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ABSTRACT
Molecular biology prediction tasks suffer the limited labeled data
problem since it normally demands a series of professional ex-
periments to label the target molecule. Self-training is one of the
semi-supervised learning paradigms that utilizes both labeled and
unlabeled data. It trains a teacher model on labeled data, and uses
it to generate pseudo labels for unlabeled data. The labeled and
pseudo-labeled data are then combined to train a student model.
However, the pseudo labels generated from the teacher model are
not sufficiently accurate. Thus, we propose a robust self-training
strategy by exploring robust loss function to handle such noisy
labels, which is model and task agnostic, and can be easily em-
bedded with any prediction tasks. We have conducted molecular
biology prediction tasks to gradually evaluate the performance of
proposed robust self-training strategy. The results demonstrate
that the proposed method consistently boosts the prediction per-
formance, especially for molecular regression tasks, which have
gained a 41.5% average improvement.
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1 INTRODUCTION
Molecular biology prediction is one crucial and fundamental task
for bioinformatics areas such as drug discovery [3, 19, 30]. It in-
cludes various molecule-relevant tasks, such as molecular property
prediction and protein secondary or tertiary structure prediction.
With the development of deep learning techniques, more and more
research tackle these tasks with various deep learning models [7–
9, 12, 15, 25, 27, 29, 31]. The prediction task is well-known as a
supervised problem, which takes the labeled data as input and
employs computational models to predict the corresponding la-
bels. Many existing studies target at such problems in this manner
[4, 6, 16, 17, 24]. However, one of the ongoing problems in molecu-
lar biology is that labeled data is limited and also difficult to obtain.
It usually requires a series of professional experiments, which is
time-consuming and costly. Therefore, more paradigms have been
developed to utilize unlabeled data to help promote supervised
learning, such as semi-supervised learning [11, 21, 33]. Within this
field, a simple yet effective paradigm that exploits both unlabeled
and labeled data, called self-training, is rarely explored for molecu-
lar biology prediction tasks.

In general, self-training is established in four steps: 1) a teacher
model is trained on labeled data; 2) the trained teacher model is
employed to generate pseudo labels for unlabeled data; 3) the labeled
data and the pseudo-labeled data are combined to train a student
model; 4) the student model then becomes the teacher model to
repeat steps 2-3 until the training is converged. In this fashion, more
data is included in the training process, and the student model is
able to inherit from the teacher. This paradigm is easy to implement
and powerful to boost the training process. Self-training has been
widely used in other areas and obtained promising performance, e.g.,
Computer Vision (CV) [1, 28, 34], and Nature Language Processing
(NLP) [2, 10, 14]. One primary reason is that not only the unlabeled
data is enormous, the size of labeled data is also quite large, so are
the training models. Thus, the teacher model can sufficiently learn
from the labeled data, and achieve favorable performance. Then
the student is able to learn better. However, for most molecular
biology prediction tasks, the size of the labeled dataset is only a few
thousands, and the corresponding prediction performance is not as
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high as image classification whose accuracy may achieve 95%. Such
scenarios lead to a problem: the generated pseudo labels may not
be accurate. Such noisy labels may further bias student learning.
Therefore, how to handle the label noise is the major concern when
establishing self-training strategy in molecular biology area.

One straightforward way to encourage the model to learn from
the noisy labels, is to design a loss with regularization to lever-
age the neural network learning. Mean absolute error (MAE) and
cross-entropy (CE) loss are two commonly used loss functions in
prediction tasks, where the former is utilized in regression tasks
and the latter is used for classification. MAE has been theoretically
proved to be robust to label noise during the training, while the
CE is not [5]. Recently, robust loss functions have been studied to
tackle the noisy label problem in classification tasks by generalizing
MAE and CE, and have achieved impressive performance when
solving the image classification problem [5, 18, 26, 32].

In this paper, we propose to integrate robust loss function and
self-training to form a robust self-training framework for molecular
biology prediction tasks. Extensive experiments have been con-
ducted over molecular regression and classification tasks to grad-
ually evaluate the effectiveness of proposed robust self-training
strategy. Our contributions can be summarized as 1) we are the
first to propose a robust self-training paradigm that utilizes robust
loss to constrain the student training; 2) the proposed framework
is straightforward, and easy to fit into any prediction tasks, which
is a simple yet practical strategy to promote the molecular biology
prediction tasks; 3) extensive experiments on molecular biology
prediction tasks demonstrate that self-training can improve the
prediction performance by involving more unlabeled data, and the
robust loss can further boost the performance by leveraging the
label noise.

2 METHODS
2.1 Problem Definition
Molecular biology prediction problems can be further referred to as
regression problems or classification problems. Given a molecule
M, the label needs to be predicted is denoted as 𝑦, where 𝑦 ∈ R
for a regression problem, and 𝑦 ∈ {0, 1, . . ., 𝐾 − 1} for a K-class
classification problem. The input moleculeM, can be any format
according to the task specifics, e.g., protein sequence for protein
secondary structure prediction, or molecular graph structure for
molecular property prediction. In this study, we conduct two types
of experiments to gradually demonstrate the effectiveness of pro-
posed robust self-training strategy: molecular property regression,
and molecular property classification.

2.2 Robust Self-training Overview
Our proposed robust self-training strategy is implemented on top
of the self-training framework. Figure 1 illustrates the overall archi-
tecture, which can be viewed as two parts, train teacher and train
student. First of all, a teacher model is trained on the labeled dataset
D𝑙 , and a trained teacher model 𝑇 is obtained. After that, the stu-
dent training process begins. It starts with generating the pseudo
labels for the unlabeled dataset D𝑢 to construct a pseudo-labeled
dataset D𝑝 . Then the student model is initialized with the teacher
model, and trained on shuffled D𝑙 + D𝑝 . After training for several

epochs, we consider that as one iteration, the best model during
𝑖-𝑡ℎ iteration is selected as the best student model 𝑆𝑖 , then regard it
as the new teacher model to repeat the previous steps. This process
is repeated for 𝑖 iterations until the student model is converged.

2.3 Molecular Biology Prediction Tasks
Molecular biology prediction task can be considered as two parts
in the view of deep learning, which are molecular encoder model
and prediction model. Molecular encoder model generates a vector
that represents the input molecule, and the prediction model takes
the vector to make a prediction. The input molecule can be repre-
sented as any format, e.g., sequence or graph structure. We take
molecular property regression and classification tasks as examples
to evaluate the performance of our proposed strategy. It is notewor-
thy that any prediction tasks can be adapted with proposed robust
self-training since our method generates pseudo labels by training
teacher model from the labeled data, such as protein secondary and
tertiary structure prediction [8, 13].

In our experiments, we utilize the molecular graph structure and
employ two representative graph-based models, EGNN [23] and
GIN [29], as the backbone models to predict molecular regression
and classification properties. We give a universal definition here
for the graph-based encoder and the prediction model.

MoleculeM can be naturally represented as a graph G = (V, E),
where |V| = 𝑝 refers to the set of 𝑝 atoms and |E | = 𝑞 refers to a
set of 𝑞 bonds in the molecule. The features of atom 𝑣 is referred as
a𝑣 ∈ R𝑑𝑎 , and the features of bond (𝑣,𝑢) is referred as b𝑣𝑢 ∈ R𝑑𝑏 ,
where R𝑑𝑎 and R𝑑𝑏 represent the feature dimension of atom and
bond respectively. N(𝑣) represents the neighbor atoms of atom
𝑣 , which is identified by the connected bonds. GNN-based models
generally perform a message passing and state update protocol for
updating atom/bond features. Then, the states of all the atoms are
captured to generate a vector representation hG through a readout
mechanism.

After going through the graph encoder model, the graph repre-
sentation hG is then fed into the prediction model to make a predic-
tion of the property. The prediction model is generally a simple neu-
ral network such as multi-layer perceptron (MLP): 𝑦 = 𝑀𝐿𝑃 (hG),
where 𝑦 is the output of the prediction model, which refers to
the predicted probability for the classification tasks or the actual
predicted property value for the regression tasks.

Next, each backbone model is introduced along with the em-
ployed robust loss respectively.

2.3.1 Regression task. As we have mentioned earlier, MAE has
been proved to be robust for label noise. Therefore, we first con-
duct experiments on molecular regression tasks with MAE as the
loss function. EGNN [23] is one most recent work to address such
problems. Other than the commonly used message passing process
based on the graph structure and features, EGNN further explores
the geometric information by considering the atom coordinates
x𝑑 =

{
x𝑑0 , . . . , x

𝑑
𝑝−1

}
. The message update for layer 𝑑 is defined as:

m𝑑𝑣𝑢 = 𝜙𝑒

(
h𝑑𝑣 , h

𝑑
𝑢 ,

x𝑑𝑣 − x𝑑𝑢
2 , 𝑒𝑣𝑢 ) , (1)

x𝑑+1𝑣 = x𝑑𝑣 +𝐶
∑︁
𝑢≠𝑣

(
x𝑑𝑣 − x𝑑𝑢

)
𝜙𝑥

(
m𝑑𝑣𝑢

)
, (2)
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Figure 1: A overview illustration of the robust self-training architecture. More details are described in Section 2.2.

h𝑑+1N(𝑣) = AGGREGATE
({
m𝑑
𝑣𝑢 ,∀𝑢 ∈ N (𝑣)

})
, (3)

where 𝑥𝑑𝑣 and 𝑥𝑑𝑢 are the coordinates of atom 𝑣 and its neighbor
atom 𝑢 at 𝑑-𝑡ℎ step, 𝑣𝑢 represents the bond between them, 𝑒𝑣𝑢
denotes the bond features, 𝜙𝑒 and 𝜙𝑥 are two output operations,
and 𝐶 equals 1/(𝑝 − 1).

MAE is used as the robust loss function to constrain the network
training with regards to noisy labels, which is defined as:

L𝑀𝐴𝐸 =
1
𝑀

𝑀∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | , (4)

where𝑀 is the size of the dataset.

2.3.2 Classification task. Classification tasks are dominating for
molecular biology prediction problems as well. We then conduct
experiments over molecular property classification tasks to eval-
uate the effectiveness of the self-training paradigm. However, the
commonly used cross-entropy (CE) loss is not robust, so we em-
ploy the generalized cross-entropy (GCE) loss [32] to boost the
self-training. The backbone model utilized for this task is GIN [29].
GIN is theoretically proved as one of the most powerful GNN mod-
els. It utilizes multi-layer perceptron (MLP) for state update, and
employs a concatenate operation over all passing steps during the
readout phase. The updated rule can be summarized as:

h𝑑+1𝑣 = MLP𝑑+1 ©«
(
1 + 𝜖𝑑+1

)
· h𝑑𝑣 +

∑︁
𝑢∈N(𝑣)

h𝑑𝑢
ª®¬ , (5)

hG = CONCAT
(
READOUT

({
h𝑑+1𝑣 | 𝑣 ∈ V

}))
, (6)

where 𝜖 is a fixed scalar or a learnable parameter.
GCE loss is a generalized version of CE and MAE. The CE loss is

defined by:

L𝐶𝐸 = −
𝐾∑︁
𝑘=1

𝑦𝑘 log𝑦𝑘 , (7)

for a K-class classification problem (K=2 for binary classification),
where 𝑦𝑘 is the one-hot encoding label, and 𝑦𝑘 denotes the proba-
bility output from the prediction network. Allow 𝑓𝑘 (𝑥) = 𝑦𝑘 , GCE
loss is designed by:

L𝐺𝐶𝐸 =
(1 − 𝑓𝑘 (𝑥)𝑞)

𝑞
, where 𝑞 ∈ (0, 1] . (8)

GCE loss is reduced to CE loss and MAE loss when 𝑞 → 0 and
𝑞 = 1, respectively. Detailed proofs can be found in [32].

3 EXPERIMENTS
Extensive experiments are conducted gradually to evaluate the
performance of proposed robust self-training strategy. Since MAE
is theoretically proved to be robust to label noise, we first implement
self-training on molecular regression task, and utilize MAE loss as
the robust loss function to demonstrate the superiority of proposed
method. Then we explore GCE loss on the molecular classification
task to further confirm the effectiveness of integrating robust loss
function with self-training.

3.1 Datasets Description and Setup
QM9 [20] is a standard benchmark for molecular property regres-
sion problem. It is a subset of GDB-17 database [22], which contains
134k molecules. It comprehensively provides 12 quantum chemi-
cal properties for each molecule, including geometric, energetic,
electronic, thermodynamic, etc. HIV is introduced by the Drug
Therapeutics Program (DTP) AIDS Antiviral Screen. It contains
the test result of 41,127 molecule compounds with the ability for
inhibiting HIV replication. The widely used version provided by
MoleculeNet contains inactive labels and activa labels, which makes
it a binary classification task [27].

For all tasks, we randomly select 50% of the data as the unlabeled
dataset, and the rest is used as the the labeled dataset with a 3:1:1
training/validation/test ratio. We do not use an external unlabeled
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Table 1: Mean Absolute Error (MAE) for each molecular property regression benchmark on QM9 dataset. Lower is better,
best score is marked in bold, and green color indicates our proposed method. The last two rows illustrate the improvement
percentage by our method compared with others. Avg demonstrates the average score over the row, which denotes the MAE
average for all 12 tasks for the first three rows, and the average improvement for the last two rows. Details about each property
can be found in [20].

Task 𝛼 ΔY YHOMO YLUMO ` 𝐶a 𝐺 𝐻 𝑅2 𝑈 𝑈0 ZPVE Avg

Unit bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

EGNN-labeled 0.118 0.070 0.044 0.041 0.057 0.044 0.020 0.021 0.151 0.020 0.019 2.111 0.226
EGNN-self-training (Ours) 0.067 0.048 0.028 0.025 0.028 0.031 0.010 0.010 0.083 0.011 0.010 1.521 0.156
EGNN-all 0.071 0.048 0.029 0.025 0.029 0.031 0.012 0.012 0.106 0.012 0.011 1.55 0.161

Ours v.s. EGNN-labeled ↑ +43.2% +31.6% +36.1% +38.4% +50.6% +30.0% +50.7% +52.8% +45.2% +43.6% +49.2% +28.0% +41.5%
Ours v.s. EGNN-all ↑ +5.6% 0.00% +3.5% +0.00% +3.5% +0.00% +16.7% +16.7% +21.7% +8.3% +9.1% +1.9% +7.2%
Note that for molecular regression task, the commonly used MAE is provably robust, so "EGNN-self-training" represents our work.
The scores of EGNN-all are obtained from the original EGNN paper [23].

dataset here since most molecules may not express target property
at all, which may lead to a biased comparison.

3.2 Experimental Details
3.2.1 Baselines. For all the experiments, we consider training solely
on the labeled datasets as the fundamental baselines, which is de-
noted as "-labeled". Then, we establish our vanilla implementation
by running experiments with self-training paradigm on both la-
beled dataset and unlabeled dataset, denoted as "-self-training". Last,
we integrate robust loss with our vanilla self-training benchmark
to demonstrate the superiority of our robust self-training, denoted
as "-robust". Since the unlabeled dataset is formed by randomly
selecting 50% from the original labeled dataset, we also compare
the performance when using the original backbone model without
self-training on all the data with labels, denoted as "-all".

3.2.2 Configurations. We follow the original implementation and
settings of the backbone models, and implement robust self-training
on top of them. All the hyper-parameters of the backbone models
remain the same to ensure a fair comparison. For the settings of
robust self-training, we perform three iterations for the student
training, and tune the hyper-parameter 𝑞 when employing GCE
loss. For molecular classification task, we run the experiments three
times to alleviate the randomness since HIV dataset is much smaller
than other datasets, leading to relatively unstable performance. We
take the average and standard deviation of the evaluation scores
as the final results. For molecular regression task, we follow the
original configurations and evaluations to run the experiments
one time. The results do not vary much since the training data is
sufficiently large and the converged stage is stable.

3.2.3 Training strategy. We follow the same procedure for all three
tasks. First, we train a teacher model on the labeled data, and use it
to generate pseudo labels for the unlabeled dataset. Next, for the
vanilla self-training, we train the student model which takes the
teacher model as the initialization on the combined labeled and
pseudo-labeled dataset. Note that the pseudo-labeled dataset is only
merged into the training dataset along with the labeled training
dataset. The validation and test datasets remain the same from the
teacher model training. Furthermore, we choose the best student
model in the current iteration as the new teacher model to generate

a new pseudo-labeled dataset and initialize the student model for
the next iteration. We run the student training for three iterations,
and take the best validation model to evaluate the test dataset
performance. For robust self-training, the procedure is the same as
vanilla self-training, except robust loss function is employed.

3.3 Experimental Results
Our first experiment is to employ the self-training paradigm directly
on molecular regression tasks, since MAE is theoretically robust to
noisy labels. The comparison results for each property are shown
in Table 1. As we can observe, the performance of the self-training
strategy outperforms EGNN-label consistently by a 41.5% average
improvement. Moreover, the performance is competitive against the
supervised training on the all-labeled dataset. Our implementation
achieves the best performance on 9/12 tasks compared with the
original EGNN-all on all 134k labeled data, which gains the average
MAE boost by 7.2%. The experiments on regression tasks with MAE
sufficiently demonstrate that robust loss function is a perfect fit for
self-training strategy by dealing with the generated pseudo labels.

Table 2: ROC-AUC score for molecular property classifica-
tion benchmark on HIV dataset. Higher is better, best score
is marked in bold, and green color indicates our proposed
method.

GIN-labeled GIN-self-training GIN-robust GIN-all

HIV 0.786±0.008 0.798±0.005 0.822±0.005 0.820±0.015

We then conduct experiments on the HIV dataset to evaluate how
robust self-training performs on classification task. As shown in
Table 2, the improvement of directly implementing self-training is
limited, which is reasonable since CE loss is not theoretically robust
[5]. Therefore, we explore robust loss function GCE and integrate it
with self-training to form the robust self-training paradigm, which
further boosting the ROC-AUC to 0.822. Moreover, our method is
competitive with the original GIN implementation on the all-labeled
dataset with a 0.002 improvement. Note that in our self-training
experiments, 50% of the dataset is treated as unlabeled, while GIN-
all is trained on 100% labeled dataset.



Robust Self-training Strategy for Various Molecular Biology Prediction Tasks BCB ’22, August 7–10, 2022, Northbrook, IL, USA

Extensive experiments empirically demonstrate that our pro-
posed robust self-training strategy is capable of efficiently explor-
ing both labeled and unlabeled data as well as handling the noisy
pseudo labels. Moreover, we roughly conduct experiments on pro-
tein secondary structure prediction task by adopting GCE loss, and
has achieved promising results, which further proves the effective-
ness of our proposed strategy. Next, we will explore more details
regarding the robust loss type with different prediction tasks.

4 CONCLUSION
In this study, we propose a robust self-training paradigm for various
molecular biology prediction tasks by exploring robust loss function
to constrain the self-training process. We first train a teacher model
on labeled dataset, then use the teacher model to generate pseudo
labels for the unlabeled dataset. Next, the student model is trained
on the combination of the labeled dataset and the pseudo-labeled
dataset. This process is iterated by regarding the student as the
new teacher and re-generating the pseudo-labeled dataset until the
training is eventually converged. Since the pseudo labels are not the
ground-truth labels whichmeans noises exist, we then utilize robust
loss function to restrain the student training. Extensive experiments
have demonstrated that self-training accompanied with robust loss
can boost the prediction performance by taking advantage of both
labeled and unlabeled data. Moreover, our proposed robust self-
training is model and task agnostic, which can be easily inserted
into anymolecular biology prediction tasks, and benefits the general
computational molecular biology society.
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