
1

Crowdsourcing for Decision Making with Analytic Hierarchy Process

ISHWOR TIMILSINA, The University of Texas at Arlington

SUPERVISED BY: CHENGKAI LI, The University of Texas at Arlington

Analytic Hierarchy Process (AHP) is a Multiple-Criteria Decision-Making (MCDM) technique devised by Thomas L. Saaty. In

AHP, all the pairwise comparisons between criteria and alternatives in terms of each criterion are used to calculate global

rankings of the alternatives. In the classic AHP, the comparisons are provided collectively by a small group of decision makers.

We have formulated a technique to incorporate crowd-sourced inputs into AHP. Instead of taking just one comparison for each

pair of criteria or alternatives, multiple users are asked to provide inputs. As in AHP, our approach also supports consistency

check of the comparison matrices. The key di�erence is, in our approach, we do not dismiss the inconsistent matrices or

ask users to reevaluate the comparisons. We try to resolve the inconsistency by carefully examining which comparisons are

causing the inconsistency the most and then getting more inputs by asking appropriately selected questions to the users. Our

approach consists of collecting the data, creating initial pairwise comparison matrices, checking for inconsistencies in the

matrices, try to resolve the matrices if inconsistency found and calculating �nal rankings of the alternatives.

1 INTRODUCTION
Decision making is an integral part of today's world, may it be governmental, medical, corporate, or just small

group decisions. The stakes are higher than ever and decision makers want to make sharp, calculated decisions

rather than hunches. Among all the decision-making tools and techniques available, Analytic Hierarchy Process

(AHP)[9, 12] is one of the most popular ones. AHP, a multi-criteria decision making technique, was �rst introduced

by Thomas L. Saaty[9, 12] in 1980. AHP helps make complex decision by breaking them down into smaller

problems that are then solved by pairwise comparisons. AHP particularly stands out for qualitative judgments,

although it works well for both subjective as well as objective comparisons. The comparisons are mostly human

judgments and can vary between individuals. AHP is applicable to large set of problems, but it is most commonly

used in industry-related applications[4].

In AHP, the decision makers are asked to compare pairs of criteria and pairs of alternatives/objects based

on each of those criteria. All the pairwise comparisons (comparing item i with item j) are then used to obtain

weights of criteria and relative weights of alternatives in terms of each criterion. The AHP additionally gives

methods to check if the comparisons are consistent or not. This consistency check makes sure the comparisons

provided are not random in nature and the end result obtained is trustworthy.

Countless entrepreneurs and corporations from search engine giants like Google, and social networking

platforms like Facebook and Twitter to online businesses like Amazon and EBay have cashed in on the internet

culture. This plethora of user participation has opened a doorway to crowdsourcing. Crowdsourcing (crowd +

outsourcing) is a model that, as its name suggests, divides up the work and distributes it to an unde�ned public.

This model has several advantages - diversity, costs, scalability, speed being some of them[4]. The 'Kickstarter'

campaigns nowadays essentially mean crowdsourcing of funding. Wikipedia is arguably the best example of

crowdsourcing. This made us think if and how crowdsourcing could be used for decision making purposes. This

paper explores the use of crowd in decision making using the basic model of AHP.

While conventional AHP takes only one input per pairwise comparison, we allow each pairwise comparison

to have multiple inputs. Our approach also allows for consistency check but it doesn't require dismissal or

reevaluation of matrices if those matrices are found inconsistent. We have devised a method which keeps the

already gained inputs intact yet still tries to resolve the inconsistency in the matrices by taking additional inputs

from users for suitable pairs of comparisons.

2 BASICS OF AHP
AHP is a relative measurement[2] technique, where proportions between pairs are more important than exact

measurements of entities. It uses a set of pairwise comparisons to calculate �nal ranking of the objects/alternatives.

These pairwise comparisons may be between any two criteria and/or any two alternatives. First, AHP assigns

score for each criterion per decision maker's pairwise comparisons of all the criteria. Then, for each criterion,

AHP assigns score to alternatives based on the pairwise comparisons of all the alternatives based on that criterion.

Finally, mathematical operations are done on the criteria weights and the alternatives weights in terms of all the

criteria, to determine the global score of each alternative and subsequent rankings of the alternatives.

The Analytic Hierarchy Process (AHP) can be brie�y described in below basic steps:

(1) Model the problem as a hierarchy - goal, criteria, and alternatives.

(2) Give the priorities to the criteria:

(a) Give the scores for each pairwise comparison (j, k) of the criteria, thus creating an m x m matrix

where m is the number of criteria (say C). Table 1 below shows the di�erent scores for comparisons

of two entities i and j (given by Saaty[9] himself):

Value Meaning
1 j and k are equally important

3 j is slightly more important than k

5 j is much more important than k

7 j is strongly more important than k

9 j is absolutely more important than k

2,4,6,8 Intermediate values if needed

1/3,1/5,1/7,1/9 The reciprocal values show comparison of j to i. If (i, j) = 1/3, then (j, i) = 3.

Table 1. Di�erent scores for comparisons in AHP

(b) Calculate a priority weight vector for the criteria.

(3) Calculate the weights of di�erent alternatives with regard to each criterion creating n x n matrix where n

is number of alternatives (the process is like step 2)

(4) Check for the consistency of the intermediate results (after creation of matrices both in steps 2 and 3)

(5) Come to the �nal decision

A simple illustrative example of AHP is shown.

Goal: Select the best movie out of these alternatives

Criteria: Story, Direction, Acting, Music/Score

Alternatives: Schindler's List (SL), Silence of the Lambs (SOTL), American Beauty (AB), Lord of the Rings(LOTR)

2.1 Se�ing the hierarchy
The hierarchy of our problem becomes:

2.2 Assigning pairwise comparison scores and creating comparison matrix
Let's assign scores for each pairs of criteria. C ϵ R

mxm
is a pairwise comparison matrix if it satis�es following

three properties:

• Ci, j > 0

• Ci,i = 1

2

Fig. 1. Hierarchy for our goal, criteria and alternatives

• Cj,i = 1/Ci, j

Create an m x m matrix (C) where m is the number of criteria. In the following matrix (table 2), each individual

cell is the ratio between the corresponding criteria. For instance, story-direction comparison, C1,2 = 1/3 means

direction is slightly more important than story which is same as the C2,1 = 3.

Story Direction Acting Music

Story 1 1/3 5 7

Direction 3 1 7 9

Acting 1/5 1/7 1 3

Music 1/7 1/9 1/3 1

Table 2. Example - Criteria comparison matrix (C)

2.3 Calculating priority weights
Now we calculate the priority weights of all the criteria using the criteria matrix (C) from Table 2. There are

three of the most widely used ways by which we can calculate the weights.

(1) Mean of normalized values

This is the oldest method and consists of following three basic steps: [1]

(a) Sum of elements of column j

(b) Normalization of column j

(c) Mean of row i

(2) Geometric Mean approach (Crawford and Williams[3])

In this approach, the geometric means of all the rows results in the priority weight vector. This approach

minimizes logarithmic errors[3], although Saaty[1, 10] criticizes it saying there's no conceptual justi�ca-

tion for working with logarithmic scale. In this approach, we multiply all the elements of each row in the

3

matrix and then we calculate the n
th

root of the product to get a vector. Once we normalize that vector,

we get the priority weight vector for that matrix.

(3) Eigenvector approach

This approach was proposed by Saaty[9, 12] himself. This approach says, the principal eigen vector of

the matrix is the desired weight vector. This is a very commonly used method for calculating the weights

of criteria and alternatives. The weight vector is the normalized solution of:

Mw = λmaxw (1)

where M is the matrix, w is the eigenvector of M, and λmax is the maximal eigenvalue, λmax >= m

(Saaty [11]). In real world scenario with the participation of human on qualitative judgements, λmax > m

(Saaty[11]). According to the Perron-Frobenius Theorem, the eigenvalue λmax is positive and real[7].

To calculate the principal eigenvector, we use a numerical method called 'power method'[6]. The power

method is iterative process consisting of following steps:

(a) The matrix M is squared.

(b) All the elements in a row are then added together.

(c) The result is normalized to get approximate eigen vector.

(d) Repeat step a through c with the matrix we got from step a.

(e) Repeat step d until the row elements in two consecutive approximate eigen vectors are smaller than

certain small threshold (eg: 0.0001).

Although many authors have complained about the transparency of the eigen value approach[5], the

creator of AHP, Saaty, insists on the strength of this method and has justi�ed it against inconsistent

matrices[11].

We will use the Eigenvector approach for the demonstration of basics of AHP in this section, as well as in our

approach later. After using the power method, we get the eigenvector of matrix C which will also the priority

weight vector.

Story 0.2903

Direction 0.5824

Acting 0.085

Music 0.0423

Table 3. Priority weight vector (W) for matrix C from Table 2

Looking at this weight vector, we can easily determine that 'Direction 'is the most important/impactful criteria

because it has the largest weight value.

2.4 Checking for Inconsistency
Finding the weight vector of a matrix is not enough. We need to make sure that the comparisons in the matrix

are consistent enough to trust the end result they will yield. Human inconsistency is inevitable. Especially in

the subjective matters where people compare based on their opinion rather than facts. To avoid the ill e�ect

these inconsistent comparisons may create on the resulting ranking, it is better to check if the comparisons are

consistent and if not, discard and/or redo them. AHP provides the mechanism for testing the consistency of a

comparison matrix.

4

First, we need a temporary vector that we will get by multiplying the original criteria matrix by its weight vector.

WT = {C}{W } (2)

Fig. 2. Multiplying initial matrix by its weight vector to get WT

Now, divide each element of WT by its corresponding element of W.

Wcons =WT .1/W (3)

For example,WT 1/W1 = 1.2055/0.2903 = 4.1526. Doing this for all elements, we get,

Wcons = {4.1526, 4.1707, 4.1541, 4.1797}

If we take the average of all these elements in Wcons , we get the maximal eigenvalue λmax = 4.1643.

Next step is to calculate consistency index (CI). For m number of criteria,

CI =
(λmax −m)
(m − 1) (4)

Thus,

CI =
4.1643 − 4

4 − 1 = 0.0547

The matrix would be perfectly consistent if CI = 0 i.e., λmax = m. But we cannot expect it to be so with human

judgments. For this purpose, we need to calculate consistency ratio (CR).

CR =
ConsistencyIndex(CI)
RandomIndex(RI) (5)

Random Indices have already been calculated by multiple sources including Saaty[12] to almost same results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.000 0.000 0.525 0.880 1.109 1.248 1.342 1.406 1.450 1.485 1.514 1.537 1.555 1.571 1.584

Table 4. Random Indices for di�erent numbers of criteria/alternatives

5

If CR >= 0.1, then the pairwise comparisons should be reevaluated. Otherwise, the matrix is considered near-

consistent. In our example,

CR =
0.0547

0.880
= 0.0621

Our CR is less than 0.1 so the matrix is acceptable.

Now that the criteria comparison matrix is created and veri�ed to be near-consistent, it is time to create alternative

comparison matrices in terms of each criterion.

SL SOTL AB LOTR

SL 1 3 5 1

SOTL 1/3 1 3 1/3

AB 1/5 1/3 1 1/5

LOTR 1 3 5 1

Table 5. Alternatives comparison matrix in terms of Story (CR=0.016)

Story

SL 0.3909

SOTL 0.1509

AB 0.0674

LOTR 0.3909

Table 6. Priority weight vector for Table 5

SL SOTL AB LOTR

SL 1 1/3 1/3 3

SOTL 3 1 3 5

AB 3 1/3 1 5

LOTR 1/3 1/5 1/5 1

Table 7. Alternatives comparison matrix in terms of Direction (CR=0.073)

Direction

SL 0.1465

SOTL 0.4995

AB 0.2883

LOTR 0.0655

Table 8. Priority weight vector for Table 7

SL SOTL AB LOTR

SL 1 1/5 1/3 5

SOTL 5 1 3 7

AB 3 1/3 1 5

LOTR 1/5 1/7 1/5 1

Table 9. Alternatives comparison matrix in terms of Acting (CR=0.0887)

Acting

SL 0.1326

SOTL 0.1326

AB 0.2609

LOTR 0.048

Table 10. Priority weight vector for Table 9

SL SOTL AB LOTR

SL 1 1/3 3 1/7

SOTL 3 1 5 1/5

AB 1/3 1/5 1 1/9

LOTR 7 5 9 1

Table 11. Alternatives comparison matrix in terms of Music (CR=0.0631)

Music

SL 0.0955

SOTL 0.2044

AB 0.0456

LOTR 0.6545

Table 12. Priority weight vector for Table 11

6

2.5 Calculating Final Rankings of the alternatives
After we have all the near-consistent matrices and their respective weight vectors, we are ready to calculate the

�nal rankings of the alternatives. For that, we combine all the alternatives'weight vectors with each vector as a

row to form a matrix. Then, we multiply this formed matrix by the criteria weight vector (Table 3) as shown in

Fig 3. The result will yield the �nal rankings. Finally, we get the global rankings of the alternatives.

Fig. 3. Multiplying matrix formed by combining all alternatives weight vectors by criteria weight vector

Schindler's List 0.2141

Silence of the Lambs 0.3908

American Beauty 0.2116

LOTR - Return of the King 0.1834

Table 13. Final global rankings of all the alternatives

As we can infer from in Table 13, Silence of the Lambs appears to the best movie among these four alternatives

followed by Schindler's List, American Beauty, and Lord of the Rings - Return of the King.

3 OUR APPROACH
We had to make some modi�cations and additions to the AHP model to accommodate our objective, i.e., allowing

many users (crowd) to participate in the decision making process.

3.1 Minimal Sample Size
First we want to get minimal number of inputs for all the comparisons but still want the samples to give us the

means that are representative enough of the whole population. Since we do not know the actual population size,

minimal sample size for estimating the population mean is given by following formula [8],

n =
1

d2

z2α /2 .σ
2
+ 1

N

(6)

where,

d = margin of error (moe)

zα/2 = z-score for certain con�dence level

σ = standard deviation

N = total estimated population

7

We do not know the population size, but we know that the population will be potentially large (crowdsourcing).

For this reason, we assign some arbitrary large value to N (100000 should be �ne).

We also do not have an exact standard deviation, so we also need to estimate the standard deviation of the

population. To estimate the standard deviation, we use the 'Range Rule' which says,

σ =
ranдe

4

(7)

3.2 Use of confidence interval as threshold during initial inputs
We wanted to make the samples of inputs as useful as possible. Since, after calculating the minimal sample size,

we ask users to provide the inputs, we do not know how variant their inputs are going to be. The sample should

have certain con�dence for it to be useful.

To check this,

(1) calculate con�dence interval of the previously created minimal sample at a certain con�dence level (CL)

(e.g. 95%)

(a) calculate degree of freedom(df), df = sample size (n) - 1

(b) calculate the mean(µ) and standard deviation(σ) of the sample

(c) subtract the con�dence level from 1, then divide by two

α =
1 −CL

2

(8)

(d) look up t-score in t-distribution table for the degree of freedom and α
(e) calculate standard error (SE),

StandardError (SE) = σ
√
n

(9)

(f) multiply t-score by SE

(g) con�dence interval = µ ± step f

(2) check if result of step 1(f) (<=) certain threshold (Threshold_1)

(3) Take more inputs until the resulting sample satis�es step 2.

3.3 Changing scales for the inputs
The scale used in traditional AHP contains value between 1/9 to 9, where 1/9, 1/7, 1/5, 1/3 are reciprocal and

signify practically opposite meanings of 9, 7, 5, 3. For example, if 3 means a is slightly more important than b,

then 1/3 means a is slightly less important than b or b is slightly more important than a. We found this scale

unhelpful in few stages in our methodology. The reason for that is, as we will �nd out later, we use thresholds on

con�dence intervals (see sections 3.3 and 3.5) to limit the number of inputs taken for each unique pair. While

setting the threshold, the same threshold needs to work for all the pairs. The AHP scale does not have uniform

intervals. Example: 1 to 3 has the same interval as 3 to 5 or 5 to 7, but it does not have the same interval as 1 to

1/3 or 1/3 to 1/2. So, while taking user inputs, we map the inputs into our scale. Our scale has uniform intervals

throughout its range. The new scale is equivalent to AHP's scale in following manner (Table 14):

3.4 Initial Matrices Creation
After we get enough inputs from the users, we want to create one matrix for criteria and each one for alternatives

in terms of each individual criterion. Furthermore, the matrices need to be fully formed i.e., they should not

contain any null or zero values to be functional. To populate the matrix, we take the mean value from a sample

of the corresponding pairwise comparison. For m number of criteria/alternatives, the matrix will have m(m-1)/2

unique comparisons cells with each having their reciprocal values and m diagonal cells having value of 1. We

8

AHP's input scale Our Input Scale

1/9 -4

1/7 -3

1/5 -2

1/3 -1

1 0

3 1

5 2

7 3

9 4

Table 14. Mapping between our scale and AHP's scale

calculate the mean of samples for all the pairs. Since our data is the range [-4, 4] but AHP operates in the range

[1/9, 9]. We convert all these means to the AHP scale for further operations like priority weight and consistency

ratio calculations.

In simplest of words: for pair (A, B), say there are 6 inputs from users [a1, a2, a3, a4, a5, a6], then in Table 6,

cell (A, B), a = (a1 + a2 + a3 + a4 + a5 + a6)/6. Once we have the value for cell (A, B) in the matrix, the value at cell

(B, A) is simply the reciprocal of the value at (A, B) that is 1/3 in this example. Similarly, for pair (A, C), if there

are 5 inputs from users, b = (b1 + b2 + b3 + b4 + b5)/5.

A B C D

A 1 a b c

B 1/a 1 d e

C 1/b 1/d 1 f

D 1/c 1/e 1/f 1

Table 15. Populating a simple pairwise comparison matrix

3.5 Checking for inconsistency in the matrices
To check for inconsistency, we follow the same steps from conventional AHP. Once we create matrices by

populating the cells with the mean values of corresponding samples of each pairwise comparison inputs, the

matrices can be practically treated as the matrices that we use in traditional AHP.

If CR < 0.1, then the matrix is near-consistent and the weight vector generated from the matrix is considered

useful for �nal ranks generation. But if CR >= 0.1, then the matrix is inconsistent and it needs to be resolved.

3.6 Resolving Inconsistency in a matrix (If any)
In normal AHP, the decision makers are asked to reevaluate the comparisons in the matrix. But in our case,

that is not the most practical approach. We try to resolve the inconsistent matrix by changing the values in

the cells by getting more inputs from the users. For few reasons, we don't want to take inputs for all the com-

parisons. First, it would be costly since it is more likely that a huge number of new inputs would be required

for a fair problem. Second, we wouldn't even know if it would solve the problem. So, the best approach is

9

to select a cell whose change is most likely to make the matrix near-consistent. Then we ask for new input

for that pair/cell. To �nd out which question to ask or which pair to ask the input for, we have devised a technique.

Finding the ripest cell to change in the matrix
To �nd the cell, in the inconsistent matrix, that has the best promise to resolve the matrix if changed, we follow

these following steps:

(1) Start from the �rst cell of the matrix.

(2) See what the con�dence interval of the sample that generated the value used in that cell is.

(3) Keep the values as they are in all the other cells (that is, the mean value of the samples that we used to

populated the matrix).

(4) Substitute the value in the current cell with left range of the con�dence interval.

(5) Calculate the new CR for this new matrix.

(6) Now, substitute the value in the current cell with the right range of the con�dence interval.

(7) Calculate the new CR for this new matrix.

(8) Record these two new CRs of the matrix and corresponding cell index.

(9) Iterate through all remaining cells of the original matrix one by one and repeat step 2 through step 7.

(10) Peruse through all these new calculated CRs and see which CR improves the original CR of the matrix.

By 'improve', we mean the CR that is the smallest but is still less than the original CR of the inconsistent

matrix.

(11) If no such CR is found, we conclude that the matrix cannot be resolved.

Algorithm 1 Selecting the best cell to take new input on

1: function FindCell(orignalMatrix, conf_int) .Where conf_int is the set of con�dence intervals for all the

cells in originalMatrix

2: original_cr = calculateConsistency(originalMatrix)

3: tempMatrix = originalMatrix

4: crDict = { } . crDict is a hash map

5: for i = 1 to number_of_rows do
6: for j = i to number_of_columns do
7: le f t , riдht = conf _int[i][j][0], conf _int[i][j][1]
8: tempMatrix[i][j] = le f t
9: tempMatrix[j][i] = 1/le f t

10: crDict['i_j_le f t '] = calculateConsistency(tempMatrix)
11: tempMatrix[i][j] = riдht
12: tempMatrix[j][i] = 1/riдht
13: crDict['i_j_riдht '] = calculateConsistency(tempMatrix)
14: tempMatrix = oriдinalMatrix
15: end for
16: end for
17: if minimum(crDict) < oriдinalCR then
18: return i,j

19: end if
20: end function

10

SL SOTL AB LOTR

SL 1 0.1958 0.2911 4.8874

SOTL 5.1072 1 3.0878 6.9576

AB 3.4352 0.3238 1 4.806

LOTR 0.2046 0.1437 0.2081 1

Table 16. Example alternatives matrix a�er initial matrix creation phase

Original Consistency Ratio of the matrix = 0.10467. That means, the matrix is inconsistent and we have to

resolve it. To do that we follow the Algorithm 1.

Cell Value Con�dence Interval i_j_left: CR i_j_right: CR

1_2 -2.0532 [-3.1728, -0.9336] 1_2_left: 0.12232 1_2_right: 0.10561

1_3 -1.2175 [-1.933 , -0.5019] 1_3_left: 0.14556 1_3_right: 0.06666

1_4 1.9437 [0.8254, 3.062] 1_4_left: 0.04687 1_4_right: 0.16077

2_3 1.0439 [-0.0379, 2.1256] 2_3_left: 0.088 2_3_right: 0.15788

2_4 2.9788 [1.9093, 4.0482] 2_4_left: 0.14928 2_4_right: 0.08211

3_4 1.903 [1.5351, 2.2709] 3_4_left: 0.11047 3_4_right: 0.10203

Table 17. List of all the CRs when replacing each cell by lower and higher range of confidence interval

As we can see in Table 17, the least CR is given by 1_4_left, which is also smaller than the original consistency of

the matrix. Hence, we take a new input for 1_4 or SL vs SOTL.

Creating new question to ask and getting new user input
Once we �nd out which cell, if changed, improves the consistency of the matrix the most, we won't change it

directly of course. We ask for new input from the users for that cell. Since we have already taken the con�dence

interval of the sample for that cell while creating the matrix and when �nding the ripeness of the cell into account,

we hope the new user input to be in the range. Formulating the question is easy. Since each cell in the matrix

signi�es a comparison between a unique pair, we ask the users to compare that very pair.

Once we get a new input from a user, we again check for the inconsistency in the matrix. If the matrix is found

to be inconsistent again, we try to resolve the matrix by following the same process explained above. We do

this each time we receive a new input from the users. We stop as soon as the matrix turns near-consistent (CR < 0.1).

If the step 10 doesn't yield any such cell, we conclude the matrix cannot be resolved and thus return the same

matrix (and its weight vector) for �nal ranks generation.

Preventing same question from being asked inde�nitely
Yes, this is possible. Our algorithm may �nd the same cell to be the ripest for change multiple times. We may

need to force the program to stop taking new inputs for the cell/comparison.

We use the concept of con�dence intervals for this case too. Each time a new input is taken for a cell/comparison,

the whole sample of the inputs for that comparison is examined. We calculate the con�dence interval of the

sample with certain con�dence level. Then we test if the range of the con�dence interval satis�es a certain

threshold. This threshold is smaller than the one we used during creation of initial matrices. If the threshold is

11

met, the cell is archived to not ask for new inputs again. Keeping this threshold lower than the one during initial

creation matrices gives us more assurance that it won't harm us to not take any more inputs for a cell.

3.7 Calculating priority weight vectors
Once we have the matrices ready for further processing, we need their weight vectors to calculate the �nal

rankings. We have already discussed the process of calculating the weight vectors in section 2.3 (Basics of AHP).

The matrices are treated the same way they are treated in normal AHP. We too use Eigenvector approach to

calculate the priority weight vectors of all the matrices.

3.8 Calculating global rankings of the alternatives
The �nal ranking calculation is done the normal AHP way. The process is exactly the same as described in section

2.5.

4 SIMULATION
Although we have devised our algorithm to work with real time crowd data, we could not test it on real data

because of time, cost, and feasibility constraints. For the testing purposes, we used simulated data.

Before simulating the data, we �rst manually prepared a reference data (similar to what is shown as example

in section 2). We assigned comparison values (in AHP's scale) for all the pairs in the problem hierarchy. Then we

converted those manually assigned values into our scale [-4, 4] and use those individual values as the means to

generate samples of size 100 for respective pairs of comparisons. We then stored the generated data in a local

database and designed the program and schema so that it retrieves the data from the database as it would from

the real world users. We have generated the data with normal distribution. While generated the data, we used

di�erent standard deviations for testing purposes. Furthermore, we created both consistent and inconsistent

matrices. We will observe the results in the coming section.

5 EXPERIMENTS
For testing, we created problem to rank 10 movies based on 5 criteria. We manually prepared all the required

pairwise comparison matrices and used those individual values to generate samples of size 100 for each pair. We

generated the samples using two di�erent variations in the distribution:

• σ = 0.7 (small variance)

• σ = 1.5 (large variance)

We made a few sensible assumptions to calculate the minimal sample size (section 3.2). We take,

margin of error (d) = 2

zα/2 = 1.96 (for con�dence level of 95%)

total estimated population (N) = 100000 (some large arbitrary value)

To calculate standard deviation, we use equation 7 with range = 8 getting σ = 2

Substituting all of these values in equation 6, we get minimal sample size (n) = 3.84 ≡ 4.

As we described earlier, we enforce thresholds in two places - 'Threshold 1' while taking initial inputs (section

3.3) and 'Threshold 2' while taking new inputs to resolve inconsistency in a matrix (section 3.6).

Both thresholds being absolute di�erence between mean of input sample and left range of con�dence interval of

the sample. The con�dence level used is 90% for all thresholds and data.

12

Threshold 1 Threshold 2

1 <= 1.5 <= 0.3

2 <= 1.5 <= 0.2

3 <= 1.2 <= 0.3

4 <= 1.2 <= 0.2

5 <= 1.0 <= 0.3

6 <= 1.0 <= 0.2

7 <= 0.8 <= 0.3

8 <= 0.8 <= 0.2

Table 18. Meaning of columns 1-8 in coming tables for
data with small variation (σ=0.7)

Threshold 1 Threshold 2

1 <= 1.5 <= 0.4

2 <= 1.5 <= 0.3

3 <= 1.2 <= 0.4

4 <= 1.2 <= 0.3

5 <= 1.0 <= 0.4

6 <= 1.0 <= 0.3

7 <= 0.8 <= 0.4

8 <= 0.8 <= 0.3

Table 19. Meaning of columns 1-8 in coming tables for
data with large variation (σ=1.5)

Threshold_1_Threshold_2

1.5_0.3 1.5_0.2 1.2_0.3 1.2_0.2 1.0_0.3 1.0_0.2 0.8_0.3 0.8_0.2

Criteria matrix 69 69 192 192 531 531 813 813

Alternative matrix 1 251 251 704 704 1846 1846 3734 3734

Alternative matrix 2 244 244 834 834 1919 1919 3067 3225

Alternative matrix 3 456 938 630 1157 1760 2179 3130 3314

Alternative matrix 4 495 771 1005 1394 2228 2225 3510 3534

Alternative matrix 5 526 1172 898 1472 1811 2247 2609 2944

Total 2041 3445 4263 5753 10095 10947 16863 17564

Table 20. Number of inputs required for each matrix with di�erent threshold combinations shown in Table 18 (data with
small variation)

Threshold_1_Threshold_2

1.5_0.4 1.5_0.3 1.2_0.4 1.2_0.3 1.0_0.4 1.0_0.3 0.8_0.4 0.8_0.3

Criteria matrix 809 809 809 809 809 809 809 809

Alternative matrix 1 3743 3743 4116 4116 4212 4212 4404 4404

Alternative matrix 2 3787 3889 4193 4242 4193 4242 4410 4410

Alternative matrix 3 3693 3805 3792 3818 4129 4134 4415 4420

Alternative matrix 4 3976 3972 4223 4223 4220 4220 4317 4317

Alternative matrix 5 3365 3365 4116 4116 4117 4117 4281 4364

Total 19373 19583 21249 21324 21680 21734 22636 22724

Table 21. Number of inputs required for each matrix with di�erent threshold combinations shown in Table 19 (data with
large variation)

13

Fig. 4. Number of inputs taken to create each matrix
until final rank calculation with di�erent threshold com-
binations from table 18 (data with small variation)

Fig. 5. Number of inputs taken to create each matrix
until final rank calculation with di�erent threshold com-
binations from table 19 (data with large variation)

Fig. 6. Total combined number of inputs taken until final
rank calculation with di�erent threshold combinations
from table 18 (data with small variation)

Fig. 7. Total combined number of inputs taken until final
rank calculation with di�erent threshold combinations
from table 19 (data with large variation)

Threshold_1_Threshold_2

1.5_0.3 1.5_0.2 1.2_0.3 1.2_0.2 1.0_0.3 1.0_0.2 0.8_0.3 0.8_0.2

Criteria matrix 0.09742 0.09742 0.09825 0.09825 0.09972 0.09972 0.09716 0.09716

Alternative matrix 1 0.09604 0.09604 0.09398 0.09398 0.09007 0.09007 0.08669 0.08669

Alternative matrix 2 0.094 0.094 0.09205 0.09205 0.08797 0.08797 0.1034 0.10551

Alternative matrix 3 0.11186 0.1114 0.11543 0.12169 0.12208 0.12792 0.12319 0.12602

Alternative matrix 4 0.11514 0.09991 0.11537 0.10138 0.10728 0.09987 0.10809 0.09995

Alternative matrix 5 0.14414 0.11686 0.14559 0.11687 0.14646 0.11868 0.1434 0.11764

Table 22. Final Consistency Ratios (CR) of all the comparison matrices with di�erent threshold combinations from table 18
(data with small variation)

14

Threshold_1_Threshold_2

1.5_0.4 1.5_0.3 1.2_0.4 1.2_0.3 1.0_0.4 1.0_0.3 0.8_0.4 0.8_0.3

Criteria matrix 0.09512 0.09512 0.09512 0.09512 0.09512 0.09512 0.09512 0.09512

Alternative matrix 1 0.09786 0.09786 0.09232 0.09232 0.09173 0.09173 0.09215 0.09215

Alternative matrix 2 0.11031 0.10923 0.11015 0.11086 0.11015 0.11086 0.11121 0.11121

Alternative matrix 3 0.11994 0.11487 0.12051 0.1185 0.12071 0.11868 0.12507 0.12314

Alternative matrix 4 0.10198 0.09972 0.09979 0.09979 0.09979 0.09979 0.09964 0.09964

Alternative matrix 5 0.09719 0.09719 0.09086 0.09086 0.0943 0.0943 0.10949 0.10872

Table 23. Final Consistency Ratios (CR) of all the comparison matrices with di�erent threshold combinations from table 19
(data with large variation)

Fig. 8. Final Consistency Ratios (CR) of all the matrices
with di�erent threshold combinations from table 18 (data
with small variation))

Fig. 9. Final Consistency Ratios (CR) of all the matrices
with di�erent threshold combinations from table 19 (data
with large variation)

Threshold_1_Threshold_2

1.5_0.3 1.5_0.2 1.2_0.3 1.2_0.2 1.0_0.3 1.0_0.2 0.8_0.3 0.8_0.2

LOTR 0.2072 0.2072 0.2022 0.2025 0.1993 0.1995 0.2027 0.2022

TDK 0.1745 0.1756 0.1727 0.1739 0.1737 0.1745 0.1667 0.1719

SL 0.1612 0.1611 0.1694 0.1693 0.1664 0.1662 0.1652 0.1647

LL 0.128 0.1278 0.1281 0.1283 0.1319 0.1322 0.1327 0.1312

HR 0.1003 0.1011 0.0983 0.0982 0.0998 0.0999 0.1007 0.1001

SP 0.0834 0.0825 0.0831 0.0823 0.0832 0.0825 0.0841 0.0833

MM 0.0606 0.0607 0.0611 0.0611 0.0604 0.0607 0.0594 0.0587

JW 0.0366 0.0361 0.0372 0.0368 0.0375 0.0373 0.0397 0.0396

ESN 0.0363 0.0361 0.0361 0.0357 0.0358 0.0354 0.0371 0.0364

TR 0.0119 0.0119 0.0119 0.0119 0.0119 0.0119 0.0118 0.0118

Table 24. Final Rankings of all the alternatives with di�erent threshold combinations from table 18 (data with small variation)

15

Threshold_1_Threshold_2

1.5_0.4 1.5_0.3 1.2_0.4 1.2_0.3 1.0_0.4 1.0_0.3 0.8_0.4 0.8_0.3

LOTR 0.203 0.2017 0.2033 0.2027 0.2034 0.2028 0.2021 0.2021

TDK 0.172 0.172 0.1755 0.1753 0.1745 0.1744 0.174 0.174

SL 0.1662 0.1661 0.1617 0.1617 0.1619 0.1619 0.1615 0.1615

LL 0.1234 0.1246 0.1242 0.1241 0.1248 0.1247 0.124 0.124

HR 0.1102 0.1101 0.1094 0.1104 0.1096 0.1106 0.1108 0.1108

SP 0.0834 0.0835 0.0832 0.0832 0.0828 0.0829 0.0846 0.0846

MM 0.0562 0.0562 0.0563 0.0563 0.0566 0.0566 0.0566 0.0566

JW 0.0392 0.0392 0.0395 0.0395 0.0396 0.0395 0.0394 0.0392

ESN 0.0348 0.0348 0.035 0.035 0.0351 0.0351 0.0354 0.0354

TR 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0117 0.0118

Table 25. Final Rankings of all the alternatives with di�erent threshold combinations from table 19 (data with large variation)

Fig. 10. Final rankings of all alternatives with di�erent
threshold combinations from table 18 (data with small
variation)

Fig. 11. Final rankings of all alternatives with di�erent
threshold combinations from table 19 (data with large
variation)

16

6 RESULTS
By analyzing above tables and graphs, we can make following interpretations:

• If the underlying data has high variation, then the thresholds we implement do not have much e�ect on

the total inputs taken from the users for each comparison matrix.

• Smaller the variation in the underlying data, higher are the chances of thresholds having more impact on

the number of inputs taken

• For data with small underlying variation, the number of inputs taken from the users generally increases

as the threshold becomes strict.

• There seems to be not much di�erence in �nal consistency ratio of matrices despite any thresholds, if the

data used has large underlying variation.

• For data with smaller variation, the changes in the �nal consistency ratios are a bit unpredictable.

• No matter the variation in the data or the thresholds enforced, the �nal rankings don't seem to care. We

saw no change in the actual �nal rankings, and little to negligible changes in the �nal global weights of

the alternatives.

7 CONCLUSION
In this work, we attempted to use AHP's decision making model in crowd sourcing environment instead of the

closed small group of people making each comparison together. As we have seen in this paper, multiple users

are allowed to participate and contribute in the decision making process. The application supports any ranking

problems as long as the hierarchy (goal, set of criteria, set of alternatives) has been properly set. Although, we

tested and showed the results using simulated data, we expect this technique to work in the real world too. The

inputs taken from the users until the generation of �nal rankings seem reasonable depending upon how strict

we want the thresholds to be. There might be some threshold that could be the optimal one for most of the

problems out there. We realize this work needs re�nement and thorough testing on real world environment. Our

work is mostly helpful for certain kinds of problems where uncertainty is not a big issue and where huge user

participation is needed. This model could be a �t for problems where exact measurements are not important but

the �nal rankings are. In this age of social networking and abundance of mobile devices users in the world, we

see a lot of scope for our technique.

ACKNOWLEDGMENTS
I would like to thank Dr. Chengkai Li for his invaluable guidance, suggestions, and supervision. I am also grateful

to the whole IDIR Lab and its members for their feedbacks, help and encouragement along the way.

REFERENCES
[1] Markus Lusti Alessio Ishizaka. How to derive priorities in AHP: a comparative study. (????).

[2] Matteo Brunelli. 2015. Introduction to the Analytic Hierarchy Process. Cambridge University Press. DOI:https://doi.org/10.1007/

978-3-319-12502-2

[3] Williams C. Crawford G. 1985. A Note on the Analysis of Subjective Judgement Matrices. Journal of Mathematical Psychology 29,

387-405 (1985).

[4] Araz Taeihagh John Prpic and James Melton. 2015. The Fundamentals of Policy Crowdsourcing. Policy and Internet 7, 3 (2015). DOI:
https://doi.org/10.1002/poi3.102

[5] Wang T.Y. Johnson C.R., Beine W.B. 1979. Right-left asymmetry in an eigenvector ranking procedure. Journal of Mathematical Psychology
18, 61-64 (1979).

[6] Markus Lusti. 2002. Data Warehousing und Data Mining. Vol. 2. Springer-Verlag, Berlin.

[7] C.R. Johnson R.A. Horn. 1985. Matrix Analysis. Cambridge University Press.

[8] R. Lyman Ott Richard L. Schea�er, William Mendenhall III. 2012. Elementary Survey Sampling. Number 76-117. Thompson Books/Cole,

Berlin. DOI:https://doi.org/0-534-41805-8

17

https://doi.org/10.1007/978-3-319-12502-2
https://doi.org/10.1007/978-3-319-12502-2
https://doi.org/10.1002/poi3.102
https://doi.org/0-534-41805-8

[9] Thomas L. Saaty. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234âĂŞ281

(1977).

[10] Thomas L. Saaty. 1984. Comparison of Eigenvalue, Logarithmic Least Squares and Least Squares Methods in Estimating Ratios.

Mathematical Modelling 5, 309-324 (1984).

[11] Thomas L. Saaty. 2003. Decision-making with the AHP: Why is the Principal Eigenvector necessary? European Journal of Operational
Research 145, 85-91 (2003).

[12] L.Saaty Thomas. 1980. The Analytical Hierarchy Process. Tata McGraw Hill, New York.

18

	Abstract
	1 Introduction
	2 Basics of AHP
	2.1 Setting the hierarchy
	2.2 Assigning pairwise comparison scores and creating comparison matrix
	2.3 Calculating priority weights
	2.4 Checking for Inconsistency
	2.5 Calculating Final Rankings of the alternatives

	3 Our Approach
	3.1 Minimal Sample Size
	3.2 Use of confidence interval as threshold during initial inputs
	3.3 Changing scales for the inputs
	3.4 Initial Matrices Creation
	3.5 Checking for inconsistency in the matrices
	3.6 Resolving Inconsistency in a matrix (If any)
	3.7 Calculating priority weight vectors
	3.8 Calculating global rankings of the alternatives

	4 Simulation
	5 Experiments
	6 Results
	7 Conclusion
	Acknowledgments
	References

