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ABSTRACT 

 Metal oxide-based resistive random-access memories (RRAM) exhibit several 

excellent performances, such as nanosecond switching speed, large write-erase endurance, 

and long retention time, and can potentially replace the traditional circuit elements for use 

as the fundamental units in next-generation hardware deep-learning or neuromorphic 

systems. The functionality of a metal oxide-based RRAM is attributed to an oxygen 

vacancy (𝑉𝑂
..)-rich conductive filament (CF), which initially forms, and later dissolves or 

regrows inside the oxide layer during the resistive switching process. However, the 

complicated interplays among the coexisting chemical, electrical, mechanical, and thermal 

effects during the formation, growth, and rupture of the CFs make the dynamic of the 

resistive switching behavior extremely complicated and unpredictable, and its underlying 

mechanisms are not fully understood. Here, we developed a phase-field model based on 

defect chemistry, charge transport dynamics, and micro elasticity theory to investigate the 

electroforming process and subsequent resistive switching behavior, using HfO2-x as a 

prototypical model system. It is revealed that the CF formation is assisted by the supply of 

oxygen vacancies 𝑉𝑂
..  at the anode/oxide interface and the 𝑉𝑂

.. transport in the bulk during 

the electroforming process. The CFs with more uniform morphology can be obtained by 

employing active electrodes with low vacancy formation barrier Eb and metal oxide with 

large electrical conductivity and lower thermal conductivity.  

 We also explored the role of the elastic effect on resistive switching behavior. It is 

found that the local oxygen vacancy distribution induces a local Vegard strain and a strain 

gradient, which acts as an additional driving force that inhibits the oxygen vacancy 
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migration during switching and reduces the current on/off ratios. In addition, high-

throughput phase-field simulations and a machine learning approach are performed to 

derive interpretable analytical correlations between the material properties (electrical and 

thermal conductivities, Vegard strain coefficients of the metal oxides) and the device 

performances (current on/off ratio and switching time). It is revealed that optimal resistive 

performance can be achieved in materials with a small Lorenz number and Vegard strain 

coefficient.  

 Furthermore, we also found that the switching performances can be enhanced by 

microstructure design. Due to the electric field concentration effect, embedding metal NIs 

leads to a more deterministic formation of the CF from their vicinity, in contrast to the 

random growth of CFs without embedded NIs. This deterministic vacancy nucleation 

further reduces the forming, reset, and set voltages, and enhances the uniformity of these 

operation voltages and current ON/OFF ratios. We further demonstrate that increasing the 

height of NIs, modifying the metal NIs to a triangle shape, and choosing active NI metals 

with high oxygen affinity can further optimize the switching performance. Our work 

provides a deep understanding of the underlying mechanism of CF growth and rupture, as 

well as the designing strategy for materials selection and microstructure design for further 

improved RRAM performances. 
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Chapter 1. Introduction 

1.1. Motivation 

 The rapid growth of information technology, especially the Artificial Intelligence 

(AI) requires huge data storage and fast processing units. Computing efficiency depends 

on increasing the number of transistors in a dense integrated circuit (IC) microchip which 

almost doubles about every two years 1,2, based on Moore’s law. This is typically realized 

by shrinking the transistor size to nanoscale. However, the reduction in device size is 

accompanied by high-power consumption, increasing power cost and other physical 

constraints, which limits the further miniaturization of transistors. On the other hand, the 

current computation system is based on von Neumann computing architecture, in which 

the storage and computation units are separated. During the computing process, the data is 

transferred from the memory unit to the process unit. The existing wall between the 

memory unit and the processing unit limits the efficiency of computation, known as the 

“memory wall” 2. These two limitations impede the improvement of the performance of 

the current memories and processors. Thus, it is urgent to develop new devices to meet the 

requirements for data and information storage and processing.  

In-memory computing (IMC) is a novel approach to overcome these limitations by 

computing in situ where the data is stored2. The working principle of IMC is similar to the 

synapses in the human brain, where there exists no physical gap between memory and 

computation. Memristor (i.e., memory + resistor) provides an opportunity to integrate the 

memory and processor units together, therefore can void the memory wall, and go beyond 
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the von Neumann architecture to realize the calculation in situ. Typically, the memristor 

has a simple two-terminal structure with three layers - an insulating layer acting as a storage 

layer, sandwiched by a top (TE) and a bottom electrode (BE). Initially, a conduction 

channel is created by soft breakdown or formed by the active electrode oxidation during 

one-time electroforming process3-5. Then, the electrically conductive filaments (CFs) can 

be formed inside the oxide layer to connect top and bottom electrodes resulting in a low 

resistance state (LRS) and ruptured to switch the device to a high resistance state (HRS), 

under the applied voltages. Therefore, the insulating layer can be dynamically reconfigured 

when stimulated by electrical inputs and shows different resistance states6,7. Unlike 

conventional memories, memristors (in the term of resistive switching random access 

memory, RRAM) with fast switching speed, small programming current8, controllable 

resistance states9,10, etc. are considered as promising candidates for next generation 

nonvolatile memory 11,12, in-memory computing, and neural networks13-18.  

Although memristors show potential applications in the next generation nonvolatile 

memory and in-memory computing systems, there still exist challenges to be solved. One 

of the key challenges is the large variations in the set and reset voltages, HRS, LRS, etc. 

from cycle-to-cycle or device-to-device or both, which is determined by the microstructure, 

composition, shape, and position, etc. of the CF in the switching layer during the switching 

processes. Recently, the physical reconfigurations of the CFs have been experimentally 

captured by direct imaging methods such as TEM19-22 and conductive AFM (c-AFM)23-25, 

however, the key factors that influence the CF formation and rupture and eventually 

determine the performance of RRAMs are still not well understood. The coupling effect 

among the chemical, thermal, electrical, and mechanical effects makes the electroforming 
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and resistive switching (RS) process extremely complicated and unpredictable. 

Experimentally it is extremely difficult to untangle these coupling effects, which limits the 

design of RS devices of predictable behaviors. Secondly, various material systems have 

been investigated to be potentially used as the switching layer in memristors in the past 

few decades. However, there still lacks a clear consensus on what are the ideal materials 

that lead to a better performance of metal oxide-based RRAM. Finally, the microstructure 

of the switching layer also has a significant impact on the kinetics of the 

formation/dissolution/reconnection of the CFs during resistive switching, which should be 

studied comprehensively for a better understanding of the device performances. Compared 

to experimental studies, theoretical models and computational simulations provide a 

unique capability to investigate multi-physics and identify the key factors that influence 

RS behavior. The preciseness and efficiency of theoretical prediction and numerical 

modeling enables a fundamental understanding of the mechanism of resistive switching, 

and is able to generate a high-throughput database and rules for materials selection and 

microstructure design for better RS performances.  
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1.2.  Research objectives and plans 

 The primary goal of this research is to investigate the conductive filament growth 

and resistive switching behavior in metal oxide-based RRAM by developing a 

comprehensive physical model integrating the electrochemical reaction, mass diffusion, 

thermal transport, electrical conduction, and mechanical stress relaxation dynamics. This 

investigation could offer tactics to address the challenges as mentioned in Section 1.1, and 

further improve the performance of RRAM. Based on the above objectives, we will carry 

out the following studies, 

1. Develop a model to simulate the conductive filament growth behavior during the 

electroforming process in the metal oxide-based RRAM. 

a. Explore the mechanism of conductive filament growth behavior. 

b. Study the effects of electrode and oxide switching layer properties on the 

filament growth behavior including the current-voltage characteristic, 

conductive filament morphology, and conductive filament growth direction.  

2. Simulate the resistive switching behavior in the metal oxide-based RRAM. 

a. Study the mechanism of resistive switching. 

b. Incorporate the impact of mechanical strain induced by oxygen vacancy on 

resistive switching behavior and its interaction with mass diffusion, thermal 

transport, and electrical conduction dynamics in metal oxide-based RRAM. 

c. Perform high throughput calculations and employ machine learning to identify 

key materials parameters and their correlations to the RS switching 

characteristics and performance of RRAM. 
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3. Elucidate the effect of inhomogeneous metal oxide microstructure on the performance 

of RRAM device. 

a. Investigate the conductive filament formation and resistive switching behavior 

in HfO2 films embedded with ordered metal nano-island arrays.  

b. Explore the effects height, geometry, and materials type of embedded nano-

island on the resistive switching performance. 
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Chapter 2. Background 

2.1. The Fundamentals of memristor 

 It’s well known that capacitor (C), resistor (R), and inductor (L) are three basic 

passive circuit elements. However, Prof. Leon Chua26 has predicted that there should be a 

fourth fundamental element based on the symmetry arguments of the four circuit variables: 

charge (q), voltage (V), current (i), and magnetic flux (φ), which is called memristor 

(memory + resistor). As Fig. 2.1 shows, Chua indicated that there exist six different 

mathematic relations between these four variables where 𝑑𝑞 = 𝑖𝑑𝑡  is the definition of 

current, 𝑑𝜑 = 𝑣𝑑𝑡  is based on Faraday’s law for inductance, and the remaining four 

relations correspond to four basic circuit elements. The relationship between the magnetic 

flux (φ) and the electric charge (q) can be described as the fourth basic circuit element 

memristor 𝑀, 𝑑𝜑 = 𝑀𝑑𝑞, of which the dimension is identical to resistor27. This equation 

reveals that the resistance of the memristor is dependent on the charge changes under 

voltage.  

 

Fig. 2.1 Four basic two terminal circuit elements27. 
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However, in the past few decades, since the concept was introduced, the memristor 

had not been realized due to the limitation of materials and technology at that time. Both 

industry and academia have been working on this unique electronic element. Until 2008, 

the Hewlett-Packard group first obtained a realistic and visible memristor device by using 

a Pt/TiO2/Pt sandwich structure and realize the resistive switching behavior, as shown in 

Fig. 2.2.  The TiO2 film consists of a doped region with a high concentration of positive 

ions showing low resistance Ron and undoped region having high resistance Roff. The 

memristor function can be achieved by the movement of the boundary between two regions 

causing resistance change continuously when an external voltage is applied on the 

electrode, as shown in Fig. 2.3. This remarkable result inspires a new research wave. 

 

Fig. 2.2 The I-V characteristic of Pt/TiO2/Pt structure27. 

 

 

Fig. 2.3 The equivalent circuit diagram, V, voltmeter; A, ammeter27. 
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2.1.1. Resistive switching materials  

 The resistive switching behavior has been observed both in inorganic and organic 

systems. Organic materials such as polymers (PVP28, PMMA29, etc.), and biological 

materials like egg albumen30, polysaccharide31, ploypeptide32, etc. can display resistive 

switching behavior. The uniformity and stability of the device fabricated with organic 

materials are far from the inorganic device due to the thermal instability of organic 

materials. It is still a long way to employ organic materials as the switching layer for the 

next generation memory. Several inorganic materials have demonstrated the resistive 

switching phenomenon including metal oxides, nitrides, and chalcogenides. Among these 

materials, metal oxide-based RRAMs, including HfOx
33, TiOx

34, ZrOx
35, TaOx

36, NiOx
37, 

VOx
38, CuxO

39, NbOx
40, and perovskites SrTiO3

41 etc., have been extensively studied. 

However, a key question is what type of metal oxide is the ideal candidate as a switching 

layer for RS devices. While various metal oxide material systems have been investigated, 

there still lacks a general design principle for materials selection.  

In addition to the switching layer, the electrode material properties also have a great 

influence on the switching behavior in RRAM. A wide range of materials has been used as 

electrodes including metal, metal oxides, and some nitrides. The most common electrode 

materials are metals such as Ag42-44, W45, Pt34,46, Ti39, etc., and nitride-based compounds 

TiN47 and TaN48 are usually used as the electrode.  Some oxide-based electrodes are also 

reported rarely including AZO49, FTO50, and ITO51. Different electrode materials may lead 

to different electrical behaviors. Therefore, investigating the effect of electrode properties 

on RS behavior and selecting a suitable material system are key to the highly useful and 

stable memristor devices. 
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2.1.2. Resistive switching type 

 The memristor usually has a very simple structure with electrode-insulator-

electrode stacking, as shown in Fig. 2.4. Most as-prepared RRAM must undergo an initial 

process called “electroforming” before first switching operation since RRAM is usually 

fabricated with insulator52-55. Generally, a higher-than-usual voltage is employed on the 

device to enable the formation of a conductive filament as a controlled soft breakdown and 

the voltage at this process is called forming voltage Vf. After the electroforming process, 

the RRAM cell is subject to reversible switching between HRS and LRS repeatedly by 

reset (LRS to HRS) and set (HRS to LRS) operations under voltage. Two main coexisting 

electric field and temperature based on Joule heating are induced by the external electric 

bias. Their relative importance varies depending on the material systems leading to two 

classic resistive switching modes with different I-V curves: unipolar and bipolar 

switching9,56. In the unipolar resistance, the resistive switching is independent of the 

polarity of the voltage stimulus, i.e., the set and reset voltages have the same polarity, as 

shown in Fig. 2.5. A voltage with opposite polarity is used to set and reset the device which 

is well known as the bipolar RRAM.  These different switching types depend on the 

contribution of the electrical field and Joule heating which almost appears simultaneously 

in all RRAM. Generally, if the device is mainly dominated by the role of thermal effect 

based on the Joule heating, it shows nonpolar switching where the CF formation and 

rupture are mainly caused by thermal diffusion whether on positive or negative voltage. 

The device tends to be bipolar switching if the electrical field plays a significant role where 

the growth and rupture of CF are controlled by the electric field8.   
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Fig. 2.4 Schematic of conductor/insulator /conductor sandwich structure56. 

 

 

Fig. 2.5 Schematic I–V characteristics of (a) unipolar and (b) bipolar switching. The compliance current Icc 

is employed during the electroforming or set process to prevent permanent breakdown9. 

 

2.1.3. Resistive switching mechanism 

 Due to the wide variety of material systems corresponding to the different switching 

mechanisms, studying the mechanisms helps to develop a reliable memristor and optimize 

the performance of device. Generally, the mechanism can be divided into CF controlled or 

electron trapping/de-trapping controlled. The CF is referred to as a conduction channel 
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with tens or hundreds of nanometers in diameter. The CF controlled RRAMs can be 

classified into (a) electrochemical metallization devices (ECM) where the metal ions 

formed in CF are from the electrochemical active electrode such as Ag57,58, (b) valance 

change memory devices (VCM) where the CF is composed of intrinsic defects such as 

oxygen vacancies59-63.  

The ECM device is also referred to as metal ion-based RRAM consists of an active 

top electrode such as Ag and a relatively inert bottom electrode like W and Pt43. The 

mechanism is usually explained by the migration of metal ions and subsequent redox 

reaction of the active metal at the top electrode, which leads to the formation and breakage 

of metal conductive filaments and ultimately regulates the resistive switching behavior. 

The switching mechanism can be well understood in some systems by TEM observation, 

such as the Ag/a-Si/W device reported by Yang et al.43 as shown in Fig. 2.6. During the set 

process, a positive voltage is applied on the active top electrode Ag which forces the 

oxidation of Ag atoms to Ag+ cations (Ag → 𝐴𝑔+ + 𝑒−). The Ag+ migrates across the Si 

layer to the bottom inert W electrode under a high electrical field. Then a reduction reaction 

(𝐴𝑔+ + 𝑒− → Ag) occurs at the W electrode which allows the Ag atoms to accumulate at 

the cathode and extend to the Ag electrode until the CF is formed. The device switches to 

LRS (ON) state. The Ag CF dissolves and the device switches to HRS (OFF) state by the 

application of voltage with opposite polarity. This mechanism is observed in many ECM 

devices42,43,57,58. 
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Fig. 2.6 In-situ TEM observation of conducting filament growth in vertical Ag/a-Si/W memories43. 

 

For VCM devices, resistive switching depends on the generation of oxygen vacancy 

(𝑉𝑂
..  ）and the redistribution of the 𝑉𝑂

.. . This mechanism generally displays in the metal 

oxide (e.g., TiO2, Ta2O5, HfO2) switching layer. Initially, the oxygen is distracted out of 

the lattice to the anode and left 𝑉𝑂
.. in the oxide layer under the high electrical field. The 

accumulation of the 𝑉𝑂
..  in the oxide layer forms the CF connected between electrodes 

enabling the resistance switches to a low state. Afterward, when a voltage with the same 

or opposite polarity is applied, the CF is disconnected with a gap between electrodes based 

on the 𝑉𝑂
..  migration under voltage and Joule heating. As the CF connected and 

disconnected, the resistance of the device can switch back and forth between HRS and LRS. 

Li et al.64 directly traced the oxygen vacancies generation and the formed CF under voltage 

in HfO2 based RRAM cell based on low-loss energy-filtered images by using in situ TEM 
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and then proposed that the switching behavior stems from the formation and rupture of CF 

consisted of  𝑉𝑂
.., as shown in Fig. 2.7. 

 

Fig. 2.7 Low-loss energy-filtered images illustrating the concentration of the oxygen vacancies increases with 

the increasing positive bias. Red encodes higher concentration of the oxygen vacancies64. 

 

Both ECM and VCM devices are chemical switches because the chemical reaction 

is involved to form the CF. There is also a resistive switching depending on the physical 

changes where the resistance change is contributed from the electrons trapping and de-

trapping. This mechanism is explained by the fact that the electrons injected from the 

electrode can be trapped/de-trapped in the charge traps near the electrode/insulator 

interface65 or inside a disordered thin film66, thereby modulating the resistance of the 

device. Ding et al.67 verified the formation and breakage of the conduction path in 

Al/PVP:Ti3C2/ITO device based on the electron trapping/de-trapping by using conductive 
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atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM), as shown 

in Fig. 2.8. They found that the surface potential is enhanced after applying a positive 

voltage. It is demonstrated that the electrons are trapped under an electrical field that 

crosses the film and forms the conduction path. The trapped electrons are released with the 

negative bias that allows the rupture of the conduction path. Compared with ECM and 

VCM, the performance of the device based on the electrons trapping assisted conduction 

mechanism is more controllable and uniform since the chemical reaction and ion migration 

progress are not involved. However, the trapped electrons can easily escape leading to 

problems in terms of the stability and durability of the device. 

 

Fig. 2.8 a. The illustration of charge trapped, and conductive path formed between AFM tip and BE. b. KPFM 

surface potential under a bias of +5 V c. KPFM surface potential under a bias of + 5 V followed by a negative 

voltage -8V67. 
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2.2.  Direct visualization of the resistive switching behavior 

 Since the memristor device has been successfully fabricated in 2008 by HP, there 

has been an explosion of systems displaying the resistive switching effect. Researchers 

have extensively studied the performance of memristors. Some groups use high-resolution 

transmission electron microscopy (HRTEM) to directly observe the conductive filament 

nature during resistive switching21,42,43,68,69. Kwon et al.69 fabricated a pristine TiO2 thin 

film with a brookite structure connected with a platinum electrode. After the set process, a 

CF shows a conical pillar with almost 10 nm width with a non-stoichiometric TinO2n-1 phase 

that can be identified by the TEM diffraction pattern. Then the CF disappears after the 

RESET transition. Their work not only provides strong experimental evidence that the CF 

forms and ruptures during switching, but also indicates the difficulty in imaging the nature 

of conductive filament such as the TEM image can be only identified in a very thin lamella 

and then causes the low probability of capturing the nano conductive filaments. As shown 

in Fig. 2.9, Chen et al.21 also used HRTEM to identify the conductive filament growth. 

Another dedicated tomography technique by using conductive atomic force microscopy 

(C-AFM) has been also developed to characterize the CF24,25,70. Umberto et al.70 used C-

AFM with a conductive probe attached to a cantilever to remove materials layer by layer 

and then measure the local current to obtain the shape and size of the CF, as shown in Fig. 

2.10. Although many high-tech analytical instruments and approaches have been employed 

by research groups, the progress in the characterization of CF properties is slow due to the 

dimensions, the stochastic nature, and the complex dynamic evolution of the CF during the 

resistive switching. 
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Fig. 2.9 In situ TEM images and the corresponding I–V curves with applied voltage, CF produced near the 

top electrode21. 

 

 

 

Fig. 2.10 a. Planar 2D C-AFM performed memory cell in SET-state. b. Schematic of the C-AFM tomography 

procedure, the diamond tip is exploited to collect several slices at different heights of the CF. c. the collected 

2D C-AFM slices. d. Collection of 2D slices constituting the data set for the 3D interpolation. The highly 

conductive features on the top-left and bottom-right corners means CF appears in the middle of the active 

area70. 
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2.3. Modeling of the resistive switching behavior 

 As mentioned, the complex dynamic during resistive switching is difficult to 

explore by direct imaging. Modeling approaches are emerging as powerful tools to 

investigate the physical dynamics during resistive switching, which play critical roles in 

fully understanding the mechanism and contribute to advancing the performance of RRAM. 

For example, many researches focuses on calculating the formation and migration energy 

barriers in various oxide switching layers such as Al2O3
71, TiO2

72, HfO2
73, and Ta2O5

74,75, 

and the formation/broken of metallic CFs in Cu/SiO2 cells76,77 by using atomic-scale 

simulations including density functional theory (DFT) and molecular dynamics (MD). 

However, the spatial and temporal scales of atomistic modeling limit the deep 

understanding the physic phenomenon which are not typically accessible in experiments. 

Compared with atomic-scale modeling, mesoscale modeling has been developed to 

quantitatively describe the CF dynamic and resistive switching behaviors in memory 

devices78-82. There are several standing mesoscale models for the dynamic of filament 

evolution as follows:  

Filament gap model  

This model is developed to identify the filament gap characteristic. One of the most 

popular models based on filament gap is proposed by Guan et al.83,84. They selected the 

filament gap size between the tip of the filament and the opposite electrode as the state 

variable to describe the resistive switching, as shown in Fig. 2.11. The filament growth and 

rupture inside the insulator are dependent on the movement of oxygen vacancies.  
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Fig. 2.11 Schematic of conductive filament with gap distance g84. 

 

The change of filament gap rate is determined by83,  

 
𝑑𝑔

𝑑𝑡
= 𝑉0 ∙ 𝑒𝑥𝑝(

−𝐸𝑎(𝑚)

𝑘𝑏𝑇
) ∙ 𝑠𝑖𝑛ℎ(

𝑞𝑎ℎ𝛾𝑉

𝐿𝑘𝑏𝑇
) (2-1) 

where 𝑉0 is attempt-to-escape frequency, 𝐸𝑎(𝑚)is the activation energy barrier for oxygen 

vacancy generation in the set process or migration energy barrier in the reset process,  𝑘𝑏 

is the Boltzmann constant, 𝑇 is the temperature, 𝑞 is the elementary unit charge, 𝑎ℎ is the 

hopping distance, 𝛾 is the electrical field enhancement factor, 𝑉 is the applied voltage, 𝐿 is 

the thickness of the switching cell. The change of filament gap is strongly dependent on 

the temperature, they also consider the temperature 𝑇 effect by the following equation83, 

 𝑐𝑝
𝑑𝑇

𝑑𝑡
= 𝑉(𝑡)𝐼(𝑡) − 𝑘(𝑇 − 𝑇𝑏𝑎𝑡ℎ) (2-2) 
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where 𝑐𝑝  is the heat capacitance, 𝑉(𝑡)𝐼(𝑡)  is the Joule heating, 𝑇  is the effective 

temperature in the conductive filament domain, 𝑇𝑏𝑎𝑡ℎ is the ambient temperature, 𝑘 is the 

thermal conductivity. Then the current flowing through the switch cell based on the gap 

distance and the field strength is defined as83, 

 𝐼(𝑔, 𝑣) = 𝐼0 ∙ 𝑒𝑥𝑝(
−𝑔

𝑔0
) ∙ 𝑠𝑖𝑛ℎ(

𝑉

𝑉0
) (2-3) 

where 𝐼0 , 𝑔0  and 𝑉0  are the fitting parameters to match the experimental results. The 

significance of their model is they can simulate the variabilities of the RRAM by 

introducing a Gaussian random number 𝛿𝑔 which is a function of the temperature83, 

 𝛿𝑔(𝑇) =
𝛿𝑔

0

{1+𝑒𝑥𝑝[
(𝑇𝑐𝑟𝑖𝑡−𝑇)

𝑇𝑠𝑚𝑖𝑡ℎ
]}

 (2-4) 

where 𝛿𝑔
0 and 𝑇𝑠𝑚𝑖𝑡ℎ are the fitting coefficients, 𝑇𝑐𝑟𝑖𝑡 is a threshold temperature where a 

significant variation occurs. This simulation model of the impact of RRAM variability can 

be employed to describe the accuracy of the neuromorphic visual system84. However, the 

main limitation of this model is oxygen vacancies diffusion is not considered. 

Filament dissolution model 

This model is proposed by Russo et al.85-87 based on the thermally enhanced 

dissolution of CF in unipolar RRAM. When the CF is created, the memristor displays a 

low resistance state. Under a reset voltage, the temperature is enhanced inside the CF 

region and up to the critical value 𝑇𝑐𝑟𝑖𝑡. Consequently, the CF dissolution occurs, and the 

device turns on a high resistance state, as shown in Fig. 2.12.  
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Fig. 2.12 Schematic representation of the reset operation. When the reset voltage is applied to the CF, the 

inner temperature is raised by Joule heating, and CF rupture occurs85. 

 

Two simple partial equations are employed to simulate the current and temperature. The 

electrical potential 𝑉 is calculated by the following equation85, 

 ∇ ∙ (
1

𝜌
∇𝑉) = 0 (2-5) 

where 𝜌 is the resistivity of the materials where 𝜌 = 𝜌𝐶𝐹  inside the CF region and 𝜌 =

𝜌𝑜𝑥 ≫ 𝜌𝐶𝐹 in the remaining oxide region. The generated heat based on Joule heating is 

described as85, 

 −∇ ∙ (𝑘∇𝑇) = 𝜌𝐽2 (2-6) 

where 𝑘 is the thermal conductivity, 𝑇 is the temperature, 𝐽 = ∇𝑉/𝜌 is the current density 

calculated by Ohm’s law. The calculated temperature promotes the diffusions of defects 

outward CF or reaction with oxide region. As a result, the CF is broken. The dissolution of 

CF is simply described by the velocity of CF boundary 𝑣𝐷
85, 

 𝑣𝐷 = 𝑣𝐷0𝑒
−

𝐸𝑎
𝑘𝐵𝑇 (2-7) 
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where 𝐸𝑎 is the activation energy, 𝑘𝐵 is the Boltzmann constant. This theoretical model is 

very simple but can be only used to simulate the unipolar RRAM which is controlled by 

the Joule heating effect.  

Electrons tunneling model 

This physical model is developed by Abbaspour et al.88 and is usually employed to 

simulate the electroforming and resistive switching process in metal oxide-based 

RRAM53,89. In their model, the current through the device is associated with electron 

tunneling. The current through the electrode is determined by the electrons tunneling 

probabilities 𝑇𝑃(𝐸)  which are given by the Wentzel-Kramers-Brillouin (WKB) 

approximation88, 

 𝑇𝑃(𝐸) = 𝑒−2 ∫ 𝑑𝑥
1

ℏ
√2𝑚∗(𝑉−𝐸)

𝑥1
𝑥0  (2-8) 

where 𝑥0, 𝑥1 are the initial and final tunneling positions, 𝑚∗ is the effective electron mass 

of metal oxide, 𝑉 and 𝐸 are the tunneling barrier and particle energy, respectively. 

In most metal oxide-based RRAM, the oxygen vacancies inside the CF are referred 

to as traps where the electrons jump through them. The electron traps result in a leakage 

current through the switching layer, and then the device turns to the low resistance state. 

The hopping rate of the electrons from 𝑚th trap to 𝑛th trap is determined by using Miller-

Abraham’s formula88, 

 ℎ𝑛𝑚 = {
𝑣0𝑛𝑒𝑥𝑝 [−

𝑑𝑛𝑚

𝑎0
+

𝑞(𝑉𝑛
𝐻−𝑉𝑚

𝐻)

𝑘𝐵𝑇
]        𝑉𝑛

𝐻 ≤ 𝑉𝑚
𝐻 

𝑣0𝑛𝑒𝑥𝑝 [−
𝑑𝑛𝑚

𝑎0
]                                     𝑉𝑛

𝐻 > 𝑉𝑚
𝐻 

 (2-9) 
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here, ℎ𝑛𝑚 is the hopping rate of electrons from the 𝑚th trap to 𝑛th, 𝑑𝑛𝑚 is the hopping 

distance between trap 𝑛 and 𝑚, 𝑉𝑛
𝐻 and 𝑉𝑚

𝐻 are the potentials at the trap 𝑛 and 𝑚, 𝑣0𝑛 is 

the vibrational frequency of the electrons, 𝑎0 is the attenuation length of the wave function 

of the electrons. The trap-assisted tunneling (TAT) current is then calculated by88, 

 𝐼𝑇𝐴𝑇 = 𝑒 ∑ [𝑝𝑛𝐻𝑛𝑎 − (1 − 𝑝𝑛)𝐻𝑎𝑛]𝑁
𝑛=1  (2-10) 

where e is the electron charge, 𝑁  is the total number of the traps, 𝑝𝑛 ∈ [0,1]  is the 

occupation probability of the 𝑛th trap, 𝐻𝑛𝑎 and 𝐻𝑎𝑛 are the hopping rates from the 𝑛th trap 

to the electrode and vice versa, which are given by88, 

 {
𝐻𝑛𝑎 = 𝐻0𝑁𝑇,𝐵(𝐸𝑛

+)𝐹𝑖𝑛
𝑇,𝐵(𝐸𝑛

+)𝑇𝑃(𝐸)

𝐻𝑎𝑛 = 𝐻0𝑁𝑇,𝐵(𝐸𝑛
−)𝐹𝑜𝑢𝑡

𝑇,𝐵(𝐸𝑛
−)𝑇𝑃(𝐸)

 (2-11) 

where 𝐻0𝑁𝑇,𝐵(𝐸𝑛
+,−) is the coupling factor between metal oxide and electrode, 𝐻0 is the 

fitting parameter, 𝑁𝑇,𝐵(𝐸𝑛
+,−) is the number of states within the electrodes at a given 

energy,   𝐹𝑖𝑛,𝑜𝑢𝑡
𝑇,𝐵 (𝐸𝑛

+,−)  is the Fermi integral. The occupation probability 𝑝𝑛  can be 

calculated by the current continuity equation88, 

(1 − 𝑝𝑛) ∑ 𝑝𝑚ℎ𝑚𝑛 − 𝑝𝑛

𝑁

𝑚=1,𝑚≠𝑛

∑ (1 − 𝑝𝑚)ℎ𝑛𝑚

𝑁

𝑚=1,𝑚≠𝑛

  

 +(𝐻𝑐𝑎 + 𝐻𝑛𝑎)(1 − 𝑝𝑛) − (𝐻𝑐𝑎 + 𝐻𝑛𝑎)𝑝𝑛 = 0 (2-12) 

This model has been validated in HfO2 based RRAM. It can catch the electrons dynamic in 

the metal oxide-based system.  
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Electro-thermal model 

Ielmini et al.78 developed an electro-thermal model to investigate the I-V switching 

characteristic of an HfO2-based device. The CF in the HfO2 oxide layer is identified as a 

region with oxygen vacancies. An energy landscape of a potential well is used to explain 

the ion migration, as shown in Fig. 2.13. Without the application of an electrical field, the 

ions diffuse randomly to all directions due to the non-direction energy barrier 𝐸𝐴 , the 

diffusion direction depends on the ion concentration gradient (from high concentration to 

low). When a voltage is applied, ion migration would enhance along the electrical field 

which is due to the lowering barrier 𝛼𝑞𝑉  in the direction of the electrical field, thus 

resulting in a directional drift. The ion migration including diffusion and drift is described 

as78, 

 
𝑑𝑛𝐷

𝑑𝑡
= ∇ ∙ (𝐷∇𝑛𝐷 − 𝜇𝐸𝑛𝐷) (2-13) 

where 𝐷 = 𝐷0𝑒
−

𝐸𝐴
𝑘𝐵𝑇 is temperature activated ion diffusivity based on Arrhenius law, 𝜇 

gives the drift mobility of vacancies. The current density 𝐽(𝑟) and electrical potential are 

calculated based on the continuity equation78, 

 ∇ ∙ 𝐽(𝑟) = ∇ ∙ (σ(𝑟)∇𝜑(𝑟)) = 0 (2-14) 

The corresponding generated heat based on Joule heating is described as78, 

 −∇ ∙ 𝑘𝑡ℎ(𝑟)∇𝑇 = σ(𝑟)|∇𝜑(𝑟)| (2-15) 

here, σ(𝑟) and 𝑘𝑡ℎ(𝑟) are the electronic conductivity and thermal conductivity which are 

spatially dependent with oxygen vacancies concentration 𝑛𝐷  distribution. This model 
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provides an important feature that it can simulate the electrothermal physics nature of the 

RRAM during the switching process. A significant importance of this simulation model is 

that it can provide a microscopic interpretation of intermediate reset or set states including 

the CF morphology and physical field distribution. 

 

Fig. 2.13 Potential energy landscape for ion hopping at (a) zero or (b) positive applied voltage. Uniform 

energy barrier EA under zero voltage makes random isotropic diffusion. The application of a 

voltage V lowering energy barrier by αqV along the field direction leads directional drift of ions78. 

 

 

The characteristics of these theoretical models are summarized in the following table. 

Table 2.1 Comparison of RRAM models 

 
Filament gap 

model 

Filament dissolution 

model 

Electrons tunneling 

model 

Electro-thermal 

model 

Application 

type 
Bipolar Unipolar Bipolar Bipolar 

State variable Filament gap  
CF boundary movement 

velocity (𝑣𝐷) 

Electrons occupation 

probability (𝑝𝑛) and 

hopping rate (𝐻𝑛𝑎) 

Ion concentration 

(𝑛𝐷) 

Platform SPICE COMSOL KMC code COMSOL 

 

 



25 

 

2.4. Prospective applications of memristor 

 As a passive electronic component, the memristor has potential applications in 

many fields based on its compatibility with conventional integrated circuits. In terms of the 

resistance change behavior, the memristor displays two different types: discrete resistance 

changes and continuous resistance change. The memristors displaying discrete resistance 

states are widely used in non-volatile memory and in-memory computing, while 

continuous resistance change provide a potential application in neuromorphic computing 

and artificial neural networks hardware. 

Non-volatile memory 

The random-access memory can be either volatile or non-volatile. Volatile memory 

needs a constant power to retain the stored information, when the power is removed, the 

data is quickly lost. Static random-access memory (SRAM) and dynamic random-access 

memory (DRAM) are two typical volatile memories. Although the volatile memory 

exhibits several advantages, e.g. high density of DDRM and fast speed of SRAM, they are 

volatile and a high frequency refresh is needed90. For non-volatile memory, it can store the 

data for years even after the power is removed. Currently, the mainstream non-volatile 

memory is Flash memory owing to its low cost and large capacity, which uses a floating-

gate charge storage technology to store data. However, the Flash memory is facing a 

challenge to scale down which is attributed to the enhanced probability of electron 

tunneling caused by the size reduction, the resulting increase of leakage current affects the 

reliability and stability of the device56. Therefore, there is an urgent need to develop new 

non-volatile memory. Various emerging memories such as Phase Change Memory (PCM), 
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Magnetic Random-Access Memory (MRAM), Resistive Random-Access Memory 

(RRAM), and Ferroelectric Random-Access Memory (FRAM) are investigated to meet the 

ideal memory features, i.e., small operating voltage, long data retention time, and large 

cycling endurance. Table 2.2 summarizes the key features of these emerging non-volatile 

memories91. Compared to the details of characteristics, the RRAM has significant 

advantages for the next generation of non-volatile memory such as ultra-high speed, long 

data retention, large endurance, and excellent scalability. 

Table 2.2 Comparison of key features of emerging non-volatile memories 

 

 

 The function of data storage for RRAM is based on the resistance states switching 

between HRS and LRS under the applied voltage which corresponds to the “0” and “1” 

states in binary, thus it can store the binary data. To increase the storage density, a lot of 

researches is being conducted to achieve multiple resistance states in the RRAM. For 

example, Wang et al.39 obtain at least five stable resistive states on the Ti/CuxO/Pt RRAM 

cell by controlling the compliance current and changing the reset voltage, as shown in Fig. 

2.14. Until today, multiple resistance states have been demonstrated in various metal oxide-

Memory type 
Conventional Flash Novel Non-volatile Memories 

NOR NAND FRAM MRAM PCM RRAM 

Cell size 45 nm 16 nm 180 nm 65 nm 45 nm 
<10 

nm 

Cell area 10 F2 4 F2 22 F2 20 F2 4 F2 4 F2 

Read time 15 ns 0.1 ms 40 ns 30 ns 12 ns ~ 1 ns 

Write time 1 us 0.1 ms 65 ns 35 ns 100 ns ~ 1 ns 

Read voltage 4.5 V 4.5 V 1.3-3.3 V < 2 V < 3 V < 1 V 

Write voltage 8-10 V 15-20 V 1.3-3.3 V 1.8 V 3 V < 1 V 

Retention > 10 yr > 10 yr > 10 yr > 10 yr > 10 yr > 10 yr 

Endurance 105 105 1014 1012 109 > 1012 
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based RRAM systems, which is mainly attributed to the CF properties, i.e., composition, 

position, size, and shape of CF inside the insulator layer45,92-94. Therefore, there is a scope 

to further increase the number of resistance states by varying the properties of CF. 

 

 

Fig. 2.14 Nondestructive readout test results of (a) the multilevel ON-states and (b) the multilevel OFF-states 

at a read voltage of 0.2 V39. 

 

In-memory computing 

 The conventional process cell is based on the von Neumann architecture in which 

the computing unit and memory unit are separated, as shown in Fig. 2.15. The data 

transferring between memory and computing enhances high energy consumption and 

lowers computing efficiency, which comes to be known as the “von Neumann architecture.” 

The emerging RRAM crossbar array with high density and fast speed switching is designed 

to achieve memory and computing in the same core95. For example, Borghetti et al.1 

fabricated a Pt/TiO2/Pt crossbar array and realized the basic Boolean logic operation IMP 

and NAND, the corresponding logic circuits are illustrated in Fig. 2.16. Based on their 

design, the memristive switching characteristic performs as the ‘stateful’ logic operations 
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for which the same device combines the logic computing and memory simultaneously 

which overcomes the von Neumann bottleneck and achieves in-memory computing. 

However, there is still a distance left before RRAM based in-memory computing unit 

becomes a replacement for the current CPU or GPU due to the crosstalk problem 

represented in the crosspoint array, the limited stability, and relatively high variability. 

 

 

Fig. 2.15 Process cell is based on the von Neumann architecture 

 

 

 

Fig. 2.16 a. AFM micrograph of a nano crossbar. b. IMP operation c. NAND operation where with P, Q and 

S are RRAM cell1. 
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Neuromorphic computing 

 In 2010, Jo et al.96 reported that the resistance states can change continuously in 

response to continuous voltage pulses in silicon-based memristors, as shown in Fig. 2.17. 

In addition, they did the spike-time dependent plasticity (STDP) testing which is widely 

known as the fundamental of neuronal circuits in the brain. They found that the testing 

result is similar to the STDP properties measured in the biological synaptic systems and 

verified the memristor can indeed be used as an artificial electronic synapse in the 

neuromorphic system (Fig. 2.17b and c). In a memristor-based neuromorphic computing 

system, the memristor crossbar corresponds to the neural network and each crosspoint in 

the memristor array provides the information. The input and output of the artificial neural 

network correspond to the input voltage signals in the memristor crossbar and the output 

current signals as shown in Fig. 2-182. These input and output signals from memristors can 

be used to acquire information regarding weights through certain learning rules like STDP 

which is an essential parameter for ANN. Using these parameters including input, output, 

and weights, some advanced tasks have been realized such as pattern recognition. For 

example, Prezioso et al.18 classified and recognized a three 3 × 3-pixel black/white image 

by using the memristor-based neuromorphic networks in 2015. In 2017, a much larger and 

more complex memristive neuromorphic network is developed to achieve face 

classification and recognition by Yao et al.97 Although the memristor based synapse (i.e. 

memristor crossbar array) is a very promising candidate to design the ANN, it is still far 

from being the application of more precise and complex task as the issues like materials 

optimization for improving the properties of memristor cell, reduction variation for 
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enhancing the accuracy of AI tasks, circuit and algorithms design for extending analog 

computing. 

 

Fig. 2.17 a. Memristor response to programming pulses, the device conductance can be incrementally 

increased or decreased by consecutive potentiating or depressing pulses. Spike-time dependent plasticity 

(STDP) testing, b. the measured change of the memristor synaptic weight vs the relative timing Δt of the 

neuron spikes and c the measured change in excitatory postsynaptic current (EPSC) of rat hippocampal 

neurons96.  

 

 

 

Fig. 2.18 Hardware implementation of artificial neural networks in a memristor crossbar where a memristor 

is formed at each crosspoint2.  
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2.5. Challenges of current memristor  

 During the past few decades, research in the memristor field has increased 

remarkably and a lot of RRAM systems have been fabricated and shown encouraging 

properties for the application of non-volatile memory with ultra-high density in-memory 

computing over von Neumann bottleneck, and neuromorphic computing. However, there 

still exist critical challenges that limit the application of memristors, among which device 

reliability and variability are the main two limitations.  

Device reliability 

The switching between HRS and LRS in the use of resistive random-access 

memory is frequently. Permanent damage may be introduced at large switch cycles and 

causes the degradation of device performance. Generally, endurance is referred to as the 

number of cycles a device can switch while remaining a reliability performance is 

employed to assess the performance of the device. The endurance properties have been 

investigated in many metal oxide-based RRAM, such as the HfO2 based resistive cell 

shows endurance with 106 cycles98 and the TaOx-based RRAM exhibits endurance higher 

than 1012 cycles45. Although the endurance of RRAM has been reported as high as 1012, it 

is still not enough to replace the current DRAM which shows excellent endurance with 

1016 cycles91. The endurance characteristics are influenced by many factors. For example, 

Fantini et al.99 reported the endurance of an HfO2 based device strongly influence by the 

size of the switch cell, wherein a larger endurance can be found in a device with a large 

switch cell. They proposed that the degradation in the endurance characteristic is caused 

by the reduction of several ions in the HfO2 layer with the downscaling of the device to 5 
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nm. But an inconsistent discovery is obtained from the other TaOx based RRAM. Goux et 

al.100 found that endurance can be enhanced by reducing the switch layer to 3 nm. Whereas 

the increasing of applied pulse width and amplitude can lead to the degradation of 

endurance performance in Ta/Ta2O5/TiN structure95. It is also found that the electrode 

properties also influence the endurance characteristic in which selecting Ru as the bottom 

electrode instead of TiN in the Ta/Ta2O5/TiN stacking structure could enhance the 

endurance of the device that is because it has a reaction between the TiN and metal oxide. 

Therefore, it is crucial to investigate the mechanism behind the failure that benefits us to 

further enhance the endurance performance of the RRAM.  

Generally, the final failure is found either in LRS or HRS state, and unable to set 

or reset back. Failure at the LRS state is more frequently observed in metal oxide-based 

devices101. The previous investigation shows that the degradation at the switch from HRS 

to LRS state in metal oxide-based RRAM is attributed to the extra vacancies generated in 

the switching layer leading to the change of original CF structure and composition that 

causes permanent breakdown. And the failure occurs at the opposite switch (LRS to HRS) 

due to the enlarged oxygen depletion gap is induced by the extra recombination between 

ions and oxygen vacancies or the redistribution of oxygen vacancies in the CF region102.  

Device variability 

 In RRAM, the poor uniformity of various devices is one of the significant 

challenges that limit the application in a large-scale memory array. The variation of 

resistance and voltage in RRAM devices includes temporal fluctuations cycle-to-cycle and 

spatial fluctuations device-to-device. In most metal oxide-based RRAM, the main reason 
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for the variation is due to the formation and rupture of CF variation. For example, Fantini 

et al.102 reported the change in the number of oxygen vacancies which defines the critical 

radius and geometry of CF causes the randomness of the device. Amborgio et al.103 

proposed that the variability for set and reset processes is attributed to the variation of 

oxygen vacancies generation barrier Ea of the amorphous structure of the oxide film which 

influences the CF growth behavior. In addition, Baeumer et al.104 use the Spectro 

microscopic photoemission threshold analysis and operando XAS analysis to directly 

observe the variability due to the change of both shape and location of the CF from cycle 

to cycle.  

The nonuniformity in RRAM device also displays between device-to-device or 

cell-to-cell (in memristor crossbar) which is mainly attributed to the fabrication process 

such as the surface roughness of the electrodes and the microstructure randomness of each 

switching cell in metal oxide-based RRAM103. The variation of oxygen vacancies 

generation energy barrier and diffusion barrier may be different for the different positions 

like defect cluster, grain boundary and dislocation.  

In summary, the reviews show that the state of the CF such as size, composition, 

position, and shape during the switch is the critical factor for stable reliability and sufficient 

cycling endurance. The engineering of filament control by electrode optimization, 

dielectric materials modulation, microstructure design, and fabrication process 

enhancement become the key techniques to improve the performance of RRAM devices. 

To better control the CF properties, the deep physical dynamics controlled by 

comprehensive physical fields, i.e., chemical, thermal, electrical, mechanical, magnetic, 

and sometimes quantum effects need to be fully understood. 
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Chapter 3. The conductive filament formation and 

growth behavior in metal oxide-based RRAM 

Resistive switching behavior in many reported metal oxide-based RRAM devices depends 

on the formation/fracture of CF inside a switching layer for metal oxide-based RRAM. 

Many as-fabricated metal oxide-based devices are at a very high resistance state which 

needs a one-time step electroforming operation to establish a local CF. In this section, we 

developed a physical model to fundamentally understand the physical kinetics of CF 

formation and growth behavior and investigate how the electrode and metal oxide layer 

influence the CF growth behavior during the electroforming process.  

3.1. Introduction 

In most metal oxide-based RRAM, the electroforming operation is typically 

realized by applying a sufficiently high voltage or current on the film to form a CF of high 

𝑉𝑂
∙∙ density inside the insulating layer to connect the top and bottom electrodes34,37,38,61,63,105-

107. As a voltage is applied on the thin film for filament growth, this is commonly attributed 

to a high electrical field electrolytic process in which the 𝑉𝑂
∙∙ are generated from both the 

Frenkel pair inside of oxide and the oxide/electrode interface due to the chemical reactions 

between the oxide and the metal electrodes, and migrate to create a conduction path 

between electrodes driven by the electric field and thermal effect in most metal oxide-based 

RRAM5,89. Therefore, the types and properties of metal electrodes play a key role in 

determining CF formation and growth behaviors.  
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Several experimental and simulation studies have been made to understand the 

electrode effect on the electroforming process4,36,53,108-111. Chen et al.5 studied the effect of 

electrode materials on the endurance/retention performance of HfO2 based RRAMs. It is 

found that long pulse endurance can be obtained by using active metals as electrodes. Nandi 

et al.52 reported that the electrode roughness induced a local electrical field enhancement 

that reduced the forming voltage. Xu et al.3 developed a Kinetic Monte Carlo (KMC) 

model to simulate the morphology of a CF in HfO2-based RRAM and revealed that most 

vacancies are generated at the metal/oxide interface due to a lower vacancy formation 

energy than that in the bulk.  However, up to now, the role of electrode materials on the 

CF kinetics, such as the growth direction, composition, and uniformity of the CF, which 

plays a critical role in determining the stability and functionality of the subsequent 

switching cycles112-115, is still less known. Furthermore, a number of metal oxides have 

been used as the insulating layer in metal oxide-based RRAMs, such as Al2O3
73, TiO2

72, 

HfO2
73, TiO2

108, NbO40 and, etc. Unfortunately, a general question arises as to what the 

ideal properties in metal oxides that potentially reduce the energy consumption and 

improve CF uniformity during the electroforming and how this knowledge could transform 

into a general design principle for materials selection of metal oxides for generating 

uniform CF. To qualitatively understand the effects of the electrode and metal oxide layer 

properties on the CF growth behavior and address these limitations, we develop a physical 

model by choosing HfO2 as a prototype to study the dynamic of the electroforming process 

in metal oxide-based RRAM. 

In this section, firstly, we investigate the interplays among the chemical, electrical, 

and thermal effects during the electroforming process. Then, the effects of the electrode 
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properties (the energy barrier of extracting oxygen from the oxide: 𝐸𝑏) and the physical 

properties of the oxide layer (the electrical and thermal conductivity: 𝜎 , 𝑘𝑡ℎ) on the CF 

morphology evolution, current-voltage characteristic, local temperature, and electrical 

potential distribution have been systematically explored.   

3.2. Model 

 We chose HfO2 as an example and study the electroforming process during which 

the CF is created and eventually connects one electrode to the other. In the phase-field 

simulation, we choose the oxygen vacancy density (𝑁𝑉𝑂
∙∙) as the field variable to calculate 

the total free energy of the system which will be calculated as a function of  𝑁𝑉𝑂
∙∙ . The total 

free energy density 𝑓𝑡𝑜𝑡𝑎𝑙 concerning oxygen vacancies can be expressed as, 

 𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑐ℎ𝑒𝑚 + 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐  (3-1) 

we only consider the chemical 𝑓𝑐ℎ𝑒𝑚  and electrical 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐  energy contributions to the 

total free energy. In this model, the metal oxide with oxygen vacancies is assumed as a 

dilute solution, such that the chemical energy density depends on the configuration entropy 

of oxygen vacancy and is described as:  

                𝑓𝑐ℎ𝑒𝑚 =  𝑓𝑝𝑒𝑟𝑓𝑒𝑐𝑡−𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝑇∆𝑆𝑉𝑂
∙∙                                                                                              

                          = 𝑓𝑝𝑒𝑟𝑓𝑒𝑐𝑡−𝑐𝑟𝑦𝑠𝑡𝑎𝑙 − 𝑘𝐵𝑇[𝑁𝑂𝑙𝑛
𝑁𝑂

𝑁𝑂−𝑁𝑉𝑂
∙∙

+ 𝑁𝑉𝑂
∙∙𝑙𝑛

𝑁𝑂−𝑁𝑉𝑂
∙∙

𝑁𝑉𝑂
∙∙

] (3-2) 

in which 𝑓𝑝𝑒𝑟𝑓𝑒𝑐𝑡−𝑐𝑟𝑦𝑠𝑡𝑎𝑙 is the energy density of perfect lattice without  𝑉𝑂
∙∙, ∆𝑆𝑉𝑂

∙∙  is the 

configuration entropy of oxygen vacancies, 𝑘𝐵  is the Boltzmann constant, T is the 
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temperature, 𝑁𝑂 , 𝑁𝑉𝑂
∙∙  are the total number of lattice sites of oxygen atoms and the number 

of oxygen vacancies. The electrostatic energy density is given by, 

 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 2𝑒0𝑁𝑉𝑂
∙∙𝜑 −

1

2
휀0휀𝑟(∇𝜑)2 (3-3) 

where 𝜑  is the electrical potential, 휀0  and 휀𝑟  are the vacuum permittivity and relative 

permittivity, respectively.  

Based on the chemical energy density and the electrostatic energy density 

calculated from Eqs. (3-2) and (3-1), the total free energy density 𝑓𝑡𝑜𝑡𝑎𝑙 is obtained. The 

chemical potential of the system (𝜇𝑉𝑂
∙∙) can be calculated by taking the variational derivative 

of 𝑓𝑡𝑜𝑡𝑎𝑙 over 𝑁𝑉𝑂
∙∙ ,  

 𝜇𝑉𝑂
∙∙ =

𝛿𝑓𝑡𝑜𝑡𝑎𝑙

𝛿𝑁𝑉𝑂
∙∙

= 𝑘𝐵𝑇𝑙𝑛
𝑁𝑉𝑂

∙∙

𝑁𝑂−𝑁𝑉𝑂
∙∙

+ 2𝑒𝜑  (3-4) 

And the flux of the oxygen vacancy migration (𝐽𝑉𝑂
∙∙) is defined to be linearly proportional 

to the chemical potential gradient (∇𝜇𝑉𝑂
∙∙): 

 𝐽𝑉𝑂
∙∙ = −

𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜇𝑉𝑂
∙∙  (3-5) 

where 𝐷 is the diffusivity of 𝑉𝑂
∙∙, which is assumed as to be temperature dependent through 

the Arrhenius relation 𝐷 = 𝐷0𝑒−
𝐸𝐴
𝑘𝑇 . Here 𝐷0 is the pre-exponential factor of diffusivity 

and 𝐸𝐴 is the diffusion energy barrier. In HfO2 system, we use 𝐷0 = 2×10
-3

 cm2/s and 𝐸𝐴 =

1 eV based on literature116. Thus, the  𝑉𝑂
∙∙ transport can thus be described by the continuum 

equation, which also is known as Nernst-Planck equation,  

 
𝜕𝑁𝑉𝑂

∙∙

𝜕𝑡
= −∇ ∙ 𝐽𝑉𝑂

∙∙ = ∇ ∙ (𝐷∇𝑁𝑉𝑂
∙∙ +

𝑒𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜑) + 𝐺  (3-6) 
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Here, G is the generation term during electroforming and set processes. The kinetics of 

electroforming and set processes can be interpreted as a soft breakdown associated with 𝑉o
.. 

generation. Generally, there has two main sources of 𝑉o
.. generation. First, the 𝑉o

.. are likely 

to be created from Frenkel pair inside the bulk of the oxide layer, when the electrodes are 

inert metals or compounds, such as TiN and Pt 34,108,117. The formation reaction is expressed 

in the Kröger-Vink notation as follows, 

Oo
× → 𝑉o

.. + 2𝑒′ +
1

2
𝑂2(𝑔) 

Second, the 𝑉o
.. can be induced at the anode/oxide interface by extracting the oxygen atoms 

from oxide based on the following chemical reaction, which is usually observed in the 

systems using an active metal with high oxygen affinity as the anode electrode, such as Ti, 

Ta, Hf 4,33,36,110,118,119. 

Melectrode + HfO2 → MOδ + HfO2−δ + δVo
.. + 2δ𝑒′ 

where Oo
× denotes the lattice oxygen, Melectrode stands for the electrode metal. The bulk 

generation rate of 𝑉o
.. at the interior of the oxide is determined by 120,  

 𝐺𝑏𝑢𝑙𝑘 = 𝐺1 ∙ [exp (
−(𝐸𝑓−𝛾𝐸)

𝑘𝐵𝑇
)] (3-7) 

The interface generation rate has a similar form 121, 

 𝐺𝑖𝑛𝑡𝑒𝑟 = 𝐺2 ∙ [exp (
−(𝐸𝑏−𝛾𝐸)

𝑘𝐵𝑇
)] (3-8) 

where G1 and G2 are the pre-exponential factors for bulk and interface generation rates, 

respectively, γ is the bond polarization factor, E is the local electrical field. The bulk 
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vacancy formation barrier Ef represents the capacity of Frenkel pair generation inside the 

oxide. The interface vacancy formation barrier Eb indicates the ability of a metal to extract 

oxygen atoms from the HfO2, which is determined by the properties of elelctrode materials. 

In this section, to focus on investigating the electrode properties of the CF growth behavior, 

we ignore the bulk generation of 𝑉𝑂
.. and assume that the 𝑉𝑂

.. generation only occurs at the 

active anode/oxide interface. Therefore, we select both chemically active metals (Ti and 

Ta) and inert metals (W and Pt) as anodes with different values of 𝐸𝑏, to understand the 

effect of anode materials on the CF growth behavior during the electroforming process.  

             To calculate the potential in device, the current continuity equation ∇ ∙ 𝐽(𝑟) = 0 is 

solved. The current density 𝐽(𝑟) = 𝜎(𝑟)𝐸(𝑟) calculated by Ohm’s law depending on local 

electrical conductivity 𝜎(𝑟) and local electrical field 𝐸(𝑟) = −∇ 𝜑(𝑟). Thus, the current 

continuity equation can be rewritten with electrical potential and electrical conductivity, 

 ∇ ∙ 𝜎∇𝜑 = 0  (3-9) 

The current is given by a cross-section integral 

 𝐼 = ∫ 𝜎∇𝜑 𝑑𝑠 (3-10) 

Finally, the Fourier heat-flow equation is solved to calculate the local temperature profile, 

 −∇ ∙ 𝑘𝑡ℎ∇𝑇 = 𝜎|∇𝜑|2 (3-11) 

where 𝜎 and 𝑘𝑡ℎ are the electrical and thermal conductivity. 

The model reduces the 3D problem to a 2D axisymmetric representation with a 

radial coordinate x and axial coordinate z, as illustrated in Fig. 3.1a. The total simulation 
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size is 20×80 nm2 and the mesh size is selected as 0.5 nm. The 10 nm metal oxide layer is 

sandwiched between the 50 nm Pt bottom electrode and the 20 nm top electrode (Ti, Ta, 

W, Pt) where an external voltage is applied on the top electrode and the bottom electrode 

is grounded. Initially, the oxide layer is at a high resistance state with relatively low oxygen 

vacancy density, which is assumed to be uniformly distributed in the oxide layer, at a 

concentration of 𝑁𝑉𝑂
∙∙ = 6×10

19
 1/m

3
. We assume the oxygen exchange takes place at the 

interface between anode and oxide in a confined region (𝑥 = 0~5, 𝑧 = 10 nm), as shown 

in Fig. 3.1a. The 𝑉𝑂
∙∙ generation rate is controlled by Eq. 3-8 which is employed as the 

boundary condition for the 𝑉𝑂
.. transport equation Eq. 3-6 at the anode/oxide interface. The 

grounded Pt cathode is chemically inert, so that there is no oxygen exchange flux at the 

oxide/cathode interface. The temperature at the surfaces of the two electrodes is fixed at 

300 K. The boundary condition is summarized by, 

𝐽𝑉𝑂
∙∙| z = 0 = 𝐽𝑉𝑂

∙∙| z = 10nm = 𝐺𝑖𝑛𝑡𝑒𝑟  
1

m2s
 

𝑇| all boundaries = 300 K 

𝜑|z = -50 = 0 V, 𝜑|z = 30nm = Vapp V 
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Fig. 3.1. Model geometry and simulation parameters. a. Model size and geometry. Voltage is applied at the 

top electrode (anode) and the bottom electrode is grounded (cathode). Oxygen exchange is assumed to take 

place at the interface between anode and oxide in a confined region (𝑥 = 0~5, 𝑧 = 10 nm). b. Electrical 

conductivity preexponential factor 𝜎0, activation energy for conduction 𝐸𝐴𝐶 , thermal conductivity 𝑘𝑡ℎ as a 

function of local oxygen vacancy density 𝑁𝑉𝑂
∙∙ . 

  

For metal oxide-based RRAM, the CF is assumed to be in metallic phase consisting 

of high oxygen vacancy density. Therefore, the electroforming process can be considered 

a self-doping process, in which each oxygen vacancy acts as a donor that introduces two 

extra electrons. Thus, the local electrical conductivity of the oxide is strongly dependent 

on the oxygen vacancy density 𝑁VO
∙∙ . The electrical conductivity is described by the 

Arrhenius equation78-80, 𝜎 = 𝜎0𝑒−
𝐸𝐴𝐶
𝑘𝑇 , where 𝜎0 is a pre-exponential factor and 𝐸𝐴𝐶 is the 

activation energy for conduction. Thus, both 𝐸𝐴𝐶 and 𝜎0 should depend on 𝑁VO
∙∙ .  

 As shown in Fig. 3.1b, we assume that 𝜎0 is linearly proportional to 𝑁𝑉𝑂
∙∙  with a 

slope of K1 = 2.38 for HfO2-x. This assumption is based on the previous experimental7 and 

theoretical results78. The 𝐸𝐴𝐶 is assumed to be 0.05 eV at 𝑁𝑉𝑂
∙∙ = 0, which is in agreement 
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with the activation energy in pure HfO2
78. When 𝑁𝑉𝑂

∙∙  is lower than 0.2×1027 1/m3, 𝐸𝐴𝐶 is 

assumed to decrease linearly with increasing 𝑁𝑉𝑂
∙∙ . 𝐸𝐴𝐶 is to be zero when 𝑁𝑉𝑂

∙∙  is greater 

than 0.2×1027 1/m3, which corresponds to the metallic CF nature. On the other hand, a 

linear relationship between 𝑘𝑡ℎ and 𝑁𝑉𝑂
∙∙  with a slope of K2 = 1.875 for HfO2-x materials is 

assumed due to the Joule heating, which is related with the ratio of electrical and thermal 

conductivity based on the Wiedemann-Franz Law78,79, as shown on Fig. 3.1b. The 

minimum 𝑘𝑡ℎ = 0.5 W/(m·K) for 𝑁𝑉𝑂
∙∙ = 0  is selected that corresponds to the thermal 

conductivity of the insulating HfO2 material122. The maximum 𝑘𝑡ℎ  value at high 𝑁𝑉𝑂
∙∙  

corresponds to the metallic CF, which is equal to the thermal conductivity of metal hafnium 

(57.5 W/(m·K))123. Based on the assumptions that 𝜎 and 𝑘𝑡ℎ are linearly proportional to 

the oxygen vacancy density 𝑁𝑉𝑂
∙∙ , the electrical/thermal conductivity of different metal 

oxides can simply be represented by tuning the magnitudes of K1 and K2. This enables us 

to easily investigate the effects of the electrical and thermal conductivity of different metal 

oxides on the CF growth behavior. 

 The simulation involves the self-consistent solutions of the Nernst-Planck equation 

(Eq. 3-6) for 𝑉𝑂
∙∙  migration with a flux boundary condition defined by Eq. 3-8 at 

anode/oxide interface, the current continuity equation (Eq. 3-9) for electronic conduction, 

and the thermal transport equation (Eq. 3-11) for Joule heating. These equations are solved 

using the finite element method based on the platform of COMSOL Multi-physics.  
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3.3. Results and discussion 

3.3.1. Conductive filament growth 

In this simulation, we choose HfO2 as the metal oxide layer for the simulation. The 

Tantalum (Ta) is employed as the anode electrode with a vacancy formation barrier of 2.5 

eV5, and a voltage sweep rate (d𝑉 dt⁄ ) of 1 V/s is applied on the Ta electrode. In actual 

experimental process, a compliance current Icc is always employed to be the stop condition 

to avoid permanent breakdown124. In the simulation work, we also set up the stop 

conditions, the electroforming will stop when the current reaches 100 µA, which is 

consistent with most experimental cases. Fig. 3.2a shows the current evolution 

characteristic. It is clearly seen that the current increases exponentially during the 

electroforming process. Initially, the current of the device increases gradually until the 

forming voltage (𝑉f = 2.49V), where an abrupt increase of current is seen. This indicates 

that the electroforming process occurs at a critical threshold voltage, instead of a 

cumulative phenomenon in the filament growth. The increasing 𝑉𝑂
..  concentration is 

controlled by the 𝑉𝑂
..  generation rate at the anodic interface. To further understand this 

behavior, we plot the evolutions of the 𝑉𝑂
..  generation rate, the electrical field, and the 

temperature at the anodic interface under applied voltage sweep, as shown in Fig. 3.2b. It 

should be noted that the initial generation rate is small and gradually increases with the 

increasing voltage due to the lower electrical field and temperature. When the forming 

voltage reaches 𝑉f, the sudden increases of the electrical field and temperature at the anodic 

interface give rise to a self-acceleration of the 𝑉𝑂
.. generation flux at a very short time as 

shown in Fig. 3.2b, which results in an abrupt electroforming transition. Fig. 3.2c illustrates 
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the 2D maps of the oxygen vacancy distribution (𝑁𝑉𝑂
∙∙) at different stages, corresponding to 

the points A to D as marked in Fig. 3.2a. It is seen that 𝑉𝑂
∙∙ are generated at the anode 

interface and start to accumulate to the cathode when the voltage is up to 2 V, as shown in 

snapshot A in Fig. 3.2c. At this stage, the total concentration of 𝑉𝑂
∙∙ is small due to the small 

generation rate. Along with the applied voltage, more 𝑉𝑂
∙∙ are generated at the anode and 

gradually accumulate near the cathode resulting in local segregation, as shown in snapshot 

B in Fig. 3.2c. As the applied voltage further increases to 𝑉f , massive 𝑉𝑂
∙∙ are generated and 

migrate towards the cathode immediately, and the CF length increases suddenly resulting 

in a small 𝑉𝑂
∙∙ depletion gap near the anode, as shown in Fig. 3.2c (C) and (D). We also 

analyze the 1D profiles of the oxygen vacancy density 𝑁𝑉𝑂
∙∙ , temperature T, and electrical 

potential 𝜑  along the cylindrical symmetry axis ( 𝑟 = 0, 𝑧 = 0~10 nm ) at the final 

electroforming state D (Fig. 3.2c). Here, we only plot T and 𝜑 inside the oxide layer (𝑧 =

0~10 nm), as their variations inside the top and bottom electrodes are negligible. Compared 

to the initial oxygen vacancy density (𝑁𝑉𝑂
∙∙ = 6×10

19
 1/m

3
), the final 𝑁𝑉𝑂

∙∙  near the cathode 

increases by almost 107, indicating the occurrence of a metal-insulator (Mott) transition. 

Based on the previous literature55, the critical  𝑉𝑂
∙∙ concentration (𝑁𝑐) at Mott transition for 

metal oxide is ~10
25

 1/m3.  As the  𝑉𝑂
∙∙ accumulation near the cathode and a depletion gap 

near the anode, the electrical potential dramatically drops near the anode, and remains 

almost constant in the highly conductive CF region near the cathode, which results in a 

local enhancement of electrical field and temperature near the anode region. The local 

enhancements of temperature and electrical field further increase the 𝑉𝑂
∙∙  mobility and 

promote the  𝑉𝑂
∙∙  migration from the gap region to the cathode. In this case, the  𝑉𝑂

∙∙ 

generation rate is slightly limited and cannot fully compensate the 𝑉𝑂
∙∙ migration rate from 
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anode to cathode. Therefore, a small  𝑉𝑂
∙∙ depletion region (𝑁𝑉𝑂

∙∙ < 𝑁𝑐 ) inside the CF is 

observed near the anode (𝑧 = 10 nm), while the 𝑁𝑉𝑂
∙∙  in the remaining part of CF is higher 

than 𝑁𝑐. Based on these studies, it can be inferred that the generation rate of 𝑉𝑂
∙∙ at the 

interface and the migration of 𝑉𝑂
∙∙ in the bulk influence the CF morphology and growth 

behavior.  

The CF growth behavior and I-V characteristic simulated from the current model 

agree well with previous experimental reports on HfO2-based devices5,7,52. For example, 

Chen et al.5 found that the forming voltage for HfO2 based RRAM with Ta anode is about 

3 V, which is slightly higher than our simulation result (𝑉f = 2.49 V). This is probably 

because the area of the switching cell in their experiment is larger than our simulation. 

Other experimental results of metal oxide-based RRAMs55,117,124-126 also show that the soft 

breakdown of the insulating layer occurs when the voltage sweep is applied, followed by a 

dramatic current increase at a critical threshold voltage (𝑉f) during the electroforming 

process, which agrees with our simulation results. Therefore, in the following sections, we 

will employ this model to investigate the effects of the electrode materials and the metal 

oxide properties on the CF growth behavior during the electroforming process and derive 

a general principle for materials selection of both metal electrodes and oxide layer in 

RRAMs. 
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Fig. 3.2. Modeling electroforming process in HfO2 metal oxide. a. Current evolution characteristics by 

applied voltage sweep with rate d𝑉 dt⁄ =1 V/s and stop at 𝐼stop = 100 μA. b. The evolution of generation flux, 

temperature T and electrical field E at the anodic interface (𝑧 = 10). c. Calculated 2D 𝑁𝑉𝑂
∙∙  map with 

increasing voltage, corresponding to state A-D in a. d. 1D profiles of 𝑁𝑉𝑂
∙∙ , 𝑇 and 𝜑 at state D (𝑉f = 2.49 V) 

along the center of CF (𝑥 = 0, 𝑧 = 0~10 nm). 

 

3.3.2. The effect of electrode properties on the CF growth behavior 

 As the oxygen vacancy generation rate is determined by the chemical reaction, and 

the generation rate at the anodic interface is highly associated with the electrode properties 

that is the ability to extract the oxygen atoms from HfO2. It is much easier for the active 

electrode to extract oxygen from oxide which shows a lower vacancy formation barrier 

than inert electrodes. In this section, we investigate the effect of different electrodes on the 

CF growth behavior by choosing Ti, Ta, W, and Pt as the anode electrode with an 

increasing vacancy formation barrier 𝐸𝑏  of 0.6 eV, 2.5 eV, 5.5 eV, and 8.5 eV, 

respectively5. With the same simulation conditions as section 3.3.1, a voltage sweep with 

the rate of d𝑉 dt⁄ =1 V/s is applied on the anode, and the simulation is stopped at 𝐼stop =

100 μA  or 𝑉app = 5 V , whichever comes first. The temporal evolutions of the overall 
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current with different anode materials (Ti, Ta, W, Pt) are illustrated in Fig. 3.3a. The 

currents in all cases increase exponentially with increasing voltage, followed by an abrupt 

increase at different forming voltages except for Pt. Based on our calculations, the required 

forming voltage 𝑉f for the CF formation in growing with increasing 𝐸𝑏. The Ti electrode 

with the smallest 𝐸𝑏 is found to be able to form CF at the smallest forming voltage 𝑉f =

1.19 V. In contrast, the device with an inert Pt electrode doesn’t show an abrupt increase 

in current even after the applied voltage reaches 5V.  

We also study the effect of electrode properties on the CF morphology. The 2D 

maps of final  𝑉𝑂
∙∙ profiles (snapshots A-D in Fig. 3.3b) and the temperature distributions 

(snapshots E-H in Fig. 3.3b)  with different metal anodes, as well as the corresponding 1D 

profiles of 𝑁𝑉𝑂
∙∙  along the center of CF (𝑥 = 0, 𝑧 = 0~10 nm) (Fig. 3.3c), are conducted to 

describe the effect of electrode properties on the CF growth. These results indicate that the 

interfacial properties significantly affect the final morphology of the CF. More uniform CF 

with homogeneous 𝑉𝑂
∙∙ distribution can be obtained by employing active anode metal where 

𝐸𝑏 is small (Ti/HfO2 interface). As 𝐸𝑏 increases, the width of the depletion gap increases 

and 𝑁𝑉𝑂
∙∙  in the CF becomes highly inhomogeneous as the shadows shown in Fig. 3.3c. In 

addition to the increasing gap, the 𝑉𝑂
∙∙ also diffuse along the radial (x) direction and broaden 

the CF width with increasing 𝐸𝑏, as observed from Fig. 3.3b (A-C). The inhomogeneous 

morphology of CF can be explained as the enhanced required forming voltage (𝑉f) for 

increasing 𝐸𝑏 provides a larger driving force and further forces the 𝑉𝑂
∙∙ generation at anodic 

interface and migration to the cathode, resulting in a wider depletion gap. In the meantime, 

the corresponding increasing electrical field induced by high forming voltage leads to a 

temperature increase at the gap region (Fig. 3.3b (E-F)) based on the Joule heating effect, 
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which further increases the diffusivity of 𝑉𝑂
∙∙ and eventually causes the lateral broadening 

of the CF. Moreover, the CF is not able to form with the inert Pt electrode (𝐸𝑏 = 8.5 eV) 

even when the applied voltage reaches 5 V and the corresponding temperature becomes 

extremely high, which means, to create CFs in HfO2 with Pt electrode, a much higher 

voltage is needed, under which the 𝑉𝑂
∙∙ tend to generate from the interior of the oxide52 

rather than the interface controlled CF growth. 

 

Fig. 3.3. Effect of electrode properties on the CF growth. a. Current evolution characteristics with different 

electrode materials under an applied voltage sweep with rate d𝑉 dt⁄ =1 V/s and stop at 𝐼stop = 100 μA or 

𝑉stop = 5 V. b. 2D 𝑁𝑉𝑂
∙∙  maps of distributions of 𝑁𝑉𝑂

∙∙  and temperature T along the center of CF (𝑥 = 0, 𝑧 =

0~10 nm) at final state. c. 1D profiles of 𝑁𝑉𝑂
∙∙  along the center of CF (𝑥 = 0, 𝑧 = 0~10 nm) at the final state 

(The blue, red, and grey shades indicate the position and width of the oxygen vacancy depletion gap).  
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 To further understand the dynamic during the electroforming process, in 

particularly the CF growth direction, we investigate the interplays between the  𝑉𝑂
∙∙ 

generation at the anodic interface and the  𝑉𝑂
∙∙ migration in the bulk of HfO2 with different 

metal electrodes. The 1D temporal evolutions of 𝑁𝑉𝑂
∙∙  along the center axis (𝑟 = 0, 𝑧 =

0~10 nm) with active anode Ti (𝐸𝑏 = 0.6) and inert anode W (𝐸𝑏 = 2.5 eV) are plotted in 

Fig. 3.4a and 3.4b. We also compared the  𝑉𝑂
∙∙ generation flux at the anodic interface (𝑥 =

0, 𝑧 = 10 nm) and the  𝑉𝑂
∙∙ drift and diffusion flux near the anodic interface (𝑥 = 0, 𝑧 =

8.5 nm) under the applied voltage sweep, as shown in Fig. 3.4c and d, respectively. From 

Fig. 3.4a, it is seen that 𝑁𝑉𝑂
∙∙  near the anode quickly increases above 𝑁𝐶  and reaches 

~10
27

 1/m3. This is due to the low vacancy formation barrier 𝐸𝑏 allows the generation flux 

can reaches above 10-1 A/m2 at the beginning, which is much higher than the initial 

migration flux (diffusion and drift), as shown in Fig. 3.4c. As the applied voltage increases 

from 0.1 to 0.7, the created  𝑉𝑂
∙∙ near the anode (z = 10 nm) gradually migrates to the cathode. 

As a result, the filament consisting of relatively high 𝑁𝑉𝑂
∙∙  starts to grow from the anode 

toward the cathode (indicated by the arrow in Fig. 3.4a). In this period, the  𝑉𝑂
∙∙ migration 

to the cathode is driven by the diffusion and drift flux, while the contribution of diffusion 

is larger than drift due to a large positive concentration gradient caused by the higher 

generation rate at the anodic interface. When the voltage increases to ~1 V,  𝑉𝑂
∙∙ can easily 

be removed from the anode and migrate to the cathode which results in an increasing drift 

flux (green curve in Fig. 3.4c). Consequently, the 𝑁𝑉𝑂
∙∙  near the cathode eventually increases 

above 𝑁𝐶, and a  𝑉𝑂
∙∙ depletion gap is created near the anode region (blue curve in Fig. 3.4a). 

The 𝑉𝑂
∙∙ continue to accumulate to the cathode side as the 𝑉app further increases to 1.19 V, 

and the 𝑁𝑉𝑂
∙∙  near cathode reaches ~10

27
 1/m3 . We can also observe the width of the 
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depletion gap decreases, and the location of this gap moves towards the anode. This 

behavior can be explained as follows. As the generated  𝑉𝑂
∙∙ migration to the cathode region 

under the application of voltage, once the depletion gap near the anode is created, a 

negative 𝑉𝑂
∙∙ concentration gradient (from cathode to anode) is induced which provides a 

negative diffusion flux as indicated by the orange dotted curve in Fig. 3.4c. Meanwhile, 

the positive drift flux (solid green curve in Fig. 3.4c) is always consistent with the direction 

of the electrical field. Consequently, the gap induced negative diffusion flux partially 

offsets the positive drift flux and drives the  𝑉𝑂
∙∙ diffusion towards the anode to reduce the 

width of the depletion gap. It is demonstrated that for the active anode, the CF growth 

direction is from anode to cathode and a relatively uniform CF is eventually formed, as the 

arrow shown in Fig. 3.4a. 

 The calculated CF growth dynamic under a relatively inert electrode (W) with a 

higher 𝐸𝑏 = 5.5 eV is plotted in Fig. 3.4b and d. The initial  𝑉𝑂
∙∙ is uniform in the oxide 

layer at 𝑉app = 0 V. Due to the large vacancy formation barrier, the generation rate of  𝑉𝑂
∙∙ 

is negligible at the beginning, as shown in Fig. 3.4d. As the applied voltage increase to 2.5 

V, the 𝑉𝑂
∙∙  are forced to be depleted from the anode and piled up to the cathode side, 

accompanied by the creation of a wide 𝑉𝑂
∙∙ depletion gap near the anode (blue curve in Fig. 

3.4b) due to the positive drift flux (solid green curve in Fig. 3.4d) is much larger than the 𝑉𝑂
∙∙ 

generation flux at the anodic interface (solid blue curve in Fig. 3.4d), while the negative 

diffusion flux (dotted orange curve in Fig. 3.4d) only partially offsets the drift flux. The 𝑉𝑂
∙∙ 

generation flux is gradually enhanced as the applied voltage increase, and 𝑁𝑉𝑂
∙∙  start to 

increase at the anode side (2.7 V state in Fig. 3.4b) and further migrate towards the cathode 

as the increasing drift and diffusion flux both contribute to the migration flux from anode 
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to cathode. Consequently, a CF with a higher concentration 𝑁𝑉𝑂
∙∙  > 𝑁𝐶 first appears at the 

cathode side (3.0 V state in Fig. 3.4b) and continues to grow towards the anode when 

voltage is above 3.0 V, as indicated by the arrow in Fig. 3.4b. 

 

Fig. 3.4. The competition between the generation rate and migration rate. a, b. The evolution of distributions 

of 𝑁𝑉𝑂
∙∙  along the center of CF (𝑥 = 0, 𝑧 = 0~10 nm) with an active electrode Ti and an inner electrode W 

under a voltage sweep rate d𝑉 dt⁄ =1 V/s. c, d The generation flux at the point in interface (𝑥 = 0, 𝑧 = 10 nm), 

the drift and diffusion flux at the point near the anode (𝑥 = 0, 𝑧 = 8.5 nm) with Ti and W electrodes, 

respectively. Flux direction from anode to cathode is marked as solid line, while flux direction from cathode 

to anode is marked as dotted line.  

 

3.3.3. The effects of metal oxides properties on the CF growth behavior 

 In this section, we study the effect of metal oxide properties on CF growth behavior. 

Based Eqs. 3-9 and 3-11, we can deduce that the local electrical field and temperature 

strongly affect the oxygen vacancy transport and thus influence the CF growth. The 

electrical and thermal transports are highly dependent on the oxide properties, such as the 
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electrical (𝜎) and thermal conductivity (𝑘𝑡ℎ) of the host metal oxides. Since 𝜎 and 𝑘𝑡ℎ in 

the metal oxides are much smaller than their corresponding metallic states, for simplicity, 

we assume that 𝜎 and 𝑘𝑡ℎ are the same for different pristine oxides (such as TiO2, HfO2, 

etc.), and are linearly extrapolated to their values in the corresponding metallic states as a 

function of increasing 𝑁𝑉𝑂
∙∙ . Based on this assumption, we can easily represent the σ and 

𝑘𝑡ℎ for different metal oxides by tunning the slopes of the linear curve, i.e., K1 and K2, as 

mentioned in section 3.2. 

To investigate the effect of electrical conductivity on CF growth, we assume the 

vacancy formation barrier is a constant (𝐸𝑏  = 2.5 eV). Fig. 3.5 illustrates the effect of 

electrical conductivity on CF growth. The total current evolution with different electrical 

conductivities (represented as K1 = 0.5, 2.38 and 10.5) is shown in Fig. 3.5a. While the 

initial current evolutions are almost the same for different K1, the forming voltage (𝑉f), as 

indicated by a sudden increase in total current, decreases monotonously with the increasing 

of electrical conductivity (K1). Fig. 3.5c illustrates the 2D maps of the final 𝑉𝑂
∙∙ distribution 

with different electrical conductivities, and the corresponding 1D 𝑁𝑉𝑂
∙∙  profiles along 

vertical (𝑥 = 0, 𝑧 = 0~10 nm) are shown in Fig. 3.5b. Under lower electrical conductivity 

(K1 = 0.5), we can find a larger depletion gap, and the width of the gap diminishes in size 

with the increasing of electrical conductivity of the oxide. As K1 reaches 10.5, the 

𝑁𝑉𝑂
∙∙  becomes homogenous and the CF becomes uniform in morphology. To understand the 

effect of electrical conductivity, we compare the 1D electrical potential and the local 

temperature distributions along the vertical direction (𝑥 = 0, 𝑧 = 0~10 nm) at the final 

forming states with different electrical conductivities, as shown in Fig. 3.5d and e. The heat 

generation by Joule heating effect is reduced when  𝜎 is low (K1 =0.5) (black curve in Fig. 
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3.5e). Consequently, the 𝑉𝑂
∙∙ generation rate becomes low under lower temperature, and a 

larger 𝑉f is needed to create a CF (Fig. 3.5a). The higher applied voltage accelerates 𝑉𝑂
∙∙ 

migration from anode to cathode, creating a local segregation of  𝑉𝑂
∙∙  at the cathode. As a 

result, the electrical voltage remains constant from the cathode towards the inside bulk 

(𝑧 = 0~7 nm) and increases dramatically towards the anode (black curve in Fig. 3.5d). 

This results in a local enhancement of the electrical field, which further speeds up the 𝑉𝑂
∙∙ 

migration and accumulation near the cathode, and eventually induces a large depletion gap 

near z  = 7 nm (Fig. 3.5b, c). More heat is generated (red curve in Fig. 3.5e) as 𝜎 increases 

(K1 = 2.38), which prompts the  𝑉𝑂
∙∙ generation and reduces the forming voltage. Compared 

with the case K1 = 0.5, the smaller local electric field enhancement (red curve in Fig. 3.5d) 

reduces the driving force for 𝑉𝑂
∙∙  migration towards the cathode, resulting in a smaller 

depletion gap. When K1 = 10.5A, a large amount of heat is produced (blue curve in Fig. 

3.5e). This leads to a larger 𝑉𝑂
∙∙ generation flux and a reduction of forming voltage that 

reduces the local enhancement of the electrical field (blue curve in Fig. 3.5d) and slows 

down the  𝑉𝑂
∙∙ drift to the cathode. On the other hand, the enhanced temperature promotes 

the 𝑉𝑂
∙∙  diffusion from the cathode region of high 𝑉𝑂

∙∙  concentration towards the 𝑉𝑂
∙∙ 

depletion gap to reduce the concentration gradient, and eventually offsets the 𝑉𝑂
∙∙ drift by 

the local electric field. As a result, the 𝑉𝑂
∙∙  depletion gap near the anode and the  𝑉𝑂

∙∙ 

segregation near the cathode almost disappear (blue curve in Fig. 3.5b), and the uniformity 

of the 𝑉𝑂
∙∙ concentration inside the CF is significantly improved (snapshot C in Fig. 3.5c). 

 



54 

 

 

Fig. 3.5. Effect of electrical conductivity on the CF growth. a. Current characteristic with different electrical 

conductivity (by K1) under a voltage sweep rate d𝑉 dt⁄ =1 V/s. b. 𝑁𝑉𝑂
∙∙  ditributions along the center of CF (𝑟 =

0, 𝑧 = 0~10 nm). c. Calculated 2D 𝑁𝑉𝑂
∙∙  map. d, e. Calculated 1D profiles of local electrical potential φ and 

temperature T along the center of CF (𝑟 = 0, 𝑧 = 0~10 nm) at final state. 

 

 The effect of thermal conductivity 𝑘𝑡ℎ  (by the slope K2) on the CF growth is 

illustrated in Fig. 3.6. Fig. 3.6a shows the temporal evolution of total current with different 

𝑘𝑡ℎ (represented as K2 = 0.1, 1.875 and 10.5). The lower 𝑘𝑡ℎ  (K2 = 0.1) results in a higher 

temperature (black curve in Fig. 3.6e) which promotes the 𝑉𝑂
∙∙  generation at a reduced 

forming voltage of 2.2 V (Fig. 3.6a). In this case, the induced  𝑉𝑂
∙∙ migrates to the cathode 

and shows slight segregation in the cathode region, because the drift flux from the anode 

to the cathode is suppressed due to the decreasing local electrical field (black curve in Fig. 

3.6d). On the other hand, high temperature enhances the diffusion flux from the cathode to 

the anode partially cancels the drift flux. Consequently, a CF with uniform 𝑁𝑉𝑂
∙∙  distribution 

and a much smaller  𝑉𝑂
∙∙ depletion gap is formed (snapshot A in Fig. 3.6c and black curve 
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in Fig. 3.6b). As the 𝑘𝑡ℎ(K2) increases, the heat generated by Joule heating effect can be 

easily dissipated and the local temperature decreases (red curve in Fig. 3.6e), which inhibits 

the  𝑉𝑂
∙∙ generation and increases the CF forming voltage up to 2.49 V (Fig. 3.6a).  When 

𝑘𝑡ℎ further increases (K2 = 10.5), the induced 𝑉𝑂
∙∙ migration from anode to cathode becomes 

much easier under a higher local electrical field (blue curve in Fig. 3.6d). Thus, more 𝑉𝑂
∙∙ 

accumulation near the cathode and a larger  𝑉𝑂
∙∙ depletion gap near the anode is clearly seen 

(snapshot C in Fig. 3.6c and blue curve in Fig. 3.6b).  

 

 

Fig. 3.6. Effect of thermal conductivity on the CF growth. a. Current characteristic with different electrical 

conductivity (by K1) under a voltage sweep rate d𝑉 dt⁄ =1 V/s. b. 𝑁𝑉𝑂
∙∙  ditributions along the center of CF 

(𝑥 = 0, 𝑧 = 0~10 nm). c. Calculated 2D 𝑁𝑉𝑂
∙∙  map. d, e. Calculated 1D profiles of local electrical potential φ 

and temperature T along the center of CF (𝑥 = 0, 𝑧 = 0~10 nm) at final state. 
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3.4. Summary 

Based on the previous simulations, it is revealed that the CF growth behavior is 

determined by both the electrode properties (energy barrier of metals to oxidize from oxide 

𝐸𝑏) and the physical properties of the oxides (the electrical and thermal conductivity). It is 

found that employing an active metal electrode accelerates the formation of a CF and 

improves the homogeneity of the CF concentration. That’s why active metals such as Ti 

and Ta with small vacancy formation barrier (𝐸𝑏) and large capability to extract oxygen 

atoms from oxides are widely used as electrode materials33,117,127. Lee et al. 33 reported a 

novel HfO2 based resistive memory with TiN/Ti/HfO2/TiN stacking layers. Due to the high 

activity of a Ti layer inserted between the HfO2 and electrode TiN, a large amount of 

oxygen can be exchanged between Ti and HfO2, resulting in the formation of HfOx (x~1.4) 

of high oxygen deficiency. Yang et al.128 demonstrated that Ta metal electrode could serve 

as a large reservoir of mobile oxygen vacancies in Pb/TaOx/Ta system. In the case when 

the electrode is blocking for oxygen exchange at the metal/oxide interface, additional 

oxygen exchange layers (OEL) attached on the electrodes can also potentially improve the 

𝑉𝑂
∙∙  generation rate33,127. Our simulation work manifests that controlling the electrode 

properties can be used to design and optimize the properties of metal oxide-based RRAMs.  

On the other hand, our analysis shows that the interplay between the  𝑉𝑂
∙∙ generation 

rate at the anodic interface and the  𝑉𝑂
∙∙ migration rate in the bulk strongly influences the 

CF growth direction during the electroforming process. When the  𝑉𝑂
∙∙  generation rate is 

much smaller than the  𝑉𝑂
∙∙   migration rate in the bulk, a local conductive region is first 

formed near the cathode where  𝑉𝑂
∙∙ are segregated due to the fast migration. Then the CF 
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continues to grow towards the anode region, when  𝑉𝑂
∙∙ diffuse back from the cathode to the 

anode. When the  𝑉𝑂
∙∙  generation rate is larger than the  𝑉𝑂

∙∙ migration rate in the bulk, the 

generated  𝑉𝑂
∙∙  at the anode site diffuses and drifts gradually towards the cathode, such that 

the CF propagates from the anode towards the cathode. Specifically, the filament growth 

in different directions has been observed and our simulation results are consistent with 

experimental results110.   

Finally, it is revealed that the increase of electrical conductivity in oxide can 

generate more heat by Joule heating effect, and can thus enhance the  𝑉𝑂
∙∙ generation rate 

and decrease the forming voltage of the CF. Meanwhile, the increase of thermal 

conductivity promotes heat dissipation and reduces the  𝑉𝑂
∙∙ generation rate, resulting in a 

higher forming voltage. Higher forming voltage further promotes  𝑉𝑂
∙∙ generation at the 

anodic interface and accelerates the  𝑉𝑂
∙∙ drift to the cathode, creating a large  𝑉𝑂

∙∙ depletion 

gap.  Based on these studies, we can conclude that choosing metal oxides with high 

electrical conductivity and lower thermal conductivity helps to improve the uniformity of 

the CF with homogeneous  𝑉𝑂
∙∙ concentration and reduce the electroforming voltage.  
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Chapter 4. Resistive switching behavior in metal oxide-

based RRAM 

 

In Chapter 3, the initial CF formation has been investigated, we know that using an active 

anode and selecting the metal oxide with higher electrical conductivity and lower thermal 

conductivity benefits achieve a uniform and homogenous CF. As we know, the resistive 

switch is attributed to the CF connected and disconnected between electrodes. Therefore, 

in this section, we would study the subsequent resistive switching behavior once CF formed 

inside the oxide layer.     

4.1. Introduction 

 Several theoretical/physical models have been used to study the CF switching 

dynamics during resistance switching, as we summarized in section 2.3. However, most 

existing models do not take into consideration the impact of mechanical stress during CF 

evolution129. It is found that the internal point defect concentrations can alter the local 

mechanical strains and electrical potential130-133. Recently, chemo-mechanical coupling in 

nonstoichiometric metal oxides has been studied and is shown to have a strong influence 

on the properties of many electrical and energy devices such as solid-oxide fuel cells and 

catalysts134,135. Therefore, it is necessary to carefully assess the mechanical effect induced 

by the defect distribution and transport on the resistance switching behavior of RRAM. 

The large current on/off ratio and fast switching speed are the two key 

characteristics of RRAM. As we summarized in section 2.1.1, many metal oxides can be 
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used as the switching layer, and plenty of works are reported to investigate the resistive 

switching behavior in each metal oxide-based RRAM cell. We also need to know how 

metal oxide properties influence the performance of RRAM and which kind of oxide is an 

ideal candidate to achieve optimal performance. Finding out general rules through 

conventional experimental trial-and-error approaches is highly inefficient. Here, we 

propose to employ a combination of high throughput computation and machine learning to 

guide the materials discovery and design for RRAM. Such an approach has recently been 

demonstrated for defective oxides and nanomaterials136,137. Shen et. al.138 also employed 

such a methodology to screen and identify potential oxide nanofillers in polymer-based 

dielectrics for improved dielectric breakdown strength. Zhang et. al.139 demonstrated an 

unsupervised approach for discovering new candidates of solid state Li-ion conductors with 

conductivities of 10-4 ~ 10-1  S cm-1 predicted in ab initio molecular dynamics simulations.  

In this section, we first developed a phase-field model to incorporate the impact of 

mechanical stress on resistive switching behavior and its interaction with mass diffusion, 

thermal transport, and electrical conduction dynamics in metal oxide-based RRAM. By 

parameterizing the three key material constants of metal oxides, i.e., the Vegard strain 

coefficient (𝑉𝑖𝑗), the electrical conductivity (𝜎), and the thermal conductivity (𝑘𝑡ℎ) to 

represent different insulating oxide layers in RRAM, we perform high-throughput phase-

field simulations to independently and systematically explore each of these intrinsic 

material constants on the performance of metal oxide-based RRAM and generate a 

material-property database. Based on this we apply compressed-sensing based machine 

learning to derive analytical prediction models for the device performance including the 

current on/off ratio (Ion Ioff⁄  ) and resistance switching time (tswitch) of RRAM as a function 
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of the aforementioned key material constants. These analytical models provide 

fundamental physical insights for accelerating the future discovery of RRAM materials. 

4.2. Model 

Phase field model 

 Compared with Eq. 3-1, the total free energy of the system (𝐹𝑡𝑜𝑡𝑎𝑙) considered the 

synergistic contributions from the chemical, electrical, and mechanical effects, which is 

written as: 

𝐹𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑓𝑡𝑜𝑡𝑎𝑙 𝑑𝑉 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓𝑐ℎ𝑒𝑚 + 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑐                                      (4-1) 

where 𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑐  represents the elastic energy density. The chemical energy density and 

electric energy density are same with that in Chapter 3, 

 𝑓𝑐ℎ𝑒𝑚 = −𝑘𝐵𝑇[𝑁𝑂𝑙𝑛
𝑁𝑂

𝑁𝑂−𝑁𝑉𝑂
∙∙

+ 𝑁𝑉𝑂
∙∙𝑙𝑛

𝑁𝑂−𝑁𝑉𝑂
∙∙

𝑁𝑉𝑂
∙∙

] (4-2) 

 𝑓𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 2𝑒0𝑁𝑉𝑂
∙∙𝜑 −

1

2
휀0휀𝑟(∇𝜑)2 (4-3) 

The elastic energy density is written as140: 

 𝑓𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
𝐶𝑖𝑗𝑘𝑙(휀𝑖𝑗 − 휀𝑖𝑗

0 )(휀𝑘𝑙 − 휀𝑘𝑙
0 ) (4-4) 

where 𝐶𝑖𝑗𝑘𝑙  is the elastic constant tensor, 휀𝑖𝑗  is the total strain, and 휀𝑖𝑗
0  is the local 

eigenstrain induced by the variation of oxygen vacancy density. In this model, we assume 

that 휀𝑖𝑗 = 0. The local eigenstrain 휀𝑖𝑗
0  induced by the variation of oxygen vacancy density 

is determined based on the converse Vegard’s law, which is written as: 

 휀𝑖𝑗
0 = 𝑉𝑖𝑗∆𝑁𝑉𝑂

∙∙ 𝛿𝑖𝑗 (4-5) 
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where 𝑉𝑖𝑗 =
1

𝑎
∙

𝑑𝑎

𝑑𝑁𝑉𝑂
∙∙
 is the Vegard strain coefficient, which describes the lattice parameter 

(𝑎) change with the oxygen vacancy density (𝑁𝑉𝑂
∙∙),  𝛿𝑖𝑗 is the Kronecker operator;  ∆𝑁𝑉𝑂

∙∙ =

(𝑁𝑉𝑂
∙∙ − 𝑁𝑉𝑂𝑖

∙∙  ) is the variation of the oxygen vacancy density. The constant value of 𝑁𝑉𝑂𝑖
∙∙  is 

the oxygen vacancy density in the reference stress-free state. 

 The chemical, electrical and elastic potentials of the system are obtained by taking 

the variational derivative of the corresponding free energy densities with respect to 𝑁𝑉𝑂
∙∙ , 

i.e., 

 

 𝜇𝑉𝑂
∙∙

chem =
𝛿𝑓chem

𝛿𝑁𝑉𝑂
∙∙

= 𝑘𝐵𝑇𝑙𝑛
𝑁𝑉𝑂

∙∙

𝑁𝑂−𝑁𝑉𝑂
∙∙
 (4-6) 

 𝜇𝑉𝑂
∙∙

electric =
𝛿𝑓electric

𝛿𝑁𝑉𝑂
∙∙

= 2𝑒𝜑 (4-7) 

 𝜇𝑉𝑂
∙∙

elastic =
𝛿𝑓elastic

𝛿𝑁𝑉𝑂
∙∙

= 𝐶𝑖𝑗𝑘𝑙[𝑉𝑖𝑗]2∆𝑁𝑉𝑂
∙∙𝛿𝑖𝑗 (4-8) 

Thus, the total potential of the system is described as: 

 𝜇𝑉𝑂
∙∙ = 𝜇𝑉𝑂

∙∙
chem + 𝜇𝑉𝑂

∙∙
electric + 𝜇𝑉𝑂

∙∙
elastic (4-9) 

The flux of oxygen vacancy is proportional to the gradient of the potential: 

 𝐽𝑉𝑂
∙∙ = −

𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜇𝑉𝑂
∙∙  (4-10) 

 The oxygen vacancy transport process can be described by the Nernst-Planck 

equation. To investigate the defect-induced mechanical effect on the resistive switching 

process, we either include or exclude the elastic potential in the Nernst-Planck equation, as 

shown in Eqs. 4-11 and 4-12, 

 
𝜕𝑁𝑉𝑂

∙∙

𝜕𝑡
= −∇ ∙ 𝐽𝑉𝑂

∙∙ = ∇ ∙ (𝐷∇𝑁𝑉𝑂
∙∙ +

𝑒𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜑 −
𝐷

𝑘𝐵𝑇
𝐶𝑖𝑗𝑘𝑙[𝑉𝑖𝑗]2𝑁𝑉𝑂

∙∙∆𝑁𝑉𝑂
∙∙)   (4-11) 
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𝜕𝑁𝑉𝑂

∙∙

𝜕𝑡
= −∇ ∙ 𝐽𝑉𝑂

∙∙ = ∇ ∙ (𝐷∇𝑁𝑉𝑂
∙∙ +

𝑒𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜑) (4-12) 

Eqs. 4-11 and 4-12 are coupled with the current continuity equation for electrical 

conduction (Eq. 4-13) and the thermal transport equation for Joule heating (Eq. 4-14), 

 ∇ ∙ 𝜎∇𝜑 = 0 (4-13) 

 −∇ ∙ 𝑘𝑡ℎ∇𝑇 = 𝜎|∇𝜑|2 (4-14) 

where 𝜎 and 𝑘𝑡ℎ are the electrical and thermal conductivity, respectively. We use same 

assumption in electroforming process to determine the 𝜎 and 𝑘𝑡ℎ for metal oxide layer, the 

details can be found in section 3.2. 

 Eqs. 4-11 to 4-14 are self-consistently solved to obtain the oxygen vacancies 

density 𝑁𝑉𝑂
∙∙ , the electrical potential 𝜑 and the temperature 𝑇 using finite element method 

based on the platform of COMSOL Multi-physics. Fig. 4.1 illustrates the 2D axisymmetric 

geometry. As the resistive switching depends on the rupture and reconstruction of CF 

which has been grown during the electroforming process. Therefore, we define a uniform 

region with a high concentration of 𝑉𝑂
∙∙ ( 𝑁𝑉𝑂

∙∙ = 1.2×10
27 m-3) as the pre-existing CF and 

the remaining insulating region is stoichiometric HfO2, as shown in Fig. 4.1. Then, the 

simulation starts with a triangular voltage sweep with rate dV dt⁄ =0.1 V/s applied on the 

top electrode while the bottom electrode is grounded. The total system size is 35×20 nm2 

and the mesh size is selected as 0.5 nm. In the resistive switching process, the two 

electrodes are assumed to act as heat sinks with fixed temperature 𝑇=300 K. We consider 

that both electrodes are blocking the oxygen transfer, i.e., there is no oxygen vacancy flux 

at the interfaces between the oxide layer and the electrodes. The boundary conditions are 

list as, 
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𝐽𝑉𝑂
∙∙| z = 0 = 𝐽𝑉𝑂

∙∙| z = 20nm = 0 
1

m2s
 

𝑇| all boundaries = 300 K 

𝜑|z = 0 = 0 V, 𝜑|z = 20nm = Vapp V 

 

 

Fig. 4.1 Simulation size and geometry. 

 

DFT calculations of Vegard strain coefficient 

 We employ the density functional theory calculations of monoclinic (P21/c) HfO2 

phase by using the Vienna Ab initio Simulation Package (VASP) with PAW atomic 

potentials63,141 to calculate the Vegard strain coefficient. Based on the earlier electronic-

structure calculations142, it was determined to use the generalized gradient approximation 

(GGA) with the Perdew-Burke-Ernzerhof (PBE)143 functional and an additional Hubbard 

‘U’ potential of 2.2eV applied to the ‘f’ orbitals of Hafnia flavor for treating the on-site 

Coulomb interaction, following the Dudarev’s rotationally invariant approach76.  

 To obtain the Vegard strain at high concentrations of ~8.3% (one oxygen-vacancy 

in a 12-atom unit cell), the DFT calculations were calculated with a 6×6×6 Gamma-
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centered k-mesh to integrate the Brillion Zone with the atomic forces relaxed by using a 

conjugate-gradient algorithm till the forces on all atoms converged to at least 0.01 eV/Å. 

On the other hand, to obtain the Vegard strain at low concentrations, a 3×3×3 supercell 

was used to perform oxygen defect cluster calculations. A single k-point (the Gamma point) 

was used to integrate the Brillion Zone and the atomic forces converged down to 0.1 eV/Å 

with concomitant relaxation of lattice parameters. At the same time, the lattice parameters 

were simultaneously optimized to obtain the zero-pressure volume with and without 

oxygen vacancy.  

Machine learning approach 

 Three material properties of metal oxides including Vegard strain coefficient 𝑉𝑖𝑗, 

electrical conductivity 𝜎 , and thermal conductivity 𝑘𝑡ℎ  are selected as the material 

fingerprints to identify the properties of metal oxides-based RRAM (Ion Ioff⁄  as well as the 

tswitch). For building an interpretable machine learning features space, we start with a set of 

features Φ0 (𝑉𝑖𝑗, 𝜎, 𝑘𝑡ℎ)  as the primary features where 𝑉𝑖𝑗 is dimensionless, 𝜎 is in units of 

103 S cm-1 and 𝑘𝑡ℎ is in units of W m-1K-1. Then, additional features are constructed by 

using operators in the set 𝐻𝑚 ≡ (+, −, × ,  /, exp, log, ^-1, ^2, ^3, sqrt, cbrt, | − |), where 

the superscript ‘m’ indicates that dimensional analysis is performed only for meaningful 

combinations (i.e., physically allowed combinations). Thus, the feature space has been 

extended by using a combination of 𝐻𝑚 operators with a 3-rungs operation (i.e., Φ0 →

 Φ1 → Φ2 → Φ3).  The number of elements in Φ1 , Φ2,  Φ3 is ~27, ~619 and ~448330, 

respectively. Since some of the properties could be correlated, such as the electrical 

conductivity (σ) and thermal conductivity (kth)) related via the Lorenz factor based on the 
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Wiedemann-Franz law, we use the recently developed by Sure Independence Screening 

and Sparsity Operator (SISSO) approach144 to identify a descriptor that predicts the 

memristor properties. SIS allows dimensional reduction of the size of the feature space, 

while SO is used to pinpoint the optimal n-dimensional descriptor145,146. To obtain a more 

predictable machine learning model, we excluded very few discrete data points with 

Ion Ioff⁄ > 10. A total of 1835 sets of phase-field simulations with different combinations 

of (𝑉𝑖𝑗, 𝜎, 𝑘𝑡ℎ) are performed to obtain the training dataset.  

 

4.3. Results and discussion 

4.3.1. Resistive switching behavior 

The simulation results of resistive switching dynamics in HfO2 metal oxide with a 

pre-existing CF is shown in Fig. 4.2. A hysteresis-like current-voltage behavior is clearly 

seen, indicating the bipolar resistive switching characteristics, as illustrated in Fig. 4.2a. 

The resistance starts to increase when the voltage increases to 0.4 V which is referred to as 

reset voltage, and the device switches from LRS to HRS. The resistance would be 

recovered as the application of negative voltage, which is known as set transition, and the 

switching of the device occurs at -0.57 V (set voltage) from HRS to LRS. As shown in Fig. 

4.2b, the measured I-V curve also shows an abrupt transition at -0.55 V and a gradual 

change of resistance occurring from 0.4V. The simulation results agree well with 

experimental measurements7 and theoretical calculations78 of HfO2 based memristor 

device7, indicating that the current phase-field model is able to capture the resistive 

switching behavior in metal oxide-based RRAM.  
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Fig. 4.2. Phase-field simulation of resistive switching dynamics in HfO2 metal oxide. a. Current-voltage (I-

V) hysteresis behavior. The inset in a show the applied triangular voltage sweep with rate dV dt⁄ =0.1 V/s. b. 

The measured current-voltage for the  bipolar RRAM device with TiN-HfOx-TiN structure7. c. The simulated 

2D spatial profiles of 𝑁𝑉𝑂
∙∙ , 𝑇 and 𝜑 at different applied voltages on top electrode: (c1-c3) Vapp = 0.3 V initial 

state; (c4-c6) Vapp = 1.1 V reset state; and (c7-c9) Vapp = -0.57 V set state, corresponding to state A, B, C in 

(a) respectively. The scale bar in c7 applies to c1-c9. 

 

To further understand the physical nature of the resistive switching between HRS 

and LRS under reset and set processes, the evolutions of the oxygen vacancies 𝑁𝑉𝑂
∙∙ , 

temperature 𝑇 and electric potential 𝜑 have been mapped, as shown in Fig. 4.2c. During 

the reset process, 𝑉𝑂
∙∙ migrates to the BE and forms a local 𝑉𝑂

∙∙ deficiency gap along the CF 

(Fig. 4.2c4), therefore, the resistance increases with the increasing applied voltage. 

Meanwhile, the local electric field is enhanced due to the low conductivity of the gap region 

(Fig. 4.2c6) and the temperature is increased due to the Joule heating effect (Fig. 4.2c5). 

During the set process, the gap formed by the reset process is filled via the 𝑉𝑂
∙∙ migration 

towards TE under negatively applied voltage, accompanied by the decrease of local 

temperature along the CF. The reconnection of the CF allows for a reduction of the overall 

resistance of the device. It is also seen that an additional 𝑉𝑂
∙∙  depletion region is formed 
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near the BE during the set process, as depicted in Fig. 4.2c7. This is because the BE is 

unable to provide sufficient 𝑉𝑂
∙∙  continuously. In this case, a relatively higher overall 

resistance after the set process is induced compared with the initial value. 

4.3.2. Mechanical strain effect in RRAM 

 In metal oxide-based RRAM, the oxygen vacancy concentration in the CF region 

can reach up to ~1027 m-3. This creates a lattice shrinkage strain of up to 1%, which could 

influence the vacancy transport and the resistance switching dynamics. Here, we study the 

effect of 𝑉𝑂
∙∙  induced local strain on resistive switching behavior. The local strain 휀𝑖𝑗

0  

induced by the change of 𝑉𝑂
∙∙ density can be calculated by 휀𝑖𝑗

0 = 𝑉𝑖𝑗∆𝑁𝑉𝑂
∙∙𝛿𝑖𝑗, where 𝑉𝑖𝑗 is 

the Vegard strain coefficient or chemical expansion coefficient, 𝛿𝑖𝑗  is the Kronecker 

operator, ∆𝑁𝑉𝑂
∙∙ = (𝑁𝑉𝑂

∙∙ − 𝑁𝑉𝑂𝑖
∙∙  ) is the variation of oxygen vacancy density. The constant 

value 𝑁𝑉𝑂𝑖
∙∙  is the 𝑉𝑂

∙∙ density in the reference stress-free state. In this simulation work, the 

initial electroforming state is chosen as the reference stress-free state. This mechanical 

strain causes an additional elastic driving force for the 𝑉𝑂
∙∙ migration based on Eq. 4-8. We 

assume 𝑉𝑖𝑗  to be -0.064 based on our density functional theory (DFT) calculations, 

benchmarked to more accurate many-body theory-based methods142, indicating that the 

oxygen vacancy will create a lattice shrinkage in HfO2. 

 The calculated strain distribution at the end of the reset process under 1.1 V applied 

voltage is shown in Fig. 4.3a. Under the reset process, the 𝑉𝑂
∙∙ migrates towards the BE 

causing a local tensile strain up to 0.5% in the 𝑉𝑂
∙∙-rich region near BE (blue region), and a 

local compressive strain in the gap region where 𝑉𝑂
∙∙ deplete (red region). Meanwhile, a 

tensile strain is also seen aside from the CF due to the lateral diffusion of oxygen vacancies. 
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This inhomogeneous strain creates strain gradients (𝑑휀𝑖𝑗
0 /𝑑𝑧  and  𝑑휀𝑖𝑗

0 /𝑑𝑥 ) along both 

vertical and lateral directions, which act as an additional driving force for oxygen vacancy 

transport. We compare the elastic (𝜇elastic), electrical (𝜇electric), and chemical potentials 

(𝜇chem) for the initial electroforming state, the intermediate state, and the final reset state 

as shown in Fig. 4.3b. It should be noted that the 𝜇elastic is homogeneous in the initial state 

and becomes higher/lower near the BE/TE during the reset process (Fig. 4.3 b1, b4, b6). 

We can also find that the electrical potential 𝜇electric is reduced near BE and enhanced in 

TE (Fig. 4.3b3, b6, b9). That means the elastic effect counterbalances the electrical effect, 

during the reset process. Meanwhile, the 𝜇elastic map (Fig.4.3 b4, b6) also induces an 

additional lateral elastic potentials gradient which promotes the lateral diffusion of oxygen 

vacancies. To clearly understand the interactions among chemical, electrical, and elastic 

potential, we plot the 1D profiles of each of the energy potentials along the z direction 

across the center of the CF at the end of the reset process, as shown in Fig. 4.3c. At z = 17 

nm (gap region), the chemical, electrical and elastic potentials all exhibit significant 

positive gradients, among which the electrical potential shows the largest drop (~ 105 J 

mol-1), acting as the major driving force for the ion migration from TE to BE which makes 

a gap nearby the TE. On the other hand, at z = 5~15 nm, the electric potential gradually 

increases, while the chemical and elastic potentials decrease. The negative elastic potential 

gradient offsets the positive electrical potential gradient in this region indicating the 

𝑉𝑂
∙∙ induced elastic potential partially inhibits the 𝑉𝑂

∙∙ drift to BE driven by the electrical field. 
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Fig. 4.3 Calculated 𝑉𝑂
∙∙ -induced mechanical strain. a. 2D map of the oxygen vacancy induced elastic strain in 

reset state, b.2D spatial profiles of μ
elastic

, μ
chem

 and μ
electric 

 with a constant applied voltages 1.1 V on top 

electrode at different states during reset process from 10 ps to 10 us: (b1-b3) 10-11 s initial state, (b4-b6) 10-8 

s intermediate state, and (b6-b9) 10-5 s reset state. The scale bar in (b6) applies to (b1-b9), c. 1D profiles of 

the elastic, electrical and chemical potential along the center of CF (x = 0, z = 0~20 nm).  

 

 The mechanical effect on the CF properties and the performance of the HfO2 switch 

cell are also investigated. The elastic potential inhibits the vertical 𝑉𝑂
∙∙  migration in the CF 

and promotes the lateral migration of 𝑉𝑂
∙∙  into the insulating region. This results in a 

relaxation of  𝑉𝑂
∙∙  segregation inside the CF near the BE (Fig. 4.4a), as compared to the 

case when 𝜇elastic is not taken into consideration (Fig. 4.4b). The details can be illustrated 

by the comparison of 1D profiles of 𝑁𝑉𝑂
∙∙  with and without considering 𝜇elastic, along both 

vertical and horizontal directions (Fig. 4.4c). The effect of mechanical strain on the 

temporal evolution of the overall resistance of the entire simulation system under a constant 

voltage pulse of 1.1 V with pulse width from 10 ps to 10 us during the reset process is 

shown in Fig. 4.4d. The initial resistance/current is Ron ~ 0.335 kΩ (or Ion ~ 3 mA) and 

increases with time. The final resistance in the current off state considering the mechanical 

effect is calculated to be Roff = 0.969 kΩ, which is nearly 12% lower than that without 
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considering the mechanical effect (1.1 kΩ). This causes a decrease of the current on/off 

ratio (Ion Ioff⁄ ) from 3.28 to 2.89, and a slight increase in the resistive switching time (tswitch) 

from 18 to 23 ns (here tswitch is defined when the cell resistance increases by more than 50% 

from its initial value). This is because the elastic potential inhibits the 𝑉𝑂
∙∙ transport and 

local segregation, resulting in a long time for the CF fracture and a reduction in the Roff 

value.  

 

Fig. 4.4 Effect of  𝑉𝑂
∙∙-induced mechanical strain on resistive switching behavior. a, b. 2D maps of oxygen 

vacancy density 𝑁𝑉𝑂
∙∙  without and with coupling the mechanical effect during reset process, c. comparison of 

1D profiles of 𝑁𝑉𝑂
∙∙  along the center of the CF (x = 0, z =0~20 nm) and the cylindrical direction (z = 10 nm, x 

= 0~35 nm) with and without coupling the mechanical effect, d. the evolution of total resistance under a 

constant applied voltage of 1.1 V during reset process. The switching time (tswitch ) is defined by a 50% 

increase with respect to the initial resistance value. The scale bar in a applies to b. 

 

4.3.3. Effect of metal oxide properties on the performance of memristor  

 From previous studies, the performances of switch cell (Ion Ioff⁄  and tswitch) are 

heavily dependent on 𝑉𝑂
∙∙ transport driven by the combined chemical, electrical, thermal, 
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and elastic effects. These effects scale with their relevant kinetic coefficients, such as the 

𝜎 and 𝑘𝑡ℎ of the insulating metal oxides and their corresponding metallic states (of high 

oxygen deficiency), and the Vegard strain coefficients 𝑉𝑖𝑗. While 𝑉𝑖𝑗 is assumed to be a 

constant, 𝜎  and 𝑘𝑡ℎ  are spatially dependent on the local  𝑉𝑂
∙∙ density. This significantly 

increases the complexity of the vacancy transport dynamics and the resistive switching 

behavior. To untangle all these couplings and understand their independent roles in 

resistive switching, we performed systematic phase-field simulations by tuning one of the 

aforementioned three material constants while fixing the other two.  

Fig. 4.5 shows the temporal evolutions of the overall resistance and the dependence 

of Ion Ioff⁄  on 𝑉𝑖𝑗. The initial resistance (ON state) remains constant for all 𝑉𝑖𝑗’s, while the 

final resistance (off state) decreases with increasing 𝑉𝑖𝑗, as shown in Fig. 4.5a, resulting in 

a decreasing Ion Ioff⁄  with increasing 𝑉𝑖𝑗 (Fig. 4.5b). This agrees with the previous study 

that the additional mechanical driving force tends to reduce the current on/off ratio.  

 

Fig. 4.5 Effects of material parameter_Vergard strain coefficient on the device performance. A Temporal 

evolution of overall resistance with different Vegard strain coefficient 𝑉𝑖𝑗, b dependence of current on/off 

ratio Ion Ioff⁄  on 𝑉𝑖𝑗. 
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 The effect of electrical conductivity σ (by its slope K1) on the overall resistance is 

shown in Fig. 4.6. The initial resistance decreases with increasing K1, while the final 

resistance experiences a decrease-increase-decrease behavior. This results in a peak value 

of  Ion Ioff⁄  ~ 15 at K1 = 7.5 shown in Fig. 4.6a and b. The 𝑁𝑉𝑂
∙∙ , T and φ distributions under 

three typical electrical conductivities corresponding to K1 = 0.5, 7.5 and 15 are plotted in 

Fig. 4.6c. It can be observed that no evident 𝑉𝑂
∙∙ depletion gap is formed inside the CF (Fig. 

4.6c1), and no resistive switching occurs and Ion Ioff⁄   remains low value, under low 

electrical conductivity (K1 = 0.5). That is because, when electrical conductivity is small, it 

cannot generate much heat (Fig. 4.6c2) causing the low mobility of 𝑉𝑂
∙∙ transport based on 

Eq. 4-11, so that the 𝑉𝑂
∙∙ are not able to migrate to BE. That means a higher voltage needs 

to be applied to reset the device. As 𝜎 increases (K1 = 7.5), the more generated heat by 

Joule heating effect is found in Fig. 4.6c5. The enhanced temperature promotes the 

mobility of 𝑉𝑂
∙∙, and a wide gap is formed inside the CF by the  𝑉𝑂

∙∙ migration (Fig. 4.6c4), 

causing a significant increase in the resistance of the final reset state as well as Ion Ioff⁄  

increase (Fig. 4.6b). However, when K1 = 15, much heat generation (Fig. 4.6c8) gives rise 

to a significant  𝑉𝑂
∙∙ transport in the lateral direction to the entire system and reduces the 

local  𝑉𝑂
∙∙ segregation/depletion inside the CF, as shown in Fig. 4.6c7. Thus, the CF gap 

disappears and Ion Ioff⁄   reduces with increasing electrical conductivity.   
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Fig. 4.6 Effects of material parameter_electrical conductivity on the device performance. a Temporal 

evolution of overall resistance with different electrical conductivity (by K
1
), b Dependence of current on/off 

ratio Ion Ioff⁄  on K
1
, c 2D maps of 𝑁𝑉𝑂

∙∙ , 𝑇 and 𝜑: c1-c3 K
1
 = 0.5, c4-c6 K

1
 = 7.5, c7-c9 K

1
 = 15. The scale bar 

in c7 applies to c1-c9. The results are calculated by increasing the electric conductivity (by K
1
) of metal 

oxides with zero Vegard strain (𝑉𝑖𝑗 = 0) and fixed thermal conductivity (K
2
 = 1.5).  

 

 Finally, the effect of thermal conductivity 𝑘𝑡ℎ (by its slope K2) on the switching 

behavior is shown in Fig. 4.7. It is seen that the initial resistance of RRAM remains the 

same, while the final resistance in the reset state decreases with increasing 𝑘𝑡ℎ, resulting in 

a monotonous decrease of Ion Ioff⁄ . Lower 𝑘𝑡ℎ favors the formation of larger  𝑉𝑂
∙∙ depletion 

gap (Fig. 4.7c1, c4, c7), giving rise to a higher Ion Ioff⁄   (Fig. 4.7b). That is due to low 𝑘𝑡ℎ 

prefer to generate much heat that accelerates the  𝑉𝑂
∙∙ migration along the electrical field 

direction. Higher 𝑘𝑡ℎ partially inhibits the vertical transport of the 𝑉𝑂
∙∙ . When 𝑘𝑡ℎ  reaches 

a very high value, the heat generated by Joule heating can easily dissipate through the CF 

(Fig. 4.7c8).  The reduction of the thermal mobility of  𝑉𝑂
∙∙ increases the difficulty of the 
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gap formation along the CF, resulting in the decrease of Ion Ioff⁄ . When K2 > 0.8, Ion Ioff⁄  is 

around 1.0 indicating that resistive switching no longer occurs. 

 

 

Fig. 4.7 Effects of material parameter_thermal conductivity on the device performance. a Temporal evolution 

of overall resistance with different thermal conductivity (by K
2
), b Dependence of current on/off ratio Ion Ioff⁄  

on K
2
, c 2D maps of 𝑁𝑉𝑂

∙∙ , 𝑇 and 𝜑: c1-c3 K
2
 = 1.5, c4-c6 K

2
 = 4, c7-c9 K

2
 = 9. The scale bar in c7 applies to 

c1-c9. The results are calculated by increasing the thermal conductivity (by K
2
) of metal oxides with zero 

Vegard strain (𝑉𝑖𝑗 = 0) and fixed electrical conductivity (K
1
 = 3).  

 

4.3.4. High-throughput phase-field simulations and machine learning (ML) 

 We performed high-throughput phase-field simulations by parameterizing 𝑉𝑖𝑗, K1, 

and K2 to calculate the corresponding Ion Ioff⁄  and tswitch, and establish a “material constant-

resistive switching property” database in metal oxides-based RRAM. The ranges of 𝑉𝑖𝑗, 𝜎 

and 𝑘𝑡ℎ are chosen to be 0 ~ 0.24 (in absolute value |𝑉𝑖𝑗|), 0.06 ~ 18 (103 S cm-1), and 6.5 

~ 120.5 (W m-1K-1), respectively, which include most of the metal oxides used in RRAM. 
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The calculated database is shown in Fig. 4.8a and b. It is clearly seen that most  Ion Ioff⁄  

ratios are in the range of 1~10, with a few exceptions reaching up to 20. To clearly identify 

the trend from the 3D database, we plotted the 2D mapped  Ion Ioff⁄  and tswitch as a function 

of two out of the three materials parameters with a fixed remaining parameter (Fig. 4.8c-

f). These results indicate that the electrical and thermal conductivities play dominant roles 

over the Vegard strain coefficient during resistive switching in metal oxide materials (Fig. 

4.8c-e). It is clearly seen that higher 𝜎  and lower 𝑘𝑡ℎ  give rise to higher  Ion Ioff⁄  and 

smaller tswitch (or faster switching), as marked by the black circle shown in Fig. 4.8e and h. 

Several data points marked with colored solid symbols in Fig. 4.8e represent the metal 

oxides of VO2, Ta2O5, SnO2, NiO, and HfO2, respectively, which are commonly used as 

switching layer in metal oxide-based RRAM8,10. It shows that the performance of metal 

oxide-based RRAM employed with these materials is not optimal. To further improve the 

performance of metal oxide-based RRAM, increasing the electrical conductivity and 

decreasing thermal conductivity, as well as avoiding large Vegard strain is necessary.   
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Fig. 4.8 High-throughput phase-field simulations. a. The current on/off ratios (Ion Ioff⁄ ) and b the resistive 

switching time (tswitch) for metal oxides-based RRAM by parameterizing the three characteristic materials 

constants, i.e., the Vegard strain coefficient (𝑉𝑖𝑗), electrical conductivity (𝜎) and thermal conductivity (𝑘𝑡ℎ). 

2D mapped c-e Ion Ioff⁄  and f-h tswitch as a function of two out of the three materials parameters (𝑉𝑖𝑗, 𝜎, 𝑘𝑡ℎ) 

at a fixed remaining parameter. 

 

 Based on the database from high-throughput simulations, a recently developed 

compressed-sensing based machine learning (ML) approach66 is employed to further 

elucidate the correlation between (𝑉𝑖𝑗, 𝜎, 𝑘𝑡ℎ) and (Ion Ioff⁄ , tswitch). First, linear correlations 

among  𝑉𝑖𝑗, 𝜎, 𝑘𝑡ℎ , Ion Ioff⁄ , tswitch  were investigated using the Pearson correlation 

coefficient, as shown in Fig. 4.9a. Clearly, σ positively correlates with  Ion Ioff⁄  , but 

negatively correlates with tswitch, indicating that  Ion Ioff⁄  (tswitch) increases (decreases) with 

increasing σ. Meanwhile, 𝑘𝑡ℎ  exhibits negative (positive) correlations  Ion Ioff⁄  ( tswitch ). 
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These results agree with our previous calculations. Finally,  𝑉𝑖𝑗 shows a slight negative 

correlation with  Ion Ioff⁄ , and almost no correlation with tswitch, indicating that 𝑉𝑖𝑗  bearly 

influences tswitch. We choose the Vegard strain coefficient 𝑉𝑖𝑗 , electrical conductivity 𝜎 

(103 S cm-1), and thermal conductivity 𝑘𝑡ℎ (W m-1K-1) of metal oxides as the fingerprints 

to build an interpretable machine learning model. We use the Sure Independence Screening 

and Sparsity Operator (SISSO) approach144, to predict Ion Ioff⁄  as well as tswitch . The 

training error root-mean-squared-error (RMSE) is used as the criterion to select the suitable 

nD-descriptors. After performing machine learning on the training datasets, 2D-descriptor 

based predictive expressions of  Ion Ioff⁄  with RMSE=0.453 and tswitch with RMSE=0.385 

were found to be optimal (i.e., with relatively low RMSE and high interpretability), as 

shown in Eq. 4-15 and 4-16.  

 log(𝑡switch) = −8.777 +
𝑘𝑡ℎ

𝜎
[0.197 exp(𝑉𝑖𝑗) − 0.00354 (

𝑘𝑡ℎ

𝜎
)] (4-15) 

 
𝐼𝑜𝑛

𝐼𝑜𝑓𝑓
= −0.597 − 7.676 (

𝜎

𝑘𝑡ℎ
) + 12.637 (√

𝜎

𝑘𝑡ℎ
) (4-16) 

Fig. 4.9b and c show the comparisons of tswitch and Ion Ioff⁄  calculated from the phase-field 

simulation and predicted from the machine learning model. It is seen that the training 

datasets are clustered near the orange straight line where the phase-field calculated and 

machine learning predicted properties are equal. In addition, six testing data points of NiO, 

TiO2, SnO2, VO2, HfO2, and Ta2O5 are also plotted in Fig. 4.9b and c (with solid-colored 

symbols). All these six data points are located around the solid orange lines, which further 

validates our machine learning as a predictive model. It should be noted that none of these 

six data points is used as training datasets. 
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Fig. 4.9 Machine learning results. a. The Pearson correlation plot between the different material-

characteristics and the performance metrics. The SISSO model fits to the data using a 2D-descriptor for b 

tswitch and c Ion Ioff⁄ . 

 

 From Eq. 4-15, by choosing 𝑉𝑖𝑗 = 0 ~ 0.24 which covers most metal oxide, 

log (𝑡switch) monotonously increases with increasing 
𝑘𝑡ℎ

𝜎
 (

W m-1K-1

103 S cm-1
) from 0.5 to 25, a range 

where resistive switching occurs. Fig. 4.10 plots Eq. 4-15 and Eq. 4-16 with the function 

of 
𝑘𝑡ℎ

𝜎
. We can see that increasing 𝑉𝑖𝑗 (magnitude only) results in increasing 𝑡switch at given 

𝑘𝑡ℎ

𝜎
. Ion Ioff⁄  gradually decreases with increasing 

𝑘𝑡ℎ

𝜎
 . At very small  

𝑘𝑡ℎ

𝜎
(<2), Ion Ioff⁄   

increases with increasing 
𝑘𝑡ℎ

𝜎
.  
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Fig. 4.10 Plot of machine learning predicted equations as a function of kth/σ for Ion Ioff⁄  and 𝑡switch with 𝑉𝑖𝑗 =

0 and 𝑉𝑖𝑗 = 0.24. 

  

 From the predicted machine learning expressions, it is clearly seen that the 

properties of the memristor can be enhanced by decreasing 
𝑘𝑡ℎ

𝜎
 . According to 

the  Wiedemann–Franz law, for nearly-free electron metals (and oxide metals), the ratio of 

the electronic contribution of the thermal conductivity (𝑘th)  to the electrical conductivity 

(𝜎) of a pure metal is proportional to the temperature (T), i.e., 
𝑘th

𝜎
~𝐿𝑇, where L is the 

Lorenz number. Theoretically, 
𝑘th

𝜎
 has approximately the same value for different pure 

metals at the same temperature. But for binary transition-metal oxides, the strong electron-

electron correlations have been shown to drastically lower the Lorenz number (L) by 

several orders of magnitude147,148, due to an anomalously low electronic thermal 

conductivity. Therefore, Lorenz number would be at lower values for metal oxides with 

stronger electron-electron correlations at given temperatures. In short, a key design 

principle for future materials discovery and design to achieve optimally performing 

https://en.wikipedia.org/wiki/Thermal_conductivity
https://en.wikipedia.org/wiki/Electrical_conductivity
https://en.wikipedia.org/wiki/Metal
https://en.wikipedia.org/wiki/Temperature
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memristor materials would be to select oxides with a relatively low Lorenz number at the 

same temperature, such as those with strong electron-electron correlations. 

 

4.4. Summary 

 In summary, a comprehensive computational model based on fundamental 

thermodynamics and kinetics, including the ion and thermal transport, electrical 

conduction, and mechanical strain effect is developed to investigate the resistance 

switching process in metal oxide-based RRAM. It can successfully capture the resistive 

switching process. The local oxygen vacancy distribution induces a lattice expansion strain 

and a strain gradient, which act as an additional driving force that inhibits the 𝑉𝑂
∙∙ migration 

in the conductive filament and reduces the current on/off ratios. High-throughput phase-

field simulations are performed to construct a “materials fingerprints - targeted 

performance” database, and machine learning approaches are employed to establish 

interpretable analytical predictive expressions for Ion Ioff⁄  and tswitch  of memristor in 

different metal oxides. The machine learning model is further verified by additional phase-

field calculations of real metal oxides. This high-throughput/machine-learning approach 

reveals that metal oxides with relatively small 
𝑘𝑡ℎ

𝜎
 ratios, found in bad-metals with a low 

Lorenz number, yield high memristor performance, thereby establishing a key materials-

design principle for designing new memristor materials by relating device performance 

metrics to fundamental material constants. This work thus establishes a strategy to select 

the metal oxides to optimize the performance and provide guidance to experimentalists in 

designing high performance metal oxide-based RRAM devices. 
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Chapter 5. Effect of embedded metallic nano-islands on 

the Resistive switching behavior in embedded metal 

oxide RRAMs. 

5.1. Introduction 

 Switching uniformity is extremely important to the application of a large-scale 

RRAM array since a control unit will need to be programmed in advance to make sure that 

the input voltage and the probe current corresponding to a specific resistance state are 

uniform during multiple cycles or devices. However, due to the random growth and rupture 

of CFs, there are great variations between cycle-to-cycle and device-to-device in Forming, 

Reset and Set voltages, resistance states, and current ON/OFF ratio. In most metal oxide 

RRAMs, the stochasticity CF mainly stems from two major reasons: (a) the roughness of 

electrode/oxide interface 149-152, and (b) the variable chemical properties of the complicated 

microstructure of metal oxide layer 153,154. Extensive experimental studies have been made 

to understand the stochasticity in RRAMs. For example, Nandi et al. 149 investigated the 

effect of roughness of electrodes on the electroforming in the HfO2 memristor. They found 

that the roughness increases the variability of CF position and composition. On the other 

hand, disorder structures such as grain boundaries and defect clusters show various 

properties which strongly affect the electroforming process 154,155. Consequently, the 

randomness of the formation and dissolution of the CFs eventually induces large temporal 

variations from cycle to cycle and spatial variation from device cell to cell in the set/reset 

operation voltage and resistance of HRS (Roff) and LRS (Ron) 
156,157. The uncertainty, 
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instability, and non-uniformity of CFs based RRAMs have become the most critical 

challenge that inhibits the applications of RRAM in large scale memory storage and 

neuromorphic computing 158,159. Therefore, to improve the uniformity and stability of the 

RRAM devices, effectively controlling the CF formation and rupture is of key importance.  

 To address the variability of the RRAM devices, many methods have been proposed, 

and especially the strategies of filament control including the electrode modifications 34,160-

163 and the switching layer optimizations 162-168 have achieved favorable results. For 

example, through simple electrode engineering, device-to-device uniformity can be 

effectively enhanced. It has been reported that fabricating an electrode with pyramid tips 

rather than a flattened electrode with random roughness could lower the operation voltages 

and improve the uniformity of RRAM devices169-171. On the other hand, optimization of 

the switching layer by doping nanoparticles to obtain stable high CFs is also a feasible 

method to effectively improve the performance of RRAM devices 167,168. For example, Lee 

et al. 172 reported that the current ON/OFF ratio and uniformity were enhanced by 

dispersing Pt nanoparticles into a TiO2 thin film memristor. Although the electrode 

engineering and doping nanoparticles can improve the performance of the RRAM devices 

to a certain extent, the variable size and random distribution of nanoparticles inside the 

switching layer inhibit further improvement in the uniformity of RRAM devices. Recently, 

some researchers have proposed that embedding highly ordered metal nano-islands (NIs) 

within the metal oxide switching layer could be an effective way to overcome the limitation 

of the random nanoparticle doping method. Wang et al. 173 employed a template-assisted 

fabrication approach to embedding the ordered metal NIs into the metal oxide thin film, in 

which the size, interspacing, and thickness of the NIs can be well controlled. The reduction 
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in operation voltages and the enhancement of the uniformity of resistance values at HRS 

and LRS are significant compared to the pristine oxide layer. Though the RRAM device 

embedded with ordered metal NIs has been shown to significantly improve the 

performance of the device, the underlying mechanism has not been fully understood.  

 In this Chapter, we develop a comprehensive physical model to study the 

electroforming and resistive switching behaviors in random and embedded HfO2 based 

memristors. Firstly, we investigate the current-voltage characteristic, CF morphology, and 

current ON/OFF ratio of both random and embedded RRAM devices during electroforming 

and resistive switching processes. Secondly, the contribution of the embedded metal NIs 

to the enhancement of the uniformity of RRAMs is demonstrated. Our model clearly 

reveals that the initial nonuniform oxygen vacancy defect distribution is responsible for the 

stochasticity of CFs formation during the electroforming process, which leads to large 

variations in operation voltages and current ON/OFF ratios. Embedding metal NIs can 

effectively reduce variability and enhance the resistive switching performance of the 

devices. Moreover, the underlying mechanism of the role of the embedded metal NIs has 

been explored. Finally, we further investigate the impact of the height of metal NIs, the 

geometry, and the properties of different metal NIs (i.e., the oxygen affinity) on the 

resistive switching behavior. This model provides a fundamental understanding of how 

embedded NIs can improve the switching performance of the RRAMs which provides 

guidance for future microstructure design to realize more uniform and energy-efficient 

RRAMs. 
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5.2. Model 

 In this section, a simple Pt-HfO2-Pt system is chosen as an example to describe the 

electroforming and subsequent resistive switching process. As mentioned in Chapter 3, a 

negative voltage is applied to perform the initial electroforming process, during which the 

𝑉o
.. are generated from both a Frenkel defect inside the bulk oxide based on the Kröger-

Vink notation (Oo
× → 𝑉o

.. + 2𝑒′ +
1

2
𝑂2(𝑔))

34,108,117 and at metal/oxide interface based on the 

chemical reaction, i.e., Melectrode + HfO2 → MOδ + HfO2−δ + δVO
.. . The bulk and 

interface generation rates of 𝑉o
.. are determined by Eq. (3-7) and Eq. (3-8), respectively. In 

this chapter, we ignore the 𝑉o
.. generation at the electrode/oxide interface due to the Pt 

electrode having a very large interface oxygen vacancy formation barrier. Once the CF is 

formed after the electroforming process, the subsequent reset and set processes are 

controlled by the 𝑉o
..  transport in the oxide layer driven by the local electric field and 

temperature 174. Thus, the electroforming and resistive switching process controlled by the 

oxygen vacancy generation and migration can be described by the Nernst-Planck equation. 

 
𝜕𝑁𝑉𝑂

∙∙

𝜕𝑡
= −∇ ∙ 𝐽𝑉𝑂

∙∙ = ∇ ∙ (𝐷∇𝑁𝑉𝑂
∙∙ +

𝑒𝐷

𝑘𝐵𝑇
𝑁𝑉𝑂

∙∙∇𝜑 + 𝐺)  (5-1) 

The current continuity equation for electrical conduction (Eq. 5-2) and the thermal 

transport equation for Joule heating (Eq. 5-3) are coupled with Eq. 5-1 to calculate the local 

potential and temperature distribution. 

 ∇ ∙ 𝜎∇𝜑 = 0 (5-2) 

 −∇ ∙ 𝑘𝑡ℎ∇𝑇 = 𝜎|∇𝜑|2 (5-3) 
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We use same the assumption for the electric conductivity 𝜎 and thermal conductivity 𝑘𝑡ℎ 

for the metal oxide layer, the details can be found in section 3.2. 

 Eq. 5-1 to 5-3 are self-consistently solved to obtain the oxygen vacancies 

density 𝑁𝑉𝑂
∙∙ , the electrical potential 𝜑 and the temperature 𝑇 using finite element method 

based on the platform of COMSOL Multi-physics. Fig. 5.1 illustrates the simulation 

geometry. A 10-nm-thick HfO2 film is sandwiched between two 25-nm-thick Pt electrodes. 

The total simulation size is 60×60 nm2 and the extremely fine physically controlled mesh 

size is chosen for simulation. The external electric voltage (Vapp) with a sweep rate (dV/dt) 

of 1 V s−1 is applied to the top electrode, while the bottom electrode is grounded. The 

temperature at the outmost surfaces of two electrodes is defined with the boundary 

conditions T = 300 K. Zero migration flux 𝐽𝑉o
.. are assumed at the oxide/electrode interfaces 

and generation flux G.  

 

Fig. 5.1 Model geometry. 
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5.3. Results and discussion 

5.3.1. The resistive switching behaviors for random and embedded RRAMs 

 To investigate the role of embedded metal NIs on the switching performance of the 

RRAMs, we model the CF growth and rupture dynamics during electroforming and 

resistive switching in both pristine random device and embedded metal NIs device. For the 

random structure, we simply assume that a small number of oxygen vacancy clusters are 

randomly dispersed in the HfO2 layer, as shown in Fig. 5.2a. The oxygen vacancy density 

of the pre-existing 𝑉o
.. in defect cluster region (red dots) is assumed to be 1.2×10

27 m-3, 

whereas the stoichiometric HfO2 region (grey matrix) has a lower oxygen vacancy density 

of 1.0×10
15 m-3. While for the embedded structure, highly ordered Pt NIs (d = 6 nm, h = 3 

nm) is embedded in the middle of the oxide layer with the same initial 𝑉o
.. distribution, as 

shown in Fig. 5.2b. Then, a negative electric voltage is applied on the TE to perform the 

electroforming operation and stopped when the current (Istop) reaches 200 μA. After that, a 

triangular positive voltage sweep is applied to realize the resistive switching process.  

 

Fig. 5.2 The initial structure of the switching layer (a) random structure and (b) embedded structure. 

 

 Fig. 5.3 shows the current-voltage characteristics of HfO2 thin film with random 

oxygen vacancies (black curve) and embedded with ordered metal NI arrays (red curve) 

during the electroforming, reset and set cycle. During the electroforming process, the total 
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currents of both random and embedded structures gradually increase until the applied 

voltage reaches the forming voltage (Vf), followed by a sudden increase of current for more 

than one order of magnitude, indicating the completion of the electroforming process. After 

that, the devices are switched from LRS to HRS under the application of a positive bias on 

TE (the reset process) and switched back to LRS under negative bias (the set process). By 

comparing the I-V curves of random and embedded structures, it is noted that the highly 

ordered embedded metal NIs effectively reduce the Vf from 1.82 V to 1.53 V and Vset from 

1.22 V to 0.90 V, and slightly lower the Vreset from 0.81 V to 0.67 V.  

 

Fig. 5.3 Current-voltage curves for random and embedded devices 

 

 To investigate the different electroforming and resistive switching behaviors 

between random and embedded devices, we study the distributions of oxygen vacancy 

density 𝑁𝑉o
.., electrical field E, and temperature T for both random and embedded devices 

at the forming state, corresponding to points A and B as marked in Fig. 5.3. It is found that 
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a main CF is formed at the position where the initial oxygen vacancies are vertically 

concentrated (snapshot 1 in Fig. 5.4a), although multiple initial oxygen vacancy clusters 

are distributed in the HfO2 layer. That is because the initial defect cluster has higher 

electrical conductivity than the stoichiometric HfO2 matrix. Therefore, when a negative 

electric voltage is applied on the random device, the electric field distribution is 

inhomogeneous and enhanced above and below the oxygen vacancy clusters (snapshot 2 

in Fig. 5.4a). Especially, the electric field is even larger in the local region with closely 

spaced 𝑉o
.. defects. Based on the Joule heating effect, the electric field enhancement further 

leads to localized heat generation (snapshot 3 in Fig. 5.4a). Therefore, the locally enhanced 

electric field and temperature promote the 𝑉o
.. generation rate, resulting in a large number 

of Frenkel pairs formation here. The CF growth formation and morphology highly depend 

on the initial defect clusters. Compared with random structures, the CFs with uniform 

morphology are only formed and aligned in the vicinity of the embedded Pt NIs. Due to 

the higher electric conductivity of Pt ( 1 × 107  S m-1), the effective dielectric HfO2 

thickness around NIs is further decreased. As a result, the voltage drops over a shorter 

distance, and a higher field concentration at the top and bottom edge of metal NIs are 

generated by embedding Pt NIs inside the oxide layer, as snapshot 2 in Fig. 5.4b shows. 

Thus, the embedded NIs can be served as an electric concentrator. The corresponding 

temperature surrounding the metal NIs is also enhanced (snapshot 3 in Fig. 4b). The 1D 

profiles of the electric field and temperature along z direction across the center of NIs (Line 

2 in snapshot 2 in Fig. 5.4b) and the closely spaced 𝑉o
.. defects cluster (Line 1 in snapshot 

2 in Fig. 5.4b) in embedded device show that the electric field and temperature near the 

metal NIs are even larger than those around the initial 𝑉o
.. defect clusters, which favors the 
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𝑉o
.. generation in these highly ordered regions during electroforming. Eventually, the CFs 

with uniform morphology preferentially grow along the metal NIs instead of along the 

initial 𝑉o
.. clusters. In addition, due to the enhanced electric field by embedding the Pt NIs 

within the oxide layer, the CF can be formed at a lower voltage, leading to a reduced 

temperature (~600K) near the CFs in comparison to the random structure (~1200K) 

(snapshots 3 in Fig. 5.4a and b). Since the high operation voltages and the temperature can 

cause undesirable crosstalk effects in the memristor crossbar, the reduction in the operation 

voltages and temperature benefits the application of memristor based electronic devices 175.  

 

Fig. 5.4 (a, b) The 2D maps of oxygen vacancy density (𝑁𝑉o
..), electric field (E), and temperature (T) at forming 

state for the HfO2 thin film memristors with (a) random structure and (b) embedded structure. 1D profiles 

of (c) E and (d) T across the center of defect cluster (Line 1) and embedded NI (Line 2) marked as the dot 

lines in snapshot 2 in (b) at the forming state for the embedded structure. 
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 A positive triangle voltage is applied on the devices to perform the reset process 

once the CF is formed. The 𝑉o
.. in the CF migrate from the TE to BE and the CF ruptures 

near TE for both random and embedded structures, as shown in Fig. 5.5a and b. The 1D 

electric field and temperature distributions along the center of the CFs at the final reset 

states (Vapp = 1 V) in both random structure (Line 1 in Fig. 5.5a) and embedded structure 

(Line 2 in Fig. 5.5b) are shown in Fig. 5.5c and d. It is seen that the larger local electric 

field enhancement in the embedded device (red curve in Fig. 5.5c) increases the driving 

force for 𝑉o
.. migration towards BE, lowering the reset voltage and increasing the current 

ON/OFF ratio compared with the random case (Fig. 5.3).  After reset switching, the CF is 

partially broken with some residual CF. Therefore, the subsequent set process requires a 

lower voltage than the initial electroforming process. Also, the embedded NI serves as an 

electric concentrator and facilitates the oxygen vacancy generation similar to the 

electroforming process, in which the Vset for embedded structure is smaller than that for 

random structure (Fig. 1c). 

https://www.nature.com/articles/s41524-022-00770-2#Fig4
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Fig. 5.5 (a, b) 2D maps of oxygen vacancy density 𝑁𝑉o
.., electric field (E) and temperature (T) at reset state 

(Vapp = 1 V) in the (a) random structure and (b) embedded structure. (c, d) 1D profiles of (c) E and (d) T at 

reset state across the center of CF in the random structure and embedded structure marked as the dot lines in 

(a) and (b). 

 

5.3.2. The improvement of uniformity of embedded RRAMs 

 The previous simulation results indicate that the initial oxygen vacancy density and 

distribution strongly affect the CF growth, however, the initial defect within the deposited 

HfO2 thin film is unpredictable and uncontrollable due to the limitations of the synthesis 

process. To understand the effects of random 𝑉o
.. clusters, as well as the embedded NIs on 

confining the CF formation, we simulate the forming and switching behavior of devices 

containing different initial 𝑉o
.. defects in the switching layer, by changing the 𝑉o

.. clusters 
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distribution while keeping the total number of 𝑉o
.. constant in the initial HfO2 film. The 

different random structures are shown in snapshot Init 1 to Init 3 in Fig. 5.6a-c. It is seen 

that the CFs are formed in different morphologies and at various positions for different 

initial random structures after the electroforming process. In some cases, a secondary sub-

filament connected to TE and BE electrodes is formed within the HfO2 layer (snapshot rm2 

in Fig. 5.6b). The complexity of the morphologies and locations of the CFs due to the initial 

random microstructure is attributed to the instability and variability in RRAMs for both 

forming, reset, and set processes. In contrast to the stochastic formation of CFs in random 

devices, the CFs generated in the metal NIs embedded devices show much better 

uniformity. As snapshots emb1 to emb3 shown in Fig. 5.6a-c, three separately ordered CFs 

with uniform morphology and location are formed in the vicinity of metal Nis, regardless 

of the initial random structure of 𝑉o
.. clusters. 

 Moreover, the embedded devices also display highly uniform operation voltages 

and current ON/OFF ratios. Fig. 5.6d and e demonstrate the I-V characteristics of random 

and embedded devices, respectively. Fig. 5.6f compares the variations of the voltage and 

current ON/OFF ratio (Ion/Ioff) for the random and embedded structures. It is seen that the 

I-V sweeps from multiple embedded devices are almost identical indicating a small 

fluctuation in the operation voltages and current ON/OFF ratio, whereas random devices 

have a large variation in these performance parameters, especially, the forming/set voltages 

often experience higher variability than the reset voltages, which are usually observed in 

many experimental works 156,166.  
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Fig. 5.6 (a-c) Three different initial states with the same number of 𝑉o
.. and the corresponding 2D maps of 

𝑁𝑉o
∙∙  at forming state. (d, e) Current-voltage curves for (d) the random structures (rm 1 to rm 3) and (e) 

embedded structures (emb 1 to 3). (f) The variations of the voltage and current ON/OFF ratio (Ion/Ioff) for the 

random and embedded structures. 

 

 Table 5-1 summarizes the statistical results of operation voltages and Ion/Ioff ratio 

of random and embedded devices. From this table, two distinct trends are obtained. First, 

the embedded metal NIs can reduce the Vf, Vreset, and Vset by 16%, 17%, and 28% on 

average, and enhance the Ion/Ioff by an average of 30.8%, compared to the random structure. 

Second, the introduction of NIs effectively reduces the variations in operation voltages and 

Ion/Ioff. To quantify these changes, we introduce a coefficient of variation (CV, defined as 

the ratio of the standard deviation (δ) to the mean value (μ)). The embedded devices show 

a significant uniformity in comparison with random structures, in which the CV of Vf, Vreset, 

and Vset are reduced by 97%, 63%, and 80%, respectively. Moreover, the embedded NIs 

significantly reduce the CV of Ion/Ioff from 17.8% for random devices to 3.8%. The 

significantly reduced variation of the current ON/OFF ratio is highly favorable in the 
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application of the artificial neural network 159,175. These findings highlight that the ordered 

metal NIs can achieve a highly controllable CF formation, which reduces the operation 

voltages and enhances the uniformity for both operation voltages and the current ON/OFF 

ratio in RRAMs. 

Table 5-1 The results of Vf, Vreset and Vset and Ion/Ioff comparing the Pt NIs embedded and random device 

 Vf [V] Vreset [V] Vset [V] Ion/Ioff 

rm 1 -1.82474 0.81 -1.218479 2.12 

rm 2 -1.911527 0.760099 -1.331 2.075 

rm 3 -1.754877 0.820106 -1.252 2.82 

Average-random -1.83 0.80 -1.27 2.33 

CV-random 0.042875 0.040325 0.045592 0.178649 

emb 1 -1.539636 0.670087 -0.901 3.5 

emb 2 -1.536138 0.660086 -0.900091 3.24 

emb 3 -1.53816 0.680088 -0.915 3.36 

Average-embedded -1.54 0.67 -0.91 3.37 

CV-embedded 0.001138 0.014925 0.009231 0.038652 

 

5.3.3. Effect of the height of the embedded metal nano-islands 

 Based on the previous results, the NIs can be served as an electric field concentrator 

and play a significant role in the dynamics of CF growth and rupture. In this section, we 

investigate the effect of the height of the metal NIs on the CF growth and the resistive 

switching behaviors. For simplicity, we ignore the initial pre-existing 𝑉o
.. defects within the 

HfO2 layer and introduce only one embedded NI. From Fig. 5.7a and Table 5-2, it is found 

that Vf, Vreset, and Vset all decrease when h increases. That is because the effective thickness 

of HfO2 along the vertical region of the NI decreases with the increasing of h, accordingly, 

resulting in a further enhanced local electric field above and below the NI. Comparing the 

electric field along the center of CF under the same applied voltage (Vapp = -1 V, 
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corresponding to the point A marked in Fig. 5.7a) during the electroforming process, the 

maximum electric field has doubled when h increases from 1 nm to 5 nm (Fig. 5.7b). The 

enhancement of the local electric field accelerates the oxygen vacancies generation rate in 

the vicinity of NI which eventually decreases the forming and set voltages. Fig. 5.7c shows 

the 2D maps of 𝑁𝑉o
..  at forming state with metal NIs of different heights. It is also seen that 

a number of oxygen vacancies (𝑁𝑉o
..  > 1025 m-3) are generated at the oxide/electrode 

interfaces, when h = 1 nm, in addition to the CF of high oxygen vacancy density (𝑁𝑉o
..) in 

the vicinity of the embedded NI. In contrast, when h = 5 nm, a small amount of 𝑉o
.. is 

generated at the electrode/oxide interfaces. This could be explained by the distribution of 

the electric field modulated by the NIs of various heights. By analyzing the electric field 

distribution at the forming state (Fig. 5.7d), it is seen that the electric field has been 

concentrated in the region above and below the NIs. When h decreases, the electric field 

concentration effect has been weakened, while that along the oxide/electrode interfaces 

gradually increases, which promotes the 𝑉o
.. generation in the electrode/oxide interfaces 

region.  

 

Fig. 5.7 (a) Current-voltage curves. (b) The electric field along the center of CF (r = 10 nm, z = 0 ~ 10 nm) 

at Vapp = -1.0 V during the forming process, corresponding to the state A in (b). (c, d) 2D maps of (c) 𝑁𝑉o
.. and 

(d) E at forming state for device embedding metal NIs with increasing height.  
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 Under positive voltage sweep, oxygen vacancies are driving to migrate from TE to 

BE and the CF is broken, thus increasing the device resistance, as shown in Fig. 5.8a. Fig. 

5.8b and c demonstrate the 1D electric and temperature profiles along the center of the CF 

(r = 10 nm, z = 0 ~10 nm) at the reset state, corresponding to point B state marked in Fig. 

5.7a. It is seen that the maximum local electric field near TE and the maximum temperature 

gradually increase when the height of NI increases, which promotes the 𝑉o
.. migration from 

TE to BE. Therefore, embedding NI with increasing height in the HfO2 switching layer 

leads to an effective reduction in reset voltages and a significant increase in the Ion/Ioff ratio, 

as shown in Fig. 5.7a and Table 5-2. 

 

Fig. 5.8 (a) 2D maps of 𝑁Vo
..  at reset state for the structure embedding metal NI with increasing height. (b) 

The E and (c) T along the center of CF (r = 10 nm, z = 0 ~ 10 nm) at reset state (Vapp = 1 V), corresponding 

to the sate B in Fig. 5.7a. 

 

5.3.4. Effect of the geometry of the embedded metal nano-islands 

 The effect of the NI’s geometry on the switching performance is also investigated. 

To focus on the shape effect, we employ three typical geometries (i.e., rectangle, semicircle, 

and triangle) NIs with the same area size and height (Fig. 5.9b). From Fig. 5.9a and Table 

5-2, the forming and set voltages for devices with different geometries are unchanged, 
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while the reset voltage for triangle NIs based devices decreases and the Ion/Ioff ratio 

enhances. Fig. 5.9c shows the 1D profile of oxygen vacancy density distribution along the 

center of CF at the forming state, corresponding to point A in Fig. 5.9a. It is seen that there 

is a local 𝑉o
..  enhancement at the tip of the triangle NI compared with semicircle and 

rectangle NIs although the forming voltages for different geometries are the same. To 

understand this phenomenon, we compared the evolution of the electric field distributions 

along the center of CF for different geometry of NIs during electroforming, as shown in 

Fig. 5.9d-f. It is seen that the electric field above and below the NIs gradually increases 

with time for all devices. However, the electric field enhancement above and below the NI 

are symmetric for rectangle NI, while it is highly asymmetric for triangle NIs with a local 

field concentration on top of the triangle tip (dash circle in Fig. 5.9f). This locally enhanced 

field accelerates the 𝑉o
.. generation and causes a local 𝑉o

.. enhancement at the tip of the 

triangle NI.  
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Fig. 5.9. (a) Current-voltage curves and (b) 2D maps of 𝑁𝑉o
∙∙ at forming state. (c) 1D profiles of  𝑁𝑉o

∙∙ along 

the center of CF at forming state, corresponding the point A in (a). (d-f) The evolution of electric field 

distribution along the center of CF during the forming process for devices embedding metal NIs with different 

geometries. 

 

 The geometry of NI has an influence on the reset behavior of the embedded device. 

Due to the higher 𝑉o
..  density at the tip of the triangle NI exhibits higher electric 

conductivity, and the locally enhanced electric field and temperature above the triangle NI 

tip are higher than those in other NI geometries during the reset operation (Fig. 5.10b and 

c), which promotes the 𝑉o
.. migration from TE to BE. Therefore, the corresponding Vreset is 

decreased and the Ion/Ioff ratio is enhanced by embedding triangle NI (Fig. 5.10 and Table 

5-2). 
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Fig. 5.10 (a) 2D maps of 𝑁Vo
..  at reset state for the structure embedding metal NI with different geometries. 

(b) The E and (c) T along the center of CF (r = 10 nm, z = 0 ~ 10 nm) at reset state (Vapp = 1 V). 

 

5.3.5. Effect of material properties of the embedded nano-islands 

 In the previous simulation, we ignored the 𝑉o
.. exchange at the electrode/oxide and 

oxide/NI interfaces (i.e., Pt/HfO2 interfaces) due to the low oxygen affinity of the inert Pt, 

and we assume that the 𝑉o
.. are generated only from the Frenkel pairs inside the bulk of 

HfO2 oxide. However, many works demonstrate that some active metals can also extract 

the oxygen atom from the oxide switching layer118,173, which provides an additional 𝑉o
..  

generation source. The 𝑉o
.. generation rate at the interface of metal/oxide (𝐺𝑖𝑛𝑡𝑒𝑟 = 𝐺1 ∙

[exp (
−(𝐸𝑏−𝛾𝐸)

𝑘𝐵𝑇
)]) is strongly dependent on the metal properties, i.e., the ability to extract 

oxygen atoms from HfO2 indicated by the interface vacancy formation energy Eb (details 

can be found in section 3.2). To fully understand the role of different metal NIs in the 

electroforming and switching processes, we select the metal Ti, Ta, and Pt as candidates 

for the embedded metal NIs with increasing Eb of 0.6, 2.5, and 8.5 eV, respectively 118, and 

incorporate the 𝑉o
.. generation from both bulk Frenkel pair and replacement reaction at the 

metal oxide/NI interface. Fig. 5.11a shows the current evolution of embedded devices with 
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different metal NIs (Ti, Ta, and Pt). It is clearly seen that embedding active metal with a 

smaller active vacancy formation energy barrier (Eb) result in a much smaller forming 

voltage for CF during the electroforming process. For example, compared with the Pt NI, 

embedding Ti NI within the HfO2 layer decreases the forming voltage from 1.54 to 1.06 V. 

In addition, embedding NIs of different types of metals also affects the CF morphology 

after electroforming. Fig. 5.11b demonstrates the 2D maps of 𝑉o
.. density of embedded 

devices with different metal NIs at forming state. Due to the high affinity with oxygen, the 

Ti NI (Eb = 0.6 eV) could introduce additional oxygen vacancies around the HfO2/Ti_NI 

interface compared to Pt NI (Eb = 8.5 eV). Compared to the interface oxygen vacancy 

generation rate during electroforming, the interface oxygen vacancy generation rate is 

suppressed with the increasing of Eb, as shown in Fig. 5.11c. Especially for inert 

embedding Pt NIs with a large vacancy formation barrier, almost no oxygen vacancies are 

generated near the oxide/Pt_NI interface, and the embedded Pt NI only displays the electric 

field concentration effect. To quantitatively analyze the oxygen vacancy generation with 

different embedded NIs, Fig. 5.11d displays the average 𝑉o
.. density along the center of the 

CF (r = 10, z = 0 ~ 10 nm) at the forming state. It is seen that the average 𝑉o
.. density of Ti 

NI embedded device reaches 2.32 × 1026 m-3, which is almost ten times of that in Pt NI 

embedded device. Our analyses indicate that embedding active metal NIs can not only 

enlarge the width of CF, but also increase the 𝑉o
.. density inside the CF. Therefore, selecting 

metallic NIs of lower oxygen vacancy formation barrier within the host oxide is ideal to 

realize controllable CF growth at a much smaller formation voltage.  
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Fig. 5.11 (a) Current-voltage curves. (b) 2D maps of 𝑁𝑉o
..  at forming state for embedded devices with different 

metal NIs. (c) The interface oxygen vacancy generation rate at different metal NIs/oxide interfaces during 

electroforming process. (d) The average 𝑁𝑉o
..  along the center of CF (r = 10 nm, z = 0 ~ 10 nm) at the forming 

state. 

 

 Due to the high density of 𝑉o
..  in the Ti NI embedded devices, the formed CF 

exhibits a higher electric conductivity. The maximum local electric field and temperature 

for Ti NI embedded device are also larger than the others (Fig. 5.12b and c), which further 

promotes the 𝑉o
.. drift to BE to form a wider 𝑉o

.. depletion gap near TE, and switch the 

device to HRS. Therefore, the corresponding Vreset is further decreased and the Ion/Ioff is 

enhanced by embedding active metal NIs with a smaller interface vacancy formation 

barrier, as shown in Fig. 5.11a and Table 5-2.  

 

Fig. 5.12 (a) 2D maps of 𝑁Vo
..  at reset for the structure embedding different metal NIs. (b) The E and (c) T 

along the center of CF (r = 10 nm, z = 0 ~ 10 nm) at reset state (Vapp = 1 V).  
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Table 5-2 The statistical results of operation voltages and Ion/Ioff ratio of HfO2 films embedding NIs with 

different heights, geometries, and materials. 

 Type Vf [V] Vreset [V] Vset [V] Ion/Ioff 

Height 

h = 1 nm -1.94 0.72 -1.2 1.95 

h = 3 nm -1.54 0.62 -1.01 3.56 

h = 5 nm -1.11 
 

0.48 -0.76 6.33 

Geometry 

Semicircle -1.54 0.62 -1.01 3.56 

Rectangle -1.54 0.74 -0.99 2.64 

Triangle -1.53 0.57 -0.98 4.12 

Materials 

Ti (Eb = 0.6 eV) -1.06 0.51 -0.87 4.2 

Ta (Eb = 2.5 eV) -1.48 0.54 -0.94 3.85 

Pt (Eb = 8.5 eV) -1.54 0.62 -1.01 3.56 

 

5.4. Summary 

 In this section, we develop a physical model to understand the dynamic switching 

process including electroforming, reset, and set cycle in both random and embedded 

RRAM devices. It is found that the stochasticity in the CF growth during the electroforming 

process arises from the unpredictable and uncontrollable initial 𝑉o
.. defect clusters, which 

act as the CF formation seeds. Embedding highly ordered NIs could enhance the electrical 

field above and below the NIs, which promotes the oxygen vacancy generation and 

accumulation in the vicinity of NIs rather than surrounding the initial defect clusters, and 

realizes the controllable CF growth. In addition, the embedded metal NIs reduces the 

operation voltages and enhances the device-to-device uniformity in terms of operation 

voltages and Ion/Ioff ratio. Our results also show that further improvements to decrease the 

operation voltages and increase the Ion/Ioff ratio are achievable by increasing the height of 

NIs. We also demonstrate that the electric field is further enhanced on the top of the triangle 

NI compared with rectangle and semicircle shaped NIs, which influences the switching 
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behavior. Finally, the effect of material properties of the metal NIs (i.e., the energy barrier 

to extract oxygen atoms from the HfO2 matrix, Eb) on the CF morphology and switching 

performance are investigated. The results demonstrate that embedding active metal NIs 

with smaller Eb enables additional 𝑉o
.. generation at the oxide/NI interface and enlarges the 

width of CF of higher 𝑉o
.. density. The reduction in the corresponding operation voltages 

and the increase in Ion/Ioff ratio are also illustrated. This work provides a comprehensive 

understanding of the effect of embedding NIs on the CF formation and rupture during 

switching, and how it can be utilized to optimize the RRAM device variability, which can 

be employed to guide the experimental design of future memristors with high uniformity. 
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Chapter 6.  Conclusions and future works 

6.1. Conclusions 

In conclusion, we developed a phase-field model by integrating the chemical 

reaction, ion and thermal transport, electrical conduction, and micro-elasticity theories to 

study the resistive switching behavior in metal oxide-based RRAMs. Our model can 

quantitatively describe the dynamic processes including electroforming and set/reset cycles 

which agree well with experimental electric measurement. First, we investigate the effects 

of the electrode on the conductive filament growth behavior during the initial one-time 

electroforming process. The competition between the oxygen vacancy generation rate at 

the active anodic interface and the migration rate in the bulk determines the CF morphology 

and growth direction. More active metal anode has a high affinity with oxygen exhibiting 

a smaller interface oxygen vacancy generation barrier (Eb) can provide high 𝑉𝑂
∙∙ generation 

rate at the anodic interface that larger than 𝑉𝑂
∙∙ migration rate inside the bulk, which allows 

CF grows from the anode to the cathode. The low  𝑉𝑂
∙∙  generation rate induced by inert 

anode is much smaller than the 𝑉𝑂
∙∙ migration rate which makes the  𝑉𝑂

∙∙ segregation in the 

cathode region and the CF propagates from the cathode to the anode.  

Then, the effect of three key material properties including Vegard strain induced 

by the 𝑉𝑂
∙∙, electric conductivity and thermal conductivity of the metal oxide on the resistive 

switching behavior are systematically explored. It is revealed that metal oxide with a large 

Vegard strain coefficient inhibits the reset process and reduces the current ON/OFF ratio, 

as well as enhances the switching time. In addition, the metal oxide layer with higher 



105 

 

electric conductivity and lower thermal conductivity can form a homogenous CF during 

the electroforming process and exhibit a high current on/off ratio during resistive switching. 

Moreover, high-throughput phase-field simulations and a machine learning approach are 

employed to systematically explore the interpretable analytical correlations between these 

intrinsic material properties and the performance of metal oxide-based RRAM in terms of 

the current ON/OFF ratio (Ion/Ioff) and resistance switching time (tswitch). This analytical 

model reveals that metal oxides with relatively small 
𝑘𝑡ℎ

𝜎
 ratios yield a higher switching 

performance (larger current ON/OFF ratio and faster switching speed). This work thereby 

establishes a key materials-design principle accelerating the future material discovery of 

RRAM and potentially guides the selection and design of metal oxide layer materials for 

further enhanced switching performance. 

The large variations in the switching performance are contributed to the 

uncontrolled formation and rupture of CFs. By modeling the electroforming, reset, and set 

cycle in both random and embedded RRAM devices. It is illustrated that the unpredictable 

and uncontrollable initial 𝑉o
.. defect clusters act as the CF formation seeds, resulting in a 

large variation in forming, reset, and set operation voltages. Embedding highly ordered NIs 

can not only reduce the operation voltages, and enhance the current ON/OFF ratio, but also 

improve their uniformity compared with random devices. This behavior is attributed to the 

dimension confinement effect, embedding metal NIs can modulate the electric field 

distribution and leads to a more deterministic CF formation around NI’s vicinity, in 

contrast to the random growth of CFs without embedded NIs. In addition, increasing the 

height of NIs, embedding triangle metal NIs, and using active metal NIs with high affinity 

with oxygen could further reduce the operation voltages and enhance the Ion/Ioff ratio. This 
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work provides a fundamental understanding of how embedded metal NIs improve the 

switching behavior in oxide-based memristors and a potential strategy for microstructure 

optimization to realize a more uniform and highly energy-efficient RRAM devices than 

present materials. 

These works presented here can either yield deeper insights into the resistive 

switching mechanism or will lower the barrier in finding the optimal materials and 

microstructure design for future RRAM devices suitable for neuromorphic computing 

hardware. 

6.2. Future works 

 As mentioned, one of the critical challenges that inhibit the applications of metal 

oxides-based RRAM is the randomness in the formation and dissolution of the CFs, which 

results in large variance from cycle to cycle or cell to cell, especially in RRAM based 

neurocomputing crossbar. In our present work, we have only considered the initial point 

defects within the oxide switching layer which have a great influence on the formation and 

rupture of CFs, and embedding NIs can yield highly consistency switching among devices-

to-device. However, the as-fabricated metal oxide switching layer consists of multiple 

defect types, such as grain boundary, dislocation, cracks, etc. Especially, the grain 

boundaries in the metal oxide layer are found as the preferred locations of oxygen vacancy 

formation and provide a path of lowered diffusion barrier for oxygen ions for several 

reports176-179. DFT calculations by K. Mckenna et al., yielded a diffusion barrier for oxygen 

vacancy migration along the 101-twin boundary in monoclinic HfO2, compared with a 

value of 1.49 eV for oxygen vacancy migration through the lattice177. As shown in Fig. 6.1 
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and Table 6-1, our current molecular dynamics simulation results also show that the energy 

barriers for both oxygen formation and diffusion at 001- twin boundary are smaller than 

that in the bulk of HfO2. In addition, grain boundaries will naturally occur in resistive 

switching devices and have been correlated with the non-uniformity of forming voltages 

due to randomized grain boundary networks in polycrystalline dielectric layers. Therefore, 

the effect of grain boundaries on the electroforming and resistive switching performance 

should be investigated. There are three main aspects of grain boundaries that can be studied 

in future works. 

 

Fig. 6.1 a. Atomic structure near the 001-twin boundary in m-HfO2, Hf ions (blue spheres) and O ions (red 

spheres). Migration barriers for oxygen ion diffusion b along the GB and c through the bulk lattice.  
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Table 6-1 The oxygen vacancy formation and diffusion barriers in the bulk and at the GB calculated by MD 

simulation.  

𝑽𝑶
∙∙  formation barrier 

3-fold 𝑉𝑂
∙∙ at C site 2.73 eV 

4-fold 𝑉𝑂
∙∙ at E site 3.26 eV 

𝑉𝑂
∙∙ at GB 1.99 eV 

𝑽𝑶
∙∙  diffusion barrier 

Diffusion along GB 

path A to B 
0.97 eV 

Diffusion through lattice 

path C to D 
1.67 eV 

 

(1) Perform a molecular dynamics simulation to investigate the properties of grain 

boundaries including the vacancy formation barrier, vacancy diffusion barrier, and elastic 

properties. Then, by integrating atomic-scale simulation with phase-field simulation, the 

grain structure and their effect on the growth and rupture of the CFs shall be systematically 

studied.  

(2) Investigate the effect of grain size, density, and orientation on the switching 

performances of metal oxide-based devices.  

(3) Investigate the grain boundaries on the uniformity of RRAMs and study how to employ 

a grain boundary engineering approach to provide a perfect predefined CF growth and 

rupture, such as texture grain boundary.  
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APPENDIX: Material parameters used in the model 

Parameters Value Description 

D0                       
78,180 2×10-7 [m2/s] Pre-exponential factor of diffusivity  

Ea                              79 1 [eV](φ>0) or 2.5 [eV](φ<0) Diffusion barrier for oxygen vacancy 

Ef                           181 2.5 [eV] Bulk vacancy formation energy barrier inside 

HfO2 for Frenkel pair 

γ                    182 100 eÅ Bond polarization factor of HfO2 

Eb (Ti/HfO2)     5 0.6 [eV] Interface vacancy formation energy barrier at 

Ti/HfO2 interface 

Eb (Ta/HfO2)    5 2.5 [eV] Interface vacancy formation energy barrier at 

Ta/HfO2 interface 

Eb (Pt/HfO2)     5 8.5 [eV] Interface vacancy formation energy barrier at 

Pt/HfO2 interface 

σ Pt 1.0×107 [S m-1] Electrical conductivity of Pt 

σ Ta 7.7×106 [S m-1] Electrical conductivity of Ta 

σ Ti 2.5×106 [S m-1] Electrical conductivity of Ti 

kth (Pt) 77 [W m-1 K-1] Thermal conductivity of Pt 

kth (Ta) 57 [W m-1 K-1] Thermal conductivity of Ta 

kth (Ti) 22 [W m-1 K-1] Thermal conductivity of Ti 

G1  7×1025 [cm-3 s-1] Pre-exponential factors for bulk generation rates 

G2 7×1025 [cm-3 s-1] Pre-exponential factors for interface generation 

rates 
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