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ABSTRACT

A DEEP LEARNING BASED PIPELINE FOR METASTATIC BREAST

CANCER CLASSIFICATION FROM WHOLE SLIDE IMAGES (WSI)

ARJUN PUNABHAI VEKARIYA, M.S.

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Junzhou Huang

Cancer, the second deadliest diseases on the planet, is a generalized term for

the class of diseases caused by the proliferation of abnormal cells in a human body.

These abnormal cells are caused due to unwanted growth of new cells and improper

recycling of old or damaged cells. Diagnosis methods available today in medical

industry are very time-consuming as pathologist has to manually analyze sentinel

lymph nodes, which requires scanning entire whole slide image for detecting metastasis

region. Efforts have made in developing faster computer-aided methods for analyzing

whole slide images but historical approaches have focused primarily on low-level image

analysis tasks (e.g., color normalization, nuclear segmentation, and feature extraction)

so they are not generalized, thus not useful for practical use in clinical practices.

In this thesis, a Deep Learning based classification pipeline for detection of

cancer metastases from histological images is proposed. The pipeline consists of five

stages: 1. Region of Interest (ROI) detection with Image processing. 2. Tiling ROI.

3. Deep Convolutional Neural Network (ConvNet) for tile-based classification. 4.

Building tumor probability heat-maps. 5. Post-processing of heat-maps for slide-
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based classification. GoogLeNet, a deep 27 layer ConvNet is used to distinguish pos-

itive tumor areas from negative ones. The key challenge of identifying hard negative

areas (areas surrounding tumor region) is tackled with ensemble learning approach

using two Deep ConvNet models. Using dataset of the Camelyon’16 grand challenge,

the proposed pipeline achieves an area under the receiver operating curve (ROC) of

92.57%, which beats the winning method of Camelyon’16 grand challenge, developed

together by Harvard & MIT research laboratories. This results reflect the poten-

tial of using deep learning to produce significant improvements in the accuracy of

pathological diagnoses.
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CHAPTER 1

INTRODUCTION

1.1 Cancer

Cancer 1 is a non-communicable group of diseases that involves the abnormal

growth of cells in a manner that it takes over normal cells and that the body cannot

control it. It becomes very hard for the human body to function normally when this

happens. Cancer can be treated very effectively, also, it is known that people lead

much better and richer lives after cancer treatment. Cancer can be of various types,

depending on the body part it has affected. Cancerous cells can be found in the colon,

the breast, the lungs, and also in the blood of a patient. All cancers are similar -

they usually differ in the way they grow and spread. To explain cancer, we need to

understand what cells are and how they function. The cell is the basic structural,

functional and biological unit of all living organisms. Each cell has a task to perform.

There are cases in which a cell is damaged, or it may get worn out. In this case,

the cell is killed and is replaced with a new healthy cell. One of the most important

attributes of a cell is the natural manner of it’s reproduction. A healthy cell divides in

an orderly manner, and is killed when they are worn out or damaged. Once these cells

are killed, the new cells come in and take their place. Cancer is when the growth of

these damaged cells cannot be controlled. During a cancer, these damaged cells keep

growing and making new cells, effectively crowding out healthy cells, which causes

a lot of problems in the organ the cancerous cell originated from. Cancer cells can

also travel to other parts of the body, like for instance, cancer cells can travel from

1http://www.cancer.org/cancer/
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Figure 1.1: Cancer cells reproduction

the lung to the bones and grow there. This spreading of cancer cells is known as

metastasis. Even though cancer can spread to other organs, it is classified based on

the organ of origin. Hence, even when lung cancer spreads to the bones, it is still

called lung cancer. To a doctor, cancerous bone cells look just like cancerous lung

cells, but cancerous bone cells are classified as bone cancer only if it originated in the

bone. Some cancers grow and spread rapidly, whereas others grow slowly. Different

cancers respond to treatment in different manners. Cancer is mostly treated with

surgery, but some types of cancer are treated with a treatment method known as

chemotherapy. To get the best results in treatment, two or more treatment methods

are generally used. When a patient is diagnosed with cancer, the doctor will want

to find out what kind of cancer the patient is suffering with, in order to choose an

effective treatment plan. This is to ensure that the right treatment is chosen to help

treat the patient’s cancer. Most cancers are known to form a lump called a tumor or

a growth, but not all lumps are cancerous. A cancerous lump is a malignant lump,
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whereas a non cancerous lump is a benign lump. But not all cancers form lumps.

Cancers like leukemia don’t form tumors. They grow either in blood cells, or in other

cells of the body. To help choose the patient’s treatment plan, the doctor also needs

to have information about how far the cancer has spread from it’s origin. This is

known as the cancer stage. The farther the cancer has travelled from it’s origin, the

higher the stage the cancer of the patient is, which could be either in stage 1,2,3 or

4. The knowledge of this information helps the doctor decide which treatment to

choose. A lower stage cancer, like stage 1 or 2, means that the cancer has not spread

very much, whereas a higher stage like stage 3 or 4 means that it has spread much

more. Stage 4 is the highest stage of cancer that can be diagnosed in a patient.

1.2 Breast cancer

Breast 2 cancer is a cancer that develops from breast tissue. It is said to be the

second leading cause of death among women. It is also estimated that over 40,000

women diagnosed with breast cancer die every year in the United States [46]. The

cancer starts in the cells of the lobules, which are the milk producing glands, or

the ducts, the passages that drain milk from the lobules to the nipple. This group

of cancer cells can then invade surrounding tissues or spread (metastasize) to other

areas of the body, by entering blood cells or lymph vessels that branch to all parts

of the body. This process of the cancerous cells travelling to all parts of the body is

known as metastasis.

1.2.1 Types of Breast cancer

1. Ductal Carcinoma in Situ: Ductal Carcinoma in Situ (DCIS) is a non-

invasive breast cancer where abnormal cells have been contained in the lining

2http://www.nationalbreastcancer.org/about-breast-cancer
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of the breast milk duct. Carcinoma in Situ is used to describe early stage of

cancers. Carcinoma means “cancer” and in situ means “in the original place.”

In this type of brest cancer, the atypical cells have not spread outside of the

ducts into the surrounding breast tissue. This type of cancer in the early stages

is highly treatable, however, if left untreated or undetected, can spread into the

surrounding breast tissue. This type of breast cancer is classified under stage

0.

2. Invasive Ductal Carcinoma: Invasive Ductal Carcinoma means that abnor-

mal cells that originated in the lining of the breast milk duct have spread beyond

the ducts and invaded surrounding tissue. It is the most common type of breast

cancer, making up nearly 70-80% of all breast cancer diagnoses, and is known

to also commonly affect men. The stage of this breast cancer varies on a case

to case basis.

3. Triple Negative Breast Cancer: Triple negative breast cancer means that

the cells in the tumor are negative for progesterone, estrogen, and HER2/neu re-

ceptors, which are receptors known to fuel most breast cancer growth. Chemother-

apy is an effective option to treat this kind of breast cancer, as common treat-

ments such as hormone therapy and drugs that target these receptors become

ineffective. Also, 10-20% of breast cancer is known to be triple negative. This

type of cancer is most likely to affect younger people, African Americans, His-

panics, and/or patients with a BRCAi gene mutation.

4. Inflammatory Breast Cancer: Inflammatory breast cancer is a less common

form of breast cancer that produces no distinct tumor or hump and is isolated

within the breast. It is an aggressive and fast growing breast cancer in which

cancer cells infiltrate the skin and lymph vessels of the breast. Symptoms begin

to appear when the lymph vessels become blocked by the breast cancer cells.

4



This type of breast cancer is classified as a stage 3 breast cancer and requires

aggressive treatment.

5. Metastatic Breast Cancer: Metastatic breast cancer is cancer that has

spread beyond the breast, into other parts of the body such as the lungs, liver,

bones, or brain. This cancer is classified as a stage 4 cancer, and is generally

incurable. The symptoms of this cancer vary based on where it has spread, and

it can generally spread to the bones, brain, liver and lungs.

1.2.2 Diagnosis

1. Mammogram: A mammogram is an x-ray of the breast. This allows a qualified

specialist to examine the breast tissue for any signs of breast cancer. Screening

mammograms are routinely administered to women with no apparent symp-

toms, to detect whether they have any cancerous cells. Diagnostic mammo-

grams are taken when any abnormalities are found in the screening mammo-

gram. Some abnormalities may include a lump, breast pain, nipple discharge,

thickening of skin on the breast and changes in the size of shape of the breast. In

a diagnostic mammogram, more x-rays are taken, providing views of the breast

from multiple vantage points, to provide a more detailed x-ray of the breast.

2. Ultrasound: A breast ultrasound is recommended when a suspicious site is

found on a patient’s screening mammogram. It is a scan that uses penetrating

sound waves that do not affect or damage the tissue and cannot be heard by

humans. The breast tissue deflects these waves, and the computer then uses

these deflections to paint a picture of what is going on inside the breast tissue.

3. MRI: MRI is a radio imaging technique that could also be used to get an

understanding of what’s going on inside a patient’s breast. During a breast

MRI, a magnet connected to a computer transmits magnetic energy and radio

5



waves (not radiation) through the breast tissue. It scans the tissue, and makes

detailed pictures of areas that are within the breast, to help the diagnosing

physician distinguish between a normal and diseased tissue.

4. Biopsy: A breast biopsy is the only diagnostic procedure that can determine

if the suspected area is cancerous. It is a test that removes tissue or sometimes

fluid from the suspicious area. The removed cells are examined under a micro-

scope and further tested to check for the presence of breast cancer. Biopsies are

of three types - Fine needle aspiration, core-needle and surgical biopsy. Core-

needle and surgical biopsy are commonly used on the breast. Factors such as

appearance, size and location of the suspicious area of the breast help a doctor

decide the type of biopsy to recommend.

1.2.3 Treatment

It is very important for the patient to have a positive relationship with the

doctor. The patient should work with the doctor to see what options they have, for

treatment of their cancer. It is also important for the patient to understand the differ-

ence between going through a standard treatment and clinical trial treatment, so that

the patient can make an informed decision when it comes to their treatment choice.

Breast cancer standard treatments are those treatments that are recommended by

experts, and what experts agree are appropriate, accepted and widely used. These

are standard procedures that have been tried and tested, and have proved useful

in fighting breast cancer in the past. A breast cancer clinical trial is an approved

research study in which a patient goes through treatments that differ from the stan-

dard ones. Some doctors believe that these new treatments have a potential to some

day replace the existing standard treatments, and become new standards in treat-

ing breast cancer. When the treatments administered in clinical trials can prove to
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perform better than the existing treatments, they then become the standard, and

are then administered during standard treatments. Hence, all current standards were

clinical trials at one time.

Surgery, chemotherapy and radiation are the most common treatments of can-

cer. Surgery is one of the oldest types of cancer therapy. It is the procedure done

on the patient where the tumor is removed, along with any other surrounding tissue

that is affected by it. This is done to take out the cancerous tissue from the body,

to prevent it from spreading. Chemotherapy is the method of treatment where drugs

are used to cure the cancerous patient. The drug either kills the cancerous cells, or

slows it’s growth. Radiation therapy is when the patient is exposed to high density

waves or particles, such as x-rays, gamma rays or electron beams to kill the cancerous

growth.

Some of the cancers where a surgery is performed is on breast cancer and

prostate cancer. For breast cancer, part or all of the breast may be removed, de-

pending on the stage of cancer the patient is in. An early stage patient can have

a breast conserving surgery where only the cancerous tissue is removed, but a later

stage patient has to go for a mastectomy, where the entire breast is removed, some-

times along with nearby tissues. For prostate cancer, the prostate gland is removed

during surgery, the main type of which is called a radical prostatectomy.

Chemotherapy (chemo in short) is used to treat blood related cancers like

leukemia. The type of treatment given to a patient suffering with leukemia depends

on the type of leukemia the patient suffers from. Leukemia is classified based on the

type of blood that is cancerous in the patient, either the Red Blood Cells, the White

Blood cells [16], or the platelets. It is also classified based on it’s rate of growth, which

is either acute for fast growing cancer, and chronic for a slow growing cancer. Also,

attributes such as the age of the patient, whether the cancer has spread to the brain

7



or spinal cord, whether there are certain changes in the genes and whether the cancer

has been treated before also dictate the type of chemotherapy treatment needed to

be given to the patient. Some chemo can be given using IV (into a vein through a

needle), and others are in form of pills.

1.3 Problems & Challenges in diagnosis

Pathology is the medical field that primarily deals with diagnosis and treatment

of disease. This is the field of medicine that is given the responsibility to provide a

subjective diagnosis, to guide a patient with their treatment, and to provide manage-

ment decisions to the patient [4]. The recent advents in computing pathology also

made it possible to predict survival of a cancer patient [30, 32]. It is very important

that the field of precision medicine make constant advances. This is to ensure an ac-

curate diagnosis of the cancer that the patient is suffering from. It is important that

there be standardized, accurate and reproducible pathological diagnoses for advancing

precision medicine. As stated by [1], if we look behind at the past, the microscope was

the primary tool used by pathologists, ever since the mid 19th century. The images

formed by these microscopes had many limitations after qualitative visual analysis

of them, which included lack of standardization, diagnostic errors and the significant

cognitive load required to manually evaluate millions of cells across hundreds of slides.

Let us consider the evaluation of the breast sentinel lymph nodes, as it is considered

today as a very important component. Patients with a sentinel lymph node positive

for metastatic cancer frequently results in more aggressive clinical management [38,

39]. To manually conduct a pathological review of the sentinel lymph nodes is very

time consuming and laborious, especially in cases where the lymph nodes are neg-

ative or contain very small cancerous cells [27]. To improve accuracy of metastatic

detection, many clinical laboratories have tried applying proteins such as immuno-

8



Figure 1.2: Multi-resolution Whole Slide Image [42]

histochemistry [25] for pancytokeratins [5] on breast cancer cells; however, there are

many limitations to pancytokeratin immunohistochemistry testing of sentinel lymph

nodes which include increased cost, increased time for slide preparation, increased

number of slides required for pathological review, and less accuracy [1].

1.3.1 Digital Pathology: Current status

Pathology is a medical field that is over a 150 years old, which has progressed by

leaps and bounds thanks to the advent of digital pathology [2]. Virtual microscopy

is partially credited for the existence of digital pathology, which is the practice of

converting glass slides into digital slides that can be viewed, managed, and analyzed

on a computer monitor [41]. Thanks to the progress in the field of Whole-Slide

Imaging (WSI), the digital pathology field has exploded and has been named as

one of the most promising avenues of diagnostic medicine in order to achieve even

better, faster and cheaper diagnosis, prognosis and prediction of cancer and other

important diseases [20]. Figure 1.3 3 displays a layer model depicting steps involved

3http://www.hopkinsmedicine.org/mcp/PHENOCORE/CoursePDFs/2013/13 19 Cornish Digi-

tal Path.pdf

9



in preparation and viewing of WSI. As stated by [2], though adoption of digital

pathology has increased in various medical centers, the industry has not yet entered

into clinical diagnostics due to inherent problems, such as human variability from

tissue acquisition, improper staining techniques, and subjectivity in diagnosing under

a microscope. A pathologist would then look for patterns in a tissue sample and

use their medical training to interpret those patterns and make a diagnosis. As

demonstrated by many computer applications in myriad industries, computer-assisted

pattern recognition either supersede or are in par with a human’s ability to recognize

patterns. Though digital pathology is on the peak of wide-spread adoption, the

difficulties due to the variability of hardware scanning and fear of computation tools

in which the user has no idea of the underlying source code, as known as “black-box”

tools, has lead to a longer adoption curve than compared to other medical specialties

that have gone totally digital, like radiology [2]. Over the past several decades there

has been an interest in developing computer software to assist in the analysis of

digital microscopic images in pathology. Therefore, computer-assisted image analysis

systems have been developed to aid in the detection of metastatic tissues from digital

slides of sentinel lymph nodes; however, clinically, these systems are not used due

to the lack of standardization of image formats, system noise, and lack of clinical and

technical studies on digital pathology systems [2]. Hence, active research is currently

taking place to develop effective and cost efficient methods for sentinel lymph node

evaluation, as there is a heavy requirement for a high-performing system that could

increase accuracy and reduce cognitive load at low cost.

1.4 Deep Learning

Deep Learning is a new area of Machine Learning research. It is a technique to

use very deep (in terms of number of layers) neural network to solve problems related
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Figure 1.3: A layer model depicting steps involved in preparation of WSI

to visual recognition. It was introduced with the aim to bring Machine Learning

closer to Artificial Intelligence. Until 1990, neural network was not getting acceptance

into machine learning industry as there was no proper way to train a good network.

But in 1990, the advent of back-propagation [24] revolutionized AI industry and

suddenly neural network became the hot favorite topic in the field of machine learning

research. There have been many problems in various fields of Computer Science

that have been solved with the help of various Deep Learning architectures. Deep

Learning architectures have been applied to problems in fields like computer vision

[8, 9, 10, 11, 12, 13], automatic speech recognition [26], natural language processing,

audio recognition and bio-informatics, using deep learning architectures such as deep

neural networks, convolution deep neural networks, deep belief networks and recurrent
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neural networks. The results obtained were state of the art for various tasks given

to the network. The key aspect of all these deep learning architectures is the use of

Convolutional Neural Network (ConvNet). ConvNet is a biologically inspired form

of the artificial neural network, that has local connections and shared weights. It is

one of the most important tools of machine learning when it comes to the current

generation, and it has been very popularly used to solve image recognition tasks, in

the field of Computer Vision. Some of the popular and highly used ConvNet models

are 4:

1. LeNet [7]: Not only is LeNet one of the first successful applications of Convo-

lution Networks, it is also considered to be an excellent “first architecture” for

ConvNets. Developed in 1990, the best known LeNet architecture is one that

was used to read zip codes, digits, etc.

2. AlexNet [8]: AlexNet is the first work that popularized the use of Convolution

Networks in Computer Vision. It is a large, deep convolution network used to

classify over 1.3 million high resolution images of the LSVRC-2010 ImageNet

training set into 1000 different classes. During the time AlexNet was developed,

it was common to have only a single Convolution (CONV) layer and then to

have it be immediately followed by a POOL layer, but the AlexNet was designed

in a different manner. It had a very similar structure to LeNet, the difference

being that it was deeper, bigger and featured Convolution layers stacked on top

of each other.

3. GoogLeNet [9]: Developed by Google, GoogLeNet is the winning deep convo-

lution network architecture from the ImageNet Large-Scale Visual Recognition

Challenge 2014 (ILSVRC 2014). This winning architecture was code named

”Inception”. Some important features of this architecture was the development

4http://cs231n.github.io/convolutional-networks/
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Figure 1.4: ConvNet Architecture

of an Inception module to dramatically reduced the number of parameters in the

network , from 60M as in AlexNet to 4M. Another interesting approach to this

model was to use Average Pooling instead of Fully Connected (FC) layers after

Convolution layer, which helps to eliminating significant number of parameters

that are not important for classification.

4. VGGNet [11]: VGGNet was declared the runner-up architecture in the Im-

ageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The

main aspect of this network was that it showed that the depth of the network

is a critical component for a well performing neural network. Their final best

network contains 16 CONV/FC layers. This network also features an extremely

homogeneous architecture that only performs 3x3 convolutions and 2x2 pooling

from the beginning to the end.

5. ResNet [12]: ResNet (Residual Network) is the winning architecture in the

ImageNet Large-Scale Visual Recognition Challenge 2015 (ILSVRC 2015). The

two major features of this architecture are skip connections and a heavy use

of batch normalization. This architecture has missing fully connected layers at

the end of the network. By far, ResNets are currently state-of-the-art Convo-

lutional Neural Network models and are the default choice for using ConvNets

in practice.
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Figure 1.5: Convolution operation

Figure 1.4 5 illustrates an architecture for ConvNet. There are three main types

of layers that are developed to build a ConvNet: Convolutional Layer, Pooling Layer,

and Fully-Connected Layer. The functions of each of the components in a convolution

network is as follows:

1. CONVOLUTION: This is the layer that computes the output of neurons that

are connected to the local receptive field of the input. This computes a dot

product between weights and local region of input volume. This is illustrated

in Figure 1.5.

2. POOLING: The pooling layer performs the down sampling operation along the

spatial dimensions of the input, as shown in Figure 1.6.

3. FULLY CONNECTED: This layer is similar to a neural network, wherein each

neuron is connected to all the neurons in previous layers. This layer helps to

estimate class scores.

5https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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Figure 1.6: Pooling operation

1.5 Goal of Thesis

The goal of this thesis is to develop deep learning-based classification pipeline

for detection of cancer metastases from whole slide images of breast sentinel lymph

node. The classification pipeline consists of five different stages:

1. Region of Interest (ROI) detection with Image processing

2. Construct training data: Extract Positive & Negative tiles from ROI

3. Train Deep ConvNet model for tile-based classification

4. Building tumor probability heat-maps using trained model

5. Post-processing on heat-maps for slide-based classification

Traditional computer aided methods are not useful for clinical practices because they

require pathologist to set several manual parameters to obtain accurate results hence

proves burdensome. Thus the key aspect of this thesis is to develop proposed method

in a way that it will prove highly useful and can be easily operated in clinical settings

with minimal human intervention. Evaluate effectiveness of the proposed system by

performing extensive experiments on real life breast cancer data-set available as part
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Figure 1.7: WSI Classification System

of Camelyon’16 6 grand challenge. Figure 1.7 depicts an overview of the proposed

whole slide image classification system for identifying metastatic cancer.

6https://camelyon16.grand-challenge.org/
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CHAPTER 2

CLASSICAL APPROACHES

2.1 Image analysis based methods

Since a long time, there have been an interest of scientists to develop computer

aided methods for identifying cancer metastasis from GigaPixel (106 x 106 pixels)

histological images. These historical methods are mainly focused on low level image

analysis [33] tasks such as color normalization, nuclear segmentation, and feature

extraction [21, 22]. Detailed architecture of these methods is illustrated in Figure

2.1. In this section, we will explain each stage of the classical method in detail.

2.1.1 Color normalization

Color normalization is a technique used for reducing the difference between

different tissue samples, introduced due to applied staining and various scanning con-

ditions during preparation of whole slide images [15]. With staining, it becomes easier

to analyze images as it helps to highlight structural elements into whole slide images.

According to [22], there are multiples ways in which staining can be applied. One

method is to calibrate targets or finding pixel intensity patterns from multiple images

and then fit polynomial surface over source images. Another highly used method

in industry is to match histograms of different source images. [22] also mentioned

that, approach based on gradient calculation from LUV color space proved reliable

for highlighting tissue structures from WSI images. As color normalization helps in

building generalized solution, it is considered to be the most important step for build-
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Figure 2.1: Classical method architecture

ing histological image analysis technique. Figure 2.2 illustrates an example of Color

Normalization operation on digital WSI.

Figure 2.2: An example of stain normalization on a heavily over stained source image
(a) Source Image (b) Target Image (c) Output Image [2]
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2.1.2 Nuclear Segmentation

The second step after color normalization is to segment nuclei from normalized

images. Nuclear segmentation is another important step in histological image anal-

ysis. It is the process of identifying nuclei structure present in whole slide images

[28]. It is very important to determine size and shape of nuclear structures as these

properties help pathologist to understand the seriousness of disease if present [22].

More over, these properties also allows to determine sub-types [29] of detected cells

which helps pathologist to determine specific type of cancer disease patient is suffer-

ing from. For example, the presence of large number of malignant cells in a breast

cancer histological image is a clear indication of a higher cancer stage. As per [22],

other significant measure to decide severity of disease is to count mitosis from histo-

logical images as higher mitosis count is a strong indication of poor disease outcome

for some cancer situations. Due to its high importance, it remains a great interest of

scientist to develop automated methods for identifying nuclear structures [31] from

histological images. Two of the methods developed are [22]:

1. Global segmentation: Here entire image is processed in a single pass to

simultaneously detect all the nuclei from an image.

2. Local segmentation: In contrast to global segmentation, here only a portion

of the image is processed at a time to identify specific structure.

Figure 2.3 illustrates an example of Nuclear Segmentation operation on digital WSI.

2.1.3 Feature extraction

The third stage in classical image analysis method is to extract object level

and topological features from the nuclear-segmented image. Object level features

correspond to physical appearance of cell nuclei while topological features are related

to inter cell structure being formed by the arrangement of multiple cells in a particular
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Figure 2.3: An example of Nuclear Segmentation. Left : Source Image. Right : Seg-
mented Image

region [6]. Object level features can be separated in to categories such as shape,

size, radiometric & densitometric, texture, and chromatin-specific [22]. Here size and

shape are real object level features while others are considered to be low level features.

The example of topological features includes graph based properties such as minimal

spanning tree, connected components, k-NN [34, 35, 36, 37] graph etc. Topological

features are used to formulate tissue states and also to compare different tissues by

formulating matrices from this graphs and classifying values. Summaries of object-

level and topological features are listed in Figure 2.4 & Figure 2.5 respectively. In

addition to object and topological features various statistic features such as mean,

median, minimin, maximum, standard deviation, skewness, and kurtosis can also be

used for classification purpose. Normally, for binary image number of features are in

order of 100 but for RGB image these features are extracted for each R, G & B channel

separately, hence the number of features can easily exceed 1000 [22]. In classical

approach, feature extraction process is typically followed by final classification stage

where classification models such as Support Vector Machine (SVM) and Random

Forest (RF) are developed to classify these features in to two or more categories

based on the nature of the problem under consideration [43, 44, 45].
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Figure 2.4: Summary of object-level features used in histopathology image analysis
[22]

2.2 Challenges

Though classical methods are faster and cheaper in comparison to manual meth-

ods, they are not used in clinical practices due to various challenges induces by these

methods. They completely rely on priory information such as size and shape of cells.

Also they use hand crafted features which do not perform well in slide based clas-

sification. Normally cells have variety of different sizes (from tiny to very large) &

shapes and due to which it is impossible to develop single generalized method for slide

based classification which performs well for every type of cell structure. Moreover,

21



Figure 2.5: Summary of topological features used in histopathology image analysis
[22]

these methods require several manual parameters to be set in order to obtain accurate

results, thus proves burdensome for pathologists.
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CHAPTER 3

DEEP LEARNING FOR DETECTING METASTATIC BREAST CANCER

3.1 Whole Slide Image classification pipeline

In this thesis we tried to overcome the challenges faced by classical methods

with the development of Deep Learning based classification pipeline for identifying

metastatic breast cancer from digital whole slide images. Our classification pipeline

consists of five stages:

1. Region of Interest (ROI) detection with Image processing

2. Construct training data: Extract Positive & Negative tiles from ROI

3. Train Deep ConvNet model for tile-based classification

4. Building tumor probability heat-maps using trained model

5. Post-processing on heat-maps for slide-based classification

Figure 3.1 depicts our cancer metastases detection framework.

3.1.1 Region of Interest (ROI) detection with Image processing

The first stage in our pipeline is to identify tissue region (foreground) from

whole slide image by excluding background white space. As described before, WSIs

are very large GigaPixel (106 x 106 pixels) images thus processing even a single image

takes a significant amount of time [3]. Finding ROI is an essential step as it helps

to reduce computation time to a great extent by allowing to process only the region

where probability of having tumor is more likely [1]. Similar to [1], we were able to

remove approximately 82% of background region per WSI. Python open-CV APIs are
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Figure 3.1: Cancer metastases detection framework [1]

used to perform various operations involved in finding ROIs. Our process includes

five steps:

1. RGB to HSV conversion: First step is to convert the original image from

RGB color space to HSV (hue, saturation and value) color space. In HSV color

space, analyzing color values is more convenient as values are more intuitive

and easy to represent.

2. Binary mask generation: Next step is to build a binary mask by filtering

H, S & V component values in particular range. Specifically, we filtered pixels

having values in the range 20 to 200 of H, S & V components. In industry,

Otsu’s [14] threshold based technique is quite popular for generating binary

masks but we have developed our own method based on filtering pixel values

as our method produces better results compared to Otsu. The binary mask
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contains white pixels in areas where pixel values falls within the filtered range

and black pixels everywhere else.

3. Closing: On a binary mask we apply closing operation to fill in small black

color holes. Closing is defined simply as a dilation followed by an erosion using

the same window size for both operations. In simple words, a fix sized window

(e.g. 3x3) slides over the whole binary image and fill in all pixel in the current

window if at least a single pixel in that window is found white. The effect of

the operator is to preserve background regions that have a similar shape to

a window, or that can completely contain the window, while eliminating all

other regions of background pixels. Window size in closing operation plays an

important role in producing effective results. Large window size will produce

unwanted foreground noise while too small window size will leave many empty

holes. Thus one has to be very careful while selecting window size in order to

produce accurate results. After extensive experiments with different window

sizes, we found that window size of 20 x 20 produces effective results for our

dataset. Figure 3.2 1 demonstrates the closing operation.

4. Opening: After closing we apply opening operation on a binary mask to elim-

inate small clumps of undesirable foreground pixels. It is basically a complete

opposite of closing defined simply as an erosion followed by a dilation using the

same window size for both operations. Like closing, in opening too a fix sized

window (e.g. 3x3) slides over the whole binary image but here instead of fill

in it erodes all the white pixel in the current window if a single pixel in that

window in found black. As in closing, here also selecting proper window size is

1http://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm
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Figure 3.2: Closing operation with 3x3 window size

very important. Our experiments show that window size of 5 x 5 works best for

our dataset. Figure 3.3 2 demonstrates the opening operation.

5. Finding contours: The last operation is to find contours from the binary

mask obtained after opening operation. This operation derives the boundaries

of white areas in the binary mask. After finding contours we draw them onto

the original RGB image in order to highlight ROIs.

The whole process of ROI detection and final results are visualized in Figure 3.4.

3.1.2 Construct training data: Tiling ROI

This section explains the details about construction of training set, to be used

for training Deep model. For this thesis we have used breast cancer dataset provide

as a part of Camelyon’16 [42] grand challenge. Dataset consists of total 270 training

and 130 test whole slide images. Training dataset includes 160 Normal and 110

2http://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm
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Figure 3.3: Opening operation with 3x3 window size

Figure 3.4: ROI detection process. Top left : Original RGB image. Top middle:
converted HSV image. Top right : Filtered mask. Bottom left : mask after closing
operation. Bottom middle: mask after opening operation. Bottom right : original
image with highlighted ROI using blue curves
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Figure 3.5: Patch extraction from WSI. Tissue and Tumor regions are highlighted
with green and red curves respectively. Area within green region but outside of
red region is considered as Normal. Extract tumor patches from tumor regions and
normal patches from normal regions [1]

Tumor WSIs while test dataset includes 130 unlabeled images. WSIs are very large

GigaPixel images, with resolution of 106 x 106 pixels and raw size of more than 50

GB. Because of large size, it is impossible to load a full image into available computer

memory, which makes it infeasible to analyze an entire whole image at once. Due to

this limitation, we decided to perform patch based analysis. We randomly extracted

thousands of 256 x 256 size patches from ROIs of each WSI image [40], 1k normal &

1k tumor patches from each Tumor slides and 1k normal patches from each Normal

slides. In total we extracted 250k patches, 140 normal patches and 110k tumor

patches. Figure 3.5 demonstrates the process of extracting patches in detail. Data

augmentation techniques have been applied to train model with increasing variety of

data and to avoid over fitting of training data. Randomly, we either cropped a 224

x 224 sub-region from original patches or flipped patches horizontally as shown in

figure 3.6.
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Figure 3.6: Data augmentation techniques

3.1.3 Deep ConvNet for tile-based classification

Convolutional neural networks are powerful deep learning based approaches for

visual recognition tasks. Starting 2012, major image classification challenges such as

ImageNet has been consistently won by deep learning based approaches every year.

Recently, deep learning based approaches have also shown state-of-the-art results in

medical science challenges such as MICCAI 2013 and ICPR 2012 which shows the

potential of applying deep learning to solve real life health care related problems in

clinical practices [19]. Classical machine learning based approaches require lots

of manual steps for object detection, object segmentation and feature extraction,

while deep learning based approach automatically learns high-dimensional complex

features just with the use of training data and its labels (e.g. 0 and 1) [1]. In

cancer pathology mitosis detection is a very important process as mitosis count is a

key indicator of presence and severity of cancer disease. Traditionally, mitosis count
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Figure 3.7: Top: Images showing detected mitosis. Detected mitosis are circled green
(true positives) and red (false positives); cyan denotes mitosis which are not detected.
Bottom: Mitosis detection framework [19]

has been performed by pathologist but it is a very time consuming process because

pathologist has to scan millions of tissues manually. Automating this process has high

value in clinical practices because it would be faster, cheaper, more accurate, and

more reliable. Classical computing methods developed for mitosis counting are based

mainly on pixel classifiers and detecting particular objects from the images. Mitosis

detection is quite a challenging process as it is very hard to distinguish between mitotic

and non-mitotic nuclei [19]. Thus scientists start developing ConvNet based approach

for mitotic detection. Figure 3.7 demonstrates a mitosis detection framework and

example of detected mitosis. As stated by [1], ConvNets yield robust hierarchies of

features unlike computer vision approaches that rely on hand crafted features from

images and videos. [1] also stated that, in ConvNet based approach it is easy to
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Figure 3.8: Model D-1 training details

derive both global and local features as it holds both types of features in the form of

non-linear global to local pyramid. It is being observed that there is a huge success for

deep learning based methods in categorization of whole images, detecting objects in

images or video frames, speech recognition. However, tasks like tumor segmentation

in computer aided diagnosis must be practically accurate to each pixel and hence

raises the need for robust and highly accurate methods.

This section explains the use of Deep ConvNet for patch based classification. We

trained a Deep classification model D-1 from scratch to distinguish between Tumor

and Negative patches. Figure 3.8 displays the detailed information about training

model D-1. During training, our model uses as input 256 x 256 size patches

extracted from positive and negative regions of WSIs as explained in section 3.1.2. We

evaluated the performance of many well-known deep learning network architectures

for this classification task and then adopted GoogLeNet (Inception-V3) as our deep

network structure since it is generally faster and more stable than other networks. The

network structure of GoogLeNet consists of 27 layers in total and more than 6 million

parameters [10]. Table 3.1 lists detailed information about Inception-V3 network
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including types of layer, patch size, and stride and input size of each layer. Also, figure

3.10 depicts layer by layer architecture of Inception-V3 network. For training, we used

mini-batch Stochastic Gradient Descent (SGD) as optimizer, Softmax cross entropy

as the loss function, and exponential decay mechanism for managing the learning

rate. We set initial learning rate to 0.01 and decreased the value by the factor of 10

after each 60k iterations, in order to reduce oscillation and avoid divergence during

model training. We also used batch-normalization [17] to achieve faster training and

drop-out [18] to avoid over fitting of training data. Using this setup, we trained deep

model D-1 with 2 GPU and a batch size of 32 until it converges. Figure 3.9 illustrates

the training loss occurred while training Deep model D-1. Environment used for

training includes:

Figure 3.9: Training loss for Deep ConvNet model. Note significant decrease in
training loss when learning rate decrease. Here 1 iteration corresponds to 1 batch of
32 images

1. GPU: 2 x 12 GB NVidia K40
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2. CPU: 3.4GHz Intel core i7 4770

3. HDD: 7 TB

4. RAM: 16 GB DDR4

type patch size/stride input size

conv 3 x 3/ 2 256 x 256 x 3

conv 3 x 3/ 1 128 x 128 x 32

conv padded 3 x 3/ 1 128 x 128 x 32

pool 3 x 3/ 2 128 x 128 x 64

conv 3 x 3/ 1 64 x 64 x 64

conv 3 x 3/ 2 64 x 64 x 80

conv 3 x 3/ 1 32 x 32 x 192

3 x Inception As in figure 3.11 32 x 32 x 288

5 x Inception As in figure 3.12 16 x 16 x 768

2 x Inception As in figure 3.13 8 x 8 x 1280

pool 8x8 8 x 8 x 2048

linear(FC) logits 1 x 1 x 2048

softmax classifier 1 x 1 x 2

Table 3.1: Inception-V3 outline [10]

3.1.4 Building Tumor probability heat-maps

After training Deep ConvNet model, next step is to generate a tumor probability

heat-maps for each WSI. For this, we extracted 256 x 256 size patches from ROIs of

each WSI. In total we extracted 7.6 million patches including both train and test

WSIs. Then, using trained deep Model D-1, we obtained tumor probabilities for all

extracted patches, and embedded predictions of patches from individual WSIs into
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Figure 3.10: Inception-V3 architecture [9]
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Figure 3.11: Inception modules where each 5 x 5 convolution
is replaced by two 3 x 3 convolution [10]

Figure 3.12: Inception modules after the factorization of the
n x n convolutions. We chose n = 7 for the 17 17 grid [10]

Figure 3.13: Inception modules with expanded the filter
bank outputs. This architecture is used on the coarsest ( 8
x 8 ) grids to promote high dimensional representations [10]
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a single heat-map. In this manner, we built tumor probability heat-maps for every

single WSI. In a heat-map, each pixel contains a value between 0 and 1, indicating

the probability that the pixel contains a tumor. Figure 3.14 demonstrates the step

by step process for building a tumor probability heat-map.

Figure 3.14: Process of building tumor probability heat-map

3.1.5 Post-processing on heat-maps for slide-based classification

After building tumor probability heat-maps, we performed post-processing op-

erations on these heat-maps to build the classifier for slide based classification. For

the slide-based classification task, the post-processing takes as input a heat-map for

each WSI and produces as output a single probability of tumor for the entire WSI.

Given a heat-map, we extract 28 geometrical and morphological features from each

heat-map, including the percentage of tumor region over the whole tissue region, the

area ratio between tumor region and the minimum surrounding convex region, the

average prediction values, and the longest axis of the tumor region [1]. We compute
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Figure 3.15: Process of extracting features from heat-map

these features over tumor probability heat-maps across all training cases, and we

build a Random Forest classifier to discriminate the WSIs with metastases from the

negative WSIs. Figure 3.15 depicts step by step process for extracting features from

heat-maps. The complete list of features includes [1, 2]:

1. The ratio of tumor region to the tissue region

2. The longest axis in the largest tumor region

3. Total number of pixels with probability greater than 0.90

4. Tumor area: maximum, mean, variance, skewness, and kurtosis

5. Tumor perimeter: maximum, mean, variance, skewness, and kurtosis

6. Eccentricity of ellipse having same second momentum as region: maximum,

mean, variance, skewness, and kurtosis
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7. Ratio of pixels in the region to pixels in the total bounding box (“extent”):

maximum, mean, variance, skewness, and kurtosis

8. Solidity: maximum, mean, variance, skewness, and kurtosis

After analyzing the importance of individual features, top 5 important features turns

out to be (t is the threshold value):

1. Feature 11: given t= 0.9, mean area of tumor regions

2. Feature 10: given t= 0.5, the longest axis in the largest tumor region

3. Feature 09: given t= 0.5, ratio of pixels in the region to pixels in the total

bounding box (“exten”)

4. Feature 05: given t= 0.9, eccentricity of the ellipse that has the same second

moments as the region. (“eccentricit”)

5. Feature 06: given t= 0.9, ratio of tumor region to the tissue region

Figure 3.16 displays the feature importance graph showing the level of importance

for individual features.
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Figure 3.16: Feature importance map
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Dataset

For this thesis, we used a breast cancer dataset provided as part of Camelyon’16

[42] grand challenge. It contains a total of 400 whole-slide images (WSIs) of sentinel

lymph node from two independent datasets collected in Radboud University Medi-

cal Center (Nijmegen, the Netherlands), and the University Medical Center Utrecht

(Utrecht, the Netherlands) [42]. The first training dataset consists of 170 WSIs of

lymph node (100 Normal and 70 containing metastases) and the second 100 WSIs

(including 60 normal slides and 40 slides containing metastases). The ground truth

data for the slides containing metastases is provided in two formats: 1. XML files

containing vertices of the annotated contours. 2. WSI binary Masks. The test dataset

consists of 130 WSIs which are collected from both Universities. Table 4.1 provides

specific details about Camelyon’16 dataset. We used Automated Slide Analysis Plat-

form (ASAP), an open source platform, to visualize cancer metastases annotation

in whole-slide histopathology images. Figure 4.1 1 shows an example of visualizing

cancer metastases using ASAP.

4.2 Experimental setup

To successfully perform experiments on proposed system following requirements

were setup at SMILE Lab. The hardware configurations of the system were:

1. CPU:3.4GHz Intel core i7 4770

1https://camelyon16.grand-challenge.org/data/
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Figure 4.1: Visualizing metastases using ASAP [42]
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Source Train Tumor Train Normal Test

Radboud UMC 70 100 80

UMC Utrecht 40 60 50

Total 110 160 130

Table 4.1: Number of slides in the Camelyon’16 dataset

2. RAM: 12GB DDR4

3. 12 GB of NVidia K40 GPU

4. 12 GB of NVidia Ge Force Titan X GPU

The software requirements were:

1. OS: Ubuntu 16.04

2. Programming Languages: Python 3.5

3. Deep Learning libraries : Tensorflow (v0.12.1)

4. Support libraries: OpenSlide, Sci-Kit, NumPy

4.3 Evaluation metrics

4.3.1 Receiver Operating Curves (ROC)

The ROC2 curve helps in the creation of a full and detailed sensitivity vs 1-

specificity report. In ROC, the true positive rate (sensitivity) is plotted against the

function of the false positive rate (specificity). The sensitivity is the probability of a

test outcome being true positive and specificity is the probability of the test outcomes

being true negative.

Sensitivity or True Positive Rate (TPR) =
TP

(TP + FN)
(4.1)

Specificity or True Negative Rate (TNR) =
TN

(TN + FP )
(4.2)

2https://www.medcalc.org/manual/roc-curves.php
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where TP denotes True Postive, TN denotes True Negative,

FP is False Positive, FN is False Negative,

P is Positive and N is Negative

4.4 Model D-1 results

4.4.1 Training

As explained in section 3.1.3, we trained Deep ConvNet model D-1 to distinguish

between tumor and normal patches. We used mini-batch Stochastic Gradient Descent

(SGD) as the optimizer, Softmax cross entropy as the loss function and exponential

decay mechanism for learning rate. We set the initial learning rate to 0.01 and

decreased the value by the factor of 10 after each 60k iterations, in order to reduce

oscillation and avoid divergence. In order to eliminate variability in pixel intensity,

we adopted standard data normalization techniques. For each training patch, we first

brought the pixel intensity values in the range [0.0, 1.0] and then subtracted channel

wise mean from each R, G B channel. The model is trained continually using 2

GPU with batch size 32 until convergence is achieved. After 250k iteration model

D-1 obtained a patch based classification accuracy of 97%.
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4.4.2 ROC

Figure 4.2: ROC curve for Model D-1 predictions on Test dataset

4.5 Ensemble method

As can be seen in Figure 4.2, model D-1 obtained an area under curve (AUC)

of 84.42% which is quite low. The low score of model D-1 is because it produces

many false positives. Since, heat-maps generated using model D-1 contains many

false positives, it is difficult to distinguish Normal WSI heat-maps from Tumor WSI

heat-maps. These false positives are due to incomprehensive training data as we have
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extracted training patches randomly to reduce number of training samples. Because

of this randomness, some difficult negatives patches from the histological mimics of

cancer were missed in training data, which results in producing false positives. Figure

4.3 shows an example of false positives in Model D-1 heat-map.

Figure 4.3: Model D-1 false positives. Left : Original slide. Middle: Ground truth.
White pixels inside ROI represents ground truth. Right : model D-1 heat-map. Red
pixels inside highlighted yellow regions represent false positives

To remove false positives, we extracted appx. 100k additional patches corre-

sponds to these false positive pixels and trained a new model D-2 with this enriched

training dataset. The model D-2 is trained using the same environment and training

techniques as Model D-1; the only difference being in the dataset. The model D-2

obtained the patch based classification accuracy of 98%. After training model D-2,
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we built tumor probability heat-maps for each WSIs with this model. Next, we de-

veloped ensemble learning approach using both deep ConvNet models: Model D-1

& Model D-2. In ensemble approach, we built ensemble heat-maps for each WSI by

removing false positives in model D-1 heat-maps with model D-2 predictions. Criteria

used for preparing ensemble heat-maps is:

Figure 4.4 shows an example of preparing ensemble heat-map for tumor slide

Tumor 074.
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Figure 4.4: Example for preparing ensemble heat-map for slide Tumor 074. Top:
Model D-1 heat-map. Bottom: Ensemble heat-map
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4.5.1 ROC

Figure 4.5: ROC curve for ensemble method on Test dataset

4.6 Further improvements

4.6.1 Feature selection

As shown in Figure 4.5, using ensemble method, we obtained the area under

curve (AUC) of 90.64%. Though, the AUC score obtained by ensemble method is

better compared to model D-1, it is still not as good as the winning method of

Camelyon’16 grand challenge. In order to further improve the AUC score, we employ
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a feature selection method. As discussed in section 3.1.5, we extracted 28 geometrical

and morphological features from each heat-map and then trained Random Forest (RF)

classifier to distinguish WSIs with metastases from the negative WSIs. After studying

feature importance graph shown in Figure 3.16, we found that feature with very low

importance does not have any contribution in prediction decisions made by Random

Forest classifier. Based on this fact, we removed 4 low importance features from 28

extracted features. In further analysis, using data analysis techniques, we found the

features having low correlation with target labels and removed 2 such features. So in

total, we removed 6 features from previous 28 features and used remaining 22 features

for classification task.

4.6.2 Use of better classifier

Second, in addition to feature selection, we experimented with many different

classifiers other than RF: K-Nearest-Neighbour (KNN), Naive Bayes, and Support

Vector Machine (SVM). After performing extensive experiments, SVM turns out to

be the best amongst all classifiers, hence we have replaced existing RF classifier with

SVM, to improve accuracy of feature classification task.
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4.6.3 ROC

Figure 4.6: Final ROC curve on Test dataset, obtained after applying feature selection
and better classifier

4.7 Results comparison

Figure 4.7 compares result obtained by the proposed system with Top-5 meth-

ods of the Camelyon’16 grand challenge. The proposed system achieved the final

AUC score of 92.57% which beats the winning method of the Camelyon’16 grand

challenge, developed to-gather by Harvard & MIT research labs.
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Figure 4.7: ROC comparison with Camelyon16 Top-5 methods
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The aim of this thesis is to present a deep learning based system for automated

detection of metastatic cancer from whole slide images of sentinel lymph nodes. The

main challenges of the system we have developed were to enhance the training set

to improve previous system by avoiding misclassification of the normal lymph node

regions as cancer. Other important key features of the system were to develop state-of-

the art deep learning architecture to classify small patches from the large whole slide

images, and use of carefully designed post-processing methods for the slide based clas-

sification. Classical methods in histopathology were mainly focused on image analysis

tasks such as color normalization, nuclear segmentation, and feature extraction [1].

Usually image analysis task alone is not sufficient for cancer classification so in prac-

tice after image analysis, machine learning based classification models such as Support

Vector Machine and Random Forest are required for end-to-end feature classification

task. Since many years, deep learning-based approaches have played a major role in

various computer vision competitions, such as ImageNet Large Scale Visual Recogni-

tion Competition (ILSVRC). Recently Deep-learning has also emerged as a leading

technology in the field of pathology and related research areas in medical science [19].

In contrast to classical machine learning based approaches, deep-learning based ap-

proach does not require manual steps for object detection, object segmentation and

feature extraction as it automatically learns high-dimensional complex features, just

with the use of training data and its labels (e.g. 0 and 1) [1]. The proposed method

utilizes GoogLeNet, a 27-layer deep network architecture, and obtained near human-
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level classification performance on the breast cancer test data. As tested by [23],

the errors made by deep learning based systems are not strongly correlated with the

errors made by human pathologist. Thus, although the pathologist alone is currently

superior to deep learning system alone, combining deep learning with the pathologist

produced a major reduction in pathologist error rate, reducing it from over 3 per-

cent to less than 1 percent. Based on our results, we can conclude that integrating

deep-learning based approaches into clinical practices can bring vast improvements

in speed, accuracy, reproducibility, reliability and clinical value of pathological diag-

noses.

Based on our evaluations, a future research direction could be to train and

evaluate the performance of our system on another large scale open source cancer data

such as TCGAs lung cancer dataset. Another important step in future research would

be to integrate staining normalization process into proposed classification pipeline.

Stain normalization is a crucial part of building a generalize deep learning model for

identifying metastatic regions as it eliminates the stain variability in WSIs, induced by

different staining techniques. As shown by [2], stain normalization process has a great

potential to significantly improve classification performance of a deep model, which

indicates that with stain normalization on board, proposed system could produce even

better results and could be extended to any breast cancer digitized images without

institutional re-calibration.
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