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ABSTRACT 

 

COMPARING MACHINE LEARNING ALGORITHMS FOR 

ROUTE PREDICTION 

 

Prithvidhar Pudu, B.S Computer Science 

 

The University of Texas at Arlington, 2023 

 

Faculty Mentor:  Christopher McMurrough 

Route prediction is an important tool in understanding the trajectories of vehicles. 

This information can be used to make intelligent decisions in city planning such as 

traffic avoidance and pedestrian safety. Machine Learning can predict these routes by 

learning common patterns from previous vehicle paths. These vehicle paths are plentiful 

due to the abundance of IoT devices and advancements in computer vision. The most 

suitable machine learning algorithm that could accurately predict destinations was 

determined by passing vehicle data to three popular machine learning algorithms: Decision 

Trees, Artificial Neural Networks, and Naïve-Bayes. The training data for these algorithms 

was converted into a suitable format using the Pandas python library. Moreover, the hyper-

parameters for each algorithm were tuned to maximize the accuracy of the prediction. 

Respectively, decision trees were observed to provide the highest accuracy of 99.7% with 

the Naïve-Bayes and ANN showing 99.5% and 98%.
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CHAPTER 1 

INTRODUCTION 

1.1 Application Context 

Social Knowledge is the hub for Recreational Vehicle (RV) users all over the 

United States. Their website, RVlife, provides resources to help RVers purchase and 

maintain an RV. A vacation planner is also available to provide RV-specific pathing. 

However, all these services rely on data provided by a user. To help ease the vacation 

planning process, the company tasked our team to implement a functionality that allows 

their website to predict the next likely rest stop a user would take given their starting 

location. This would create a full vacation plan by showing users suggestions of popular 

rest stops close to their current location. 

1.2 Project Value 

The application consists of a front end that is responsible for receiving the user’s 

position and displaying their vacation path. The suggested rest stops needed to create the 

vacation plan are obtained from the backend portion of the application. This section is 

made up of a Python Django webserver that houses the machine learning model that 

predicts the rest stops. This information is sent to the front end through a RESTful API. 

Moreover, the entire application is present in the Amazon Web Services (AWS) cloud 

platform as the service has more flexibility in terms of scaling and interactivity. This is due 

to the fact that most of the resources provided are virtual, removing the issue of 

compatibility.
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Furthermore, this application can help RVers nationwide plan their vacation in a 

series of clicks and take advantage of RVLife’s other RV-specific tools. 

1.3 Honors Value 

Many cities are becoming smarter every year in terms of the technology embedded 

in every day infrastructure ranging from buildings to household items and vehicles. This 

brings with it large amounts of data that can be processed for valuable information. When 

it comes to vehicle data, information such as position, speed, and driving habits can be 

received. Indeed, this is the basis for the honors contribution. 

Trajectory prediction can provide information regarding a city’s vehicle 

population, such as the path taken by certain vehicles like buses and trucks. In addition, it 

can provide valuable insight into the travel pattern of city denizens by observing taxi routes. 

This is done by making destination predictions based on a vehicle’s position and other 

attributes. Furthermore, it can help improve road infrastructure by understanding vehicle-

pedestrian relationships through vehicle trajectories and help reduce congestion as a result. 

Therefore, to make this prediction, a machine learning model is needed to help identify 

common patterns and classify them accordingly. However, there are several algorithms to 

achieve this result. To identify the most suitable model, I will compare three popular 

Machine Learning (ML) techniques and compare their prediction capability based on their 

accuracy and other ML evaluation metrics.  
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CHAPTER 2 

BACKGROUND 

2.1 Recent Studies 

Trajectory prediction is a common topic of research and with the computational 

ability of the latest technology and the plethora of vehicle data available, it is clear that 

Machine Learning has some applications in this field. This has encouraged many to create 

diverse architectures consisting of several layers of mathematical computations to identify 

common patterns in vehicle traffic. This chapter will go over two such studies and will 

review common ML algorithms that are used in this area of research. 

2.1.1 Classification Learning Neural Network 

Deep Learning is a subset of ML that consists of software architectures made of 

several layers of mathematical computations. Data is passed through these layers to identify 

common patterns within it. This feature extraction property is helpful when determining 

the next position of a vehicle as previous data can be processed to make such a prediction 

feasible. 

Tang et al. (2021) takes advantage of this property using their Classification 

Learning Neural Network (CLNN) model to better understand travel behaviors in cities. 

The data used by this model takes three forms: partial, historical, and external. Partial data 

consists of GPS coordinates with historical data referring to prior vehicle information, like 

location and speed. Next, external data consists of information not related to the vehicle 

directly, like driver characteristics and the day of the week. CLNN uses this information to 
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greatly increase its effectiveness as a deep learning model. This is because when more 

context of the vehicle’s current state is available and is in large quantity, the model will 

have enough data to properly optimize a function to make accurate predictions. Compared 

to other models that use only partial data to determine a vehicle trajectory, CLNN considers 

the surrounding of a vehicle, which provides better insight into its behavior and encourages 

pedestrian-vehicle relationships to be woven into the computations of the model. As a 

result, CLNN better represents a vehicle in an urban setting. Below is an illustration of the 

model’s architecture which displays the computational layers that extract the information 

mentioned previously. 

 

Figure 2.1: CLNN's Architecture
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The model’s architecture consists of layers for each of the three datatypes. Once the 

computation at each layer is applied to the data the results are fused to another series of 

computations. Finally, a destination prediction is provided. CLNN was compared to other 

common algorithms and provided more accurate results comparatively. To summarize, 

CLNN is a deep learning architecture that extracts large amounts of features from 

seemingly unrelated data and makes accurate predictions using them by repeatedly 

optimizing the data mining capabilities of Deep Learning. 

2.1.2 Gaussian Mixture Model 

The previous study required large amounts of data processing to be usable. Jin-jun 

Tang et al.’s (2019) approach, on the other hand, offers a more lightweight method to 

calculate vehicle density in city streets. To accomplish this, a clustering algorithm is first 

used to determine areas of high vehicle congestion. Next, these areas are labeled into 

clusters to differentiate among them. This reduces the effort of prediction as every vehicle 

location need not be identified and only requires it to be part of a group. To classify the 

clusters based on vehicle traffic, a Gaussian Mixture Model (GMM) is used. This algorithm 

is used to determine the parameters of the probability distribution to which a vehicle 

belongs, i.e., it helps to determine which cluster a vehicle resides. This approach does not 

need large amounts of computations and is ideal to determine high areas of traffic by 

repeatedly using data to form probability distribution estimations. In brief, Tang et al. 

(2019) takes advantage of similar data to predict future hotspots using repeated loops of 

prediction until convergence is achieved.
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2.2 Common Algorithms 

The studies above display the assortment of techniques that are possible with 

Machine learning. This section aims to provide a better understanding of the more 

commonly used algorithms. These are also used in this study and should prove some insight 

into their implementation.  

2.2.1 Artificial Neural Networks 

Artificial Neural Networks, or ANNs for short, are networks used to process data 

in a way similar to the human brain. Similar to a human brain, an ANN contains large 

amounts of tiny data units called neurons. Each neuron contains a function that takes 

processes input and returns an output. These artificial neurons are organized in layers. The 

input layer is responsible for receiving external data. Following this, the output of this layer 

is passed to the hidden layer, which consists of a large number of neurons. All these units 

are interconnected and influence each other’s outputs. Finally, the hidden layer passes its 

output to the output layer, which represents a desired quantity or label. Each neuron has a 

weight that is adjusted to produce the desired outcome. Below is a simple network 

illustrating the concept discussed. 

 

Figure 2.2: A Simple Neural Network
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Neural networks have the ability to find non-linear features in almost any dataset. This is 

due to their ability to form complex functions by simply adding more neurons to the 

network. The strength of a neural network is limited to the computational ability of its 

hardware. Due to their highly flexible nature, ANNs are used in several applications from 

medical diagnosis to speech recognition. 

2.2.2 Decision Trees (DT) 

Decision Trees (DT) are a more intuitive form of supervised machine learning. It 

is intuitive because it uses previous data to determine what a new piece of data might be 

classified as. To elaborate, DTs consist of nodes (data attributes) that have tests to help 

classify a data point. They also contain leaves that sort the point into a particular category. 

A root node is the first and highest node in the tree and is split into decision nodes based 

on various metrics. These nodes are further split into more nodes until a leaf is formed. In 

many cases, a split is made based on how much information is provided when splitting an 

attribute. This information is calculated by using either Gini or entropy, two metrics that 

help measure the information an attribute provides. Decision trees take fewer resources to 

create as they are solely based on the data itself and do not need any features to be extracted. 

The inference is also fast as traveling down a tree is quick and efficient. However, if the 

data is not properly pre-processed a tree can grow too large and increase training time 

considerably. See Figure 2.3 for an example of this structure.
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Figure 2.3: A Simple Decision Tree 

2.2.3 Naïve-Bayes Classifiers 

Naïve-Bayes classifiers are a probabilistic machine learning algorithm that creates 

probability distributions to determine what category a data point most likely belongs to. 

This is done using the two theories in its namesake. One of them is the Bayes theorem 

which proposes that evidence can affect the probability of something happening. It is 

mathematically represented in the following formula with “A” and “B” being two events: 

𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)  

Figure 2.4: Bayes’ Theorem 

The second theory is an assumption that all the evidence events that affect the 

outcome of a situation are independent of each other. This eases the calculations as, under 

this assumption, all event probabilities can be multiplied to avoid complex calculations. 

Naïve-Bayes classifiers are easy to build and can be accurate so long as the Naïve 

assumption holds. These classifiers see use in spam detection and recommendation systems 

as independent events are plentiful in those areas. 
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CHAPTER 3 

METHODOLOGY 

This chapter will go over the implementation of the experiment from the data 

formatting to the hyper tuning of the individual models. The first section will cover how 

the environment for the project was set up on an EC2 instance on the AWS cloud platform. 

It will go over the installation of the Jupyter Notebook server along with the Anaconda 

environment. The next section will go over the clustering process used to group the GPS 

coordinates together for easy classification. Finally, the last section will discuss the 

creation of my ANN and the hyperparameter tuning of the other machine learning model.  

3.1 Installation 

Many data science projects require several types of software packages to perform 

different functions in the data science pipeline. Some of these functions include pre-

processing, feature extraction, data mining, and visualization. It becomes a hassle to 

manage the installation of these several packages as one needs to take into account their 

compatibility, availability, and location on the system. This is where Anaconda comes into 

play by offering a package distribution service that can create virtual environments. An 

environment is a folder/directory in one’s system that houses all the required packages. 

Anaconda helps maintain these packages by ensuring that they are of the latest version and 

are compatible with each other
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3.1.1 Anaconda Installation 

To begin the experiment, the Anaconda distribution service first had to be installed 

onto the EC2 instance. This was accomplished by first accessing the instance, through a 

shell session created using the Windows Command Prompt. Once the session was active, 

the Anaconda installation file was downloaded by using the following command in the 

Linux terminal: curl -O https://repo.anaconda.com/archive/Anaconda3-2021.04-Linux-

aarch64.sh. After downloading the file, the service was installed by running the installation 

program. With the service installed, a virtual environment was created using the command: 

“conda create.” Using this environment, the necessary packages can be installed and 

managed in a single folder in the EC2 instance. 

3.1.2 Jupyter Notebook Installation 

One of the packages primarily used in this study is Jupyter Notebook. Jupyter 

Notebooks are applications that enable data scientists to visualize their data mining 

processes. It enables them to execute different data engineering pipelines separately by 

running code in distinct code blocks. The program also supports the markdown language 

allowing users to provide explanations for their implementation. 

After installing the software, using Anaconda, to create a notebook, a configuration 

file was generated to configure the password and network setting for the Jupyter Server. A 

hash of a password was created using IPython and the server was set to be hosted on the 

machine itself on port number 8888 and address “0.0.0.0”. This meant that the notebook 

could be reached from a browser using the URL: “http:localhost/8888”. Then, using a 

browser to connect to the Jupyter Server, a Jupyter Notebook was created to house the 

project and the importation of the data
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3.2 Data Loading and Pre-Processing 

Python is one of the primary programming languages used in data science thanks 

to its rich set of libraries that support the field. One of these is called Pandas which is a 

python library that offers data structures and operations for manipulating data tables. This 

library was installed via Anaconda and used to import data from the CSV files. These files 

contain the GPS data needed for the ML models. Pandas stores these values in a data 

structure called a DataFrame. These structures consist of rows and columns and support 

operations to easily access the data stored within them. 

Following this storage, the Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) algorithm is used to cluster GPS coordinates that are within a certain 

distance from one another. The algorithm works by grouping points together based on 

density. To elaborate, it works under the assumption that dense points are separated by 

areas of sparse points. This works for the study as coordinates that are closer together in a 

cluster are places that a user would likely travel to if starting in that cluster. Sklearn’s 

implementation of the algorithm was used with the appropriate parameters provided. The 

radius size to be part of a cluster was set to 10 kilometers with the Haversine distance 

metric being used. This is because Haversine distance calculates the distance between two 

points on a sphere which is ideal for the study’s use case of GPS coordinates. 
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3.3 Machine Learning Model Training and Tuning 

This section will cover how each of the models was tuned and tested to obtain 

optimum cluster prediction accuracy. The Artificial Neural Network will be covered first 

followed by Decision Trees and ending with Naïve- Bayes classifiers. 

3.3.1 Artificial Neural Network 

Pytorch is a deep-learning Python library that provides the tools and functions that 

enable users to create complex machine learning models. The ANN was created using this 

library by taking advantage of the library’s primary data structure: Tensors. Tensors utilize 

the GPU of a system to perform complex mathematical calculations such as convolutions 

and differentiations in a computationally efficient way. They also store the gradient of each 

calculation which will become important later. 

To begin training, the data first has to be split into three sections: Train, Validation, 

and Test. The training portion of the dataset will be used to teach the Neural Network the 

common pattern in the data while the validation set is used to check the accuracy of the 

system. If the accuracy is not at a preferred level, the model is tuned to slowly increase the 

validation accuracy. The test set is saved for last to record the final accuracy of the model. 

This is done to ensure that the model is evaluated on unseen data and best represents its 

capabilities. The data set was split using the random_split() function from PyTorch to 

divide the data set into the three mentioned sets in the ratio 60:20:20 (Train, Validate, Test). 

Following this step, the data is loaded into data loaders, another PyTorch data structure that 

groups data in batches and randomly shuffles them. It is also good to note that the input 

consists of GPS coordinates with cluster labels attached to them.
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This makes the model a supervised learning algorithm. With the data ready, the model is 

constructed using the architecture below: 

 

Figure 3.1: ANN Architecture 

The fully connected layers consist of a dense network of neurons that contain linear 

functions with weights and biases. These weights are normalized in the normalization layer 

to make the model more generalized. The ReLU activation function is also used to gather 

non-linear features from the data. The output of the model is a large probability distribution 

determining the most likely cluster a given GPS coordinate would go to. The data loops 

through the model repeatedly with the optimizer changing the weights of the neuron to 

make the input match their labels.
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The closeness to a label is determined using a loss function. CrossEntropy is used here for 

this model as it is known for its reliability in various datasets. The Standard Gradient 

Descent optimizer was chosen for this model as it eventually finds weight that minimizes 

the amount of loss. 

 Tuning this model involved adding and removing layers with the final version being 

the one shown before. The hardware constraints prevented the model from training for long 

periods which negatively affected its accuracy. In response to this, Sklearn’s state-of-the-

art Multi-Layer Perceptron (MLP) was used to predict clusters. The MLP resembles the 

Pytorch architecture but differs by using state-of-the-art implementations to counteract the 

hardware constraints mentioned before which means utilizing advanced algorithms to 

reduce the time and space complexity of the model. This algorithm contained several 

parameters ranging from the number of neurons to the learning rate. The best parameters 

were determined using GridSearchCV which allows users to go through combinations of 

parameter values to determine one that provides the best accuracy. This provided better 

results compared to the earlier version. 

3.3.2 Decision Tree 

The Decision Tree (DT) model involved creating a recursive function that 

repeatedly generated tree-like data structures to create the entire model. This creation of 

trees involved determining which of the input attributes contained the most information. 

In other datasets, different attributes contain different amounts of useful information that 

can help classify data accordingly. Determining the best attribute involves creating child 

trees of attributes and comparing their entropy to their parent. Entropy refers to the 

amount of chaos in the child node representing an attribute. Less child entropy is desired 
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as it tells us that splitting the dataset based on those attributes helps categorize the data 

more clearly. This splitting is done till a node only has one value; this makes it a leaf. 

Once this recursive process is done a DT is produced. The initial implementation resulted 

in low accuracy due to the space complexity of the function. To overcome this Sklearn’s 

state-of-the-art implementation was used. 

 Sklearn’s decision tree classifier has parameters ranging from tree depth to the 

number of leaves, all of which were hyper-tuned using GridSearchCV which like in the 

previous model tries all combinations of hyperparameters to determine one that gives the 

highest accuracy. 

3.3.3 Naïve-Bayes Classifier 

 Sklearn’s implementation was used for this study because collecting the evidence 

to determine the likelihood of an event occurring requires state-of-the-art 

implementation. A Gaussian Naïve-Bayes classifier was chosen instead of the default one 

as the GPS data worked well when made into a Gaussian distribution which consisted of 

calculating the mean and median of the dataset. The hyperparameters of the model were 

once again determined using GridSearchCV.
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CHAPTER 4 

RESULTS 

This section will go over the results when applying the models to three datasets. 

The datasets include cities in India, California, and RV stops in the United States. The 

models’ evaluation metrics will be provided along with a possible reason for the results. 

4.1 California 

 

Figure 4.1: Clusters of Cities in California
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Table 4.1: Evaluation Metrics from the California Dataset 

Algorithm Accuracy F1 Score Training Time (secs) 
Decision Tree 57% 0.24 0.003 

Naive Bayes 48% 0.21 0.01 

Artificial Neural Network 27% 0.007 0.12 

The California dataset has relatively few coordinates compared to the other 

datasets. Table 4.1 shows how the models’ ability to learn new and diverse patterns was 

hindered. Among the models, the decision tree performed the best in all categories thanks 

to its ability to extract features efficiently and in an intuitive manner that is relevant to this 

task. On the other hand, the Naïve Bayes and ANN models struggle to form a proper 

mapping between locations and clusters. This is due to most coordinates being independent 

of each other and the lack of powerful hardware.  

4.2 India 

 

Figure 4.2: Clusters of Cities in India 
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Table 4.2: Evaluation Metrics from the India Dataset 

Algorithm Accuracy F1 Score Training Time (secs) 
Decision Tree 61% 0.31 0.004 

Naive Bayes 56% 0.24 0.01 

Artificial Neural Network 18% 0.007 0.001 

 

The results in Table 4.2 are similar to the previous dataset but have improved for the 

Decision Tree and Naïve Bayes models. This is because the India dataset contains more 

coordinates compared to the previous test which allows the models to extract more 

distinguishing features. For instance, the Decision tree can now form more meaningful 

nodes from large amounts of data (higher accuracy score of 61%). The Naïve-Bayes 

classifier had a large pool of evidence events to make more accurate predictions 

(accuracy score of 56%). The hardware limitations still negatively impacted the Neural 

Network’s performance. 

4.3 United States of America 

Table 4.3: Evaluation Metrics from the U.S. Dataset 

Algorithm Accuracy F1 Score Training Time (secs) 
Decision Tree 99.8% 0.69 0.496 

Naive Bayes 99.5% 0.64 0.01 

Artificial Neural Network 97.68% 0.05 150 

 

The U.S. dataset consists of over 100,000 RV rest stop locations all over the United 

States. This allows the models to extract helpful features from the sparse coordinates. Table 

4.3 shows the three models performing exceptionally well with the ANN having the longest 

training time in the entire test period. This is because forming a prediction function for 
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such a large dataset is computationally very expensive. Decision trees and Naïve-Bayes 

classifiers have comparatively simpler computations ranging from counting to sorting. 

They do not have to deal with optimizing the weights of thousands of individual neurons, 

thus, giving them accuracy scores of 99.8% and 99.5% respectively.
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CHAPTER 5 

CONCLUSION 

The goal of this experiment was to determine which Machine Learning algorithm, 

among the three picked, performed the best with GPS coordinates. This was determined by 

first setting the proper environment. Next, the proper tools were installed to visualize and 

summarize the performance of the model after training. The training of the models involved 

three datasets with varying types of GPS coordinates. The California coordinates were low 

in number and spread apart while the India coordinates were densely packed. The US 

dataset contained a very large number of coordinates compared to the other two locations. 

Training these models involves tuning them to achieve the highest accuracy they can offer 

which results in the previously discussed results. 

The results indicated that decision trees work well when categorizing coordinates. 

Decision trees are known to be useful when the dataset has distinguishing features as nodes 

for each of these features can be made easily. The GPS coordinates can be made into 

buckets to categorize them and make accurate predictions. Future research in this area 

involves comparing and using more complex models based on the ones used in this study. 

A more complex version of decision trees involves running multiple smaller trees in 

parallel and averaging the result of each tree to make a prediction. This model is known as 

a Random Tree Classifier and is used in many machine learning applications dealing with 

categorical data. More attributes such as speed and time of day can make ANNs produce 

more accurate and valuable information if provided with powerful hardware. 
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