
Harnessing Large Language Models for Simulink Toolchain
Testing and Developing Diverse Open-Source Corpora of

Simulink Models for Metric and Evolution Analysis

Sohil Lal Shrestha
Computer Science & Eng. Dep.
University of Texas at Arlington

Arlington, Texas, USA

ABSTRACT

MATLAB/Simulink is a de-facto standard tool in several safety-

critical industries such as automotive, aerospace, healthcare, and

industrial automation for system modeling and analysis, compiling

models to code, and deploying code to embedded hardware. On

one hand, testing cyber-physical system (CPS) development tools

such as MathWorks’ Simulink is important as a bug in the toolchain

may propagate to the artifacts they produce. On the other hand, it

is equally important to understand modeling practices and model

evolution to support engineers and scientists as they are widely

used in design, simulation, and verification of CPS models. Existing

work in this area is limited by twomain factors, i.e., (1) inefficiencies

of state-of-the-art testing schemes in finding critical tool-chain bugs

and (2) the lack of a reusable corpus of public Simulink models. In

my thesis, I propose to (1) curate a large reusable corpus of Simulink

models to help understand modeling practices and model evolution

and (2) leverage such a corpus with deep-learning based language

models to test the toolchain.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Model-driven software engineering; Open source

model; •Computingmethodologies→Transfer learning; • In-

formation systems→ Language models; • Computer systems

organization→ Embedded and cyber-physical systems.

KEYWORDS

Cyber-physical system development, Simulink, tool chain bugs,

deep learning, programming language modeling, GPT-2, mining

software repositories, open-source, model evolution

ACM Reference Format:

Sohil Lal Shrestha. 2023. Harnessing Large Language Models for Simulink

Toolchain Testing andDevelopingDiverse Open-Source Corpora of Simulink

Models for Metric and Evolution Analysis. In Proceedings of the 32nd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3597926.3605233

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3605233

1 INTRODUCTION AND MOTIVATION

MATLAB/Simulink is a graphical programming environment for

modeling, simulating, and analyzing multi-domain dynamical sys-

tems and is a de-facto standard for model-based design. Engineers

create Simulink models and compile them to embedded code, of-

ten to control safety-critical cyber-physical systems in automotive,

aerospace, and healthcare applications. Despite Simulink’s impor-

tance, there are few large-scale empirical research tackling software

engineering problems such as finding bugs in the tool chain and

understanding modeling practices and model evolution to better

aid development of CPS model using the toolchain.

Recent years have seen an increasing interest in automated val-

idation of tool chains such as Simulink. Although, in software

engineering, there are a multitude of ways to find bugs, approaches

such as formal verification that guarantees a bug-free toolchain is

not applicable to Simulink due to its large code base and lack of

complete formal specification, which can be partly attributed to its

commercial nature. An alternative is fuzzing [3], which is randomly

generating valid or semi-valid inputs that are used to stress test

compilers. State-of-the-art Simulink-testing tool SLforge combined

randomized fuzzing with differential testing and found 8 new bugs

in Simulink [4]. To generate random semi-valid inputs (or Simulink

models), SLforge’s team parsed semi-formal specifications from

Simulink’s web page automatically and rigorously incorporated

them in SLforge’s random model generator.

Although SLforge has demonstrated its effectiveness, it exhibits a

dependency on well-documented specifications for updating its ran-

dom model generator. Furthermore, the engineering effort required

to maintain the tool does not scale in response to specification

changes or the addition of new features. Furthermore, it is highly

desirable to maintain a reasonable level of fidelity with real-world

Simulink models when generating models, as the discovery of bugs

through the use of such models takes precedence in terms of prior-

ity for resolution. Consequently, an alternative approach is desired

that effectively overcomes the limitations of SLforge.

In the realm of model-based development research, particularly

in the context of MATLAB/Simulink, close collaborations between

academia and industry have played a pivotal role. These collabora-

tions often involve the utilization of proprietary models that are

not publicly accessible [1]. Moreover, there is a consensus among

researchers that publicly available Simulink models developed by

third parties are generally limited in size, inadequate in represent-

ing real-world models, and difficult to obtain [5, 6, 9–11]. Recent

investigations have begun to focus on curating extensive collections

of Simulink-based projects sourced from open-source repositories,

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1541

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3605233
https://doi.org/10.1145/3597926.3605233
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3605233&domain=pdf&date_stamp=2023-07-13


ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Sohil Lal Shrestha

enabling valuable insights to be derived from their analysis. For

example, Chowdhury et al. [8] curated a corpus of 1,000 Simulink

models and conducted a study on the modeling practices and com-

plexity exhibited by open-source Simulink models. Subsequently,

Boll et al. [2] independently replicated Chowdhury’s study by ac-

quiring the latest version of Chowdhury’s Simulink projects, and

additionally examined the project’s context, size, organization, and

evolution to evaluate its suitability for empirical research.

Despite pioneering the use of larger Simulink-based project

collections and validating their potential similarity to industrial

models, previous attempts at curation were limited by certain fac-

tors. These collections were comprised of URLs leading to non-

permanent resources, and the models contained therein had am-

biguous or unclear licensing information. Additionally, the curation

process relied heavily on manual efforts, leading to inconsistencies

such as empty projects, duplicate projects, and incomplete meta-

data. Furthermore, the resulting collections were relatively modest

in size, and their curation process may have introduced unintended

human errors and biases.

2 MY RELEVANT PUBLICATIONS:
DEEPFUZZSL, SLGPT, AND SLNET

Besides contributing to SLEMI, the equivalence-modulo-input (EMI)

based Simulink random model generator [6, 7, 16], my main re-

search contributions to date have made significant progress to-

wards creating a large corpus of open-source Simulink models

and leveraging a corpus and deep-learning approaches for generat-

ing random Simulink models. First, on the deep-learning side, to

side-step the age-old problem of missing complete formal specifica-

tions of Simulink tool chain and address the limitations of SLforge,

that requires significant research and engineering investment, we

designed DeepFuzzSL—a novel scheme to infer the Simulink’s lan-

guage validity rules via deep learning based language models called

DeepFuzzSL [12, 13]. DeepFuzzSL learns a Long Short Term Mem-

ory (LSTM) based language model from existing corpus of Simulink

models. Using DeepFuzzSL, we are able to consistently generate

over 90% valid Simulink models (on par with the state of the art

SLforge) and found 2 bugs, one of which is missed by SLforge.

Figure 1: SLGPT obtains Simulink models from a random

generator and open-source repositories, simplifies them, and

uses them to adapt GPT-2 for finding Simulink crashes.

While deep learning techniques, such as DeepFuzzSL, promise

to learn such language specifications from sample models, it needs

a large number of training data to work well. As shown in Figure-1,

SLGPT [15] addresses this problem by using transfer learning to

leverage the powerful Generative Pre-trained Transformer 2 (GPT-

2) model, which has been pre-trained on a large set of training data.

SLGPT adapts GPT-2 to Simulink with both randomly generated

models and models mined from open-source repositories. SLGPT

produced Simulink models that are both more similar to open-

source models than its closest competitor, DeepFuzzSL, and found

a super-set of the Simulink toolchain bugs found by DeepFuzzSL.

Figure 2: SLNET-Miner collects data, from GitHub and MAT-

LAB Central, removes duplicated projects or those with in-

appropriate license. SLNET-Metrics extracts model metrics.

Second, on the corpus construction side, existing work using

deep learning techniques to generate random Simulink models that

test Simulink toolchain is limited by the size and quality of train-

ing data. Closely related, deepening our understanding of Simulink

models andmodeling practices is important as it is crucial to develop

tools to better support engineers that use Simulink toolchain for

system design. To address the dataset problem, we automate corpus

construction and analysis, including data cleaning, metric compu-

tation, and packaging–and built SLNET, the largest collection of

Simulink models that is fully self-contained and redistributable [14].

SLNET is at least 7 times larger than previous corpora and its open-

source data collection tool allows to scale the corpus in the future.

Such large corpus of third-party Simulink models may make it

easier for engineers and researchers to produce, reproduce, and val-

idate empirical results about Simulink models, modeling practices,

and tools that operate on such models.

3 RESEARCH GAP(S) AND QUESTIONS

3.1 Understanding Simulink Modeling Practices

Despite Simulink’s importance, the research community’s insights

on Simulink models and modeling practices remains shallow. The

few existing empirical studies of Simulink models have been limited

to proprietary models or a small number of public models. Earlier

studies on large model corpora suffer from inconsistencies hin-

dering reproduction and generalization of results . To investigate

1542



Harnessing Language Models and Large Corpora for Simulink Tool chain testing and Analysis ... ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

inconsistencies within earlier studies on Simulink model corpora

and modeling practices, we plan to reproduce prior studies, which

will help us highlight key issues that future research can learn

and benefit from. Then, using a new large-scale corpus SLNET, we

will replicate prior studies that used smaller model collections and

provide insights on Simulink modeling practices. We focus on the

following research questions:

RQ1 Does SLNET have similar metric distributions as the ear-

lier corpora?

RQ2 How do the empirical results obtained in earlier studies

on smaller corpora carry over to the larger SLNET corpus?

RQ3 Are SLNET Simulink models configured to be compiled

to C/C++ code for deployment on embedded devices?

3.2 Building a Corpus of Open-source Simulink
Projects for Evolution Study

Having readily available corpora is crucial for performing replica-

tion, reproduction, extension, and verification studies of existing

research tools and techniques. SLNET focused on curating a diverse

set of Simulink models from different sources and domains but to

limit the corpus’s size, SLNET only included the latest snapshot of

the models or projects. While its metadata links to each project’s

full revision history, not all projects are still available from the

original sources. To support studies relating to model evolution,

having a large collection of projects with full revision history is

essential. To demonstrate the value of such a corpus, we explore

if an evolution study conducted using closed-source project can

be done using open-source software. Specifically, we focus on the

following research question.

RQ4 Do model changes documented for a single closed-source

industrial project generalize to open-source projects?

3.3 Facilitating Simulink Model Search

Having a search engine to find a code snippet or a project has aided

software engineering community tremendously. However, existing

search engines lack necessary support for meeting the specific de-

mands of engineers searching for Simulink models or projects. To

address the issue, we aim to leverage the existing infrastructure

of SLNET, that contains automated mining and metric collection

tools, to develop a web application that facilitates advanced search

capabilities for Simulink models and projects. To evaluate the effec-

tiveness and efficiency of the proposed web application, we focus

on the following research questions.

RQ5 What are the specific search requirements and challenges

faced by researchers when searching for Simulink models or

projects?

RQ6 To what extent does the web application enhance the ef-

ficiency of Simulink model/project search in terms of search

time and effort?

4 PROPOSED METHODOLOGY

4.1 Understanding Simulink Modeling Practices

Figure-3 presents the application of the ACM’s guidelines on repro-

ducibility (“different team, same experimental setup”) and replica-

bility (“different team, different experimental setup”) to empirical

Modela
@ versionb

Metric toole
@ versionf

Metricc w/ 
definitiond

Simulink

@ versionh

Toolboxg

@ versionh

Result

ra,b,c,d,e,f,g,h,i

Research 

teami

Figure 3: Overview of parameters considered in reproducing

and replicating earlier results on Simulink models.

studies conducted on Simulink models. The figure provides an

overview of the pertinent variables involved in our study. To en-

sure the integrity and validity of our research, our methodology

consists of two main stages.

In first stage, we aim to reproduce the results of prior studies by

employing the original tools and artifacts. We will establish commu-

nication with the original authors to address any uncertainties or

inconsistencies, ensuring that our reproduction accurately reflects

the findings. The primary motivation behind this reproduction ef-

fort is to address concerns regarding unintended human errors and

bias, for which empirical evidence has been insufficient.

In the second stage, we will systematically replicate the results

obtained from earlier studies using SLNET. To achieve this, we

will develop and/or extend the metric collection and analysis tool.

This will enable us to obtain repeatable results and facilitate a fair

comparison with the findings of previous studies. We will conduct

sanity tests on the tools we develop to ensure their consistency

with earlier research. Furthermore, we will engage in clarifying

discussions with the original researchers to ensure that the tools

align with the methodologies employed in the previous studies.

By following this approach, we aim to contribute to the robust-

ness and credibility of empirical research on Simulink models. The

systematic reproduction and replication process will help address

any inconsistencies, validate prior findings, and provide a founda-

tion for future investigations in this field.

4.2 Building a Corpus of Open-source Simulink
Projects for Evolution Study

During the construction of SLNET, our initial approach involved

a shallow search on repository hosting sites such as GitHub and

included only projects’ snapshots to limit the size of SLNET. As

a result, SLNET did not support evolution studies since it lacked

projects with a revision history. To curate projects suitable for evo-

lution study, we extended SLNET’s collection tool to enable the

download of the entire Git repository while satisfying GitHub’s API

limits. We performed an extensive search by downloading reposi-

tories (a) that use MATLAB programming language or (b) whose

metadata such as the repository name, description, or README file

contain the keyword "Simulink," aligning with SLNET’s approach.

We then filtered the search results by only keeping projects that

(1) have Simulink model file that Simulink can open and (2) have a

license that allows redistribution.

Our collection process resulted in the acquisition of more than

13,500 projects, which we have named EvoSL+. We systematically

1543



ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Sohil Lal Shrestha

EvoSL

EvoSL-Miner

3

EvoSL-Cleaner

1,2,3

Forked 

projects
SL Root 
projects

1

2,3

2
2,3

Simulink

4,6

4,5,6,7

5

5,6,7

Commit meta-
data, issues, PR, 

comments

Root projects
4,5,6,7

Project summaries

5

E
v
o

S
L

+

Figure 4: Overview of EvoSL collection and cleaning steps:

EvoSL-Miner downloads EvoSL+ (Git projects and metadata),

from which EvoSL-Cleaner removes certain Git repositories.

extracted issue tracking metadata and processed the commit meta-

data of each project to facilitate convenient access and sampling. To

ensure data integrity, we removed any duplicate projects and those

that exhibited minimal changes in Simulink model files. As a result,

we established EvoSL, a curated distribution comprising over 900

projects with 140K commits. This corpus is significant as it is the

first extensive collection of open-source models that encompasses

both model and project changes and permits redistribution. Lever-

aging the EvoSL corpus, our research aims to investigate whether

observed model evolution changes in a closed-source industrial

project are applicable to open-source projects in general.

4.3 Facilitating Simulink Model Search

To gain an understanding of the Simulink model attributes that

are of interest to the research community, we will initiate a survey

involving researchers and industry experts. By analyzing the survey

results, our objective is to identify advanced fine-grained filtering

attributes. These attributes will enable users to efficiently sample

and locate models that align with their specific requirements.

Figure 5: Overview of Simulink model search engine

Figure-5 illustrates the proposed architecture of the web search

engine. Leveraging the existing infrastructure of SLNET and EvoSL,

we will periodically mine open-source repository hosting sites to

gather project, model and commit metrics. These metrics will be

stored in a MongoDB database. To enhance the functionality of the

tools, we will leverage insights obtained from the survey results to

incorporate additional features both in metric collection tools and

search user interface.

Users will interact with the web application by utilizing the

search interface depicted in Figure 6. Through this interface, they

Figure 6: User interface of web app displaying search results

can query the search engine to retrieve relevant information. The

development of the web-based search tool will follow an iterative

feedback loop, allowing us to continuously incorporate user sug-

gestions, as well as address any reported bugs or issues.

5 CONCLUSIONS

Model based research using Simulink and its scientific progress

have been severely limited due to a lack of access to readily avail-

able engineered Simulink models. This has lead many research

groups to either construct their own evaluation subjects (which

raises questions about how these results generalize) or they re-

lied on proprietary models from industry partners (which raises

questions about how reproducible such results are). Our work on

understanding modeling practices and replicating results will help

support the relevance and presence of high quality Simulink mod-

els. Our ultimate goal of our corpus collections is to empower the

community to perform new and more powerful empirical studies.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation (NSF) under Grant No. 1911017 and a gift from

MathWorks.

1544



Harnessing Language Models and Large Corpora for Simulink Tool chain testing and Analysis ... ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

REFERENCES
[1] Vincent Bertram, Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael

von Wenckstern. 2017. Component and Connector Views in Practice: An Experi-
ence Report. In MODELS. IEEE Computer Society, 167–177.

[2] Alexander Boll, Florian Brokhausen, Tiago Amorim, Timo Kehrer, and Andreas
Vogelsang. 2021. Characteristics, potentials, and limitations of open-source
Simulink projects for empirical research. SoSyM (2021), 1–20. https://doi.org/10.
1007/s10270-021-00883-0

[3] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-KeenWong, Xiaoli Z. Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013. 197–208. https://doi.org/10.1145/2491956.2462173

[4] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In Proc.
40th ACM/IEEE International Conference on Software Engineering (ICSE). ACM.

[5] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in a
commercial cyber-physical system development tool chain with SLforge. In ICSE.
ACM, 981–992. https://doi.org/10.1145/3180155.3180231

[6] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Equivalence modulo input (EMI) based mutation of
CPS models for finding compiler bugs in Simulink. In ICSE. ACM, 335–346.
https://doi.org/10.1145/3377811.3380381

[7] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph
Csallner. 2020. SLEMI: Finding Simulink Compiler Bugs through Equivalence
Modulo Input (EMI). In Proc. 42nd International Conference on Software Engi-
neering (ICSE), Companion Volume. ACM, 1–4. https://doi.org/10.1145/3377812.
3382147

[8] Shafiul AzamChowdhury, Lina Sera Varghese, SoumikMohian, Taylor T. Johnson,
and Christoph Csallner. 2018. A curated corpus of Simulink models for model-
based empirical studies. In SEsCPS. ACM, 45–48. https://doi.org/10.1145/3196478.
3196484

[9] Zhenying Jiang, Xiao Wu, Zeqian Dong, and Ming Mu. 2017. Optimal Test
Case Generation for Simulink Models Using Slicing. In QRS-C. 363–369. https:
//doi.org/10.1109/QRS-C.2017.67

[10] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and Thomas Bruckmann. 2015.
Effective test suites for mixed discrete-continuous stateflow controllers. In
ESEC/FSE. ACM, 84–95. https://doi.org/10.1145/2786805.2786818

[11] A. Chakrapani Rao, A. Raouf, Gunwant Dhadyalla, and V. Pasupuleti. 2017. Mu-
tation Testing Based Evaluation of Formal Verification Tools. In DSA. IEEE, 1–7.
https://doi.org/10.1109/DSA.2017.10

[12] Sohil Lal Shrestha. 2020. Automatic generation of Simulink models to find bugs in
a cyber-physical system tool chain using deep learning. In Proc. 42nd International
Conference on Software Engineering (ICSE), Companion Volume. ACM, 110–112.
https://doi.org/10.1145/3377812.3382163

[13] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2020.
DeepFuzzSL: Generating models with deep learning to find bugs in the Simulink
toolchain. In DeepTest 2020. ACM.

[14] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner. 2022.
SLNET: A Redistributable Corpus of 3rd-party SimulinkModels. In 19th IEEE/ACM
International Conference on Mining Software Repositories, MSR 2022, Pittsburgh,
PA, USA, May 23-24, 2022. ACM, 1–5. https://doi.org/10.1145/3524842.3528001

[15] Sohil Lal Shrestha and Christoph Csallner. 2021. SLGPT: Using Transfer Learn-
ing to Directly Generate Simulink Model Files and Find Bugs in the Simulink
Toolchain. In EASE 2021: Evaluation and Assessment in Software Engineering,
Trondheim, Norway, June 21-24, 2021. ACM, 260–265. https://doi.org/10.1145/
3463274.3463806

[16] Sohil Lal Shrestha, Saroj Panda, and Christoph Csallner. 2018. Complementing
Machine Learning Classifiers via Dynamic Symbolic Execution: "Human vs. Bot
Generated" Tweets. In 6th IEEE/ACM InternationalWorkshop on Realizing Artificial
Intelligence Synergies in Software Engineering, RAISE@ICSE 2018, Gothenburg,
Sweden, May 27, 2018, Walter F. Tichy and Leandro L. Minku (Eds.). ACM, 15–20.
https://doi.org/10.1145/3194104.3194111

Received 2023-05-24; accepted 2023-06-07

1545

https://doi.org/10.1007/s10270-021-00883-0
https://doi.org/10.1007/s10270-021-00883-0
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/3180155.3180231
https://doi.org/10.1145/3377811.3380381
https://doi.org/10.1145/3377812.3382147
https://doi.org/10.1145/3377812.3382147
https://doi.org/10.1145/3196478.3196484
https://doi.org/10.1145/3196478.3196484
https://doi.org/10.1109/QRS-C.2017.67
https://doi.org/10.1109/QRS-C.2017.67
https://doi.org/10.1145/2786805.2786818
https://doi.org/10.1109/DSA.2017.10
https://doi.org/10.1145/3377812.3382163
https://doi.org/10.1145/3524842.3528001
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3194104.3194111

	Abstract
	1 Introduction and Motivation
	2 My Relevant Publications: DeepFuzzSL, SLGPT, And SLNET
	3 Research Gap(s) and Questions 
	3.1 Understanding Simulink Modeling Practices
	3.2 Building a Corpus of Open-source Simulink Projects for Evolution Study
	3.3 Facilitating Simulink Model Search

	4 Proposed Methodology
	4.1 Understanding Simulink Modeling Practices
	4.2 Building a Corpus of Open-source Simulink Projects for Evolution Study
	4.3 Facilitating Simulink Model Search

	5 Conclusions
	Acknowledgments
	References

