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Abstract

Asymptotic Properties of the Deconvolution Kernel Density Estimate

based on 2-Dependent Error Structure with Applications to

Remaining Useful Life Problems in Reliability Theory

Geoffrey H Schuette , Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Shan Sun-Mitchell

This thesis is motivated from an engineering question, which led us to the de-

convolution problem with a dependent error structure. We establish a deconvolution

kernel density estimator by adapting the methods of kernel density estimates and

Fourier Transforms. In this approach, the contaminated data with additive random

errors are assumed dependent and satisfying smooth or super smooth conditions.

Under both smooth and supper smooth conditions, we derived:

1. optimal rates of convergence in terms of mean integrated squared error for

deconvolution kernel density estimator;

2. the limiting distribution of the estimator.
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Chapter 1

Motivation

1.1 Introduction

As systems in engineering continue to become larger and more complex in na-

ture, real time condition monitoring of such systems continues to be an important

area of study in engineering and for the long term health of the systems. Real time

condition monitoring is the process of collecting real-time sensor information from a

functioning device in order to infer or reason about the health of the device. Some

examples included:

• Vibration analysis and Diagnostics

• Model-based voltage and current systems

• Ultrasound testing (Material Thickness/Flaw Testing)

• Infrared thermography

Degradation models are often used to model condition monitoring of the sys-

tems. In the Bayesian approach, prior distributions are assumed, and posterior dis-

tributions are then found from the assumptions of the prior and the model. After

the posterior distribution is found, we can find the probability via the appropriate

threshold failure time and access the health of the system. However, when the as-

sumption of the prior distribution is not accurate, then it is important to be able to

estimate the distribution from the samples generated by the signal time. Therefore,

the focus of this research proposal is to fit the unknown distribution with a smooth

empirical distribution function based on kernel function and sequence of bandwidths.
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An improved model will lead to a more accurate distribution and a truer probability

to the failure threshold.

1.2 Engineering Motivation

A common technique in engineering to estimate when a device will fail is to

use a Bayesian approach with a stochastic model. The researchers will assume the

parameters in the model follow known distributions and use the bayesian approach

to find the probability of when the device will reach a failure thresehold. Below is

some problem defintions common to this area:

Definition 1.1. Problem Definitions

• Degradation Signal is the real condition of the device as detected through condi-

tioning monitoring.

• Residual Life is the remaining wait time till the device fails.

• Residual Life Distribution: For a nonnegative random variable, X, the residual

life distribution, denoted by RX(t), is defined by:

RX(t) = P (X > x+ t|X > x)

For the purpose of this dissertation, we will assume the degradation model is

(1.1) S(ti) = Θti + ε(ti) for i = 1, 2, . . . .

Let D denote the failure threshold, and let the vector ~S = (S(t1) = s1, S(t2) =

s2, . . . , S(tn) = sn) be the observed degradations signals up to time tn. We want to

find RS(t) given that degradation signal follows the model above, i.e.:

RS(t) = P
(
S(t+ tn) ≥ D|~S

)
= P

(
Θ(t+ tn) + ε(t+ tn) ≥ D|~S

)
2



To calculate this probability, we need the conditional probability density function(pdf)

of Θ|~S. To find this pdf, the following relationship is commonly used:

(1.2) p
(
θ|~S
)
∝ π(θ)f

(
~S|θ
)

In the Bayesian framework, p is called the posterior distribution, π is called the prior

distribution of Θ, and f is the likelihood fucntion. The two sides of the equations are

proportional because the left hand side doesn’t have the normalizing constant needed

to make the right hand side a probability density functions.

In [18], Gabraeel, et. al. explore a degradation models with symmetric priors.

They proposed the following degradation model for i = 1, 2, . . .:

(1.3) S(ti) = φ+ θ exp

(
βti + ε(ti)−

σ2

2

)
where φ is a known constant, θ is a lognormal random variable, where ln θ has mean

µ0 and variance σ2
0, and β is a normal random variable with mean µ1 and variance

σ2
1.

First, the authors assume the term ε(ti) is a random error term that follows a

normal distribution with mean zero and variance σ2. This model describes how the

devices being monitored degrade over time. For convenience, they took the natural

log of both sides to introduce the logged signal at time ti, denoted Li, which yielded

the following model:

(1.4) Li = ln(S(ti)− φ) = θ′ + βti + ε(ti)

where θ′ = ln θ − σ2

2
is a random variable with mean µ0 − σ2

2
and variance σ2

0. Using

a Bayesian approach, the authors found that the posterior distribution given the

observed data L1, . . . , Lk with the prior distribution of θ′ and β assumed to be normal

is a bivariate normal distribution containing the parameters related to equation (1.3).

3



Using this posterior distribution, they find an approximation for the residual life c.d.f.

for time T ∈ (−∞,∞). Then the truncated conditional c.d.f. for failure time, T,

with the constraint T ≥ 0 can be derived easily.

Then in [5], Chakraborty et. al. explore a model that will allow for a skewed

prior distribution, as the method developed above was for a normal distribution and

symmetric priors. Hence, a linear degradation model is given by the following with

signal time S(ti) = Si:

(1.5) Si = θti + ε(ti), i = 1, . . . k,

where θ ∼ Γ(α, β) and iid ε(ti) ∼ N(0, σ2). They find that the posterior distribution

of θ given the signal times is:

(1.6) f(θ|S1, S2, . . . , Sk) =
θα−1

c
exp

[
− 1

2σ2
1

(θ − µ1)2

]
, θ ∈ R+,

where

c =

∫ ∞
0

θα−1 exp

[
− 1

2σ2
1

(θ − µ1)2

]
dθ,

where µ1 =
b

2a
, σ2

1 =
1

2a
, a =

1

2σ2

k∑
i=1

t2i , b =
1

σ2

k∑
i=1

Siti −
1

β

With the posterior distribution known, Chakraborty et al., found the distribution of

the residual life, Lr, of the signal, which is given by:

(1.7) P(Lr ≤ t|S1, . . . , Sk) = 1−
∫ ∞

0

yα−1

c
exp

[
1

2σ2
1

(
y

t+ tk
− µ1

)2
]

Φ

(
T − y
σ

)
dy

This residual life distribution requires numerical integration to calculate at any time

t. The authors then give an alternative method using a simulation based approach

to compute an empirical residual life distribution. They conducted the simulations

of both the methods in [5] and [18] to compare the two methods with prior signals

being both skewed and symmetric. They conclude that the method in the [5] is better

suited to handle both the skewed prior as well as the symmetric priors.
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1.3 Density Estimation

To our knowledge, the methods and models available in literature of real time

condition monitoring of devices using degradation stochastic models all follow the

Bayesian framework. The focus of this thesis started by stepping away from the

Bayesian framework and assume the distribution of Θ is unknown and develop an

asymptotic estimation of the unknown distribution from random samples. We begin

by giving a definiton of density estiamtion, and a breif summary of common techniques

used in density estimation.

Definition 1.2. Density Estimation, as defined in [25] by Silverman

Given a set of observed data points sampled from an unknown probability density

function, density estimation is the construction of an estimate of a probability density

function from the observed data.

There are many methods of density estimation ranging from parametric to

nonparametric. In the parametric approach, one would assume a known distribution

and estimate the parameters which distinguishes said distribution. An example would

be to assume a distribution follows a normal density with parameters µ and σ2,

and then use the observed data to estimate µ and σ2. In this thesis, we will be

using the nonparametric approach, more specifically the kernel density estimator.

Other density estiamtors include: histogram, naive estimator, nearest neighborhood

method, variable kernel method, orthogonal series estimators, maximum penalized

likelihood estimators, and general weight function estimators.
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1.3.1 Kernel Density Estimator

Definition 1.3. Kernel Density Estimator

With observed values X1, . . . , Xn from unknown pdf f , let K(x) be a function which

satisfies the following property: ∫ ∞
−∞

K(x)dx = 1.

Then the kernel density estimator f̂ of f based on kernel K is given by:

f̂(x;λn) =
1

nλn

n∑
j=1

K

(
x−Xi

λn

)
,

where λn is the bandwidth such that λn → 0 as n→∞.

The function K is called a kernel function and λn is also called the window

width or smoothing parameter. For more information on this standard kernel density

estimator, you can find more details in [25] and [29], by Silverman and Wand and

Jones respectively. In statistics, we want the mean squared error and the mean

integrated square error of any estimator to tend to zero as our sample size gets large.

To prove that this kernel density estimator is a good estimator in terms of mean

square error, we need to restrict the type of kernel functions we consider. To do

this, assume that K is a symmetric function which satisfies the following additional

properties to the definition:∫ ∞
−∞

tK(t)dt = 0 and

∫ ∞
−∞

t2K(t)dt = c 6= 0

Some common examples of Kernel functions that satisfy these properties are: Normal,

Epanechnikov, and Tri-Cube Kernels functions.

6



1.3.2 Sampling

As a reminder, we are modeling the degradation signals using the following

stochastic model:

S(ti) = Θti + ε(ti) for i = 1, 2, . . . .

Our focus is to create a kernel density estimator for the distrubtion of Θ. From

the model, we can see Θ represents the slope of the stochastic signal. Thus it is

reasonable to assume the point-slope formula would be an appropriate estimate for

Θ. Assume we have the following observations from the degradtion model: (ti, S(ti))

i = 1, 2, . . . , n. Now we define the following estiamtor:

(1.8) θ̃i =
S(ti+1)− S(ti)

ti+1 − ti
for i = 1, 2 . . . , n− 1

Using the assumption that the signals S(ti) follow the model above, we see that

θ̃i =
S(ti+1)− S(ti)

ti+1 − ti
i = 0, . . . , n

=
θti+1 + ε(ti+1)− θti − ε(ti)

ti+1 − ti

= θ +
ε(ti+1)− ε(ti)
ti+1 − ti

= θ +Xi, where

Xi =
ε(ti+1)− ε(ti)
ti+1 − ti

. Without loss of generality, let ti+1 − ti = 1 for all i. Our model

now how the following form: Θ̃ = θ + X. We can see the density function of Θ̃ is

a convolution of the density function of Θ and the density function of X. To create

a density estimiation for Θ from the distribution of Θ̃, we will explore the idea of

deconvolution in the next chapter.

7



Chapter 2

Deconvolution Estimator

We wish to estimate the distribution of Θ, when Θ̃ = Θ+X. From the observed

signals ~S, we can find the associated θ̃i’s. As is standard in engineering models, we will

assume ε(ti)’s are independent and identically distributed for all i and assume that Θ

is independent of all ε(ti)’s. We can see that θ̃i’s are identically distributed but not

independent since the observations are dependent of the errors from previous signals.

Since Θ and X are independent, we know that the density of Θ̃ is a convolution of

the density of Θ and the density of X, which we can write as:

fΘ̃(y) =

∫
π(z)fX(z − y)dz

where fΘ̃(x), π(x), and fX(x) denote the distribution of Θ̃, Θ and X respectively.

Using properties of Fourier Transforms, we get φΘ̃(u) = φπ(u)φX(u). As long as

|φX(u)| > 0 for all u, we have φπ(u) =
φΘ̃(u)

φX(u)
, and assuming the inverse characteristic

equation exists, we can write

(2.1) π(x) = φ−1

(
φΘ̃(u)

φX(u)

)
=

1

2π

∫
e−iux

φΘ̃(u)

φX(u)
du

We wish to estimate π(x). Using eqaution (2.1), we can create a kernel estimator

of fΘ̃ and find the corresponding characteristic equation to create an estimate of π(x).

Let K(x) be a bounded even probability density as proposed in Stefanski and Carroll

(1990), and let f̂ be an ordinary kernel density estimator of fΘ̃ based on kernel K,

i.e.,

f̂(x;λn) =
1

nλn

n∑
j=1

K

(
x− θ̃j
λn

)
8



where λn is the bandwidth. Then the characteristic equation of f̂ is:

φf̂ (u) = E
[
eiuX

∗]
=

∫
eiux̃f̂(x̃;λn)dx̃

=

∫
eiux̃

1

nλn

n∑
j=1

K

(
x̃− θ̃j
λn

)
dx̃

=
1

nλn

n∑
j=1

∫
eiux̃K

(
x̃− θ̃j
λn

)
dx̃

Now, we will do a change of variables. Let v =
x̃− θ̃j
λn

, which means x̃ = θ̃j + λnv

and dv =
dx̃

λn
. So,

φf̂ (u) =
1

nλn

n∑
j=1

∫
eiu(θ̃j+λnv)K (v)λndv

=
1

n

n∑
j=1

∫
eiuθ̃jeiuλnvK(v)dv

=
1

n

n∑
j=1

eiuθ̃j
∫
eiuλnvK(v)dv

=
1

n

n∑
j=1

eiuθ̃jφK(uλn)

Let φ̂(u) =
1

n

n∑
j=1

eiuθ̃j . Then φf̂ (u) = φ̂(u)φK(uλn). So an appropriate estimator of

π(x), denoted by π̂(x;λn), is

9



π̂(x;λn) = φ−1

(
φf̂ (u)

φX(u)

)
=

1

2π

∫
e−iux

φf̂ (u)

φX(u)
du

=
1

2π

∫
e−iux

φ̂(u)φK(uλn)

φX(u)
du

=
1

2π

∫
e−iux

1
n

n∑
j=1

eiuθ̃jφK(uλn)

φX(u)
du

=
1

2nπ

∫ n∑
j=1

eiuθ̃je−iux
φK(uλn)

φX(u)
du

=
1

2nπ

n∑
j=1

∫
e−iu(x−θ̃j)φK(uλn)

φX(u)
du

Now with the change of variable: y = uλn. We have:

π̂(x;λn) =
1

2nπ

n∑
j=1

∫
e
−iy

(
x−θ̃j
λn

)
φK(y)

φX

(
y
λn

) dy
λn

=
1

nλn

n∑
j=1

1

2π

∫
e
−iy

(
x−θ̃j
λn

)
φK(y)

φX

(
y
λn

)dy

Let

(2.2) K∗(t) =
1

2π

∫
e−iyt

φK(y)

φX

(
y
λn

)dy
Then

(2.3) π̂(x;λn) =
1

nλn

n∑
j=1

K∗

(
x− θ̃j
λn

)

Equation (2.3) is called the Deconvolution kernel density estimator. This ap-

proach uses fourier transforms and are predominatly used for statistical inference in

errors-in-variables problems. At this point, we will give a brief history of work that

10



has been done with this approach. Carroll and Hall [3] and Stefanski and Carroll

[27] constructed a consistent deconvolution kernel desnity estimator. Stefanski [26]

and Fan [15] & [17] derived the general asympototic properties of the deconvolution

kernel density estimator. In [16], Fan shows the limiting distribution of this estimator

is asmyptotically normal.

Li and Vuong [21], Lin and Carrol [22], Hall and Ma [19], Delaigle et al. [7],

and Stefanski and McIntrye [28] explore measurement error problems and replicated

data. Diggle and Hall [14] and Neumann [24] study the deconvolution problem when

samples of error data are available. Butucea and Matias [1], Butucea et al. [2], and

Kneip et al. [20] focused on problems where the error term in the model follows a

supersmooth distribution known up to a scale parameter, and Meister [23] assumed

the error term follows a normal distribution. In Carroll et al. [4], the authors provided

an account of the general methodology for the deconvolution problem. Delaigle and

Hall [12] explore choices for the smoothing parameters choice in error-in-variables

problems using SIMEX, and in [13], they remove the assumption of the distribution

of the error term is known and prove properties of the deconvolution estimator in

such scenario. Delaigle and Gijbels in [9], [10], and [11] explore different bandwidth

selections for the deconvolution problem.

For the remainder of this thesis, we will follow the frame work Fan used in [15]

and [16]. We will need the following defintions:

Definition 2.1.

• A random variable, X, is said to have an ordinary smooth distribution of order

β if the characteristic function of X, denoted φX(t), satisfies:

d0|t|−β ≤ |φX(t)| ≤ d1|t|−β as t→∞,

11



for some positive constants d0, d1, and β. Examples include gamma, double

exponential and symmetric gamma distributions.

• A random variable, X, is said to have a supersmooth distribution of order β if

the characteristic function of X, denoted φX(t), satisfies:

d0|t|−β0 exp

(
−|t|β

γ

)
≤ |φX(t)| ≤ d1|t|−β1 exp

(
−|t|β

γ

)
as t→∞,

for some positive constants d0, d1, γ and β and constants β0 and β1 . Examples

include normal, mixture normal, and Cauchy.

As we know the convergence of the estimators are directly related to the smooth-

ness of the error term, it is appropriate to consider both cases in our deconvolution

kernel density estimator. The final tool we will need before we move onto the next

chapter is Plancherel’s Theorem:

Theorem 2.2. ∫ ∞
−∞
|E(t)|2dt =

∫ ∞
−∞
|Ev|2dv

where E(t) =
∞∫
−∞

Eve
−2πivtdv, i.e. the integral of the squared modulus of a function is

equal to the integral of the squared modulus of its spectrum.

Note: E(t) and Ev are Fourier transform pairs.

12



Chapter 3

Optimal Rates of Convergence for the Deconvolution Kernel Desnity Estimator with

2-Dependent Error Structure

3.1 MISE Upper Bound

In this chapter, we will create an upper bound of the mean integrated square

error of the deconvolution estimator constructed in chapter 2, and find optimal rates

of λn which in the worst case scenario will ensure us the mean integrated square error

of the deconvolution estimator will go to zero as n goes to infinity. The mean squared

error of an arbitary estimator θ̂ is defined by MSE(θ̂) = Var(θ̂) + (E[θ̂]− θ)2. So,

MISE{π̂(·;λn)} =

∫ T

0

MSE{π̂(x, λn)}dx

=

∫ T

0

Var{π̂(x;λn)}+ (bias(π̂(x;λn)))2dx(3.1)

where bias(f̂(x;λn)) = E[f̂(x : λn)] − f(x). First, we will find E[π̂(x;λn)] by

using the property of expectation, E[X] = E[E[X|Y ]]. So,

E[π̂(x;λn)|Θ = z] = E

[
1

nλn

n∑
j=1

K∗

(
x− θ̃j
λn

)∣∣∣∣∣Θ = z

]

=
1

nλn

n∑
j=1

E

[
K∗

(
x− θ̃j
λn

)∣∣∣∣∣Θ = z

]

since θ̃j’s are identically distributed, the equation above becomes:

13



=
1

λn
E

[
K∗

(
x− θ̃1

λn

)∣∣∣∣∣ θ = z

]

=
1

λn

∫
K∗
(
x− w
λn

)
fΘ̃|Θ(w|z)dw

=
1

λn

∫  1

2π

∫
e−iy(

x−w
λn

) φK(y)

φX1

(
y
λn

)dy
 fΘ̃|Θ(w|z)dw

=
1

2πλn

∫ ∫
e−iy(

x−w
λn

) φK(y)

φX1

(
y
λn

)fΘ̃|Θ(w|z)dydw

using Fubini’s Theorem, we now get:

=
1

2πλn

∫
e−

iyx
λn

φK(y)

φX1

(
y
λn

) ∫ eiw( y
λn

)fθ̃1|θ(w|z)dwdy

=
1

2πλn

∫
e−

iyx
λn

φK(y)

φX1

(
y
λn

)φΘ̃|Θ

(
y

λn

∣∣∣∣ z) dy
Since Θ̃ = Θ +X1 and Θ = z, we know that φΘ̃|Θ(u|z) = φX1(u)eiuz. Thus, we have:

E[π̂(x;λn)|Θ = z] =
1

2πλn

∫
e

−iyx
λn

φK(y)

φX1

(
y
λn

)φX1

(
y

λn

)
eiz(

y
λn

)dy

=
1

2πλn

∫
eiy(

z−x
λn

)φK(y)dy

=
1

2πλn

∫
e−iy(

x−z
λn

)φK(y)dy

=
1

λn
K

(
x− z
λn

)
(3.2)

Since E[E[π̂(x;λn)|Θ]] =
1

λn
E

[
K

(
x−Θ

λn

)]
, we know E[π̂(x;λn)] =

1

λn
E

[
K

(
x−Θ

λn

)]
.

Thus, we know that the expected value of π̂(x) is the same as the ordinary kernel

density.
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With this result, we are now ready to investigate the bias term. Using a result

from [29] by Wand and Jones, we can show:

bias(π̂(x;λn)) =
λ2
n

2
π′′(x)

∫
y2K(y)dy +O(λ2

n)

(bias(π̂(x;λn)))2 =
λ4
n

4
(π′′(x))2

(∫
y2K(y)dy

)2

+
λ2
n

2
π′′(x)(O(λ2

n))

∫
y2K(y)dy +O(λ4

n)

=
λ4
n

4
(π′′(x))2

(∫
y2K(y)dy

)2

+O(λ4
n)∫

(bias(π̂(x;λn)))2dx =

∫ (
λ4
n

4
(π′′(x))2

(∫
y2K(y)dy

)2

+O(λ4
n)

)
dx

=
λ4
n

4

(∫
y2K(y)dy

)2 ∫
(π′′(x))2dx+

∫
O(λ4

n)dx

Thus, we have:

(3.3)∫
(bias(π̂(x;λn)))2dx =

λ4
n

4

(∫
y2K(x)dx

)2 ∫
(π′′(x))2dx+

∫
O(λ4

n)dx = O(λ4
n)

Next, we need to find Var{π̂(x;λn)} and integrate.

Var{π̂(x;λn)} = Var

 1

nλn

n∑
j=1

K∗

(
x− θ̃j
λn

)
=

1

n2λ2
n

Var


n∑
j=1

K∗

(
x− θ̃j
λn

)
=

1

n2λ2
n

 n∑
j=1

Var

{
K∗

(
x− θ̃j
λn

)}
+ 2

∑
j<k

Cov

{
K∗

(
x− θ̃j
λn

)
,K∗

(
x− θ̃k
λn

)}
=

1

nλ2
n

Var

{
K∗

(
x− θ̃1

λn

)}
+

2

nλ2
n

Cov

{
K∗

(
x− θ̃1

λn

)
,K∗

(
x− θ̃2

λn

)}
,(3.4)

since θ̃j’s are identically distributed, and for j and k satisfying |k − j| > 1, we

know θ̃j is independent of θ̃k. Thus, we have

Cov

{
K∗

(
x− θ̃j
λn

)
, K∗

(
x− θ̃k
λn

)}
= 0 for j and k satisfying |k − j| > 1.

Now, we will explore the integral
1

nλ2
n

Var

{
K∗

(
x− θ̃1

λn

)}
in equation (3.4):
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∫
1

nλ2
n

Var

{
K∗

(
x− θ̃1

λn

)}
dx =

∫
1

nλ2
n

E

(K∗(x− θ̃1

λn

))2
− 1

nλ2
n

(
E

[
K∗

(
x− θ̃1

λn

)])2

dx

=
1

nλ2
n

E

∫ (K∗(x− θ̃1

λn

))2

dx

− 1

nλ2
n

∫ (
E

[
K∗

(
x− θ̃1

λn

)])2

dx(3.5)

Next, we will show the second term in equation (3.5) is as follows:

1

nλ2
n

∫ (
E

[
K∗

(
x− θ̃1

λn

)])2

dx =
1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

Proof.

1

nλ2
n

∫ (
E

[
K∗

(
x− θ̃1

λn

)])2

dx =
1

nλ2
n

∫ (
E

[
K∗
(
x− (Θ +X1)

λn

)])2

dx

=
1

nλ2
n

∫ (∫ ∫
K∗
(
x− (u+ v)

λn

)
fθ;X1(u, v)dudv

)2

dx

Using θ independent of X1

=
1

nλ2
n

∫ (∫ ∫
K∗
(
x− (u+ v)

λn

)
π(u)fX1

(v)dudv

)2

dx

=
1

nλ2
n

∫ ∫ ∫ 1

2π

∫
e−iy(

x−(u+v)
λn

) φK(y)

φX1

(
y
λn

)dyπ(u)fX1
(v)dudv

2

dx

=
1

nλ2
n

∫ ∫ ∫ 1

2π

∫
eiy(

u+v−x
λn

) φK(y)

φX1

(
y
λn

)π(u)fX1(v)dydudv

2

dx

=
1

nλ2
n

∫ ∫ ∫ 1

2π

∫
eiy(

u+v−x
λn

) φK(y)

φX1

(
y
λn

)π(u)fX1(v)dudvdy

2

dx

=
1

nλ2
n

∫ ∫ 1

2π
eiy(

−x
λn

) φK(y)

φX1

(
y
λn

) ∫ eiy(
u
λn

)π(u)du

∫
eiy(

v
λn

)fX1(v)dvdy

2

dx

=
1

nλ2
n

∫ ∫ 1

2π
eiy(

−x
λn

) φK(y)

φX1

(
y
λn

)φθ ( y

λn

)
φX1

(
y

λn

)
dy

2

dx

=
1

nλ2
n

∫ (∫
1

2π
eiy(

−x
λn

)φK(y)φθ

(
y

λn

)
dy

)2

dx
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Let t = y
λn

and w = x
2π

, then dt = 1
λn
dy and dw = 1

2π
dx, and we get:

1

nλ2
n

∫ (
E

[
K∗

(
x− θ̃1

λn

)])2

dx =
1

nλ2
n

∫ (∫
1

2π
e−2πwtiφK(tλn)φθ (t)λndt

)2

2πdw

=
1

2πn

∫ (∫
e−2πwtiφK(tλn)φθ (t) dt

)2

dw

Using Plancherel’s Theorem:

=
1

2πn

∫
|φK(tλn)φθ (t) |2dt

=
1

2πn

∫
φ2
K(tλn)|φθ (t) |2dt

Thus,

1

nλ2
n

∫ (
E

[
K∗

(
x− θ̃1

λn

)])2

dx =
1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

Similarly, one can show using Plancherel’s Theorem and the substitution

t =
x− θ̃1

λn
:

(3.6)
1

nλ2
n

∫ (
K∗

(
x− θ̃1

λn

))2

dx =
1

2πλnn

∫
φ2
K(t)∣∣∣φX1

(
t
λn

)∣∣∣2dt
Notice that the right hand side does not depend on θ̃1. So equation (3.5) now

becomes:∫
1

nλ2
n

Var

{
K∗

(
x− θ̃1

λn

)}
dx =

1

2πλnn

∫
φ2
K(t)

|φX1

(
t
λn

)
|2
dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

One can show by definition of X1 that φX1 (u) = φε1 (u)φε0 (−u) which gives us:

=
1

2πλnn

∫
φ2
K(t)∣∣∣φε1 ( t

λn

)
φε0

(
−t
λn

)∣∣∣2dt−
1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt
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Now, we will work on the integral of the covariate term of equation (3.4):

Cov

{
K∗

(
x− θ̃1

λn

)
,K∗

(
x− θ̃2

λn

)}
= E

[
K∗

(
x− θ̃1

λn

)
K∗

(
x− θ̃2

λn

)]
− E

[
K∗

(
x− θ̃1

λn

)]
E

[
K∗

(
x− θ̃2

λn

)]

= E

[
K∗

(
x− θ̃1

λn

)
K∗

(
x− θ̃2

λn

)]
−

(
E

[
K∗

(
x− θ̃1

λn

)])2

since θ̃i are identically distributed.

≤ E

[
K∗

(
x− θ̃1

λn

)
K∗

(
x− θ̃2

λn

)]

First we will define the following notation: let d~z = dzdadbdc. So,

2

nλ2
n

∫
E

[
K∗

(
x− θ̃1

λn

)
K∗

(
x− θ̃2

λn

)]
dx =

2

nλ2
n

∫
E

[
K∗
(
x− (θ + ε1 − ε0)

λn

)
K∗
(
x− (θ + ε2 − ε1)

λn

)]
dx

=
2

nλ2
n

∫
· · ·
∫
K∗
(
x− (z + b− a)

λn

)
K∗
(
x− (z + c− b)

λn

)
fΘ;ε0;ε1;ε2(z1, z2, z3, z4)d~zdx

=
2

nλ2
n

∫
· · ·
∫
K∗
(
x− (z + b− a)

λn

)
K∗
(
x− (z + c− b)

λn

)
π(z)fε0(a)fε1(b)fε2(c)d~zdx

=
2

nλ2
n

∫
· · ·
∫

1

2π

∫
e−iy1(

x−(z+b−a)
λn

) φK(y1)

φX1

(
y1
λn

)dy1
1

2π

∫
e−iy2(

x−(z+c−b)
λn

) φK(y2)

φX1

(
y2
λn

)dy2π(z)fε0(a)fε1(b)fε2(c)d~zdx

=
1

2π2nλ2
n

∫
· · ·
∫
eiy1(

z+b−a−x
λn

) φK(y1)

φX1

(
y1
λn

)eiy2( z+c−b−xλn
) φK(y2)

φX1

(
y2
λn

)π(z)fε0(a)fε1(b)fε2(c)dy1dy2d~zdx

=
1

2π2nλ2
n

∫
· · ·
∫
eiy1(

z+b−a−x
λn

) φK(y1)

φX1

(
y1
λn

)eiy2( z+c−b−xλn
) φK(y2)

φX1

(
y2
λn

)π(z)fε0(a)fε1(b)fε2(c)d~zdy2dx

Now we can seperate the different integrals of a, b, c, and z and write them as

characteristic equations:

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φX1

(
y1
λn

)
φX1

(
y2
λn

)φΘ

(
y1 + y2

λn

)
φε0

(
−y1

λn

)
φε1

(
y1 − y2

λn

)
φε2

(
y2

λn

)
eix(

y1+y2
λn

)dy1dy2dx

Usine φX1 (u) = φε1 (u)φε0 (−u) we have,

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε0

(
−y1
λn

)
φX1

(
y2
λn

)φΘ

(
y1 + y2

λn

)
φε0

(
−y1

λn

)
φε1

(
y1 − y2

λn

)
φε2

(
y2

λn

)
eix(

y1+y2
λn

)dy1dy2dx

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
y2
λn

)
φε0

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
φε1

(
y1 − y2

λn

)
φε2

(
y2

λn

)
eix(

y1+y2
λn

)dy1dy2dx

But the characteristic equations of the εi’s are the same since they are i.i.d. So,

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
φε1

(
y1 − y2

λn

)
eix(

y1+y2
λn

)dy1dy2dx
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Thus, we have:

2

nλ2
n

∫
E

[
K∗

(
x− θ̃1

λn

)
K∗

(
x− θ̃2

λn

)]
dx =

(3.7)

1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
φε1

(
y1 − y2

λn

)
eix(

y1+y2
λn

)dy1dy2dx

Now let Y1 = eiε1(
y1
λn

) and Y2 = eiε1(
−y2
λn

), then:

φε1

(
y1 − y2

λn

)
= E

[
eiε1(

y1−y2
λn

)
]

= E [Y1Y2]

using definition of covariance, we get:

E [Y1Y2] = ρY1,Y2σY1σY2 + E [Y1] E [Y2]

= σY1σY2 + E [Y1] E [Y2]

since Y1 and Y2 are functions of ε1, we know by definition:

= σY1σY2 + φε1

(
y1

λn

)
φε1

(
−y2

λn

)

Using this in equation (3.7), we get:

1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
φε1

(
y1 − y2

λn

)
e
ix
(
y1+y2
λn

)
dy1dy2dx =

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)[
σY1σY2 + φε1

(
y1

λn

)
φε1

(
−y2

λn

)]
e
ix
(
y1+y2
λn

)
dy1dy2dx

=
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
σY1σY2e

ix
(
y1+y2
λn

)
dy1dy2dx

+
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
φε1

(
y1

λn

)
φε1

(
−y2

λn

)
e
ix
(
y1+y2
λn

)
dy1dy2dx

=
σY1σY2
2π2nλ2

n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)φΘ

(
y1 + y2

λn

)
e
ix
(
y1+y2
λn

)
dy1dy2dx

+
1

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)φΘ

(
y1 + y2

λn

)
e
ix
(
y1+y2
λn

)
dy1dy2dx
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But since π(x) is bounded, there exists a c such that φΘ ≤ c

≤ cσY1
σY2

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)eix( y1+y2
λn

)dy1dy2dx+
c

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)eix(

y1+y2
λn

)dy1dy2dx

=
cσY1σY2

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)eix( y1+y2
λn

)dy1dy2dx+
c

2π2nλ2
n

∫ (∫
φK(y1)eix(

y1
λn

)dy1

)2

dx

Using Plancherel’s Theorem,

=
cσY1

σY2

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)eix( y1+y2
λn

)dy1dy2dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

So we have established the following bound on the variance term of the MISE for

π̂(x;λn):∫
Var{π̂(x;λn)}dx ≤ 1

2πλnn

∫
φ2
K(t)∣∣∣φε1 ( t

λn

)
φε1

(
−t
λn

)∣∣∣2dt−
1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1σY2
2π2nλ2

n

∫∫∫
φK(y1)φK(y2)

φε1

(
y1
λn

)
φε1

(
−y2
λn

)eix( y1+y2λn

)
dy1dy2dx+

c

2π2nλ2
n

∫
φ2
K(y1)dy1

(3.8)

With equation (3.3) and (3.8), we have established an upper bound for the MISE

given in equation (3.1).

3.2 Cases of MISE for Smooth and Supersmooth Assumptions

In this section, we will consider two different cases: ε1 follows an ordinary

smooth distribution and a super smooth distribution. We will show the upper bound

given in equation (3.8) converges to zero with the appropriate selection of bandwidth.

This will show the MISE given in equation (3.1) of our deconvolution kernel denstiy

estimator goes to zero as n gets large.
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3.2.1 Case 1: Ordinary Smooth Distribution

We will assume that ε1 follows an ordinary smooth distribution. This means

φε1(t) satisfies:

(3.9) d0|t|−β ≤ |φε1(t)| ≤ d1|t|−β as t→∞,

for some positive constants d0, d1, and β. Using this assumption, we will find the

upper bound of the variance term of the MISE for π̂(x;λn) with the assumption that

ε1 follows an ordinary smooth distribution and get:

∫
Var{π̂(x;λn)}dx ≤ 1

2πλnn

∫
φ2
K(t)∣∣∣∣d0

∣∣∣ tλn ∣∣∣−βd0

∣∣∣−tλn ∣∣∣−β
∣∣∣∣2
dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

d0

∣∣∣ y1λn ∣∣∣−βd0

∣∣∣−y2λn

∣∣∣−β eix(
y1+y2
λn

)dy1dy2dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2d2
0πλnn

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−4β

dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2d2
0π

2nλ2
n

∫∫∫
φK(y1)φK(y2)∣∣∣ y1λn ∣∣∣−β∣∣∣ y2λn ∣∣∣−β e

ix( y1+y2
λn

)dy1dy2dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2d2
0πλnn

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−4β

dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2d2
0π

2nλ2
n

∫ ∫ φK(y1)∣∣∣ y1λn ∣∣∣−β e
ix( y1λn )dy1


2

dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2d2
0πλnn

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−4β

dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2d2
0π

2nλ2
n

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−2β

dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1
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the line above is a result of using Plancherel’s Theorm. Therefore, we now have:∫
Var{π̂(x;λn)}dx ≤ 1

2d2
0πλnn

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−4β

dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1σY2

2d2
0π

2nλ2
n

∫
φ2
K(t)∣∣∣ tλn ∣∣∣−2β

dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2d2
0πλ

1+4β
n n

∫
φ2
K(t)t4βdt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1σY2

2d2
0π

2nλ
2(1+β)
n

∫
φ2
K(t)t2βdt+

c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

nλ1+4β
n

O (1)− 1

n
O (1) +

1

nλ
2(1+β)
n

O (1) +
1

nλ2
n

O (1)

≤


[

2

nλ1+4β
n
− 1

n
+ 1

nλ2n

]
O (1) for β ≤ 1

2[
2

nλ
2(1+β)
n

− 1
n

+ 1
nλ2n

]
O (1) for β > 1

2

(3.10)

We want equation (3.10) to go to zero for all values of β. We will let

λn = n−
a
21(0, 1

2 ](β) + n−b1[ 12 ,∞)(β), where a and b are chosen so that 0 < a < 1
1+4β

and 0 < b < 1
2(1+β)

, and we will focus on both the first and third terms in equation

(3.10), for thier respective values of β. We will show they go to zero with the choice

of a and b. For β ∈
(
0, 1

2

]
, we have:

2

nλ1+4β
n

=
2

n
(
n−

a
2

)1+4β
and

1

nλ2
n

=
1

n
(
n−

a
2

)2

= 2n−(1−a(1+4β)
2 ) = n−(1−a)

It is easy to see by the choice of a that 1 − a(1+4β)
2

> 0 and 1 − a > 0. Let

ω1 = 1− a(1+4β)
2

and ω2 = 1− a. Then:∫
Var{π̂(x;λn)}dx ≤ k

[
2

nλ1+4β
n

− 1

n
+

1

nλ2
n

]
= o(n−ω1)−O(n−1) + o(n−ω2) = o(n−ωa),
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where −ωa = max{−ω1,−1, ω2}.

Now to consider the case: β ∈
[

1
2
,∞
)
:

2

nλ
2(1+β)
n

=
2

n (n−b)2(1+β)
and

1

nλ2
n

=
1

n (n−b)2

= 2n−(1−2b(1+β)) = n−(1−2b)

It is easy to see by the choice of b that 1 − 2b(1 + β) > 0 and 1 − 2b > 0. Let

ω3 = 1− 2b(1 + β) and ω4 = 1− 2b. Then:∫
Var{π̂(x;λn)}dx ≤ k

[
2

nλ
2(1+β)
n

− 1

n
+

1

nλ2
n

]
= o(n−ω3)−O(n−1) + o(n−ω4) = o(n−ωb),

where −ωb = max{−ω3,−1, ω4}. If λn = n−
a
21(0, 1

2 ](β) + n−b1[ 12 ,∞)(β), where a and

b are chosen so that 0 < a < 1
1+4β

and 0 < b < 1
2(1+β)

. Then we have that:∫
Var{π̂(x;λn)}dx ≤ o(n−ωa)1(0, 1

2 ](β) + o(n−ωb)1[ 12 ,∞)(β)(3.11)

Finally when ε1 follows a smooth distribution and for λn = n−
a
21(0, 1

2 ](β)+n−b1[ 12 ,∞)(β),

where a and b are chosen so that 0 < a < 1
1+4β

and 0 < b < 1
2(1+β)

, we have from

equation (3.3) and (3.11):

MISE{π̂(·;λn)} = o(n−ωa)1(0, 1
2 ](β) + o(n−ωb)1[ 12 ,∞)(β) + o(λ4

n)

3.2.2 Case 2: Supersmooth Distribution

We will assume that ε1 follows a super smooth distribution. This means

φε1(t) satisfies:

(3.12) d0|t|β0 exp

(
−|t|β

γ

)
≤ |φε1(t)| ≤ d1|t|β1 exp

(
−|t|β

γ

)
as t→∞,
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for some positive constants d0, d1, γ and β and constants β0 and β1. Using this

assumption, we will find the upper bound of the variance term of the MISE for

π̂(x;λn) with the assumption that ε1 follows an supersmooth distribution and get:∫
Var{π̂(x;λn)}dx ≤ 1

2πλnn

∫
φ2
K(t)∣∣∣∣d0

∣∣∣ tλn ∣∣∣β0

exp
(
−|t|β
γλβn

)
d0

∣∣∣−tλn ∣∣∣β0

exp
(
−|−t|β
γλβn

)∣∣∣∣2
dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2π2nλ2
n

∫∫∫
φK(y1)φK(y2)

d0

∣∣∣ y1λn ∣∣∣β0

exp
(
−|y1|β
γλβn

)
d0

∣∣∣−y2λn

∣∣∣β0

exp
(
−|−y2|β
γλβn

)eix( y1+y2
λn

)dy1dy2dx

+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2πλnn

∫
φ2
K(t)∣∣∣∣d2

0

∣∣∣ tλn ∣∣∣2β0

exp
(
−2|t|β
γλβn

)∣∣∣∣2
dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2π2nλ2
n

∫ ∫ φK(y1)

d0

∣∣∣ y1λn ∣∣∣β0

exp
(
−|y1|β
γλβn

)eix( y1λn )dy1


2

dx+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

Using Plancherel’s Theorem, we have:

=
1

2πλnn

∫
φ2
K(t)∣∣∣∣d4

0

∣∣∣ tλn ∣∣∣4β0

exp
(
−4|t|β
γλβn

)∣∣∣∣dt−
1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1

σY2

2π2nλ2
n

∫
φ2
K(t)

d2
0

∣∣∣ tλn ∣∣∣2β0

exp
(
−2|t|β
γλβn

)dt+
c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

2d4
0πλ

1−4β0
n n

∫
φ2
K(t) exp

(
4|t|β

γλβn

)
|t|−4β0 dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1σY2

2d2
0π

2nλ2−2β0
n

∫
φ2
K(t) exp

(
2|t|β

γλβn

)
|t|−2β0 dt+

c

2π2nλ2
n

∫
φ2
K(y1)dy1

But we can bound exp
(
c|t|β

)
, where c is considered a positive constant, by

exp
(
c|T |β

)
. Thus we have that:
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∫
Var{π̂(x;λn)}dx ≤ 1

2d4
0πλ

1−4β0
n n

exp

(
4|T |β

γλβn

)∫
φ2
K(t) |t|−4β0 dt− 1

2πn

∫
φ2
K(λnt)|φθ(t)|2dt

+
cσY1σY2

2d2
0π

2nλ2−2β0
n

exp

(
2|T |β

γλβn

)∫
φ2
K(t) |t|−2β0 dt+

c

2π2nλ2
n

∫
φ2
K(y1)dy1

=
1

λa1n n
O
(

exp

(
4|T |β

γλβn

))
− 1

n
O(1)

+
1

nλa2n
O
(

exp

(
2|T |β

γλβn

))
+

1

nλ2
n

O(1)

where a1 =

 1 if β0 ≥ 0

1− 4β0 if β0 < 0

and a2 =

 2 if β0 ≥ 0

2− 2β0 if β0 < 0

Now, we will choose our bandwidth to be λn = T
(
a0
γ

) 1
β

(log n)
−1
β , where a0 > 4

and is chosen to be fixed. So we can now change the big O notation to little o notation.

1

λa1n n
O
(

exp

(
4|T |β

γλβn

))
=

1

n

(
T
(
a0
γ

) 1
β

(log n)
−1
β

)a1 exp

 4|T |β

γ

(
T
(
a0
γ

) 1
β

(log n)
−1
β

)β


=
k′(log n)

a1
β

n
exp

(
4

a0

log n

)
=
k′(log n)

a1
β

n
exp

(
log n

4
a0

)
=
k′(log n)

a1
β

n
1− 4

a0

= o(n−ω1), where ω1 < 1− 4

a0

Similarly, we can see that

1

nλa2n
O
(

exp

(
2|T |β

γλβn

))
= o(n−ω2) &

1

nλ2
n

O(1) = o(n−ω3) where ω2 < 1− 2

a0
and ω3 < 1
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Thus we have that:∫
Var{π̂(x;λn)}dx ≤ o(n−ω1)− o(n−1) + o(n−ω2) + o(n−ω3)

= o(n−ω1), since max
i=1,2,3

{max{−ωi},−1} = max{−ω1}(3.13)

Finally when ε1 follows a super smooth distribution and for λn = T
(
a0
γ

) 1
β

(log n)
−1
β ,

we have from equation (3.3) and (3.13):

MISE{π̂(·;λn)} = o(n−ω1) + o(λ4
n) = o(n−ω1)

3.3 Theorems and Corollaries

Theorem 3.1.

If ε(ti) are i.i.d. and follow a smooth distribution and λn(a, b) = n−
a
21(0, 1

2 ](β) +

n−b1[ 12 ,∞)(β), where a and b are chosen so that 0 < a < 1
1+4β

and 0 < b < 1
2(1+β)

,

then

MISE{π̂Θ(·;λn)} = o(n−ωa)1(0, 1
2 ](β) + o(n−ωb)1[ 12 ,∞)(β) + o(λ4

n),

where ωa = min
{

1− a(1+4β)
2

, 1, 1− a
}

and ωb = min {1− 2b(1 + β), 1, 1− 2b}

Theorem 3.2.

If ε(ti) are i.i.d. and follow a supersmooth distribution and λn(a0) = T
(
a0
γ

) 1
β

(log n)
−1
β ,

where a0 is chosen so that a0 > 4, then

MISE{π̂Θ(·;λn)} = o(n−ω1),

where ω1 < 1− 4

a0

Corollary 3.3.

If ε(ti) follow a standard Brownian motion, then Xi = ε(ti+1)−ε(ti) are independent

and by Theorem 2

MISE{π̂(·;λn)} = o(n−ω1), where ω1 < 1− 4

a0

when λn(a0) = T
(
a0
γ

) 1
β

(log n)
−1
β , where a0 > 4.
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Chapter 4

Limiting Distrubtion of the Deconvolution Kernel Density Estimator

We have shown the Deconvolution Kernel Density Estimator is a good estimator

as the sample size gets large in terms of mean integrated squared error. Now we will

now find the limiting distribution for the point wise evalution of the estimator. The

standard technique for finding the limiting distribution is the Central Limit Theorem,

but in our case, we cannot apply the Central Limit Theorem, since we do not have the

independence assumption. In [16], Fan uses Lyapounov’s condition and the triangular

CLT on the standard deconvolution kernel density estimator to show the asymptotic

normality of the estimator. As we cannot use the CLT, we will look to use a theorem

that comes as a ramification of the CLT. In the following section, we provide the

theorems and lemmas we will need for this section.

4.1 Preliminaries

The following theorem is found in [6] by Chung:

Theorem 4.1.

Suppose that {Xn} is a sequence of m-dependent, uniformly bounded random vari-

ables’s and let

Sn =
n∑
i=1

Xi such that

σ(Sn)

n1/3
→ +∞

as n → ∞. Then
Sn − E(Sn)

σ(Sn)
converges to N(0, 1), where σ denotes the standard

deviation of the random variable Sn.
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The sequence of {θ̃n} are 2-dependent and uniformly bounded, and hence{
K∗

(
θ̃n − x
λn

)}
are also 2-depenent and uniformly bounded. To prove the asymp-

totic normality of π̂Θ, we need to show that

(4.1)

σ

(
n∑
i=1

1

λn
K∗

(
x− θ̃i
λn

))
n1/3

→ +∞

Before we proceed with proofs of the two cases of error distributions, we will

need the following lemmas from Fan [16]:

Lemma 4.2.

Suppose that {gn} is a sequence of Borel functions satisfying

gn(y)→ g(y) and sup
n
{|gn(y)|} ≤ g∗(y),

where g∗(y) satisfies∫ ∞
−∞

g∗(y)dy <∞ and lim
n→∞

|yg∗(y)| = 0.

If x is a point of continuity of a density f(·), then for any sequence hn → 0, we have

lim
n→∞

1

hn

∫ ∞
−∞

gn

(
x− y
hn

)
f(y)dy = f(x)

∫ ∞
−∞

g(y)dy.

We will now use this lemma, and the following fact we proved earlier:

1

λn
E

[
K∗

(
x− θ̃j
λn

)]
=

1

λn
E

[
K

(
x−Θ

λn

)]
to show that

1

λn
E

[
K∗

(
x− θ̃j
λn

)]
→ π(x).

Proof.

1

λn
E

[
K∗

(
x− θ̃j
λn

)]
=

1

λn
E

[
K

(
x−Θ

λn

)]
=

1

λn

∫ ∞
−∞

π(x)K

(
x− y
λn

)
dy
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using Lemma 4.2, we get as n→∞:

→ π(x)

∫ ∞
−∞

K(y)dy

= π(x)

Hence, we have shown
1

λn
E

[
K∗

(
x− θ̃j
λn

)]
→ π(x).

Since this limit exsists, we can say
1

λn
E

[
K∗

(
x− θ̃j
λn

)]
is bounded. This

fact will be important for our proof. Next we will need another lemma for the super

smooth case. We will write φε(t) = Rε(t) + iIε(t), where Rε(t) and Iε(t) denote the

real and imaginary parts of the characteristic function φε(t). From [16], Fan proves

the following lemma:

Lemma 4.3.

If εi, i = 1, 2, . . . , n follows a super smooth distribution and Iε(t) = o(Rε(t)) or

Rε(t) = o(Iε(t)) as t→∞, then as n→∞

|K∗(y)| ≥ cq(y) exp

(
(1− bn)β

γhβn

)
hβ0n b

4
n

uniformly over y ∈
[
0, π

2

]
, where bn = h

β
10
n , c is a positive constant, and

q(y) =

 cos y, if Iε(t) = o(Rε(t))

sin y, if Rε(t) = o(Iε(t))

Finally, we will need two inequalities which will be written as lemmas:

Lemma 4.4.

For every real number 0 ≥ r ≥ 1 and x ≥ −1, then (1 + x)r ≤ 1 + rx, which is a

generalized version of Bernoulli’s inequality.

Lemma 4.5.

For x > 0 and in a small neighborhood of zero and β > 0, we have (1 − x)β ≥

1− 2βx.
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The first inequality is fairly well known and can be proven either by induction

or Taylors Formula. I will provide a proof of the second inequality. First we will write

out Taylors formula for (1−x)β around the point 0: (1−x)β = 1−βx+R(x), where

R(x) = o(x). Since x is in a small positive neighborhood of zero, R(x) = o(x) and

β > 0, we know:

βx+R(x) ≥ 0

1− βx+R(x) ≥ 1− 2βx

(1− x)β ≥ 1− 2βx

The above equation is a result of Taylors formula for (1− x)β

Note: The second inequality is only true since x is in a small positive neighbor-

hood of zero. If it wasn’t, then the R(x) wouldn’t go to zero faster than the x term,

and we wouldn’t be able to write the first inequality. We are now ready to prove the

two cases.

4.2 Limiting Distribution for Deconvolution Kernel Density Estimator

4.2.1 Case 1: Smooth Error Distribution

We will assume that εi, i = 1, 2, . . . , n follows a smooth distribution with

parameters: (d0, d1, β). Then Xi follows a super smooth distribution with parameters:

(d2
0, d

2
1, 2β). We wish to show equation 4.1 is true with εi follow a smooth distribution.

So for n sufficiently large:

σ

(
n∑
i=1

1

λn
K∗

(
x− θ̃i
λn

))
n1/3

≥ n−
1
3σ

(
1

λn
K∗

(
x− θ̃1

λn

))

= n−
1
3

E

( 1

λn
K∗

(
x− θ̃1

λn

))2
−( 1

λn
E

[
K∗

(
x− θ̃1

λn

)])2
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Since we have shown the second term is bounded, all we have to do is show the first

term goes to ∞, and the proof is finished. We will focus on the first term.

n−
1
3 E

( 1

λn
K∗

(
x− θ̃j
λn

))2
 =

1

n
1
3λ2

n

∫ ∞
−∞

[
K∗
(
x− y
λn

)]2

fθ̃j(y)dy

=
1

n
1
3λ2

n

∫ ∞
−∞

[
K∗
(
x− y
λn

)]2

fθ̃j(y)dy

=
fθ̃j(x)

n
1
3λ2

n

∫ ∞
−∞

[
K∗
(
x− y
λn

)]2

dy

The equation above is derived by using Lemma 4.2 and now by using equation 3.6 we

get:

=
fθ̃j(x)

2πλnn
1
3

∫
φ2
K(t)∣∣∣φX1

(
t
λn

)∣∣∣2dt
≥

fθ̃j(x)

2πλnn
1
3

∫
φ2
K(t)∣∣∣∣d2

1

∣∣∣ tλn ∣∣∣−2β
∣∣∣∣2dt

=
fθ̃j(x)

2d2
1πλnn

1
3

∫
φ2
K(t)∣∣λn
t

∣∣4β dt
=

fθ̃j(x)

2d2
1πλ

1+4β
n n

1
3

∫
φ2
K(t)t4βdt

=
kfθ̃j(x)

λ1+4β
n n

1
3

,

where k is a positive constant. If we let λn = an−b where a, b are positive constants,

then:

lim
n→∞

n−
1
3 E

( 1

λn
K∗

(
x− θ̃j
λn

))2
 ≥ lim

n→∞
kfθ̃j(x)(an−b)−(1+4β)n−

1
3

= lim
n→∞

kfθ̃j(x)anb(1+4β)− 1
3

This last equation goes to infinity when b(1 + 4β) − 1
3
> 0. By choosing b such

that b > 1
3(1+4β)

, we ensure the equation above tends to infinity as n→∞.
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Theorem 4.6.

Let εi, i = 1, 2, . . . , n follows a smooth distribution and Xi = εi+1 − εi.Then as

n→∞, we have

π̂(x;λn)− E[π̂(x;λn)]√
Var[π̂(x;λn)]

D−−→ N(0, 1)

provided λn = an−b where a, b are positive constants and b > 1
3(1+4β)

.

4.2.2 Case 2: Super Smooth Error Distribution

We will assume that εi, i = 1, 2, . . . , n follows a super smooth distribution

with parameters: (d0, d1, β0, β1, β, γ). Then Xi follows a super smooth distribution

with parameters: (d2
0, d

2
1, 2β0, 2β1, β,

γ
2
), and assume IXi(t) = o(RXi(t)) or RXi(t) =

o(IXi(t)) as t→∞. We wish to show equation 4.1 is true with εi follow a supersmooth

distribution. So for n sufficiently large:

σ

(
n∑
i=1

1

λn
K∗

(
x− θ̃i
λn

))
n1/3

≥ n−
1
3σ

(
1

λn
K∗

(
x− θ̃1

λn

))

= n−
1
3

E

( 1

λn
K∗

(
x− θ̃1

λn

))2
−( 1

λn
E

[
K∗

(
x− θ̃1

λn

)])2


Since we have shown the second term is bounded, all we have to do is show the first

term goes to ∞, and the proof is finished. Now we will focus on the first term.

n−
1
3 E

( 1

λn
K∗

(
x− θ̃j
λn

))2
 =

1

n
1
3λ2

n

∫ ∞
−∞

[
K∗
(
x− y
λn

)]2

fθ̃j (y)dy

=
1

n
1
3λn

∫ ∞
−∞

[K∗ (y)]
2
fθ̃j (x− λny)dy

≥ 1

n
1
3λn

∫ π
2

0

[
cq(y) exp

(
(1− bn)β

γλβn

)
λ2β0
n b4n

]2

fθ̃j (x− λny)dy
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The equaiton above is a result of using Lemma 4.3, and now by using the continuity

of fθ̃j , we get:

≥
c1fθ̃j (x)

n
1
3λn

[
exp

(
(1− bn)β

γλβn

)
λ2β0
n b4n

]2 ∫ π
2

0

[q(y)]
2
dy

≥
c2fθ̃j (x)

n
1
3λn

[
exp

(
2(1− bn)β

γλβn

)
λ4β0
n b8n

]
now using Lemma 4.5, we get:

≥
c2fθ̃j (x)

n
1
3λn

[
exp

(
2(1− 2βbn)

γλβn

)
λ4β0
n b8n

]

=
c2fθ̃j (x)

n
1
3λn

exp

2

(
1− 2βλ

β
10
n

)
γλβn

λ4β0
n λ

8β
10
n

=
c2fθ̃j (x)λ

4β0+ 8β
10−1

n

n
1
3

exp

2

(
1− 2βλ

β
10
n

)
γλβn


With this lower bound, we will choose λn = a(log n)

−1
β where a is a positive constant

chosen such that a <
(

6
γ

) 1
β
, and we get:

c2fθ̃j
(x)λ

4β0+
8β
10

−1
n

n
1
3

exp

2

(
1− 2βλ

β
10
n

)
γλβn

 =

c2fθ̃j
(x)

(
a(logn)

−1
β

)4β0+
8β
10

−1

n
1
3

exp


2

1− 2β

(
a(logn)

−1
β

) β
10


γ

(
a(logn)

−1
β

)β


=
c3fθ̃j

(x) (logn)
−4β0
β

− 8
10

+ 1
β

n
1
3

exp

2
(

1− 2βa
β
10 (logn))−

1
10

)
γaβ(logn)−1



=
c3fθ̃j

(x) (logn)
−4β0
β

− 8
10

+ 1
β

n
1
3

exp

(
2

γaβ

(
1− 2βa

β
10 (logn))−

1
10

)
logn

)

=
c3fθ̃j

(x) (logn)
−4β0
β

− 8
10

+ 1
β

n
1
3

exp

logn

(
2

γaβ

(
1−2βa

β
10 (logn))

− 1
10

))

=
c3fθ̃j

(x) (logn)
−4β0
β

− 8
10

+ 1
β

n
1
3

n
(

2

γaβ

(
1−2βa

β
10 (logn))

− 1
10

))
= c3fθ̃j

(x) (logn)
−4β0
β

− 8
10

+ 1
β

n
(

2

γaβ

(
1−2βa

β
10 (logn))

− 1
10

)
− 1

3

)
Since we have chosen a as we have, this leaves us with a limit of the form:

(log n)qnp−l(logn)−k where p, l, k are all positive constants. Note: the choice of a above
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ensures us that p will be positive. So we have three cases to consider: when q > 0,

q < 0, and q = 0. The solutions for q > 0 and q = 0 are essentially the same, and

hence, we will only be showing the two cases:

• Case 1: When q ≥ 0, define the following transformation: n = exp (m) then:

lim
n→∞

(log n)qnp−l(logn)−k = lim
m→∞

mq exp (m(p− lm−k))

= lim
m→∞

mq exp

(
m

(
pmk − l
mk

))
= lim

m→∞
mq exp

(
pmk − l
mk−1

)
=∞

since q ≥ 0

• Case 2: When q < 0, define the following transformation: n = exp (m) then:

lim
n→∞

(log n)qnp−l(logn)−k = lim
m→∞

mq exp
(
m
(
p− lm−k

))
= lim

m→∞

exp
(
m
(
p− lm−k

))
m−q

Note: −q > 0

= lim
m→∞

exp (mp) exp
(
−lm−k+1

)
m−q

= lim
m→∞

exp (mp)

m−q exp (lm−k)

> lim
m→∞

exp (mp)

3(lm−k)m−q

= lim
m→∞

exp (mp)

(1 + 2)(lm
−k)m−q

Now by using Lemma 4.4, we get:

≥ lim
m→∞

exp (mp)

(1 + 2 (lm−k))m−q

= lim
m→∞

exp (mp)

m−q + 2lm−(k+q)
=∞

since −q > 0.
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So we have shown that (log n)qnp−l(logn)−k → ∞ when p, l, k are all positive con-

stants and q is a constant. With the choice of λn, we can now say:

n−
1
3 E

( 1

λn
K∗

(
x− θ̃j
λn

))2
 ≥ c3fθ̃j(x) (log n)

−2β0
β
− 8

10
+ 1
β

(
n

(
2

γaβ

(
1−2βa

β
10 (logn))−

1
10

)
− 1

3

))

→∞ as n→∞

This shows

σ

(
n∑
i=1

1

λn
K∗

(
x− θ̃i
λn

))
n1/3

→∞ as n→∞

and by the theorem above, we have shown that
π̂(x;λn)− E[π̂(x;λn)]√

Var[π̂(x;λn)]
converges in

distribution to N(0, 1).

Theorem 4.7.

Let εi, i = 1, 2, . . . , n follows a super smooth distribution and Xi = εi+1 − εi and

IXi(t) = o(RXi(t)) or RXi(t) = o(IXi(t)) as t→∞.Then as n→∞, we have

π̂(x;λn)− E[π̂(x;λn)]√
Var[π̂(x;λn)]

D−−→ N(0, 1)

provided λn = a(log n)
−1
β , for some a such that 0 < a <

(
6
γ

) 1
β

.

4.2.3 Sample Variance

Ultimatley, the variance of the deconvolution estimator depends on the value of

the unkown density function π(x). We can use a consistent estimator to replace the

value π(x), but this requires extra computation. As is the case, we would rather use

sample variance of this estimator for inferences. In order to use the sample variance,

we must show the sample variance converges in probability to Var[π(x;λn)]. In [16],

Fan shows the sample variance converges to the variance for both the smooth and

supersmooth case. We provide his results for both cases for just the deconvolution

estimator and not all the derivatives here:

35



Corollary 4.8.

Under the assumptions the error term follows a smoot distribution, if hn = o
(
n−

1
2β+1

)
,

then

(4.2)
√
n

(
f̂n(x)− fX(x)

sn

)
→ N(0, 1)

where sn is given by either s2
n =

1

n

n∑
i=1

(
1

hn
K∗
(
x−Xi

hn

))2

or the sample variace

defined by: s2
n =

1

n

n∑
i=1

(
1

hn
K∗
(
x−Xi

hn

)
− 1

n

n∑
i=1

1

hn
K∗
(
x−Xi

hn

))2

provided that

nh2β+1
n →∞ and f̂ is the standard deconvolution kernel density estimator.

Corollary 4.9.

Under the assumptions the error term follows a super smoot distribution, if hn ∼(aγ
2

log n
)− 1

β
for some a > 1, then

(4.3)
√
n

(
f̂n(x)− fX(x)

sn

)
→ N(0, 1)

where sn is defined in 2.1.

The difference between Fan’s result and our result is again the added complexty

of the variance term as a whole. As we have already shown the term Xi follows smooth

and supersmooth distribtutions in the appropriate cases, we can apply his result for

the sums of the variances, and all that is left to handle is the covariance term.

By applying Chebysev’s Inequaltiy, we know that the variance term goes to

zero. So we just need to show the Covariance term does as well:

2

nλ2
n

Cov

{
K∗

(
θ̃1 − x
λn

)
,K∗

(
θ̃2 − x
λn

)}
≤ 2

nλ2
n

E

[
K∗

(
θ̃1 − x
λn

)
K∗

(
θ̃2 − x
λn

)]

=
2

nλ2
n

E

[
K∗
(
θ + ε1 − ε0 − x

λn

)
K∗
(
θ + ε1 − ε0 − x

λn

)]
=

2

nλ2
n

∫
· · ·
∫
K∗
(
z + b− a− x

λn

)
K∗
(
z + c− b− x

λn

)
fΘ;ε0;ε1;ε2(z, a, b, c)dzdadbdcdx

=
2

nλ2
n

∫
· · ·
∫
K∗
(
z + b− a− x

λn

)
K∗
(
z + c− b− x

λn

)
π(z)fε0(a)fε1(b)fε2(c)dzdadbdc

=
2

nλ2
n

∫
· · ·
∫
K∗
(
z + b− a− x

λn

)
fε0(a)daK∗

(
z + c− b− x

λn

)
fε1(b)fε2(c)dbdcπ(z)dz
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using Lemma 4.2, we get:

=
2

nλn

∫∫∫
fε0(z + b− x)

∫
K∗ (a) daK∗

(
z + c− b− x

λn

)
fε1(b)fε2(c)dbdcπ(z)dz

We can bount the intgral of K∗(a). Let c1 denote such an upper bound.

≤ 2c1
nλn

∫∫∫
fε0(z + b− x)K∗

(
z + c− b− x

λn

)
fε1(b)dbfε2(c)dcπ(z)dz

using 4.2 again, we get:

≤ 2c1
n

∫∫
fε1(z + c− x)

∫
fε0(bλn + 2b− c)K∗ (b) dbfε2(c)dcπ(z)dz

as the integrals above can all be bounded. Let c2 be such an upper bound

≤ 2c2
n

So as n→∞, we see that 2c2
n
→ 0. This shows that the covariance term goes to zero.

This proves that the sample variance still converges to the variance of our estimator

in the dependent case. Hence, we can replace the variance term in Theorems (4.6)

and (4.7) by the sample variance formula in the corollaries above.
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