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ABSTRACT
This article proposes a novel approach for augmenting generative
adversarial network (GAN) with a self-supervised task in order to
improve its ability for encoding video representations that are use-
ful in downstream tasks such as human activity recognition. In the
proposed method, input video frames are randomly transformed
by different spatial transformations, such as rotation, translation
and shearing or temporal transformations such as shuffling tem-
poral order of frames. Then discriminator is encouraged to predict
the applied transformation by introducing an auxiliary loss. Sub-
sequently, results prove superiority of the proposed method over
baseline methods for providing a useful representation of videos
used in human activity recognition performed on datasets such
as KTH, UCF101 and Ball-Drop. Ball-Drop dataset is a specifically
designed dataset for measuring executive functions in children
through physically and cognitively demanding tasks. Using fea-
tures from proposed method instead of baseline methods caused
the top-1 classification accuracy to increase by more then 4%. More-
over, ablation study was performed to investigate the contribution
of different transformations on downstream task.
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• Computing methodologies→ Activity recognition and un-
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1 INTRODUCTION
Recent advances in Deep Learning [20] and the challenge of gath-
ering huge amounts of labeled data have encouraged new research
in unsupervised or self-supervised learning. In particular, Com-
puter Vision tasks could greatly benefit from successful models that
learned abstract low-dimensional features of images and videos
without any supervision, because unlabeled images and video se-
quences can be gathered automatically without human interven-
tion [1, 4, 17].

As a result, plenty of research has been focused on methods
that can adapt to new conditions without expensive human super-
vision. The main focus of this paper is on self-supervised visual
representation learning, which is a subclass of unsupervised learn-
ing. Self-supervised learning techniques have produced state of
the art low-dimensional representations on most computer vision
benchmarks [5, 6, 8, 26, 37].

In self-supervised learning framework, only unlabeled data is
needed in order to formulate a learning task, such as predicting
context [8] or image rotation [6] for which a target objective can
be computed without supervision. These methods usually incor-
porate Convolutional Neural Networks (CNN) [18] which after
training, their intermediate layers encode high-level semantic vi-
sual representations. The obtained representations can be used for
solving downstream tasks of interest, such as object detection or
human activity recognition. Moreover Self-supervised learning can
be employed in finding internal representations of the environment,
which is useful in model-based reinforcement learning settings [15].

While most of the research in application of self-supervised learn-
ing in computer vision is concentrated on still images, the focus
of this paper is human activity recognition in videos. This work
is motivated by the real-world ATEC (Activate Test of Embodied
Cognition) system [3, 7, 32], which assesses executive function in
children through physically and cognitively demanding tasks. The
system requires manually labeling hundred of hours of videos by
experts. Therefore, this work exploits self-supervised learning tech-
niques to extract low-dimensional representations of the videos.

The method proposed in this work (Figure 1) is inspired by [6]
that augments Generative Adversarial Networks (GAN) [10, 31]
with self-supervised rotation loss in order to improve the represen-
tation capability of discriminator network. However, the proposed
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Figure 1: Proposed method architecture. Diagram is inspired by [6]

work has significant differences from the existing methods. First,
the purpose of this work is to find a low-dimensional representation
of videos rather than still images. Second, In [6] an auxiliary loss
is added to the discriminator network to detect angles of random
rotation applied on still images.

But in this work, the discriminator classifies among three differ-
ent spatial transformations, such as rotation, translation or shearing
and a temporal transformation that shuffles the temporal order of
frames. All aforementioned transformations are randomly applied
on video frames. Moreover, a thorough ablation study is performed
which investigates the effect of each different transformation.

The results prove that in general the introduction of self-supervised
transformation loss, improves the quality of representation pro-
vided by discriminator network. It also shows that inclusion of addi-
tional spatial transformations and temporal shuffling improves the
downstream classification accuracy specially in Ball-Drop dataset.
The rest of the paper is organized as follows: In section 2 a brief
review of some of the recent self-supervised methods used in com-
puter vision is provided. In section 3 the mathematical basis of
self-supervised methods employed in this article is discussed. Then
in section 4, results of proposed methods along with datasets and
criteria used are presented. Finally, the last section includes the
conclusion and directions for future research.

2 RELATEDWORKS
In this section, some of the state of the art research works that
employed self-supervised learning framework in computer vision
are briefly summarized. Authors in [8] explore using spatial con-
text as supervisory signal for learning image representation. For
training, the authors selected two random pairs of patches from

each image and tried to predict the relative position of the second
patch in respect to the first one. Other efforts used colorizing gray-
scale images [38] and reconstructing missing parts of an image
(Image Inpainting) [30] as self-supervised task for learning features.
Researchers in [27] counting the number of visual primitives in
images is considered as a supervision signal. This signal is acquired
without any manual annotation by using equivariance relations.
Authors in [26] divided an image into 9 tiles and shuffled their
position via a randomly chosen permutation from a predefined
permutation set and then predicted the index of the chosen per-
mutation. All of these patches are sent through the same network,
then their representations are concatenated and passed through
fully-connected multi-layer perceptrons for prediction.

Another useful supervision signal is rotation. In [9] the authors
randomly rotated an input image and trained a deep convolutional
neural networks to predict the rotation angle. In a similar fashion,
authors in [6] augmented a generative adversarial network with a
rotation loss that encourages discriminator to classify which rota-
tion was performed on input image. Contrastive Learning [5, 14] is
another interesting idea that has achieved state of the art results.
In contrast to generative models that generate computationally
expensive pixel-level images, contrastive learning methods per-
form self-supervised task in latent space. For example in [37] given
masked-out patches in an input image, Contrastive Predictive Cod-
ing loss is used to learn to select the correct patch, among other
distractor patches sampled from the same image to fill in themasked
location. The authors employ a network of convolutional blocks
to process patches followed by an attention pooling network to
encode the content of unmasked patches before predicting masked
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Figure 2: Examples of spatial transformation used. From left to right: Original Image, rotation, translation, shear.

Figure 3: In temporal transformation used in proposed
method, classifier tries to find if temporal order of videos
frames are shuffled or not (Adopted from [24]).

ones. Furthermore self-supervised learning has been very success-
ful in finding representation of videos. One of the most popular
self-supervised task for video is prediction of future frames given
past frames [2, 23]. In [12, 29] it was proven that predicting future
frames or motion of objects can provide a compact representation
of video that can be exploited in downstream tasks. Another inter-
esting task is utilizing temporal order of frames by either detecting
whether temporal order of frames is valid [24] or sorting shuffled
frames [21].

The method proposed in this work is also focused on providing
low-dimensional representation of videos. It tries to predict which
random transformation, spatial or temporal has been applied on
input video frames.

3 METHODOLOGY
In this section, first GAN is introduced which is the basis of methods
used in this work. Subsequently the proposed self-supervised GAN
is described in detail and how video representation (features) are
extracted from it. These features are fed into a simple 2 layer multi-
layer perceptrons (MLP) network for downstream classification
tasks such as human activity recognition.

3.1 Generative Adversarial Networks (GAN)
GAN [10, 31] is a framework for producing a model distribution
that mimics a given target distribution, and it consists of a generator
G(z;θд) that produces the model distribution and a discriminator
D(x ;θd ) that distinguishes the model distribution from the target.
Training data is denoted by x and input noise is z with probability
distribution of Pz (z).

In practice both generator and discriminator are implemented
by differentiable CNNs with parameters: θд and θd . D is trained
to maximize the probability of assigning the correct label to both
training examples and samples fromG . At the same timeG is trained
to minimize loд(1 − D(G(z))). In other words, D and G play the
following two-player minimax game with value function V (D,G) :

min
G

max
D

V (D,G) = Ex∼Pdata (x )[loдD(x)]

+Ez∼Pz (z)[loд(1 − D(G(z)))].
(1)

But using GAN in practice is challenging because of instability
occurring in training, mode collapsing, etc. However in recent
years variety of novel techniques such as gradient penalty [11] or
spectral normalization [25] have been proposed to solve some of
the challenges.

3.2 Self-supervised Learning
One of the main problems with GANs that limits their ability for
providing good representation is discriminator forgetting [6]. Be-
cause in practice as parameters of generator G varies so does the
distribution PG which causes learning process of discriminator to
be non-stationary. In other words, the discriminator is not encour-
aged to keep a useful data representation as long as the current
representation is useful to discriminate between the classes.

In order to alleviate the above problem, the discriminator net-
work is augmented with a self-supervised task like predicting rota-
tion angle [9] or counting objects in image [27] to motivate GAN
to learn a useful compact representations. The method proposed
in this work is based on spatial and temporal transformation of
video frames. In this method (Figure 1), one transformation is ran-
domly picked and applied on frames of input video. Then the self-
supervised task is predicting the transformation used on video
frames. As a result the loss function of both generator and discrim-
inator are modified as follows:

173



Petra ’21, June 29– July 02, 2021, Corfu, Greece Zaki Zadeh, et al.

Figure 4: Samples of generated images from custom Ball-Drop dataset.

LG = −V (D,G) − αEx∼PGEt∼T [loдQD (T = t |xt )]

LD = V (D,G) − Ex∼PdataEt∼T [loдQD (T = t |xt )]
(2)

where V (D,G) is the value function from Equation 1 and t ∈ T
is a transformation selected from a set of possible spatial and tem-
poral transformations. xt is input x transformed by transformation
t , QD (T |x

t ) is discriminator distribution over possible transforma-
tions and α is self-supervised loss weight. For this method three
different spatial affine transformations such as rotation, translation
and shearing along with a temporal transformation, in which tem-
poral order of video frames are shuffled, are chosen. Examples of
spatial and temporal transformations are depicted in Figure 2 and
3 respectively.

For rotation only four classes were considered corresponding to
rotation angles of 0◦, 90◦, 180◦ and 270◦. Respectively, three classes
for translation (vertical, horizontal and both), three for shearing
(vertical, horizontal and both) and one class for temporal transfor-
mation (shuffled or not) were chosen. So in total eleven different
transformation classes were selected.

As explained in [6], generator and discriminator are collaborative
with respect to predicting the transformation task. Because for
detecting the transformations, the discriminator is trained only on
the true data thus the generator is motivated to generate images
that are easy for discriminator to detect. As illustrated in Figure
1 the discriminator has two heads, which the former like normal
GANs predicts whether non-transformed video frames are real or
fake. The latter head on the other hand predicts the transformation
class of transformed inputs.

After training is completed, output of the last layer before the
heads is extracted as a compact representation of the input video.
Then a simple 2 layer feed forward MLP is trained on extracted
video representations for human activity recognition.

4 RESULT AND DISCUSSION
In this section, details of the datasets used in this experiment are dis-
cussed. This is followed by a discussion of how the neural network
models are used and how they are trained. Finally, results of both
baseline and proposed method are presented. It should be noted
that in this article the focus is on providing compact representation
of videos that can be exploited for activity recognition. Thus eval-
uating fidelity of generated image frames is outside scope of this
paper and as a result criteria such as Frechet Inception Distance
(FID) are not used.

4.1 Datasets
In this article in order to evaluate the performance of the pro-
posed method for providing video representation useful for activity
recognition three different video datasets were used. First two are
publicly available video datasets like KTH [33] and UCF101 [34]
containing short video clips of humans doing various activities.
KTH dataset contains 6 types of human actions performed several
times by 25 subjects in four different scenarios. UCF101 dataset
consist of realistic action videos collected from YouTube, having 101
action categories. The third dataset which for simplicity is called
Ball-Drop (Ball-Drop-to-the-Beat) is based on one of tasks designed
for ATEC system (Activate Test of Embodied Cognition) to assess
both audio and visual cue processing of children while performing
upper-body movements. The ATEC is an assessment test designed
to measure executive functions in children through physically and
cognitively demanding tasks [3, 7, 32].

For this task the child is required to pass a ball from one hand to
another, following audio and visual cues. Based on the instructions,
the child has to pass the ball for Green-Light, keep the ball still
for Red-Light, and move the ball up and down with the same hand
for Yellow-Light. There are 10 different tasks based on how the
light colors are presented audibly or visually. There are total of
30 subjects present in this experiment, each recording 2 versions
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Table 1: Top-1 classification accuracy of using features extracted from different methods.

Method KTH UCF101 Ball-Drop
GAN 71.46 ± 2.5 64.68 ± 0.4 77.93 ± 2.7
GAN+Rotation 74.47 ± 2.5 66.86 ± 0.6 80.47 ± 2.5
GAN+Spatial 76.41 ± 2.0 66.95 ± 1.6 81.99 ± 4.5
GAN+Temporal 76.09 ± 3.2 70.88 ± 0.7 80.69 ± 3.7
GAN+SpatioTemporal 77.13 ± 3.6 69.17 ± 1.8 84.53 ± 3.0

Table 2: Investigating the effects of combination of different
transformations on Top-1 classification accuracy.

Method Ball-Drop
GAN 77.93 ± 2.7
GAN+Rotate 80.47 ± 2.5
GAN+Translate 80.04 ± 3.3
GAN+Shear 79.52 ± 3.3
GAN+Rotate+Translate 81.32 ± 5.1
GAN+Translate+Shear 80.33 ± 3.1
GAN+Rotate+Shear 81.01 ± 4.6
GAN+Rotate+Translate+Shear 81.99 ± 4.5

of all 10 different tasks. Each task consists of either 8 or 16 short
segments that each one should be classified into 3 different classes of
green-light, red-light and yellow-light. One of the main reasons that
motivated authors of this article to pursue self-supervised learning
is that manually annotating this dataset proved to be cumbersome
and error prone.

All of datasets used in this article were divided into 3 different
sets. First 80% of each dataset was considered as unlabeled and used
solely for training self-supervised GANs. After training the remain-
ing 20% (labeled) were fed into trained discriminator network to
extract video representations (features). The features are extracted
from penultimate layer of the discriminator network. Then again
for activity recognition the features were divided into train and test
set with ratio of 4 to 1.

4.2 Models
In self-supervised GANs for both generator and discriminator a
6 layer convolutional neural net (CNN) was used. Since the input
is video, in discriminator the first 2 layer and for generator the
last 2 layers employ 3D convolutional nets [36]. As discussed by
[19, 22] performance of GANs depends on many different hyper-
parameters and there is no set of hyper-parameters that guarantee
superior performance on all datasets and finding one requires mas-
sive computational budget. Due to our limited computational bud-
get, very deep complex networks such as densenet and resnet101
were avoided [13] and a small grid search was performed for tuning
the hyper-parameters.

All themodels, including baseline GAN and proposed self-supervised
GAN were trained for 100 epochs using PyTorch framework [28]
with ADAM [16] as optimizer with following parameters, which
are selected empirically.

generator learning rate: 0.0001, generator learning rate: 0.0004,
beta1: 0.5, beta2: 0.999. Spectral Normalization was used in all
methods to stabilize the training process. And for self-supervised
GAN parameter of α in equation 2 was chosen as 0.25. Finally for
doing classification on extracted features a 2 layerMLPwere trained
with ADAM optimizer with similar hyper-parameters.

4.3 Experimental Results
In Figure 4 examples of generated images by proposed method are
depicted. As stated at the start of this section, the quality of the
generated images is not the focus of this paper. The real pictures of
the children cannot be shown due to the privacy protection of the
participants in Ball-Drop task. However, their generated images
can be portrayed since faces of children are anonymized because
they are blurred.

After training all the baseline and proposed methods includ-
ing GAN, features (representation) of labeled video were extracted.
Then, a supervised (MLP-based) human activity recognitionmethod
was trained on features and the average top-1 classification ac-
curacy on test set was calculated by using 5-fold cross valida-
tion and presented in Table ??. Baseline methods include GAN
[10] and self-supervised GAN with only rotation as learning task
(GAN+Rotation) [6] and proposedmethods are self-supervised GAN
with three different spatial transformations such as rotation, trans-
lation and shearing (GAN+Spatial), self-supervised GAN with only
temporal transformation (shuffling) of video frames (GAN+Temporal)
and finally self-supervised GAN with both spatial and temporal
transformations (GAN-SpatioTemporal).

The experimental results prove superiority of the proposedmethod
(GAN-SpatioTemporal) over baseline GAN and GAN+Rotation for
providing a useful representation of videos, specially for Ball-Drop
dataset which is the focus of this paper. It is also interesting to see
that in UCF101 dataset, GAN+Temporal outperforms GAN+Spatial
and even GAN-SpatioTemporal.

Next an ablation study is performed in order to investigate the
effect of different spatial transformation used in proposed method
on downstream classification accuracy. First, proposed method was
trained using only one spatial transformation (rotation, translation
or shearing). Then two transformation were used followed by all
three. The top-1 classification accuracy of using features extracted
from these methods applied on Ball-Drop dataset is shown in Ta-
ble ??. The results show that although rotation outperforms other
transformation such as translation and shearing when used alone
but combining different spatial transformation gains the best result.
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5 CONCLUSION AND FUTUREWORKS
In this work, a novel method was proposed to augment GAN with
a self-supervised task in order to improve its ability for generating
useful representation of videos. The self-supervised task in this
method consists of randomly picking a transformation and applying
it on video frames. Subsequently, the discriminator is encouraged to
predict the correct transformation that was used. The experimental
results proved that in overall, introduction of new transformations
in different modalities enhances the capability of baseline GAN [10]
and outperforms rotation only self-supervised GAN [6] in providing
a representation of videos useful for human activity recognition.

Next step would be using much deeper networks and applying
this method on very large datasets, something that was beyond our
computational budget at the moment. Another possible direction
is to consider transformations as special case of policy in rein-
forcement learning [35]. Ability to find the policy that changed
the state of the environment would be very useful in model-based
reinforcement learning [15].
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