
1

A Probabilistic Approach to Crowdsourcing Pareto-Optimal Object Finding
by Pairwise Comparisons

NIGESH SHAKYA, The University of Texas at Arlington
CHENGKAI LI, The University of Texas at Arlington

This is an extended study on crowdsourcing Pareto-Optimal Object Finding by Pairwise Comparisons. The prior study on
the same topic demonstrate the framework and algorithms used to determine all the Pareto-Optimal objects with the goal
of asking the fewest possible questions to the crowd. One of the drawbacks in that approach is it fails to incorporate every
inputs given by the crowd and is biased towards the majority. We have developed an approach which represent the inputs
provided by users as probabilistic values rather than a concrete one.

The goal of this study is to �nd the ranks of the objects based on their probability of being Pareto-Optimal by asking every
possible questions. We have used the possible world notion to compute these ranks. Further we have also demonstrated the
prospect of using Slack (a cloud-based team collaboration tool) as a Crowdsourcing platform.

1 INTRODUCTION
The size of the crowd is so much important to extract the wisdom of the crowd. The aggregation of diverse
opinions of the participants helps in reducing errors and noise in the collective knowledge accumulated. However,
the presence of dissenting opinions may have considerable hindrances, thus resulting in very unstable collective
performance across problems [3]. These problems come to surface due to the collective size, the transferability of
expertise and the task di�culty. In the prior study [1] this issue was tackled by maintaining a certain threshold
of tolerability so that a consensus is reached only when the response from the crowd has reached above that
threshold and consequently ignoring the di�ering opinions. The purpose of this study is to take into account the
minority opinions to check if incorporating the minority opinions improves the wisdom of the crowd.

In the prior study [1] has already provided the concept of Pareto-Optimal Objects. It is very essential to
understand the concept of Pareto-Optimal objects to understand the core value of our work. Consider a set
of objects O, a set of criteria C for comparing the objects and a crowd participation size S. An object x∈O is
Pareto-Optimal if and only if x is not dominated by any other object. Object y dominates x (denoted y�x) if
and only if x is not better than y by any criteria and y is better than x by at least one criterion, i.e. ∀c∈C : x�cy
and ∃c∈C : y�cx. If x and y do not dominate each other (i.e., x�y and y�x), we denote it by x∼y. The di�erence
between [1] and this paper exists in the representation of the preference relation between the pair over a criterion
as a probabilistic values of "is better than with regard to criterion c(�)", "is indi�erent regarding c(∼)" and "is not
better than regarding c(≺)".

Consider n objects, r criteria and Q pairwise comparisons on all object pairs by every criterion which lead to
r.n.(n-1)/2 comparisons. Every such comparison can be represented as a probability value for �,∼,≺ relations, i.e.

rlt(x?y) =
{
(x?y) ∈ Q : ∃Pr (x?Ry) ∀R ∈ {�,∼,≺}, where Pr (x?Ry) =

users who voted for (x?Ry)
S .lenдth

}
(1)

Several similar studies on the related topic have been previously conducted. Dorte Lerche et al. [4] �nd ranks
of probability for partial orders by projecting partial orders into total order. Our work di�er from them in that
we have used the partial orders in its default order without converting into linear extensions. Further, Adrianos
Papamarcou et al. [2] points out the importance of lower probability in representing uncertainty. However, it
does not relate to Crowdsourcing and Partial Ordering.

The new methods approached by this paper are summarized and explained as below.
• The sample size of the crowd for each pairwise comparison question is �nalized based on the desired

con�dence interval instead of selecting some arbitrary crowd size.
• We utilize the theory of possible worlds to exhaustively capture all the possible cases of responses for

each question instead of assimilating a concrete response generated as a result of using a threshold value
to generalize the consensus of the crowd.
• Instead of using a popular crowdsourcing Internet marketplace tool like Amazon Mechanical Turk

(MTurk) we devise a "Slack" based bot to capture the crowd inputs with the intent of sampling data
for homogeneous decision making. Another incentive to have a closed group decision making is the
�exibility to choose the crowd based on their expertise in the related task and there is a higher probability
of getting the accurate inputs from the crowd.

2 FRAMEWORK
The representation of outcomes in probability values as shown in Equation 1 inhibits skipping any questions as
we shall show later. The entire problem set can be broken down into subproblems of �nding con�dent enough
samples size and the problem of �nding possible worlds with pruning included.

2.1 Find the Confident Sample Size
One of the hurdles in crowdsourcing is to get the wisdom of the entire population using a sample size. It is
practically impossible to get the actual proportion of the crowd favoring in our desired characteristic due to the
enormous cost associated with collecting data from the entire population. We need to be con�dent enough to
postulate that the sample size we have used for data collection is the representative of the whole population.
Instead of �nding the exact true proportion we estimate the true proportion by calculating a range of proportions
for each characteristic with certain level of con�dence(α%) as shown in Fig. 1.

The �rst step is to calculate the minimal sample size(MSS). Minimal sample size for a certain α% con�dence
level is the least crowd size that needs to be sampled.

n =
N .p̂.(1 − p̂)

(N − 1). d2

Z2α /2
+ p̂.(1 − p̂)

(2)

where N is the total �nite population size, p̂ is the estimated sample proportion distribution for desired charac-
teristic, d is the margin of error and Zα/2 is the Z-index for α-con�dence level [6]. We assume that there is an
equal distribution of proportions across all three replies (�, ∼, ≺) since we don’t know the true proportion. As a
result the value of p̂ will be 1/3. This assumption is a conservative approach and is helpful when no such past
data collection phase with the similar task was conducted. Another way to estimating p̂ is using an educated
guess where we don’t assume an equal distribution and use the p̂ value from the result of such past experiments.

The next step is the calculation of con�dence intervals for the population proportion.

p̂ ±Margin of Error(M.E.) (3)

where p̂ is the proportion of the sample population in favor of the desired characteristic and Margin of Error(M.E.)
is the di�erence of interval endpoint to the true proportion. M.E. can be formulated as

Margin of Error(M.E.) = Zα/2.

(√
p̂.(1 − p̂)

n

)
(4)

where n is the sample size. Consider a set of objects x,y ∈ O and a set of criteria c ∈ C for comparing objects. The
con�dence intervals must be calculated for all three types of proportions of our interest:

2

(1) Con�dence Interval (CI�) for the proportion (p̂�) of the crowd who favors x �c y
(2) Con�dence Interval (CI∼) for the proportion (p̂∼) of the crowd who favors x ∼c y
(3) Con�dence Interval (CI≺) for the proportion (p̂≺) of the crowd who favors x ≺c y

Consider a certain threshold t ∈ [0, 1]. We then check if all three CIs (CI�,CI∼,CI≺) are less than t. If any of these
three con�dence intervals are more than t, it signi�es that we are not con�dent enough with the proportions. As
a result, we increase the crowd sample size n and �nd the con�dence intervals again. We repeat until all three
CIs have values less than or equal to t as shown in Algorithm 1 .

ALGORITHM 1: Find the proportions with α-con�dence level
Input: A minimal sample size m, a certain tolerable threshold t and total population size N
Output: Accepted proportions of the crowd p� , p∼, p≺
n ←m − 1
while n = m - 1 or ranдe(CI�) > t or ranдe(CI∼) > t or ranдe(CI≺) > t do

n ← n + 1
p�,p∼,p≺ ← �ndProportions(n)
CI� ← �ndCI(p�,n,α)
CI∼ ← �ndCI(p∼,n,α)
CI≺ ← �ndCI(p≺,n,α)
if n = N then

break
end

end
return p� , p∼, p≺

Further, it is also possible that the range of the con�dence interval might be zero because of zero valued
proportion. The zero proportions occur when none of the crowd respond in favor of that characteristic. We use a
simple "Rule of Three" [5] to resolve this issue. We simply replace the upper limit of the con�dence interval with
3/n. It is notable that as the crowd sample size n increase the value decreases.

Ideally, upon increasing the sampling crowd size the range of con�dence interval reduces. A tolerable low
range of CI signi�es we are α% con�dent that the obtained proportion captures the true proportion of the desired
characteristic within that interval. In other words, if we perform the same data collection over and over again
one hundred times, it is α times likely that we shall get the range of CI which captures the true proportion.

2.2 Possible Worlds Theory
By using probability to incorporate every opinion of the crowd, we need to consider every possible scenario of
outcomes. A "world" is symbolic representation of any of such scenario of outcomes. Diverting from the previous
study, our partial order graphs are complete as we have a complete knowledge of the crowd preference relations
for various criteria. Given n objects and r criteria, the total number of pairwise comparisons on all objects by
every criterion would be r.n.(n-1)/2. Note that this is the brute-force approach. It is not possible to optimize the
number of pairwise comparison questions because we cannot skip any such comparisons. In the prior study [1]
the property of transitive closure of outcomes enable skipping comparisons. However, transitivity is not valid in
our case. Consider x,y,z ∈ O and c ∈ C. If rlt(x ?c y) = {px �cy ,px∼cy ,px ≺cy } and rlt(y ?c z) = {py�cz ,py∼cz ,py≺cz }.
Based on the outcomes above we see px �cy and py�cz . We might be tempted in assuming that px �cz holds by
applying transitive closure and hence wanting to skip the calculation for the comparison between x and z.
However, if we look closely, the existence of px ≺cz is also likely given the probabilities px ≺cy and py≺cz . Similarly,
px∼cz is also probable. Hence, we can’t skip the comparison between x and z.

3

p̂ − lowerlimit p̂ p̂ + upperlimit

α%

x

y

Fig. 1. Bell Curve for estimating population proportion with α% confidence level

The possible world theory can be subdivided into four steps which will lead to the ranks of the objects:
(1) List all the possible worlds

The number of possible worlds is the Cartesian product of the results of all the pairwise comparison
questions. Consider i unique comparison questions Q1,. . . ,Qi and each question Q j have three outcomes
of (�,∼,≺). The possible worlds can be calculated as

Q1 × · · · ×Qi = {(u1, . . . ,ui) : uj ∈ Q j } (5)
where (u1,. . . ,ui) is a world and each uj can have the probability of either p�,p∼ or p≺

(2) Calculate the probability of existence of every world
Every possible world might have varying probability of existence(pexist). The pexist of a world can be
calculated as the product of all the probability outcomes inside that world. Consider a world u = (u1,. . . ,ui)
with the respective probability of its comparison elements as (p1,. . . ,pi), the pexist can be computed as

pexist =
i∏
j=1

pj (6)

Intuitively, a world with low pexist means that the combination of outcomes inside that world is least
probable and vice versa. It is intuitive enough to state that as the comparison questions increases the
value pexist gets smaller and vice versa.

(3) Find the Pareto-Optimal objects in each world
We need to exhaustively go through every possible world to compute their respective Pareto-Optimal
objects. Once we get the Pareto-Optimal objects we assign the ranks for those objects in that particular
world. The ranks are assigned the same value as the pexist of that world. Every Pareto-Optimal objects
have same rank because the probability of every Pareto-Optimal objects is equal for that particular world.
For all the non Pareto-Optimal objects we assign the rank of those objects as zero value. There can also be
the cases where no Pareto-Optimal objects are found because every object dominates every other objects.
In such a case we introduce a variable χ used to represent worlds that have contradiction. The rank of χ
also equals to pexist if the contradiction exists otherwise it will be zero. Consider a set of Pareto-Optimal
objects v ∈ O and a set of non Pareto-Optimal objects w ∈ O in a world u.

ranky,u =

{
pexist , for y ∈ v
0, for y ∈ w

}
, rankχ,u =

{
pexist , for v = ∅
0, for v , ∅

}
4

(4) Rank the objects based on their probability of being Pareto-Optimal in every possible world
The individual ranks for every objects obtained in every possible worlds should be aggregated together
to calculate the �nal ranks. This �nal rank for any object gives us the probability of that object to be
Pareto-Optimal. Consider a set of objects O and a set of possible worlds PW.

rankx =

(PW∑
u

rankx,u

)
∀ x ∈ {O ∪ χ } (7)

where ranksx ∈ [0, 1].

2.3 Example
Consider a set of objects x,y,z and a set of criteria a,b. There are three di�erent pairwise comparisons. Each of
these comparisons have another three di�erent outcomes which can be represented as

P(x �a y) = p1
P(x ∼a y) = p2
P(x ≺a y) = p3



P(x �a z) = p4
P(x ∼a z) = p5
P(x ≺a z) = p6



P(y �a z) = p7
P(y ∼a z) = p8
P(y ≺a z) = p9


Step 1 : To �nd all the possible worlds we take a cartesian product of the results of each of the above matrix. To
do so we pick one outcome from each matrix and push into the world as

PW1 =


P(x �a y)
P(x �a z)
P(y �a z)

 PW2 =


P(x �a y)
P(x �a z)
P(y ∼a z)

 PW3 =


P(x �a y)
P(x �a z)
P(y ≺a z)

 PW4 =


P(x �a y)
P(x ∼a z)
P(y �a z)

 PW5 =


P(x �a y)
P(x ∼a z)
P(y ∼a z)


PW6 =


P(x �a y)
P(x ∼a z)
P(y ≺a z)

 PW7 =


P(x �a y)
P(x ≺a z)
P(y �a z)

 PW8 =


P(x �a y)
P(x ≺a z)
P(y ∼a z)

 PW9 =


P(x �a y)
P(x ≺a z)
P(y ≺a z)

 PW10 =


P(x ∼a y)
P(x �a z)
P(y �a z)


PW11 =


P(x ∼a y)
P(x �a z)
P(y ∼a z)

 PW12 =


P(x ∼a y)
P(x �a z)
P(y ≺a z)

 PW13 =


P(x ∼a y)
P(x ∼a z)
P(y �a z)

 PW14 =


P(x ∼a y)
P(x ∼a z)
P(y ∼a z)

 PW15 =


P(x ∼a y)
P(x ∼a z)
P(y ≺a z)


PW16 =


P(x ∼a y)
P(x ≺a z)
P(y �a z)

 PW17 =


P(x ∼a y)
P(x ≺a z)
P(y ∼a z)

 PW18 =


P(x ∼a y)
P(x ≺a z)
P(y ≺a z)

 PW19 =


P(x ≺a y)
P(x �a z)
P(y �a z)

 PW20 =


P(x ≺a y)
P(x �a z)
P(y ∼a z)


PW21 =


P(x ≺a y)
P(x �a z)
P(y ≺a z)

 PW22 =


P(x ≺a y)
P(x ∼a z)
P(y �a z)

 PW23 =


P(x ≺a y)
P(x ∼a z)
P(y ∼a z)

 PW24 =


P(x ≺a y)
P(x ∼a z)
P(y ≺a z)

 PW25 =


P(x ≺a y)
P(x ≺a z)
P(y �a z)


PW26 =


P(x ≺a y)
P(x ≺a z)
P(y ∼a z)

 PW27 =


P(x ≺a y)
P(x ≺a z)
P(y ≺a z)


Step 2: Find the pexist of each Possible Worlds by multiplying the corresponding constituent probabilities.

pexist (PW1) = p1 ∗ p4 ∗ p7 pexist (PW2) = p1 ∗ p4 ∗ p8 pexist (PW3) = p1 ∗ p4 ∗ p9
pexist (PW4) = p1 ∗ p5 ∗ p7 pexist (PW5) = p1 ∗ p5 ∗ p8 pexist (PW6) = p1 ∗ p5 ∗ p9
pexist (PW7) = p1 ∗ p6 ∗ p7 pexist (PW8) = p1 ∗ p6 ∗ p8 pexist (PW9) = p1 ∗ p6 ∗ p9
pexist (PW10) = p2 ∗ p4 ∗ p7 pexist (PW11) = p2 ∗ p4 ∗ p8 pexist (PW12) = p2 ∗ p4 ∗ p9
pexist (PW13) = p2 ∗ p5 ∗ p7 pexist (PW14) = p2 ∗ p5 ∗ p8 pexist (PW15) = p2 ∗ p5 ∗ p9

5

pexist (PW16) = p2 ∗ p6 ∗ p7 pexist (PW17) = p2 ∗ p6 ∗ p8 pexist (PW18) = p2 ∗ p6 ∗ p9
pexist (PW19) = p3 ∗ p4 ∗ p7 pexist (PW20) = p3 ∗ p4 ∗ p8 pexist (PW21) = p3 ∗ p4 ∗ p9
pexist (PW22) = p3 ∗ p5 ∗ p7 pexist (PW23) = p3 ∗ p5 ∗ p8 pexist (PW24) = p3 ∗ p5 ∗ p9
pexist (PW25) = p3 ∗ p6 ∗ p7 pexist (PW26) = p3 ∗ p6 ∗ p8 pexist (PW27) = p3 ∗ p6 ∗ p9

Step 3: Find the Pareto-Optimal Objects in each Possible World and assign the respective ranks in the same order
of objects as 

x
y
z
χ


There will be 27 di�erent ranks

rank1 =


p1 ∗ p4 ∗ p7

0
0
0

 rank2 =


p1 ∗ p4 ∗ p8

0
0
0

 rank3 =


p1 ∗ p4 ∗ p9

0
0
0

 rank4 =


p1 ∗ p5 ∗ p7

0
0
0

 rank5 =


p1 ∗ p5 ∗ p8

0
p1 ∗ p5 ∗ p8

0


rank6 =


p1 ∗ p5 ∗ p9

0
p1 ∗ p5 ∗ p9

0

 rank7 =


0
0
0

p1 ∗ p6 ∗ p7

 rank8 =


0
0

p1 ∗ p6 ∗ p8
0

 rank9 =


0
0

p1 ∗ p6 ∗ p9
0

 rank10 =


p2 ∗ p4 ∗ p7
p1 ∗ p5 ∗ p9

0
0


rank11 =


p2 ∗ p4 ∗ p8
p2 ∗ p4 ∗ p8

0
0

 rank12 =


p2 ∗ p4 ∗ p9

0
0
0

 rank13 =


p2 ∗ p5 ∗ p7
p2 ∗ p5 ∗ p7

0
0

 rank14 =


p2 ∗ p5 ∗ p8
p2 ∗ p5 ∗ p8
p2 ∗ p5 ∗ p8

0

 rank15 =


p2 ∗ p5 ∗ p9

0
p2 ∗ p5 ∗ p9

0


rank16 =


0

p2 ∗ p6 ∗ p7
0
0

 rank17 =


0

p2 ∗ p6 ∗ p8
p2 ∗ p6 ∗ p8

0

 rank18 =


0
0

p2 ∗ p6 ∗ p9
0

 rank19 =


0

p3 ∗ p4 ∗ p7
0
0

 rank20 =


0

p3 ∗ p4 ∗ p8
0
0


rank21 =


0
0
0

p3 ∗ p4 ∗ p9

 rank22 =


0

p3 ∗ p5 ∗ p7
0
0

 rank23 =


0

p3 ∗ p5 ∗ p8
p3 ∗ p5 ∗ p8

0

 rank24 =


0
0

p3 ∗ p5 ∗ p9
0

 rank25 =


0

p3 ∗ p6 ∗ p7
0
0


rank26 =


0

p3 ∗ p6 ∗ p8
p3 ∗ p6 ∗ p8

0

 rank27 =


0
0

p3 ∗ p6 ∗ p9
0


Step 4 : Calculate the �nal rank by adding up all the rank matrices

rank = ranks1 + ranks2 + · · · + ranks27 =


p1 ∗ p4 ∗ p7 + p1 ∗ p4 ∗ p8 + · · · + 0 + 0

0 + · · · + p1 ∗ p5 ∗ p9 + · · · + p3 ∗ p6 ∗ p8 + 0
0 + 0 + · · · + p1 ∗ p5 ∗ p8 + · · · + p3 ∗ p6 ∗ p9

0 + · · · + p1 ∗ p6 ∗ p7 + · · · + p3 ∗ p4 ∗ p9 + · · · + 0

 =

ρx
ρy
ρz
ρχ


where ρ ∈ [0, 1] is the �nal rank

6

2.4 Setbacks
With the Possible World Theory the problem space increases exponentially for every pairwise comparison.
Essentially, the problem space denotes the resources required to capture all the total number of possible worlds.
The Brute-Force approach that we have adopted is very expensive in terms of computation. Given a set of n
objects and r criteria, the complexity of the problem grows at the rate of O

(
3r .n .(n−1)/2

)
. The base value three is

the outcome size (�,∼,≺) and the root is the total number of pairwise comparisons. Since the total number of
pairwise comparisons also grows at the polynomial rate the problem growth rate is polynomially exponential.
For instance, for 5 objects and 2 criteria the total number of possible worlds is 3486784401 which is already a very
heavy number to compute. In real world the number of objects to compare and the criteria to judge them could be
a very large �nite number. Pragmatically, there is no way to compute such a large volume of processing without
exhausting all the resources and time. With the growth rate that big the problem of memory and execution time
also increases at the same rate.

2.5 Zero World Pruning
There is a way to mitigate the computational requirements with the growth rate. The concept of Zero World
Pruning suggests that if the pexist is very low or equal to zero, it will contribute signi�cantly less or none
towards the �nal rank of the objects on being Pareto-Optimal. Hence, we can skip the computation to calculate
Pareto-Optimal objects in those zero worlds. The scope of the problem redirects towards �nding the possible
worlds with zero pexist so as to skip calculation of the Pareto-Optimal objects in those world.

Consider a threshold value s =̃ 0. There are 2 di�erent approaches to Zero World Pruning:
(1) Proportion Pruning

If any of the proportion p of an outcome of a pairwise comparison is very close or equal to zero we can
skip the computational requirement for all of the worlds which have that proportion. The pruning rate of
the possible worlds decrease as the number of the such zero proportion increases. For every pairwise
comparison there can be at most two zero proportions. Given the number of zero proportions the total
number of pruned worlds can be found using the Algorithm 2

ALGORITHM 2: Find the Total number of Pruned worlds using Proportion Pruning
Input: A set of zero proportions ZPr for every ith result of pairwise comparisons r ∈ R1, ..,Ri
Output: Total number of pruned worlds
n ← R.lenдth

prunedWorld ← 0, rem ← 3n

for r ← R1 to Ri do
pList ← r . getZeroProportions()
b ← 0
foreach p← pList do

b ← b + rem/3
end
prunedWorld ← prunedWorld + b

rem ← 3n − prunedWorld

end
return prunedWorld

(2) Marginal Pruning
If the pexist of any of the possible worlds is approximately close or equal to zero we can skip the further

7

computations for all those worlds. The threshold for this pruning should be much closer to zero than the
threshold used for Proportion Pruning since the pexist of a world is much smaller than its constituent
proportions. We can derive the new threshold value ŝ using the original threshold s. Consider the total
number of possible worlds n.

ŝ = log(s ∗ 1/n) (8)
We then check to see if the log(pexist) of the world < ŝ and prune the unnecessary computation for
those worlds. Since the new threshold value ŝ can get extremely small, the use of logscale makes the
computation much convenient.

One interesting attribute of this pruning approach is it breaks the relationship between the number of
zero proportions and the total number of zero worlds. One positive way to look at it is when the zero
proportions are just slightly above the threshold s and the number of possible worlds increase, the pexist
can still be very less and thus those worlds can be pruned.

3 EXPERIMENTS
We designed and conducted experiments using both a real crowdsourcing platform and simulations based on a
real dataset.

(1) Slack as a Crowdsourcing tool
Slack is a cloud based team collaboration tool which can be used mostly for exchanging instant messages
between parties through di�erent forms like direct messages, channels or groups. It has gained a huge
popularity in recent days and many organizations are adopting this technology because it is highly
�exible in terms of the availability of a lot of custom integrations as well as the convenience in creating
our own customization suited to the organizational needs. One can create bot users for some speci�c
purposes and add them to the team to automate some mundane tasks.

Fig. 2. �estion format in Slack

Fig. 3. �estion Respond format

In this study we have studied the prospect of using Slack as a crowdsourcing tool in decision making.
The motivation for conducting experiments using Slack is to get to a decision for certain tasks within
a team provided certain comparison objects and criteria to compare them. For instance, a CEO of a
company might be interested in knowing the best place to relocate the address of the company based on
the preferences of the employees. Instead of using a traditional voting mechanism, a Slack integration in
the form of a bot might handle that task with ease by using less time and resources.

The Slack bot that we have developed asks questions (Figure 2) to the team members and based on
their responses (Figure 3) run the Possible World algorithm to get the ranks of the objects O. There are

8

Fig. 4. Commands that are currently recognized by the bot

speci�c commands that can be detected by our bot (Figure 4). The detailed procedure through which our
bot operates is shown in as Algorithm 3. For each of the pairwise comparison question q we ask it to the
unique team members m until the con�dent enough sample size has been collected. The sample size for
each q might be di�erent. There is a MAX WAIT TIME which is the waiting time for the team members
to respond to the questions. If we don’t receive reply for questions from the team members within that
time interval we again continue the procedure until all the questions are exhausted. A question can be
exhausted when the sample size collected is con�dent enough. The maximum number of questions that
can be answered by a team member is the size of the questions. This is to say that no team members will
answer to the same question twice. Once we have con�dent enough sample size for all of the questions,
we run the Possible World Algorithm to get the ranks of the objects O.

(2) Data Collection Phase
We conducted the data collection within our IDIR lab setting amongst the 15 scholars who simultaneously
participated by answering to the questions. The task was to �nd the rank of di�erent Programming
Languages provided the objects size of 8 and 4 di�erent criteria. For the purpose of experimentation we
used the Brute Force approach to collect inputs. Instead of using the Algorithm 3 to collect data we just
use exhaustive approach to ask all the participants all the pairwise comparison objects. By doing so every
participants will respond to exactly the total number of pairwise comparison questions.

(3) Experiment by Simulation
The real data collected is used in various ways to simulate di�erent circumstances to conduct performance
and feasibility evaluation of the algorithm. Throughout our experiments we have assumed 95% Con�dence
Level. Our �rst experiment was to check under what parameters the minimal sample size(MSS) changes.
As shown in Figure 5 the MSS tends to grow steadily as the total population size grows for low Margin of
Error(MOE). However, by keeping a broad threshold for MOE the MSS tends to stay at lower value for
increasing population size.

The next experiment was to check the �nal sample size(FSS) when we are con�dent enough about the
outcomes. By keeping the �xed total population size of 15, we change the MOE on various number of

9

ALGORITHM 3: Data Collection Procedure using Slack
Input: A set of pairwise comparison questions Q1,..,Qi , team members M1,..,Mi
Output: Ranks of the objects O
qList ← Q1 to Qi
while qList .lenдth > 0 andwait_time > MAX_WAIT_T IME do

mList ← M1 toMi
foreach q ← qList do

b ← q. sampleSize
while mList.length > 0 do

m ←mList .pop()
(q,m) ← question-member pairing
SLACK .ask(q,m)
if b >= MINIMAL SAMPLE SIZE then

break

end
end

end
/* wait for members to respond*/
qList ← SLACK.getResponses()
foreach q ← qList do

if q.isCon�dentSampleSize then
qList .pop()

end
end

end
ranks ← runParallelWorldAlдorithm(qList)
return ranks

Fig. 5. Minimal Sample Size upon varying Total Popula-
tion and Margin of Error

Fig. 6. Final Sample Size required upon varying MOE
and number of pairwise comparisons

10

pairwise comparisons(n). It is obvious that for low MOE the FSS grows on each set of pairwise comparison.
For one of the pairwise comparison(n=3) we can see that the FSS is signi�cantly larger than for the rest.
The explanation for this is that we are not con�dent enough in the FSS even when we have sampled
through all 15 users. If such a case arise, having limited number of total population we simply stop and
accept the outcomes no matter whatever con�dence intervals we get. This explanation is also su�cient
to understand why most of the FSS for low MOE tend to be around the same value. As the MOE decreases
FSS of 15 is also not su�cient for them and we need more sample size.

Fig. 7. Possible Worlds that needs to computed for
Pareto-Optimal Objects upon varying number of pair-
wise comparisons

Fig. 8. Computational time taken for varying number of
pairwise comparison

Figure 7 is another experiment to demonstrates the relationship between number of pairwise compar-
isons and the growth rate of Possible worlds which actually need to be calculated to �nd the Pareto-Optimal
objects. As seen in the Figure the growth rate seems to be decreasing for such worlds. The reason for
its decrease is because as the number of total possible worlds increases so does the proportions with
zero probabilities. By looking at nature of algorithm 2 we can see that the pruning rate is a polynomially
exponential function. Due to this the growth rate for the non pruned worlds in the graph is decreasing.

Finally, we conduct yet another test to verify the time complexity of the algorithm. As seen in the
Figure 8 the computation time taken increases at the rate of polynomially exponential function with the
increase in the number of pairwise comparisons. With pruning the growth rate of time is much less than
without pruning but there is not much signi�cant di�erence and they both start to grow almost at the
same rate once certain limit has crossed. Theoritically, with the decreasing growth rate of non-pruned
world the growth rate of computation time should also decrease. The di�erence exists in this experiment
because the computation time shown is not precise enough. It takes a very long time to compute for
larger number of pairwise comparisons so we used linear extrapolation to derive the estimated time
taken using the computation time taken to solve a small subset of the big problem. Even with pruning
the performance of the Possible World Theory in terms of computation time couldn’t be improved.

4 CONCLUSION
This work is an attempt to decision making in real world scenario using the concept of Pareto-Optimal objects. The
major contribution from this study is in �nding con�dent enough crowd size, incorporating minority opinion of
the crowd and decision making using a Slack bot. We have introduced the Possible World Theory, its polynomially

11

exponential growth curve and some pruning methods to mitigate the issue. The Slack bot developed in the process
can be used for decision making within a team. We admit that there are limitations in this work and needs more
further revision. The tenacious growth rate of complexity is not so practical and the sample size collected for the
purpose of experimentation is also much less than the expected. However, the �nal ranks obtained provide a
much accurate portrayal of the whole crowd behavior. It can be readily used for ranking small set of comparison
objects and criteria with higher level of accuracy.

ACKNOWLEDGMENTS
Our sincere appreciation and gratitude to all the scholars from the IDIR lab group who have dedicated their
precious time in data collection phase for the experiments and providing invaluable feedbacks.

REFERENCES
[1] Naeemul Hassan Chengkai Li Gergely V. Zaruba Abolfazl Asudeh, Gensheng Zhang. 2015. Crowdsourcing Pareto-Optimal Object

Finding by Pairwise Comparisons. ACM 24 (Oct 2015), 753–762. DOI:https://doi.org/10.1145/2806416.2806451
[2] Terrence L Fine Adrianos Papamarcou. 1986. A Note on Undominated Lower Probabilities. The Annals of Probability 14 (1986), 981–992.
[3] Ayoung Suh Christian Wagner. 2014. The Wisdom of Crowds: Impact of Collective Size and Expertise Transfer on Collective Performance.

HICSS 47 (Jan 2014), 594–603. DOI:https://doi.org/10.1109/HICSS.2014.80
[4] P. B. Sørensen D. B. Lerche. 2008. Evaluation of the ranking probabilities for partial orders based on random linear extensions.

Chemosphere 53 (Sept 2008), 981–992. DOI:https://doi.org/10.1016/S0045-6535(03)00558-7
[5] CK Kum H Troidl E Eypasch, R Lefering. 1995. Probability of adverse events that have not yet occurred: a statistical reminder. British

Medical Journal 311 (1995), 619–620.
[6] P. Walley. 1991. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, Massachusetts.

12

https://doi.org/10.1145/2806416.2806451
https://doi.org/10.1109/HICSS.2014.80
https://doi.org/10.1016/S0045-6535(03)00558-7

	Abstract
	1 Introduction
	2 Framework
	2.1 Find the Confident Sample Size
	2.2 Possible Worlds Theory
	2.3 Example
	2.4 Setbacks
	2.5 Zero World Pruning

	3 Experiments
	4 Conclusion
	Acknowledgments
	References

