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ABSTRACT
In today’s world, the increased time people spend in front of their
computers has been one of the main causes for neck and back pains.
Especially, since the pandemic, it has been quite evident that slouch-
ing at home for long hours on hand-held devices and computers
has led many people towards spinal pains and injuries. Backed
with scientific research, it has been proven that these pains can be
prevented with proper monitoring of the seated posture and taking
breaks in between. This paper focuses on building a light-weight
end-to-end system that monitors the user’s posture and provides
feedback whenever it is necessary for them to fix their posture
or take a break. Our system utilizes the most common devices: a
webcam or a smartphone camera to capture input frames and a
machine learning model to differentiate between good and bad
postures with 98% accuracy while the user is seated. The newly de-
veloped pipeline helps the users in improving their posture without
any additional cost or hardware.

CCS CONCEPTS
• Computing methodologies→ Machine learning approaches; •
Applied computing→ Consumer health.
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1 INTRODUCTION
Medical studies [13, 25] have proven that bad posture practice for
longer periods results in major back problems. The rise in neck
and back pains can result in serious spinal injuries and disabilities.
Lower back pain has been identified as one of the leading causes
of work-related disability and loss of productivity in industrialized
settings [21]. With COVID impacting our daily lives, companies and
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organizations have diverted to home-based remote working culture
to limit the spread of the virus. This has increased in people sitting
for a longer period slouching on their chairs. According to an e-
survey [8], 48% of the participants worked at home at least sometime
during the COVID pandemic and 33.7% worked exclusively from
home. This is a huge jump from the one in twenty people that
teleworked regularly in 2018 [8]. Among these employees, many
of them are teleworking for the first time and do not have the
experience of spending long hours in front of the screen or how to
maintain proper posture. It, therefore, becomes highly important
for us to develop techniques to analyze posture and utilize them to
prevent health issues among the millions in the current generation
adopting this new lifestyle.

In this work, we categorized a posture as "good posture" based
on the guidelines presented in [16]:

• The spine is approximately perpendicular to the thighs and
the ears, shoulders, and hips are in a straight line.

• The body’s weight is distributed equally and not to just one
side.

• The neck is not hunched forward too much.
• The shoulders are not protracted forward and should be
relaxed.

On the other hand, any posture that does not match with the
above criteria is considered to be a "bad posture". Bad posture for reg-
ular prolonged periods can result in numerous health issues like se-
vere low/middle back pain, moderate discomfort in eyes/neck/head,
discomfort in the upper back/shoulders, and elevated stress levels as
highlighted in [2, 11] as well as cause long terms issues like injuries
and spine curvature. Identifying bad posture early can prevent a
lot of these health problems, that in the long term, may result in
extreme discomfort and permanent disability.

In the recent years, great progress has been made in pose esti-
mation models that can predict various keypoints on the body with
a high accuracy. Most of the popular models like OpenPose [5] and
BlazePose [4] use machine learning (ML) and deep learning (DL)
techniques to detect parts on the human body like eyes, shoulders,
hips, etc. Most of the times, pose estimation models are generally
used to classify human activities in the scene [26, 28]. But these
models can be leveraged to further classify various poses such as
good and bad posture as done in this paper. Furthermore, advance-
ments in self-supervised learning methods [15] have enabled the
training of these pose estimation models to be much more efficient.
Researchers in the past have also tried to use gesture-based hand
rehabilitation techniques [7] using computer vision and machine
learning, but limited work can be found that deals with posture
correction systems.
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Although there are other posture correction apps on the market,
almost all of them involve using some kind of expensive tracker
that is placed on the body (like Upright [1]) and do not appear
to use machine learning and computer vision. In this paper, we
aim to create a system that can be incorporated in a variety of
devices like mobile phones and laptops to detect bad posture. This
system can then be used to correct the posture of employees who
are teleworking by giving them a notification whenever they get
into bad posture.

2 RELATEDWORK
Researchers have made valiant efforts in building systems that can
detect bad postures and provide feedback to the user in order to
correct the posture. Most of the works have focused on analysing
postures based on data from sensors that are usually attached or
worn by the user. In [20], the authors embedded six force sensors
into a chair that communicate with a mobile application to notify
the user about their bad posture. In addition, the user receives
statistical data along with wrong sitting positions. On the other
hand, instead of using the force sensors, [24] uses four load cells
mounted only on the seat plate to categorize among six pre-defined
postures. The idea is to measure the change in load while a person
sits in multiple positions. The drawback to these systems is that
they are embedded into the chair and not portable for other use.

Furthermore, Manju et al. [12] proposed a posture monitoring
system based on flex sensors and load cells. The flex sensor is at-
tached to the user’s back in order to monitor the body’s bend and
determine whether the posture is good or bad. However, the flex
sensor cannot provide precise information about the trunk flexion
and focuses only on the spine shape. A different modality to mea-
sure posture’s correctness was found in this work [19] where the
authors placed a 3-axis accelerometer on the user’s neck in order to
define the spine shape. Another use of intertial sensor was found in
Low et al. work [18] where they focused on improving posture for
opthalmologists. Although the posture monitoring systems based
on the intertial sensors (accelerometers) introduced superior advan-
tage in measuring the trunk deviation angle, they suffer from the
need to position them optimally for subjects with different shape
and size.

The introduction of visual sensors for posture detection was
seen in [17] where the authors mounted a 3D depth camera on
the ceiling to detect a person falling on the floor. They used a K-
Nearest Neighbors (KNN) classifier to distinguish been accidental
falls and other generic activities. In another work [14], the authors
focused on triggering an alarm once a fall is detected using an RGB-
camera sensor. Numerous research have been conducted that uses
vision sensors along with some form of features extracted such as
skeletal information, optical flow and so on for activity analysis
[3, 6, 9, 10, 22, 26–28]. The vision sensors seem to work well for
this purpose, with Roberts et al. [23] introducing a vision-based
activity analysis framework that estimates and tracks 2D worker
pose and outputs activities such as bricklaying and plastering that
were being performed by the workers. Even with such advance-
ments in computer vision and deep learning, systems designed to
encourage good seating postures that can be implemented in day-
to-day life have not been researched extensively. This is where our

system comes into play which only requires a simple webcam or a
smartphone camera that can track bad posture and notify the user
whenever necessary.

Figure 1: Keypoints detected by BlazePose [4]

3 METHODOLOGY
Instead of working directly on the input frames recorded by a
webcam or a smartphone camera to classify the posture, we first use
a pose estimation model called BlazePose [4] to extract 33 different
body keypoints (landmarks) from each frame as shown in fig 2. It
helps to overcome the complexity of feature extraction from images
and increases the overall processing speed of the system. The system
is composed of two main components: the pose estimation system
(extracting body keypoints) and the posture classification system
(good/bad).

For our posture classification system, we use a machine learning
model instead of having a simple rule based system that uses joint
angles to classify posture. This is because although the latter may
be faster and perform well in classifying posture when the camera
is placed to the side of the user, it won’t be able to calculate the joint
angles in the same way when placed in front and is highly sensitive
to the position in which the camera is placed. In the case of machine
learning models, the camera can be placed to the front or side of
the user without much change in accuracy since the models have
been trained on frames from a variety of angles in both positions.
Our system collects frames continuously and for each frame in a
video input stream, it performs the following steps to categorize
the type of posture in the frame:

(1) Extract 33 body keypoints using BlazePose from each input
frame.

(2) Normalize keypoints by translation and scale as shown in
equations 1, 2, 3, and 4.

(3) Check the confidence scores of keypoints 25 (left knee) and
26 (right knee). If they are below 50% in either knee then the
legs are probably not visible from where the camera is placed
and themodel trainedwith "no limbs" (as described in section
4) is used. If the confidence scores are greater than 50% in
both knees, then the model trained with "all keypoints" is
used. This enables the model to classify posture accurately
even with occlusions in front of the camera, by only using
the keypoints from the upper half of the body.
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(4) Classify the frame as good or bad posture using normalized
keypoints and the selected machine learning model.

Finally, if ten consecutive frames are classified as bad posture,
the system issues a sound notification to the user reminding them
to fix their posture.

Figure 2: System Overview Diagram

The following subsections explain each of the steps in detail.

3.1 Posture Estimation via BlazePose
The model used to extract the body keypoints from each input
frame is BlazePose [4]. BlazePose is a lightweight convolutional
neural network architecture for human pose estimation that is
tailored for real-time inference on mobile devices. It detects 33
different keypoints on the human body as shown in fig 1. Aside from
detecting the x and y coordinate values for each of the keypoints
from an RGB image, it also estimates an experimental z value that
represents the distance of the keypoint from the camera. Since
BlazePose is a fast-face detector that acts as a proxy for a person
detector, we do not need to worry about other objects in the scene
except for the human. The face is used as the primary feature for
the pose detector because of the observation that the face is the
strongest signal for the neural network to predict the position of
the torso. By detecting the face first, BlazePose is able to run at
real-time speeds since it is then able to predict information about
the pose’s alignment parameters like the middle point between hips
and the size of the circle circumscribing the whole person before
moving on to detecting the keypoints.

The pose tracker further uses the alignment parameters predicted
before to detect the 33 keypoint coordinates in the picture and a
refined area of interest to search in the next frame to increase effi-
ciency. When compared to other pose estimation models, BlazePose
has been found to be 25-75 times faster on a single mid-tier phone
CPU as compared to commonly used models like OpenPose. It can
run at over 30 frames per second on a Google Pixel 2 phone [4].
Leveraging BlazePose is critical to make our posture classification
system highly accessible and allow users to use it on any device
that doesn’t have specialized hardware like dedicated GPUs.

Figure 3: Keypoints detected by BlazePose on Real Person

3.2 Data collection
We conducted our data collection under IRB Protocol #2016-0693.
For the data collection, our setup just required a chair and a smart-
phone. Videos of eleven different people were taken, out of which
six were used for the training set and the other five were used for
the testing purposes. The participants were between 19 to 46 years
of age and consisted of 9 males and 2 females. For each participant,
the following steps were carried out to collect data of their good/bad
postures:

(1) The participant was instructed to be seated in a good posture
on the chair according to guidelines given in section 1.

(2) Videos were recorded at multiple angles from the front and
side views. From the front position, a part of the video was
taken in a way such that only the upper half of the body was
visible. This is to replicate a scenario in which the camera
is placed on top of a table such that the legs cannot be seen
due to occlusion.

(3) The participant was next instructed to be seated in a bad
posture violating one or more of the guidelines presented in
section 1 (for example hunching neck too much).

(4) Similar videos were recorded as described in step 2.
These videos were further sliced frame by frame and analyzed

by BlazePose to extract the coordinates of the keypoints from the
frame. Next, the coordinates were normalized and were saved in a
CSV file to be later used for training ML/DL models. A total of 7666
image frames were extracted to make up the training set and 5898
frames to make up the test set. In addition, there was no overlap in
data between train and test set from the same participant. This is
to ensure that the models are not biased on the test set.

3.3 Normalizing the Keypoint Coordinates
To detect a bad posture, the system has to work from any given
position and angle. Since it is not necessary that the subject always
aligns in a particular position with the camera, it becomes very
important to factor in the changes and variations in the seating
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positions relative to the camera. On top of that, BlazePose only
outputs raw coordinates of the body keypoints relative to each other
and are not standardized to any particular coordinate system. Thus,
to make the system more robust to human orientation changes,
pose normalization methods need to be implemented before passing
it to the ML models.

In this paper, we use translation and scale to normalize all the
landmark coordinates. To account for translational variations, we
first find the coordinates of the middle pointM that lies between the
left hip (L) and the right hip (R). It can be easily obtained by taking
the average of both the coordinates as M =

(
m1 m2 m3

)
=

1
2 (L + H ). Next, all 33 body keypoint coordinates are subtracted by
the coordinates ofM to remove the translational variations. It also
moves the pose center closer to the origin in the cartesian coordinate
system. The above steps can be achieved by the following matrix
operations as shown in equations 1 and 2:

T = X −C (1)

C33×3 =

©«
m1 m2 m3
m1 m2 m3
...

...
...

m1 m2 m3

ª®®®®¬
(2)

where T ,X ,C ∈ R33×3, X is the original matrix containing the
x ,y, and experimental z coordinates of each body keypoint, and T
is the matrix normalized by translation.

Finally, to normalize the scale of the pose, first, the maximum
distance between any keypoint to the pose center M is calculated.
This distance is considered as the scaling factor for that particular
human subject. Hence, all the body keypoint coordinates are divided
by the calculated maximum distance. It normalizes the scale of each
pose resulting in all coordinate values between 0 to 1. The above
steps can be represented by the following matrix operations as
shown in equations 3 and 4:

S33×1 =

©«
| |t1 | |
| |t2 | |
.
.
.

| |t33 | |

ª®®®®®¬
, where T =

©«
t1
t2
.
.
.

t33

ª®®®®®¬
and | |t | | =

√√√ 3∑
i=1

|ti |2 (L2-norm of t )

(3)

N33×3 =
T

Max(S)
(4)

Here,T is the matrix normalized by translation and N is the final
matrix normalized with respect to both translation and scale.

4 RESULTS AND OBSERVATIONS
From the first phase, all body keypoints extracted from the image
frames using BlazePose are normalized and stored in separate CSV
files for each subjects. The CSV files containing normalized data are
only for training and testing purposes. Once the model is deployed,
the extracted keypoints are classified in real-time and do not need to
be stored anywhere. The pre-processed normalized body keypoints

(a) Posture classified
as good by the NN

model.

(b) Posture classified as
bad by the NN model.

Figure 4: NN Model Classification Results

were used to train and compare three different sets of ML models:
K-Nearest Neighbors (KNN), XGBoost, and Neural Networks (NN).

For the KNN model, we used the 10 nearest neighbors with
uniform weights for classification. For the XGBoost model, we used
the tree booster with an eta (learning rate) of 0.3, and max depth
of 6. Finally, for the Neural Network model, we used three hidden
layers with 100 perceptrons each, a learning rate of 0.001, Relu as
the activation function, Adam as the optimizer, and trained the
model over a 100 epochs.

In addition to using different models, the combination of key-
points used for trainingwas also varied. For the first case, all 33 body
keypoints (All Keypoints) were used for training. Next, the models
were trained excluding the keypoints from the limbs (No Limbs).
Finally, the experimental depth values (z-values) were dropped and
only x and y coordinates were used from all 33 keypoints to train
the third set of models (Remove Z). The results from each set of
training for the three models can be found in table 1.

We can see that we get the best accuracy and precision in the
Neural Network model using all keypoints at 98% accuracy. We
also observe that we get a decent accuracy of 93% with the no
limbs Neural Network model. This means that we can speed up
our posture detection algorithm by just detecting 15 keypoints
instead of the original 33. Finally, we observe that removing the Z
features doesn’t have too much of an effect on the performance of
the models and was in fact performing better in case of the KNN
model. This suggests that adding a depth sensor would not have
benefited the models much and an RGB camera should suffice for
our purposes.

All the above models appear to maintain a constant real time
performance above 20 FPS without any drop in accuracy on an
i7-8750H laptop. The KNN model was further integrated in an An-
droid app and achieved a real time performance of 7-9 FPS on a
Samsung A10. On a laptop with an i7-8750H, the model’s perfor-
mance improved to 25-28 FPS. This demonstrates that the posture
system explained in this paper is accessible on everyday devices
and doesn’t require specialized hardware like GPUs.
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Finally for comparison, a basic Convolutional Neural Network
was trained using the same image frames from the training set
used by the above models. The model architecture consisted of
three convolutional layers followed by 2 fully connected layers.
The model was trained for 20 epochs, and used the Adam optimizer.
The trained model was tested on the same testing set as the above
models and greatly under performed with an accuracy of just 64%
highlighting the effectiveness of our proposed models.

Table 1: Performance comparison among the different mod-
els: XGBoost, Neural Networks (NN), and K-Nearest Neigh-
bors (KNN). Acc. represents the accuracy of each model on
three different combination set of keypoints: All Keypoints,
No Limbs, and Removed-Z. PG and PB represent the pre-
cisions for classification of Good and Bad postures respec-
tively.

Keypoints XGBoost NN KNN
Acc. PG PB Acc. PG PB Acc. PG PB

All Keypoints 0.92 0.87 0.98 0.98 0.97 0.99 0.92 0.87 0.98
No Limbs 0.89 0.82 0.98 0.93 0.88 0.98 0.92 0.86 0.99
Removed-Z 0.92 0.87 0.99 0.94 0.92 0.96 0.96 0.92 0.99

5 CONCLUSION
In this paper, we present an end-to-end posture corrector system
that utilizes computer vision and machine learning techniques to
notify the user about their bad posture. The system can take in input
frames from any regular webcam or smartphone camera, extract
body keypoints (landmarks) from the images, and detect whether
the posture is good or bad. Based on experimentation with multiple
ML models and different combination sets of body keypoints, we
found out that our system works best with a Neural Network model
with all 33 body keypoints used for training. With people spending
most of their time in front of a computer, it becomes highly im-
portant to maintain proper posture to avoid any long-term health
issues. This is where our system comes into play being fast, ef-
ficient, and being able to provide real-time feedback. For future
extensions, using a similar pipeline, the system can assist people
with stretching workouts after prolonged periods of being seated
in a chair. We are also planning to add detailed feedback report that
can notify about the posture behavior of each individual and how
it can be improved. Finally, the performance of the model can be
further optimized to reach high FPS with any low-end smartphone
available in the market.
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