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Abstract
Modern database systems suffer from compromised through-
put, persistent unfair I/O processing and unpredictable, high
latency variability of user requests as a result of mismatches
between highly scaled user parallel I/O and the I/O capac-
ity afforded by the database and its underlying storage I/O
stack. To address this problem, we introduce an efficient
user-centric QoS-aware scheduling shim, called AppleS, for
user-level fine-grained I/O regulation that delivers the right
amount and pattern of user parallel I/O requests to the data-
base system and supports user SLOs with high-level perfor-
mance isolation and reduced I/O resource contention. It is
designed to enable database systems to proactively regulate
user request behaviors based on runtime conditions to re-
shape user access pattern to hide excessive user parallelism
from the I/O stack that has a limited concurrent process-
ing capability. This helps achieve scalable throughput for
multi-user workloads in a fair and stable manner. AppleS
is implemented as a user-space shim for transparent user-
differentiated I/O scheduling, making it highly flexible and
portable. Our extensive evaluation, run on real databases
(MySQL and MongoDB), demonstrates that, by incorporat-
ing AppleS in the existing database systems, our solution
can not only improve the throughput (up to 39.2%) in a fairer
(3.2× to 40.6× fairness improvement) and more stable (up to
2× lower latency variability) manner, but also support user
SLOs with less I/O provisioning.
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1 Introduction
Although significant progress has been made in improving
the transaction throughput scalability for database systems
running onmulti-core architectures [35, 44, 46, 57, 58, 61, 65],
including relational database management systems (RDBMS)
for Online Transaction Processing (OLTP), e.g., MySQL [23],
Oracle [25] and DB2 [15], and key-value stores, e.g., Mon-
goDB [21], Dynamo [34] and Bigtable [30], modern databases
still fail to effectively exploit the available parallelism of con-
current transactions for high-contention multi-user work-
loads in a fair and stable manner. This makes it challenging
for a “database-as-a-service" [54] in a modern datacenter to
meet the Service-Level Objectives (SLOs) [29, 50, 55].
Today’s database systems, including relational databases

[15, 23, 25] and key-value stores [21, 30, 34], highly rely on
buffer cache, lock mechanisms and the storage I/O stack to
handle concurrent requests 1. There user requests that are
often arbitrarily delivered through simultaneous user TCP
connections may lead to a user parallelism beyond the I/O
capacity afforded by the database system. Excessive user
parallelism can severely compromise database’s I/O perfor-
mance with inefficient I/O processing, persistent user-level I/O
unfairness, and unstable request latency. To demonstrate this,
we present, in Fig. 1, the I/O performance of a representative
relational database, MySQL 8.0.15 [23], under the baseline,

1Request and query are interchangeable in this paper.
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Figure 1. Baseline (“B") results show that request contentions on buffer
cache, locks and I/O stack are primary culprits for modern database systems’
inability to provide sufficient transaction throughput, fair I/O processing,
low latency, and low latency variability of user requests at high user par-
allelism. The AppleS (“A") results show that by temporarily holding back
excessive requests outside the database (“AppleS controlled delay") and
controlling the amount and pattern of requests entering the database, such
internal contentions can be substantially curbed (“DB execution"), leading
to increased throughput, decreased user unfairness, latency and latency
variability. The unfairness metric measures the maximum deviation in indi-
vidual user throughput from the average, defined in Section 3.1, which is,
the smaller the better.

the latest default I/O scheduler (i.e., mq-deadline [22]) by
scaling users. As one can see, the transaction throughput
peaks at a specific user parallelism (i.e., around 32 for B,
top-left part) when both user I/O unfairness and request la-
tency variability start to deteriorate precipitously (Baseline,
top-right part) along with the throughput decline. While
the peaking of throughput with increased user parallelism
is inevitable and expected at some point, the sudden jump
in user unfairness and latency variability is puzzling and
begs for more explanations and closer examinations. Given
the aforementioned importance of buffer cache, locks and
I/O stack in handling user requests, we suspect that request
contentions on them at high user-parallelism should be a
main culprit, which is confirmed by the baseline results given
in the bottom two parts of Fig. 1. That is, starting at user
parallelism of 32, the overall request latency and DB exe-
cution time rise rapidly (bottom-left part) while the buffer
cache hit ratio drops and lock related processing increases
notably (black curve, bottom-right part). In other words, the
excessive user parallelism significantly lengthens database’s
processing time, which is largely spent on the code paths
related to locks and buffer cache required to control request
concurrency (B bars, bottom-right part). This, along with
unbalanced buffer caching across users and queuing effects
along the storage I/O stack, directly leads to unstable and un-
even user request latency, resulting in persistent user-level
I/O unfairness (see Section 2). Our intuitive solution idea,

based on these observations and insight, is to hold back ex-
cessive user requests temporarily and control the amount
and pattern of requests allowed to enter the database system
so that the request contentions on buffer cache, locks and
I/O stack are prevented to allow for a “minimally congested"
database “internal pipe". This high-throughput pipe in turn
enables all the requests including those held-back requests to
get through the database system faster (“AppleS controlled
delay") than if they were not held back (“DB execution"),
while the substantially reduced internal request contentions
lead to much improved user fairness and latency variability,
as evidenced by the “A" results in Fig. 1.
Based on this basic idea, our proposed system in this pa-

per, an Application level Scheduler (AppleS), aims to hide
excessive user parallelism by strategically holding back the
requests surpassing the concurrency afforded by the database
system, resulting in lower and stabler request latency, higher
throughput, and improved user-level I/O fairness under the
given resources.
Unlike the existing solutions, including kernel-level [2,

12, 16, 20, 22, 66] and database-specific approaches [42, 45,
48, 51, 52, 56, 60], that passively react to one or more bot-
tlenecks resulting from highly scaled user parallelism by
improving some internals of a database or instrumenting
OS-kernel modules, AppleS is designed to nip the aforemen-
tioned problem in the bud by proactively reshaping user
request streams in such a way that it prevents excessive
I/O workload (beyond the I/O capacity afforded by the data-
base and its underlying storage I/O stack) from reaching
and overloading the database system. In other words, Ap-
pleS trades controllable and predictable delays of excessive
user requests waiting outside the database system for an
uncongested and resource-efficient runtime database system
without which their I/O delays inside the database system
can become unpredictably long and variable, harmful to user
I/O fairness and efficiency. Specifically, to capture the rela-
tionship between user behaviors and a database system¡¯s
performance, we regulate the user parallel I/O perceived
by and delivered to the database system in two dimensions,
i.e., delivered user parallelism and scheduling-round I/O quota.
The former is the number of concurrent users that are seen
by the database system actively contending for I/O resources,
while the latter determines the number of consecutive re-
quests issued in a scheduling round for each user according
to its priority. The intuition is that, a value of the former
matching the inherent concurrency of the database system
allows the most effective usage of the system resources and
hence, optimize throughput, whereas, a value of the latter
based on user priority would help achieve this throughput
without sacrificing user-level fairness by exploiting per-user
sequentiality and locality (e.g., for reduced cache misses).
By optimizing the values of delivered user parallelism and
scheduling-round I/O quota at runtime, AppleS is able to
effectively avoid or alleviate the performance bottlenecks
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Figure 2. Each data point represents the cumulative wait time experienced by a given user, which issues the TPC-C workload to access a MySQL 8.0.15
instance. The unbalanced lock waits distributed across users can be aggravated by highly scaled user parallelism.

due to superfluous user parallel I/O. This enables AppleS to
support user QoS with effective user-level isolation and re-
duced I/O provisioning. In addition, AppleS’s non-intrusive
implementation, without the need to modify databases and
OS kernels, makes it compatible with and portable to differ-
ent types/versions of databases and different versions of OS
kernels.
We implement an AppleS prototype and evaluate its ef-

fectiveness under four versions of the Linux kernel and
compare it against nine state-of-the-art or widely accepted
I/O schedulers and a Linux resource management tool (i.e.,
Cgroup(v2) [3]) with extensive experiments driven by two
types of databases, including a RDBMS, MySQL [23] (ver-
sion 8.0.15 and 8.0.23), for OLTP evaluation, and a key-
value store, MongoDB [25] (version 3.6.0 and 4.4.3), for
cloud service workloads [32]. Our prototype evaluation
results demonstrate that AppleS is able to provide high
transaction throughput, significantly improve on user-level
I/O fairness (up to 40.6×) and maintain a low request la-
tency and latency variability when the number of concur-
rent users scales. More importantly, AppleS can integrate
other QoS guarantee algorithms (e.g., PSLO [49]) to enforce
customized user-level SLOs with reduced I/O provisioning
(saving up to 53.1% transaction throughput) by supporting
fairer and more stable I/O resource allocation to concur-
rent users. The source code of AppleS is now available at
https://github.com/NingBellWind/AppleS_Artifact/.

2 Background and Motivation
This section first presents the necessary background to set
the stage for the analysis and empirical observations later in
the section that motivate the AppleS study.

2.1 Background and Case Studies
Highly scaled user parallelism2 can cause scattered perfor-
mance bottlenecks (e.g., the buffer cache, lock mechanisms
of the database, the kernel-level block layer, etc.) along the
whole I/O stack that consists of the database and the un-
derlying storage I/O stack. To examine these performance
bottlenecks aggravated by high user parallelism, we first
discuss their impact on user-level I/O performance isolation,
and then study two specific cases of databases, a relational

2It refers to the number of concurrent I/O-intensive users contending for
I/O resources.

database, MySQL 8.0.15 [23], and a key-value store, Mon-
goDB 3.6.0 [21], to quantify the impact of different levels of
user parallelism on transaction throughput, user-level I/O
fairness and request-latency variability. This helps us reveal
the root causes behind these performance bottlenecks.
User I/O Performance Isolation for Databases: As a

key indicator of the lack of user I/O performance isolation,
user-level I/O unfairness (defined in Section 3.1) can be at-
tributed to many factors and chief among them are cache
conflicts and lock contentions in the database and storage I/O
queuing effects. Cache conflicts can induce cache residency
imbalance [36] where faster running users are rewarded
with more buffer cache space, leading to their increased
throughput allocations but at the expense of slower-running
users. This vicious cycle causes unacceptable persistent user-
level I/O unfairness. Moreover, existing transaction-based
lock management mechanisms [46, 53, 65] cannot effectively
track and prevent likely user-level unfairness resulting from
intensified contentions on database locks (e.g., by invok-
ing pfs_rw_lock_sx_lock_func in MySQL [23]), as
evidenced in Fig. 2. Similarly, other solutions focusing on
databases’ cachingmechanisms [42, 45, 52, 56] also cannot ef-
fectively track and regulate user-level I/O traffic, falling short
of supporting user-level fair and stable I/O sharing. In addi-
tion, storage I/O queuing effects can further magnify user
I/O unfairness [43]. These three factors often work together
to exacerbate the problem of persistent user I/O unfairness
under high user parallelism. However, for different types of
databases, they can play different roles, as elaborated next.

Bottlenecks of MySQL:We investigate the performance
of MySQL 8.0.15 to understand its bottlenecks. With the
user parallelism continuously increasing beyond the I/O con-
currency afforded by the database, lock contentions and
buffer cache conflicts become increasingly more frequent
and serious (Baseline, Fig. 1), leading to inefficient usage of
resources throughout the I/O stack and hence, decreased
transaction throughput and increased user-level I/O unfair-
ness and request-latency variability (Baseline, Fig. 1).

The intensified lock contentions and cache conflicts by the
scaling of concurrent users cause the transaction throughput
to decrease when the number of users surpasses a threshold
(i.e., 32), as illustrated in Fig. 1. In themeantime, I/O resources
allocated to different users are increasingly unbalanced as
user parallelism increases, as indicated by the unfairness
measure and request-latency variability in Fig. 1.
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Figure 3. Challenges posed by excessive user parallelism for MongoDB.
The violin plots show the distributions of I/O queue length observed in the
I/O stack as a function of user parallelism. The median queue length and
the interquartile range (from 25% to 75%) for a given user parallelism are
represented by the white dot and the thick black vertical bar respectively.

It is noted that pfs_rw_lock_sx_lock_func con-
sumes more CPU cycles when the number of concurrent
users goes beyond a threshold (i.e., 32), which implies more
expected processing delay due to row-level shard and exclu-
sive locks [19] with more concurrent users. Similarly, a high
CPU usage is observed on buf_LRU_get_free_block
when the number of users exceeds 32. This means that the
buffer pool frequently evicts LRU pages and flushes them
to the disk to accommodate new pages, aggravating cache
conflicts, resulting in reduced buffer pool hit ratio.
In contrast, by trading a controlled delay at the socket

buffers, which can increase with the number of concurrent
users scaling up, for a reduced latency inside the database-
I/O-stack blackbox, AppleS achieves higher throughput and
overall lower latency than uncontrolled situations, as illus-
trated in Fig. 1.

Bottlenecks of MongoDB: I/O queuing effects along the
storage I/O stack can become a major bottleneck under high
user parallelism for MongoDB [21]. We verify this effect
by exponentially increasing the number of I/O-intensive
concurrent users imposed on MongoDB 3.6.0 with the YCSB
[32] workloads (configurations are given in Section 5) under
a state-of-the-art I/O scheduling framework (Split-level [66]).
As shown in Fig. 3, a larger number of users can lead to
a higher queue-length variability in the storage I/O stack
and thus an unstable I/O service. Even with the Actually
Fair Queuing (AFQ) scheduler [66], user I/O unfairness and
request-latency variability (by measuring the coefficient of
variation (CV) [13] averaged across all users) increase by
100× and 3× respectively from 4 users to 1024 users.

Conclusions: As the storage backend supporting cloud
services for multi-tenancy [37, 54] and large-scale indus-
trial services [17, 18], database systems are often faced with
high user parallelism. However, for both MySQL [23] and
MongoDB [21], highly scaled parallel I/O can significantly
weaken user I/O performance isolation and/or degrade I/O

efficiency. The key is to fully exploit the potentials of data-
base systems to service more concurrent users byminimizing
the side effects, i.e., lock contentions, cache conflicts and/or
queuing effects, aggravated by high user parallelism.

2.2 Related Work
In this section, we assess the existing solutions addressing
the challenges due to excessive user parallelism for database
systems, which further motivates our work.
Kernel-Level I/O Schedulers: The I/O schedulers [12,

16, 20, 22, 66] perform different levels of support for
process/thread-level fairness and bursty I/O control in a pas-
sive manner. However, these schedulers cannot identify the
user visiting the application that produced the I/O request
and thus cannot effectively track and regulate user-level I/O
traffic for databases.
Resource Management Tools: Existing resource man-

agement tools, e.g., Cgroups [2], can provide great flexibility
in process/thread-level resource allocation. However, like I/O
schedulers, Cgroups, as an OS kernel feature, cannot effec-
tively track and regulate user-level I/O traffic that happens
on top of the database.
Database-Specific Solutions: Existing efforts on the

transaction scalability of OLTP mainly focus on efficiency
problems stemming from database internals such as con-
tentions on concurrency control and the buffer cache. For
example, many solutions improve the caching or buffer-
ing mechanism by optimizing replacement algorithms [42,
45, 52, 56] or buffer cache management [48, 51, 60] for
high transaction throughput or low latency. Other solutions
[39, 44, 46, 57, 58, 61, 65] aim to enhance the capability of
concurrency control for achieving optimized transaction
scalability under high user parallelism. However, these solu-
tions are not designed to support user-level fair and stable
I/O sharing. Other database-specific solutions (e.g., SILK [28],
Rein [59] and DAST [31], etc.) essentially incorporate im-
proved components into a specific database or an evaluation
framework (e.g., Janus codebase [4]) for performance im-
provement, still incapable of proactively alleviating the per-
formance bottlenecks in the storage I/O stack and regulating
user parallel I/O behaviors before they enter the database,
which is proven to be the key to minimizing the side effects
caused by excessive user parallelism (See Fig. 1). More im-
portantly, because databases and OS kernels are frequently
updated, it can entail a substantial amount of work (e.g.,
coding, testing and integration) for a database-specific solu-
tion to migrate across different versions of databases and/or
OS kernels. This largely prevents database-specific solutions
from offering the necessary portability and compatibility to
different versions/types of databases and OS kernels.
In contrast, AppleS can effectively alleviate the afore-

mentioned performance bottlenecks without instrumenting
databases or OS kernels. Meanwhile, AppleS is orthogonal
and complementary to the database internal solutions and
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hence, can work seamless with different types/versions of
databases for further performance enhancement, as demon-
strated in Section 5.

3 AppleS Design
AppleS works as a user I/O regulator on top of the I/O stack,
that consists of the database and its underlying storage I/O
stack, as illustrated in Figure 4. A database running instance
(e.g., for MongoDB [21] and MySQL [23]) typically adopts a
multi-thread model to handle user requests wrapped as the
corresponding network packets, which are received from
users’ network links and temporarily stored in the OS socket
buffer. The storage I/O stack, including virtual file system,
file system layer, block layer and driver layer, etc., leverages
multi-threaded I/O requests to fairly and efficiently share
the storage backend. AppleS works as a user-space scheduling
shim treating the whole I/O stack as a black box.

3.1 Design Goals and Principles
"Database-as-a-service" [54] in a modern datacenter de-
mands high throughput (i.e., _) under effective performance
isolation, e.g., in terms of user-level I/O unfairness (i.e., 𝑈𝑓 )
and/or request latency variability (i.e., 𝑉𝑙 ), to serve concur-
rent users in a fair, stable and efficient fashion. 𝑈𝑓 is a di-
mensionless metric to assess relative I/O fairness between
any two backlogged users (𝑢𝑖 and 𝑢 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛) during
any time interval [𝑡1, 𝑡2]. 𝑈𝑓 =

max𝑛
𝑖=1 |𝑁𝑖 (𝑡1,𝑡2)/𝜙𝑖−𝐻 |

𝐻
, where

𝐻 = (∑𝑛
𝑖=1

𝑁𝑖 (𝑡1,𝑡2)
𝜙𝑖
)/𝑛, 𝑁𝑖 (𝑡1, 𝑡2) is the number of scheduled

requests for user 𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑛, during [𝑡1, 𝑡2]. Intuitively
and informally,𝑈𝑓 is the maximum deviation in individual
user throughput from the average. To make the metric fit
for users’ transactions with distinct loads, 𝑈𝑓 is measured
at the request/query level. 𝑉𝑙 is defined as the coefficient
of variation (CV) [13] of request latency averaged across
users. Our AppleS targets at maximizing total I/O through-
put under strong performance isolation across highly scaled
concurrent users. To this end, the AppleS design is guided
by the following principles:
Early intervention: Highly scaled user parallel I/O

can aggravate cache conflicts, lock contentions and the I/O
queuing effects, as shown in Fig. 1-3. Rather than individu-
ally addressing these bottlenecks, AppleS aims to proactively

reshape user parallel I/O before it causes the spread of bot-
tlenecks along the I/O stack.
Hiding the excessive I/O: AppleS aims to hide

excessive user parallel I/O beyond the I/O-stack capacity
by delivering the right amount of user parallelism to and
keeping the appropriate per-user consecutive access pattern
for the I/O stack at runtime.
Portability and compatibility: With the

only system assumption being user-level network-IO syscall
interception, AppleS is portable to different versions/types
of databases (i.e., MongoDB [21] and MySQL [23]) by
simple reconfigurations. In addition, AppleS is designed
to be compatible with different OS kernels and orthogonal
to existing kernel-level resource management tools (e.g.,
Cgroups [2]) and I/O schedulers [12, 16, 20, 22, 66].

3.2 Early Intervention

DatabaseUser

UserUse

System calls
(RECVFROM, 

PPOLL, 

SENDTO, )

User I/O requests

User Linux kernel

Network

Socket buffer

Thread-level requests

Results

Feedback

11

222
33 44455

66

Figure 5. The life cycle of user I/O requests.

It is desirable but challenging to accommodate excessive
user requests beyond the I/O-stack capacity before they enter
the I/O stack. Without instrumenting the database and OS
kernel as traditional designs and implementations do, AppleS
regulates user parallel I/O by intervening the process that
transforms the network I/O packets from user network links
into the user I/O requests to be handled by the database.
Figure 5 illustrates the life cycle of user I/O requests by

showing their 6-step process flow. User I/O requests wrapped
in I/O packets are first received by the NIC driver and then
stored at a socket buffer in the Linux kernel (step 1). The
database continuously issues network-I/O system calls to
signal if I/O packets are ready for the database (step 2). If yes,
I/O packets will enter the database and be transformed into
user requests for business-logic processing (step 3). Then,
these user requests will be converted into thread-level I/O
requests for the OS kernel and the rest of the I/O stack (step
4). Once the results for these requests are fed back from the
Linux kernel (step 5), the database will process them and
send these results back to the users (step 6). Intuitively, by
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Figure 6. The effectiveness of the AppleS scheduling under different combinations of delivered user parallelism 𝑃 and scheduling-round I/O quota Z . For
the convenience of observing the impact of per-user I/O sequentiality on I/O performance, which is controlled by 𝐿𝑖 for 256 concurrent users, 1 ≤ 𝑖 ≤ 256,
each user is assigned the same weight 𝜙0 and thus the same value of 𝐿 = Z ∗ 𝜙0 for 𝐿𝑖 .

strategically intercepting and suspending network-I/O sys-
tem calls, AppleS can effectively shield the user requests that
exceed the I/O-stack processing capacity from overloading
any part of the I/O stack.

3.3 Hiding Excessive I/O
AppleS reshapes the user parallel I/O delivered to the data-
base system by two control knobs, i.e., delivered user paral-
lelism, denoted as 𝑃 , and scheduling-round I/O quota, denoted
as Z , used by a runtime I/O scheduler.
Scheduling: AppleS schedules user requests under a

weighted round-robin (WRR) policy [27, 47], aiming to coor-
dinate user parallelism and access pattern in a fine-grained
fashion. The I/O scheduling during a period of time can be
logically divided into multiple scheduling rounds. During
each round, the user parallelism seen by the I/O stack is
limited by 𝑃 while the total number of user requests to be
issued is bounded by Z . The user I/O quota will be assigned
according to their individual weights 𝜙𝑖 to implement I/O
differentiation under the fairness policy, i.e., 𝐿𝑖 = 𝜙𝑖 ∗ Z for
the 𝑖𝑡ℎ user, 𝑢𝑖 . Specifically, the per-user quota limits the
number of requests a user is allowed to issue in a scheduling
round. If some users don’t use up their quotas, all others
would benefit because their requests will be moved up to
take over the unused quota based on the WRR scheduling
policy. In doing so, AppleS can coordinate I/O rate allocation
across concurrent users to meet user QoS targets.
The core idea behind the AppleS scheduling is to coordi-

nate the user request latency spent outside of the database
system by controlling 𝑃 , i.e., the AppleS controlled delay,
which can considerably reduce the request delay inside the
database resulting from buffer cache conflicts or lock con-
tentions that can be intensified by the excessive user paral-
lelism inside the database. In addition, AppleS can also enable
per-user I/O sequentiality adjustment for exploiting poten-
tial I/O locality (e.g., for reduced cache misses) by increasing
Z .

In contrast to existing admission control systems [38, 41,
68, 69], AppleS selectively delays excessive requests from
multiple concurrent users to maintain the matching point
(i.e., 𝑃 control), under which users are not allowed to issue
more requests than their respective quotas in a scheduling

round (i.e., Z control). Since AppleS maximizes throughput,
the overall delays experienced by the held-back requests
will be shorter than those by requests under conventional
throttling or without throttling that reduces throughput as
user-parallelism increases beyond a threshold (as evidenced
by Fig. 1). Pending requests are withheld in the socket buffers,
consuming minimum resources.
To show the effect of the AppleS scheduling with the

two control knobs and provide an intuition for finding their
optimal combination later in the paper, we let 256 users,
which issue the TPC-C workload [26], concurrently access a
MySQL 8.0.15 instance controlled by AppleS under different
combinations of 𝑃 and Z . To effectively investigate the impact
of per-user I/O sequentiality on I/O performance, which
is controlled by 𝐿𝑖 , each user has the same weight 𝜙0 and
thus the same value of 𝐿 = Z ∗ 𝜙0 for 𝐿𝑖 . According to our
experimental observations, we can lay out the impact of 𝑃-Z
control on I/O performance as follows:
𝑃 Control: The 𝑃 control is the key to regulating user-

level parallel I/O workload to match the I/O concurrency
afforded by the database system. It affects the AppleS con-
trolled delay experienced by those excessive requests tem-
porarily held back because they were considered beyond
the I/O-stack capacity based on the 𝑃 limit. As shown in
Fig. 6(a), there is a negative correlation between 𝑃 and the
AppleS controlled delay. A larger 𝑃 commonly corresponds
to a shorter AppleS controlled delay, due to the relaxation on
user I/O concurrency limit, but likely causes suddenly surged
database execution, largely because of a sharp CPU usage in-
crease on lock/buffer-related processing (see in Fig. 6(c)), e.g.,
by frequently invoking pfs_rw_lock_sx_lock_func
and buf_LRU_get_free_block in MySQL [23] (recall
Section 2.1). Thus, the 𝑃 control can help seek a matching
point with the shortest AppleS controlled delay just before
database execution time surges, resulting in a maximized
throughput (see in Fig. 6(b)). Note that the 𝑃 value with the
maximized throughput commonly corresponds a low-level
variability in request latency and lock waits (see in Fig. 6(d)).
This means that running at the matching point will likely
contribute to an efficient and stable I/O sharing for concur-
rent users. In addition, for different 𝐿 (and thus Z ), their
matching points basically stay close to each other (i.e. the

597



Improving Scalability of Database Systems by Reshaping User Parallel I/O EuroSys ’22, April 5–8, 2022, RENNES, France

range of 𝑃 between 16 and 20) except the case of the smallest
I/O sequentiality3 (i.e., 𝐿 = 2) where the matching point is
located at the range of 𝑃 between 12 and 16. This indicates a
matching point obtained under a specific level of per-user I/O
sequentiality can be applied to other levels of I/O sequentiality.
Z Control: A larger Z can help exploit per-user I/O se-

quentiality and locality for a higher buffer cache hit ratio
provided that 𝑃 does not exceed the matching point (see in
Fig. 6(b)). However, too large a Z (e.g., when 𝐿 = 128 and
thus Z = 128 ∗ 256) can lengthen lock waits and offset the
throughput gains from the enhanced cache hit ratio (see in
Fig. 6(a)(b)). This is because a higher per-user I/O sequen-
tiality indicates that more requests from the same user can
enter the database in the same scheduling round, imply-
ing a potentially higher data locality among these requests
(e.g., accessing the same data row) and resulting in increased
row-lock time. Moreover, too large a Z can also aggravate
user I/O unfairness and request latency variability due to
aggravated cache residency imbalance [36] (recall Section
2.1) and the intensified variation of lock time, respectively
(see in Fig. 6(c)(d)). Finding the right Z can help maximize
throughput under the constraints of user I/O fairness and
request latency variability. In addition, a smaller 𝑃 means
lower user-parallelism delivered to the database, leading to
a higher hit-ratio (due to fewer conflicts) but also reduced
I/O-stack utilization. The matching point guides 𝑃 control to
shield excessive user requests while fully exploiting I/O re-
sources, the prerequisite for the Z control for a high hit-ratio.
It is noted that the Z control has almost negligible impact
on database execution and AppleS controlled delay (see in
Fig. 6(a)), which makes the Z control nearly orthogonal to
the 𝑃 control. This is because the Z control, which regulates
the per-user I/O interarrival time distribution, has little im-
pact on the user parallelism (across users) delivered to the
database system once 𝑃 is determined.
As a result, a key 𝑃-Z control principle is that the 𝑃

control that curbs excessive user parallelism takes precedence
to and is a precondition for the effectiveness of the Z control
that attempts to increase cache hit ratio by increasing per-user
access locality, while the Z control has negligible impact on
the delivered user parallelism controlled by 𝑃 . Based on this
principle, we can start by optimizing 𝑃 control for obtaining
the matching point at a specific Z setting and then further
optimize Z control to maximize throughput constrained by
the requirements of user I/O fairness and/or request latency
variability.

3.4 Portability and Compatibility
First, AppleS is designed to regulate user parallel I/O on top
of the database and the underlying storage I/O stack by inter-
cepting network-I/O system calls, essentially treating the I/O
stack as a black box. This separates AppleS’s operations from

3The case of 𝐿 = 1 is considered no I/O sequentiality.

the underlying database processing as well as kernel-level
I/O scheduling and the process/thread-level resource throt-
tling executed by resource management tools (e.g., Cgroup
(V2) [2]).

Second, from the perspective of AppleS, the difference
among different types of databases only lies in the adop-
tion of different types of network-I/O system calls to handle
user requests. Thus, to enable AppleS to work for a specific
database, we only need to configure AppleS with the identifi-
cation codes of the system calls associated with user request
processing, while the database’s internals can change greatly
from version to version. As a blackbox solution, AppleS will
automatically coordinate the 𝑃/Z controls to optimally adapt
to these changes.
Finally, if load balancing middleware is available for the

database system, a joint load-balance control in the middle-
ware and the AppleS control in individual backend database
servers can be devised to enhance system-level I/O perfor-
mance. This is because AppleS can support efficient, fair and
stable I/O sharing under high user parallelism for each server,
thus further improving the system-level capability to service
more concurrent I/O intensive users by complementing load
balancers.

4 AppleS Implementation
The AppleS implementation consists of three main func-
tional modules, namely, the User-context builder, Scheduler
and Optimizer. The user-context builder is responsible for
establishing the per-user request queues; the scheduler re-
shapes user access pattern according to 𝑃/Z controls. As the
brain of AppleS, the optimizer tunes 𝑃 and Z through a two-
timescale tuning process, slow for 𝑃 and fast for Z , to provide
user-level I/O sharing in a fair, stable and efficient manner.

4.1 User-Context Builder
The user-context builder module builds user-level context
by extracting the user-level network connection information
hidden behind user requests. The module analyzes the sys-
tem calls from user requests to extract the peer IP address
and port for each user connection. Thus, a user in AppleS can
be uniquely identified by its < 𝐼𝑃−𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑝𝑜𝑟𝑡−𝑛𝑢𝑚𝑏𝑒𝑟 >
tuple. With the user-specific ID information so obtained, a
user-level request queue is built for each distinct user by
grouping requests from that user in the FIFO order.

4.2 Scheduler
AppleS scheduler, implemented as a user-spacemodule based
on a syscall_intercept library [5], intercepts and schedules
network-I/O system calls issued by the database. The library
allows AppleS to hook the Linux system calls in the user
space by hot-patching the machine code of the library in
the memory of a process, enabling AppleS to intercept and
schedule them. When AppleS delays the system calls, the I/O
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threads waiting for their feedback will be blocked until Ap-
pleS releases its control. Thus, all the user-level scheduling
goals can be realized for a specific database by intercepting
user requests destined for the I/O stack. The overhead of the
system-call interception is found to be negligibly small, i.e.,
on the order of 100 nanoseconds, or larger than 1 million
interceptions/second. Given the sub-Million IOPS through-
put of the existing storage volume for high-performance
databases (e.g., 300K IOPS per volume for the Ultra high-
performance Oracle cloud infrastructure block volumes re-
ported in June 2021 [7]), we believe that AppleS should be
scalable to higher-performance databases or soft-realtime
applications [33].

4.3 Optimizer
Based on the analysis in Section 3.3, the optimizer workflow
can be broadly divided into two parts, namely, optimizations
for the control knobs 𝑃 and Z respectively. The I/O-stack
concurrency capability 𝐶 (i.e., the optimal value of 𝑃 ) is de-
termined by the resource provision in the I/O stack and
thus remains relatively stable since resource configuration
changes infrequently. Moreover, the impact of fast chang-
ing workloads on user-experienced I/O performance can be
largely regulated by AppleS in a stable and efficient manner
under the matching point since instantaneously excessive
concurrent requests can be effectively held back out of the
I/O stack. Thus, the 𝑃 optimization runs at a slow timescale
(e.g., minute-level timescale). In contrast, the Z optimization,
which aims to regulate and exploit per-user request sequen-
tiality, must react quickly to the instantaneous I/O bursts to
meet the user-level requirements for I/O fairness or request-
latency variability, and therefore operates at a fast timescale
(e.g., 100𝑚𝑠-level) provided that each backlogged user can
issue at least one request during each scheduling round.

4.3.1 𝑃 Optimization. The goal is to find the smallest 𝑃
where the throughput (i.e., _) peaks, i.e., the matching point,
𝐶 , that support high throughput under effective user I/O
performance isolation. To keep the measurement complexity
low, we resort to a hybrid modeling-and-measurement-based
approach. Specifically, by experiment, we first found that the
percentage of parallel execution time, 𝛼 (𝑃), also known as
parallel fraction, can be easily modeled as an exponentially
decreasing function of 𝑃 with three parameters. Then with
a simple AppleS execution model, we are able to establish
_(𝑃) as an explicit function of 𝑃 via 𝛼 (𝑃), with the three
parameters underpinned by only three throughput samples,
resulting in extremely low measurement complexity of O(1).
The peak of _(𝑃) is then identified with high accuracy as the
experiments show.
By experiment, as shown in Fig. 7, we found that 𝛼 (𝑃)

closely follows an exponentially decreasing function with a
non-zero floor. In other words, it can be generally modeled
as:
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Figure 7. 𝛼 curve fitting for MongoDB and MySQL.

𝛼 (𝑃) = 𝐴 + 𝐵 ∗ 𝑒−𝛾∗𝑃 , 𝐴, 𝐵,𝛾 > 0 (1)

with only three positive parameters, 𝐴, 𝐵 and 𝛾 . Fig. 7 shows
the curve fitting of 𝛼 (𝑃) given by Eq. 1. We observe that
both fitting curves closely track real data points (i.e., using
throughputs measured at different 𝑃 values for MongoDB
[21] and MySQL [23] databases, under the YCSB [32] and
TPC-C benchmark [26] workloads, respectively) and accu-
rately reflect their trend.
With the empirical expression of 𝛼 (𝑃) in Eq. 1, we show

in Appendix that with a simplified execution model that
approximately captures the AppleS execution process, the
throughput _(𝑃) can be given as,

_(𝑃) = 𝑃 ∗ _(𝑃0)
𝑃0 + 𝐵 ∗ 𝑃0 ∗ (𝑒−𝛾𝑃0 − 𝑒−𝛾𝑃 ) ∗ (𝑃 − 1)

. (2)

To pin down the parameters in Eq. 2, including _(𝑃0), 𝑃0,
𝐵, and 𝛾 , we resort to a measurement approach by sampling
three throughput data points. The first data point is _(𝑃0) at
𝑃 = 𝑃0 (< 𝐶). In this case, 𝛼 is expected to approach 1. This
is because with a delivered user parallelism smaller than
the I/O concurrency capacity of the I/O stack, the I/O stack
may be underutilized and virtually all issued requests can be
processed concurrently. Now, there are two parameters, i.e.,
𝐵 and 𝛾 , left to be fixed, which calls for two more samples
to be measured. Specifically, with two throughput values,
_(𝑃1) and _(𝑃2), sampled at 𝑃 = 𝑃1 and 𝑃 = 𝑃2, respectively,
as input to Eq. 2, we establish two equations which can
be jointly solved to uniquely determine 𝐵 and 𝛾 . _(𝑃2) is
sampled without constraining 𝑃 (i.e., 𝑃2 =the number of
users) while _(𝑃1) can be sampled at a medium value. In
principle, the _(𝑃1) sample can be collected at any 𝑃1 values.
Nevertheless, we recommend to sample them (i.e., _(𝑃1) and
_(𝑃2)) far apart to reflect the throughput variation with 𝑃 .
Finally, the matching point, 𝑃 = 𝐶 , is found as the first local
maximum of _(𝑃) given by Eq. 2.

Algorithm 1 further discloses the implementation details
of the P optimization, which mainly consists of three parts,
i.e., three-data-point throughput sampling, pinning down the
parameters 𝐵 and 𝛾 , and finding the matching point. As the
inputs for the P optimization, the throughputmeasures are re-
quired to represent the burstiness and load added by not only
the database’s processing but also background I/O-intensive
tasks that can significantly affect database performance es-
pecially under high user parallelism, e.g., 𝑓 𝑠𝑦𝑛𝑐 ()-induced
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Figure 8. A comparison between AppleS estimates for throughput based on different samplings of the three throughput data points and the actual
measurements.

Algorithm 1: P Optimization Algorithm
Input: The delivered user parallelism (i.e., 𝑃0, 𝑃1, 𝑎𝑛𝑑, 𝑃2)

for three-data-point sampling
Output: The matching point (i.e., 𝐶)

1 /*Three-data-point throughput sampling.*/
2 _(𝑃0) ← 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑃0)
3 _(𝑃1) ← 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑃1)
4 _(𝑃2) ← 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑃2)
5 /*With three measured throughputs, _(𝑃0), _(𝑃1), and

_(𝑃3), the standard solver based on the Newton-Raphson
method is used to solve for 𝛾 from
𝑓 (𝛾) = 𝐵 ∗𝑃0 ∗ (𝑒−𝛾𝑃0 −𝑒−𝛾𝑃1 ) ∗ (𝑃1−1) −𝑃1 ∗_(𝑃0)/_(𝑃1)
(derived from Eq. 2).*/

6 𝛾 ← 𝑁𝑒𝑤𝑡𝑜𝑛_𝑅𝑎𝑝ℎ𝑠𝑜𝑛(𝑓 (𝛾))
7 /*Determine 𝐵 with three data points based on Eq. 2*/
8 𝐵 =

𝑃1∗_ (𝑃0)/_ (𝑃1)−𝑃2∗_ (𝑃0)/_ (𝑃2)
𝑃0∗( (𝑒−𝛾𝑃0−𝑒−𝛾𝑃1 )∗(𝑃1−1)−(𝑒−𝛾𝑃0−𝑒−𝛾𝑃2 )∗(𝑃2−1))

9 /*Find the smallest P where the throughput peaks, i.e., the
matching point*/

10 𝑃 ← 1
11 𝑙𝑎𝑠𝑡_𝑡ℎ𝑝𝑡 ← 0
12 𝑐𝑢𝑟𝑟_𝑡ℎ𝑝𝑡 ← _(1)
13 while 𝑐𝑢𝑟𝑟_𝑡ℎ𝑝𝑡 > 𝑙𝑎𝑠𝑡_𝑡ℎ𝑝𝑡 do
14 𝑙𝑎𝑠𝑡_𝑡ℎ𝑝𝑡 ← 𝑐𝑢𝑟𝑟_𝑡ℎ𝑝𝑡
15 𝑃 ← 𝑃 + 1
16 𝑐𝑢𝑟𝑟_𝑡ℎ𝑝𝑡 ← _(𝑃)
17 return 𝑃 − 1

data flushing. Databases need to periodically (e.g., 60 sec-
onds by default for MongoDB [9]) flush pending writes to
the storage backend (e.g., by the 𝑓 𝑠𝑦𝑛𝑐 () system call), which
can cause the "fsync freeze" problem [1, 66] and compromise
database transaction throughput and latency performance.
Thus, the interval length for each measurement is set at
60 seconds by default. Based on the three-data-point mea-
surements, one can solve 𝐵 and 𝛾 by the Newton-Raphson
method [24]. Specifically, Algorithm 1 first derives a func-
tion of 𝛾 (i.e., 𝑓 (𝛾)) based on Eq. 2. And then, it conducts
multiple iterations, each of which updates 𝛾 with a better ap-
proximation ( i.e., the x-intercept of tangent line obtained by
𝛾 − 𝑓 (𝛾)/𝑓 ′(𝛾)), to obtain a 𝛾 with a desired accuracy, which
is guaranteed by |𝑓 (𝛾) | < ` (` is set at 10−12 by default) only
if the condition for convergence of the Newton-Raphson

method can be met. After that, 𝐵 can be solved based on Eq.
2 with _(𝑃0), _(𝑃1) and _(𝑃2) as input. Finally, Algorithm 1
can check the throughput obtained from Eq. 2 under increas-
ing levels of 𝑃 from 1 until the peak of throughput can be
identified, which is the matching point.

We further verify the precision of Eq. 2 on a MySQL 8.0.15
instance. Specifically, we let 128 users, which issue TPC-C
workload [26], concurrently access the MySQL instance con-
trolled by AppleS under distinct Z settings. We assess the
percentage error [11] between the measured throughput at
the estimated matching point derived from Eq. 2 and the
throughput obtained under the actual matching point, i.e.,
_𝑚𝑎𝑥 error. We also evaluate the sensitivity of Eq. 2 by choos-
ing different middle samples, _(𝑃1). As shown in Fig. 8, Eq.
2 can accurately estimate the trend of throughput as a func-
tion of 𝑃 under different Z settings, which can be confirmed
by the average _𝑚𝑎𝑥 error (i.e., 3.58%) over all the cases in
Fig. 8. More importantly, Eq. 2 is shown to be insensitive to
the choice of middle samples as different middle samples,
which lead to throughput trends with negligible difference,
indicating a satisfactory stability for the output when the
input changes (e.g., algorithmic stability [10]). Similarly, we
also observe a low _𝑚𝑎𝑥 error for MongoDB [21] with the
YCSB workloads [32] (detailed configurations in Section 5),
e.g., for the maximum number of users (i.e., 1024) we use
to test a MongoDB instance controlled by AppleS with the
smallest per-user I/O sequentiality, the _𝑚𝑎𝑥 error is 4.46%.

4.3.2 Z Optimization. We explore some classic feed-
back control approaches (e.g., Proportional-Integral (PI)
and Proportional-Integral-Derivative (PID)), which are
typically designed for high-precision control that leads
to high complexity with less high-frequency robustness
[63], especially when faced with highly-oscillating I/O-
unfairness and latency-variability for the database under
high-level user-parallelism. We currently adopt the low-
cost additive-increase/multiplicative-decrease (AIMD) [8]
feedback-control proven effective to bound I/O unfairness
and latency variability (as evidenced by Fig. 9 and Fig. 11).

Specifically, AppleS performs fast timescale feedback con-
trol to maximize Z constrained by a user I/O unfairness upper
bound𝑈 𝑜

𝑓
or a request latency variability threshold 𝑉 𝑜

𝑙
. To

be responsive to rapid changes of I/O unfairness and latency
variations, AppleS monitors Z every scheduling round and
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Algorithm 2: Z Optimization Algorithm
Input: A user I/O unfairness upper bound 𝑈 𝑜

𝑓
, a request

latency variability threshold 𝑉𝑜
𝑙

Output: The optimized Z
1 /*Measure the latest user I/O unfairness.*/
2 𝑈𝑓 ← 𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑃0)
3 /*Measure the latest request latency variability.*/
4 𝑉𝑙 ← 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑣𝑎𝑟_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑃1)
5 /*If both thresholds are 0, keep the minimum Z for the

lowest user I/O unfairness and latency variability.*/
6 if 𝑈 𝑜

𝑓
= 0 and 𝑉𝑜

𝑙
= 0 then

7 return Z𝑚𝑖𝑛

8 /*If𝑈𝑓 or 𝑉𝑙 exceed their respective threshold, Z will
exponentially decrease.*/

9 if (𝑈 𝑜
𝑓
> 0 and𝑈𝑓 > 𝑈 𝑜

𝑓
) or (𝑉𝑜

𝑙
> 0 and 𝑉𝑙 > 𝑉𝑜

𝑙
) then

10 if 𝑑 ∗ Z ≥ Z𝑚𝑖𝑛 then
11 Z ← 𝑑 ∗ Z
12 else
13 Z ← Z𝑚𝑖𝑛

14 /*If𝑈𝑓 or 𝑉𝑙 are small enough to meet their thresholds, Z
will follow an additive increase.*/

15 if (𝑈 𝑜
𝑓
= 0 or (𝑈 𝑜

𝑓
> 0 and𝑈𝑓 < [𝑢 ∗𝑈 𝑜

𝑓
)) and (𝑉𝑜

𝑙
= 0 or

(𝑉𝑜
𝑙

> 0 and 𝑉𝑙 < [𝑣 ∗𝑉𝑜
𝑙
)) then

16 if Z + 𝑢 ≤ Z𝑚𝑎𝑥 then
17 Z ← Z + 𝑢
18 else
19 Z ← Z𝑚𝑎𝑥

20 return Z

adjusts Z based on the basic principles of TCP congestion
control [40], i.e., the AIMD feedback control algorithm [8].
Generally speaking, the fast-timescale feedback control of
AppleS is also a kind of congestion control to maximize per-
user request sequentiality afforded by the database under the
matching point. Therefore, we borrow the basic idea of the
TCP congestion control for the implementation of the Z opti-
mization algorithm. Specifically, as shown in Algorithm 2, if
the last increment of Z causes the measured user I/O unfair-
ness or request latency variability to exceed their respective
threshold, Z will be reduced by multiplying with 𝑑 that must
be less than 1 (set at 0.5, the same as the control parameter
used by the TCP congestion control, by default). It will lead
to exponential backoff of Z to rapidly respond to violations
of upper bounds for user I/O unfairness and request latency
variability (i.e., 𝑈 𝑜

𝑓
and 𝑉 𝑜

𝑙
). If both the measured user I/O

unfairness and the latency variability are lower than their
respective thresholds (i.e, [𝑢 ∗𝑈 𝑜

𝑓
and [𝑣 ∗𝑉 𝑜

𝑙
where [𝑢 and [𝑣

are set at 0.9 by default), then it means that the current level
of user I/O performance isolation allows sufficient room for
optimizing Z for a stronger per-user request sequentiality. In

this case, Z is increased to exploit cache locality to optimize
the I/O performance. If both𝑈 𝑜

𝑓
and 𝑉 𝑜

𝑙
are set at 0, then it

means that the lowest levels of user I/O unfairness and re-
quest latency variability are required and thus the minimum
Z is returned.

5 Performance Evaluation
Test Environment: All the evaluation experiments are con-
ducted on a dedicated rack of PowerEdge R630 servers. The
storage server is equipped with a RAID-0 SSD array with
five 800GB SATA MLC Solid State Drives, consolidating all
the logical volumes for databases. The computing server is
configured with 2 Intel Xeon E5-2650 processors, 64GB of
RAM, a Broadcom NetXtreme II BCM57810 10Gb NIC and 4
× 1TB SATA HDDs. All the servers are connected by a Dell
N4032F switch with peak bandwidth of 10Gb.

Workloads, Databases, I/O Schedulers and Resource
Management: We deploy a relational database, MySQL
8.0.15 [23], and a key-value store, MongoDB 3.6.0 [21], as
representative databases to verify the effectiveness and ro-
bustness of AppleS on enforcing fair, stable and efficient I/O
sharing for user-level QoS improvement. Specifically, we
use the TPC-C benchmark [26] to establish multiple user
connections to concurrently access a database consisting of
1, 000 warehouses (for a total dataset size of 200GB) built
on MySQL. Similarly, we run the YCSB Benchmark [32]
on MongoDB with multiple user connections, each generat-
ing a Zipf distributed key-value request workload. User re-
quest workloads include different combinations of GET and
SET, and are write-heavy (50% GET, 50% SET) unless other-
wise noted, accessing the underlying MongoDB that stores a
150𝐺𝐵 dataset. Since very small key-value objects (typically
smaller than 1𝐾𝐵) are prevalent in enterprise-level stores
[64], we set object size at 1𝐾𝐵 for the MongoDB dataset.
MySQL and MongoDB are each deployed on a computing
server and their respective datasets are stored on their own
logic volumes provided by a storage server. To verify the
portability and compatibility, we evaluate AppleS under 9
I/O schedulers and across 4 versions of Linux kernels, as
shown in Table 1. Since CFQ [14] may stall some requests
in the queue needlessly and cause poor response times for
MySQL [62] and BFQ [12] also exhibits poor performance
for relational databases [6], we exclude these two sched-
ulers from the MySQL evaluation. In addition, Split-AFQ,
Split-Deadline, and Split-Token are officially customized for
the Linux kernel 3.2.51 [66] and thus we adopt this kernel
version for their assessments.

To compare with the widely adopted resource manage-
ment mechanism, i.e., Cgroup(v2) [3], we install Cgroup(v2)-
enabled CentOS 8.3 with the Linux kernel 5.10.10 to enable
full functionality of Cgroup(v2), especially the support for
thread-level CPU fairness enforcement. It’s threaded con-
troller can effectively regulate thread-level CPU contention
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and guarantee thread-level CPU fair sharing. For CentOS
8.3, we install MySQL 8.0.23 and MongoDB 4.4.3 from their
official repositories.
Evaluation Metrics: MySQL [23] and MongoDB [21],

as different types of databases, focus on distinct workloads
each of which can be characterized by disparate require-
ments for I/O performance quality of service and thus can
have different evaluation metrics. As a representative rela-
tional database, MySQL mainly focuses on OLTP workloads
(e.g., the TPC-Cworkload [26]) that demand high transaction
throughput while MongoDB strives for highly responsive
key-value processing that is more sensitive to tail latency.
Nevertheless, both database types desire fair and efficient
I/O sharing among concurrent users. According to their in-
dividual unique and common demands on I/O performance
quality of service, we design the stated methodology for Ap-
pleS’s evaluation on MySQL and MongoDB. Specifically, for
the TPC-Cworkload, we use transactions per minute (TpmC)
as the metric to assess its throughput while the transaction
throughput in terms of 𝑜𝑝𝑠/𝑠 is used for the YCSB [32]. In ad-
dition, we adopt user-level I/O unfairness (defined in Section
3.1) and the coefficient of variation (CV) [13] averaged across
all users as metrics to evaluate user-experienced fairness and
request latency variability, respectively.

Baselines and Objectives: Section 5.1 assesses the capa-
bility of AppleS to make a desirable tradeoff among trans-
action throughput, user I/O fairness and request-latency
variability for the relational database under different levels
of high user parallelism. Section 5.2 verifies the effectiveness
of AppleS to enforce fair and stable I/O sharing across differ-
ent numbers of concurrent users by making full use of I/O
resources. Section 5.3 investigates AppleS’ ability to reduce
I/O provisioning for user QoS guarantees, e.g., enforcing the
99.9𝑡ℎ percentile(i.e., 𝑃99.9) tail latency SLOs.

OS
Linux

kernel

Resource management

or I/O scheduler

CentOS 7.3 3.2.51 Split-AFQ; Split-Deadline; Split-Token
CentOS 7.3 4.9.75 CFQ; Deadline; Noop
CentOS 7.3 5.0.5 mq-deadline; Kyber; BFQ
CentOS 8.3 5.10.10 Cgroup (v2) & mq-deadline

Table 1. The baseline systems and environments.

5.1 AppleS’s Optimization for MySQL
In this evaluation, we assess how effectively AppleS opti-
mizes MySQL in terms of the tradeoff among throughput,
user I/O fairness and request-latency variability under high
user parallelism. Based on the investigation in Section 2.1,
a number of concurrent users higher than 64 can gener-
ate excessive OLTP workloads on the MySQL running on
our testbed. We thus adopt 64 or more users in this assess-
ment. Specifically, AppleS optimizes the scheduling-round
I/O quota Z at the matching point to exploit potential spatial
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Figure 9. The transaction throughput optimization for MySQL 8.0.15
under the constraints of user I/O unfairness and request-latency variability.
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Figure 11. Transaction throughput and unfairness under different sched-
ulers for MySQL 8.0.15.

locality to further optimize the throughput performance, sub-
ject to two conditions, i.e., user I/O unfairness is less than or
equal to 15% and the level of request-latency variability (by
measuring the coefficient of variation (CV) [13]) is less than
or equal to 90% of the CV of request latency measured for the
baseline system (i.e., MySQL running on mq-deadline [22]).
Based on the fast-timescale feedback control with 100ms-
level monitoring for changes of user I/O unfairness and the
CV of request latency, AppleS can effectively respond to
each condition-violation event by quickly adjusting Z . As
show in Fig. 9, user I/O unfairness and the CV of request la-
tency can be effectively confined within the expected ranges
except for the 512-user case in which the unfairness value
is 17% and slightly higher than the target. The throughput
improvement ranges from 9.8% to 28.1% when the number
of users increases from 64 to 512. This is because AppleS
effectively improves the efficiency of the buffer pool by in-
creasing its hit ratio and cutting down the extra disk I/Os
for futile page buffering. Also evidenced by Fig. 10, AppleS
successfully hides the excessive user parallelism that, oth-
erwise, would aggravate lock contentions and buffer cache
conflicts, thus significantly reducing the CPU usage on the
relevant code-paths.
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Figure 12. AppleS’s effectiveness in reducing user I/O unfairness and
request-latency variability, and increasing total throughput for MySQL
8.0.23 under Cgroup(v2)-enabled CentOS 8.3.

We further verify the effectiveness of AppleS in optimizing
transaction throughput conditioned by the unfairness target
of 10% under 7 I/O schedulers across 3 versions of Linux ker-
nels respectively and compare the transaction throughput
and unfairness measured with and without AppleS respec-
tively, giving rise to the corresponding pair-wise compar-
isons. As demonstrated in Fig. 11, AppleS is able to improve
the throughput performance for all the cases studied, with
as much as 17.3% improvement for the mq-deadline case.
Note that the unfairness values measured under AppleS
across all the cases are below or very close to the required
limit (i.e., 10%), improving over the cases without AppleS by
4.6× ∼ 7.3×. The highest unfairness incurred by AppleS is
merely 11.7% for the AppleS+kyber case.
We also assess AppleS’s capability to cooperate with

Cgroup(v2) [3] on MySQL 8.0.23. Although the existing
Cgroup(v2) can enforce process/thread-level resource distri-
bution hierarchically in a controlled and configurable man-
ner for a subset of resource controllers (e.g., weight-based
CPU controller), it is not yet capable of controlling thread-
level fair I/O sharing [3]. Thus, MySQL user-level I/O behav-
ior, which typically happens before the corresponding thread
I/Os, is actually beyond the I/O control of Cgroup(v2). How-
ever, I/O processing conducted by MySQL’s work threads
still rely on CPU cycles. Thus, we adopt Cgroup(v2)-enforced
weight-based CPU controller to enforce thread-level CPU fair
sharing among MySQL’s work threads. As shown in Fig. 12,
Cgroup(v2)-enforced MySQL performs slightly better than
the baseline (i.e., MySQL 8.0.23) on user-level I/O fairness
and latency variability in some cases (e.g., the case of 512 user
connections). However, as shown in Fig. 13, Cgroup(v2) can-
not effectively alleviate the contentions on lock and buffer
cache of MySQL, which are the dominant factors detrimental
to I/O fairness, efficiency and latency performance under
high user parallelism. In contrast, AppleS can effectively
hide excessive user I/O parallelism from MySQL and its un-
derlying I/O stack, and thus significantly alleviate lock con-
tentions and cache conflicts within MySQL, as shown in
Fig. 13. This explains why AppleS can significantly enhance
user-level I/O fairness by up to 31.8×with a low latency vari-
ability, as well as improve throughput performance by up to
39.2%. More importantly, when combined with Cgroup(v2),
AppleS is shown to be orthogonal and complementary to
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Figure 13. The breakdowns of CPU usage on the code-paths related
to lock contention and cache conflict for MySQL 8.0.23 under Cgroup(v2)-
enabled CentOS 8.3.
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Figure 14. AppleS’s effectiveness in reducing user I/O unfairness and
request-latency variability, and increasing throughput for MongoDB 4.4.3
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Cgroup(v2)¡¯s CPU fair scheduling efforts on MySQL work
threads, further improving AppleS’s advantages on enhanc-
ing user-level I/O fairness (up to 34.5×) and throughput (up
to 45.6%).

5.2 AppleS’s Optimization for MongoDB
In this section, we verify AppleS’s efficacy on MongoDB
4.4.3 by adopting the same Cgroup(v2) configuration as that
for the MySQL 8.0.23 case (described in Section 5.1) so that
thread-level CPU fair sharing is enabled for MongoDB. Com-
pared with the OLTP workload under the relational database
MySQL with complex transaction processing but slower I/O
speed, YCSB workloads [32] accessing MongoDB can gener-
ate a higher key-value request rate that relies more on stable
and adequate CPU cycle provisioning. However, thread-level
contention on CPU resource can force some threads to forfeit
their CPU shares and exhibit deceptive idleness [67], result-
ing in low utilization of CPU and thus slower I/O speed
for the storage I/O stack. As shown in Fig. 14 and Fig. 15,
Cgroup(v2)-enforced thread-level CPU fair sharing can help
MongoDB’s work threads to expose their actual CPU de-
mand to the OS scheduler and put a higher I/O pressure

603



Improving Scalability of Database Systems by Reshaping User Parallel I/O EuroSys ’22, April 5–8, 2022, RENNES, France

0

4

8

12

16

20

24

28

-0.5%

Throughput    YCSB + MongoDB  [100 users]

T
ra

n
s
a
c
ti
o
n
 t
h
ro

u
g
h
p
u
t(

k
o
p
s
/s

) -2.5% 0.3% -2.4% 7.2% 2.3% 1.0% -1.8% 10.0%

0

2

4

6

8
Unfairness    YCSB + MongoDB  [100 users]

U
n
fa

ir
n
e
s
s
(%

)

10.2X 4.6X 13.1X 6.4X 11.1X 22.2X 39.6X 21.8X 25.9X

AppleS+CFQ
CFQ

AppleS+mq-d
eadlin

e

mq-d
eadlin

e

AppleS+Noop
Noop

AppleS+Deadlin
e

Deadlin
e

AppleS+Split-
Toke

n

Split-
Toke

n

AppleS+Split-
Deadlin

e

Split-
Deadlin

e

AppleS+BFQ
BFQ

AppleS+Kyb
er

Kyb
er

  A
ppleS+Split-

AFQ

Split-
AFQ

AppleS+CFQ
CFQ

AppleS+mq-d
eadlin

e

mq-d
eadlin

e

AppleS+Noop
Noop

AppleS+Deadlin
e

Deadlin
e

AppleS+Split-
Toke

n

Split-
Toke

n

AppleS+Split-
Deadlin

e

Split-
Deadlin

e

AppleS+BFQ
BFQ

AppleS+Kyb
er

Kyb
er

  A
ppleS+Split-

AFQ

Split-
AFQ

Figure 16. Transaction throughput and unfairness under different sched-
ulers for MongoDB 3.6.0.

on the storage (e.g., up to 1.77× I/O wait cpu share) than
that under the baseline, leading to a higher throughput (up
to 22.1% improvement). In addition, although Cgroup(v2)
provides some benefit in reducing user-level I/O unfairness
and latency variability in most cases, it fails to effectively
regulate user-level I/Os. In contrast, AppleS can effectively
hide excessive user parallelism from the I/O stack and signif-
icantly reduce the share of I/O wait CPU time by up to 71.3%.
This indicates that more portions of the I/O journey will be
under AppleS’s predicable control with user-level I/O fair-
ness guarantee without sacrificing throughput, effectively
preventing unpredictable and harmful I/O delay in the I/O
stack. More importantly, AppleS can cooperate well with
Cgroup (v2) to combine its efforts on CPU fair sharing and
further improve throughput (by up to 28.6%) and user-level
I/O fairness (by up to 101.5×) with a low latency variability.
Further, we examine the effectiveness of AppleS for

MongoDB [21] under different I/O schedulers. Specifically,
we let MongoDB run on 9 I/O schedulers across 3 versions
of Linux kernels, with and without AppleS, respectively.
As shown in Figure 16, AppleS helps reduce unfairness by
4.6× ∼ 39.6× across all the 9 I/O schedulers. More impor-
tantly, the cost on throughput is negligibly small, with a
maximum of 2.5% transaction throughput reduction in the
Split-AFQ [66] case. AppleS helps improve throughput per-
formance for some other I/O schedulers, e.g., CFQ [14], Dead-
line [16] and BFQ [12]. Such improvements are likely to be
attributed to AppleS’s optimization that effectively alleviates
I/O blocking in the I/O stack by curbing queuing effects.

5.3 AppleS’s Optimization for User QoS
In this assessment, we verify the effectiveness of AppleS on
reducing I/O provisioning for user QoS guarantee. AppleS
is designed to export the interface for coordinating user-
level fairness policy to other QoS guarantee systems, e.g.,
PSLO [49]. In this case, AppleS actually works as a user-
level I/O scheduler for the database to provide fair, stable
and efficient I/O scheduling that can be controlled by these
QoS-guaranteed systems.
Specifically, we use PSLO as a QoS guarantee system for

testing. PSLO can enforce any percentile tail latency SLOs
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Figure 17. The time-trend curves of request-latency variability for the
LS users under different schemes for different combinations of LS users and
BE users.
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Figure 18. Comparisons in the throughput allocated to the LS users
and the throughput allocated to the BE users under different schemes for
different combinations of LS users and BE users.

for consolidated virtual machines (VMs) by dynamically co-
ordinating I/O resources allocated among VMs based on a
measurement-based feedback control model [49]. We imple-
ment the PSLO control model for database users instead of
VMs. In this way, PSLO can work with AppleS to guarantee
the P99.9 tail latency SLO of 60𝑚𝑠 for the latency-sensitive
(LS) users accessing the database (e.g., MongoDB [21]) by
coordinating user weights. Meanwhile, the majority of the
users demand high throughput but run in a best-effort mode,
especially in cloud computing systems. They are called best-
effort (BE) users that often share the same database with the
LS users. Thus, cloud service providers would like to use min-
imum I/O resources needed to meet the LS users’ tail latency
targets so as to spare as much I/O resources as possible for
the BE users. In our evaluation, we use three combinations
of LS users and BE users to share a MongoDB. The number
of the LS users is kept at 10 while that of the BE users are
90, 140 and 190. Each LS user has a P99.9 tail latency SLO
of 60𝑚𝑠 . As shown in Fig. 17, AppleS can effectively reduce
request-latency variability for the LS users, which becomes
more important when more BE users share the MongoDB.
As evidenced in Fig. 18, AppleS can successfully help PSLO
to reduce I/O provisioning by cutting down the throughput
allocated to the LS users (up to 53.1% reduction) and improve
the throughput of the BE users (up to 7.6× improvement).
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5.4 Takeaways from the Evaluation
The first takeaway from the evaluation is that it is possible
to tackle different performance bottlenecks by the same so-
lution. As we observe from the above evaluation, MySQL
[23] and MongoDB [21] experience distinctively different
performance bottlenecks. For highly scalable OLTP transac-
tion processing, which widely adopts concurrency control
to guarantee data consistency and highly relies on buffer
cache to avoid unnecessary disk accesses, MySQL’s I/O bot-
tlenecks largely reside in the database internals (e.g., buffer
cache and lock mechanisms). These bottlenecks are tradition-
ally addressed by improving database internal components.
In contrast, MongoDB’s major performance bottlenecks man-
ifest themselves in the storage I/O stack beneath the database
for parallel processing of key-value operations, which can
be treated as a classic storage-specific performance prob-
lem. Nevertheless, AppleS directly tackles the major root
causes for the I/O bottlenecks encountered by both MySQL
and MongoDB, i.e., excessive concurrent user requests ex-
ceeding the I/O capacity of the database-I/O-stack “pipe”,
and thus is effective for both on improving their user I/O
performance isolation with high I/O efficiency. The second
takeaway is on the importance and challenges of how to
design an optimization scheme to synergize with the exist-
ing scheduling/optimization mechanisms. The key is how to
minimize the “mutual-cancelling” effect when multiple opti-
mizations work together. AppleS resides in the upper stream
of the database-I/O-stack pipe and treats all the underlying
I/O optimizations as a black box. This design is based on
the experimental observations that both the database and
storage I/O stack cannot fairly and efficiently respond to
highly scaled concurrent user requests due to excessive par-
allel request contention. AppleS regulates parallel I/Os and
effectively alleviates concurrent I/O contention along the
database-I/O-stack pipe, which enables the databases and
their underlying I/O scheduling/optimization mechanisms to
work more efficiently. Moreover, we also observe that AppleS
can synergize with Cgroup to complementarily improve user-
level I/O performance. This is possible largely because they
schedule different types of resources, i.e., AppleS focuses on
reshaping parallel user I/Os while Cgroup’s threaded con-
troller mainly handles thread-level CPU resource sharing.
In other words, the more knowledge AppleS has of vari-
ous optimizations within the database-I/O-stack pipe, the
better will AppleS be able to synergize with the latter for
further improvement, but at the likely cost of the former’s
portability/flexibility. It is a potential direction for our future
research.

6 Conclusion
In this paper, we propose an application-level I/O scheduler
(AppleS) to support user-level scheduling goals of I/O fair-
ness, latency request variability and throughput for database

systems. AppleS can proactively hide excessive user paral-
lelism according to the derived matching point and optimize
user I/O quotas under SLO constraints. Our extensive evalu-
ation, driven by MySQL and MongoDB, demonstrates that
users of databases can greatly benefit from AppleS, resulting
in significantly enhanced user-level I/O fairness by up to
40.6× with a low variability of request latency, as well as an
improved throughput by up to 39.2%. In addition, AppleS can
help other QoS guarantee systems reduce I/O provisioning
and run in a more cost-effective fashion. For the future work,
we will explore the potentials of the synergy between AppleS
and various optimizations along the I/O stack by treating
the underlying subsystems as white or gray boxes.
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A Proof of Eq. 2
Proof. Consider a simplified execution model that approxi-
mates the actual AppleS execution process, i.e., parallel exe-
cution rounds of 𝑃 requests each and sequential execution
rounds of one request each. Let 𝑝 and 𝑚 denote the total
numbers of requests in the parallel execution rounds and
the sequential execution rounds, respectively. Then for 𝑁
total requests scheduled, 𝑁 = 𝑝 +𝑚. We further define 𝑆 (𝑞)

𝑘

as the service time for the 𝑘𝑡ℎ request of the execution type
𝑞, for sequential execution 𝑞 = 1 or parallel execution 𝑞 = 𝑃 .
Then the total service time for the requests in the parallel
execution (𝑞 = 𝑃 ) is 𝑇𝑝 =

∑𝑝

𝑘=1 𝑆
(𝑃 )
𝑘

and the total service
time for the requests in the sequential execution (𝑞 = 1) is
𝑇𝑠 =

∑𝑚
𝑘=1 𝑆

(1)
𝑘

. With this model, the parallel fraction, 𝛼 , can
then be explicitly expressed as, 𝛼 = 𝑇𝑝/𝑇 , where 𝑇 = 𝑇𝑝 +𝑇𝑠 ,
the sum of the request execution times for all the requests.
Thus, the total execution time of all 𝑁 requests can be

expressed as, 𝛼 ∗ 𝑇 /𝑃 + (1 − 𝛼) ∗ 𝑇 , and hence, we have
_(𝑃) = 𝑁 /[𝛼 (𝑃) ∗ 𝑇 /𝑃 + (1 − 𝛼 (𝑃)) ∗ 𝑇 ]. As 𝑃 reduces
to a certain value 𝑃0 (< 𝐶), 𝛼 is expected to approach 1.
Substituting 𝑃 = 𝑃0 and 𝛼 (𝑃0) = 1 into the equation, we
have _(𝑃0) = 𝑃0 ∗𝑁 /𝑇 . Since 𝛼 (𝑃0) = 1, from Eq. 1, we have
𝐴 = 1−𝐵 ∗ 𝑒−𝛾∗𝑃0 , by substituting which into Eq. 1, and then
Eqs. 1 and _(𝑃0) = 𝑃0 ∗ 𝑁 /𝑇 into _(𝑃) = 𝑁 /[𝛼 (𝑃) ∗𝑇 /𝑃 +
(1 − 𝛼 (𝑃)) ∗𝑇 ], we finally have Eq. 2.

References
[1] 2014. Database/kernel community topic at collaboration sum-

mit 2014. http://www.postgresql.org/message-id/20140310101537.
GC10663@suse.de.

[2] 2015. Cgroups v2. https://www.kernel.org/doc/Documentation/
cgroup-v2.txt.

605

http://www.postgresql.org/message-id/20140310101537.GC10663@suse.de
http://www.postgresql.org/message-id/20140310101537.GC10663@suse.de
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt


Improving Scalability of Database Systems by Reshaping User Parallel I/O EuroSys ’22, April 5–8, 2022, RENNES, France

[3] 2015. Control Group v2. https://www.kernel.org/doc/html/latest/
admin-guide/cgroup-v2.html.

[4] 2016. Janus codebase. htps://github.com/NYU-NEWS/janus.
[5] 2019. The system call intercepting library . https://github.com/pmem/

syscall_intercept.
[6] 2020. Linux 5.6 I/O Scheduler Benchmarks: None, Kyber, BFQ, MQ-

Deadline. https://www.phoronix.com/scan.php?page=article&item=
linux-56-nvme&num=3.

[7] 2021. 300,000 IOPS per Volume with Ultra High Performance Oracle
Cloud Infrastructure Block Volumes. https://blogs.oracle.com/cloud-
infrastructure/post/300000-iops-per-volume-with-ultra-high-
performance-oracle-cloud-infrastructure-block-volumes.

[8] 2021. Additive increase/multiplicative decrease. https://en.wikipedia.
org/wiki/Additive_increase/multiplicative_decrease.

[9] 2021. fsync. https://docs.mongodb.com/manual/reference/command/
fsync/.

[10] 2021. Stability (learning theory). https://en.wikipedia.org/wiki/
Stability_(learning_theory).

[11] 2022. Approximation error. https://en.wikipedia.org/wiki/
Approximation_error.

[12] 2022. BFQ. https://www.kernel.org/doc/html/latest/block/bfq-iosched.
html.

[13] 2022. Coefficient of variation. https://en.wikipedia.org/wiki/
Coefficient_of_variation.

[14] 2022. Completely Fair Queuing. https://www.kernel.org/doc/
Documentation/block/cfq-iosched.txt.

[15] 2022. DB2. http://www.ibm.com/software/db2/.
[16] 2022. Deadline. https://www.kernel.org/doc/Documentation/block/

deadline-iosched.txt.
[17] 2022. Google Earth. https://www.google.com/earth/.
[18] 2022. Google Finance. https://www.google.com/finance.
[19] 2022. InnoDB Locking. https://dev.mysql.com/doc/refman/8.0/en/

innodb-locking.html.
[20] 2022. Kyber. https://www.kernel.org/doc/Documentation/block/kyber-

iosched.txt.
[21] 2022. MongoDB. http://www.mongodb.org/.
[22] 2022. mq-deadline. https://github.com/torvalds/linux/blob/master/

block/mq-deadline.c.
[23] 2022. MySQL. http://www.mysql.com.
[24] 2022. Newton’s method. https://en.wikipedia.org/wiki/Newton’s_

method.
[25] 2022. Oracle. https://www.oracle.com.
[26] 2022. TRANSACTION PROCESSING PERFORMANCE COUNCIL. The

TPC-C home page . http://www.tpc.org/tpcc/.
[27] 2022. Weighted round robin. https://en.wikipedia.org/wiki/Weighted_

round_robin.
[28] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan Gupta, Ravis-

hankar Chandhiramoorthi, and Diego Didona. 2019. SILK: Preventing
Latency Spikes in Log-Structured Merge Key-Value Stores. In Proceed-
ings of the USENIX Annual Technical Conference (ATC).

[29] A. Bouch, A. Kuchinsky, and N. Bhatti. 2000. Quality is in the eye
of the beholder: meeting users’ requirements for Internet quality of
service. In In Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI’00) (The Hague, The Netherlands, April 2000).

[30] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. 2006. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the Symposium on Operating Systems
Design and Implementation (OSDI).

[31] Xusheng Chen, Haoze Song, Jianyu Jiang, Chaoyi Ruan, Cheng Li, Sen
Wang, Gong Zhang, Reynold Cheng, and Heming Cui. 2021. Achiev-
ing low tail-latency and high scalability for serializable transactions
in edge computing. In Proceedings of the 3th European conference on
Computer systems (EuroSys).

[32] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
2010. Benchmarking cloud serving systems with YCSB. In Proceedings
of the ACM symposium on Cloud computing (SoCC).

[33] S. S. Craciunas, C. M. Kirsch, and H. R ¥𝑜ck. 2008. I/O Resource Man-
agement Through System Call Scheduling. SIGOPS Oper. Syst. Rev 42,
5 (2008), 44–54.

[34] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swami Sivasubrama-
nian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of the Symposium on
Operating Systems Design and Implementation (OSDI).

[35] Akon Dey, Alan Fekete, and Uwe R ¥𝑜hm. 2013. Scalable transactions
across heterogeneous NoSQL key-value data stores. In Proceedings of
the VLDB Endowment.

[36] Dave Dice, Virendra J. Marathe, and Nir Shavit. 2014. Persistent
unfairness arising from cache residency imbalance. In Proceedings of
the 26th ACM symposium on Parallelism in algorithms and architectures.

[37] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsai. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware.
In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[38] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft. 2015. Queues don’t matter when you can
jump them!. In Proceedings of the USENIX conference on Networked
systems design and implementation (NSDI).

[39] Takashi Horikawa. 2013. Latch-free data structures for DBMS: de-
sign, implementation, and evaluation. In Proceedings of the 2013 ACM
SIGMOD International Conference onManagement of Data, SIGMOD’13.

[40] Van Jacobson. 1988. Congestion avoidance and control. In SIGCOMM.
[41] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. 2015. Silo: Predictable

message latency in the cloud. In SIGCOMM.
[42] Song Jiang and Xiaodong Zhang. 2002. LIRS: an efficient low inter-

reference recency set replacement policy to improve buffer cache
performance. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS).

[43] W. Jin, J. S. Chase, and J. Kaur. 2004. Interposed proportional sharing
for a storage service utility. ACM SIGMETRICS Performance Evaluation
Review 32, 1 (2004), 37–48.

[44] Ryan Johnson, Ippokratis Pandis, and Anastasia Ailamaki. 2009. Im-
proving OLTP scalability using speculative lock inheritance. In Pro-
ceedings of the VLDB Endowment.

[45] T. Johnson and D. Shasha. 1994. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the VLDB
Endowment.

[46] Hyungsoo Jung, Hyuck Han, Alan Fekete, Gernot Heiser, and Heon Y.
Yeom. 2014. A scalable lock manager for multicores. ACM Transactions
on Database Systems (TODS) 39, 4 (2014), 1–29.

[47] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. 1991. Weighted
round-robin cell multiplexing in a general-purpose ATM switch chip.
IEEE Journal on Selected Areas in Communications 9, 8 (1991), 1265–
1279.

[48] H. Kim and S. Ahn. 2008. BPLRU: A buffer management scheme
for improving random writes in flash storage. In Proccedings of the
conference on File and storage technologies (FAST).

[49] N. Li, H. Jiang, D. Feng, and Z. Shi. 2016. PSLO: Enforcing the 𝑋 𝑡ℎ

Percentile Latency and Throughput SLOs for Consolidated VM Storage.
In Proceedings of the 3th European conference on Computer systems
(EuroSys).

[50] H. C. Lim, S. Babu, and J. S. Chase. 2010. Automated Control for Elastic
Storage. In IEEE International Conference on Autonomic Computing
(ICAC).

[51] Yanfei Lv, Bin Cui, Bingsheng He, and Xuexuan Chen. 2011. Operation-
aware buffer management in flash-based systems. In Proceedings of the

606

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
htps://github.com/NYU-NEWS/janus
https://github.com/pmem/syscall_intercept
https://github.com/pmem/syscall_intercept
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=3
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=3
https://blogs.oracle.com/cloud-infrastructure/post/300000-iops-per-volume-with-ultra-high-performance-oracle-cloud-infrastructure-block-volumes
https://blogs.oracle.com/cloud-infrastructure/post/300000-iops-per-volume-with-ultra-high-performance-oracle-cloud-infrastructure-block-volumes
https://blogs.oracle.com/cloud-infrastructure/post/300000-iops-per-volume-with-ultra-high-performance-oracle-cloud-infrastructure-block-volumes
https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://en.wikipedia.org/wiki/Additive_increase/multiplicative_decrease
https://docs.mongodb.com/manual/reference/command/fsync/
https://docs.mongodb.com/manual/reference/command/fsync/
https://en.wikipedia.org/wiki/Stability_(learning_theory)
https://en.wikipedia.org/wiki/Stability_(learning_theory)
https://en.wikipedia.org/wiki/Approximation_error
https://en.wikipedia.org/wiki/Approximation_error
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
http://www.ibm.com/software/db2/
https://www.kernel.org/doc/Documentation/block/deadline-iosched.txt
https://www.kernel.org/doc/Documentation/block/deadline-iosched.txt
https://www.google.com/earth/
https://www.google.com/finance
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://www.kernel.org/doc/Documentation/block/kyber-iosched.txt
https://www.kernel.org/doc/Documentation/block/kyber-iosched.txt
http://www.mongodb.org/
https://github.com/torvalds/linux/blob/master/block/mq-deadline.c
https://github.com/torvalds/linux/blob/master/block/mq-deadline.c
http://www.mysql.com
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Newton's_method
https://www.oracle.com
http://www.tpc.org/tpcc/
https://en.wikipedia.org/wiki/Weighted_round_robin
https://en.wikipedia.org/wiki/Weighted_round_robin


EuroSys ’22, April 5–8, 2022, RENNES, France Ning Li, Hong Jiang, Hao Che, Zhijun Wang, and Minh Q. Nguyen

2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD’11.

[52] NimrodMegiddo andDharmendra S.Modha. 2003. ARC: A Self-Tuning,
Low Overhead Replacement Cache. In Proccedings of the conference on
File and storage technologies (FAST).

[53] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden.
2013. Performance and resource modeling in highly-concurrent OLTP
workloads. In Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD’13.

[54] Barzan Mozafari, Carlo Curino, and Samuel Madden. 2013. DBSeer:
Resource and Performance Prediction for Building a Next Generation
Database Cloud. In CIDR.

[55] L. N.Bairavasundaram, G. Soundararajan, V. Mathur, K. Voruganti, and
S. Kleiman. 2011. Italian for beginners: the next steps for SLO-based
management. In Proceedings of the USENIX symposium on Hot Topics
in Storage and File Systems (HotStorage).

[56] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993.
The LRU-K page replacement algorithm for database disk buffering.
In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, SIGMOD’93.

[57] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia
Ailamaki. 2010. Data-oriented transaction execution. In Proceedings of
the VLDB Endowment.

[58] Ippokratis Pandis, Pinar Tözün, Ryan Johnson, and Anastasia Ailamaki.
2011. PLP: page latch-free shared-everything OLTP. In Proceedings of
the VLDB Endowment.

[59] W. Reda, M. Canini, L. Suresh, D. Kostić, and S. Braithwaite. 2017. Rein:
Taming Tail Latency in Key-Value Stores via Multiget Scheduling.
In Proceedings of the 3th European conference on Computer systems
(EuroSys).

[60] Kun Ren, Jose M. Faleiro, and Daniel J. Abadi. 2016. Design principles
for scaling multi-core oltp under high contention. In Proceedings of the

2016 ACM SIGMOD International Conference on Management of Data,
SIGMOD’16.

[61] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2012. Lightweight
locking for main memory database systems. In Proceedings of the VLDB
Endowment.

[62] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko. 2012. High
performance MySQL: optimization, backups, and replication. O’Reilly
Media, Inc., Sebastopol, CA.

[63] Ramon Vilanova, V¨ªctor M. Alfaro, and Orlando Arrieta. 2012. Ro-
bustness in PID control. PID control in the third millennium (2012),
113–145.

[64] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie:An
LSM-tree-based Ultra-Large Key-Value Store for Small Data. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC).

[65] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to
improve OLTP application performance. In Proceedings of the VLDB
Endowment.

[66] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy, S.
Al-Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. 2015. Split-Level I/O Scheduling. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP).

[67] Yong Zhao, Kun Suo, Xiaofeng Wu, Jia Rao, Song Wu, and Hai Jin.
2019. Preemptive multi-queue fair queuing. In Proceedings of the ACM
International Symposium on High Performance Distributed Computing
(HPDC).

[68] T. Zhu, D. S. Berger, and M. Harchol-Balter. 2016. SNC-Meister: Ad-
mitting More Tenants with Tail Latency SLOs. In Proceedings of the
ACM symposium on Cloud computing (SoCC).

[69] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger.
2014. PriorityMeister: Tail Latency QoS for Shared Networked Storage.
In Proceedings of the ACM symposium on Cloud computing (SoCC).

607



Improving Scalability of Database Systems by Reshaping User Parallel I/O EuroSys ’22, April 5–8, 2022, RENNES, France

B Artifact Appendix
B.1 Abstract
AppleS aims to improve database scalability by delivering the
right amount and pattern of user parallel I/O requests to the
database system under excessive user parallelism, aligning
with the concurrency supported by the database and its un-
derlying I/O stack. In doing so, AppleS improves user-level I/O
performance in terms of user-level I/O fairness, throughput
and latency stability. Implemented as a user-space module
based on system call interception, AppleS is compatible with
and portable to different types/versions of databases, different
versions of OS kernels and their resource management tools,
e.g., Cgroups.

B.2 Description & Requirements
B.2.1 How to access. The source code of the AppleS
artifact is now available at https://github.com/NingBellWind/
AppleS_Artifact4 and all the necessary instructions for the
experimental environment setup can also be found there.

B.2.2 Hardware dependencies. There are no hardware
dependencies. B.3.1 provides guidance to constructing the phys-
ical testbed in such a way that the expected excessive user par-
allelism can be effectively reproduced under the given bench-
marks.

B.2.3 Software dependencies. AppleS is implemented
based on a syscall_intercept library.

B.2.4 Benchmarks. Please refer to the 2𝑛𝑑 paragraph of
Section 5 of the AppleS paper.

B.3 Set-up
B.3.1 Hardware setup. The physical testbed consists of
two PowerEdge R630 servers, a computing server and a storage
server. The former is used to run database instances, the AppleS
artifact, and benchmarks while the database files reside on the
latter. Specifically, the computing server is configured with 2
Intel Xeon E5-2650 V4 processors, 64GB of RAM, a Broadcom
NetXtreme II BCM57810 10Gb NIC, and 2 × 1TB SATA HDDs
while the storage server is equipped with 2 Intel Xeon E5-
2603 V4 processors, 64GB of RAM, a Broadcom NetXtreme II
BCM57810 10Gb NIC, and a RAID-0 SSD array with five 800GB
SATA MLC SSDs, consolidating all the logical volumes (LVs)
(formatted as Ext4) for databases. All the servers are connected
by a Dell N4032F switch with a peak bandwidth of 10Gb.

B.3.2 OSes setup. For the computing server, please use Cen-
tOS 8.3 with the Linux kernel 5.10.10 that should be enabled for
full functionality of Cgroup(v2) while CentOS 7.3 with default
Linux kernel can be installed on the storage server. All the
OSs should enable the iSCSI protocol and install the necessary
4DOI: 10.5281/zenodo.6336004

development tools (i.e., check "File and Storage Server" and
"Development Tools" when installing the OS).

B.3.3 Database setup. Two types of databases, i.e., MySQL
and MongoDB, are used in this setup. They include two ver-
sions used in the AppleS evaluation, i.e., MySQL 8.0.23 and
MongoDB 4.4.3. All the installation instructions for databases
and their configurations can be found at https://github.com/
NingBellWind/AppleS_Artifact .

B.3.4 Storage setup. Two LVs should be created on the
storage server, one is for the MySQL database storage while the
other is used for the MongoDB database. Based on the estimated
size of data sets for benchmarks, the size of each LV should be
512GB or larger.

B.3.5 Software dependencies. Before compiling AppleS,
syscall_intercept library should be first installed. Its source code
and installation instructions are available at https://github.
com/pmem/syscall_intercept .

B.3.6 AppleS setup. AppleS setup consists two steps, i.e.,
compilation and configuration. First, the source code and the
compiled syscall_intercept library are deployed in a source
directory. And then the AppleS artifact can be compiled. Sec-
ond, configure AppleS for the target database by the file ap-
ples_configuration.txt, which is deployed in the same directory
of the database executable file (i.e., running directory). After
that, one can manually start the database instance running
with AppleS loaded by LD_PRELOAD.

B.4 Evaluation workflow
This section includes two experiments that are conducted to
evaluate AppleS’s effectiveness on the two databases, MySQL
and MongoDB, under excessive user parallelism and to validate
the AppleS paper’s key results and claims.

B.4.1 Major Claims. The major claims and key results
made in the AppleS paper are listed as follows, noting that
references in square brackets refer to the AppleS paper:
• (C1): AppleS can significantly enhance user-level I/O
fairness by up to 31.8× with a low latency variability, as
well as improve throughput performance by up to 39.2%
for MySQL 8.0.23. This is proven by the experiment (E1)
described in [Section 5.1] whose results are illustrated in
[Fig. 12].
• (C2): AppleS can cooperate well with Cgroup (v2) to com-
bine its effects on CPU fair sharing and further improve
throughput (by up to 28.6%) and user-level I/O fairness
(by up to 101.5×) with a low latency variability for Mon-
goDB 4.4.3. This is proven by the experiments (E2) de-
scribed in [Section 5.2] whose results are illustrated in
[Fig. 14].
• (C3): AppleS is portable to different types/versions of
databases (i.e., MongoDB and MySQL). This is proven by
the experiments (E1 and E2) described in [Section 3.4].
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• (C4): AppleS is orthogonal to existing kernel-level re-
source management tools (e.g., Cgroups). This is proven
by the experiment (E2) described in [Section 3.4].

B.4.2 Experiments. This section introduces the following
two experiments (i.e., E1 and E2):

Experiment (E1): [MySQL 8.0.23+CentOS 8.3+Kernel 5.10.10]
[30 human-minutes + 1 compute-hour]: E1 aims to assess
AppleS’s capability to improve throughput for MySQL 8.0.23
with significantly enhanced user-level fairness and a low
latency variability.

[How to] E1 consists of 3 steps, i.e., baseline measure-
ment, P optimization, and measurement under the AppleS
control. Step 1: conduct 3 runs of TPC-C workload with 256
concurrent connections accessing MySQL 8.0.23 running with
disabled AppleS, which only tracks user I/O statistics and
records them in log files. Step 2: enable AppleS to conduct P
optimization by setting "opt" at 1 and "disable" at 0. The P
optimization is only required to run once for a specific database
system and lasts about 6 minutes. Step 3: almost the same with
Step 1 except for enabling AppleS by setting "disable" at 0. And
then, one can compare between the measures obtained under
the baseline and the AppleS-controlled case. The expected
outcome would be over 20% throughput improvement, over
10× user I/O fairness enhancement, and over 5× lower latency
variability.

[Preparation] Create the database and load data for
the TPC-C benchmark, which is only required to do once and
lasts about 18 hours. Set the disk scheduler for the block device
where the database files reside on as "mq-deadline".

[Execution] Configure apples_configuration.txt for each step
and deploy it in running directory before starting the step.

[Results] Each run lasts 360 seconds, including 60-seconds
ramp-up time and 300-seconds running time. The throughput
measured under different cases can be directly observed from
the benchmark results while CV of request latency and user
I/O unfairness can be collected from the last two columns

of the 𝑎𝑡ℎ line (a = 𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒/𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , e.g., if
𝑟𝑢𝑛𝑛𝑖𝑛𝑔_𝑡𝑖𝑚𝑒=300 seconds and 𝑐𝑜𝑛𝑡𝑟𝑜𝑙_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=0.1 second,
a = 3000) in bslo_cmd_log1.txt. Each measure is the average
over the three runs.

Experiment (E2): [MongoDB 4.4.3+Cgroup (V2)] [30
human-minutes + 1 compute-hour]: E2 aims to verify AppleS’s
capability to cooperate with Cgroup (V2) for MongoDB 4.4.3 to
gain further improvement on user-level fairness and latency
variability.

[How to] E2 consists of 5 steps, i.e., baseline measure-
ment, P optimization, measure under the AppleS control,
measure under the control of Cgroup (V2), and measure under
the control of both AppleS and Cgroup. Step 1: conduct 3 runs
of YCSB workload with 512 concurrent connections accessing
MongoDB 4.4.3 running with disabled AppleS. Step 2: the same
with the Step 2 of E1. Step 3: almost the same with Step 1 except
for enabling AppleS by setting "disable" at 0. Step 4: almost the
same with Step 1 except for setting /cgroup2/cg1/cgroup.procs
as the PID of MongoDB to enable the Cgroup (V2) control. Step
5: almost the same with Step 4 except for enabling AppleS. And
then, one can compare among the measures obtained under
the baseline, the AppleS-controlled case, the Cgroup-controlled
case, and the dual-controlled case. The expected outcome is
that AppleS can work with Cgroup to achieve a high user-level
fairness (over 30× improvement than the baseline) and low
latency variability (over 2× improvement than the baseline).

[Preparation] Create the database and load data for
the YCSB benchmark, which is only required to do once and
lasts about 16 hours. Set the disk scheduler for the block device
where the database files reside on as "mq-deadline".

[Execution] Please refer to E1. In addition, configure
Cgroup settings if one needs its control.

[Results] Please refer to E1.

One can find more instructions and details at https://github.
com/NingBellWind/AppleS_Artifact .
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