stacked ATTention Embedding

(LATTE) method for heterogeneous graphs are as followed:

• Propose an architecture that include both node-level and relation-level atten-

tions to effectively capture the heterogeneity among various node types and

relation types in the graph.

• Through an efficient mechanism of stacking higher-order attention-based lay-

ers, LATTE can compute distant proximity between nodes connected through

n-hop metapaths and can weigh the importance of various metapaths into con-

sideration.

• Formalizes a learning scheme that can simultaneously infer proximity-based

pairwise link prediction and predict heterogeneous node representations for

down-stream tasks.

To the best of our knowledge, the proposed approach is the only to introduce a GNN

architecture that can both considers node- and relation-type dependent aggregations

while efficiently considering all possible high-order meta relations.

5.3 Related Work

5.3.1 Graph Neural Networks

In recent years, many classes of GNN methods [114, 135, 156, 160, 164, 65]

have been developed to handle graph heterogeneity by designing node- and relation-

type dependent encoders and aggregators. Although these types of GNNs are flexible

for end-to-end supervised prediction tasks, they would only optimize for predictions
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between direct interactions. Compared to conventional graph embedding methods

[56, 125], standard GNNs generally do not take advantage of second-order relation-

ships between indirect neighboring nodes. Recently, a paper by Huang et al. [67]

applied a fusion technique to combine first-order and second-order embeddings at

alternating steps. Additionally, the Jumping Knowledge architecture [144] and the

GraphSAGE sampling and aggregation [59] has proposed to extend the neighbor-

hood ranges; however, there has yet to be an extension of such techniques to extract

higher-order heterogeneous relations.

Only few works have been devoted to mine higher-order relations in heteroge-

neous structured graphs [147, 153]. Notably, GTN [153] was proposed to enable learn-

ing on higher-order meta paths in heterogeneous graphs. It proposes a mechanism

that soft-selects a convex combination of the meta relations using attention weights,

then applies multiplication of adjacency matrices successively to reveal arbitrary-

length transitive meta paths. Similar to GTN, in this paper we focuses on an atten-

tion mechanism that infer attention weights not only on the given relations, but also

on higher-order relations generated by deeper layers, a feature that existing GNN

methods often neglect.

5.3.2 Multiplex graph Embedding

Another set of approaches designed for a subclass of the heterogeneous graph

are methods for multiplex graphs or multi-relational graphs. Many of the current

multiplex or multiview graph embedding methods [47, 158, 92, 107, 121, 116, 48]

have proposed strategies for aggregating the learned embeddings of multiple graph

“layers” into a single unified embedding. This class of methods typically specify

separate objectives for each of the layers to estimate the node features independently,

then apply another objective to aggregate the information from all layers together.
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Another paradigm is to use random-walk of meta paths to model heterogeneous

structures, as proposed in [104, 41, 47]. This class of approaches can learn graph

representations without supervised training for a specific task. However, they only

learn representations for the primary node type, which consequently requires the

customized design of meta paths. Also, they can be sensitive to the random walk’s

hyper-parameter settings, which may introduce unwanted biases or is computationally

costly, thus can lead to lacking performance. Another class of algorithm utilizing

embedding translations can also be applied for embedding heterogeneous graphs.

For instance, [15] learned linear transformations for each relation to model semantic

relationships between entities. While embedding translations can effectively model

heterogeneous graphs, they are mainly fitted for link prediction tasks.

5.4 Method

5.4.1 Preliminary

We consider a heterogeneous graph as a complex system involving multiple types

of links between nodes of various types. To effectively represent the complex structure

of the system, it is important to define separate adjacency matrices to distinguish the

nature of relationships. In this section, we define coherent notations to study the

class of heterogeneous information graphs.

5.4.1.0.1 Definition 3.1: Heterogeneous Information graph, is defined

as a graph G = (V , E , T ) in which each node i ∈ V and each link eij ∈ E are

associated with their mapping function φ(i) : V ! TV and φ(eij) : E ! TE . TV and TE

denote the sets of node and relation types, where |TV | + |TE | > 2. Since node types

can have different feature distributions, the node features representation is given by
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Φ(i) = xi ∈ RDm , which maps node i of node type m ∈ TV to its corresponding

feature vector xi of dimension Dm.

We represent the heterogeneous link types as a set of biadjacency matrices

A = {A(m,n) | ∃m,n ∈ TV} where |A| = |TE |. Each meta relation (m,n) specifies a

link type between source node type m and target node type n, such that A(m,n) =

{e(m,n)
ij | i ∈ Vm, j ∈ Vn}. The biadjacency matrix may consist of weighted links,

where e
(m,n)
ij > 0 if there exists a link, otherwise, e

(m,n)
ij = 0. For a A(m,n) subgraph,

we define node i’s neighbors set as N (m,n)
i = {j | ∀j ∈ Vn s.t. e

(m,n)
ij > 0}. Note

that A(m,n) ∈ R|Vm|×|Vn|’s size is non-quadratic, and thus does not have a diagonal.

Furthermore, this definition assumes relations of directed links, but for a relation

A(m,n) with inherently undirected links, we can inject a reverse relation A(n,m) =

{eji|∀eij ∈ A(m,n)} into the A set.

5.4.1.0.2 Definition 3.2: Meta Relation To represent higher-order relation-

ships, we denote (m r! p) as any length-r sequence of meta relations with source

type m and target type p. For instance, when r = 2, we can connect a relation

A(m,n) ∈ A with target type n to another relation A(n,p) ∈ A with matching source

type n to yield a second-order relation A(m
2!p). Throughout this paper, the meta

relations (m,n) notation is overloaded for brevity. In fact, the proposed architecture

can handle multiple meta relation types with the same source type and target type,

i.e. φ(eij) = 〈φ(i),φ(e),φ(j)〉, without loss of generalization.

5.4.2 LATTE: Higher-order Heterogeneous Graph Embedding

In this section, we start by describing the attention-based layers used in the

LATTE heterogeneous graph embedding architecture. The attention mechanism uti-

lized in our method extends GAT [130] to infer higher-order link proximity scores for
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nodes and links of heterogeneous types. We also introduce the layer building blocks

where each layer has the roles of inferring node embeddings from heterogeneous node

content while preserving higher-order link proximities.

The input to our model is the set of heterogeneous adjacency matrices A and

the heterogeneous node features X = {Xm|∃m ∈ TV}, where Xm = {xi ∈ RDm |∀i ∈

Vm}. At each rth layer, the node embeddings output is hr ∈ R|V|×F , where F is the

embedding dimension, as

hr = f(hr−1,Ar)

where h0
i = xi and Ar is the heterogeneous link adjacency matrices in the rth-order.

5.4.2.1 Generating Higher-order Structures

The first-order proximity refers to direct links between any two nodes in the

graph among the heterogeneous relations in A. The rth-order proximity refers to

indirect r-hop graph structures achieved by combining two matching meta relations.

Then, by computing the Adamic-Adar [2] as

A(m,n,p) = A(m,n)D−1A(n,p)

Djj =
"

i∈Vm

e
(m,n)
ij +

"

k∈Vp

e
(n,p)
jk

(5.1)

yields A(m,n,p) as the degree-normalized biadjacency matrix consisting of 2-hop meta-

paths from Vm nodes to Vp nodes. We define the set of meta relations containing all

rth-order relations as the composition between Ar−1 and A meta relation sets,

Ar = Ar−1 ×A (5.2)

where × behaves as a cartesian product that yields the Adamic-Adar only for source-

target matching pairs of relations. Note that this is directly applicable to the classical
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metapath paradigm [122], where all possible r-length metapaths are contained in each

separate relation in Ar.

5.4.2.2 Heterogeneous Higher-order Proximities

In order to model the different distribution of links in each relation typeA(m
r!p) ∈

Ar, we utilize a relation-type dependent attention kernel to score every pairwise link.

Given any node i of type m and node k of type p in a relation (m
r! p) ∈ Ar, the

respective attention kernel qr

(m
r!p)

∈ R2F
is utilized to compute the scoring mechanism,

a
(m r!p)
ik = q(m r!p)

⊤[Ur
mh

r−1
i ||Vr

ph
r−1
k ] (5.3)

where ·⊤ is the transposition and || is the concatenation operation. The two weight

matrices Ur
m ∈ RF×F and Vr

p ∈ RF×F encode node features for a pair of nodes and

obtain the ”source” context and the ”target” context, respectively, depending on the

node types and the direction of the link. Note that the attention-based proximity score

aij is asymmetric, hence capable of modeling directed relationships where eij ∕= eji.

5.4.2.3 Inferring Node-level Attention Coefficients

Next, our goal is to infer the importance of each neighbor node in the neigh-

borhood around node i for a given relation. Similar to GAT, we compute masked

attention on existing links, such that aik is only computed for first-order neighbor

nodes k ∈ N (m
r!p)

i . The attention coefficients are computed by softmax normalization

of the scores across all j, as:

α
(m r!p)
ik =

exp(τ(m r!p)a
(m r!p)
ik )

#
k′∈N (m

r!p)
i

exp(τ(m r!p)a
(m r!p)
ik′ )

(5.4)

where τ
(m

r!k)
is a learnable “temperature“ variable initialized at 1 that have the role

of “sharpening” the attention scores [30] across the links distribution in a (m
r! k)
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relation. It is expected that τ
(m

r!k)
> 1 when the particular link distribution is dense

or noisy, thus, integrating this technique allows the attention mechanism to focus

on fewer neighbors. Once obtained, the normalized attention coefficients are used to

compute the features distribution of a node’s by a linear combination of its neighbors

for each relation.

5.4.2.4 Inferring Relation Weighing Coefficients

Since a node type m is assumed to be involved in multiple types of relations,

we must aggregate the relation-specific representations for each node. Previous works

[135, 160, 153] have proposed to measure the importance of each relation type using

a set of semantic-level attention coefficients shared by all nodes. Instead, our method

chooses to assign the relation attention coefficients individually for each node among

only associated relation types, which enables the capacity to capture individual node

heterogeneity in the graph.

We denoteA(m r!) ⊂ Ar as the subset of meta relations with source typem. Since

the number of relations involved in each node type can be different, each node of type

m only needs to soft-select from the subset of relevant relations. We utilize another

linear transformation directly on node features to predict a normalized coefficient

vector of size |A(m r!)|+1 that soft-selects among the set of associated relations A(m r!)

or itself. This operation is computed by:

βr,i = softmax(Wr
mh

r−1
i + br

m) (5.5)

where βr,i ∈ R|A
(m

r!)
|+1

is parameterized by weights Wr
m ∈ R1+|A

(m
r!)

|×F
and bias br

m

for each node type m ∈ TV . Since β
r,i is softmax normalized, βr,i

0 +
#A(m!)

(m,n) βr,i
(m,n) = 1,

where βr,i
0 is the coefficient indexed for the “self” choice.
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5.4.2.5 Aggregating Layer-wise Embeddings

It is important to not only capture the local neighborhood of a node in a sin-

gle relation but also to aggregate the neighborhoods among multiple relations and to

integrate the node’s own features representation. While the first-order embedding rep-

resents the local neighborhood among the multiple relations, its rth-order embedding

aggregates a larger vicinity by traversing among higher-order meta paths. Along with

relation-type attention, LATTE can automatically identify important meta relations

of any arbitrary r-length by learning an adaptive relation weighing mechanism.

First, we gather information obtained from each relation’s local neighborhoods,

then combine their relation-specific embeddings. We apply both the node-level and

relation-level attention coefficients to a weighted-average aggregation scheme:

hr
i = σ

%

&'βr,i
0 Ur

mh
r−1
i +

Ar
(m!)"

(m r!p)

βr,i

(m r!p)

"

k∈N (m
r!p)

i

α
(m r!p)
ik Vr

ph
r−1
k

(

)* (5.6)

where σ is a nonlinear function such as ReLU.

Next, we show that multiple LATTE layers can be stacked successively in a

manner that allows the attention mechanism to capture higher-order relationships.

With this framework, the receptive field of rth-order relations is contained within

each rth-order context embedding. Furthermore, as βr,i encapsulates each relation in

Ar separately, it is possible to identify the specific relation types that are involved

the composite representation. Given the layer-wise representations h1
i , ...,h

r
i of node

i, we obtain the final embedding output by concatenating all the R-order context

embeddings, as

hi =
R"

r=1

hr
i (5.7)

where hi ∈ RRF , ∀i ∈ V with R ∗ F as the unified embedding dimension size for all

node types.
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Dataset Relations (A-B) # nodes (A) # nodes (B) # links # features Training Testing

DBLP
Paper-Author (PA) 14328 4057 19645

334 20% 70%Paper-Conference (PC) 14328 20 14328
Paper-Term (PT) 14328 4057 88420

ACM
Paper-Author (PA) 2464 5835 9744

1830 20% 70%
Paper-Subject (PS) 3025 56 3025

IMDB
Movie-Actor (MA) 4780 5841 9744

1232 10% 80%
Movie-Director (MD) 4780 2269 3025

Table 5.1: Sample characteristics for the heterogeneous graph datasets.

5.4.3 Preserving Proximities with Attention Scores

We repurpose the computed attention scores to estimate the heterogeneous

pairwise proximities in the graph explicitly. Incorporating this objective not only

enables our model for unsupervised learning but also allows the node-level attention

mechanism to reinforce highly connected node pairs by taking advantage of weighted

links. To preserve pairwise rth-order proximities for all links in each (m r! p) relation,

we apply the Noise Contrastive Estimation with negative sampling [93] objective as

Lr(A
(m r!p)) =− 1

|A(m r!p)|

A(m
r!p)"

aik

aik log(ρ(e
r
ik))

− 1

K

K"

k

E
auv∼P (A(m

r!p))
[log ρ(−eruv)]

(5.8)

where ρ denotes the sigmoid function applied to the attention score to infer a prob-

ability value. The first term models the observed links, the second term models the

negative links drawn from the noise distribution in (m r! p), and K is the number of

sampled negative links. Typically, K is chosen to be between 2 to 5 times the number

of positive links.

5.4.4 Model Optimization

To learn from both the heterogeneous graph’s attributes and topology, we op-

timize the proximity-preserving objectives and the downstream objective of the em-

bedding outputs with the standard back-propagation algorithm. For semi-supervised
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node classification, a multi-layer perceptron g(hi) = +yi ∈ [0, 1]G follows the LATTE

layers in order to predicts G labels given the node embedding. The cross-entropy

minimization objectives are defined as:

L(X ,A) = −
"

i∈VY

yilog(g(hi)) +
R"

r=1

"

A(m
r!n)∈Ar

Lr(A
(m r!n)) (5.9)

where VY is the set of nodes that have labels, and yi is the true label. The first

term aims to encode the node embedding representations with attention mechanisms,

while the second term reinforces the attention scores by iterating through weighted

positive and sampled negative links.

5.4.5 Analysis of the Proposed Model

Our model allows for computing embeddings for a subgraph each iteration; thus,

it does not require computations involving the global graph structure of all nodes at

once. To perform online training at each iteration, an input batch is generated by

recursively sampling a fixed number of neighbor nodes [59]. Then, LATTE can yield

embedding outputs for a sampled subgraph given the local links and node attributes.

A key observation is that the matrix products Ar in equation (5.2) do not

depend on the model parameters, can thus can be precomputed. In practice, we

utilize a sparse matrix multiplication subroutine which yields a time complexity of

O(( |TE |
2
)R × |V| × |E|) when generating up to R-order heterogeneous structures. For

large graphs, distributed computing infrastructures such as Apache Spark can effec-

tively speed up computations.

5.5 Experiments

An effective graph representation learning method can generalize to an unseen

node by accurately encoding its links and attributes and then “aligning” them to
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the embedding space learned from seen (trained) nodes. In this section, we evaluate

our method’s effectiveness on several node classification and clustering experiments,

where the task is to predict node labels for a portion of the graph hidden during

training.

5.5.1 Datasets

We conduct performance comparison experiments over several benchmark het-

erogeneous graph datasets. In Table 5.1, a summary of the graph statistics is provided

for each of the following datasets:

1. DBLP1: a heterogenous graph extracted from a bibliography dataset on major

computer science journals and proceedings. The dataset have been preprocessed

to contain 14328 papers, 4057 authors, 20 conferences, and 8789 terms. There

are 3 relations types paper-author, paper-conference and paper-term considered.

The author ’s attributes are a bag-of-word representation of publication key-

words. The classification task is to predict the label for each author among

four domain areas: database, data mining, machine learning, and information

retrieval.

2. ACM2: A small citation graph dataset containing paper-author and paper-

subject relation types among 3025 papers, 5835 authors, and 56 subjects node

types. Paper nodes are associated with a bag-of-words presentation of key-

words as features. The task is to label the conference each paper is published

in, among the KDD, SIGMOD, SIGCOM, MobiCOMM, and VLDB venues.

3. IMDB [21]: A movie database graph containingmovie-actor andmovie-director

relations among 4780 movies, 5841 actors, and 2269 directors. Each movie con-

1https://dblp.uni-trier.de
2https://dl.acm.org
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Dataset Metric metapath2vec HIN2Vec HAN GTN HGT LATTE-1 LATTE-2 LATTE-2prox

DBLP
F1trans 0.7518 0.7431 0.9121 0.9203 0.8246 0.8911±0.003 0.9240±0.003 0.9156±0.003
F1induc – – 0.8666 0.8721 0.8411 0.8620±0.004 0.8631±0.003 0.8822±0.032
# params 2.3M 2.3M 240K 125K 217K 78K 111K 111K

ACM
F1trans 0.8879 0.8466 0.8725 0.9085 0.8460 0.9118±0.005 0.9134±0.005 0.9153±0.003
F1induc – – 0.7909 0.8860 0.8495 0.8988±0.003 0.9007±0.003 0.9156±0.003
# params 387K 1.1M 1.5M 326K 458K 250K 273K 273K

IMDB
F1trans 0.4310 0.4404 0.5394 0.5924 0.4923 0.6066±0.018 0.6135±0.014 0.6363±0.007
F1induc – – 0.3877 0.5810 0.4836 0.6036±0.009 0.6117±0.038 0.6355±0.004
# params 611K 1.6M 1.4M 243K 343K 170K 196K 196K

± denotes the mean and standard deviation over 10 trials.

Table 5.2: Performance comparison of Macro F1 over trans-ductive and induc-tive
node classifications of the test dataset.

tain bag-of-words features of the plot, and the prediction task is to label the

movie’s genre among Action, Comedy, and Drama.

In each of the datasets, all directed relation have a reverse relation included. All

self-loop links have been removed, unless if required for a certain algorithm.

5.5.2 Experimental Setup

To provide a consistent and reproducible experimental setup, the preprocessed

graphs were obtained from the CogDL Toolkit [22] benchmark datasets. Each of the

datasets has been provided with a standard separation of train, validation, and test

sets, as well as the full input features and labels set. Since our model evaluates these

datasets based on their standard environment, the result from different experiments

can be directly compared.

5.5.2.1 Baselines

We verify the effectiveness of our framework by testing multiple variants of

LATTE along with the existing approaches. For comparison with some of the state-of-

the-art baselines, we consider two main approaches of heterogeneous graph embedding

and GNN methods:
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• Metapath-based methods which requires manual design of metapaths that

are limited to the same source and target node type.

– Metapath2Vec [41]: An unsupervised random walk method that utilizes

the skip-gram along with negative sampling on meta paths to embed het-

erogeneous nodes. It has been shown to achieve prominent performance

among random walk based approaches.

– HIN2Vec [47]: a state-of-the-art deep neural network that learns embed-

ding by considering the meta paths in an attributed heterogeneous graph.

It utilizes a random walk preprocessing, and it does not consider weighing

of different meta paths.

• Heterogeneous GNN methods that either only considers node- and relation-

type dependent encoders, or only considers high-order metapaths, but not both.

– HAN [135]: Employs a GAT-based node-level attention mechanism for

heterogeneous graphs. It proposes a hierarchical attention procedure that

weighs the importance for each meta path, however only among pre-defined

hand-crafted meta paths.

– GTN [153]: Utilizes an attention mechanism that weighs and combines

heterogeneous metapaths successively into higher-order structures, then

performs graph convolution on the resulting adjacency matrix.

– HGT [65]: Proposes a heterogenous mutual attention mechanism that

aggregates from heterogeneous relation types while capturing features and

representation space of distinct node types.

• Proposed method.

– LATTE-1 : The proposed LATTE model with one layer that only considers

first-order meta relations. The pairwise proximity preserving objectives is

excluded.
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– LATTE-2 : LATTE with two layers that considers both first-order and

second-order meta relations. The pairwise proximity preserving objectives

is excluded.

– LATTE-2prox: LATTE-2 but additionally optimizes the higher-order prox-

imity preserving objectives.

Every method was evaluated on the identical split of training, validation, and testing

sets for fairness and reproducibility. The final model is trained only on the training

set until the early stopping criteria on the validation set is met, then evaluated on

the test set. Additionally, each method must exploit all relations and the available

node attributes in the dataset, except for metapath2vec due to its limitation. If a

particular node type in the heterogeneous graph is not attributed, we instantiate a

set of learnable embeddings to replace X as node features.

5.5.2.2 Implementation Details

We set the following hyper-parameters identically for all methods: embedding

dimension size at 128, learning rate at 0.001, mini-batch size at 2048, and early stop-

ping if the validation loss doesn’t decrease after five epochs. For HAN, GTN and

HGT, the number of GNN hidden layers is 2, followed by an MLP that predicts node

labels given the embedding outputs in an end-to-end manner. For random walk-based

methods, a separate logistic classifier is employed to perform node classification given

the learned node embeddings. The hyper-parameters for metapath2vec and HIN2Vec

are walk length at 100, window size at 5, walks per node at 40, and the number of

negative samples at 5. Among GNN-based methods, the batch sampling procedure

that recursively samples a fixed number of neighbor nodes [59] is utilized, with neigh-

borhood sample sizes 25 and 20. Where possible, the standard implementation of

baseline methods has been provided by the CogDL Toolkit.
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For all LATTE variants, the best performing hyper-parameters selected ReLU

as the embedding activation function, drop-out at 30% on the embedding outputs,

and weight decay regularization (excluding biases) at 0.01. In LATTE-2prox, the

negative sampling ratio is set to 5.0. The models have been implemented with Pytorch

Geometric (PyG), and the experiments have been conducted on a GeForce RTX

2080 Ti with 11 GB of GPU memory. The hyper-parameter tuning were conducted

by Weight and Biases [10], and the parameter ranges tested were reported in the

supplements.

5.5.3 Node Classification Experiment Results

We consider the semi-supervised classification tasks in both inductive and trans-

ductive settings to perform thorough evaluations of representation learning in hetero-

geneous graphs. In the transductive setting, models can traverse on the subgraph

containing nodes in the test set during training. In contrast, the inductive setting

requires the models never to encounter the test subgraph during the training phase

and must predict testing nodes’ labels on the novel subgraph at the testing phase.

We train and evaluate all baseline methods to predict test nodes for each transductive

and inductive setting over ten trials.

To measure the classification performance of the prediction outputs, we record

the precision and recall for each class label to compute the F1 score. Due to the

apparent class imbalance in the three datasets, we report only the averaged Macro-

F1 score, which was the more challenging metric in similar experiments [135]. The

performance comparisons are reported in Table 5.2. For metapath2vec, HIN2Vec,

HAN, and GTN, the benchmark Macro F1 scores in the transductive setting has

been provided by the CogDL Toolkit, while the Macro F1 in the inductive setting are

averaged scores over 10 experiment runs.
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The top performance by LATTE-2prox indicates its effectiveness at learning

node representations on the high-order meta relation structures, especially with 80-

90% of the graph set aside for testing. Compared to HAN and HGT, which does

not consider higher-order relations, GTN and LATTE-2 have a significant edge in

inductive prediction because both can capture global properties. Compared to GTN,

which does not maintain the semantic space of individual meta path, LATTE-2prox

outperforms with explicit proximity-preserving objectives for each of the decomposed

higher-order meta relations. Additionally, since GTN necessarily assumes the feature

distribution and representation space of different node and link types to be the same,

thus it cannot weigh the importance of each meta path separately for each node type.

It can also be observed from the total model parameters size, that LATTE’s model

complexity is comparably less than the GNN baselines. While LATTE must allocate

an exponential number of relation-specific attention kernels as r increases, each kernel

is only a 1-D vector of the embedding size.

5.5.4 Clustering Experiment Results

To show the robustness of the proposed method, we also conduct clustering

comparison analysis with the baseline approaches. For each dataset, we train the

methods with only the training subgraph, then predict full-graph node embeddings

in one batch via feed-forward. We used K-Means to perform node clustering on

the embeddings with the same number of clusters as the number of classes. To

measure the quality of clusters, we compared them with the ground-truth node labels

to compute the NMI score. Since K-Means’ performance is affected by its random

initial centroid, at each run K-Means is repeated 10 times to yield the average NMI

score.

100



In figure 5.4, we observed LATTE-2 can consistently perform better HAN and

GTN, however was only outperformed by HGT in the DBLP dataset. This result

shows that in datasets for which has a significant portion of the graph hidden during

training, methods that defined separate node- and relation-type dependent encoders

can yield more meaningful representation for unseen nodes with a known type. Based

on the clustering analysis, we can find that the proposed LATTE can achieve a sig-

nificant improvement and give a better node representation of the full heterogeneous

graph despite missing data.

5.5.5 Interpretation of the Attention Mechanism

LATTE’s fundamental properties are the construction of higher-order meta re-

lations and the attention mechanism that weighs the importance of those relations.

To demonstrate these features’ benefits, we interpret the importance levels chosen

for each meta relations and verify whether they reflect the structural topology in the

heterogeneous graph. Given the learned weights βr,i for each node i at a layer r, we

can assess not only the averaged meta relation weights for a node type, but also the

individual meta relation weights for each node. In Fig. 5.3, we report the average

and standard deviation of the meta relation attention weights for IMDB, DLBP, and

ACM. The correlation between those weights and the node degrees for each relation.

For IMDB movies, it can be observed that on average, the MA, MD, MDM,

and MAM meta relations have the highest attention weights. This indicates that

information from the movie-actor neighborhoods, movie-director neighborhoods, and

node’s features are relatively more represented in each movie’s first-order embedding.

This selection also persists in the second-order embeddings, where MDM and MAM

have higher weights. Additionally, when looking at the correlation between MA’s

weights and the degree of MA links over all nodes, there is a 0.73 correlation, which
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indicates the attention mechanism can adaptively weigh the relation based on the

number connections present in the node. Interestingly, there is a substantial negative

correlation of −0.88 between the M “self” relation weights and the node degree. This

fact indicates that nodes with fewer or no links will choose a higher weight for its own

features, since little information can be gained from other modalities. As individual

nodes may have varying levels of participation among the various relations, this result

demonstrates that LATTE can select the most effective meta relation for individual

nodes depending on its local and global properties in the heterogeneous topology.

5.6 Ablation Study

The core components in LATTE are the mechanisms for meta relation weighing,

node-level attention weighing, and concatenation of lower- and higher-order embed-

dings. To assess the effectiveness of these components, we perform an ablation study

to disable each single component with these variants:

• LATTE-2 (−α): LATTE-2 with node-level attention disabled such that all

neighbors have the same weight.

• LATTE-2 (−β): LATTE-2 with adaptive relation weighing disabled, such that

relations have the same weight.

• LATTE-2 (−τ): LATTE-2 without adaptive ”sharpening“ coefficient in node-

level attention, and LeakyReLU activation is instead used as in GAT.

• LATTE-2 (−concat): LATTE-2 returns only the highest-order embeddings

without stacking the 1, ..., R-order embeddings in equation (7).

We conducted inductive node classification experiments five times for each vari-

ant, repeated for each of the three datasets. Shown in figure 5.5, we observed that

up to 2%, 7%, or 19% of macro F1 is reduced on average when node-level attention,

relation weighing or attention score ”sharpening“ are disabled, respectively. Most
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noticeably, if higher-order embeddings are not stacked (i.e. concatenated) with lower-

order embeddings, but rather passed directly to downstream tasks as commonly used

in deep GNNs, it suffers a drastic 38% reduction in accuracy. These results demon-

strate the effectiveness of the combination of the attention-based components, but

also highlights the importance of layer-stacking embedding for higher-order relations.

5.7 Discussion

The task of aggregating heterogeneous relations remains a fundamental chal-

lenge in designing a representation learning method for heterogeneous graphs. As

multiple relations can represent different semantics, their link distributions can be

overlapping, interconnected, and/or non-complementary. Therefore, we argue it is

an appropriate first step to consider them as separate components of the graph to

unravel their structural dependencies.

One of the key differences between existing GNN methods and the proposed

LATTE is that the latter exploits the semantic information in the meta relation to

reduce the computation complexity of aggregating multi-relations. Instead of con-

flating heterogeneous relations for all node types as in HAN and GTN, LATTE ag-

gregates only the relevant relations for each node type. Furthermore, by considering

the source type and target type of each meta relation, only relevant pairs of relations

can be joined when generating higher-order meta paths. A significant benefit to this

approach is that it relieves the computational burden of multiplying adjacency ma-

trices for all nodes while allowing distinct representation spaces for the different node

types. On the other hand, GTN can be computationally expensive, since it requires

computations involving the adjacency structure of all node types at once.
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5.8 Conclusion

This work has proposed an architecture for heterogeneous graph embedding,

which can generate higher-order meta relations. The benefits of the mechanism pro-

posed are not only to improve inductive node classification performance but also to

improve interpretation of deep GNN models. In the future, we will explore the possi-

bility to incorporate a self-attention mechanism to learn the structural dependencies

between relations by propagating information between lower- and higher-order meta

relations. Other interesting future developments are to enable LATTE to pre-train

without supervision, to efficiently generate higher-order graph structures during the

graph sampling procedure, and to extend LATTE to link prediction tasks.
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Figure 5.1: Conceptual illustration of the LATTE architecture demonstrating the
layer-stacking operations that aggregates first-order and second-order meta relations.
The heterogeneous graph contains Paper-Author (PA), Paper-Conference (PC) and
Paper-Term (PT) relations and their reverse relations (i.e. AP, CP, TP). The node
feature inputs for each node types are p0, a0, c0, and t0, and the LATTE-t embedding
outputs for each respective node types are pr, ar, cr, and tr.
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Figure 5.2: Average and standard deviation of the 1st and 2nd-order meta relation
attention weights over each node types. A single-letter relation (e.g. M, M1 ) denotes
the “self” choice.
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Figure 5.6: Accuracy v. training time on the ACM inductive dataset. Each line shows
the mean and its surrounding area shows the standard deviation over 10 runs. Runs
were stopped early when the accuracy on the validation set doesn’t improve after 10
epochs.

108



CHAPTER 6

PROTEIN FUNCTION PREDICTION BY INCORPORATING KNOWLEDGE

GRAPH REPRESENTATION OF HETEROGENEOUS RNA AND PROTEIN

INTERACTIONS WITH GENE ONTOLOGY

6.1 Abstract

Protein Automatic Function Prediction (AFP) is a large-scale computational

prediction problem between proteins and Gene Ontology (GO) terms where most

of the identified protein sequences are not fully annotated. Many of the current

approaches have resulted in higher AFP accuracy by incorporating protein-protein

relationships to computationally infer functions given both sequence- and network-

based features. Although a variety of methods have been developed to incorporate

homogeneous protein-protein interactions (PPI), none have explored the integration

of multi-omics interactions between genes, transcripts, proteins, as well as the Gene

Ontology as an integrated heterogeneous graph. By learning representations for both

proteins and GO terms in the same model, we developed LATTE2GO, a heteroge-

neous graph neural network designed to extract higher-order relationships from het-

erogeneous neighborhood structures. We trained the message-passing neural network

model with DistMult to score and rank positive protein-GO term annotations higher

than non-existent annotations, which is shown to be as effective as the node classi-

fication scheme typically employed for AFP. Experiments were conducted on bench-

mark datasets according to the CAFA4 protocol for multi-species proteins with the

time-based splitting of experimentally-validated annotations. LATTE2GO achieved

state-of-the-art performance in Fmax and AUPR metrics compared to recent graph
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deep learning AFP methods, with a significant gain in the larger biological processes

ontology. With extensive experimental analyses and visualizations, this architecture

demonstrates the attention mechanisms that may uncover clues into the effect of

specific protein-protein relationships in gene functions.

6.2 Introduction

Proteins are responsible for nearly all molecular functions as the build blocks

of life [51]. To achieve a more comprehensive understanding of biology, elucidat-

ing protein functions are among the most important biological problems. Despite

the tremendous growth of identified protein sequences due to the advent of next-

generation sequencing technologies, functional annotations for the vast majority of

proteins still remain partly or completely unknown. Therefore, in silico prediction of

protein functions, known as automatic function prediction (AFP), have been widely

considered to be promising in the task of predicting or inferring missing functional

annotations, where biochemistry experiments are in short supply due to time, cost,

and expertise [109].

The AFP task was formulated by a systematic blind prediction challenge named

the Critical Assessment of Functional Annotation (CAFA) [72, 163], which provide

benchmark datasets for experimentally-validated protein-functional associations. The

functions are standardized by the Gene Ontology (GO) [8], which classifies protein

and gene functions into hierarchically related functional classes1 organized into three

ontologies: Molecular Function (MF), Biological Process (BP), and Cellular Compo-

nent (CC). The AFP prediction task is an imbalanced multi-label classification prob-

lem on these sets of terms. Effective representation of individual GO terms remains

challenging, as there are over 44,000 unique GO functions with “is a”, “part of”,

1We interchangeably use the terms protein functions, GO terms, and function classes.
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“up regulates”, “down regulates”, etc., relationships between the MF, BP, and CC

terms [91].

Aside from extracting effective representations for GO terms, another challenge

is learning protein representations to encapsulate their function. Protein interac-

tomics is shedding new light on how protein functions through protein complexes

involved in biochemical pathways [124]. Previously, the classical view of protein func-

tion focused entirely on the structure and action of a single protein molecule [14].

The more holistic view in protein interactomics considers that each protein plays a

role in an extended network of interacting molecules, where a protein’s function is

the context of its interactions with other proteins. The effectiveness of this approach

is signified in recent works that have shown frameworks that integrated protein fea-

tures from multi-modal data types (e.g., sequence, structure, PPI, etc.) [57, 157]

and interaction networks [136] are more likely to outperform the ones that rely on a

single datatype. Furthermore, we hypothesize that the consideration of multi-omics

interactome in the context of proteins would also better reveal associations to protein

functions, as complex biological events usually involve the interplay of genes, tran-

scripts, and proteins [95]. Since there are no direct interactions between certain types

of RNAs and proteins, it is imperative to consider indirect multi-hop relationships to

sufficiently characterize the RNA-protein interactome.

To address the complex hierarchical structures of GO terms and the multi-

omics interactions around proteins, we aim to aggregate the GO structure and the

multiple genes-transcripts-proteins interactions as a knowledge graph containing het-

erogeneous relationships. We propose a method based on graph neural networks

[80, 114, 130, 135], which provides a message-passing approach to extract informa-

tion from the graph structures among RNAs and proteins, and the hierarchical rela-

tionships among GO terms. Our method combined multiple data sources, including
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sequence features and interaction networks. More specifically, we built a network of

Protein, MessengerRNA (mRNA), MicroRNA (miRNA), and Long non-coding RNA

(LncRNA) heterogeneous interactions, where each protein or RNA is associated with

a sequence. The our method, LATTE2GO, provides the following contributions:

• Extracting higher-order multi-omics relationships from RNA-protein interac-

tions as well as multi-relational protein-protein associations.

• Representation learning of protein functions from multiple relationships in the

hierarchical Gene Ontology within the same message-passing framework.

• Exploring attention graph neural networks to effectively aggregate heteroge-

neous protein-protein interactions and GO term relationships.

Our method allows functional properties of proteins to be inferred by extracting

information from complex, large-scale heterogeneous interaction networks.

6.3 Related work

Several graph-based methods incorporating protein network data have been

dedicated to the AFP problem [96, 134]. Notably, You et al. [150] proposed Deep-

GraphGO, an end-to-end model consisting of two GCN layers [80], which incorpo-

rates sequence-based protein features and the protein-protein network from STRING

database [124]. Additionally, DeepFunc [157] proposed to use protein sequence data

and DeepWalk to learn protein representations from the combined PPI network from

STRING and BioGRID [25]. Several shortcomings of these methods are that: (1)

STRING PPI are treated as homogeneous interactions and does not differentiate

between the types of protein-protein associations, and (2) physical interactions and

genetic interactions are conflated into one protein-protein graph where it may be more

beneficial to represent the latter among MessengerRNAs. We hypothesize that more

information can be extracted from protein networks by retaining the semantic infor-
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mation of specific interaction mechanisms through heterogeneous graph structures.

The recent development of multi-relational and heterogeneous graph neural networks

[114, 135, 65] can provide message-passing aggregations for the multi-relations among

GO term and proteins. However, they have not been extensively explored in the AFP

literature, nor have capabilities to generate higher-order relations in multi-omics data.

There are also many proposed AFP methods to extract information from the

hierarchical structures of GO terms to improve protein function prediction. Deep-

GOZero [86] was recently proposed to learn GO term representations through ontology-

derived axiom constraints in the n-ball space to enable zero-shot predictions. Yu et

al. [151] propose a method called HashGO to explore the underlying structure be-

tween GO terms to predict the association between massive GO terms and proteins

accurately. Zhou et al. [162] developed DeepGOA with a GCN that can employ

the knowledge graph of GO to boost the performance of protein function prediction.

While these methods can effectively extract information from the GO knowledge

graph, our method has the advantage of learning features directly from the complete

hierarchical ontology and connecting with protein network relations in an end-to-end

manner.

6.4 Materials and methods

6.4.1 Data integration

6.4.1.1 Heterogeneous RNA-RNA and protein-protein networks

We construct an integrated graph containing multiple interactions and rela-

tionship types between various biomolecule types. We collect multiple networks from

experimentally-validated public interaction databases to consider the interaction and

relationship networks between various RNA types and proteins. In this section, we list
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the databases utilized for training and evaluating our model and the criteria to select

specific interaction/relationship types to be integrated. In all databases, we harmo-

nized all miRNA, lncRNA, and mRNA transcript names2 to standardized MirBase

v22 transcript name, Ensembl transcript ID, and HGNC gene names, respectively.

For proteins, we index the sequences by the UniProt protein ID.

• microRNA-mRNA interactions obtained from miRTarBase version 9.0[66]

database, which has a total of 414,828 directed interactions matched between

4,115 microRNAs and 21,943 target mRNAs. We also include microRNA-

mRNA interactions from TarBase [76], which includes 966,000 interactions be-

tween 1,729 microRNAs and 34039 mRNAs.

• microRNA-lncRNA interactions obtained from DIANA-lncBase Experi-

mental v3 [77], containing a total of 64,943 matched directed interactions be-

tween 1411 miRNAs and 7103 lncRNAs. We also include RNAInter’s miRNA-

lncRNA interactions [75], which resulted in 72,261 interactions between 1532

matching lncRNAs and 2701 mRNAs.

• lncRNA-protein interactions containing lncRNA-protein directed interac-

tion from RNAInter [75], which contain a total of 12,082,426 interactions be-

tween 1037 lncRNAs and 326914 proteins.

• mRNA-Protein relationships to represent the one-to-many mapping be-

tween mRNAs and proteins. We use the “gene name” attribute of UniProtKB/Swiss-

prot annotation, which results in 227,972 directed relationships between 199,025

mRNAs and 239,987 proteins.

2A subset of transcripts and genes selected with matching species in the protein annotation

dataset.
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• mRNA-mRNA interactions obtained from the BioGRID v3.4 database [25]

filtered by genetic interactions, which included more than 313,724 matched

undirected interactions among 19,429 mRNAs.

• Protein-protein networks: We used version 11.0 of STRING database [124],

which covers 24.6 million proteins from 5090 organisms totaling more than two

billion interactions, which was generated before Jan. 2019. Here, rather than

combining all STRING PPI with a non-zero “combined score”, we separate the

different types of protein-protein associations into multiple sub-graphs where

an edge exists between two proteins if there is a non-zero score in the re-

spective edge type. Specifically, we obtained 23818564 associations for “co-

expression”, 724806 associations for “co-occurrence”, 11352421 associations for

“database”, 22013391 associations for “experimental”, 61520 associations for

“fusion”, 2889167 associations for “neighborhood”, and 28532031 associations

for “textmining” to create seven protein-protein undirected networks.

We used our package OpenOmics [128] to combine all nodes and edges into an in-

tegrated graph which contains a total of 86927 lncRNAs, 199025 mRNAs, 98444

microRNAs, and 239987 proteins. When two databases are integrated for the same

interaction type, the overlapping edges are counted once.

6.4.1.2 Gene Ontology representation

To holistically represent the Gene Ontology structure and the multiple types of

relationships between GO terms, we also construct a heterogeneous graph among the

GO terms to integrate with the RNA-protein heterogeneous graph. We downloaded

the Gene Ontology [8, 1] in OBO format to extract the relationships and reverse the

edge directionality. Depending on whether we are predicting biological process (BP),

molecular function (MF), or cellular component (CC) functions, we consider all the
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terms in the respective ontology, not just the target functions. The relationship types

we selected are “is a”, “part of”, “has part”, “regulates”, “positively regulates”, and

“negative regulates”, where each type encodes directed interactions, e.g., an edge

i
is a→ j where i is a parent term, and j is a child term.

6.4.1.3 Protein features

For each protein i, we generate its feature vector xi from InterProScan [94]

by extracting the count of InterPro signature matches in the sequence. Specifically,

xi ∈ Zm is a sparse vector where m is the number of unique family, domain, and motif

entries totaling 40,597 as of InterPro Release 90.0 [103]. We apply a memory-efficient

row-sparse matrix multiplication to obtain a low-dimensional vector representation

h
(0)
i ∈ Rd with:

h
(0)
i = ReLU

,
W(0)xi + b(0)

-
(6.1)

where W(0) ∈ Rd×m and b(0) ∈ Rd are learnable weights and biases, and ReLU is the

Rectifier Linear Unit activation function. As inputs to our model, only the proteins’

vector representations are extracted from feature attributes, whereas other RNA types

and GO terms use randomly initialized learnable embeddings of the same dimension

size d.

6.4.2 LATTE2GO GNN architecture

The overall architecture of Layer-stacked ATTention Embedding to Gene On-

tology (LATTE2GO) model is illustrated in Figure 6.1. Given pairs of protein and

GO term nodes in the integrated knowledge graph, the model aggregates all hetero-

geneous relations up to k -hops around these “seed nodes”. The goal of LATTE2GO

is to aggregate information from each meta relation-specific neighborhood around the
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Figure 6.1: LATTE2GO architecture diagram.

seed nodes, then aggregate their contextualized representations with attention. Given

the node representations of the gene and GO term nodes, a scoring function is used

to determine the strength of the connection between the protein-function pair.

6.4.2.1 Heterogeneous graph representation

We encapsulate the various entities and relationships into a heterogeneous di-

rected graph G = (V , E , T ,A) in which each node i ∈ V and each edge eij ∈ E are

associated with their entity and relation type mapping function τ(i) : V ! T and

φ(eij) : E ! A, respectively. Generally |T |+ |A| ≥ 2, where T and A denote the sets

of node and relation types.

6.4.2.1.1 Meta relations. For a directed edge eij linking source node i to

target node j, its meta relation is denoted as 〈τ(i),φ(eij), τ(j)〉. Thus, the set of all

heterogeneous meta relation types is defined as A = {〈s, r, t〉 | s, t ∈ T }, where r can
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denote 〈s, r, t〉 interchangeably for brevity. Note that there may exists more than one

unique meta relation between the same source node type and target node type. We

additionally denote the subset of edges with relation type r as Er = {eij | φ(eij) = r}.

6.4.2.1.2 Higher-order meta relations. Given A, we additionally define the

higher-order meta-relations set A(l), l ≥ 1, which contain l-hop metapaths as a se-

quence of l meta relations, as follows:

A(l) = {〈u, w ◦ r, t〉 | v = s, 〈u, w, v〉 ∈ A(l−1), 〈s, r, t〉 ∈ A} (6.2)

where A(1) = A and ◦ denotes composition operator. Thus, the new edge set induced

by a composed meta relation rc = ra ◦ rb is defined as Erc = {eik | φ(eik) = rc, eij ∈

Era , ejk ∈ Erb}.

6.4.2.1.3 Knowledge graph preprocessing. To model the ground-truth het-

erogeneous graph structure consisting of LncRNA, MicroRNA, MesssengerRNA, pro-

tein and GO term node types, we process various undirected and directed edges

contained in the aforementioned databases as either undirected or directed meta rela-

tions. For undirected meta relations ru ∈ A, such as 〈Protein, experimental,Protein〉,

we ensure eji ∈ E , ∀eij ∈ E where φ(eij) = φ(eji) = ru. Additionally, for each di-

rected meta relations rd ∈ A, we inject a separate “reverse” relation r−1
d into A

and its reverse edges {eji | ∀eij where φ(eij) = rd and φ(eji) = r−1
d } into E , e.g.

〈BP, is a,BP〉−1 = 〈BP, rev is a,BP〉. This preprocessing step ensure messages can

be propagated between every node types, while still preserving the meta-relation’s

directed/undirected semantics.
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6.4.2.2 Layer-stacked attention on meta-relations

Since there exist multiple relations connected to proteins and GO terms, we

experiment with the idea that attention mechanisms are suitable to identify salient

relations which contains the necessary information for classifying protein-function re-

lationships. We apply the message-passing GNN framework [50], and propose our

model LATTE2GO extending on the work of [135], with the goal of organizing mes-

sages from relation-specific neighborhoods into separate contextualized embeddings.

At the (l)-th LATTE layer where 1 ≤ l ≤ L, each node i’s representation h
(l)
i ∈ Rd

updates its state by aggregating context embeddings from multiple relations with its

own representation, as follows:

h
(l)
i = Aggregate

∀r∈A(l)
τ(i)

.
AttentionREL (r, i) · hr

(l)
i

/

A(l)
τ(i) = {〈s, r, t〉 ∈ A(l) | t = τ(i)} ∪ {〈τ(i)〉}

(6.3)

where hr
(l)
i ∈ Rd represents node i’s context embedding from relation r, and A(l)

τ(i)

contains all l-hop meta relations with the target node type τ(i), including the “self”

node type 〈τ(i)〉 to represents the self-connection. Note that we’re able to aggregate

meta-relations from multiple source types to each target type, thus not constrained

by predefined metapaths where s = t [135].

Since the target node type t is assumed to be involved in multiple relations

types, multiple relation-specific representations are aggregated for each node. More

specifically, our self-attentional AttentionREL function adaptively infer the relation at-
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tention coefficients individually for each target node i, which enables the capacity to

capture individual node heterogeneity in the graph. It is defined as:

AttentionREL (r, i) = Softmax

∀r∈A(l)
τ(i)

(β(r, l, i) + µr)

β(r, l, i) = b(l)
r

⊤
f
.0

hr
(l)
i ‖h〈τ(i)〉

(l)
i

1/

h〈τ(i)〉
(l)
i

= W
(l)
τ(i)h

(l−1)
i

(6.4)

where b
(l)
r ∈ R2d and µr is the trainable attention vector and bias scalar for relation

r, W
(l)
τ(i) ∈ Rd×d is the trainable weight matrix for node type τ(i), ‖ denotes the

concatenation operator, and f is the LeakyReLUα=0.2 activation function.

Given the context embeddings and their predicted relation attention scores

which sums up to 1, the aggregation step combines them with a weighted summation.

Since Velickovic et al. [131] have shown attention learning is more stable with multi-

head attention [129], we employ H separate attention heads to concatenate their

outputs, as follows:

Aggregate

∀r∈A(l)
τ(i)

(·) = LayerNorm

2
ReLU

2 H"

h=1

"

∀r∈A(l)
τ(i)

(·)
33

(6.5)

where if H > 1, then h
(l)
i ,hr

(l)
i , and all parameters are separate for each head h and

have its hidden dimension size divided by H.

Given that each layer l output node representations that contain context infor-

mation aggregated only from l-hop meta relations, we use several layers to compute

to up L-hop meta relations. The final embedding for node i is obtained by stacking

h
(l)
i from the outputs of L layers, as follows:

h′
i =

L"

l=1

h
(l)
i (6.6)

where h′
i ∈ RdL, which can be used for end-to-end training with downstream tasks.
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6.4.2.3 Graph attention network

GATs have shown to be powerful for inductive protein function classification

from protein-protein interaction network data [131]. Here, we leverage the masked

self-attention proposed in GAT and compute the relation-specific context embedding

hr
(l)
i of node i with:

hr
(l)
i =

"

j∈Nr(i)

AttentionGAT (j, r, i) · Message (j) (6.7)

where Nr(i) = {j | eji ∈ Er} contain incoming neighbors of target node i in relation

r, without the self-loop. Additionally, we apply the modification proposed in GATv2

[17] with improved expressiveness of the edge-level attention function, defined as:

AttentionGAT(j, r, i) = Softmax
∀j∈Nr(i)

(α(j, r, i))

α(j, r, i) = a(l)
r

⊤
f
.0

W
(l)
τ(j)h

(l−1)
j ‖W(l)

τ(i)h
(l−1)
i

1/

Message(j) = W
(l)
τ(j)h

(l−1)
j

(6.8)

where a
(l)
r ∈ R2d is the edge-level attention vector for relation r, and f is the

LeakyReLUα=0.2 activation function. Note that in LATTE2GO, the edge weights that

represent interaction strength or confidence level is not utilized, and instead allow

GAT to infer edge weights via the attention mechanism.

6.4.2.4 Computing classification scores between proteins and GO terms

To predict functions for protein i, a sampled subgraph of the heterogeneous

graph is obtained from up-to-L-hops neighborhood expansions [59], starting from a

“seed nodes” set that includes both protein i and the set of target classes denoted

as VGO. Although there are no relations between i and VGO, node representations

for proteins and GO terms can be computed simultaneously in the same feed-forward

pass of the LATTE layers. Rather than a final linear transform layer to score protein
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i’s class probabilities in the typical node classification setting, we apply DistMult

[146] to score the probability for class k ∈ VGO, as:

ŷik = σ
,
h′⊤
i Mh′

k

-
(6.9)

where σ is the sigmoid function and M ∈ RdL×dL is a trainable diagonal matrix.

For semi-supervised node classification learning, we use the binary cross-entropy loss

function:

L(Θ) = − 1

|VP ||VGO|
!

i∈VP

!

k∈VGO

yik log(ŷik) + (1− yik) log(1− ŷik) (6.10)

where Θ is the set of parameters in all layers to be learned, VP are the subset of

protein nodes associated with ground-truth labels, and yik ∈ {0, 1} is the true binary

indicator for protein i and function k.

6.4.3 Model training and implementation details

The LATTE2GO GNN model was implemented with PyTorch-Geometric [46]

and can run on a single CUDA GPU with at least 10GB of RAM. To tractably train

a graph of 6.6M nodes and 71M edges, we use mini-batch SGD with subgraph sam-

pling [59], along with the heterogeneous nodes subsampling technique HGSampling

[65] where the node budget per layer is the same as the batch size. To alleviate

the exponentially increasing size of the higher-order relations set A(l) due to the

cartesian product in Eq. 6.2, we enforce: (1) meta relations with identical source

and target node types can only compose if they are of the same edge type, and (2)

to filter meta-relations at the last layer to have the target node type as the “seed

nodes”. Additionally, (3) to deal with very dense edges when composing a high-

order meta-relation rc = ra ◦ rb within a sampled subgraph, we subsample the set of

edges in ra and in rc such that each target node have approximately K neighbors or

less. With these heuristics, the overall worse-case time-complexity of LATTE2GO is
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O
,
|A|L

,
NKL +NKd

-
+ LNd2

-
where N = |V| and L ≤ |T |, and the first term is

|T |L in the average case. With a dynamic programming implementation, generating

the high-order meta-relations is parallelized on CPU and is computed with efficient

sparse matrix multiplications.

All hyper-parameters are determined through a grid search based on the model’s

BPO AUPR performance on the temporal-holdout validation set. The hyper-parameter

tuning and orchestration were conducted by Weight and Biases [10]. We use the Adam

optimizer [79] with batch size = 2048 and initial learning rate = 0.001. To avoid over-

fitting, we use weight decay = 0.01 and early stopping when the validation AUPR

rate stops increasing after 5 epochs.

6.5 Results

6.5.1 Dataset characteristics

We used the protein-GO annotation dataset compiled from DeepGraphGO’s

benchmark dataset [150], which was built according to the CAFA4 outline. This

benchmark dataset contain GO annotations for 239,987 UniProtKB-SwissProt protein

sequences [35] with specified training, validation and testing sets based on time splits

on before Jan. 2018, Dec. 2018, and Jan. 2020, respectively. When collecting the

‘IDA’, ‘IPI’, ‘EXP’, ‘IGI’, ‘IMP’, ‘IEP’, ‘IC’, and ‘TA’ evidence coded annotations

set from SwissProt1 [16] and UniProtGOA [69], we added parent terms-propagated

annotations for every child term annotations, and replaced all alias GO terms with

the canonical GO term name [8]. The sample size characteristics used by all models

in our experiments is shown in Table 6.1.
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Table 6.1: Sample size characteristics of dataset splits

Ontology Terms Training proteins Validation proteins Testing proteins

MFO 6868 51549 490 426
BPO 21381 85104 1570 925
CCO 2832 76098 923 1224

6.5.2 Experimental settings

To generate node classification results on the CAFA4 benchmark dataset, we

train and validate methods on each of the Biological Process (BP), Molecular Function

(MF), and Cellular Component (CC) ontology independently. All models considered

were trained on the same set of training protein-function annotations, early-stopping

monitored metrics on the same validation set annotations and evaluated on the same

test set annotations. Since we applied the same evaluation protocol in [150], this

allows for direct comparison with competing methods evaluated in the article.

6.5.2.1 Baseline methods

Since our model aims to predict embedding representation for both proteins

and GO terms, we considered three types of AFP methods for comparison with

LATTE2GO: homologous sequence transfer, sequence-only representation learning,

and homogeneous PPI GNN-based methods.

• LR-InterPro: Given the protein feature vectors h
(0)
i extracted from InterPro

features, a linear transform followed by a sigmoid activation is used to compute

the GO term class scores.

• BLAST-KNN : BLAST is used to obtain a set of homologous proteins for a

given query protein sequence, and GO term labels are propagated to the query

protein by a similarity score. Its full implementation details are outlined in

[150].
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• DeepGOCNN [85]: A sequence-based model which uses 1D CNN protein se-

quence encoder followed by a flat multi-label classifier.

• DeepGOPlus [85]: A sequence-based model which combines deep convolutional

neural network (CNN) model with sequence similarity-based predictions.

• DeepGraphGO [150]: A GNN-based method with two GCN [80] layers, which

incorporates the InterPro protein features and the combined protein-protein

network information from STRING database.

• LATTE2GO-1 : The proposed LATTE2GO model with two layers that only

considers first-order meta relations, i.e., A(l) = A, l ≥ 1. This model uses only

protein-protein and GO-GO relations.

• LATTE2GO-2 : LATTE2GO with two layers that considers both first-order and

second-order meta relations. This model uses only protein-protein and GO-GO

relations.

We set the following hyper-parameters identically for all methods: embedding dimen-

sion size at 512 and early stopping if the validation loss does not decrease after five

epochs. For DeepGraphGO, the number of GNN hidden layers is 2, followed by an

MLP that predicts node labels given the embedding outputs in an end-to-end manner.

Regarding the mini-batch subgraph sampling for GNN methods, DeepGraphGO uses

full-neighborhood expansion at each layer on a k-NN PPI subgraph where k = 30,

whereas LATTE2GO uses HGSampling [65] on the complete set of interactions.

6.5.2.2 Evaluation metrics

We used two evaluation metrics to compare AFP methods, Fmax and AUPR

(Area under Precision-Recall curve), as used as the primary evaluation metrics in

[72]. Fmax is a protein-centric measure of the maximum F1 score for any thresholds

on the classification scores among all GO term classes, averaged over all proteins,
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Table 6.2: Performance comparison results of LATTE2GO with DeepGraphGO

Method Fmax AUPR
MFO BPO CCO MFO BPO CCO

LR-InterPro 0.617 0.278 0.661 0.530 0.144 0.672
BLAST-KNN 0.590 0.274 0.650 0.455 0.113 0.570
DeepGOCNN 0.434 0.248 0.632 0.306 0.101 0.573
DeepGOPlus 0.593 0.290 0.672 0.398 0.108 0.595
DeepGraphGO 0.623 0.327 0.692 0.543 0.194 0.695
LATTE2GO-1 0.778 0.539 0.691 0.753 0.534 0.689
LATTE2GO-2 0.840 0.574 0.683 0.831 0.584 0.682

defined as: Fmax = maxt

4
2·pr(t)·rc(t)
pr(t)+rc(t)

5
, where pr(t) and rc(t) denote the precision and

recall obtained at a positive-class threshold value t, as defined in [150].

6.5.3 Comparison results

Outlined in Table 6.2, we report the Fmax and AUPR metrics for performance

comparison between LATTE2GO and the baseline methods. Only the DeepGraphGO

and LATTE2GO have been executed for comparison analysis, whereas the results of

other methods were copied from DeepGraphGO’s article [150].

LATTE2GO-1 show a significant performance increase on Fmax and AUPR for

MFO and BPO, compared to DeepGraphGO. Our method also uses InterPro protein

features, but the STRING PPI contains multi-relational protein-protein associations,

leading to better representations of proteins given its topological networks. We hy-

pothesize that protein representation learning is more effective not only with the

separation of physical v.s. genetic protein-protein associations, but also with the

specified data source of PPI, which may imply interactions in different biological con-

texts. Additionally, due to the large size of the BPO target classes, we hypothesize

that incorporating the GO multi-relational associations graph leads to better rep-

resentations of GO terms while providing as good classification performance as the
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typical node classification setting. Importantly, representing the Gene Ontology as a

graph allows us to infer annotations on sparse or unannotated terms not seen in the

training dataset.

LATTE2GO-2 also show a performance boost compared to LATTE2GO-1, sig-

nifying the approach of generating higher-order meta relations. Since we have utilized

the meta relation semantics to connect higher-order relations, this allows for extract-

ing semantic-specific higher-order structures and exploring possible permutations of

meta-relations. In contrast with multi-layer GNNs where each message-passing layer

applies on the same first-order graph structure, we argue our approach of generating

and aggregating meta relations has two advantages: (1) to decouple the higher-order

metapath and retain semantics information in higher-order neighborhoods, and (2)

to alleviate the “over-squashing” problem [5], where the higher-order context are

combined with the lower-order context across layers. In our experiments, we have

identified that up to second-order leads to sufficient performance, motivated by the

consensus that neighbor-of-neighbor proteins in the interaction topology are likely to

share the same functions [33].

6.5.4 Ablation analysis

The core components in LATTE2GO are selecting various node types and inter-

action types included in the integrated graph, generating higher-order relationships,

and concatenating multiple higher-order embeddings. To assess the effectiveness of

these four components, we perform an ablation study by changing these model hyper-

parameters and observe the changes in BPO AUPR metrics on the test dataset of

human- and mouse-only proteins. To orchestrate this analysis, we used Weight and

Biases [10] to execute a grid search for all of the settings for each component.

127



Shown in Fig. 6.2, we report the maximum performance achieved by various

combinations of node types and edge types and the box-plot of the AUPR distri-

bution on various hyper-parameters on higher-order relations and layer embedding

concatenation. In the ”Heterogeneous node types” plot, we observed a poorer perfor-

mance when including all of the RNAs, proteins, and GO node types, and only the

protein-only or protein-and-BPO achieved the highest performance. This surprising

result suggests that adding multi-omics RNA interactions to proteins does not im-

prove function prediction in LATTE2GO. However, it can also be interpreted that

the protein-and-BPO heterogeneous graph can achieve as good of a performance as

a protein-only heterogeneous graph, reinforcing our idea of GNN for both proteins

and the GO. In the ”Split PPI interaction” types plot, we construct the STRING

data as either heterogeneous or homogeneous PPIs, reporting the maximum value

on the grid search. We observed a significant improvement in AUPR, which sup-

ports our hypothesis of multi-relational PPI for more accurate AFP. In the other

two experiments, we can also conclude that generating second-order meta relations

does improve AUPR, while it is inconclusive whether concatenating layer embeddings

improves performance with LATTE2GO-2.

6.5.5 Interpretation of relation attention scores

LATTE2GO’s fundamental properties are the construction of higher-order meta

relations and the attention mechanism that weighs the importance of those relations.

To demonstrate the interpretability of our attention-based aggregator, we visualize the

predicted attention scores for each meta relations to observe the salient meta-relations

for protein representation learning. Given the learned weights β(r, l, i), ∀r at layer l,

we can assess the averaged meta relation weights for all nodes i of a node type and the

individual meta relation weights for each node. In Fig. 6.3, we report the average meta
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Figure 6.2: Ablation analysis reporting differences on AUPR metric on the node types
used in the heterogeneous graph (top left), on separating protein-protein associations
in STRING-db (top right), on generating higher-order meta-relations (bottom left),
and on whether to concatenate layer embeddings (bottom right).

relation attention weights for LATTE2GO-2 across two layers. For the BPO nodes,

we can observe that the “is a” and “is a” ◦ “is a” have the highest weights, which

is expected as this relation defines the hierarchical structure of the GO. For protein

nodes, “cooccurrence”, “database”, “textmining”, and “coexpression” contains the

most information for predicting protein functions. This result may offer insights for

new studies to analyze the salient relationships to characterize protein function. Note

that individual nodes can have varying levels of participation in various relations so

that LATTE2GO can select the most effective meta relation for individual nodes

depending on their local and global properties in the heterogeneous topology.
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Figure 6.3: Sankey flow plot showing the aggregation of meta-relations and self con-
nections for LATTE2GO-2 predicting protein-BPO functions. Each block represents
either a node type or meta relation, and the links width represent the attention weight
in-proportion to other links of the same target node type. The first- and second-order
meta relation attention weights were averaged over all nodes of each node types in a
subgraph batch.

6.6 Conclusion

This paper explored an end-to-end graph neural network framework for au-

tomatic protein function predictions in heterogeneous graphs. By approaching this

problem with an expressive representation of the protein-protein interactions and GO

knowledge graph, our aggregation mechanism can fully utilize the semantic context

in the raw data without the manual design of specific features. We believe the ver-

satility of this graph-based approach will enable substantial improvement in AFP by

enabling researchers to consider relationships between proteins to other entities, such

as the InterPro and Enzyme Commission Ontology, which contain entries related hier-

archically. Additionally, with the consideration for second-order relationships among

the multi-relations, LATTE2GO demonstrated significantly higher performance than

GNNs that only perform first-order message-passing. In future work, we believe this
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feature can be further explored to be more effective in the inductive prediction set-

ting, where there are sparse interactions around proteins or non-existent annotations

on specific GO terms.

131



REFERENCES

[1] The gene ontology resource: enriching a gold mine. Nucleic acids research,

49(D1):D325–D334, 2021.

[2] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social

networks, 25(3):211–230, 2003.

[3] Vikram Agarwal, George W Bell, Jin-Wu Nam, and David P Bartel. Predicting

effective microrna target sites in mammalian mrnas. elife, 4:e05005, 2015.

[4] Reka Albert. Scale-free networks in cell biology. Journal of cell science,

118(21):4947–4957, 2005.

[5] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its

practical implications. arXiv preprint arXiv:2006.05205, 2020.

[6] Paulo P Amaral, Michael B Clark, Dennis K Gascoigne, Marcel E Dinger,

and John S Mattick. lncrnadb: a reference database for long noncoding rnas.

Nucleic acids research, 39(suppl 1):D146–D151, 2010.

[7] Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed repre-

sentation of biological sequences for deep proteomics and genomics. PloS one,

10(11):e0141287, 2015.

[8] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather

Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight,

Janan T Eppig, et al. Gene ontology: tool for the unification of biology. Nature

genetics, 25(1):25–29, 2000.

[9] Federico Battiston, Vincenzo Nicosia, and Vito Latora. Structural measures for

multiplex networks. Physical Review E, 89(3):032804, 2014.

132



[10] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software

available from wandb.com.

[11] Bishop, J A, Bishop, Justin A, Benjamin, Hila, Benjamin, H, Cholakh, Hila,

Cholakh, H, Chajut, A, Chajut, Ayelet, Clark, D P, Clark, Douglas P, Wes-

tra, W H, and Westra, William H. Accurate Classification of Non-Small Cell

Lung Carcinoma Using a Novel MicroRNA-Based Approach. Clinical Cancer

Research, 16(2):610–619, January 2010.

[12] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre. Fast unfolding of communities in large networks. Journal of sta-

tistical mechanics: theory and experiment, 2008(10):P10008, 2008.

[13] Jorrit Boekel, John M Chilton, Ira R Cooke, Peter L Horvatovich, Pratik D
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