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ABSTRACT

We present an environment for simulated experiments in field robot-
ics, and especially in experiments on estimating the traversability
of foliage and other objects that appear as obstacles but that can
be overcome by the robot without circumventing them. The simu-
lated environment is developed in the Unity real-time development
platform, integrated with the ROS middleware. In the preliminary
experiments presented here, we demonstrate that our environment
is able to simulate the sensory input needed in order to train super-
vised traversability estimation models.
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1 INTRODUCTION AND MOTIVATION

Traversability estimation [8] is a key technology in field robotics, as
it allows robots to extract from sensory input the occupancy and
cost information that is typically used by obstacle avoidance and
navigation algorithms. Traversability estimation can be appearance-
based, extracting from the visual signal terrain features such as
roughness, slope, discontinuity and hardness [5] or terrain classes
such as soil, grass, asphalt, vegetation [2]; Or it can be geometry-
based extracting terrain features such as roughness, slope, and
discontinuity from digital elevation maps (DEM) obtained from
stereoscopic or depth sensors [11].

Even the more detailed appearance-based methods, however,
only have broad classes of terrain (such as ‘grass’ or ‘vegetation’)
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and the features they extract cannot make the distinction between
vegetation or foliage that a robotic platform can safely push away
and harder obstacles that the platform should circumvent. Methods
that use deep vision to directly estimate traversability from raw im-
ages [1] can be trained to make the distinctions that are appropriate
for each platform, but require training data specifically acquired and
annotated for each platform. Earlier experiments with a physical
platform [9] have shown that general-purpose deep vision, trained
on broad classes, can be made environment and platform-specific
with a dramatically smaller training set, but this still remains a
considerable overhead to porting deep traversability estimators for
each new platform.

The simulated environment presented in this poster aims to
provide a method for preparing a training set for most of this
deep network adaptation. The goal is to use a simulation-generated
training set for most or all of the data needed to achieve the transfer
of knowledge from the original network to the platform-specific
network.

Figure 1: Characteristic scene from our simulated
traversability experimentation environment, showing
both ‘soft’ potential collisions (light foliage) as well as
‘hard’ potential collisions (tree trunks).
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Figure 2: Bridging between Unity and ROS is achieved by us-
ing the Rosbridgelib of the ROS# package to publish and sub-
scribe to JSON messages on the Unity side; and Rosbridge to
publish and subscribe to JSON messages on the ROS side.

2 SIMULATED ENVIRONMENT

Unity! is a cross-platform 3D game engine integrated with a variety
of plugins for both simulating physics and photorealistic synthe-
sised images. In our experimental setup we used the Nvidia PhysX
3.3 physics engine? to simulate the effect of collisions between the
platform and various elements of the environment. Some of these
elements are designed to easily yield without harming the platform
(grass, thinner foliage) while others are rigid obstacles that should
be avoided (rocks, tree trunks).

Unity renders both visual and range data from this environment,
which can be used as simulated sensors for the Robot OS (ROS).
Specifically, we use the Rosbridge suite? to translate between ROS
messages and JSON strings at the ROS side and the ROS# library* at
the Unity side. In our setup ROS is running on a Ubuntu Virtual Ma-
chine and we initiate a Rosbridge server that provides a WebSocket
transport layer between Unity and the ROS software stack, so that
the latter subscribes to ROS topics such as pose, odometry, camera,
etc. published by ROS# (Figure 2).

In our scenario, we simulate the movement of an All-Terrain
Vehicle (ATV) navigating through the fields of a vineyard while
encountering both non-traversable hard obstacles and traversable
soft obstacles (Figure 1). Different foliage, for example, will or will
not be possible to push out of the way depending on the platform’s
mechanical properties. In other words, what would appear as an ob-
stacle to standard ROS navigation using Point Cloud data might or
might not be traversable. The robot can experiment with the simu-
lated environment to acquire traversability ground-truth datapoints
from the physics simulator.

3 CONCLUSIONS AND FUTURE WORK

Using simulated data to fine-tune deep vision systems is not a new
concept, both generally [3] and specifically in off-road navigation:
Sharma et al. [10] used the MAVS simulator [6] to fine-tune the
DeconvNet semantic segmentation network. MAVS provides real-
istic visual data that Sharma et al. proved to be able to improve
DeconvNet accuracy when validated on real data, but does not
integrate well with ROS software stacks. This restricts to simulated
robot to data collected from predefined routes that the robot cannot

LCf. https://unity.com

2See https://docs.nvidia.com/gameworks/#gameworkslibrary/physx/physx.htm
3See http://wiki.ros.org/rosbridge_suite

4See https://github.com/siemens/ros-sharp
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affect. As the authors note, an oversimple or too random dataset
can cause negative transfer, it is therefore important to be able to
acquire data based on the robot’s realistic operational scenarios.

This can be achieved by using simulators that are better inte-
grated with robotics software, such as the Gazebo/ODE robot and
physics simulator [7]. Chavez-Garcia et al. [4] used Gazebo/ODE
to train a network that directly maps range data to traversability
estimation. However, range data will only learn geometry-based
traversability and is unable to distinguish soft and hard obstacles.
Since Gazebo does not generate realistic visual data, it does not
support transfer learning of deep vision networks.

The Unity/ROS framework presented here combines ROS inte-
gration with the generation of realistic visual streams, allowing
simulated robots to acquire realistic visual data while moving in
the environment in dynamically computed routes dictated by their
operational requirements. We plan to use this environment to train
deep vision systems that are able to classify the obstacles detected in
point cloud data as ‘soft’ and ‘hard’ obstacles, and to map obstacles
to a platform-specific traversability cost. Both the Unity/ROS inte-
grated setup and our specific simulated environment are publicly
available at https://github.com/ChristosSev/Vineyard
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