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ABSTRACT

With the proliferation of the Internet of Things (IoT) devices, Zigbee
is widely adopted as a resource-efficient wireless protocol. Recently,
severe vulnerabilities in Zigbee protocol implementations have
compromised IoT devices from different manufacturers. It becomes
imperative to perform security testing on Zigbee protocol imple-
mentations. However, it is not a trivial task to apply the existing
vulnerability detection techniques such as fuzzing to Zigbee proto-
col implementations. In particular, it remains a significant obstacle
to deal with low-level hardware events. Many existing protocol
fuzzing tools lack a proper execution environment for the Zigbee
protocol, which communicates via a radio channel instead of the
Internet.

To bridge the above gap, we develop a device-agnostic fuzzing
platform named Z-Fuzzer to detect security vulnerabilities in Zigbee
protocol implementations. Z-Fuzzer provides a software simulation
environment with pre-defined peripherals and hardware interrupts
configurations to simulate Zigbee protocol execution on real IoT
devices. We first extend the existing protocol fuzzing framework’s
capabilities with a proxy server to bridge communication with the
Zigbee protocol execution. Second, we generate more high-quality
test cases with code-coverage heuristics. We compare Z-Fuzzer
with advanced protocol fuzzing tools, BooFuzz and Peach fuzzer,
on top of Z-Fuzzer’s simulation platform. Our results show that
Z-Fuzzer can achieve higher code coverage in a mainstream Zig-
bee protocol implementation called Z-Stack. Z-Fuzzer has detected
more vulnerabilities using fewer test cases than BooFuzz and Peach.
Three of them have been assigned CVE IDs with high CVSS scores
(7.5~8.2).
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1 INTRODUCTION

With the increasing popularity of the Internet of Things (IoT) de-
vices, Zigbee protocol [4] has become a dominant wireless protocol
to reduce the power and memory cost of IoT devices. It has been
widely adopted in home automation, green power, and manufac-
turing [8, 27, 42]. The Zigbee protocol transmits data through the
radio channel instead of the Internet; thus, it has a close dependency
on an embedded device’s hardware configuration. The Zigbee pro-
tocol is defined by the Zigbee Alliance [5] with various security
services that offer a range of options within a Zigbee network [6].
Recent works have disclosed the weaknesses and vulnerabilities of
different Zigbee stack implementations [11, 17, 36, 43, 50]. These
vulnerabilities can be exploited to launch a DDoS attack or a re-
mote code execution to Philips lighting system that utilizes the
Zigbee protocol. Even though some previous security vulnerabil-
ities have been addressed in the Zigbee protocol’s latest version,
an automated bug-finding tool is still missing. Therefore, detecting
security vulnerabilities from Zigbee protocol implementations is
necessary and of great practical significance.

Fuzz testing (fuzzing) [46] is a popular security testing technique
to discover software vulnerabilities by executing the target program
with random inputs. AFL [53] is a widely used grey-box fuzzing
platform that leverages code-coverage heuristics to guide test input
generation. It can either instrument source code of software under
test if available or execute a closed-source binary file with QEMU
emulation platform [14] to obtain dynamic instrumentation output.
Many advanced fuzzing approaches have extended AFL capabil-
ities [15, 23, 39]. However, it is not a trivial task to apply these
fuzzing approaches to Zigbee protocol implementations. Firstly,
AFL-based fuzzers could violate compiler examination when in-
jecting instrumentations to the Zigbee protocol’s source code if
available. Zigbee protocol vendors generally develop the proto-
col for specific embedded devices using a particular development
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toolchain [24]. In terms of protocol availability, vendors deploy
compiler checks in their implementations to prevent compilers that
are not in the supported list, especially the general compilers (e.g.,
GCC and LLVM) used by most AFL-based fuzzers.

Moreover, when the source code of software under test is un-
available, some existing fuzzing methods can fuzz the software’s
binary file in a simulation environment [22, 34, 44, 56]. QEMU[14]
is a widely adopted software emulation platform by these fuzzers.
However, those approaches cannot provide a proper execution en-
vironment for the Zigbee protocol. The Zigbee protocol is usually
executed in the embedded devices that are system-on-chip (SoC)
and baremetal containing a single control loop for scheduling tasks
and handling events [24]. Hence, it is not feasible to fuzz the Zigbee
protocol on the simulation platforms that requires the presence of
a Linux kernel or an abstraction layer [34, 37, 44, 52, 56]. Though
some QEMU-based embedded fuzzer [22] also supports baremetal
programs and various embedded CPU types, they currently do not
support devices that can execute different Zigbee protocol imple-
mentations required by vendors [40]. As the Zigbee protocol is
developed for specific devices by different vendors, the protocol
binary file cannot even boot on QEMU if the required devices are
not supported. Additionally, the Zigbee protocol stack interacts
with events triggered by particular peripheral interrupts, which
are not supplied in existing solutions [16]. The same peripheral
can also be configured differently on various devices with different
interrupts [22]. It requires significant engineering efforts for the
existing simulation platform to add support for all device-specific
peripherals and new embedded chips, if not impossible.

In this paper, we develop Z-Fuzzer, a device-agnostic protocol
simulation platform to enable the fuzz testing of Zigbee proto-
col implementations. Z-Fuzzer consists of a fuzzing engine and
a test harness for executing the protocol stack. Z-Fuzzer firstly
aims to generate high-quality test cases that satisfy the protocol
packet format. Thus, we augment grammar-based fuzzing [25] with
coverage-guided feedback to generate high-quality test cases and
prioritize them to favor finding vulnerabilities.

The test harness simulates the execution environment for the
Zigbee protocol stack and analyzes the code coverage feedback.
Most Zigbee protocol manufacturers have released their protocol
stack source code to encourage the IoT development community
contributions. Given the implementation’s source code, we ana-
lyze it to construct an execution environment with the required
system configuration in the test harness. To execute the Zigbee pro-
tocol stack, we utilize an industrial embedded device development
platform, IAR Embedded Workbench [47], to simulate the embed-
ded device. Many Zigbee protocol vendors use the IAR toolchain,
which provides a compiler, a linker, and a device simulator. The
software simulator supports most embedded devices in the current
IoT market across various device vendors (e.g., Samsung, Toshiba,
and Texas Instruments). The IAR Workbench has also pre-defined
a set of device-specific hardware interrupt/peripheral configura-
tions to fully simulate the embedded device. As the simulator does
not provide a network interface to transmit test messages, we also
develop a proxy server to bridge the communication between the
fuzzing engine and the simulator. The test harness monitors the
simulator execution result to collect memory crashes and calculates
the code coverage for every execution. Z-Fuzzer can detect explicit
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memory crashes that are returned with crash call stacks from the
simulator.

We have implemented Z-Fuzzer and evaluated its effectiveness
in detecting security vulnerabilities. In terms of fuzzing strategy,
we select two state-of-art protocol fuzzing platforms, BooFuzz [38]
and Peach [49], as our comparative tools. BooFuzz is the successor
of industry-standard protocol fuzzer Sulley [21], and Peach [49] is
a commercial protocol fuzzer that has been widely used. We run
BooFuzz and Peach on top of our Zigbee protocol simulation plat-
form and compare them with Z-Fuzzer by fuzzing Z-Stack [29], a
mainstream Zigbee protocol implementation developed by Texas
Instruments (TI), for which the source code is available. The re-
sults indicate that Z-Fuzzer effectively increases code coverage and
detects security vulnerabilities. Z-Fuzzer has identified six unique
previously unknown vulnerabilities in Z-Stack implementation
with fewer test cases than BooFuzz and Peach. We have reported
all of the new vulnerabilities to TI. Three of these vulnerabilities
have been assigned CVE IDs with high CVSS scores (7.5~8.2) [20]
at the time of writing, while others are still under review. Our work
sheds light on detecting the Zigbee protocol vulnerabilities in a soft-
ware simulation environment without accessing a physical device.
Overall, we make the following contributions.

o Z-Fuzzer provides a device-agnostic fuzzing platform for Zigbee
protocol implementations. Z-Fuzzer uses a full software simula-
tor and includes a proxy server that facilitates communication
between the fuzzing engine and the simulator.

e We improve the test generation process of the grammar-based
fuzzing by leveraging code coverage information as feedback to
generate higher-quality test cases. Compared to BooFuzz and
Peach, Z-Fuzzer can generate fewer test cases while achieving
higher code coverage.

e We have discovered six previously unknown vulnerabilities
in Z-Stack. Three of them have been assigned CVE IDs with
high-severity ratings.

Open source. To facilitate the reproducibility of the research re-
sults, we release Z-Fuzzer’s source code, which is publicly available
at https://github.com/zigbeeprotocol/Z-Fuzzer.

2 RELATED WORK

As Z-Fuzzer is a fuzzing platform of the Zigbee protocol, in this
section, we discuss related work in fuzz testing and security analysis
of Zigbee.

2.1 Fuzz Testing

Fuzz testing is a widely used technique to detect vulnerabilities.
In recent years, fuzzing with AFL [53] and its extension tools like
AFL++ [23] has become famous for automated security analysis.
The fuzzers utilize code-coverage heuristics to guide their muta-
tion process. Unfortunately, they fail to test the source code of the
Zigbee protocol [4]. The Zigbee protocol is developed by different
protocol vendors using some particular toolchains. They enforce
embedded-system-specific compiler examinations in their imple-
mentations, which prevent instrumentations of AFL-like fuzzers
using general compilers such as GCC and LLVM. In contrast, Z-
Fuzzer utilizes the embedded compiler of the IAR Workbench [47]
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to inject instrumentations in the source code, which most Zigbee
protocol vendors support.

Fuzzing on IoT embedded devices is also challenging due to the
strong dependency on the device hardware configuration. Many
existing researches [22, 34, 37, 44, 56] integrate an emulator to em-
ulate IoT firmware with their fuzzing tools. A notable emulator
is QEMU [14] which provides user-mode emulation and full em-
ulation for a variety of embedded devices. AFL QEMU mode [54],
Frankenstein [44] and BaseSAFE [34] utilize QEMU in user-mode,
which require presence of Linux kernel or an abstract layer. Some
researches [22, 37, 56] propose hybrid solutions that combine user-
mode and full emulation together.

However, none of them can be directly applied to the Zigbee
protocol execution due to the insufficient simulation environment
of QEMU for the Zigbee protocol. First, the Zigbee protocol is usu-
ally executed on ARM-based Systems on Chip (SoC) devices with a
baremetal system. It is infeasible to simulate the protocol firmware
with the fuzzers in QEMU user-mode that requires embedded OS.
Although QEMU also supports the baremetal program, few embed-
ded devices supported by QEMU are compatible with the Zigbee
protocol. For example, QEMU currently supports two ARM Cortex
M3 microcontrollers from Texas Instruments (TI) [41]. TI also de-
velops a Zigbee protocol implementation, called Z-Stack [29], for
some particular ARM-M3 embedded boards which do not contain
the devices supported by QEMU. Due to the strong dependency
on hardware configurations (e.g., peripheral interrupts and off-site
sensors), even the same SoC on different machines can still vary
further. As the required embedded platforms by protocol vendors
for Zigbee are not supported, QEMU could fail to boot the Zigbee
system image [41]. In contrast, the IAR simulator supports various
embedded devices from different vendors that can execute Zigbee
system images. It has also pre-defined a set of device-specific hard-
ware interrupt/peripheral configurations to properly simulate the
embedded device for the Zigbee protocol.

2.2 Zigbee Security

Various approaches to analyze the security problems of the Zig-
bee protocol exist. Z3Sec [36] by Morgner et al. and Snout [35] by
Mikulskis et al. are penetration platforms to assess existing vulner-
abilities in Zigbee by packet replaying and spoofing. IoTcube [31]
and beSTORM [45] are developed to analyze the security of the Zig-
bee protocol on particular embedded devices. Akestoridis et al. [3]
also proposed a security analysis tool, called Zigator, to analyze en-
crypted Zigbee packets for selective jamming and spoofing attacks.
These security analysis applications are black-box approaches that
monitor and manipulate Zigbee network traffic to detect security
issues in Zigbee.

Ronen et al. [43] proposed an attack model that exploits an
existing bug in a particular protocol implementation to perform
over-the-air device update with malicious firmware. The proposed
model can launch massive DDoS attacks in smart lighting systems.
In terms of fuzzing Zigbee, Cui et al. proposed two fuzzing plat-
forms for Zigbee based on a finite state machine [18] and a genetic
algorithm [19]. Unfortunately, both of these fuzzers are not open
source, so we cannot compare their performance.
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Compared to the above security exploitation works, Z-Fuzzer
aims to detect unknown vulnerabilities in the Zigbee protocol imple-
mentations’ source code rather than the real-time Zigbee network.
It does not require physical devices and specific knowledge of the
underlying hardware design. Our experiment results show that
the protocol stack’s high-layer vulnerabilities can also lead to cata-
strophic failures and risks in the IoT application’s functionalities.

3 BACKGROUND

In this section, we first provide the background information neces-
sary to understand the Zigbee protocol in Section 3.1. Then, we in-
troduce the status quo of protocol fuzzing techniques in Section 3.2
and their limitations, which motivate us to develop our fuzzing
platform. Finally, we discuss the problem scope and assumptions
in Section 3.3.

3.1 Zigbee Protocol

Zigbee is a low-cost, low-power-consumption, two-way wireless
communication protocol [6]. The Zigbee Alliance defines the oper-
ation of a Zigbee network and the protocol specification [5].

The Zigbee protocol stack, as shown in Figure 1a, is designed
as a 4-layer stack on top of the IEEE 802.15.4 standard. The Zigbee
Alliance defines the upper two layers, i.e., Application Layer (APL)
and Network Layer (NWK). The IEEE 802.15.4 standard defines
Medium Access Control Layer (MAC) and Physical Layer (PHY).
They aim to support packet transmission via the radio channel
in a Zigbee network. The APL is responsible for the application-
level functionalities, whereas the NWK layer manages the Zigbee
network and forwards packets.

Figure 1b shows a prototype of a message exchange between two
Zigbee devices. The manufacturer’s application in the controller
can initiate a service request with commands in Zigbee Cluster
Library (ZCL), which are defined to perform device functionalities.
The ZCL then sends the request to the sub-layers. The message is
transmitted over the air. After receiving the message, the ZCL in
the end device processes and passes it to the upper application’s
request for a response.

From the user’s perspective, the ZCL is an application layer
protocol and the Zigbee protocol stack’s main library to perform
all of the device’s functionalities. Therefore, we use ZCL as a case
study for fuzzing the Zigbee protocol implementation in this paper.

3.2 Protocol Fuzzing

Many black-box protocol fuzzing approaches are proposed and
developed to generate high-structured packets that conform to net-
work protocol format requirements. These fuzzing approaches (e.g.,
SPIKE [2], Sulley [21], BooFuzz [38], AutoFuzz [26], and SNOOZE [13])
widely adopt grammar-based fuzzing [25]. They construct test in-
puts from scratch according to the input specifications that define
data format and integrity constraints.

These protocol fuzzers generate protocol frames with abstract
representation blocks, which is also called block-based protocol repre-
sentation [1]. A block is an abstract set organizing several primitive
data or nested blocks which conforms to protocol format. With the
format definition script, the fuzzer represents the protocol message
with primitive data following their placements.
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(a) Zigbee protocol stack overview [6].
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(b) Zigbee protocol message exchange [28].

Figure 1: Zigbee protocol communication.
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Number

(a) ZCL frame format [7].

1 s_initialize("ZCLMessage")

2 s_group("frame_control", values=<USER_GIVEN_VALUES>)

3 with s_block("manuCode", dep="frame_control", dep_values =
<USER_GIVEN_VALUES>):

4 s_word(0, endian='<', name="manu")

5 s_byte(1, name="tranSeq")

6 s_group("commandld", values=<USER_GIVEN_VALUES>)

7 with s_block("payload", dep="command|d", values =
<USER_GIVEN_VALUES>):

8

(b) Message construction script.

Figure 2: Example of ZCL message construction with block-
based representation. Each message field is generated in the
order of their placement in the message format.

Figure 2b shows a practical example of representing the ZCL mes-
sage with the ZCL frame format displayed in Figure 2a. The entire
ZCL message is initialized as a block with the name ZCLMessage
(line 1 in Fig 2b). Each message field is represented as primitive data
based on their types (line 2, 4, 5, 6, and 8 in Fig 2b). If a message field
has user-specific values, then it is represented as a group primitive
data, e.g., the field frame control is defined as line 2 in Fig 2b with
the user-given values. Besides, some message fields may depend on
another field. Such a field is represented within a block primitive
data that specifies the field’s dependency constraint (line 3 and
7 in Fig 2b). For example, the field Manufacture Code depends on
the field Frame Control. It is generated in a test message only if
the value of the field Frame Control satisfies the user-specific re-
quirement. Then it is represented within the block primitive data
frame_control (line 3 in Fig 2b).

Although these protocol fuzzers with block-based representation
defines and generates highly structured input formats, they have
a disadvantage. The quality of test input generation is low due to
the lack of feedback [12, 33]. They do not prioritize any test cases
to improve fuzzing performance. Many interesting test cases are
discarded for further fuzzing, which would have achieved a new
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FC Manu TranSeq CmdID Payload FC Manu TranSeq CmdID Payload
00 00 01 00 00 00 01
08 00 o1 00 00 00 01 m

(a) Test Case 1 (b) Test Case 2

Figure 3: Example of mutation in protocol fuzzing.

code coverage in previous executions. Here we use an example run-
ning the ZCL message on an existing protocol fuzzing framework
to explain the limitations.

In a fuzzing iteration, the fuzzer only mutates a single message
field. Figure 3 shows that test case 1 is generated by fuzzing Frame
Control (FC) with the actual value 08, which has triggered new
code. Once the mutation on this field completes, the fuzzer resets
it to its original value 00. Then, the fuzzer continues to mutate
the following fields; test case 2 is generated by fuzzing Command
Identifier (CmdID), in which the actual value @5 executes another
new line of the statement.

Following this example, we make an observation. Messages with
the actual value 08 or 05 have increased code coverage, and they
should have been retained for further fuzzing, which may exercise
more statements and paths in the target program. Based on our
static analysis of the Zigbee protocol source code, we found the
message with these two interesting values ( @8 & 05) executes
a particular if condition in the code. However, such a test case
is missing during the fuzzing process. The common limitation of
grammar-based protocol fuzzing tools is that they do not consider
heuristic feedback [12, 33].

As motivated by the above observations, we leverage code-coverage
heuristics to augment the existing protocol fuzzing process. When
a test case executes a new code, we store it as a favored test case
with the interesting value that increases the coverage. In a new
fuzzing cycle, we mutate the favored test cases first by keeping
the interesting values and mutating other fields to generate more
valuable test cases. We will explain more details in Section 4.

3.3 Problem Scope and Assumptions

This paper aims at discovering vulnerabilities in the Zigbee pro-
tocol implementations without the real IoT devices; thus, the IoT
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Algorithm 1: Z-Fuzzer Protocol Fuzzing Algorithm

Input :Input format script S, Program under test $
Output:Seeds that crash the program crash,

The cumulative code coverage cumCoverage
crash « 0
blocks « Initialize(S)
top_rated < 0

[

[N}

©

'S

cumCoverage < 0
while true do
6 if top_rated not empty then

[

7 favored « Select(top_rated)
8 seed «— Mutate(favored)
9 if favored.was_fuzzed then

10 ‘ top_rated < top_rated — favored
1 else

testcase < Choose(blocks)

seed «— Mutate(testcase)

end

12

13
14
15 coverage, result «— RunTarget(P, seed)
16 if isInteresting(coverage, result) then
top_rated <« top_rated U seed

cumCoverage «— CalCoverage(coverage)

17
18
19 crash « crash U result

20 end

21 end
22 return crash, cumCoverage

application manufacturers can take corresponding actions before or
during their development phase to avoid security risks. Therefore,
we require the source code of the target protocol implementation,
which is easy to obtain from the protocol stack vendor in practice.
Currently, we focus on generating high-quality ZCL messages for
fuzzing the Zigbee protocol due to its significance in performing
device functionalities. As we will show, this topic is challenging
enough in its own right. Given the protocol specification, our frame-
work can be extended to test other types of Zigbee messages with
small engineering efforts.

4 DESIGN AND IMPLEMENTATION

In this section, we present the details of the design and imple-
mentation of Z-Fuzzer. We first discuss the challenges of Z-Fuzzer
design and our solutions. Next, we introduce Z-Fuzzer’s protocol
fuzzing algorithm. Then, we present detailed implementations of
core components in Z-Fuzzer to address the challenges.

4.1 Challenges in Z-Fuzzer Design

The goal of Z-Fuzzer is to detect vulnerabilities in the Zigbee pro-
tocol implementations without the real embedded devices; that
is, simulating the execution of the Zigbee protocol in a proper
software environment. Most existing IoT firmware simulation ap-
plications encounter obstacles to execute the Zigbee protocol due
to the diverse underlying hardware and system configurations. The
Zigbee protocol interacts with the events triggered by peripheral
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interrupts varying in different embedded devices. Unfortunately,
existing embedded simulators have insufficient knowledge to simu-
late all of the peripheral interrupts. Besides, the Zigbee protocol is
usually executed in a baremetal embedded device. The system can
be customized based on particular embedded devices required by
manufacturers that are not supported by most existing simulators.
Therefore, we need to develop a proper software execution envi-
ronment to simulate the peripheral interrupts without considering
the underlying hardware of specific embedded devices.

Moreover, we design our framework based on grammar-based
fuzzing with block-based representation that has been widely used
in existing protocol fuzzing frameworks [2, 13, 21, 26]. This ap-
proach aims to construct test messages, which satisfy the protocol
frame format requirements. However, it has a limitation on the
quality of test inputs. It does not prioritize test cases with execu-
tion feedback for further fuzzing, which could cover the target
program’s more execution paths. To effectively detect vulnerabil-
ities in the protocol implementations, we need to consider such
feedback from the protocol execution and generate more valuable
test inputs.

Solutions. To tackle these challenges, we design Z-Fuzzer with
two main components: a test harness and a mutation engine. The
test harness consists of an execution engine to run the Zigbee
protocol stack with the generated test cases in a simulator and a
coverage report parser to calculate cumulative coverage informa-
tion. We leverage the coverage feedback to retain the interesting
test cases for further fuzzing. Additionally, we develop a proxy
server in the execution engine to bridge the communication be-
tween the simulator and the mutation engine without forming an
entire Zigbee network.

4.2 Protocol Fuzzing Algorithm

The fuzzing engine of Z-Fuzzer adopts the grammar-based fuzzing
using the block-based protocol representation. The overall fuzzing
process is displayed in Algorithm 1.

With a message format script, Z-Fuzzer constructs a list of Blocks
containing all message fields’ representations with their constraints
(line 2). Initially, the fields are selected from this list to generate
a test case (line 13). We now use an additional list of top_rated to
record favored test cases that increase code coverage in previous
executions. If a favored test case is waiting to be mutated, we
prioritize the favored test case for the following mutations (line 7).
The selected favored test case is the one that has covered the most
number of edges in the previous executions.

The message fields that are selected to generate a test case are
mutated according to their selection sequence. When a favored test
case is selected, the interesting values in this test case that result
in coverage increment are retained. Z-Fuzzer then mutates other
field values in the test case in sequential order of their placements
during the initialization phase. If a message field is defined with
user-specific values, Z-Fuzzer sequentially selects these values for
mutation. Otherwise, the fuzzer mutates it with the pre-defined
fuzzing dictionary. If all of the message fields of a favored test
case are completely mutated, we label the favored test case as
was_fuzzed and remove it from top_rated list (lines 9 - 10). Z-
Fuzzer completes the entire fuzzing process when no favored test
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Figure 4: The workflow of Z-Fuzzer framework.

cases are pending in top_rated, and all of the message fields in
Blocks have been fuzzed.

A test case is evaluated based on code coverage, including line
coverage and control-flow edge coverage. If the test case leads to the
code coverage improvement, we save it in the top_rated list with
the associated interesting values that increase coverage for future
mutations (line 18). Otherwise, the test case is ignored. Z-Fuzzer
also monitors the execution results and records the test cases that
result in an execution error.

4.3 Implementation Details

Figure 4 presents the workflow of Z-Fuzzer framework. It consists
of five components: an offline parser, a test case generator, a mutation
engine, an execution engine, and a coverage report parser.

4.3.1 Test Case Generation and Mutation. We use Zigbee Clus-
ter Library (ZCL) as a case study to demonstrate our framework.
The format script represents ZCL message format defined in the
Zigbee protocol specification, as displayed in Figure 2a.

All of the message fields of a ZCL frame are represented as
primitive data, e.g., bit, byte, integer, string, or random data, in the
format script. Some message fields are defined without user-specific
types and values. We represent such fields as string primitive data,
e.g., a variant attribute data field in the ZCL payload. For other
message fields, we represent them based on their defined length
and values, such as bit, byte, and word. All of the representations
are saved in a list of primitive data. The test case generator then
constructs a test case by selecting corresponding primitive data
from the list based on the format definition and the constraints (@)
in Figure 4).

If favored test cases are pending for mutation, Z-Fuzzer selects
one for the following fuzzing; otherwise, it selects a test case that
is generated with the primitive data list (@) in Figure 4). The se-
lected favored test case has covered the most number of edges in a
previous execution and has not been fully mutated. Here an edge
is a connection between two basic blocks in a control flow graph
(CFG) of the target program. We add a flag skip_mutation to the
primitive data in the favored test case in which the interesting value
increases the code coverage. With this flag, the primitive data will
be retained during the following mutation process.

All of the message fields selected to generate a test case are
mutated according to their selection sequence (@) in Figure 4).
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Figure 5: Example of mutation on a favored test case

When a favored test case is selected, the mutation engine will skip
the mutation of the interesting values if the flag skip_mutation is
present. Moreover, other primitive data representing the following
fields are mutated in sequential order. Z-Fuzzer fuzzes primitive
data assembling a typical test case based on the primitive data’s
selection order. If a user defines a message field with a list of possible
values in the format script, Z-Fuzzer will sequentially select these
values for mutation. Otherwise, the mutation engine mutates it with
the pre-defined fuzzing library. The favored test case is removed
from the corpus when all its message fields are entirely mutated.
Z-Fuzzer completes the entire fuzzing process when no favored test
cases are pending, and all of the test cases in the corpus have been
fuzzed. The mutated input is then sent to the execution engine for
testing at runtime (@) in Figure 4).

Example. Figure 5 shows an example to explain the mutation of
the favored test cases. Suppose the favored test case 1 is generated
when we fuzz the field FC to the value 04. The test case 1_1 is then
generated based on this favored test case, which results in new
code coverage. It also exercises more edges than the favored test
case 1 and therefore becomes the new favored test case 2. Both
interesting values 04 and @1 are recorded. We now fuzz the favored
test case 2 on its following fields: TransSeq, ComdID, and Payload.
Assume TranSeq has N possible values, CmdID has O values, and
Payload has M values in their fuzzing libraries. We will generate
(N + O + M) new test cases in total because we mutate a single
primitive data in each fuzzing iteration. The mutation of favored
test case 2 is regarded as completed once all of those values have
been rendered. If no more favored test cases are better than the
favored test case 1, we resume its previous mutation process to
continue generating test case 1_2 rather than starting from scratch.
This process is repeated until all of the message fields are fuzzed.

4.3.2 Execution Engine. The execution engine is responsible for
executing the Zigbee protocol stack with the test cases, consisting of
a local proxy server and a simulator. The local proxy server is used
to bridge the communication between the mutation engine and the
simulator through a socket connection. It also saves the received
message in a file for later processing by the protocol stack. We
also develop a stack driver to initialize proper system configuration
based on the source code of target protocol implementation. We
compile the driver with the protocol stack as a single binary file
and execute it in the simulator.

Embedded Device Simulator. We utilize the simulator from
IAR Embedded Workbench [47] to fully simulate a physical embed-
ded device, which supports different microcontroller architectures.
We choose the ARM version since most IoT devices are built on this
architecture. The IAR Workbench contains a development toolchain,
particularly for IoT devices, including a specific compiler, linker,
debugger, and simulator. Currently, the IAR Workbench for ARM
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Listing 1: Example of interrupt setting in a macro file and
an interrupt handler in the stack driver.

1 « Interrupt Settings in Macro File«

2 execUserSetup () {

3 //Read the incoming message from the file

4 _fileHandle __openFile("file \\location","r");
5 Set up interrupt

6 _interruptID __orderInterrupt ("UARTR VECTOR"

,100000,60000,0,1,0,100);
7 //Set up the immediate breakpoint
8 _breakID __setSimBreak ("SBUF","R","Access()");

9 }

10

11 Access(){

12 _var _msg;

13 if (__readFile (_fileHandle ,&_msg)==0){

14 SBUF=_seedData;

15 }

16}

17

18 //The interrupt handler in the stack driver.

19 #pragma vector=UARTR _VECTOR

20 __interrupt __root void UartReceiveHandler(void){
21 uint32 data;

22 //Save the value from the serial data buffer

23 data=SBUF;

24

25}

architecture supports 50 different ARM CPUs and hundreds of de-
vices from 42 IoT manufacturers [47], which are not supported by a
generic simulator such as QEMU. Most embedded devices required
by different Zigbee protocol vendors for their implementations are
supported in the IAR device list. We also observe that IAR provides
diverse device-specific description files, including memory layout,
hardware, and peripheral interrupts. We can simulate the embedded
device to execute the Zigbee protocol with the pre-defined device
description files without considering the underlying hardware de-
sign.

Before executing the Zigbee protocol stack, we first build the
stack driver with the protocol stack implementation as a single
binary file using the IAR compiler and the linker. The IAR C-SPY
Debugger communicates with the simulator through a built-in sim-
ulator driver [48]. The IAR Workbench also defines various flash
loader configurations to download the executable file for all of the
supported embedded devices. According to the device description
file and the flash loader configuration, the simulator loads the bi-
nary file to the corresponding RAM location for execution. The
proxy server invokes the C-SPY debugger as a child process to run
the Zigbee protocol stack. Additionally, the C-SPY debugger also
provides several plugin modules, such as a coverage report and call
stack, which we can leverage to guide our fuzzing process.

Stack Driver. The Zigbee protocol is usually executed in an
environment that handles events triggered by peripheral interrupts.
Though the execution environment can be customized by different
protocol vendors, some system properties defined in the protocol
specification are mandatory for all implementations. We analyze
the sample project provided in the source code of the target protocol
implementation. Then we develop a stack driver to initialize the
protocol stack system, including memory initialization and basic
functionalities of a simulated embedded device. The stack driver
then invokes the target protocol implementation with the received
message for execution.
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In practice, the Zigbee protocol handles the system events when
an on-chip communication peripheral interrupt (e.g., UART) is
triggered. Hence, we also develop an interrupt handler in the stack
driver to simulate the UART interrupt by reading the incoming
message from a file using the C-SPY Macro System in conjunction
with immediate breakpoints [48]. We set up a repeatable interrupt
and an immediate read breakpoint in the macro file according to
the device description files. Whenever the interrupt is triggered, the
breakpoint temporarily suspends the execution and reads a value
from the file, storing an incoming message from the proxy server.
The interrupt will be disabled if no values are available in the file.
Note that different devices may configure a different register for
the interrupt; Z-Fuzzer can set the correct register in the handler
based on the device description file.

We present an example of an interrupt setting in the macro file
and the interrupt handler in Listing 1. This example simulates the
UART interrupt on an embedded device, CC2538, a popular device
for IoT application development. The function execUserSetup() is
a built-in function in the Macro System that is called when the
system starts up (line 2). Inside this function, we set a file handler
to read the incoming message (line 4), a UART interrupt with the
function __orderInterrupt() (line 6), and an immediate read break-
point with the function __setSimBreak() (line 8). The interrupt will
be activated after 100000 system cycles and repeat every 60000
cycles. When the interrupt is triggered, the immediate breakpoint
is enabled on SBUF, which is a data buffer to save the data received
from UART. Rather than collecting data from the actual peripheral
device, we simulate the operation by reading the incoming message
from the saved file by the proxy server (line 11-16). Besides, we
define the interrupt handler in the stack driver with the keyword
vector=UARTR_VECTOR, which is the same interrupt variable con-
figured in the macro file (see lines 6 and 19). The handler can directly
access the UART’s data buffer (SBUF) to read the data and save it
to a variable for further use. In practice, the name UARTR_VECTOR
of the UART peripheral device and its data buffer SBUF will be
configured differently on various embedded devices.

4.3.3 Coverage Report Analysis. We evaluate test cases in terms
of line coverage and edge coverage. A test case is saved as a favored
test case if it increases code coverage. The C-SPY debugger can gen-
erate a coverage report for the current execution. Unfortunately, the
coverage report does not provide adequate information. Thus, we
developed an offline parser and a coverage report parser to calculate
cumulative coverage results.

Offline Parser. The offline parser is a static code analysis tool
to generate a control flow graph (CFG) data from the protocol im-
plementation’s source code. It is used later by the coverage report
parser. The offline parse only executes once before the entire fuzzing
iterations. The coverage report only records the uncovered state-
ments in functions in a single execution, which is insufficient for
calculating cumulative line coverage and edge coverage. Hence, we
leverage the CFG information, including statements, basic blocks,
and branches of every function, to calculate cumulative code cov-
erage. We assign every basic block with a random number with
hashing to obtain edge coverage information when analyzing the
CFG information. The random number acts as the label of every
basic block. These analysis results are saved as formatted data in a



WiSec 21, June 28-July 2, 2021, Abu Dhabi, United Arab Emirates

Table 1: Total number of crashes and unique vulnerabilities
detected by BooFooz, Peach and Z-Fuzzer.

Fuzzer Total # of Unique
Crashes (median) Vulnerabilities
BooFuzz 62 2
Peach 3 3
Z-Fuzzer 223 6

file for the coverage report parser to compute detailed line coverage
and edge coverage.

Coverage Report Parser. The coverage report parser analyzes
the coverage report and the CFG file to calculate cumulative line
coverage and edge coverage (@) in Figure 4). We use two lists,
line_hits and edge_hits, to record lines of code and edges that have
been covered in the previous executions. The value of line_hits|i]
means the total executed times of the statement in line i. The value
of edge_hits[i] is the total accessed times of the ith edge, in which
i is calculated by the XOR operation on the labels of the source and
destination basic blocks. A label is a random number assigned by
the offline parser.

The parser firstly scans a coverage report to collect functions that
have been accessed in the last execution. The uncovered lines of
code in the accessed function are saved into a list. All the statements
contained by a basic block are also extracted from the CFG file
to a list. Then we compare these two lists to check whether the
current basic block is covered in the last execution. If a basic block
is accessed, we also record the covered edge between the block
and its source block to the list edge_hits. After completing parsing
the entire coverage report, we calculate the non-zero values in the
list line_hits and the list edge_hits to find out if any new lines and
edges have been added. If so, we consider the current test case as a
favored one and put it in the pending favored queue for a further
mutation (@ in Figure 4).

5 EVALUATION

In this section, we evaluate Z-Fuzzer through multiple experiments.
The experiments are designed to answer the following research
questions:

e RQ1: Can Z-Fuzzer detect more vulnerabilities in comparison
with the state-of-the-art fuzzers? (Section 5.1)

e RQ2: Can Z-Fuzzer achieve higher coverage rate in comparison
with the state-of-the-art fuzzers? (Section 5.2)

The target of the protocol fuzzing approach is to generate more
high-quality test inputs that conform to the protocol frame for-
mat. Thus, we demonstrate the novelty of Z-Fuzzer in comparison
with two baseline protocol fuzzers, BooFuzz [38] and Peach [49].
BooFuzz is the successor of industry-standard protocol fuzzer Sul-
ley [21], and Peach fuzzer is a model-based commercial fuzzer. Both
of them have been widely used in existing research papers [51, 55].
BooFuzz and Peach initially do not target IoT wireless protocols
like the Zigbee protocol. Thus, we incorporated them into our sim-
ulation platform to communicate with the Zigbee protocol. We
specifically compared the number of vulnerabilities and code cover-
age exposed in 24-hour fuzzing experiments. All of our experiments
were performed on a machine with 8 cores (Intel® Core™ i7-6700
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CPU @ 3.40GHz) and 32 GB memory running the Windows 10 Pro
operating system and IAR Embedded Workbench for ARM 8.3. We
tested a widespread Zigbee protocol implementation, Z-Stack [29],
which has been deployed in the most Zigbee compliant platforms
[9]. Z-Stack is developed by Texas Instruments with various sample
project codebases and its source code is available.

5.1 Vulnerability Detection Capability

To answer RQ1, we measure the number of detected crashes and
the number of unique vulnerabilities discovered by all fuzzers. We
repeated experiments 10 times on fuzzers and present the result in
Table 1.

Unique Vulnerabilities. We leveraged information in call stack
to de-duplicate detected crashes. The simulator returns a call stack
trace for a memory crash, which contains the executed functions,
the line number of particular statements in the functions, and the
memory address of the statement. We hashed the memory address
and its function name and line number as an identifier of a detected
crash. Stack hashing may result in bug overcounting [32]. In our
case, we manually check function call trace in the source code for
every unique vulnerability to avoid the overcounting issue. The
experiment result is displayed in Table 1; it indicates that Z-Fuzzer
can discover more crashes and unique vulnerabilities than the other
two fuzzers. We also cross-checked all detected vulnerabilities. Only
one vulnerability can be reproduced with the test cases generated by
BooFuzz. All of the vulnerabilities can be reproduced with test cases
generated by Peach fuzzer and Z-Fuzzer. We reported all detected
vulnerabilities to the CVE database and vendors, and three of them
have been assigned CVE IDs with high CVSS scores (7.5~8.2) [20].

Test Cases vs. Vulnerabilities. We measure the number of de-
tected vulnerabilities over the generated test cases for BooFuzz,
Peach fuzzer, and Z-Fuzzer, as shown in Table 2. The vulnerabil-
ity ID in the table is used to identify each vulnerability in other
experiments, which does not present the detection order during
the experiment. The result indicates that Z-Fuzzer can generate
more test cases and detect more vulnerabilities in the protocol im-
plementation. We noticed that only CVE-2020-27892 is detected in
every fuzzing round over ten times by all fuzzers. Other bugs are
discovered in some particular rounds. All fuzzers can detect CVE-
2020-27891 and CVE-2020-27892, while Z-Fuzzer can generate more
unique test cases for detection. BooFuzz failed to discover other 4
vulnerabilities, especially the function zclParseInReadRspCmd and
zclParseInReportCmd found by Z-Fuzzer with specific test cases.
Compared to BooFuzz, Peach fuzzer can instead discover the vul-
nerable function zclProcessInWriteCmd with a particular test case.
According to our analysis of these vulnerabilities, most crashes oc-
curred in a deeper location of vulnerable functions caused by some
long malformed string values at the end of the message payload
field. Before processing these values, the function performs several
condition checks on other preceding primitive data. With the cov-
erage feedback, some interesting values are retained to generate
specific test cases to satisfy such condition checks.

Coverage vs. Vulnerabilities. We also analyze the relationship
between line coverage and the number of detected vulnerabilities.
Figure 6 presents the max cumulative number of vulnerabilities
detected over line coverage. The symbols are the vulnerability
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Table 2: Summary of new vulnerabilities detected by BooFuzz, Peach and Z-Fuzzer.

Total # of Test Cases
# Vulnerabilites Severity Triggering a Vulnerability
BooFuzz Peach Z-Fuzzer
1 CVE-2020-27891 (High 7.5)  Improper Input Validation 57 1 10
2 CVE-2020-27892 (High 7.5) Improper Memory Allocation 10 4 219
3 CVE-2020-27890 (High 8.2)  Improper Input Validation - - 96
4 zclParseInReportCmd Out-of-bound read - - 2
5 zclParseInReadRspCmd Out-of-bound read - - 3
6 zclProcessInWriteCmd Null pointer reference - 1 231
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Figure 6: The relationship between line coverage and the
number of detected protocol crashes in 10 runs. X-axis: line
coverage on average, Y-axis: the max cumulative number
of vulnerabilities. The symbols are the vulnerability ID dis-
played in Table 2’s first column; they represent the mini-
mum line coverage when the corresponding vulnerability is
detected.

identifiers displayed in Table 2 and represent the minimum line
coverage that detects the corresponding vulnerability. We can see
that Z-Fuzzer can detect more vulnerabilities by exercising fewer
lines of source code. Peach and Z-Fuzzer first detected CVE-2020-
27892 at the earlier fuzzing stage, while BooFuzz found the same
vulnerability at the end of the fuzzing process. We notice that
some crashes are caused by some abnormal values of the message
payload field with a particular value of a preceding field, which may
exercise new code. BooFuzz and Peach fuzzer fails to generate such
test messages since they consider the message payload field and its
preceding field independent during fuzzing. The particular value of
the preceding field is not retained when the message payload field
is mutated. However, Z-Fuzzer can generate such a test case once
the line coverage is changed. Therefore, Z-Fuzzer improves the
effectiveness and efficiency of vulnerability discovery by boosting
code coverage.

Vulnerabilities on Real Embedded Devices. We also verify
the detected vulnerabilities on real embedded devices. We used two
Texas Instruments CC2538 devices with the SmartRF06 Evaluation
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uation board. Z-Stack is deployed to CC2538 for execution.
Evaluation board powers CC2538 and displays the debug-
ging information on the LED. We use one as a coordinator
and another as an end device, and the ZCL messages are
transmitted between them.

Board to form a real IoT network. TI CC2538 is a wireless mi-
crocontroller System-on-Chip (SoC) for high-performance ZigBee
applications [30] and has been widely adopted in the IoT market.

As shown in Figure 7, one device acts as a coordinator that sends
the crash messages we found in the simulator; another acts as an
end device that receives the coordinator’s messages. We added de-
bugging information in the test harness to print device status on
the LED display. The entire protocol stack with the test harness is
built as a single binary file and flashed to CC2538. The coordina-
tor initiates the network formation, and the end device joins the
network.

We executed test cases that triggered vulnerabilities on the phys-
ical devices. Table 2 shows that all fuzzers can detect vulnerabilities
in the function zcl HandleExternal and the function zclParselnDis-
cCmdsRspCmd in the simulation environment. However, the vul-
nerability in the function zcl_HandleExternal cannot be reproduced
with the test cases generated by BooFuzz and Peach. Instead, we
could detect those two crashes with the test cases generated by
Z-Fuzzer on the real device. The embedded device was frozen when
processing the received crashing messages. In addition to these two
vulnerabilities, we can also verify the vulnerable function zclPar-
seInWriteCmd with the test cases generated by Z-Fuzzer. We notice
that memory corruption occurred when the device processes the
received messages. The Z-Stack implementation has captured the
crash; however, it does not perform further operations and report
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Listing 2: Source code of CVE-2020-27892

1 static void zclParseInDiscCmdsRspCmd (
zclParseCmd_t »pCmd)

2

3 pDiscoverRspCmd =(zclDiscoverCmdsCmdRsp _t«)

4 zcl_mem_alloc(sizeof (zclDiscoverCmdsCmdRsp_t) +
5 (numCmds+ sizeof (uint8)));

6 if (pDiscoverRspCmd != NULL)

7

8

for(i = 0;i < numCmds;i++)

pDiscoverRspCmd —>pCmdID[i] = «pBuf++;

return ( (void «)pDiscoverRspCmd );

the crash. From the user’s perspective, the processing is successful
since a success status code is returned to the end device. Never-
theless, the attribute value is not updated. We have reported all
of the six detected vulnerabilities to the protocol vendor, Texas
Instruments. Three vulnerabilities have been confirmed at the time
of writing, and others are still under review.

Case Study. We use CVE-2020-27892 as a case study to explain
more details of our observations. This vulnerability is triggered by
two specific valid command identifiers in the ZCL header. When
the command identifier is set to @x12 or 0x14, which indicates a
Discover Commands Received Response message or a Discover Com-
mands Generated Response message, it crashes the protocol stack
when parsing payload values of such message. The end device is
frozen and fails to respond to any operations unless we restart the
board.

We examined this crash on both the simulator and the real device.
The root cause is an incorrect memory allocation for a structure
variable. The source code is showing in Listing 2. The struct variable
pDiscoverRspCmd is a pointer that contains an attribute pCmdID
pointing to an array. In standard C programs, pCmdID is assigned to
a valid memory address when the system allocates memory space
for pDiscoverRspCmd. As the code shown in line 4, Z-Stack calls its
memory allocation method rather than using the C standard APIL
However, the self-implemented memory allocation method fails
to assign a valid address to pCmdID. Suppose the memory address
of pDiscoverRspCmd is @x20005B80 and the size of this structure
type is 4 bytes and numCmds equals 1, then pCmdID should point
to the address 9x20005B85. In practice, it points to the content of
that address, which is @xCDCDCDCD and an invalid memory address.
Thus, an out-of-bounds write vulnerability is triggered when code
in line 10 is executed. Similar memory issues like memory copy
also lead to other vulnerabilities.

We observe that most protocol vendors develop their customized
APIs to replace the standard functions in the C library. The main
reason is that an embedded device has limited memory resources
and computing power, which is hard to support all C standard API
libraries like PC software. Besides the bugs in the protocol imple-
mentation itself, this customization may bring potential security
risks. Currently, the protocol vendors bear responsibility for the
vulnerabilities of the Zigbee protocol. The mitigation of security
problems entirely depends on whether the vendors are proactive
or not to the reported issues [10]. The IoT application developers
may not be aware of those potential issues until they complete the
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Table 3: Evaluation results on Z-stack in 10 runs. We report
the line coverage and edge coverage on average.

‘ Total # of Unique ‘ Line Coverage ‘ Edge Coverage

Fuzzer

‘ Test Cases ‘ total % ‘ total %
BooFuzz 16,756 912 73.80% 680 73.82%
Peach 18,271 850 68.71% 628 67.58%
Z-Fuzzer 61,386 971 78.52% 769 82.30%

entire production. This observation also motivates us to propose
Z-Fuzzer for developers to acknowledge the Zigbee protocol stack’s
potential issues at the earlier development stage; thus, they can
take corresponding actions to avoid such problems without waiting
for the protocol vendor’s feedback.

5.2 Code Coverage

To answer RQ2, we examined the ability of fuzzers to improve code
coverage in 24h fuzzing, which is a widely accepted and evaluated
metric in existing research [32]. We performed a set of experiments
on each fuzzer to observe their line coverage and edge coverage
variation over time. Here an edge is a connection between two
basic blocks in CFG. We inputted the same protocol frame format
script to all fuzzers. Therefore, their fuzzing process was initialized
with the same valid protocol frame. Given the frame format script,
the fuzzers generate test cases with the user-specific or pre-defined
fuzzing dictionary, for which the total number of test cases is finite.
Results are presented in Table 3. From the results, we observe that
Z-Fuzzer is significantly more effective than BooFuzz and Peach.

We first analyze the uniqueness of test cases generated by three
fuzzers. As shown in Table 3, Z-Fuzzer can generate 6 times more
unique test cases than the other two fuzzers. Moreover, according
to the Zigbee protocol specification, we categorize test cases by the
field command identifier in the ZCL header to distinguish the dif-
ference among fuzzers on test case generation. Z-Fuzzer generated
308 different types of test cases in total, in which 35 of those types
can be generated by BooFuzz and Peach. In addition, many test
cases result in coverage increments, and therefore they are retained
as favored test cases for further mutation. For example, Z-Fuzzer
can generate the message in Figure 3 during the fuzzing process
when the value 08 of the field frame control is retained.

Moreover, we measure the code coverage of Z-Fuzzer in com-
parison with BooFuzz and Peach. Without our Zigbee protocol
simulation platform, BooFuzz and Peach cannot directly test Z-
Stack implementation. Therefore, we replaced our mutation engine
with the other two fuzzers’ fuzzing engines to compare their perfor-
mance. The experiment result is presented in Table 3 and Figure 8.
Table 3 indicates that Z-Fuzzer can achieve higher line coverage
and edge coverage. Currently, we focus on generating high-quality
test cases that satisfy the message format of the Zigbee protocol
specification. Therefore, we cannot cover exception handling code
and reach full code coverage. As Section 5.1 indicates, Z-Fuzzer can
discover more vulnerabilities than the other two fuzzers though it
does not achieve full code coverage.

From Figure 8, we can see that BooFuzz and Z-Fuzzer prolifer-
ated at a very early phase. As the Zigbee protocol performs several
checks on the ZCL header first when processing a message, minor
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Figure 8: Line coverage and edge coverage achieved by
fuzzers over 10 runs. The X-axis represents the median num-
ber of test cases. The Y-axis represents the percentage of line
coverage and edge coverage on average.

changes in the header can lead to a significant difference in executed
code and path. Both of the two fuzzers start fuzzing from the field
Frame Control (the first field in the ZCL header shown in Figure 2a).
It is the reason that code coverage rapidly increased in BooFuzz
and Z-Fuzzer at the early phase. Instead, Peach randomly mutated
a message field, and therefore its code coverage increased slowly.
Even though BooFuzz achieved its maximum code coverage with
fewer test cases, it terminated the fuzzing process after generating
about 6, 200 test cases. BooFuzz uses fewer values for each primitive
data to prevent an inevitable combinatorial explosion in the num-
ber of possible mutation values. These values are specified by the
protocol specification or a pre-defined fuzzing dictionary of values.
All values are static over the fuzzing time. Thus, BooFuzz generated
fewer test cases and terminated the fuzzing process earlier than
the other two fuzzers. For better result presentation, we plot the
coverage trend of the first 10, 000 test cases generation in Figure 8.
On the other hand, Z-Fuzzer and Peach fuzzer kept executing more
code and edges and generated more test cases. We also examine the
differences in accessed code and edges. Z-Fuzzer can exercise more
different code and edges that BooFuzz or Peach does not execute.

In summary, Z-Fuzzer achieves a higher code coverage rate than
BooFuzz and Peach with the coverage-guided test case generation.
The interesting values are recorded with the coverage feedback
and guide the fuzzing process to generate more high-quality test
cases to access more in-depth code. We observe that many func-
tions in ZCL process the message payload value for the upper-level
application object. They could require a test case to satisfy some
particular condition checks to execute more in-depth code in those
functions. During BooFuzz’s and Peach’s mutation process, the val-
ues of specific message fields, which may satisfy such a dependency
constraint, are neglected during the fuzzing. In contrast, Z-Fuzzer
can infer such a correlation with the runtime coverage feedback.
The current mutant primitive data and all of the preceding fields are
retained for further fuzzing, satisfying those particular conditions
and covering more code and edges.

6 CONCLUSION AND FUTURE WORK

We have presented the first device-agnostic fuzzing framework,
Z-Fuzzer, to detect security vulnerabilities in Zigbee protocol imple-
mentations. Z-Fuzzer integrates a software simulator to simulate
real IoT devices combining the pre-defined hardware interrupts and
peripheral configurations. We also develop a test harness to provide
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a proper execution environment for the Zigbee protocol stack, in-
cluding a proxy server facilitating the communication between the
simulator and the mutation engine. Z-Fuzzer outperforms the state-
of-the-art work by detecting more deep vulnerabilities with fewer
test cases. We have identified six unique vulnerabilities, and three
of them have been assigned CVE IDs with high-severity scores.

Currently, we already integrated the fuzzing engine of BooFuzz
and Peach on top of our simulation environment. We plan to in-
tegrate our simulation environment in our future work, including
the proxy server with other state-of-art fuzzers; they can transmit
their test cases through the Internet to Zigbee protocol execution.
Additionally, we can extend some embedded fuzzers like HALuci-
nator [16] with our test case generation engine. Then they can be
aware of the Zigbee protocol frame format and test Zigbee protocol
implementations.
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