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ABSTRACT

In this paper, we revisit a suite of popular proximity problems

(such as, KNN, clustering, minimum spanning tree) that repeatedly

perform distance computations to compare distances during their

execution. Our effort here is to design principled solutions to mini-

mize distance computations for such problems in general metric

spaces, especially for the scenarios where calling an expensive or-

acle to resolve unknown distances are the dominant cost of the

algorithms for these problems. We present a suite of techniques,

including a novel formulation of the problem, that studies how dis-

tance comparisons between objects could be modelled as a system

of linear inequalities that assists in saving distance computations,

multiple graph based solutions, as well as a practitioners guide to

adopt our solution frameworks to proximity problems. We compare

our designed solutions conceptually and empirically with respect to

a broad range of existing works.We finally present a comprehensive

set of experimental results using multiple large scale real-world

datasets and a suite of popular proximity algorithms to demonstrate

the effectiveness of our proposed approaches.
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·Theory of computation→Dynamic graph algorithms;Near-

est neighbor algorithms; · Information systems→ Crowdsourc-

ing.
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1 INTRODUCTION

Given a set of 𝑛 objects with distances defined between each pair of

objects, various classical proximity problems have been investigated

over the decades in data management research, such as 𝑘-nearest

neighbor, clustering, shortest path, minimum spanning tree, and

several others. In this paper, we consider the setting where the

objects are in a general metric space and distance computations are

the dominant cost of algorithms for these problems.

1.1 Novelty, Motivation, and Applications

The novelty and motivation behind our proposed approach hinges

on the following three characteristics:

Characteristic 1: GeneralMetric Spaces:We study proximity

problems in general metric spaces. That is, we are given a collec-

tion of atomic objects, and a general distance function between

pairs of objects that obeys the triangle inequality or relaxed trian-

gle inequality. Beyond that, we do not assume special cases such

as Euclidean or vector spaces, where the objects are further de-

composed/represented as vectors of attributes, and the distance

function is defined over pairs of vectors (e.g., Euclidean distance,

Cosine similarity, etc). This renders most of the vast collection of

existing proximity research in Euclidean/vector spaces inapplicable

to our problem ( Section 6 has further details).

Characteristic 2: Optimizing Distance Computations: We

consider scenarios and applications where distance computations

require access to a distance oracle which is an expensive function.

Thus these applications benefit from specifically minimizing dis-

tance computation costs - sometimes at the expense of increased

CPU computation. This unique optimization goal has not been ad-

dressed by prior general metric space proximity research; most such

works do not separate distance computation fromCPU computation

costs (see related work in Section 6.)

Characteristic 3: Unified Framework with Exact Outputs:

One of the significant highlights of our approach is, rather than

redesigning all prior existing algorithms for the myriad proximity

problems on a case-by-case basis, we provide a unified framework

in the form of a general solution scheme. We show how such a

framework can be easily applied to making minor modifications

to prior proximity algorithms, resulting in a significant reduction

in the number of calls to the distance oracle, at the expense of a

comparatively small increase in the rest of the computation costs.

Moreover, our framework does not change the outputs of the origi-

nal algorithm. For example, if we use our framework to modify a

classical general metric space 𝑘-nearest-neighbor algorithm, the
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modified algorithm will produce the correct 𝑘-nearest-neighbors,

but make fewer distance calls.

Applications: There are several important and emerging ap-

plications that have the above three characteristics, and conse-

quently can leverage our framework. Notable examples include

spatial applications that require geo-referencing, computer vision

applications, as well as applications from bioinformatics and medi-

cal imaging. Also of interest are spatial applications that require

calling third party API’s (such as, Google1 or Bing2 map) to obtain

distances between pairs of locations, GPS and other map based

services that need to obtain point-to-point driving time (typically

calculated based on distance, traffic condition, etc). Several com-

pelling computer vision applications, including Hyperspectral Im-

age comparison[1, 7], Image database search [8], Image compar-

isons under Hausdorff distance [22] or Video Database Search-

ing [12] make use of triangle inequality. Additionally, DNA [48]

sequence analysis, protein Database search [15] are some of the com-

pelling bioinformatics applications that require expensive distance

computations. In fact, as related works suggest, efficient compari-

son in metric space is even desirable for studying medical imaging

technologies, like MRI Scan [32], fMRI Scans[43], CAT-SCAN[20]

analysis. All these applications stand to benefit from our work.

1.2 Technical Contributions

The heart of our techniques is based upon the following observa-

tions. During the process of computation, most proximity algo-

rithms repeatedly need to compare distances between various pairs

of objects, or compare various distance aggregates such as sums of

distances. For example, while computing the 𝑘-nearest neighbor of

a query object𝑢, existing algorithms iteratively check if there is any

other object 𝑣 whose distance from 𝑢 is smaller than the object’s

distance from its current 𝑘-th nearest neighbor 𝑤 (𝑖 .𝑒 ., whether

𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑢,𝑤)). If this answer turns out to be true, then

the current 𝑘-th nearest neighbor is updated. However, for the al-

gorithm, it is not necessary to always know the precise distances

𝑑𝑖𝑠𝑡 (𝑢, 𝑣) and 𝑑𝑖𝑠𝑡 (𝑢,𝑤). It is just sufficient to know whether the

linear inequality 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) − 𝑑𝑖𝑠𝑡 (𝑢,𝑤) < 0 is true. If true, then 𝑣

can be safely discarded, thus saving on distance calls.

We leverage the above observations to make the following tech-

nical contributions:

Contribution 1: Linear Program Modeling (Section 2.2): Our

first contribution is in identifying IF statements in proximity algo-

rithms that compare linear distance expressions, and showing how

they can be more efficiently redesigned without having to invoke

expensive distance oracle calls by modelling them as a system of

linear inequalities. For such IF statements, we provide guidelines

for re-authoring them such that expensive distance oracle calls are

replaced by linear constraints. We present a model, Direct Feasi-

bility Test, that involves expressing the problem as a system of

linear inequalities which can be solved by only using local CPU

resources (Section 2). To the best of our knowledge, no prior work

has presented this formalism before.

1https://cloud.google.com/maps-platform
2https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api

Contribution 2: Graph-Theoretic Modeling and Efficient Al-

gorithms (Sections 3 and 4): For scenarios where solving lin-

ear programs place unacceptable demands on local computation

resources, we propose a simpler yet novel redesign of IF state-

ments by mapping them to lower and upper bound distance com-

putation problems. As an illustrative example, if the upper bound

of 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) can be shown to be smaller than the lower bound of

𝑑𝑖𝑠𝑡 (𝑢,𝑤), then this implies that 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 𝑑𝑖𝑠𝑡 (𝑢,𝑤). We show

that such upper and lower bound problems can be mapped to inter-

esting computation problems over sparse weighted graphs, which

although suboptimal compared to the LP formulation (the former

approach saves more distance calls), they allow for more efficient

algorithms that make far less demands on local CPU resources.

We present a new lower bound estimation algorithm, referred

to as Shortest Path Based Solution Scheme (SPLUB in short) which

considers the sparsity of the graph while computing the lower

bound improving the computational efficiently of the algorithm.

Then, we present an optimized łlightweightž bound estimation

algorithm Triangle Based Solution Scheme (Tri Scheme in short) that

is highly scalable, by constraining to search to a local neighborhood

of paths of length 2 of the graph. We also present an expected case

analysis for Tri Scheme in Section 4.2.2

Contribution 3: Extensive Experimentation (Section 5): Our

final contribution lies in performing extensive experiments and

outperforming the appropriately adapted current-state-of-the-art

solutions with the help of real-world datasets. Besides demonstrat-

ing algorithmic efficiency, our experiments also highlighted the

ease with which our proposed re-authoring methods can be adapted

for a wide class of proximity algorithms.

2 DISTANCE COST MINIMIZATION

In this section, we study how existing proximity algorithms incur

distance cost inside the computational loop and propose a general

purpose model, Direct Feasibility Test to minimize that cost.

2.1 Working Principles of Proximity
Algorithms

Proximity problems rely on establishing proximity relationship

among different objects in order to decide the best set of outputs,

and play fundamental roles in database research. Examples of such

problems include the 𝑘-NN, computing Minimum Spanning Tree

(MST), clustering problems, etc.

1 IF statements involving distance calls - At the heart of

the proximity problems, there exist repeated distance comparisons.

Typically, one ormore calls to the distance oracle are associatedwith

every invocation of such comparison. As an example, consider any

clustering algorithm with the overarching goal of putting similar

objects together in the same group, and keeping dissimilar objects

in different groups. These algorithms repeatedly compare distances

between a set of objects to make such a decision.

if dist (oi, oj) ≥ dist (ok, ol)

do something

else

do something_else
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Figure 1: 7 objects and their corresponding known and un-

known distances.

2 Saving distance calls in IF statements - When the dis-

tances are from a general metric space, there exists a relationship

between the distances - our goal is to exploit that in saving distance

calls.

Consider a set, O = {𝑜𝑖 , 𝑜2, . . . , 𝑜𝑛} of 𝑛 objects. We assume no

two objects inO are the same. The underlying dissimilarity between

each pair is the distance between them, represented by 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 ).

Metric Spaces and Triangle Inequality: A Metric Space is an

ordered pair (M, 𝑑) whereM is a collection of objects and 𝑑𝑖𝑠𝑡 is a

distance metric onM. In addition, for any triplets (𝑚𝑖 ,𝑚 𝑗 ,𝑚𝑘 ) ∈ M,

𝑑𝑖𝑠𝑡 (𝑚𝑖 ,𝑚 𝑗 ) = 0 =⇒ (𝑚𝑖 =𝑚 𝑗 )

𝑑𝑖𝑠𝑡 (𝑚𝑖 ,𝑚 𝑗 ) = 𝑑𝑖𝑠𝑡 (𝑚 𝑗 ,𝑚𝑖 )

𝑑𝑖𝑠𝑡 (𝑚𝑖 ,𝑚 𝑗 ) ≤ 𝑑𝑖𝑠𝑡 (𝑚𝑖 ,𝑚𝑘 ) + 𝑑𝑖𝑠𝑡 (𝑚𝑘 ,𝑚 𝑗 ) (△ inequality)

Informally, the triangle inequality implied that the distance be-

tween any pair of objects is less than or equal to the distance of a

path between the same pair of objects that goes through any other

object(s).

Example 2.1. ( Running Example ) : Consider a set of 7 objects

{ 0, 1, 2, 3, 4, 5, 6 }. Let us also assume that the distance between every

pair of objects is between 0 and 1. Assume these distances satisfy

the metric property, i.e., triangle inequality of distances.

The running example is shown in Figure 1. As shown in the

figure, we also assume that 8 pairwise distances are known (i.e., the

distance oracle has been called for each of these pairs). The solid

lines between the objects represent the distance that is known.

2.2 Direct Feasibility Test

The triangle inequality relationship among the objects could be

represented using a set of inequalities involving O.

Using the example in Figure 1, let us create
(𝑛
2

)

variables of the

form 𝑥𝑖 𝑗 , where each variable represents the distance between the

respective pair of objects. Next, we create linear inequalities that

constrain the values these variables can have. For example, for

the pair of objects (𝑜1, 𝑜3) whose distance is known, we add two

inequalities of the form (𝑥13 − 0.8 ≤ 0) and (- 𝑥13 + 0.8 ≤ 0) (i.e.,

together equivalent to the equation 𝑥13 = 0.8). Similarly, for each

pair of objects whose distance is unknown, for example, (𝑜1, 𝑜2),

we add constraints of the form (𝑥12 − 1 ≤ 0) and (- 𝑥12 ≤ 0). Thus

far, the system will have (2 ×
(𝑛
2

)

→ 42) inequalities, with two

inequalities corresponding to each 𝑥𝑖 𝑗 .

Next, corresponding to each triangle, 𝑥12, 𝑥23, 𝑥13 we will have

additional inequalities of the form, (𝑥12 − 𝑥23 − 𝑥13 ≤ 0), (−𝑥12 −

𝑥23 + 𝑥13 ≤ 0) and, (−𝑥12 + 𝑥23 − 𝑥13 ≤ 0). There are
(𝑛
3

)

(
(7
3

)

in the

example) number of triangles in a set of n objects. Each triangle

gives rise to a set of 3 linear inequalities. Thus for our running

example, the consideration of all triangles adds (3 ×
(𝑛
3

)

→ 105)

number of linear inequalities to the linear system.

For an IF statement such as 𝑖 𝑓 𝑑𝑖𝑠𝑡 (𝑜2, 𝑜6) < 𝑑𝑖𝑠𝑡 (𝑜3, 𝑜5), we

formulate a corresponding additional constraint, (𝑥26 − 𝑥35) < 0.

However, we should be checking for the absence of any feasible

region for the reversed constraint, expressed as follows, (−𝑥26 +

𝑥35) ≤ 0. This reversed constraint is added to the system of linear

constraints.

Thus, in order to save distance calls in the IF statement, our

approach is to solve the following decision problem: Does there exist

no feasible solution to the system of inequalities? if the answer to

that question is YES, the if condition is satisfied. If the answer is

NO, then the proximity algorithm may call the distance oracle to

obtain the exact distances and repeat the computation. This, in a

nutshell, is the core idea of our proposed approach.

Solving the system of linear inequalities: Formally, the system

of linear inequalities can be written as follows:

𝐴𝑋 ≤ 𝑏 (1)

where 𝐴 forms the coefficient matrix, 𝑋 is a vector of unknown

distances, 𝑏 is a vector of known coefficients.

Determining whether this system of linear inequalities has a

feasible region or not could be solved using existing off-the-shelf

linear programming tools. For example, SIMPLEX [50] could be

used to solve this problem. However, the number of iterations

for SIMPLEX in the worst case is exponential in the number of

objects [28]. A more practical approach to linear programming

through the ellipsoid algorithm [27] also could be used. However,

solving linear inequalities through this method is in O(𝑛6). These

algorithms thus are not practical even for a small number of objects.

3 GRAPH THEORETIC APPROACH

Contrary to employing expensive linear programming to resolve

the IF statements statement exactly - an alternative, less expensive

approach is to redo the IF statements statement as follows:

if 𝐿𝐵dist (oi, oj) ≥ 𝑈𝐵dist (ok, ol)

do something

else

do something_else

This above formulation is designed to compute the lower bound

(LB) of distance between 𝑜𝑖 , 𝑜 𝑗 and compare that with the upper

bound (UB) of distance between 𝑜𝑘 , 𝑜𝑙 . We emphasize that such a

reformulation of the IF condition is not the same as the original IF

condition; If the reformulated condition is true, the original condi-

tion is true, but not vice versa. In the vice versa case, the distance

oracle has to be invoked to accurately resolve the IF statement.

The advantage of the reformulated condition is that it allows us

to use much more efficient and scalable graph theoretic approaches

for resolving the condition as compared to the linear programming

approaches described earlier, thus resulting in dramatic savings

in local CPU computations, at the cost of a small increase in the

number of calls to the distance oracle.

Thus our next set of investigation hinges on finding lower and

upper bounds of distances using a suite of computational techniques
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Figure 2: Geometric Interpretation of LB. [Top] Shortest

Paths through Known Edge. [Bottom] Wrapping SP onto

Known Edge.

that considers the underlying abstraction to be a complete graph

on general metric spaces. Specifically, if indeed 𝐿𝐵dist (oi, oj) ≥

𝑈𝐵dist (ok, ol), then two distance calls to the oracle 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 ) and

𝑑𝑖𝑠𝑡 (𝑜𝑘 , 𝑜𝑙 ) could be saved.

3.1 Data Model

Abstractly, the distance relationship over the given set of objects is

abstracted as a weighted complete graph, G. The nodes are defined

over the set of objects (O), and every pair of nodes in the object set,

(𝑜𝑖 , 𝑜 𝑗 ) forms the edges in the graph whose edge weights are in-

duced by the distance function, 𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 ). As before, the distance

between the objects satisfy the metric property, i.e., the triangle

inequality.

Definition 1. The Tightest Upper Bound of the distance between

(𝑜𝑖 , 𝑜 𝑗 ) (or 𝑇𝑈𝐵
𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ), is the largest possible distance that an

unknown edge can assume without violating the triangle inequality,

considering all other known distances in G.

It is easy to see that the tightest upper bound of distance between

𝑜𝑖 and 𝑜 𝑗 is the length of the shortest-path(sp) distance between

those objects [45] that will go through additional intermediate

objects. Note that, there might be other paths between (𝑜𝑖 , 𝑜 𝑗 )

which also provide an upper bound on𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) but are not as

tight as 𝑇𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ).

𝑇𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) = 𝑠𝑝 (𝑜𝑖 , 𝑜 𝑗 ) ≤ 𝑈𝐵
𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) (2)

Definition 2. The Tightest Lower Bound of the distance between

(𝑜𝑖 , 𝑜 𝑗 ) (or 𝑇𝐿𝐵
𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ), is the lowest possible distance that an un-

known edge can assume without violating the triangle inequality,

considering all other known distances in G.

The tightest lower bound 𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) involves computing LB

between 𝑜𝑖 and 𝑜 𝑗 considering every path and taking the maximum.

For each path, the 𝑇𝐿𝐵 could be computed using the generalized

metric property proposed in [42] - which involves subtracting the

weight of the rest of the path (computed by taking the sum of known

distances) from the highest weight edge (let that be 𝑑𝑖𝑠𝑡 (𝑜𝑘 , 𝑜𝑙 )

between 𝑜𝑘 , 𝑜𝑙 ) in 𝑝 . Similar to upper bounds, any other path could

lead to a lower bound which might not be tightest as𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ,

and, we refer to them as 𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) .

𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) =𝑚𝑎𝑥
∀𝑝
{𝑑𝑖𝑠𝑡 (𝑜𝑘 , 𝑜𝑙 ) − 𝑝𝑎𝑡ℎ(𝑜𝑖 , 𝑜𝑘 ) − 𝑝𝑎𝑡ℎ(𝑜𝑙 , 𝑜 𝑗 )}

(3)

𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ≤ ∀𝑝{𝑑𝑖𝑠𝑡 (𝑜𝑘 , 𝑜𝑙 ) − 𝑝𝑎𝑡ℎ(𝑜𝑖 , 𝑜𝑘 ) − 𝑝𝑎𝑡ℎ(𝑜𝑙 , 𝑜 𝑗 )}

(4)

To explain further, we refer to Figure 2 to find out 𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑋,𝑌 ) .

Let 𝑆𝑃𝑋,𝑜𝑖 be the shortest path between 𝑋 and 𝑜𝑖 (curved lines in

blue). Similarly, 𝑆𝑃𝑌,𝑜𝑖 be the shortest path between 𝑌 and 𝑜 𝑗 . Thus,

we can visualize the equation 4 in the light of the figure as shown by

the wrapping of shortest paths from 𝑋 and 𝑌 on to the known edge

(𝑜𝑖 , 𝑜 𝑗 ). The lower bound, 𝐿𝐵
𝑑𝑖𝑠𝑡 (𝑋,𝑌 ) , obtained from this path [𝑋 -

𝑆𝑃𝑋,𝑜𝑖 -(𝑜𝑖 , 𝑜 𝑗 )-𝑆𝑃𝑜 𝑗 ,𝑌 -𝑌 ], is the residue on edge length (𝑑𝑖𝑠𝑡 (𝑜𝑖 , 𝑜 𝑗 ) -

𝑆𝑃𝑋,𝑜𝑖 - 𝑆𝑃𝑜 𝑗 ,𝑌 ) from the wrap over (highlighted interval in yellow).

By definition 2, 𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑋,𝑌 ) , is the maximum of all such lower

bounds over all paths available between 𝑋 and 𝑌 . Recall Figure 1

again and note that an alternative representation of the figure is a

weighted complete graph on metric space, for which some of the

edges are known and the rest are unknown. Using Example 2.1,

only 8 out of 21
(7
2

)

edges are known (the solid lines), while the

remaining 13 edges are unknown. As given in the figure, if the

distance 𝑑𝑖𝑠𝑡 (1, 3) = 0.8 and 𝑑𝑖𝑠𝑡 (3, 4) = 0.1 then the tightest

bounds for distance 𝑑 (1, 4) may be computed as follows:

|𝑑𝑖𝑠𝑡 (𝑜1, 𝑜3) − 𝑑𝑖𝑠𝑡 (𝑜3, 𝑜4) | ≤ 𝑑𝑖𝑠𝑡 (𝑜1, 𝑜4) ≤ 𝑑𝑖𝑠𝑡 (𝑜1, 𝑜3) + 𝑑𝑖𝑠𝑡 (𝑜4, 𝑜3)

i.e., 0.7 ≤ 𝑑𝑖𝑠𝑡 (𝑜1, 𝑜4) ≤ 0.9

3.2 Problem Definitions

In this section, we formally define the studied problems considering

the underlying abstraction to be a complete graph:

Problem 1. ( Bounds Problem ) : Given a partial graph,

G(O, 𝐸), and an unknown edge (𝑜𝑖 , 𝑜 𝑗 ) in the graph, find the

tightest (𝑖) lower bound of distances (or 𝑇𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ), and (𝑖𝑖)

find the tightest upper bound of distances (or 𝑇𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜𝑖 ,𝑜 𝑗 ) ),

without violating the triangle inequality, considering all other

known distances in G but avoiding any calls to the expensive

distance oracle, O.

For instance, from the discussion following Example 2.1, the

query problem on the partial graph for the edge 𝑑𝑖𝑠𝑡 (𝑜1, 𝑜3), would

yield, the tightest lower bound as 0.7 and tightest upper bound as

0.9.

A proximity algorithmmay have to make two calls to the distance

oracle if the produced bounds are not effective to follow either of the

branches of the IF statements statement. Following each call to the

distance oracle on an unknown edge and its subsequent resolution,

the partial graph evolves by adding an additional known edge to

the graph. The graph will be represented as an adjacency matrix or

adjacency list representation. Consequently, upon a new distance

resolution, we have to update respective edge information to the

graph data structures. Correspondingly, after an edge resolution,

data structures keeping track of upper and lower bounds also may

have to be updated. Here, we define the update problem as follows,

Problem 2. ( Update Problem ) : Given a partial graph,

G(O, 𝐸), the actual distance (from oracle call) of a newly known

edge (𝑜𝑖 , 𝑜 𝑗 ), update the data structures that keep track of the

lower and upper bounds of the remaining unknown edges.

In the next Sections, we present multiple solutions that trade-off

between tightness of produced bounds and running time to solve

the 1 and 2 problems.
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4 BOUND COMPUTATION ALGORITHMS

Solutions to every proximity problems involve two fundamen-

tal steps which often works in tandem, contributing towards the

progress of the algorithm, (i) a distance resolution procedure for es-

timating the unknown distance and, (ii) an update operation which

adds the resolved edge to the graph and associated data structures.

Our proposed two solution schemes trade-off between time and

tightness of the produced bounds during the update. Neverthe-

less, when used in conjunction with any proximity algorithm, they

both produce an exact and identical solution as that of the original

algorithm.

Discussion - Running Example - Let us take the example of the

same two unknown edges (𝑜2, 𝑜6) and (𝑜3, 𝑜5). Let us also assume an

IF statements in proximity problems need to evaluate is of the form

IF (𝑜2, 𝑜6) > (𝑜3, 𝑜5). Considering graph theoretic approaches, we re-

state this IF statements as, IF(𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜2,𝑜6) ≥ 𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜3,𝑜5) ). From

the definitions of upper and lower bounds earlier in this section,

it could be shown that 𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜2,𝑜6) = 0.3 and 𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜3,𝑜5) = 0.6.

Since 0.3⩾̸ 0.6, it is evident from this example that a distance save up,

which previously facilitated by Direct Feasibility Test , cannot

be obtained here thus necessitating two oracle calls for 𝑑𝑖𝑠𝑡 (𝑜2, 𝑜6)

and 𝑑𝑖𝑠𝑡 (𝑜3, 𝑜5).

4.1 Exact Algorithms

WE describe exact Algorithm SPLUB(Shortest Path Based Lower and

Upper Bound algorithm) for bounds computation and the update

problem. SPLUB is sparsity sensitive - hence its running time de-

pends on the number of known edges when it is invoked.

4.1.1 Algorithm Development:

Recall from Definition 1 that, in any given graph, the tightest upper

bound of the distance between objects 𝑜𝑖 and 𝑜 𝑗 is the length of

the shortest-path(sp) distance between those objects that will go

through additional intermediate objects.

Similarly, by Definition 2, the tightest lower bound 𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 )

involves computing LB between 𝑜𝑖 and 𝑜 𝑗 considering every path

and taking the maximum.

Aforementioned definitions, their application in examples 2.1

and understanding the sparsity of the graph formally sets the foun-

dation for the SPLUB algorithm.

Exact Upper Bound Algorithm - Our upper bound computa-

tion is inspired by Dijkstra’s Algorithm [17].

To find out the 𝑇𝑈𝐵 between an unknown pair of edge (𝑜𝑖 , 𝑜 𝑗 ),

we start a shortest path algorithm from one endpoint, let us say

from 𝑜𝑖 to find the shortest path to the other endpoint 𝑜 𝑗 . This in

turn solves the problem of upper bound using the Equation 2.

Developing Exact Lower Bound Algorithm - Essentially, for

each of the unknown edge in the graph, the lower bound can be

estimated with the help of known edges. As established earlier,

we run two shortest path algorithms from each endpoint of the

unknown edge for which we need to compute the lower bound.

Thus, for each known edge in the graph, we compute the shortest

path from both the endpoints of the unknown edge to both the

endpoints of the known edge. Since the tightest lower bound is

largest of the all available lower bound distances, we only keep

track of the current largest value at each iteration.

Algorithm 1 SPLUB

Input : graph G = (O,E), unknown edge (𝑜𝑖 , 𝑜 𝑗 ), Dijkstra’s sp algo

𝑆𝑃𝐷𝑖 𝑗𝑘 ()

Output : 𝑇𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) , 𝑇𝑈𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 )

1: 𝑙𝑏 ← 0;𝑢𝑏 ← 1

2: 𝑠𝑝𝑜𝑖 ← 𝑆𝑃𝐷𝑖 𝑗𝑘 (𝑜𝑖 )

3: 𝑠𝑝𝑜 𝑗 ← 𝑆𝑃𝐷𝑖 𝑗𝑘 (𝑜 𝑗 )

4: for edge(𝑘, 𝑙) in 𝐸 do

5:

𝑙𝑏 = 𝑚𝑎𝑥 (𝑙𝑏, 𝑑𝑖𝑠𝑡 (𝑜𝑘 ,𝑜𝑙 ) − (𝑠𝑝𝑜𝑖 [𝑜𝑘 ] + 𝑠𝑝𝑜 𝑗 [𝑜𝑙 ]),

𝑑𝑖𝑠𝑡 (𝑜𝑘 ,𝑜𝑙 ) − (𝑠𝑝𝑜 𝑗 [𝑜𝑘 ] + 𝑠𝑝𝑜𝑖 [𝑜𝑙 ]))

6: end for

7: 𝑢𝑏 = 𝑚𝑖𝑛(𝑢𝑏, 𝑠𝑝𝑜𝑖 [𝑜 𝑗 ])

8: 𝑇𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) = 𝑙𝑏

9: 𝑇𝑈𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) = 𝑢𝑏

10: return 𝑇𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) ,𝑇𝑈𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 )

Further Illustration - SPLUB. As an example, let us consider

the unknown edge (𝑜1, 𝑜2) from Example 2.1, for which Algorithm

SPLUB is to be invoked to compute its TUB and TLB.

The lower and upper bounds for the edge is initialized as ‘0’ and

‘1’ respectively. After that, steps 2 and 3 of SPLUB computes all pair

shortest paths from 𝑜1 and from 𝑜2. Next, for each of the 8 known

edges in the graph, the LB is updated using Equation 4 and the TLB

of (𝑜1, 𝑜2) is 0.7, the𝑚𝑎𝑥 of all lower bound values.

The TUB of (𝑜1, 𝑜2) is 0.7, computed in line 7 of the algorithm as

the shortest path between these two objects.

Lemma 4.1. The bound computed by the Lower Bound Algorithm

in SPLUB, produces exact tightest lower bounds for the unknown edge.

Proof. Assume that we do no produce the tightest lower bound

on the given unknown edge (𝑜𝑖 , 𝑜 𝑗 ) in the graph. This also means

that we have not investigated all the shortest paths from all the

known edges in the graph to the nodes 𝑜𝑖 and 𝑜 𝑗 . However, from

each edge of the unknown edge, from 𝑜𝑖 and from 𝑜 𝑗 , we find

all pairs shortest paths. In subsequent steps, the algorithm goes

over each of the known edges in sequence assuming that edge it

longest in its shortest path and subtracting the shortest path from

its length. From Equation 4 for lower bounds, and by going over

the shortest paths through known edges, we have investigated all

the shortest paths through all available known edges implicitly.

This contradicts our assumption that we did not investigate all the

known edges in the graph, thus proving the tightness of the lower

bound produced. □

For efficiency, we can package both the upper and lower bound

algorithms as a single algorithm. The details of the algorithm are

given in Algorithm 1 as SPLUB.

Running Time Analysis for SPLUB

We shall show here, that the running time of SPLUB depends on

the sparsity of the underlying graph G.

Upon examination, it is clear that the step 2 and step 3 are the

time consuming steps which are the execution of shortest path

algorithms from both endpoints of the unknown edge. Dijkstra’s
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Algorithm [17] with its standard implementation taken O(𝑚 +

𝑛 log𝑛) time to run. Thus we estimate the overall running time of

the combined steps 2 and 3 as O(𝑚 + 𝑛 log𝑛).

The remainder of the steps, step 6 and step 7, are executed only

as the number of known edges in the graph,𝑚. Thus the total time

of SPLUB is estimated as O(𝑚 + 𝑛 log𝑛) + O(𝑚). The leading term

is the first term and thus we claim the overall running time of the

algorithm to be O(𝑚 + 𝑛 log𝑛).

Update Algorithm - Given the simplicity of the algorithm and

absence of any intermediate data structures, updates are rather

straight forward in SPLUB Scheme. Once a previously unknown

edge is resolved, the only data-structure that needs an update is the

underlying graph structure. The update to the graph data-structure,

in any representational format ( adjacency list or adjacency matrix ),

is a constant order operation, thus, obtaining the overall complexity

of update operation as O(1).

4.2 Approximate Algorithms

In this section we strive to answer the following questions: Can one

design solutions that produce not the tightest bounds, yet are highly

scalable and faithfully produce the exact solutions to the proximity

problems? Can we design efficient and effective data structure update

schemes supporting the approximate bounds?

Let us assume that instead of going through all the known edges

in the graph and their shortest paths, we only restrict ourselves to

a subset of the known edges. From Equation 4, it is evident that the

bound obtained will not be tight. As an example, considering only

the path [𝑜1 → 𝑜3 → 𝑜2 → 𝑜4] to compute the LB of (𝑜1, 𝑜4), the

lower bound will be 0.5.

An important point to note here is that, to develop practically

viable algorithms, the developed solution must avoid the following

two bottlenecks (i) the Shortest Path computations, (ii) exploration

of all the known edges in the graph. We propose a highly scalable

yet effective heuristic Tri Scheme to that end.

4.2.1 Triangle Induced Solution Scheme. The overall idea of Tri

Scheme is to restrict ourselves to small neighborhoods (in particular

triangles) and use the relationship imposed by the triangles in

producing bounds.

Upper and Lower Bounds: Basically, Tri Scheme looks at

every triangle between 𝑜𝑖 and 𝑜 𝑗 and computes lower and upper

bounds. However finding every triangle which are incident on the

unknown edge (𝑜𝑖 , 𝑜 𝑗 ) and whose other two sides are known is also

computationally challenging. To further explain, we wanted to find

out all △𝑜𝑖 ,𝑜 𝑗 ,𝑜𝑙 , where (𝑜𝑖 , 𝑜𝑙 ) and (𝑜 𝑗 , 𝑜𝑙 ) are known, solving the

bounds problem efficiently.

Updates: As seen above, in Tri Scheme, for answering queries,

we need to access the triangles, whose two sides (edges) are known

and the edge being queried is the only missing edge. We use an

adjacency list representation of the graph to speed up the search for

such triangles. We take the lists corresponding to two endpoints of

the unknown edge 𝑜𝑖 and 𝑜 𝑗 , and find their intersection to find such

triangles. Finding intersections of two lists by direct comparisons

are in the O(size of the list). In adjacency list corresponding to each

node in the graph, we use a balanced binary search tree[14] to

make comparisons faster. However, this scheme has increased the

new edge insertions to be in O(log(𝑛)), which updates two binary

Algorithm 2 Tri Scheme

Input : graph G = (O,E), unknown edge (𝑜𝑖 , 𝑜 𝑗 )

Output : 𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) ,𝑈𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 )

1: 𝑎𝑑 𝑗𝑖 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡 (𝑜𝑖 )

2: 𝑎𝑑 𝑗 𝑗 = 𝐴𝑑 𝑗𝑎𝑐𝑒𝑛𝑐𝑦𝐿𝑖𝑠𝑡 (𝑜 𝑗 )

3: 𝑙𝑏 = 0

4: 𝑢𝑏 = 1

5: while 𝑖 ≤ 𝑙𝑒𝑛(𝑎𝑑 𝑗𝑖 )𝑎𝑛𝑑 𝑗 ≤ 𝑙𝑒𝑛(𝑎𝑑 𝑗 𝑗 ) do

6: if 𝑎𝑑 𝑗𝑖 [𝑖] == 𝑎𝑑 𝑗 𝑗 [ 𝑗] then

7: 𝑙𝑏 =𝑚𝑎𝑥 (𝑙𝑏, |𝐸 [𝑜𝑖 , 𝑎𝑑 𝑗𝑖 [𝑖]] − 𝐸 [𝑜 𝑗 , 𝑎𝑑 𝑗 𝑗 [ 𝑗]] |)

8: 𝑢𝑏 =𝑚𝑖𝑛(𝑢𝑏, 𝐸 [𝑜𝑖 , 𝑎𝑑 𝑗𝑖 [𝑖]] + 𝐸 [𝑜 𝑗 , 𝑎𝑑 𝑗 𝑗 [ 𝑗]])

9: 𝑖, 𝑗 = (𝑖 + 1), ( 𝑗 + 1)

10: else

11: if 𝑎𝑑 𝑗𝑖 [𝑖] > 𝑎𝑑 𝑗 𝑗 [ 𝑗] then

12: 𝑗 = 𝑗 + 1

13: else

14: 𝑖 = 𝑖 + 1

15: end if

16: end if

17: end while

18: 𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) = 𝑙𝑏

19: 𝑈𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) = 𝑢𝑏

20: return 𝐿𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 ) ,𝑈 𝐵𝑑 (𝑜𝑖 ,𝑜 𝑗 )

search trees one corresponding to each endpoint of the resolved

edge in the adjacency list with the edge value.

Further Illustration - Tri Scheme. Consider unknown edge

(𝑜3, 𝑜5) and Algorithm 2, Tri Scheme, to understand how LB and UB

of (𝑜3, 𝑜5) are produced. The algorithm looks up the corresponding

adjacency lists, 𝑎𝑑 𝑗3 and 𝑎𝑑 𝑗5 from the graph. From 𝑎𝑑 𝑗3 and 𝑎𝑑 𝑗5,

it iteratively finds the common endpoints in both lists, here, 𝑜1
and 𝑜2. For each of such endpoints, which forms a triangle with

𝑜3, 𝑜5, it computes the lower and upper bounds using triangle

inequalities. 0.6, which is the 𝑚𝑎𝑥 of all lower bounds obtained

from each endpoints is the 𝐿𝐵𝑑𝑖𝑠𝑡 (𝑜3,𝑜5) . Similarly, 0.6, the𝑚𝑖𝑛 of

all the upper bounds obtained is returned as the 𝑈𝐵𝑑𝑖𝑠𝑡 (𝑜3,𝑜5) .

One can note from pseudo-code of Tri Scheme, Algorithm 2,

that, the computational bottleneck from SPLUB are entirely avoided

to generate a simpler and practical algorithm. We present some

theoretical properties of Tri Scheme next.

4.2.2 Expected Case Analysis for Tri Scheme.

Theorem 4.2. Expected running time for Tri Scheme to lookup

an edge is O(𝑚/𝑛)

Proof. By design, the algorithm Tri Scheme is proximity algo-

rithm agnostic. Thus, it works for any general metric space prox-

imity problems. The proximity algorithm can choose any edge and

query for the upper and lower bounds. The expected time to lookup

an edge can be written as,

𝐸 [𝑡𝑖𝑚𝑒] =
∑

(𝑢,𝑣) ∈𝐸′

𝑃 [𝑠𝑎𝑚𝑝𝑙𝑒 (𝑢, 𝑣)] ∗ 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑢, 𝑣)

where the probability is for the event of sampling the unknown

edge (𝑢, 𝑣) and lookup represents the amount of time taken by Tri

Scheme for looking up the bounds for edge (𝑢, 𝑣).
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Under the assumption that any one of the unknown edges could

be queried next with equal probability (uninformed prior) by the

proximity algorithm, there is a uniform probability of sampling any

of the unknown edges. Hence, the probability of looking up any

of the unknown edge is 1/(𝑛2 −𝑚). Tri Scheme uses a balanced

BST in order to perform set intersection and needs to go over all

the edges incident on both 𝑢 and 𝑣 to obtain the bounds on edge

(𝑢, 𝑣). Hence the time taken for resolving the bounds for the edge

(𝑢, 𝑣) is 𝑑𝑢 + 𝑑𝑣 where 𝑑𝑢 stands for the degree of edge 𝑢.

By making use of the above formulation in the expectation for-

mula,

𝐸 [𝑡𝑖𝑚𝑒] =
∑

(𝑢,𝑣) ∈𝐸′

1

𝑛2 −𝑚
(𝑑𝑢 + 𝑑𝑣)

For every missing edge that is incident on 𝑢, 𝑑𝑢 is added to the

expected time. There a 𝑛 − 𝑑𝑢 number of unknown edges incident

on 𝑢. Hence, the expectation amounts to,

𝐸 [𝑡𝑖𝑚𝑒] =

𝑛
∑

𝑖=1

1

𝑛2 −𝑚
𝑑𝑖 (𝑛 − 𝑑𝑖 ) =

𝑛
∑

𝑖=1

𝑛𝑑𝑖 − 𝑑
2
𝑖

𝑛2 −𝑚

To create an adversarial case, we would like to maximize the above

formula to obtain an upper bound on the expected time. Also, we

know that there are a total of𝑚 known edges and hence the total

sum of degrees should amount to 2𝑚. Hence, the constraint
𝑛
∑

𝑖=1
𝑑𝑖 =

2𝑚, needs to be satisfied.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑛
∑

𝑖=1

𝑛𝑑𝑖 − 𝑑
2
𝑖

𝑛2 −𝑚
𝑠.𝑡 . 2𝑚 =

𝑛
∑

𝑖=1

𝑑𝑖

The expected time is maximized when the negative term, 𝑑2𝑖 is

minimized. As the constraint 2𝑚 =

𝑛
∑

𝑖=1
𝑑𝑖 exists, the term 𝑑2𝑖 is

minimized when 𝑑𝑖 = 2𝑚/𝑛. Hence,

𝐸 [𝑡𝑖𝑚𝑒] =

𝑛
∑

𝑖=1

𝑛𝑑𝑖 − 𝑑
2
𝑖

𝑛2 −𝑚
≤

2𝑛𝑚 −
𝑛
∑

𝑖=1
(2𝑚/𝑛)2

𝑛2 −𝑚
=

2𝑛𝑚 − 4𝑚2/𝑛2
𝑛
∑

𝑖=1
1

𝑛2 −𝑚

𝐸 [𝑡𝑖𝑚𝑒] ≤
2𝑛𝑚 − 4𝑚2/𝑛

𝑛2 −𝑚
=

4𝑚

𝑛

𝑛2/2 −𝑚

𝑛2 −𝑚

Replacing 𝑛2/2 with 𝑛2 in the numerator, we get,

𝐸 [𝑡𝑖𝑚𝑒] ≤
4𝑚

𝑛

𝑛2/2 −𝑚

𝑛2 −𝑚
≤

4𝑚

𝑛

𝑛2 −𝑚

𝑛2 −𝑚
=

4𝑚

𝑛
∈ O(

𝑚

𝑛
)

Thus, proved. □

Bootstrapping Tri Scheme through Landmarks: In Section 4.2,

we have developed the Tri Scheme, a scalable algorithm. Our goal

here is to study how Tri Scheme could be designed in conjunction

with landmark based solutions, such as, LAESA [36] to bootstrap Tri

Scheme. Landmark based solutions, as described in Related Works

is a pivot based solutions that use a specified number of nodes and

resolve the distances between them to obtain a tighter bound on

the rest. Recall our problem setting described in Section 3.1 that

assumes𝑚 edges are resolved at the beginning of the algorithm.

We use an initialization of the graph G by bootstrapping it with

LAESA inside every proximity algorithm, for different values of

𝑚. Later in the experiment section, Section 5 we shall show the

effectiveness of our schemes due to this initialization.

5 EXPERIMENTAL EVALUATION

Algorithms are developed in Python 3.6 and the experiments are

conducted on an Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz run-

ning a Linux distribution, Ubuntu 18.04.5 LTS using 64 GB. Our code

and data can be found at https://github.com/jeesaugustine/metric-

space-proximity-algo/.

5.1 Experimental Setup

5.1.1 Datasets. We use 3 real datasets, vary different parameters

considering various proximity problems, summarized in Table 1.

The actual pairwise distances (i.e., ground truth) are known.

5.1.2 Implemented Baselines. (1)We implement ADM [42] algorithm

which provides the exact upper, lower bounds and updates. We refer

to the baseline algorithm as, ADM. (2) We implement landmark based

algorithm LAESA [36]. (3) We implement TLAESA [35], a follow up

work of LAESA.

These baselines are compared with (i) DFT in Section 2.2, (ii)

SPLUB in Section 3 and, (iii) Tri Scheme in Section 4.2. We use

𝑘 = log(𝑛) landmarks unless otherwise mentioned.

5.1.3 Proximity Algorithms. We consider 3 classes of metric space

proximity problems i 𝑘NNG construction, ii Minimum Spanning

Tree Construction (MST) and, iii Clustering and evaluate how

they could benefit from our proposed approach in saving distance

computation and overall cost wrt multiple competitors.

i 𝑘 Nearest Neighbor Graph (𝑘-NNG) Construction: We

implement KNNrp, a popular and recent 𝑘-NNG proposed in [39]

that computes the 𝑘-NNG of a given set of objects. ii MST: We

implement the popular 𝑃𝑟𝑖𝑚’s [17] and𝐾𝑟𝑢𝑠𝑘𝑎𝑙 ’s [29] algorithm for

evaluation. iii Clustering:We implement two popular centroid

based swapping algorithms, 𝑃𝐴𝑀 [26] and 𝐶𝐿𝐴𝑅𝐴𝑁𝑆 [38].

5.1.4 Experimentation Goals. (Subsection 5.3) Analyzing Direct

Feasibility Test (through Prim’s Algorithm) to demonstrate its

effectiveness and limitations.

(Subsection 5.4) Comparison between proposed graph theoretic

techniques (SPLUB and Tri Scheme), and compare with ADM and

LAESA and TLAESA, on the following parameters. (i) Quality of

bounds and, (ii) In computation time.

(Subsection 5.5) Comparison between Tri Scheme and LAESA and

TLAESA, in saving distance calls for various proximity algorithms.

(Subsection 5.6)Comparison between Tri Scheme, LAESA, TLAESA,

and the original algorithm in overall running time by varying the

cost of distance oracle.

(Subsection 5.7) Varying proximity algorithms parameters 𝑙 and

𝑘 and its effect on CPU overhead and Distance Calls.

5.1.5 Evaluation Measures. Our main investigation here is to study

how SPLUB and Tri Scheme compare with ADM and LAESA in pro-

ducing distance bounds, as well as their effectiveness in saving

distance calls and overall running time inside different proximity

algorithms. 1 Relative Error & CPU Overhead: We present relative

error of the produced bounds of different algorithms wrt ADM. CPU
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Dataset Algorithm Num. Objects Num. of Edges Dimension Distance Function

SF POI 𝑘-NNG, Clustering, MST 21, 048 221, 498, 628 2 Google Maps API

Flicker1M 𝑘-NNG 10𝑘 49995000 256 Eucledian

UrbanGB 𝑘-NNG, Clustering, MST 360, 177 64, 863, 555, 576 2 Google Maps API

Table 1: Dataset Description

overhead is captured as the difference between the total time and

the total distance oracle time. 2 Percentage Save-ups: We compute

the percentage of the distance calls save-up of our algorithms wrt

the baselines. 3 Proximity Algorithm Completion Time: We capture

the overall running time of the proximity algorithms after they are

augmented with SPLUB, Tri Scheme, LAESA and TLAESA.

Additionally, we present some deeper analysis that compares Tri

Scheme with LAESA and ADM qualitatively and running time-wise.

Please note here that, for brevity, we only present a subset of the

results that are representative.

5.2 Summary of Results

1 Consistent with our theoretical analysis, Direct Feasibility

Test provides the largest savings in distance calls, better than the

best known algorithm (ADM) (2× improvement even for moderate

size graphs). However, this formulation is computationally expen-

sive, as discussed in Section 2.2, and thus, is limited to graphs of

smaller sizes, which are in the order of a few hundreds of edges.

2 On every proximity algorithm SPLUB produces the exact bounds

as ADM, while being significantly faster in computation time than

ADM. Consequently, the number of distance calls solicited is identical

to that of ADM but takes less time to complete. While ADM only runs

in smaller graphs (in the order of a few thousand edges), SPLUB can

be scaled easily to moderate sized graphs (a few hundred thousand

edges). ADM, a cubic algorithm, requires more than 2× more time

than that of SPLUB.

3 Tri Scheme turns out to be the unanimous choice to be used

in large scale third party applications where distance calls are ex-

pensive. Tri Scheme runs significantly faster in running time com-

pared to SPLUB with comparable quality of bounds. Compared to

LAESA and TLAESA, Tri Scheme produces tighter bounds at the ex-

pense of a marginal increase in CPU time. While the actual number

of calls saved depends on the proximity algorithm, under all set-

tings and algorithms, Tri Scheme savesmore distances compared to

LAESA and TLAESA. On average, Tri Scheme saves 42%(≈ 2.4×) and

36% distance calls compared to LAESA and TLAESA across datasets

and across the algorithms. However, for Prim’s using UrbanGB,

the savings go up to 70% and beyond for very large graphs with 33M

edges for LAESA and 62% for TLAESA. When used inside proximity

algorithms, Tri Scheme on an average takes only 40% of the time

compared to LAESA and 33% of the time compared to TLAESA mak-

ing it an excellent choice to be used as a plug-in. In some cases,

proximity algorithms using Tri Scheme take half the time of that

of using TLAESA.

5.3 Direct Feasibility Test (DFT)

We implementedDFT using the linear programming solver CPLEX3

through its Python API and integrated inside different proximity al-

gorithms. For brevity, we include results from the Prim’s algorithm.

3https://www.ibm.com/products/ilog-cplex-optimization-studio/

We compare the results with the exact state-of-the-art solution ADM.

The distance oracle considered for these experiments consumes

10−5s for obtaining a pairwise distance.

To illustrate concretely, for a graph with 45 edges, a variable is

defined per edge. Since each edge is normalized between [0, 1], this

process adds 90 linear inequalities to satisfy the ranges. Additionally,

for each triangle involving 3 edges, we add two constraints to satisfy

the triangle inequality. In summary, the total number of constraints

for solving DFT for a graph of 45 edges involve satisfying 450 linear

constraints. Clearly, DFT could only be implemented on very small

graphs and the results are presented in Section 2.2.

Figures 4a and 4b present the average of 10 runs of Prim’s algo-

rithm and compare DFT with ADM. Figure 4a exhibits that DFT con-

sistently requires a smaller number of distance calls compared to

ADM. With an increase in the number of edges, the percentage of

distance calls savings increases consistently for DFT(between 27%

and 58% empirically).

On the other hand, Figure 4b presents the CPU time of running

Prim’s using DFT. For graphs with 325 edges and 496 edges, it

takes about 3 hours and more than 8 hours, respectively. The com-

putational bottleneck lies in satisfying a massive number of linear

constraints during each run of DFT , limiting its use as a practical

solution in real-world settings.

To summarize, these experiments corroborate our theoretical

analysis, 1 DFT is an alternative formulation to the problem, pro-

duces tightest bounds, and outperforms ADM in saving distances

(43% on an average). 2 DFT incurs substantial CPU cost and is not

scalable to large graphs (takes 1.6 hours on an average for graphs

with a few hundreds of edges).

5.4 Tightness of Bounds and Running Time

Figure 3a demonstrates SPLUB produces the exact same bounds

(upper and lower) as ADM and the error bar is virtually collapsed.

Bounds produced by Tri Scheme(Figure 3b) are looser than ADM ,

however much tighter compared to LAESA and TLAESA. These re-

sults corroborate that the Tri Scheme is a practical yet viable

solution for our studied problems. Figure 3c and Figure 5a provide

additional insights: ADM , even though produces the best bounds, is

not scalable. Neither SPLUB nor ADM is suitable for larger graphs in

terms of CPU overhead. Figure 5a shows that even though LAESA is

the fastest among all the algorithms, the relative error is much

higher(Figure 3a).

5.4.1 Limitation of LAESA and TLAESA. Limitations of LAESA and

TLAESA, discussed in Section 4.2 are experimentally corroborated

in figure 5b. We experimentally observe that the optimal value

of the number of landmarks for LAESA and TLAESA for Prim’s al-

gorithm using SF dataset 1.9M configuration is 3 × log(𝑛). But

this varies largely across datasets and proximity algorithms and

there is no obvious way to determine this parameter. Additionally,

TLAESA maintains a tree data-structure which aids in estimating
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the upper and lower bounds, however, the construction of which

incurs additional distance computations.

5.5 Tri Scheme for Distance Counts

In this subsection, we turn the attention to our practical approach,

Tri Scheme, and study how it saves distance calls inside various

proximity algorithms wrt baselines LAESA and TLAESA.

These experiments confirm our previous findings. Proximity algo-

rithms augmented with Tri Scheme shows significant improvement

in saving the distance calls when compared with the other two base-

lines. We also note that as the size of the dataset grows the gap between

the number of calls made widens in the context of all proximity algo-

rithms.

We compare our results against the empirically found the best

(lowest) count for distance calls in LAESA and TLAESA.

5.5.1 Evaluation of MST Algorithms. We compare the classical

Prim’s and Kruskal’s algorithms for the MST problem with their

augmented versions through Tri Scheme varying number of ob-

jects. Table 2 and Table 3 present comprehensive results.

Column ‘TS-NB’ represents the number of oracle calls for the com-

pletion of Prim’s for Tri Schemewith no bootstrap. Column ‘Boot-

strap’ represents the number of oracle calls for bootstrapping with

LAESA. The percentage saving for the Tri Scheme in completion

of Prim’s with bootstrap wrt LAESA and TLAESA are given in cor-

responding Save(%) columns. The number of landmarks used for

bootstrapping can be found within parenthesis.

Save-ups is increased with increasing size of the datasets, shown

in bold as a percentage of distance calls saved in Tri Scheme com-

pared to LAESA and TLAESA, demonstrating the efficacy of Tri

Scheme. TS-NB outperforms LAESA and TLAESA always. While TS-

NB performs better than Tri Scheme in many cases, there are

certain configurations where the opposite is true in Table 3.

Figure 6a represent the distance save up. It is interesting to

note that, proximity algorithms, in general, are sensitive to the total

number of pairwise distances. The efficacy of Tri Scheme in saving

the distance calls is evident in both the figure and Tables.

5.5.2 Evaluation of Clustering. We compare the two 𝑙-medoid (𝑙 =

10) algorithms PAM and CLARANS with their augmented versions

with Tri Scheme and compare with the baselines. Overall, algo-

rithms augmented with Tri Scheme use on average one third the

number of distance calculations.

Figures 6c, 6d, 7a, 7b, and 7c exhibit that, as the number of

objects grows, the number of distance calculations increases, and

the save-up for Tri Scheme compared with baselines also grows.

We observe the maximum saving up of 36%(20%) for SF and a

save up of 55%(43%) for the UrbanGB datasets for LAESA(TLAESA).

We also note that the perceived large running time of PAM is due to

its inherent nature, and not due to Tri Scheme.

5.5.3 Evaluation of𝑘-NNG. The objective of this set of experiments

is to compare the vanilla KNNrp [37] (𝑘 = 5) with the KNNrp aug-

mented by the algorithmic scheme, Tri Scheme developed in this

work in saving distance calls. Figure 6b describes the number of
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UrbanGB Dataset [ Oracle Call Count ]

Prims Algorithm [ 𝑘 = log2 (𝑛)]

# of Edges Without Plug TS-NB Bootstrap Tri Scheme LAESA Save (%) TLAESA Save (%)

2016 2016 916 363 999 (6) 1097 (6) 8.93 1184 15.63

8128 8128 2819 868 2980 (7) 3343 (7) 10.86 3583 16.83

32640 32640 9454 2012 10017 (8) 15123 (18) 33.76 12718 21.24

130816 130816 29043 4563 30045 (9) 59619 (27) 49.60 38302 21.56

499500 499500 82419 9945 86199 (10) 160306 (30) 46.23 117906 26.89

1999000 1999000 259237 21934 280004 (11) 606517 (22) 53.83 462207 39.42

7998000 7998000 779707 47922 800985 (12) 2198589 (24) 63.57 1650752 51.48

Table 2: # of expensive Oracle Calls by Prim’s Algorithm with TS-NB, Tri Scheme , LAESA and TLAESA along with parameters

SF Dataset [ Oracle Call Count ]

Prims Algorithm [ 𝑘 = log(𝑛) ]

# of Edges Without Plug TS-NB Bootstrap Tri Scheme LAESA Save (%) TLAESA Save (%)

2016 2016 1216 363 1230 (6) 1408 (6) 12.64 1408 12.64

8128 8128 3681 868 3670 (7) 3813 (7) 3.75 4238 13.40

32640 32640 11966 2012 12081 (8) 13212 (8) 8.56 14102 14.33

130816 130816 40115 4563 40547 (9) 48317 (18) 16.08 46835 13.43

499500 499500 138179 9945 143122 (10) 182600 (40) 21.62 171003 16.30

1999000 1999000 372863 21934 384059 (11) 542937 (33) 29.26 499760 23.15

7998000 7998000 1326373 47922 1399769 (12) 2298327 (48) 39.10 2049026 31.69

Table 3: # of expensive Oracle Calls by Prim’s Algorithm with TS-NB, Tri Scheme , LAESA and TLAESA along with parameters
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distance calls made by the algorithm. The findings are similar to

other proximity algorithms.

5.6 Tri Scheme for Running Time

We present the end-to-end completion of the proximity algorithms,

when augmented by Tri Scheme, LAESA, and TLAESA by varying the

cost of distance computation. We observe that the overhead induced

by our algorithms, are nominal when compared with the results from

LAESA and TLAESA. However, when induced with expensive oracle

calls, owing to a large number of distance calls, the time spent in

completion is higher than the baseline algorithms.
5.6.1 Evaluation of MST Algorithms - Time. Figure 7d presents the

overall time taken by Prim’s varying oracle time. Tri Scheme, on

an average, saves time by 53%(only takes half the time) compared

to LAESA and 39% compared to TLAESA, even when each distance

computation takes 1.2s.
5.6.2 Evaluation of Clustering - Time. Figures 8a and 8b show the

running time of PAM and CLARANS (𝑙 = 10) in conjunction with Tri

Scheme, LAESA, and TLAESA varying oracle cost.

The overall time save-up of Tri Scheme is 39% wrt LAESA and

26%wrt TLAESA. The savings for PAM goes up to 59%with LAESA and

40% with TLAESA for an oracle of 2.5 seconds.
5.6.3 Evaluation of 𝑘-NNG - Time. Finally, we take the 𝑘-NNG

(𝑘 = 5) problem using Urban dataset with 1.99𝑀 settings. These re-

sults indicate that by leveraging triangle inequality Tri Scheme out-

performs the baselines.

5.7 Varying Proximity Parameters

Proximity algorithms are sensitive to their parameters of choice.

Clustering algorithms like PAM and CLARANS are required to accept

the number of clusters (𝑙 ) as a part of their inputs. Similarly, 𝑘NNG

needs the number of neighbours, 𝑘 .
5.7.1 Clustering (varying 𝑙 ) - Count, CPU overhead. Here we vary 𝑙

and compare the number of distance calls of Tri Scheme against

LAESA and TLAESA. Figure 8c presents the results of the PAM algo-

rithm. As the number of objects is fixed, increasing the number of

clusters results in more local minima for the PAM algorithm which

in turn makes the algorithm converge faster. Figure 8d presents the

results from the CLARANS algorithm which shows as the number of

clusters increases, the number of distance calls also increases.

Figure 9b and Figure 9c show the CPU overhead for PAM and

CLARANS algorithms respectively. As expected, when 𝑙 increases,

we see an increase in the CPU overhead in response to the number

of additional upper and lower bound comparisons.

5.7.2 𝑘-NNG (varying 𝑘)- Count and CPU overhead. We present

the results by varying 𝑘 for KNNrp algorithm here. Figure 9a shows

that the number of distance estimations increases with increasing

𝑘 , as the algorithm needs to resolve more candidates to determine

the nearest neighbours. Figure 9d shows the same effect in CPU

overhead, as described in Section 5.7.1.

6 RELATEDWORK

Our work mainly focuses on three key aspects. (1) The objects

are atomic (are not a collection of vectors) and defined in general

metric spaces. (2) The distance computation between pairs of objects

is expensive and a leading cost. (3) Designed solutions could be

integrated inside a variety of proximity problems and return exact

answers as that of the original algorithms.

The related work could be broadly classified into one of the three

kinds and our work fits the first one.

6.1 Metric Space Based

The state-of-the-art solution is proposed by Sasha and Wang [45]

that develops ADM to produce tightest upper and lower bounds of

distances that are then demonstrated to save up different querying

cost. However, the computational cost of ADM is O(𝑛3), making it an

impractical choice for repeated invocation.

Landmark based algorithms store partial information of nodes

in an array form to answer nearest neighbour queries in metric

space. The representative algorithms are AESA, LAESA [36, 41],

TLAESA [35] and variants of TLAESA [21, 34] which extend the

idea of pivot based methods in various ways. In AESA, all pairwise

distances are precomputed and stored in a matrix. In LAESA, an

extension to AESA, a set of base prototypes are chosen and all

the pairwise distances between them and reminder of the objects

are stored. In TLAESA and its variants, in addition to selected

base prototypes, the algorithms maintain a tree data-structure to

expedite the nearest neighbor search.

Pivot based algorithms select a set of pivots to divide the space

into smaller sub-spaces, grouping similar objects. BKT [10], a pivot

based data structure, is designed for similarity search which re-

cursively builds a tree based on the distance to other objects. FQT,
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Figure 9: (a) Effects of varying 𝑙(𝑘) on the number of distance calls for KNNrp (b,c,d) local CPU overhead on varying 𝑙(𝑘) (dis-

connecting the problems of distance compute and CPU compute and reducing distance compute (↓) at the expense of CPU

compute (↑) ) for PAM , CLARANS & KNNrp

FHQT [2], and FQA [11] are follow up works that offer improve-

ments to this. Vantage Point Tree(VPT) [47] index structure solves

the problem of nearest neighbor queries in general metric space.

Voronoi diagrams, commonly used in proximity queries in vec-

tor spaces, have inspired data structures in metric spaces, namely

GNAT [9] and M-tree [13]. GNAT [9] introduces an indexing struc-

ture for nearest neighbour queries in largemetric spaces.M-Tree [13]

is a balanced tree indexing structure for metric space similarity

search and the k-NN problems. M-Tree, which works by partition-

ing the space, is built in a bottom-upmanner, and has a fixed number

of objects in each node, giving rise to a balanced structure.

These aforementioned related works focus to reduce overall CPU

time and do not distinguish between distance computation cost and the

CPU time, unlike the focus of our research. Moreover, landmark based

require # landmarks as inputs, and these solutions are specifically

designed for the nearest neighbor search problems, thus, they do not

easily generalize to all proximity problems. Both ADM and landmark

based solutions are adapted to be used as baselines in Section 5.

6.2 Vector Space Based

Vector Space Based Methods use the coordinate information of

the objects to create data structures to answer a large spectrum

of distance queries, where distance may be based on Euclidean,

cosine similarity, general 𝐿𝑝 norms, and so on. Popular solutions

in low to moderate dimensional space include K-B-D-tree [40], kd-

tree [5], R-tree [19], R∗-tree [4], SS-tree[46] or more recent X-tree [6],

UB-tree[3], SR-tree [25]. All these methods use the domain object

feature vectors to measure the distance between objects and create

a similarity index. These indexes are primarily built to answer the

similarity queries.

In high dimensions, to address the curse of dimensionality, var-

ious randomized and approximation techniques have been pro-

posed, including Locality Sensitive Hashing [18, 23] and Locality

Preserving Hashing [24, 49], both bucketing similar objects with

high probability, and Random Projections [30, 31], which projects

high dimensional objects to a low dimensional projection to enable

similarity search.

These approaches are specifically designed for vector space proxim-

ity problems, and do not adapt to general metric spaces, as objects in

general metric spaces do not have conveniently available co-ordinates

or features/dimensions - hence cannot be modelled as vectors. More-

over, the high dimensional approaches produce approximate answers,

whereas, our work focuses on returning exact answers for proximity

problems.

6.3 Metric space Transformed into Vector Space

Embedding Spaces commonly used in transforming the given set

of objects in metric space to a vector space is another common

approach. Metric Embedding [33, 44] and Multidimensional Scal-

ing [16] are some of the representative techniques in that space.

After transformation, these methods produce approximate distances

between objects, leading to approximate answers for the proximity

problems. In contrast, our focus is to return exact answers.

7 CONCLUSION AND DISCUSSIONS

In this work, we propose a suite of principled solutions that trade-off

between tightness of the produced bounds and computational time

to minimize distance computation cost for various proximity prob-

lems in general metric spaces. Our proposed algorithms range from

expensive linear inequality based exact bounds, to graph theoretic

approaches producing exact and approximate bounds. However, our

proposed techniques, when used inside the proximity algorithms

always return exact results. We compare our designed solutions

conceptually and empirically wrt a broad range of existing works

through comprehensive experimentation.

We believe that our proposed framework adapts to more sophis-

ticated optimization problems, related to graph partitioning, facility

allocation, traveling salesman problems, just to name a few. The

idea would be to substitute expensive distance comparison within

these algorithms by our proposed upper and lower bound compu-

tation techniques to see if that serves the purpose. We intend to

study these aspects in the future.
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