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ABSTRACT
Hand pose estimation is getting a lot of attention inmany areas such
as Human-Computer Interaction and Sign Language Recognition.
A fundamental step to accurately estimate the hand pose involves
detecting and localizing fingertips in an image. Despite the progress
of 2-D hand pose estimation in recent studies, accurate and robust
detection and localization of fingertips still remains a challenging
task due to low resolution of a fingertip in images and varying
lightning condition.

Inspired by the progress of the Generative Adversarial Network
(GAN) and image-style transfer, we propose a two-stage pipeline to
accurately localize the fingertip position even in varying lighting
and severe self occlusion on depth images. The idea is to use a
Cycle-consistent Generative Adversarial Network (Cycle-GAN) to
apply unpaired image-to-image translation and generate a depth
image with colored predictions on the fingertips, wrist, and palm
given a real depth image. The model is trained in a semi-supervised
manner using a collection of images from source and target domains
that do not need to be related in anyway. Then, by applying color
segmentation techniques, we localize the center of each colored area
which results in finding the location of each fingertip along with
center of the wrist and the palm. The proposed method achieves
visually promising results on noisy depth images captured using the
Microsoft Kinect. Experiments on the challengingNYUhand dataset
have demonstrated that our approach not only generates plausible
samples, but also outperforms state-of-the-art approaches on 2-D
fingertip estimation by a significant margin even in the presence
of severe self-occlusion and varying lighting conditions. Moreover,
fingertips would be detected irrespective of user orientation using
this method.
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1 INTRODUCTION
Accurate fingertip localization from depth images plays an essential
role in many computer vision applications such as sign language
recognition [2] and human-computer interaction [10] when image-
based models are used. Many proposed approaches such as [42] and
[23] involve a two-stage architecture, i.e. first performing 2-D hand
pose estimation and then lifting the estimated pose from 2-D to
3-D, which makes 2-D hand pose estimation itself still an important
task.

In recent studies, deep learningmethods have dominated state-of-
the-art semantic keypoint detection methods. Mask RCNN [12] and
PifPaf [17] are two representative methods for detecting semantic
key-points using supervised learning. However, supervised training
of a keypoint detection network requires extensive and expensive
annotated data. To eliminate the need of human annotation, Shotton
et al. [27] and Wetzler et al. [39] use markers, which, in some cases,
are not visible in the sample due to self-occlusion and varying
articulations.

Challenges in obtaining keypoint annotations have led to the
rise in self/semi-supervised landmark localization research. Self-
supervised learning is a re-emerging topic as of early 2020 which
does not require expensive and task-specific human annotation.
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Although unsupervised detection of landmarks can extract use-
ful features, it is not able to detect perceptible landmarks with
out supervision [14, 35]. In [8], to learn without explicit annota-
tions, Dong et al. build on the pseudo-labeling technique which
uses a teacher model and two students to generate more accurate
pseudo-labels for unlabeled data. In another study by Jakab et al.
[14], additional class attributes were utilized for semi-supervised
keypoint detection.

In this paper, we investigate the problem of 2-D fingertip local-
ization from depth images using a semi-supervised approach. The
idea can be more broadly described as unpaired image-to-image
translation techniques which involves transforming an image from
domain A (real depth image) to domain B (annotated depth image)
in the absence of paired data(Figure 1). This is especially useful

Figure 1: Unpaired training data, consisting of a source set
and a target set, with no information provided as to which
xi in domain A matches which yj in domain B.

when obtaining paired data can be expensive or, in some cases, im-
possible. To the best of our knowledge, this is the first study using
unpaired image to image translation for 2-D keypoint detection
and localization. Using a Cycle-Consistent Adversarial Network
[41], we map the features learned from training samples to salient
features of the real data set. Once the model is trained and a map-
ping between two domains is established, it is able to translate the
real depth image input to the target domain, which is the input
depth image along with colored markers on fingertips and twomore
keypoints (center of the palm and the wrist), as shown in Figure 2.
Afterwards, using Hue, Saturation, and Value features of the output
markers, we apply color segmentation techniques to localize and
extract the 2-D coordinates of the center of each colored area for
the fingertips, center of the palm, and the wrist.

The quantitative and qualitative results on the NYU hand dataset
show that our proposed approach outperforms state of the arts
methods and can handle severe occlusion and varying light condi-
tions independent of user hand orientation. It is worth mentioning

Figure 2: Examples of translated input image fromAdomain
to B domain

that our proposed method outperforms these state of the art meth-
ods even when significantly reducing the size of the training set.
Further, unlike [22] and [15], which use multi-view camera to tackle
severe self-occlusion, we only use a single depth sensor. Using this
approach, we are able to generate corresponding pairs of images
which can be used for unsupervised domain adaptation and, since
we applied unpaired image to image translation, we eliminate the
burden of requiring a large annotated dataset. Finally, since we
segment the image in the HSV domain, our proposed method is
more robust to varying lighting conditions.

This paper is structured as follows; Section2 describes the sum-
mary of background and related work in 2-D hand pose estimation;
section3 presents the proposed method; section 4 explained ex-
perimental details followed by results and discussion in section 5.
Finally, section 6 discusses the conclusion and future work to be
done in this system respectively.

2 BACKGROUND AND RELATEDWORK
2.1 Hand pose estimation
In many hand pose estimation studies, such as [25] and [16], 2-D
fingertip localization is an initial step for 3D hand pose estimation.
However, fingertip detection is a challenging task due to self occlu-
sion and high rotational variability. Fortunately, due to the progress
of optical technologies, such as depth cameras, it is possible to cap-
ture more accurate information of our 3-D world. Several studies
have been introduced which use depth images to estimate the hand
poses [20, 26, 40]. Malassiotis and Strintzis extract PCA features
from depth images of synthetic 3D hand models for training [19].
Suryanarayan et al. [32] use depth information to recognize scale
and rotation invariant poses dynamically. Sinha et al. [29] used
a regression-based model to find the 21 joints in the hand. They
trained a separate network for each finger which regress three joint
keypoints on each finger. To minimize the dependency on large
hand pose datasets and to improve the generalization ability to
unseen situations, data-efficient methods such as weakly super-
vised learning or hybrid methods are needed. By fast progress of
Generative Adversarial Networks (GAN), several studies have been
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Figure 3: The simplified architecture of first stage to perform unpaired image to image translation using Cycle-Consistent
Adversarial Networks

performed to model the statistical relationship of the 3D pose space
and corresponding space of the input data in semi/self-supervised
manner [1, 5, 38]. Chen et al. [6] proposed a conditional Genera-
tive Adversarial Network (GAN) model called Depth-image Guided
GAN (DGGAN) to generate realistic depth maps conditioned on the
input RGB image and use the synthesized depth image to refine the
3D hand pose estimation. In [13], He at al. proposed a data-driven
method to generate deep hand images closer to real ones during
training. In Chen et al. [7], they propose tonality-alignment gener-
ative adversarial networks (TGAN) to align the tonality and color
distribution between synthetic hand poses and real backgrounds.

2.2 Unpaired image to image translation
Despite the easy generation and annotation of synthesized dataset,
they lack the generalization power and they will not perform well
on real-world hand images. To eliminate the domain gap between
synthesized data and real dataset, in [24], they used conditional
GAN called GeoConGAN to transfer the generated images to real
images. Image to image translation is a concept from machine
translation where a phrase translated from English to French should
translate from French back to English and be identical to the original
phrase. The reverse process should also be true [37]. However,
traditionally, paired image to image translation requires a dataset of
paired examples which is challenging and expensive to prepare. As
such, there is a huge interest in unpaired image to image translation
approaches. Unpaired image to image translation uses extra terms
along with adversarial networks to enforce the output to be close
to input in a specified way, such as labels space, image pixels space
or image features space. In recent studies,[3] and [18], authors use
a weight sharing strategy to learn the most common representation
between domains. In [28] and [33], to perform unpaired image to
image translation, the proposed models share the specific "content"
features between the two domains even though they may differ
in "style". Baek et al. used a CyclicGAN to transfer the depth map
of the hand to the 3D representation of the hand joints[4]. In [21]
authors, proposed a strategy that exploits the unpaired image style

transfer capabilities of CycleGAN in semi-supervised semantic
segmentation. Spurr et al. also applied similar approach to make
one to one relation between RGB images to 3D hand joints pose[30].

3 PROPOSED METHOD
In this study we propose a two-stage pipeline for fingertip localiza-
tion in 2-D plane; first we reduce the problem to an unpaired image
to image translation using Cycle-consistent Generative Adversarial
Network [41]. It is a general-purpose network for unpaired image
to image translation and does not require paired image and uses the
concept of cycle consistency to enforce the model to map between
domain A and domain B and vice versa with the inverse mapping
(see Figure 3). The key idea behind CycleGAN is that it allows the
model to use two unpaired collection of the images rather than
two specific images. A detailed structure is explained in section 4.2.
Applying unpaired image to image translation, the model is able
to translate the input real depth image to depth map with colored
marks corresponds to fingertip locations. Using these colored mark,
we extract the location of the fingertips along with two other points
(center of the palm and wrist) using color segmentation techniques
in HSV color space. An overview of the proposed pipeline, detailed
architecture of the unpaired image to image translation for first
stage and detailed overview of second stage are demonstrated in
Figure 4, 3 and Figure 5 respectively.

3.1 Formulation
We aim to learn the mapping between real depth images and depth
images with colored marks corresponding to fingertip locations
without paired example. This can be done using general adversarial
loss however, the model ignores the input image completely and
keeps generating the same depth image from the domain B. To
ensure that the model considers the input image, Cycle-GAN, uses
two objectives: adversarial loss and cycle-consistency loss.
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Figure 4: The overview of proposed model

3.1.1 Adversarial loss . Adversarial loss[11] is a powerful loss
specifically for image generation task. Adversarial loss, in GAN, en-
force the generated image to be indistinguishable from real photos.
Since the model has two mapping functions G and F, an adversarial
loss is defined for each mapping function as:

LGAN (G,DB ,A,B) = Eb∼pdata(b)[loдDB (b)]

+ Ea∼pdata(a)[loд(1 − DB (G(a))],
(1)

whereG tries to generate imagesG(a) that look similar to images
from domain B , while DB aims to distinguish between translated
samples G(a) and real samples b. Similarly for mapping function F,
it is defined as:

LGAN (F ,DA,B,A) = Ea∼pdata(a)[loдDA(a)]

+ Eb∼pdata(b)[loд(1 − DA(F (b))],
(2)

3.1.2 Cycle consistency loss . Although adversarial loss can en-
force the model to learn the mapping G and F and produce out-
puts identically distributed as target domain, however, the network
might map the same set of input image to any random permutation
of image in target domain. Therefore, Zhu et al. use cycle consis-
tency loss for generative adversarial networks to perform unpaired
image to image translation[41]. Given an input image from domain
A, they apply mapping G to translate image to domain B followed
by inverse mapping F to reconstruct the input image in domain
A. Cycle-consistency loss compares the reconstructed image and
input image using L1-norm distance and it can be written as[41]:

Lcyc (G, F ) = Ea∼pdata (a) [| |F (G (a)) − a | |1]+

Eb∼pdata (b) [| |G (F (b)) − b | |1]
(3)

The same process is done in opposite direction as shown in Figure
3.

3.1.3 Full Objective. The final loss function for training Cycle-
GAN is defined as [41] :

L(G, F ,DA,DB ) = LGAN (G,DB ,A,B)

+ LGAN (F ,DA,B,A)

+ λLcyc (G, F )

(4)

where λ controls the relative importance of the two objectives.
The Cycle-GAN model is trained by minimizing the following loss:

G∗, F ∗ = arдminG,F maxDa,Db L(G, F ,DA,DB ) (5)

3.2 Color segmentation in HSV color space
HSV is a cylindrical color model that remaps the RGB primary
colors into dimensions that are easier for humans to understand.
These dimensions are hue, saturation and value as shown in Figure
6. Hue represents an angle in range [0,2π ] relative to the Red axis
with red at angle 0, green at 2π /3, blue at 4π /3 and red again at 2π .
Saturation defines the depth or purity of the color and is measured
as a radial distance from the central axis with value between 0
at the center to 1 at the outer surface [31]. Finally, the value of
Intensity determines the particular gray shade to which this trans-
formation converges. It is seen that, HSV based approximation can
determine the intensity and shape variations near the edges of an
object which result in sharpening the boundaries and retraining the
color information of each pixel. Furthermore, the approximation
done by the RGB features blurs the distinction between two visually
separable colors by changing the brightness. In the second stage,
we develop a new framework , in HSV color space, to extract re-
gion of interest from the generated colored annotated depth image
from the previous stage. First, the images are converted to HSV
color space to have all components quantities with same precision.
Afterwards, the converted images are split into three different sub
images as hue, saturation and value. Histogram for all three com-
ponents is computed and plotted and the threshold value for each
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,

Figure 5: Second stage overview

component is selected accordingly. Finally by masking operation a
desired colored area is segmented and the center of the segmented
part extracted as 2-D coordinates of the desired points (Figure 5).

Figure 6: HSV color space representation

4 EXPERIMENTAL DETAILS
4.1 Data preparation
Although there are some datasets like ICVL [34] and MSRA14[25]
for hand pose estimation, we chose New York University (NYU)
dataset [36]. NYU is a challenging hand pose dataset and it is more
commonly used in recent studies due to its accurate annotation and
variety of poses. It contains RGBD dataset captured from 3 views
and it has 72,757 frames from a single user in train set and 8,252
frames from two different user in test set. It uses 36-joints model to
annotate the hand images.

To prepare training data from NYU hand dataset for Cycle-
consistency model, we prepare two sets of data: train data for do-
main A which includes 3000 cropped real depth images of hand
and train data for domain B, which contains 3000 cropped images
around hand with color markers on 7 points (5 fingertips and center

of the wrist and center of the palm). To simulate unpaired supervi-
sion, these two set of data do not have one to one mapping and are
selected randomly from the view-point 1(front view).

For test data, we randomly chose 300 real depth images of the
same view from test set of NYU hand dataset.

Figure 7: Example of test data; real depth image (a) and an-
notated depth (b) sample from NYU hand dataset

All the images are of size 128 x 128 and they only contained
cropped image of hand. There are 7 keypoints, which are annotated
using 7 different predefined colors and corresponds to pinky finger-
tip, ring fingertip, middle fingertip, index fingertip, thumb fingertip,
center of the palm and center of the wrist. Figure 7 shows examples
of customized NYU hand dataset.

4.2 Model Architecture and Internal
Parameters

The general architecture of CycleGAN [41] utilizes two parts Gen-
erators and Discriminators. Each generator has three parts; en-
coder,transformer and decoder. The encoder consists of 3 convo-
lutional layers that reduces the representation by 1/4-th of actual
image size. The transformer contains 6 or 9 residual blocks based
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on the size of input and the decoder uses 2 deconvolution block
with fractional strides to increase the size of representation to the
original size. The network uses instance normalization as opposed
to batch normalization, and the discriminator is a 70x70 Patch GAN
which penalizes images at the level of individual patches as op-
posed to per-pixel or per-image basis. We trained the model for 200
epochs for customized NYU with 3000 unpaired data with learning
rate of 0.0002 and lambda value of 10 to calculate cycle loss.Once
the model is trained, we evaluate it using 300 test images from NYU
dataset to translate them from domain A to domain B which in
turns are generated depth map along with colored markers. In the
second stage, we use the HSV color space with emphasis on the
variation in Hue and Saturation. Segmentation using this method
shows better identification of fingertip localization in an image. The
center of these segmented area are extracted as fingertip positions
in 2-D as explained in section 3.2.

4.3 Evaluation metrics
The twomost commonmetric utilized to quantitatively evaluate the
localization method are Mean Error (ME) in pixel and Percentage of
Correct Keypoints (PCK). ME is the average 2-D Euclidean distance
between predicted and ground-truth joints and PCK measures the
mean percentage of predicted joint locations that fall within certain
error thresholds compared to correct location. To have a fair com-
parison we evaluate our proposed pipeline on NYU hand dataset
with these two metrics.

5 RESULTS AND DISCUSSION
Since, most of previous methods , [39] and [9], on 2-D hand pose
estimation, have primarily reported results on NYU hand dataset,
we evaluate our method on NYU hand dataset. It is worth mention-
ing that we only trained our model over 0.03 of NYU dataset while
previous methods are trained over the entire dataset. Unlike the
previous methods where they use paired example for training, our
pipeline uses unpaired supervision and receives no information
about which labeled image corresponds to which image. Both qual-
itative and quantitative results indicate that our propose methods
produce fewer pixel errors in each frame.

5.1 Quantitative results
We employ two metrics to evaluate the performance of our pro-
posed method; the average Euclidean distance in pixels between the
results and ground truth and the percentage of frames in which all
joints error are within a certain threshold. However, since there is
no result reported directly on the same joints as our study, to have
a fair comparison, we extract the result for 5 fingertips from the
reported results on right hand (Figure 9 in Duan’s paper [9]) and
summarized the 2D localization results for 5 fingertips in Figure 8
and Table 1.

Table 1: Quantitative evaluation on NYU Hands(Fingertips
only)

Methods Mean error (Pixels)

Ours 7.2
Duan paper[9] 12.2

Mask RCNN(kpt and mask)[9] 13.6
Mask RCNN(kpt)[9] 24.5

Figure 8: Comparison on per-joints mean error distance in
pixels on NYU hand dataset

As shown in Table 1, the mean joint pixel error on subset of
300 images of NYU test data, is 7.2 which is better than reported
average results on fingertips of right hand by Duan et al. in [9].
Moreover, the comparison of our methods with extracted results
from [9], on each joint for right hand in the NYU hand dataset is
shown in Figure 8.

Figure 9: Per-jointmean error distance in pixels onNYU test
dataset

Moreover, Figure 9 illustrates the mean joint pixel error for 7
keypoints on subset of NYU test data with our proposed pipeline.
The Percentage of Correct Keypoint over a different threshold is
shown in Figure 10.
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Figure 10: Fraction of frames within distance on NYU test
datasets

5.2 Qualitative results
As can be seen in Figure 11, our proposed approach can improve
the localization of fingertip positions and provide a more accurate
estimation on NYU hand dataset, by better recovery of details,
and generating more natural images by unpaired image to image
translation independent of the hand orientation and in presence of
severe self occlusion.

Figure 11: Qualitative results on examples of test data from
NYU hand dataset; first column real depth image, second
column ground truth locations and third column represents
the translated image using Cycle-constituency approach

6 CONCLUSION AND FUTUREWORK
Since many 3D hand pose estimation methods perform a two-stage
approach to obtain 3D joint locations based on 2-D positions of
fingertip locations, obtaining accurate 2-D location of joints and
fingertip has a great importance. Despite the advantage of using
low cost depth-cameras, localizing the fingertip position accurately
is a difficult and challenging task since, after depth-segmentation,
hand contours are prone to erosion. Furthermore, self occlusion
and varying lighting conditions are another challenging issues.

To tackle these issues, we implemented a pipeline for 2-D local-
ization by reducing the problem to an unpaired image to image
translation task followed by color segmentation in HSV domain and
histogram threshold, to extract the fingertip positions. Evaluation
of our pipeline with subset of NYU test detests, shows that our
method can be used to localized 2-D fingertip positions which are
also competitive to state of the arts even at presence of severe self
occlusion and performs well independent of hand rotations.

Themodel was not completely successful to predict the fingertips
in cases where part of fingers are out of the cropped ROI. Therefore,
in the future, we plan to improve the performance of our model
by having more accurate hand segmentation in prepossessing step,
to accurately define the ROI around the segmented hand. More
importantly, our system could be extended to be used in 3D hand
pose estimation in our next study. In this study we have considered
results only on depth images but we plan to apply a similar pipeline
to RGB images.
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