
PSDoodle: Searching for App Screens via Interactive Sketching

Soumik Mohian
Computer Science and Engineering Department

University of Texas at Arlington

Arlington, Texas, USA

soumik.mohian@mavs.uta.edu

Christoph Csallner
Computer Science and Engineering Department

University of Texas at Arlington

Arlington, Texas, USA

csallner@uta.edu

ABSTRACT

Keyword-based mobile screen search does not account for screen

content and fails to operate as a universal tool for all levels of users.

Visual searching (e.g., image, sketch) is structured and easy to adopt.

Current visual search approaches count on a complete screen and

are therefore slow and tedious. PSDoodle employs a deep neural

network to recognize partial screen element drawings instantly on

a digital drawing interface and shows results in real-time. PSDoodle

is the first tool that utilizes partial sketches and searches for screens

in an interactive iterative way. PSDoodle supports different drawing

styles and retrieves search results that are relevant to the user’s

sketch query. A short video demonstration is available online at:

https://youtu.be/3cVLHFm5pY4

CCS CONCEPTS

• Software and its engineering→ Software prototyping; Search-

based software engineering; •Human-centered computing

→ Interaction techniques.

KEYWORDS

Sketch-based image retrieval, SBIR, user interface design, sketching,
GUI, design examples, deep learning
ACM Reference Format:

Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Searching for App 
Screens via Interactive Sketching. In IEEE/ACM 9th International Conference 
on Mobile Software Engineering and Systems (MOBILESoft ’22), May 17–
24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https: 
//doi.org/10.1145/3524613.3527807

1 INTRODUCTION

App screen examples help software engineers to accumulate re-
quirements, understand current trends, and motivate to develop a
compelling mobile app [4, 5]. An effective mobile search tool might

have a positive impact to keep up with the extensive and increasing
use of mobile apps in day-to-day life [8].

Professional designers search for example screens via keywords
through various websites including Google, Dribbble1, and Be-
hance2 [1]. Keyword-based search tools consider stylistic features
1https://dribbble.com/, accessed January 2022.
2https://www.behance.net/, accessed January 2022.

MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9301-0/22/05.
https://doi.org/10.1145/3524613.3527807

(e.g., color, style) or image metadata (e.g, date, location, shapes) but

fail to consider the contents of the screen [11]. Moreover, novice

users often fail to formulate good keywords and thus fail to get the

desired search results [5].

Visual (e.g., image or sketch) search methods are easy, quick to

adopt [20], and commonly used during early software development

phases [2, 10, 16, 19]. Dependency on a complete query screen

makes the iterative nature of the development process tedious (e.g.,

as in SWIRE [6] or VINS [1]). Long preprocessing pipelines for

a pen on paper approach such as SWIRE include taking a snap,

denoising, and projection correction.

PSDoodle is designed for a novice user who cannot or does not

want to develop a complete screen at an early phase of software

development [14]. PSDoodle allows a user to draw one UI element

at a time. PSDoodle provides an interactive drawing interface with

support for mouse and touch screen devices. For user interaction,

the drawing interface includes basic features such as redo, undo

stroke, and remove the last icon.

With each stroke on the drawing interface, PSDoodle utilizes a

deep neural network to classify the current UI element and instantly

provides a top-3 classification with classification confidence scores.

When a user finishes drawing the current UI element by pressing

the “icon done” button or “d” on the keyboard, PSDoodle searches

through 58k Rico [3] screens to fetch UI examples based on UI

element type, position, and element shape as shown in Figure 1.

PSDoodle fetches 80 screens and displays them at the bottom of

the page within 2 seconds.

For evaluation, we enlisted ten software developers who had

never used PSDoodle before and have no prior UI/UX design train-

ing. Participants used PSDoodle to draw a Rico screen until it ap-

pears in the top search results. PSDoodle’s top-10 screen retrieval

accuracy was comparable to the state-of-the-art full-screen drawing

techniques but reduced the drawing time to one half [14].

To summarize, PSDoodle is the first tool that provides an in-

teractive iterative search-by-sketch screen experience. While the

technical-track paper describes PSDoodle’s algorithm and evalua-

tion [14], this paper adds details about PSDoodle’s implementation,

deployment, support for different sketching styles, ability to surface

several relevant search result screens, and user survey results. All

PSDoodle source code, processing scripts, training data, and experi-

mental results are open-source under permissive licenses [13, 15].

The tool can be freely used at: http://pixeltoapp.com/PSDoodle/

2 BACKGROUND

PSDoodle operates on Rico mobile app screens collected from 9.3k

Android apps [3]. For each UI element in each screenshot, Rico

includes the Android class name, textual information, x/y coordi-

nates, and visibility. Liu et al. collected 73k Rico screen elements

84

9th IEEE/ACM International Conference on Mobile Software Engineering and Systems

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524613.3527807&domain=pdf&date_stamp=2022-10-17


MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Soumik Mohian and Christoph Csallner

Figure 1: Example mobile app screen search user query (left) and PSDoodle’s top five search results out of 58k app screenshots.

The result screens contain all sketched UI elements at about the location they appear in the query sketch.

and classified all screen components in Rico into 25 UI component

kinds (e.g., checkbox, icon, image, text, text button), 197 text but-

ton ideas (e.g., no, login, ok), and 135 icon classes (e.g., add, menu,

share, star) [12]. PSDoodle supports several frequent Android UI

elements reported by Liu et al. PSDoodle utilizes all the hierarchy

information and clustering information to find similarity with a

user drawing and shows Rico screens as a search result.

Figure 2: PSDoodle architecture: The user sketches on the

PSDoodle webpage (from http://pixeltoapp.com/PSDoodle).

The webpage communicates with the PSDoodle back-end

hosted in AWS.

SWIRE [6] is the most closely related to our work. SWIRE con-

sists of 3.8k scanned low-fidelity pen on paper drawings, each

mimicking a complete Rico app screen. All drawings consist of

pre-defined conventions with placeholders for image and text (e.g.,

square borders plus diagonals for an image). We adopted the place-

holder techniques in PSDoodle for image, text, and non-supported

icons. SWIRE’s deep neural network achieves a top-10 screen re-

trieval accuracy of 61%. SWIRE’s follow-up work reported a top-10

accuracy of 90.1% [17]. To generate search results, a user has to

draw within a marker, take a snap of the sketch, and provide it to

a long pipeline (e.g., de-noising, camera angle correction, and pro-

jection correction). For any change in the sketch, a user will most

likely have to create a new complete screen sketch from scratch,

scan it, and feed it to the processing stages.

PSDoodle incorporates datasets from Google’s Quick, Draw [9]

(“QuickDraw”) andDoodleUINet [13] to train a deep neural network

for recognizing a sketched UI element. QuickDraw offers some

50M doodles of 345 everyday categories, from “aircraft carrier”

to “zigzag”. DoodleUINet gives 11k crowdworker-created doodles

of 16 common Android UI element categories. QuickDraw and

DoodleUINet represent each doodle as a stroke sequence. Each

stroke consists of a series of straight lines drawn from the start to

the end of a touch event (e.g., mouse button press and un-press)

and each straight line is represented by the x/y coordinates of the

endpoints. As an example of how such UI element doodles look like,

the left screen in Figure 1 contains six UI element doodles—two

sliders, a switch, a square, and two squiggles.

3 OVERVIEW AND DESIGN

Figure 2 shows PSDoodle’s overall architecture. PSDoodle’s website

provides a canvas for drawing. The canvas collects the stroke infor-

mation (x/y coordinates) from a user drawing and the website sends

this information to Amazon AWS. PSDoodle uses a deep neural

network trained using QuickDraw’s network architecture [14, 18].

From the stroke information, a Tensorflow implementation of PS-

Doodle’s neural network hosted on an AWS EC2 node predicts the

current drawing’s icon category.

The web browser sends all the information rendered on canvas

to the Amazon EC2 instance after a user completes drawing a UI

element by pressing the ”icon done” button. PSDoodle’s similarity

metric uses element category, shape, position, and occurrence fre-

quency to seek up the top-N matching screens in its dictionary of

Rico screen hierarchies [14]. After performing the similarity calcu-

lation, PSDoodle sends the retrieved screen names to the website.

The website fetches the necessary screens from an AWS S3 bucket

and displays them to the user.

3.1 PSDoodle’s Website

PSDoodle’s website is hosted on an AWS EC2 general purpose

instance (t2.large) with two virtual CPUs and 8 GB of RAM. PSDoo-

dle provides a guided interactive tutorial (http://pixeltoapp.com/

toolIns/) for first-time users and a cheat sheet of supported UI ele-

ments in the top-left of the main page. To make these instructions

self-explanatory, we recruited two UI designers via the freelancing

85



PSDoodle: Searching for App Screens via Interactive Sketching MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

website Upwork3, recorded their tool usage and incorporated their

feedback. This feedback has yielded, e.g., uniform text, position,

and size of PSDoodle’s buttons (Figure 3) plus a refactored cheat

sheet (e.g., on when and how to draw a text button, Figure 4).

Figure 3: PSDoodle drawing UI, under which PSDoodle shows

its current top-N Android search result screens (omitted).

PSDoodle’s drawing interface is a canvas element with support

for both mouse and touch. PSDoodle provides basic drawing fea-

tures for interactions. Users can undo or redo strokes and remove

the last icon (Figure 3 top left). PSDoodle’s client-side JavaScript

handles all the basic events like touch-start, touch-end, and a stack

of strokes to handle redo/undo features. Each time the user adds a

stroke to the current icon doodle, the PSDoodle website detects the

touch-end event and sends an HTTP post request with the stroke

coordinates to the AWS EC2. PSDoodle’s web application parses

the response from AWS EC2 and shows its current top-3 three icon

predictions (top right). A user can pick any of these three (and tap

“Icon done” or ’d’ on the keyboard) or continue editing the current

icon doodle.

After the user adds (or removes) an icon, the website submits a

search query containing all recognized UI elements currently on

the canvas plus their on-canvas locations. Based on PSDoodle’s

similarity metric [14] the website retrieves the top-80 screens’ ids

from AWS EC2. The website then retrieves the screens correspond-

ing to these ids from the AWS S3 bucket for display on the bottom

of the canvas. When a user clicks on a search result, it shows an

enlarged version of the screen on the website. A user can navigate

between the next 80 search results via the “next”/“previous” buttons.

The user can give feedback to PSDoodle via the thumbs up/down

buttons (lower left) and start a new screen search (lower right).

PSDoodle stores two resolutions of each Rico screen in an AWS

S3 bucket. PSDoodle uses the low-resolution images to quickly

show the search results (in a gallery view). When a user clicks

3https://www.upwork.com/, accessed January 2022.

on an image in the search gallery, PSDoodle fetches the higher-

resolution image from the S3 Bucket and displays it of the left side

on the website.

3.2 Recognizing Individual UI Elements

Figure 4 gives an overview of PSDoodle’s visual query language,

i.e., the 23 graphical primitives PSDoodle recognizes and how the

user can combine them to create compound and nested UI elements.

According to the number of element labels inferred by Liu et al. [12],

DoodleUINet [13] covers several of the most popular UI elements

in Rico. PSDoodle uses 7 QuickDraw classes that were a suitable

match for UI sketching. PSDoodle provides placeholders for text

(squiggle line), image (jailwindow), and for not directly supported

icons (cloud). Placeholders help the user to avoid fine details of

text and images. PSDoodle provides options to draw compound UI

elements. For example, the Android text button is one “text” inside

a “square” drawn separately. Sketching one UI element at a time

permits users to nest UI elements within a container by drawing

them separately.

Figure 4: Cheat sheet PSDoodle shows to users: 23 graphical

primitives plus compound and nested UI elements.

PSDoodle uses a deep neural network similar to QuickDraw’s

network architecture [18] to identify UI element class from strokes.

Three 1-D convolutional neural networks (CNN) layers followed

by three Bi-LSTM layers, and a fully-connected layer make up

PSDoodle’s deep neural network. PSDoodle used DoodleUINet (600

doodles for each of its 16 classes) and a random 600-doodle sample

of each of PSDoodle’s 7 QuickDraw classes to train the deep neural

network and yielded a 94.5% test accuracy.

We adopted a faster TensorFlow implementation of the deep

neural network in AWS EC2 that avoids regenerating the network

graph for predicting class labels for each stroke. PSDoodle detects

the class label, confidence score with the Tensorflow implementa-

tion, and shows them instantly (in under a second). PSDoodle guides

86



MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA Soumik Mohian and Christoph Csallner

a user to express their drawing intention by instantly showing the

updated prediction with each stroke.

4 EXPLORING PSDOODLE’S USAGE

Following the most closely related work [6, 17], we evaluated screen

search performance by measuring top-k (screen) retrieval accu-

racy [14]. We thus showed a participant a target screen to sketch

and measured where in the result ranking the target screen appears.

Top-k retrieval accuracy is the most common metric for sketch-

based image retrieval tasks and correlates with user satisfaction [7].

While PSDoodle’s top-10 screen retrieval accuracy of 88% is

similar to the state-of-the-art’s 90%, PSDoodle cuts the state-of-the-

art’s screen retrieval time in half [14]. In this section, we explore

how PSDoodle supports different sketching styles, how many of the

tool’s top-10 search results are relevant to the user’s query sketch,

and how users have described PSDoodle.

4.1 Supporting Different Sketching Styles

Table 1 shows UI category drawings with different numbers of

strokes in the test dataset, showing a variety of QuickDraw’s game

participants’ and DoodleUINet crowdworkers’ drawing styles. PS-

Doodle can thus detect sketches with high confidence for different

drawing styles.

As an example, in all cases when PSDoodle classified a slider test

sketch that consists of five strokes, it assigned a 100% confidence

that the sketch is indeed a slider. But PSDoodle similarly had cor-

rectly classified (with high confidence) other slider test sketches,

e.g., those consisting of four or three strokes. The likely reason

for this behavior is that PSDoodle’s classifier has been trained on

sketches from a variety of people. Similarly, adding more training

samples from a wider variety of crowdworkers may make PSDoodle

even more robust to different drawing styles.

4.2 Surfacing Several Relevant Result Screens

Figure 1 shows an example partial screen sketch and PSDoodle’s

top 5 search results. The search results are of high quality as the

result screens contain all sketched UI elements at about the location

they appear in the query sketch.

In a user studywith 10 participants4 we received similar feedback.

For each of a total of 34 screen sketches, participants judged the

quality of each of PSDoodle’s top-10 result screens. Participants

judged 145/340 of these screens as relevant to their search query.

4.3 User Experience

Nine users have filled out a brief survey about their experience,

including the following two open-ended questions.

Q1 What improvement/features do you suggest to make the

interface better for a user?

Q2 How was the overall search results?

While all answers are available5, following are a few highlights.

Regarding improvements (Q1), users asked for more icon support.

4We recruited 10 Computer Science students who had no prior UI/UX design experience.
Each participant first spent on average some 9 minutes in PSDoodle’s interactive
tutorial (http://pixeltoapp.com/toolIns/). We then gave Rico target screens to sketch.
5https://github.com/soumikmohianuta/PSDoodle/blob/master/ComparisonResult/
ToolSurvey/PSDoodle_Tool_Survey.pdf

Table 1: Average confidence PSDoodle has in a sketch of the

given total stroke count belonging to sketch’s target category.

For example, the network has 50% confidence on average for

completed avatar sketches of a total of 7 strokes to be avatars.

Cat. Confidence by sketch’s total strokes

1 2 3 4 5 6 7 8 9+

Camera - 92 96 96 100 100 - 100 -

Cloud - - 75 97 95 100 89 89 100

Envel. 100 96 100 100 86 100 - - 100

House 80 97 94 100 72 100 100 100 50

Jail-win 89 78 100 100 67 0 - - -

Square 98 100 100 75 - - - - -

Star 99 100 100 100 100 - 100 - -

Avatar - 100 82 96 89 100 50 100 -

Back 97 100 0 - - 100 - - -

Cancel - 100 77 50 50 - - - -

Checkb. 100 96 61 71 83 0 100 100 67

Drop-d. - 100 98 88 100 100 100 100 100

Forward 100 100 - - - - - - -

Left-arr. 80 87 92 - 100 - 50 - -

Menu - 100 100 100 100 100 - - -

Play 96 96 95 100 100 - - - 0

Plus - 100 93 100 100 - 100 0 -

Search 100 98 100 100 100 - - - 100

Setting 100 94 92 67 100 50 - 100 83

Share - 0 - - 100 100 98 100 100

Slider 100 94 97 100 100 100 100 - -

Squiggle 98 83 100 100 100 100 - - 0

Switch 100 97 80 91 100 100 100 50 0

Supporting more UI element categories is mostly a matter of gath-

ering additional training samples and retraining the deep neural

network. Regarding the overall search results (Q2), users were gen-

erally positive. Following is one quote: “good, the results were

similar to what I was looking for”. Another user said the following.

“I tested different shapes the overall result was good.

[..] I was overall satisfied with what I tested.”

5 CONCLUSIONS

Current approaches to searching through existing repositories are

either slow or fail to address the need of novice users. Interactive

partial sketching, which is more structured than a keyword search

and faster than complete-screen inquiries, is a viable option. PSDoo-

dle is the first tool to offer interactive screen search with sketching

and live search results.

ACKNOWLEDGMENTS

Christoph Csallner has a potential research conflict of interest

due to a financial interest with Microsoft and The Trade Desk.

A management plan has been created to preserve objectivity in

research in accordance with UTA policy. This material is based

upon work supported by the National Science Foundation (NSF)

under Grant No. 1911017.

87



PSDoodle: Searching for App Screens via Interactive Sketching MOBILESoft ’22, May 17–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif

Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In Proc.
Conference on Human Factors in Computing Systems. 1–14.

[2] Pedro Campos and Nuno Jardim Nunes. 2007. Practitioner tools and workstyles
for user-interface design. IEEE software 24, 1 (Jan. 2007), 73–80.

[3] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for
building data-driven design applications. In Proc. 30th Annual ACM Symposium
on User Interface Software and Technology (UIST). ACM, 845–854.

[4] Claudia Eckert and Martin Stacey. 2000. Sources of inspiration: a language of
design. Design studies 21, 5 (2000), 523–538.

[5] Scarlett R Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P Bailey. 2009.
Getting inspired! Understanding how and why examples are used in creative
design practice. In Proc. Conference on Human Factors in Computing Systems.
87–96.

[6] Forrest Huang, John F. Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM.

[7] Scott B Huffman and Michael Hochster. 2007. How well does result relevance pre-
dict session satisfaction?. In Proc. 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 567–574.

[8] Gasmi Ines, Soui Makram, Chouchane Mabrouka, and Abed Mourad. 2017. Evalu-
ation of mobile interfaces as an optimization problem. Procedia computer science
112 (2017), 235–248.

[9] Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick Fox-
Gieg. 2016. TheQuick, Draw!-AI Experiment. https://quickdraw.withgoogle.com/
October 2020.

[10] James A. Landay and Brad A. Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proc. Conference on Human Factors in Computing

Systems. ACM, 43–50.
[11] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R Klemmer.

2010. Designing with interactive example galleries. In Proceedings of the SIGCHI
conference on human factors in computing systems. 2257–2266.

[12] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proc. 31st Annual
ACM Symposium on User Interface Software and Technology (UIST). 569–579.

[13] Soumik Mohian and Christoph Csallner. 2021. DoodleUINet: Repository for Doo-
dleUINet Drawings Dataset and Scripts. https://doi.org/10.5281/zenodo.5144472

[14] Soumik Mohian and Christoph Csallner. 2022. PSDoodle: Fast App Screen Search
via Partial Screen Doodle. In Proc. 9th IEEE/ACM International Conference on
Mobile Software Engineering and Systems (MOBILESoft ’22), Technical Papers
Track. ACM.

[15] Soumik Mohian and Christoph Csallner. 2022. soumikmohianuta/PSDoodle: PS-
Doodle Repository for the Publication. https://doi.org/10.5281/zenodo.6339717

[16] Mark W. Newman and James A. Landay. 1999. Sitemaps, storyboards, and spec-
ifications: A sketch of Web site design practice as manifested through artifacts.
Technical Report UCB/CSD-99-1062. EECS Department, UC Berkeley.

[17] Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, and Yi-Zhe Song.
2020. Cross-modal hierarchical modelling for fine-grained sketch based image
retrieval. In Proc. 31st British Machine Vision Virtual Conference (BMVC).

[18] Tensorflow. 2020. Recurrent Neural Networks for Drawing Classifica-
tion. https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/
sequences/recurrent_quickdraw.md

[19] Yin Yin Wong. 1992. Rough and ready prototypes: Lessons from graphic design.
In Proc. Conference on Human Factors in Computing Systems, Posters and Short
Talks. ACM, 83–84.

[20] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. 183–192.

88


