
SLNET: A Redistributable Corpus of 3rd-party Simulink Models

Sohil Lal Shrestha
Computer Science & Eng. Dep.

University of Texas at Arlington

Arlington, Texas, USA

Shafiul Azam Chowdhury
Computer Science & Eng. Dep.

University of Texas at Arlington

Arlington, Texas, USA

Christoph Csallner
Computer Science & Eng. Dep.

University of Texas at Arlington

Arlington, Texas, USA

ABSTRACT

MATLAB/Simulink is widely used for model-based design. Engi-

neers create Simulink models and compile them to embedded code,

often to control safety-critical cyber-physical systems in automo-

tive, aerospace, and healthcare applications. Despite Simulink’s

importance, there are few large-scale empirical Simulink studies,

perhaps because there is no large readily available corpus of third-

party open-source Simulink models. To enable empirical Simulink

studies, this paper introduces SLNET, the largest corpus of freely

available third-party Simulink models. SLNET has several advan-

tages over earlier collections. Specifically, SLNET is 8 times larger

than the largest previous corpus of Simulink models, includes fine-

grained metadata, is constructed automatically, is self-contained,

and allows redistribution. SLNET is available under permissive

open-source licenses and contains its collection and analysis tools.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories;Model-driven software engineering; • Computer sys-

tems organization→ Embedded and cyber-physical systems.

KEYWORDS

Simulink, mining software repositories, open-source

ACM Reference Format:
Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2022. 
SLNET: A Redistributable Corpus of 3rd-party Simulink Models. In 19th 
International Conference on Mining Software Repositories (MSR ’22), May 
23–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https: 
//doi.org/10.1145/3524842.3528001

1 INTRODUCTION

Currently there is no collection of Simulink models that is com-
monly used in empirical studies. Though there have been previous
model collections, they lack fine-grained meta-information, are
not self-contained, and are not redistributable due to restrictive or
missing licenses—making them hard or impossible to use for most
empirical researchers. Given the lack of such a collection, the few
existing empirical studies of Simulink models have been limited to
proprietary models or a small number of public models [9, 41, 42].
Deepening our understanding of Simulink models and model-

ing practices is important, as Simulink is a de-facto standard tool

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9303-4/22/05.
https://doi.org/10.1145/3524842.3528001

in several safety-critical industries such as automotive, aerospace,

healthcare, and industrial automation—for system modeling and

analysis, compiling models to code, and deploying code to em-

bedded hardware [44, 46]. Having a large corpus of third-party

Simulink models may make it easier for engineers and researchers

to produce, reproduce, and validate empirical results about Simulink

models, modeling practices, and tools that operate on such models.

The most closely related previous work has studied an initial

collection of 391 third-party Simulink models [9] and later extended

it to a curated corpus (“SLC0”) of some 1k third-party Simulink

models [11]. Boll et al. [4] collected an updated version of SLC0 and

assessed the corpus’s suitability for empirical research. While pio-

neering larger studies and validating that models from such a corpus

can be similar to industrial models, these collections consisted of a

list of URLs to non-permanent resources [9] and contained mod-

els with unclear license information [11]. These collections were

largely manual, which lead to inconsistencies (empty projects, du-

plicate projects, and missing metadata), relatively modest collection

size, and may yield unintended human errors and bias.

To address these limitations, SLNET automates corpus construc-

tion and analysis, including data acquisition, cleaning (except for

the rarely required manual review of a new license type), metric

computation, and packaging. SLNET thereby automatically mines

and analyses Simulink models from the two most popular reposito-

ries for sharing Simulink models, yielding a collection of thousands

of models that is fully self-contained and allows redistribution.

To allow fine-grained selection of Simulink models and projects,

SLNET computes several project-level and model-level metrics [4]

and exposes them in a SQL database. SLNET similarly identifies

and labels libraries and models that are test harnesses [31]. To

summarize, this paper makes the following major contributions.

• SLNET is redistributable and 8 times larger than the prior

largest known corpus of third-party Simulink models.

• SLNET [38] and its tools [36, 37] are available under permis-

sive open-source licenses (CC BY and BSD 3-clause), e.g.,

SLNET is at: https://doi.org/10.5281/zenodo.5259648

2 BACKGROUND ON SIMULINK

Simulink [23] is a widely used commercial tool-chain for model-

based design [44, 46]1. Engineers typically design a cyber-physical

system (CPS) model in Simulink’s graphical modeling environment.

A Simulink model such as Figure 1 is a block diagram, where each

block represents equations or modeling components. Depending

on the block type, each block can accept input (via input ports),

perform some operation on its inputs, and produce output (via

output ports), which then can optionally be forwarded to other

blocks via explicit or implicit connection lines (aka signal lines).

1Searching for “Simulink” jobs on LinkedIn in the US currently yields over 5k job
postings: https://www.linkedin.com/jobs/search/?keywords="simulink"&location=US

237

The 2022 Mining Software Repositories Conference

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524842.3528001&domain=pdf&date_stamp=2022-10-17


MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner

Simulink users can add blocks from various built-in libraries and

toolboxes [25], and can also define custom blocks in “native” code

(e.g., in C) using the S-function interface.

Figure 1: Sample SLNET Simulink model of a 1.5MW wind

generation plant [30] with 18 blocks and 23 connections.

To deal with model size, users can create hierarchical models, by

(recursively) grouping blocks in (a) a Subsystem or (b) in a separate

model viaModel Reference. Simulink does not permit a cyclic model

hierarchy, but there may be block connection (aka data dependence)

cycles, including algebraic loops2.

As a first step, compiling translates the model into a toolchain-

internal representation. When simulating the compiled model, the

toolchain computes the output of each block at successive time

steps over a specified time range using pre-configured numerical

solvers. Fixed-step solvers solve the model at fixed time intervals

whereas variable-step solvers automatically adjust the time inter-

vals at which the model is solved. Simulink may reject a model if it

cannot numerically solve an algebraic loop. Simulink offers differ-

ent simulation modes, i.e., Normal mode “only” simulates blocks,

Accelerator speeds up simulation by emitting native code, and Rapid

Accelerator produces a standalone executable3.

3 SLNET DESIGN & CONSTRUCTION

SLNET is not a superset of earlier Simulink corpora [4, 11] as earlier

corpora were neither self-contained nor redistributable. Figure 2

gives an overview of SLNET’s construction. We built SLNET from

models shared in GitHub [16] and MATLAB Central [24]. Due to

time limitations we do not collect Simulink models from smaller

repositories such as GitLab [17] and SourceForge [40]. Before re-

moving projects that are empty, duplicate, or have an unclear li-

cense, a quick search for “Simulink” yields some 60 GitLab and

some 70 SourceForge projects.

While GitHub offers commit-level version control, MATLAB

Central “only” serves project releases. To limit SLNET’s size and

due to the different versioning (git commits vs. project releases), in

February 2020 we “only” collected Simulink project snapshots (i.e.,

all current project files plus project metadata).

2https://www.mathworks.com/help/simulink/ug/algebraic-loops.html
3Simulink’s embedded code generation workflow for deployment on target platforms
is distinct from these simulation modes.

Figure 2: Overview: SLNET-Miner collects files and data, re-

moves empty and duplicated projects or those without ap-

propriate license. SLNET-Metrics extracts model metrics.

GitHub provides a REST API to discover projects and extract

them with their metadata. SLNET-Miner queries the GitHub API

(via PyGithub [43]) with the keyword “Simulink”. Unlike previous

work [9, 11], we used keyword search and not file extension search,

as file extension search is typically intended to search within a

given GitHub repository and using file extension search in GitHub’s

search page produced many false positives.

The GitHubAPI expose 23 types of project-level information [15],

of which SLNET retains 20. The other 3 are redundant (full project

name) or API-internal (API query relevance score and node id).

From the API we also obtain each project’s topics (user-created

labels and tags). From the downloaded project files, we extracted

the list of Simulink model files plus the project’s license.

As MATLAB Central “only” offers an RSS feed [22] for its file

exchange platform, we filter the search result feed by Simulink

models and then parse the feed to collect each project’s download

URL plus 14 other types of project metadata. Since from the RSS

feed we could not construct the download URL for all projects, we

extracted 2,941 of the 3,110 available projects.

3.1 Data Cleaning & Storage: ZIP + SQLite

We remove projects without Simulink models (i.e., file extensions

slx or mdl) and projects we know to contain synthetic models (i.e.,

model generators [9, 10]). We heuristically search for other model

generators (via terms “automat”, “random”, “fuzz”, and “generate”)

in project titles, project descriptions, and project tags, which yielded

530 projects (e.g., on fuzzy logic). As we did not find evidence that

these projects generate models we kept them in SLNET.

Table 1: Data cleaning: Real = has 1+ models (likely non-

synthetic); License = has a license; SLNET+D = license allows

redistribution; SLNET = has a model with 1+ blocks after

removing potential duplicate projects; Model counts here

include 1,130 library and 9 test harness models.

Projects Models

Real License SLNET+D SLNET SLNET

GitHub 1,284 232 231 225 2,088

MATLAB Cl 2,941 2,746 2,728 2,612 7,029

Total 4,225 2,978 2,959 2,837 9,117

238



SLNET: A Redistributable Corpus of 3rd-party Simulink Models MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Figure 3: SLNET database schema (GitHub portion). TheMAT-

LAB Central portion only differs in its _Projects table [38].

We then remove projects without a license or whose license

does not allow redistribution. GitHub has a structured way for au-

thors to set a license, which GitHub converts to a file (and exposes

via an API). We manually reviewed the remaining 50 projects’ li-

censes (where GitHub did not understand the author’s license or

for MATLAB Central projects without a BSD license).

We heuristically remove potentially duplicate projects. We con-

sider project A a duplicate of B if (1) A and B contain the same

number of Simulink model files and (2) there is a bijective mapping

between models in A and B based on our Section 3.2 model met-

rics (excluding compile time). If A and B are from the same data

source (GitHub or MATLAB Central), we keep the first-created one

in SLNET. Otherwise, we keep the one from GitHub, as it offers

more fine-grained meta-data. Finally, we remove dummy projects

(projects whose Simulink models all have zero blocks).

Table 1 summarizes data cleaning. After removing model genera-

tors we downloaded 4,225 projects with at least one Simulink model,

of which 2,978 had a license, of which 2,959 allowed redistribution.

Removing 112 potentially duplicate plus 10 dummy projects yielded

2,837 projects and their 9,117 Simulink models in SLNET.

SLNET is on Zenodo (a second archive contains the 112 duplicate

projects) [38]. Each project has a snapshot of its files in a ZIP archive

in either the GitHub or MATLAB Central directory. Each project

is named ID.zip, where ID is an identifier defined by GitHub or

MATLAB Central. SLNET includes the Figure 3 SQLite4 database.

4SQLite is widely used, free, self-contained, server-less, zero-configuration, backwards
compatible, and cross-platform: https://www.sqlite.org/index.html

It contains project-level information (license type, etc.) from the

source repositories and the model metrics our tools extracted. Users

can thus select models and projects from SLNET via SQL queries.

3.2 Project & Model Metrics

Table 2: SLNET’s project engagement distributions are long-

tailed as in other studies of open-source projects [2, 18–20].

Metadata Min Max Avg Med. SD

GitHub

Stargazers 0 128 3.5 0 12.1

Forks 0 122 2.8 0 10.7

Open Issues 0 82 1.2 0 6.5

MATLAB Cl

Comments 0 218 3.5 1 12.3

Ratings 0 108 2.9 1 6.8

Avg. Rating 0 5 2.5 3 2.2

To get an insight into the projects’ domain and popularity we

first searched the user-generated project tags (i.e., GitHub “top-

ics” and MATLAB Central “categories”) for common domains (i.e.,

the Simulink project domains identified by Boll et al.[4]), yielding

Electronics (983), Automotive (64), Communications (61), Robotics

(52), Energy (48), Aerospace (47), Biotech (20), and Medicine (2).

Table 2 shows data often used as proxies for project popularity

or engagement (e.g., people who have star-ed or forked a GitHub

project or provided a 1–5 star rating for a MATLAB Central project).

For example, a SLNET GitHub project has on average 2.8 forks.

To extract commonly used model metrics (such as number of

blocks, connections, subsystems, and linked blocks5) we imple-

mented the SLNET-Metrics tool [36] on top of Simulink’s APIs.

While our Simulink installation and toolbox configuration [35] can-

not compile a significant portion of SLNET models (mostly due to

missing toolbox licenses), these APIs still compute metrics for these

non-compiling models, except for three metrics (algebraic loops,

cyclomatic complexity, and compile time).

SLNET-Metrics failed to compute metrics for 88/9,117 models

(21 from GitHub, 67 from MATLAB Central). Most of these 88 were

due to Simulink version issues (missing Simulink toolboxes, model

name conflicts with a keyword or toolbox file name) and bugs

introduced by manually-edited model files. SLNET does not include

metrics for these 88 models and thus also ignores them for the

above duplicate-via-bijection removal.

SLNET-Metrics collects each model’s hierarchical depth, solver

type, simulation mode, target hardware, and use of S-functions and

model references. While SLNET models contain elements from the

state-machine toolbox Stateflow, Stateflow is out of scope and our

metrics do not count the Stateflow-contents of a Simulink block.

Unlike SLC0, SLNET-Metrics does not count nested blocks im-

ported from libraries or their connections (aka “masked subsys-

tems”). This mirrors procedural code metrics, which also do not

count LOC a program imports from a library. As SLC0’s counting of

such imported blocks approximates the model’s overall conceptual

5https://www.mathworks.com/help/simulink/ug/creating-and-working-with-
linked-blocks.html

239



MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner

Models Hierarchical Blocks Connections Solver Step Simulation Mode

Source M Mc Mh Mht0 B Bt0 C Ct0 Fixed Var Nor Ext PIL Ac

GitHub 1,639 541 878 1,304 190,321 414,241 188,285 395,725 860 762 1,501 103 2 14

MATLAB Cl 6,251 3,636 3,893 5,566 838,956 3,197,221 915,975 3,084,605 1,757 4,493 5,984 186 2 76

Total 7,890 4,177 4,771 6,870 1,029,277 3,611,462 1,104,260 3,480,330 2,617 5,255 7,485 289 4 90

Table 3: SLNET’s model metrics after removing library & test harness models; M = models; Mc = models we could readily

compile; Mh = hierarchical models (readily compilable and otherwise); C = non-hidden connections; t0 = via SLC0’s metric

tool; Var = variable; Nor = normal; Ext = external; PIL = processor in the loop; Ac = accelerator. For 18 models the API did not

indicate simulation mode or solver type. The remaining 4 models are configured for Rapid Accelerator simulation mode.

complexity [33], Table 3 also includes these counts. As an exam-

ple, the Figure 1 model imports blocks from the Simscape toolbox,

yielding a SLC0-style block count of 907 with 919 connections.

The Simulink API labels only 9 SLNET models as a test harness,

likely because many open-source projects do not have the required

”Simulink Test” license to develop such tests. Beyond this official

classification SLNET contains likely “work-around” test harnesses.

The SLC0metrics tool heuristicallymatchesmodel and folder names

with “test” and “harness” and SLNET labels such models separately.

We performed sanity checks on the model metrics other papers

reported about industrial models (block count, etc.). We also ran-

domly sampled from the top 100 largest models in SLNET. Based

on the sampled models’ documentation we are confident that these

were real human-created (non-synthetic) models.

4 POTENTIAL RESEARCH DIRECTIONS

Since most industrial models are proprietary SLNET is unlikely to

reflect their distribution. Instead, the goal is to provide the largest

possible redistributable self-contained corpus of non-synthetic mod-

els. Different research projects will require different SLNET subsets

(e.g., many small models for training deep-learning classifiers vs.

large models to evaluate a technique’s scalability), which the SQL

metadata database facilitates. Having more models is better, espe-

cially in deep learning, but also when trying to understand the

breadth of modelling practices, or when looking for edge cases (e.g.,

to test model analysis tools). Following are example directions.

While there has been significant interest in other software en-

gineering areas [6, 21, 45], applying machine learning is relatively

under-explored in model driven engineering [1, 8]. To work well,

many machine learning and deep learning algorithms require large

training sets. SLNET with its many models and rich metadata is

thus well-suited. For example, a SLNET subset has been used to

train a deep learning model for random Simulink model generation,

to find bugs in the Simulink toolchain [39]. Due to their smaller

size, this would have not been possible with the earlier corpora.

Due to the lack of easily available open-source models that fit

certain characteristics, recent work reverted to evaluating tools on

synthetic models [10]. SLNET offers a complimentary (and often

preferred) evaluation option with human-authored models.

Recent work including in clone detection, refactoring, model

slicing, and model smells has relied on evaluations with few propri-

etary Simulink models [5, 13, 14, 29, 32]. For example, Deissenboeck

et al. [13] evaluated their clone detection approach on a single pro-

prietary Simulink model with 20k blocks. Complementing such
evaluations with a variety of open-source models from SLNET

could make such studies more general and easier to replicate.

Understanding modeling practices would enable researchers to

tune their tools to how engineers use Simulink in various settings.

For example, SLforge guides its random model generation by how

often blocks appear in 391 open-source models [9]. The larger size

of SLNET could thus, e.g., yield useful insights for tool design.

There may also be interesting correlations between metrics,

maybe connecting model metrics to project metrics (e.g., model size

metrics with project engagement). More generally, SLNET could

contribute to a deeper understanding of model modularity, compre-

hension, quality, and maintainability [3, 12, 28, 34].

While SLNET is unlikely to exactly represent closed-source de-

velopment, the precise shape of this relation is an open question.

For example, for the related domain of Object Constraint Language

(OCL) expressions [7], Mengerink et al. found the distribution of

expression complexity mined from GitHub projects reflects the

distribution in closed-source projects, so open-source projects can

be used as a proxy for industrial projects [26, 27].

5 THREATS TO VALIDITY

Due to its search heuristics SLNET-Miner may miss Simulink mod-

els (e.g., by missing some of the non-documented RSS feed URLs).

Furthermore, since SLNET contains only redistributable projects, re-

sults may not be representative of all open source Simulink projects.

On the flip side, while removing forks and duplicates, SLNET likely

contains clones (from near-duplicate projects to adapted model

portions), which can be an opportunity for clone-based research

(and a challenge for others). Finally, SLNET-Metrics calls the Check

API of Simulink R2019b. While this API has been available since

Simulink R2017b, its behavior may change across releases and thus

yield different metric values in future Simulink versions.

6 CONCLUSIONS

SLNET is the largest corpus of freely available third-party Simulink

models. SLNET is 8 times larger than the largest previous Simulink

corpus, includes fine-grained metadata, is constructed automati-

cally, is self-contained, and allows redistribution.

ACKNOWLEDGMENTS

Christoph Csallner has a potential research conflict of interest

due to a financial interest with Microsoft and The Trade Desk.

A management plan has been created to preserve objectivity in

research in accordance with UTA policy. This material is based

upon work supported by the National Science Foundation (NSF)

under Grant No. 1911017 and a gift from MathWorks.

240



SLNET: A Redistributable Corpus of 3rd-party Simulink Models MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Bhisma Adhikari. 2021. Intelligent Simulink Modeling Assistance Via Model

Clones and Machine learning. , 237 pages.
[2] Mohammad Y. Allaho and Wang-Chien Lee. 2014. Trends and behavior of devel-

opers in open collaborative software projects. In Proc. International Conference
on Behavioral, Economic, and Socio-Cultural Computing (BESC). IEEE, 96–102.
https://doi.org/10.1109/BESC.2014.7059515

[3] Erik Aceiro Antonio, Fabiano Ferrari, Glauco A de P Caurin, and Sandra CPF
Fabbri. 2014. A set of metrics for characterizing simulink model comprehension.
Journal of Computer Science and Technology 14, 02 (2014), 88–94.

[4] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo Kehrer, and Andreas
Vogelsang. 2021. Characteristics, potentials, and limitations of open-source
Simulink projects for empirical research. Software and Systems Modeling (2021),
1–20.

[5] Alexander Boll and Timo Kehrer. 2020. On the Replicability of Experimental Tool
Evaluations in Model-Based Development - Lessons Learnt from a Systematic
Literature Review Focusing on MATLAB/Simulink. In Proc. 1st International
Conference on Systems Modelling and Management (ICSMM). Springer, 111–130.
https://doi.org/10.1007/978-3-030-58167-1_9

[6] Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009. Learning from ex-
amples to improve code completion systems. In Proc. ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE). ACM, 213–222.
https://doi.org/10.1145/1595696.1595728

[7] Jordi Cabot and Martin Gogolla. 2012. Object Constraint Language (OCL): A
Definitive Guide. In Proc. 12th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems. Springer, 58–90. https:
//doi.org/10.1007/978-3-642-30982-3_3

[8] Yuqi Chen, Christopher M. Poskitt, Jun Sun, Sridhar Adepu, and Fan Zhang.
2019. Learning-Guided Network Fuzzing for Testing Cyber-Physical System
Defences. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 962–973.
https://doi.org/10.1109/ASE.2019.00093

[9] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). ACM,
981–992.

[10] Shafiul Azam Chowdhury, Sohil L Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of
CPS models for finding compiler bugs in Simulink. In Proc. 42nd ACM/IEEE
International Conference on Software Engineering (ICSE). ACM, 335–346.

[11] Shafiul Azam Chowdhury, Lina Sera Varghese, Soumik Mohian, Taylor T. John-
son, and Christoph Csallner. 2018. A curated corpus of Simulink models for
model-based empirical studies. In Proc. 4th International Workshop on Software
Engineering for Smart Cyber-Physical Systems (SEsCPS). ACM, 45–48.

[12] Yanja Dajsuren, Mark G. J. van den Brand, Alexander Serebrenik, and Serguei A.
Roubtsov. 2013. Simulink models are also software: modularity assessment. In
Proc. 9th International ACM SIGSOFT conference on Quality of Software Architec-
tures (QoSA). 99–106. https://doi.org/10.1145/2465478.2465482

[13] Florian Deissenboeck, Benjamin Hummel, Elmar Jürgens, Bernhard Schätz, Ste-
fan Wagner, Jean-Francois Girard, and Stefan Teuchert. 2008. Clone detection
in automotive model-based development. In 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008. 603–612.
https://doi.org/10.1145/1368088.1368172

[14] Thomas Gerlitz, Quang Minh Tran, and Christian Dziobek. 2015. Detection and
Handling of Model Smells for MATLAB/Simulink models. In Proc. International
Workshop on Modelling in Automotive Software Engineering, Vol. 1487. CEUR-
WS.org, 13–22.

[15] GitHub Inc. 2020. GitHub Developer. https://developer.github.com/v3/search/
February 2020.

[16] GitHub Inc. 2021. GitHub. https://github.com Accessed Jan 2022.
[17] GitLab. 2021. GitLab. https://gitlab.com Accessed May 2021.
[18] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

Germán, and Daniela E. Damian. 2016. An in-depth study of the promises and
perils of mining GitHub. Empirical Software Engineering 21, 5 (2016), 2035–2071.
https://doi.org/10.1007/s10664-015-9393-5

[19] Antonio Lima, Luca Rossi, and Mirco Musolesi. 2014. Coding Together at Scale:
GitHub as a Collaborative Social Network. In Proc. 8th International Conference
on Weblogs and Social Media (ICWSM). AAAI.

[20] Wanwangying Ma, Lin Chen, Yuming Zhou, and Baowen Xu. 2016. What Are the
Dominant Projects in the GitHub Python Ecosystem?. In Proc. 3rd International
Conference on Trustworthy Systems and their Applications (TSA). IEEE, 87–95.
https://doi.org/10.1109/TSA.2016.23

[21] Ruchika Malhotra. 2015. A systematic review of machine learning techniques
for software fault prediction. Appl. Soft Comput. 27 (2015), 504–518. https:
//doi.org/10.1016/j.asoc.2014.11.023

[22] MathWorks Inc. 2021. MathWorks RSS. https://www.mathworks.com/company/
rss.html February 2020.

[23] MathWorks Inc. 2021. MATLAB & Simulink. https://www.mathworks.com/
products/simulink.html/ Accessed Jan 2022.

[24] MathWorks Inc. 2021. MATLAB Central. https://www.mathworks.com/
matlabcentral/fileexchange/ Accessed Jan 2022.

[25] MathWorks Inc. 2021. Simulink Block Libraries Documentation. https://www.
mathworks.com/help/simulink/block-libraries.html Accessed Jan 2022.

[26] Josh G. M. Mengerink, Jeroen Noten, Ramon R. H. Schiffelers, Mark G. J. van den
Brand, and Alexander Serebrenik. 2017. A Case of Industrial vs. Open-source OCL:
Not So Different After All. In Proc. MODELS Posters, Vol. 2019. CEUR-WS.org,
472–474.

[27] Jeroen Noten, Josh Mengerink, and Alexander Serebrenik. 2017. A data set of
OCL expressions on GitHub. In Proc. 14th International Conference on Mining
Software Repositories (MSR). IEEE, 531–534. https://doi.org/10.1109/MSR.2017.52

[28] Marta Olszewska, Yanja Dajsuren, Harald Altinger, Alexander Serebrenik, Ma-
rina A. Waldén, and Mark G. J. van den Brand. 2016. Tailoring complexity metrics
for Simulink models. In Proc. 10th European Conference on Software Architecture
Workshops. 5.

[29] Vera Pantelic, Steven M. Postma, Mark Lawford, Monika Jaskolka, Bennett
Mackenzie, Alexandre Korobkine, Marc Bender, Jeff Ong, Gordon Marks, and
Alan Wassyng. 2018. Software engineering practices and Simulink: bridging the
gap. STTT 20, 1 (2018), 95–117. https://doi.org/10.1007/s10009-017-0450-9

[30] Gaddala Jaya Raju. 2019. 1.5MWWindGeneration Plant. https://www.mathworks.
com/matlabcentral/fileexchange/73469-1-5mw-wind-generation-plant. Ac-
cessed Jan 2022.

[31] Eric J. Rapos and James R. Cordy. 2018. SimEvo: A Toolset for Simulink Test
Evolution & Maintenance. In 11th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13, 2018.
IEEE Computer Society, 410–415. https://doi.org/10.1109/ICST.2018.00049

[32] Robert Reicherdt and Sabine Glesner. 2012. Slicing MATLAB Simulink models. In
34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland. 551–561. https://doi.org/10.1109/ICSE.2012.6227161

[33] Guy Rouleau. 2021. How many blocks are in that model? https://blogs.
mathworks.com/simulink/2009/08/11/how-many-blocks-are-in-that-model Ac-
cessed Jan 2022.

[34] Jan Schroeder, Christian Berger, Thomas Herpel, and Miroslaw Staron. 2015.
Comparing the Applicability of Complexity Measurements for Simulink Models
during Integration Testing - An Industrial Case Study. In Proc. 2nd IEEE/ACM
International Workshop on Software Architecture and Metrics (SAM). IEEE, 35–40.
https://doi.org/10.1109/SAM.2015.12

[35] Sohil L Shrestha. 2021. MATLAB Simulink version Info. https://github.com/
50417/SLNET_Metrics/wiki/MATLAB-Simulink-Installation Accessed Jan 25
2022.

[36] Sohil L Shrestha. 2022. 50417/SLNET_Metrics: SLNET_Metrics MSR Release. https:
//doi.org/10.5281/zenodo.6336048

[37] Sohil L Shrestha. 2022. 50417/SLNet_Miner: SLNET-Miner MSR Release. https:
//doi.org/10.5281/zenodo.6336034

[38] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2022.
SLNET: A Redistributable Corpus of 3rd-party Simulink Models. https://doi.org/10.
5281/zenodo.5259648

[39] Sohil Lal Shrestha and Christoph Csallner. 2021. SLGPT: Using Transfer Learn-
ing to Directly Generate Simulink Model Files and Find Bugs in the Simulink
Toolchain. In EASE 2021: Evaluation and Assessment in Software Engineering,
Trondheim, Norway, June 21-24, 2021. ACM, 260–265.

[40] Slashdot Media. 2021. SourceForge. https://sourceforge.net/directory/?q=
simulink Accessed May 2021.

[41] Matthew Stephan, Manar H. Alalfi, James R. Cordy, and Andrew Stevenson. 2013.
Evolution of Model Clones in Simulink. In Proc. Workshop onModels and Evolution.
40–49.

[42] Matthew Stephan and James R. Cordy. 2015. Identification of Simulink model
antipattern instances usingmodel clone detection. In 18th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, MoDELS 2015.
276–285. https://doi.org/10.1109/MODELS.2015.7338258

[43] Vincent Jacques. 2007. PyGitHub. https://pygithub.readthedocs.io/en/latest/
introduction.html Accessed Jan 2022.

[44] MarilynWolf and Eric Feron. 2015. What don’t we know about CPS architectures?.
In Proc. 52nd Annual Design Automation Conference (DAC). 80:1–80:4. https:
//doi.org/10.1145/2744769.2747950

[45] Marco Zanoni, Francesca Arcelli Fontana, and Fabio Stella. 2015. On applying
machine learning techniques for design pattern detection. J. Syst. Softw. 103
(2015), 102–117. https://doi.org/10.1016/j.jss.2015.01.037

[46] Xi Zheng, Christine Julien, Miryung Kim, and Sarfraz Khurshid. 2017. Perceptions
on the State of the Art in Verification and Validation in Cyber-Physical Systems.
IEEE Systems Journal 11, 4 (2017), 2614–2627. https://doi.org/10.1109/JSYST.2015.
2496293

241


