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ABSTRACT

INVERSE ANALYSIS OF HEAT GENERATING BODY FOR SAFETY

APPLICATIONS

SANDEEP PATIL, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Ratan Kumar, Brian Dennis

Inverse thermal analysis and its applications have been applied to numerous

fields of science and engineering. Historically during the 1950’s and early 1960’s,

space programs played a significant role in the advancement of solution techniques

for Inverse Heat transfer Problems(IHTP). It was applied to measure the surface

temperature of thermal shield of a space vehicle during its re-entry into atmosphere.

Inverse analysis was also used in the estimation of thermo-physical properties of the

shield at high operating temperatures. Besides thermal application, inverse technique

was also used in other engineering applications such as estimation of alloy specifica-

tion, design of a shape for aerodynamic configuration and for determining kinetic rate

constant of a chemical process.

One of the application area of inverse thermal analysis has been in providing

safety and avoiding overheating of Lithium-ion cells. These cells are widely used

in powering up consumer electronics and electric cars. Batteries contain oxidizer

(cathode) and fuel (anode) in sealed container. Under normal operation, fuel and

oxidizer convert chemical energy to electrical energy. However, during accidental
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condition, it may lead to fire failures due to elevated heat. Recent accidents like

explosion and fire in Tesla car, Samsung Galaxy Note 7, Boeing 787 Dreamliner are

few examples of batteries failure.

Another challenging application area for inverse thermal analysis has been in

the thermal and safety analysis of nuclear reactors, where the heat is generated by

nuclear fission process of radioactive material. This heat is used to generate a highly

pressurized steam, which drives turbines that turn electrical generators. The loss of

cooling water is extremely dangerous, as it can lead to catastrophic results such as

steam explosion and release of radiation. Fukushima, Three Miles Island, Chernobyl

are examples of nuclear accidents that occurred in past with disastrous and long term

consequences. One common feature of all these accidents was the failure of the cooling

system that led to core meltdown or fire in batteries.

Nuclear accidents or fire in batteries can be prevented if the cylindrical rod

temperatures are kept within a safe limit. Conventional measuring devices, such as

thermocouples or pyrometers, are difficult to install inside nuclear fuel rod or batteries

to determine the interior temperature. However instruments can be used to determine

the temperature at measurable locations. From these temperature measurement, the

temperature distribution of cylindrical rod can be estimated using inverse technique.

Such analysis can generate data that provides insight into thermal behavior of fuel

rod or batteries in the event of loss in coolant level or improper cooling. This aids in

initializing corrective action to avoid increase of temperature above a critical point

in and on a rod.

This study is presented in 3 sections. In section 1, a simplified transient numer-

ical model is developed to understand thermal behavior of heat generating cylindrical

rod. Parametric studies were performed by changing heat generation rate and coolant

height. The numerical model shows temperature changes with the variation in coolant
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height. The location and value of the temperature in cylindrical rod at different points

is computed, to find critical location that leads to melting.

In section 2, to demonstrate the application of inverse thermal analysis, a single

cylindrical rod with Neumann boundary conditions and heat generation is modeled.

Temperature obtained from this modeling, along with Gaussian noise, was used as

an input to the inverse analysis for estimating heat generation and temperature dis-

tribution inside the rod. Sensitivity analysis was carried out to indicate best sensor

locations and good response times. The numerical model of cylindrical rod for tem-

perature analysis showed excellent agreement with published results. Moreover results

obtained from inverse analysis were in close agreement within 0.59% of input values

of direct measurements.

Although inverse analysis is an excellent method to determine temperature

under physically challenging situations, it requires a large computation time for a

safety analysis,which may be impractical for real time application. To circumvent

this, a neural network model was utilized for predicting maximum temperature inside

the system, which is described in section 3. Data was generated through simulation

using OPENFOAM for axi-symmetric model. This data was used as the basis for

training neurons for maximum temperature prediction. To validate the proposed idea,

an experiment was setup with cartridge heater as a representation of heat generating

rod. The coolant height and temperature measured in fluid region was given as

input to trained neural network model to predict surface temperature and inside

temperature of the heat generating rod. Temperature obtained from this model was

used to display in real time to an augmented reality device, which assist field workers

to gauge situation and take preventive measures.

Inverse techniques were also applied to develop general framework for predicting

anisotropic properties of materials. In this work, temperature measured at different
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locations on the surface was utilized for predicting thermal conductivity of heat gen-

erating rod. Results obtained from this analysis was validated with the published

results. Moreover this technique was extended to estimate thermal conductivity of

porous material.
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CHAPTER 1

INTRODUCTION

1.1 Inverse Analysis

Inverse analysis (IA) is the process of calculating the causal factors from set of

observations or results. Inverse problems are typically carried out through numerical

modeling and simulation of a different phenomena. To predict or infer knowledge

about either physical states or underlying quantities, observations are taken from

such phenomena. Schematic of Inverse thermal analysis is shown in Fig.(1.1)

Figure 1.1. Schematic of Inverse thermal analysis [1].
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IA is important in the fields, where direct measurement of physical quantities

is difficult or inconvenient. In such cases, IA provides insight of causal factors from

the observed results. With different problems, there are different causal factors and

observed results. For example, in thermal problems, temperature is measured and it

is used to predict heat flux or properties (Causal factors). Similarly for structural

problems, reaction forces, moments are measured to predict elastic modulus of mate-

rial. In chemical problems, product concentration is measured to determine reaction

rate. One such application of estimation of elastic modulus is shown in Fig. (1.2)

Figure 1.2. Young’s Modulus Estimation [2].

In this study, IA was used to estimate the surface temperature of cylindrical heat

generating rod by measuring the coolant temperature at a sensitive location. History

of inverse analysis (IA) is really interesting considering its inception and development.

Inverse Analysis was first introduced by Astronomer Viktor Ambarstsumian in 1929

for relation between oscillation frequencies and homogeneous string in vibration [10].

For over 15 years this work largely remained in obscurity. After 1944, many out-

standing mathematicians succeeded in obtaining interesting results [11]. One such
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result was published by G. Borg, who worked on inverse of Sturm-Liouville Equation

in 1946 [12]. Significant developments in mathematics of inverse problem has taken

place since then. While I. Frank [13] developed least square method for inverse prob-

lem, A. Tikhonov [14, 15] was well-known for introducing regularization methods.

D. Specht [16] introduced general regression neural network for inverse problems.

Another recent break-through research work was carried out by K.Deb and group in

developing elitist multi-objective genetic algorithm [17].

As mentioned, IA has been widely used for many areas such as safety analy-

sis, structural optimization, alloy composition estimation, thermo-physical properties

estimation, chemical process kinetic rate determination, weather prediction, oceanog-

raphy. First such application of IA for thermal system can be found in one of the

earliest paper published by W. Giedt [18], where he predicted heat transfer of in-

ner chamber of gun barrel. Some selected applications of inverse analysis have been

presented in table (1.1)

Table 1.1. Applications of Inverse Analysis

Author Application
W. Giedt (1955) Heat transfer of inner chamber of gun barrel [18]
G. Stolz (1960) Estimating surface temperature of quenched body [19]
S.R. Arridge(1999) Optical tomography in medical imaging(Cited by 2228) [20]
H. Li, M. Ozisik(1992) Inverse Radiation Problem [21]
G. Dulikravich (2012) Inverse Design of Alloys for specified properties [2]

There have been a number of industrial problems which involve inverse determi-

nation of material properties or thermal behavior using measurements taken at outer

surface of the body. Many authors have developed methods to determine properties
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such as thermal conductivity, Young’s Modulus, heat flux by surface temperature

measurement. However there are challenges to place temperature probes or heat flux

probes on certain parts of a surface of a solid body as it is difficult or even impossible.

This difficulty could be due its small size, geometric inaccessibility or exposure to a

harsh environment. Nevertheless, knowledge of the temperature at these positions

is important. For example,the center-line temperature of heat generating cylinders

(e.g. nuclear fuel rod, battery) may reach its melting point in accidental condition

but cannot be directly measured. Hence it is necessary to utilize IA technique to

estimate the temperature at center-line for the heat generating cylinder.

Appropriate inverse method can estimate temperature from the boundaries

where the temperature can be measured directly. The problem of inverse determi-

nation of unknown temperature distribution in solid subjected to different boundary

conditions has been solved by a variety of methods [22–27].

1.2 Motivation

Advanced technology with enhanced safety is utilized in nuclear and battery

industry applications (airplane, automotive). Still it is prone to accidents, which has

long-term and dangerous consequences. Active and continuous monitoring of fuel or

battery during fabrication,operation or storage, is required. Direct measurement or

temperature is not possible due to radiation hazard or inability to have embedded

sensors. Inverse analysis (IA) can address these issue by measuring temperature in

coolant temperature and predicting temperature at critical location. This forms the

basis and motivation for the current work.
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1.3 Battery accidents

In 1991 Sony launched first commercial lithium ion batteries [28]. Since then

it has become prominent energy storage in most consumer electronics and electrical

vehicles (notebooks,cell phones, cars-Tesla,BMWi3,Renault etc) [29].Many battery

standards and regulations have been specifically developed to facilitate and regulate

battery use in EVs [30]. In spite of this, fires, explosions have been reported for

lithium ion battery during the past years (Table 1.2 and Fig 1.3 shows some of the

accidents). In addition, many incidents have been reported for mobile phones and

laptops also. It can be seen that fires are caused by overheating of batteries and

triggering of thermal runaway.

Thermal runaway is one of the most common features during accidents of

lithium ion battery. Generally, when an exothermic reaction inside battery goes

out of control, thermal runaway occurs. This reaction rate increases with increasing

temperature, which results in explosion [31,32]. It is proposed that thermal runaway

can occur spontaneously above 80 ◦C due to fire or explosion [33]. For the lithium

ion battery runaway, it is caused by the exothermic reactions between the electrolyte,

anode and cathode, with the temperature and pressure increasing in the battery, the

battery will rupture at last [34].
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Table 1.2. Some lithium ion battery accidents

Date Accident replay
2016 An EV police cat caught fire - Italy [35]
2016 Tesla model S caught fire while fast charging at supercharger-Norway
2013 APU battery pack caught fire inside Boeing 787 Dreamliner-Boston USA
2011 A Chevy Volt caught fire after side-pole impact-USA [36]
2011 EV bus, Taxi catch fire- China [37]
2010 A Boeing B747-400F cargo plane catch fire, Dubai
2010 Acer recalled laptop. Same thing was done by Dell,Apple,Toshiba, Lenovo in 2006
2010 Two ipad Nano music player catches fires-Japan
2009 Cargo plane catch fire- China
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(a)

(b)

Figure 1.3. Battery Accidents (a) Aeroplane [3] (b) Car-Tesla S Model [4] .
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1.4 Nuclear Accidents

Nuclear reactors use advanced engineering methods and radioactive materials

for generating heat with high power density. Heat generated in the radioactive fuel

boils water leading generation of pressurized steam, which drives turbine that turn

electrical generators. Radioactive fuel assemblies are made up of cluster of fuel rods,

which contains pellets of uranium oxide which is encapsulated in thin cladding. Heat

generated in the fuel is transferred to the coolant through cladding. Schematic of a

nuclear power-plant and fuel rod assembly is given in Fig 1.4(a), 1.4(b) respectively.

(a) (b)

Figure 1.4. Schematic of nuclear power plant and fuel rod configuration.

Fuel used in nuclear power plants pose radiation hazard, hence it is inherently

dangerous and difficult to handle at all stages of its life-cycle. The fuel assembly

after the designated residual period in the reactors is removed and is termed as spent

fuel. Safe management of spent fuel assemblies is a major challenge due to difficulty

of finalizing permanent repository for high level nuclear waste. All nuclear power

plants in USA, store their spent fuel rod assemblies in on-site cooling ponds. The

spent fuel rods remain in cooling ponds for five to ten years under at least 20 feet
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circulating water. Loss of cooling water to cooling pool is extremely dangerous, as it

can lead to explosion and catastrophic release or radiation. Nuclear accidents of this

nature (Fukushima, Three Miles Island, Chernobyl) occurred in past with disastrous

long term consequence. One Common Feature of all these accident was failure of the

cooling system [38–45].

Fukushima disaster has been the most significant nuclear accident since 1986,

initiated primarily by a tsunami on March 11,2011. Though there were no fatalities

linked to radiation due to the accident, the eventual number of cancer deaths, ac-

cording to the linear no-threshold theory of radiation safety is expected to be around

130 to 640 people in the years and decades ahead [46,47].

The Fukushima Daiichi nuclear power plant consisted of six numbers of Gen-

eral Electric (GE) made boiling water reactors (BWRs). Combined power capacity

of these plants were of the magnitude 4.7 gigawatts, which is one of the world’s 25

largest nuclear power stations. It was the first GE-designed nuclear plant to be con-

structed and run entirely by the Tokyo Electric Power Company (TEPCO). Reactor

1 was a 439 MWe type (BWR-3) reactor and commenced its operation on 26 March

1971 [48]. Reactors 2 and 3 were both 784 MWe type BWR-4s and commenced their

operation in July 1974, and March 1976 respectively. Design of these reactors were

carried out to withstand an earthquake with a peak ground acceleration of 0.18 g (1.74

m/s2) and a response spectrum based on the 1952 Kern County earthquake [49]. The

earthquake design basis for all units ranged from 0.42 g (4.12 m/s2) to 0.46 g (4.52

m/s2) [50, 51]. Schematic representation of Fukushima power plant is given in Fig

(1.5) .
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Figure 1.5. Fukushima Nuclear power plant schematic.

Reactors 4, 5, and 6 were shut down for preparation of re-fueling, at the time

of the Thoku earthquake on 11 March 2011 [52, 53]. However, their spent fuel pools

still required cooling to take away generated decay heat [53,54].

The largest tsunami wave reported on unfortunate day was 13 meters high and

hit 50 minutes after the initial earthquake, surpassing the plant’s seawall, which was

only of 10 m high [55]. The moment of impact was recorded by a camera [56]. Low-

lying area such as emergency generator house was flooded with water [57] and diesel

generators failed to start. It resulted in a loss of power to the critical coolant water

pumps. These pumps continuously circulates water through reactors to remove decay

heat from fuel rods to avoid melting. Decay heat is sufficient to melt fuel rod, if

adequate heat sink and sufficient cooling is not available. One day after the tsunami,

back up emergency pumps (running on electrical batteries) ran out, which started

overheating of reactors [58]. Workers were struggling to supply power to coolant
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system of the reactor and restore power in the control rooms during this period, a

number of hydrogen-air chemical explosions occurred in Unit 1 and Unit 4 [56,58,59].

Loss of coolant accident eventually led to core meltdowns in Reactors 1, 2, and

3. The full extent of the movement of the resulting corium (lava like mixture of fissile

material at meltdown) is unknown. However it is now considered to be residing some-

where between reactor pressure vessel(RPV) and the water-table below each reactor.

Sequence of events is depicted in Fig. (1.6).

Figure 1.6. Sequence of Events.

1.5 Heat Transport in Battery

The mechanism of li-ion battery is given in Fig. 1.7, Lithium ions moves from

negative electrode (cathode) to positive electrode (anode) via seperator diaphragm

to make discharging cycle and vice versa when charging. The cathode is generally

made of carbon (most commercially graphite). The anode is lithium containing com-
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pound (generally one of three materials: lithium iron phosphate - LiFePO4, lithium

magnesium oxide- LiMn2O − 4, lithium cobalt oxide - LiCoO2. The electrolyte is a

solution of lithium salt in a non-aqueous solvent such as ethylene carbonate or diethyl

carbonate. The current collector for negative electrode is made of copper (cu) while

positive electrode is made of aluminium (Al) [5].

Figure 1.7. Mechanism of Li-ion battery during discharge and charge [5] .

Performance of Lithium ion cell is linked to temperature. The temperature

of lithium ion cell is governed by heat generation and heat dissipation by the cell.

The heat generation is described by exponential function whereas heat dissipation by

linear function. When a cell is heated above certain temperature (above 130-150 ◦C),

exothermic chemical reactions will increase internal temperature. If heat generated

is more than dissipation, then rising temperature will accelerate reactions, resulting

in thermal runaway [60–64].

Newman and his colleagues carried out comprehensive electrochemical mod-

eling using various mathematical approaches to understand physics of the battery

system [65–68]. Existing model can be classified into three different physical mecha-

nism: electro thermal model [69–74], electrochemical model [75–80], thermal runaway
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model [81,82]. According to dimensions, the model can be categorized as lumped pa-

rameter model [69], two dimensional model [78], three dimensional model [83], mixed

dimensional model [84].

Bernardi et al. [65] developed a general energy balanced battery thermal model

for estimating the heat generation rate of single cell and a simplified form was written

as the following equation.

φ = I(Eoc − E)− ITbat
dEoc
dTbat

(1.1)

The heat generation rate comprises two heat source terms caused by overpo-

tential resistance and electrical resistance (the first term), and entropy change (the

second term). The first term represents the irreversible heat and the second term the

reversible heat. The term (Eoc −E) can be replaced by IR, where R denotes overall

resistance [85]. This model has been widely used by many researchers.

However, the modeling results need to be validated with experimental data to

compare results. In recent years, researchers are increasingly focusing on thermal

issues of battery at high C-rates due to the popularity of electric cars. The main

experimental methods for heat generation rate measurement are accelerating rate

calorimeter (ARC) [86–88] and isothermal battery calorimeter (IBC) [89–91]. The

ARC method measures the heat rejected from the battery and allows the surface

temperature of battery to rise adiabatically during operation. hence, it is mostly used

in thermal runaway testing [92]. However, in order to accurately measure the heat

generation rate of battery under normal operation, the temperature variation should

be eliminated since the battery performance is temperature sensitive. Pesaran and

his coworkers from NREL has designed a series of Isothermal Battery Calorimeters

[89]. According to NREL site, the instruments can measure heat generation rates
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as low as 15 mW and up to 4000 W with measuring accuracy within 1% and the

test samples can be cell, module or pack. However, it needs to emphasize that IBC

method can only maintain the battery surface at isothermal condition. For a transient

process of large-scale power cell, the measuring accuracy of IBC method may be

greatly reduced. It should be noted that there have been some discrepancies between

different experimental researches on heat generation rate measurement of single cell

and the gap usually cannot be validated due to lack of data. To facilitate a gap

analysis, it is suggested that the heat generation rate measuring is carried out at

several standard temperatures in a wide operation temperature range (20+50 ◦C), and

at several typical C-rates (e.g., 0.5C, 1C, 5C, etc.). The chemistry, geometry, density,

specific heat capacity of battery should be given or measured. The temperature

gradient in a cell should always be given a special attention and it results in the

difficulty of measuring transient heat generation rate of battery at high C-rates [85].

In this work, lithium-ion battery will be treated as one of the heat generating

cylinder. Inverse analysis techniques has been applied to estimate anisotropic thermal

properties of batteries and validated with published results. Framework developed in

this thesis, can be extended to safety analysis of battery.

1.6 Heat Transport in Nuclear Reactor

Concerns regarding heat removal discussed in earlier section of nuclear acci-

dents, have attracted considerable research focus. Nuclear power plant consists of

fuel rod assembly, In the current study single nuclear fuel rod is considered for ther-

mal analysis. Typically for a Boiling water reactor, one cluster consists of an array

of 17x17 rods, which include fuel rods, guide rods, control rods and instrumentation

rods etc. Each fuel rod is 4 m long. Figure (1.8) shows a single fuel rod which was

in this work.

14



Figure 1.8. Nuclear fuel rod.

Classic assembly of nuclear fuel rod is depicted in Fig. (1.9). There are different

fuel constructions used in plants like collapsible fuel pin, Helium bounded, Sodium

bounded fuel pin. In this work, only helium bounded fuel pins is considered. It

can be observed that heat generated inside UO2 pellets is transferred to Helium and

cladding by conduction. Though heat transfer in helium is through convection, due

to small gap, heat transfer inside He gap is assumed as conduction. Coolant extracts

heat from cladding surface through convection. Loss of coolant has significant role

in increasing temperature of fuel rod. Hence, thermal analysis of this fuel rod at

different coolant height will be evaluated in this thesis.

Different researchers have evaluated thermal phenomena inside fuel rods. Ni-

jsing came up with analytical model for calculation of temperature distribution. He

also analyzed performance of nuclear fuel rod in normal operation and burnt out

condition [93].

Ye et al. carried out design and simulation of spent fuel passive cooling system

[94]. A passive cooling system based on a heat pipe, was designed and applied to re-
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Figure 1.9. Reactor thermal issues.

move the decay heat of the spent fuel pool when the electric power fails. With all the

conservative assumptions, it predicted that a spent fuel pool equipped with a com-

pletely passive cooling system will operate safely even with biggest decay heat. High

heat transfer efficiency is of great interest for its application in spent fuel natural con-

vection cooling. Hung et al [95] developed three-dimensional two-phase CFD model

to simulate the thermalhydraulic behavior of the spent-fuel pool for the Kuoshen

power station.

Lee et al. carried out thermal-fluid flow analysis of spent fuel storage system

using commercial computational fluid dynamics (CFD) code, FLUENT [96]. Effec-

tive thermal conductivities of a spent fuel assembly and a fuel basket were derived

to optimize a thermal analysis model. Also, a porous model was used in the thermal

analysis to simulate the characteristics of a thermal-fluid flow for a fuel assembly.

Thermal test and analysis were carried out to verify the thermal analysis method and

procedure using a half scaled-down model.

Gomez et al performed two dimensional simulation of natural convection and

radiation heat transfer of Pressurized Water Reactor (PWR) fuel assembly within a
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square basket tube of a typical transport package using a commercial computational

fluid dynamics package [97]. Heat transfer simulations were performed to predict the

maximum cladding temperature for assembly heat generation rates between 250 W

and 1000 W, uniform basket wall temperatures of 25C and 400C, and with helium

and nitrogen back fill gases.

Laursen et al and Wang et al analyzed cooling of spent fuel in large water pool

and crud formation on fuel pin clad surfaces respectively, where the simulation was

implemented with the worst case situation, in which fuels under full-core discharge

are assumed to be moved into Spent Fuel Pool (SFP), and the external cool system

was assumed failed. The effective convective coefficient on the pool surface was also

modeled based on the empirical correlations. The pressure drop of the coolant flowing

through the fuel region in the pool was modeled as a porous-medium [98,99].

Agabez carried out spent fuel heat transfer analysis as an academic exercise

for steel as material, with constant coolant level using finite difference approach and

validated his results with finite element software package [100].

Pedro Pupo Sa da Costa has analyzed Loss of coolant accident (LOCA) con-

dition with steady state simulation and validated with laboratory scale experiments.

However problem of partially cooled heat generating cylinder was not addressed [101].

1.7 Research Objectives

Most of the previous work on thermal analysis was attributed towards carry-

ing out temperature distribution and impact of coolant loss. In this work, different

methods for thermal analysis will be evaluated for their limitations to choose efficient

method for capturing thermal phenomena of heat generating bodies. Temperature

data obtained from this thermal analysis forms the basis for developing inverse anal-

ysis. General framework for inverse analysis (IA) will be developed for safety appli-
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cations in nuclear power plant and battery management applications. Furthermore,

for rapid prediction of temperature to gauge real time situation, neural network was

modeled. This research will address the following areas:

1. Temperature distribution of partially cooled heat generating rod through ana-

lytical and numerical method.

2. Inverse analysis to determine center-line and surface temperature of cylindrical

rod at different coolant level, which will be helpful in predicting alarm level,

below which temperature of cylindrical rod may reach melting point.

3. Rapid prediction of temperature at critical locations for real-time application

with the use of neural networks.

4. Displaying real-time data on augmented reality device, which aids in field work

for carrying out inspection,maintenance.

5. Anisotropic thermal property estimation through IA will be implemented to

predict thermal conductivity of materials.
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CHAPTER 2

ANALYTICAL ANALYSIS

Heat transfer analysis and formulation for heat generating cylinder is presented

here. To limit scope of the work, a single heat generating rod and its heat transfer

with surrounding fluid is analyzed. It is carried out with two methods - Analytical and

Numerical method. In Analytical method, heat transfer phenomena within fluid was

not considered and the heat transfer coefficient was assumed constant for calculation.

While analyzing numerical method the heat transfer coefficients and heat transfer

within the fluid were considered. Both approaches have been discussed in details in

following sections.

2.1 Governing Equation

Consider a cylindrical body of radius R and Height L as schematically shown

in Fig.2.1. Heat rate Q is assumed to be generated inside the cylinder. It is also

assumed that cylinder exchanges heat with surrounding by convective heat transfer.

General form of the governing energy equation for the cylinder is given in

Eqn.( 5.14), It is assumed that heat generation is constant through out the cylin-

der. Due to rotational symmetry, variation with respect to θ-coordinate is ignored.

Considering axial and rotational symmetries, the model is solved as rectangular slice

of the cylinder taken from its center to its outer radius. The governing equation in

Eqn.( 5.14) subjected to boundary condition, is solved using Analytical and finite

volume formulation.:
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(
1

r

∂T

∂r

(
kr
∂T

∂r

)
+ kz

∂2T

∂z2

)
+Q = ρ Cp

∂T

∂t
(2.1)

Where k = Thermal Conductivity, r =radius in m, z = length in m, T =

temperature, Q = Volumetric heat generation ρ = Density of cylinder, Cp = Specific

Heat of cylinder

The boundary conditions are assumed as follows :

k(T )
∂T

∂r
= h1[T − T∞] at r = R1 z ∈ [L/2, L] (2.2)

T = T∞ at r = R1 z ∈ [0, L/2] (2.3)

T = T∞ at z = 0 r ∈ [0, R1] (2.4)

k(T )
∂T

∂z
= h2[T − T∞] at z = L r ∈ [0, R1] (2.5)

k(T )
∂T

∂r
= 0 at r = 0 z ∈ [0, L] (2.6)

T = T∞ at t = 0 (2.7)

Where h1 and h2 =Heat transfer coefficient of coolant and air respectively, T∞ =300

K, t =time.

Figure 2.1. Schematic model of partially cooled cylindrical rod.
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2.2 Analytical Formulation

Following assumptions are made while deriving analytical formulation for par-

tially cooled heat generating cylinder

1. Solid Cylindrical heat generating cylinder

2. Axi-Symmetric Model

3. Steady State thermal analysis

4. Isotropic Thermal conductivity

5. Ambient temperature = 300 K

Temperature distribution through steady state equation can be obtained through

separation of variable methods. Solution of equation is divided into homogenous (f)

and non-homogenous (s) part as follows:

θ = s(z) + f(r, z) (2.8)

s(z) =
−Qz2

2Kz

+ C1z + C2z (2.9)

Where,

C1 =
h1C2

Kz

(2.10a)

C2 =
QHC3

C4C5C6

(2.10b)

C3 =
C7 + 2

2Kz

(2.10c)

C4 =
h1h2H

KzKz

(2.10d)

C5 =
h2

Kz

(2.10e)
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C6 =
h1

Kz

(2.10f)

C7 =
h2H

Kz

(2.10g)

Homogeneous part of the equation (2.8) can be written as follows:

f(r, z) =
n=∞∑
n=1

AnI0(αnr)φn(z) (2.11a)

φn(z) = (βnHcos(βnz) +
h1H

Kz

sin(βnz)) (2.11b)

Where I0 is modified bessel function. αn, βn is eigenvalues which are calculated

in following equation

(tan(βn)(β2
n − (

h1H

Kz

)2))− (2βn(
h1H

Kz

)) = 0 (2.12a)

αn = βn

√
Kz

Kr

(2.12b)

Now using convective boundary condition as mentioned in equation (5.17),(5.18)

Kr
∂f

∂r
= −h(z)(f(r, z) + s) (2.13)

n=∞∑
n=1

I
′

0(αnr)φn(z) =
n=∞∑
n=1

−h(z)I0(αnr)φn(z)− h(z)s(z) (2.14)

Above given equation (2.14) is multiplied by cos(nθ) and integrated from θ = 0

to θ = 2π. Following linear equation is obtained which need to be solved for obtaining

temperature distribution.

AmCm +
n=∞∑
n=1

Andm,n = Pm (m = 1, 2, 3...) (2.15a)
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dm,n =

∫ H

0

−h(z)I0(αmr)φm(z)φn(z) dz (2.15b)

Pm =

∫ H

0

−h(z)s(z)φm(z) dz (2.15c)

Cm =

∫ H

0

I
′

0(αmr)(φm(z))2 dz (2.15d)

2.3 Modeling and Results from Analytical Formulation

Temperature distribution are obtained from solving linear equations mentioned

in (2.15). To validate the analytical formulation ,data from Comanche Peak Nuclear

Power Plant operation manual were used. These results are compared with finite

element solution (ANSYS). Two different cases were considered for simulation. One

with fully submerged fuel rod in coolant and other one partially cooled. Data is tab-

ulted in table (2.1). Exactly similar model is simulated using commercially available

FEM softwares (ANSYS).

Table 2.1. Model parameters

Properties Cylinder
Radius of cylinder (m) 0.0041
Length of cylinder (m) 4
Thermal Conductivity(W/mK) 4
Heat Generation rate(W/m3) 1.3 x 107

Heat Transfer Coefficient(W/m2K) h1 = 100, h2 = 10 or 100
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(a) (b)

Figure 2.2. Comparison of Analytical formulation and FEM solution (ANSYS) ,
when coolant level=length of cylinder, h1=h2=100 (a) Temperature plot along radial
direction at H=2m , (b) Temperature plot along axial direction at r=0m .

(a) (b)

Figure 2.3. Comparison of Analytical formulation and FEM solution (ANSYS) ,
coolant level = half-length of fuel rod ,h1=100,h2=10 (a) Temperature plot along
radial direction at H=2m , (b) Temperature plot along axial direction at r=0m .

2.4 Observation and limitation of Analytical Formulation

Analytical formulation shows good results for fuel rod of cylindrical shape with-

out any composite layers. Results obtained in previous section, shows good agreement

between analytical formulation and FEM solution (ANSYS). However the following

limitations makes it difficult to proceed with the analytical model in this thesis.
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1. Large number of eigenvalues are required to compute accurate thermal be-

havior over fuel rod length. This case becomes worse while modeling partially cooled

cylinder due to discontinuity at boundary and higher (L/r) ratio.

2. Incorporating temperature dependent thermal properties is a challenging

task in analytical formulation.

3. Modeling an actual fuel rod with cladding i.e. composite rod formulation is

a difficult task in analytical formulation.

To illustrate error, a case is considered for actual comparison between analytical

formulation with non-composite cylindrical rod and numerical formulation with com-

posite cylindrical rod. Composite fuel rod consists of fuel rod, helium gap, cladding.

Here, fuel rod is assumed to be fully submerged in coolant (i.e. h1 = h2 = 100)

(a) (b)

Figure 2.4. Comparison of Analytical formulation and FEM solution (ANSYS) ,
coolant level = half-length of fuel rod ,h1=100,h2=10 (a) Temperature plot along
radial direction at H=2m , (b) Temperature plot along axial direction at r=0m .
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CHAPTER 3

NUMERICAL METHOD (FINITE VOLUME METHOD)

In earlier discussion, it has observed that analytical formulation has its own

limitation when working under real practical conditions. As a result, we take recourse

of numerical modeling. Numerical method using finite volume method is presented in

this chapter. An in-house code was developed using Python and MATLAB for solving

governing energy equation assuming constant heat transfer coefficient. Procedure and

method are discussed here.

3.1 Finite Volume Formulation

Finite Volume Method (FVM) is well-known among researchers for solving gov-

erning energy equations as well as Navier-Stokes Equation. This method is chosen

over FEM, FDM as it has shown several advantages, when Navier Stoke’s equations

is being solved. In this section,a heat transfer coefficient value was assumed and no

equation was solved for fluid domain.

Following assumptions are made while deriving finite volume formulation for

partially cooled heat generating cylinder

1. Transient thermal analysis

2. Axi-Symmetric Model

3. Temperature dependent Thermal conductivity

4. Cladding and He-gap is considered for analysis

5. Ambient temperature = 300 K
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A finite volume code was developed in MATLAB in order to get the temperature

distribution in the cylinder with internal heat generation subjected to given boundary

conditions. The governing equation given in Eqn.( 5.14) was solved using finite volume

discretization. The cylinder is discretized by a Cartesian grid of finite volumes and

described in Appendix C.

This formulation leads to a set of algebraic equations that need to be solved in a

coupled manner with implicit formulation. The matrices obtained from the described

formulation are sparse and diagonal dominant. Inbuilt sparse matrix functions in

MATLAB are used to obtain the solution.

Temperature distribution obtained from the finite volume code was validated

using the commercial software ANSYS APDL. Steady state formulation validation

has been demonstrated in earlier papers [102–104]. The variation of the maximum

temperature with steady state and time as predicted by both the methods are in close

agreement within 0.1%.

To validate code further for fuel rod with clad and Helium gap, temperature

distribution obtained is compared with results from published paper [105] and shown

in figure (3.1) .
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(a) (b)

Figure 3.1. Validation of FVM code with results from published paper (a) Temper-
ature plot with different Heat generation values (W/mm3) at (h = 0.1W/mm2k),
(b) Temperature plot with different Heat transfer Coefficients (W/mm2k) at (q =
0.3064W/mm3) .

3.2 Chapter Summary

Heat transfer analysis for partially cooled cylinder was carried out using nu-

merical approach using Finite Volume Method (FVM). As compared to analytical

approach, numerical methods has shown easier approach for calculating temperature

distribution across partially cooled heat generating fuel rod. Temperature data ob-

tained from numerical method were validated against published results.However, heat

transfer phenomena in fluid is not considered in this chapter. To carry out further

thermal analysis, tools and libraries of OpenFOAM will be used in next chapter.
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CHAPTER 4

NUMERICAL MODELLING (OPENFOAM) AND EXPERIMENTS

In the numerical study conducted in previous section, heat transfer in fluid

medium was not analyzed. With reference to different coolant height, fluid and its

heat exchange with cylinder is need to be considered. Therefore, heat transfer through

a heat generating cylinder that is immersed in partially cooled water is numerically

simulated using OpenFOAM. The numerical solution is validated by comparing the

temperature data that is obtained from experimental setup representing the numerical

simulation.

4.1 Governing Equations

Navier Stokes Equation with Mass, momentum, energy equation were used for

carrying out numerical analysis. It consist of components like pre-processor, solver

and post-processor. Navier Stokes Equation used in this work is described in Ap-

pendix B.

Pre-processor is generally used to specify computational domain, generating

the mesh, apply boundary conditions and defining physical properties of the system.

Here pre-processor transforms user input data into the form which can be used by

solver.

After proper definition of the problem in pre-processor, the solver uses different

numerical algorithm to compute solutions. Generally finite volume method (FVM) is

used in most commercial CFD solvers. Solver generally consist of following steps:
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1. Integrating governing equations over all control volumes in computational do-

main which was defined in pre-processor. While integration of governing equa-

tions, properties (velocity,temperature) are conserved for each control volume

in the computational domain.

2. Transforming the integral equations into set of algebraic equations. Various

numerical schemes are available for discretizing this equation.

3. Solve algebraic equations by iterative methods like Gauss Siedel, Jacobi Method

The results obtained from solvers can be visualized in the post-processor. There

are several data visualization techniques available,Contour plot, vector plot, plot of

different variable over time and space

4.2 OPENFOAM

To carry out solid-fluid thermal analysis OPENFOAM (Open Source Field Op-

eration and Manipulation) code is used. OpenFOAM is a open source CFD software

written with computer language of C++ and runs on Linux based operating system.

It gives flexibility to change and customize functions to match requirement of the

case. OpenFOAM structure is built upon libraries which is used by different solvers

and utilities. Solvers are made to solve a specific type of problems in continuum

mechanics, while utilities are designed to perform data manipulation. [6]

User can also create their custom solvers and utilities with understanding of

underlying physics and programming skills. Openfoam does not have graphical user

interface (GUI),here input are provided through text files. Results in post-processing

can be visualized in Paraview.

For each case, three different folders is used: 0,constant, system. 0 folder contains
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Figure 4.1. Overview of Openfoam Structure [6].

initial conditions for variables as pressure, velocity, temperature.

Figure 4.2. Case Directory Structure [6].

Constant folder contains fluid/solid properties and polymesh (information about

mesh). System folder consists of solver and solution settings of each field. It contains

3 files : controlDict where run control parameters are set including start/end time,

time step and parameters for data output; fvSchemes where discretization schemes
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used in the solution may be selected at run-time; and, fvSolution where the equation

solvers, tolerances and other algorithm controls are set for the run. Time directories

contains individual files of data for fields like initial values.In addition, it is also useful

for fixing boundary conditions.

In this thesis, chtMultiRegionFoam solver is used for evaluating thermal phe-

nomena of partially cooled heat generating rod. It is a transient, compressible solver

for conjugate heat transfer problems, supporting multiple fluid and solid regions. The

solver is a combination of heatConductionFoam for the solid region, and buoyantFoam

for the fluid region.

4.3 Experimental Setup

To validate data obtained from numerical analysis, various set of experiments

have been carried out. The experiments are performed on a cartridge heater that is

immersed in water at several different heights. The temperature measurements are

obtained using thermocouple at specified locations within the cylinder for different

values of heat generation rates. A model problem representing the experimental setup

is formulated for numerical analysis and the resulting conjugate heat transfer problem

is solved using the OpenFOAM solvers. The experimental setup consist of tank and

heater. To locate heaters at center position, temporary arrangement was made with

stand and card board as shown in figure. Thermocouples are attached to heater

to measure surface temperature of heater. These thermocouples were equidistant

of 15 mm on Heater. Total 4 number of thermocouples were used for measuring

surface temperature of heater. Location 2 to Location 5 in Fig. 4.3(b) shows surface

temperature measurement points. On other hand, fluid temperature is measured with

three thermocouples, which were attached to wooden sticks so that their locations
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remain unchanged for achieving consistency in results. However, temperature data

obtained at location 6 shown in Fig. 4.3(b), will be used for inverse analysis. For

experiments, cartridge heater is used as heat generating cylinder. These heaters

are generally made up of Nichrome wire, steel casing and ceramics. Steel casing

is covered around ceramic material . This heater has facility to measure internal

temperature. Location of internal temperature is near bottom corner of the rod. K

type thermocouple were used for temperature measurement in experiment. Their

arrangement at different locations is shown in figure (4.3(a)). Electrical resistance

of heater is measured to evaluate power supplied to heater. Temperature data was

recorded using NI-DAQ and Labview.

Experiments were carried out for three cases: (i) Heater fully submerged in

water, (ii) Heater half submerged in water and (iii) No water around the heater. For

each case of the water level, the heater was heated at three different rates of heat

generation. In total, 9 trials were carried out. However, each trial was repeated 3

times and average temperature data were used for further analysis. For each trial,

the experiment was initiated with the heater and water at room temperature and

continued till steady state temperature readings from thermocouples was obtained.

Time to reach the steady state varied from 500s to 1800s based on the water level

and the heat generation rate. Temperature on the cylinder surface and internal was

measured using the thermocouples. For surface temperature measurement, 4 equidis-

tant thermocouples were attached to the heater. Figure (4.3(b)) shows points 2 to 5

as locations used for surface temperature measurement. In addition, a thermocouple

was placed in the fluid (water or air) to measure fluid temperature (Location 6).
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(a)

(b)

Figure 4.3. (a) Experimental Setup (b) Model of Heater .

4.4 Modeling

A heat generating cylinder that is partially cooled in water has been mod-

eled using OPENFOAM. Computational simulations were set up for cartridge heater

with tank. Heaters are generally made up of Nichrome wire, steel casing and ceram-

ics. Nichrome wire is embedded inside ceramics and it is covered by steel casing.
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For modeling, composite material and their properties are taken into consideration.

Heater with composite material is shown in Figure (4.4).

(a)

(b)

Figure 4.4. (a) Heater construction (b) Model of Heater .

Thermal properties of composite material inside cartridge heater is given in

Table 4.2 The computational domain includes the cylindrical rod that is partially
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Table 4.1. Thermal properties

Material Thermal Conductivity(W/mK) Specific Heat (J/KgK) Density (kg/m3)
Nichrome 13.5 450 4500
Steel 11 250 8000
Ceramic 1.25 1050 3500
Air 0.025 1046 1.25
Water 0.6 4186 1000

immersed in water with air surrounding it. Figure (4.5) shows schematic representa-

tion computational domain and the mesh used to discretize the domain. The physical

domain consist of cylinder of 9.5 mm diameter and 75 mm length that is partially

immersed in a pool of water tank which is made up of diameter of 190 mm and length

100 mm was assumed as pool of water or air. Axi-symmetric model was considered

for simulating heat transfer of partially cooled heater.

Experimental setup mimics the partially cooled cylinder condition during nuclear

accident. Summary of these conditions, which is used for modeling is given below :

1. This is coupled heat transfer problem as it contains fluid and solid domain

2. Heater specifically nichrome material is modeled as uniform heat source.

3. Heat transfer between fluid and heater is considered as natural convection

4. Fluid flow developed over heater is assumed to be laminar

5. Transients simulation was carried out for validation.

6. Radiation effects are neglected

7. Fluid is considered as Air and water according to different conditions assumed

in experiments.

The mesh was generated using BlockMesh utility. The blockMeshDict file is a

text file which tells the blockMesh utility how to generate mesh. It is structured as a
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list of vertices, list of blocks, number of cells and biasing in each direction, boundary

patches. Cell expansion ratios for each direction in the block allows grading. The

ratio is the width of the end cell δe along one edge of a block to the width of the start

cell δs along that edge.

(a) (b)

Figure 4.5. (a) Computational Domain (b) Mesh .

The domain was arbitrarily defined to have 200 cells in z direction. However

for r direction, biased meshing was carried out. Grid independence study was

conducted using meshes with three different levels of refinement. This study is for

evaluating if mesh points are correct enough. A coarse mesh of 9797, a medium mesh

of 25257 and fine mesh of 77397 were considered. Simulation was carried out at no

coolant condition, which provides maximum temperature gradient. Temperature data

was obtained at different time were analyzed for three different meshes. Fig shows

the numerical solution obtained on the considered meshes. It is observed that the
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maximum error in the solution between medium and fine meshes is less than 2%. As

a result, the numerical simulations were run on medium mesh.

Figure 4.6. Temperature data for three different grid points at location 1.

Boundary conditions are summarized in table.

Table 4.2. Boundary condition

Boundary Thermal Velocity Pressure
Boundary1 300 K 0 m/s 0
Boundary2 300 K 0 m/s 0
Boundary3 300 K 0 m/s 0
Boundary4 ∂(T )/∂(n) = 0 ∂(T )/∂(n) = 0 0

OpenFOAM employs finite volume method for solving incompressible Navier-

Stokes Equations and the transport equation representing the heat transfer. The

convection terms in the Navier-Stokes Equations was discretized using a second order

upwind scheme and second order difference scheme was used for diffusion terms. The
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unsteady simulations were carried out using P.I.S.O. Algorithm. To achieve proper

convergence time step was chosen as 0.003s. The residuals in the energy and the

momentum equations reached 10−4 to 10−7 within each time step. All simulation

were carried out using Texas Advanced Computing Centre (TACC) skylake node

[106]. Computation time varies from 12 hours for no coolant case to 45 hours for

partially cooled cylinder case. Residual for velocity and enthalpy field is shown in

Fig. (4.7).
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(a)

(b)

Figure 4.7. (a) Velocity Residual (b) Enthalpy residual .

4.5 Validation of OpenFOAM code

The temperature data obtained from numerical analysis is validated with con-

ducted experiments.The results obtained from the numerical simulations were com-

pared with the measurements obtained from the experiments at different levels of

water and heat generation rates provided to the heater.Temperature obtained at 3

locations were compared: one location at the surface of solid region, one location
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within the interior of the solid region and one location in the fluid region.

4.5.1 Coolant level =0

Experiments were carried out when there are no coolant (water). This case

corresponds to natural convection. Three different experiments with 1,2,3 Watts of

heat generation rates were carried out. Temperature data obtained from these exper-

iments are plotted and compared with data obtained from the numerical simulations

as shown in the Fig. 4.8(a) 4.8(b) 4.9(a) 4.9(b)

4.5.2 Coolant level =0.45L

Experiment are carried out with water level filled with 0.45L, where L is length

of heater. This case corresponds to partially cooled heat generating cylinder. Again

three different experiments were carried out. However another experiments with 4

W were carried out to capture higher temperature transients in partially cooled case.

In this experiment, steady state is reached within 500s. Temperature data obtained

from these experiments are plotted and compared with numerical simulation.
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(a)

(b)

Figure 4.8. (a) Temperature plot (1W) (b) Temperature plot (2W) .
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(a)

(b)

Figure 4.9. (a) Temperature plot (3W) (b) Temperature plot at Location6 .
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(a)

(b)

Figure 4.10. Partially cooled rod at Coolant level= 0.45L (a) Temperature plot
(3W) (b) Temperature plot (4W) .
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4.6 Chapter Summary

In this chapter, procedure and results for numerical analysis were discussed.

An axi-symmetric model and coupled solid-fluid thermal analysis was carried out to

evaluate temperature on surface and internal temperature of heat generating body.

Different coolant levels were used for simulating partially cooled heat generating body.

The results obtained from numerical analysis was validated with experiments. Exper-

iment was setup using cartridge heater and tank to represent a heat generating body

and coolant pond. Maximum error between experimental and numerical temperature

data was 2.6 %
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CHAPTER 5

INVERSE ANALYSIS

Inverse analysis (IA) is the process of calculating the causal factors from set of

observations or results. In this study, inverse analysis is carried out to predict tem-

perature distribution of partially cooled heat generating cylinder using two different

methods. In first method, temperature measured at rod surface is used as input for

predicting center-line temperature.The second method center-line and cylinder sur-

face temperature is predicted by using the fluid temperature measurement around

rod as input. Amongst different methods for optimization tools available for inverse

techniques, conjugate gradient method or simplex method is used in this study. For

computing sensitivity, complex variable semi analytical method (CVSAM) is used in

first method whereas temperature gradient of fluid temperature is utilized for second

method.

5.1 Inverse formulation

The inverse problem for determining temperature profile can be formulated

as an optimization problem by defining suitable objective function and constraints.

Unknown coefficients like heat generation rate is a design variable in the optimization

problem. This design variable is used as input to the finite volume (FVM) code that

predicts temperature distribution over time. Error between temperature obtained

from FVM and measurement is minimized by taking norm of the error as given in

Eqn.( 5.1)
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objectivefunction = S =
n∑
i=1

(Ti − Tmi)
2 (5.1)

Where, n =number of measurement points, Ti = computed temperature from

FVM code, Tmi = measured temperature, S = Objective function.

The objective function described in Eqn.( 5.1) is minimized using Conjugate

Gradient Method (CGM). Gradient of objective function to the design variable (i.e.

thermal conductivity) is typically required for such type of algorithm. The optimal

location of temperature measurements is obtained from CVSAM. The flow chart of

the inverse procedure is shown in Fig. 5.1.

Figure 5.1. Flow chart of inverse analysis.
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Noise is also added to measured values of temperature. The iterations are

stopped if the change in the value of objective function between successive iterations

is less than 10−6.

criteria for stopping <= (Sn+1 − Sn) (5.2)

5.2 Center-line Temperature prediction from cylinder surface temperature measure-

ment

Inverse analysis is performed to predict temperature distribution of partially

cooled heat generating cylinder using temperature measured at surface. Here conju-

gate gradient method is used for optimization. Sensitivity is computed using complex

variable semi analytical method (CVSAM).

5.2.1 Sensitivity Analysis

Sensitivity analysis is performed using automatic differentiation and adjoint

variable approach. Semi Analytical Method is advantageous due to its generality and

computational efficiency. However, it can lead to inaccurate sensitivity analysis if

perturbation size is not chosen carefully. An alternative approach is semi analytical

complex variable method (CVSAM), which is used to formulate sensitivity in this

paper. This method can compute sensitivity with respect to design variable with

high accuracy and efficiency [107].

Finite volume global equilibrium equation is

[K] {T} = {f} (5.3)
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Where [K] is stiffness matrix, {T} is the temperature and {f} is load vector.

Input design variables are considered as {X} = {X1, X2...Xn}

Differentiating Finite Volume equation with respect to design variables on both

sides, following equations is obtained

∂[K]

∂{X}
{T}+

∂{T}
∂{X}

[K] =
∂{f}
∂{X} (5.4)

Derivative of Temperature with respect design variable {X} can be written as

follows

∂{T}
∂{X}

=
{∆T}
{∆X}

= [K]−1 (
{∆f}
{∆X}

− [∆K]

{∆X}
{T}) (5.5)

In this equation same stiffness matrix is used for calculating temperature and

sensitivity. SAM programming is convenient and computationally efficient as same

stiffness matrix used in equation Eqn.( 5.3) and equation Eqn.( 5.6). However finite

difference is used for calculation of [∆K]
{∆X} and {∆f}

{∆X} . Choice of perturbation size is

important to calculate accurate sensitivity. It is difficult to find optimal perturbation

size with respect to multiple design variable. This issue of determining optimal per-

turbation size is addressed considering finite difference in complex plane. Taylor series

expansion with perturbation size in imaginary dimension is calculated as follows

f(x+ i∆x) = f(x) + i∆x∆f ′(x)− ∆x2f ′′(x)

2!
− i∆x3f ′′′(x)

3!
+ ..... (5.6)

Real and imaginary parts of above equation are separated and grouped together.

First order term can be obtained as follows

f ′(x) =
Imag(f(x+ i∆x))

∆x
+O(∆x2) (5.7)
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It can observed from above equation Eqn.( 5.7) that subtractive cancellation

error has been eliminated. By combining equations, CVSAM is obtained. Sensitivity

of the response to design variable is given in following equation.

∂{T}
∂{X}

≈ [K]−1

(
Imag{f(Xi + i∆Xi)}

{∆Xi}
− Imag [K(Xi + i∆Xi)]

{∆Xi}
{T}

)
(5.8a)

5.2.2 Conjugate Gradient Method

Conjugate Gradient Method is used in this study due to its robustness and high

rate of convergence. In this method, design variable for each iteration is calculated

using minimizing objective function by searching along direction of descent D(n) and

search step size βn. For orthotropic material, thermal conductivity in r and z direction

is calculated using following equation.

kn+1
r = knr − β(n)

r D(n)
r

(5.9a)

kn+1
z = knz − β(n)

z D(n)
z

(5.9b)

Where, Dr&Dz = direction of descent in r and z coordinates respectively,

βr&βz = step size in r and z coordinates, n = Iteration number.

The direction of descent for the current iteration is calculated using linear com-

bination of direction of descent of previous iteration and gradient direction as given

below:

D(n)
r =

dS

dkr

(n)

+ γ(n)
r D(n−1)

r
(5.10a)

D(n)
z =

dS

dkz

(n)

+ γ(n)
z D(n−1)

z
(5.10b)

50



Where, γ(n) = Conjugation Coefficient

γ(n)
r =

dS
dkr

(n) dS
dkr

(n)

dS
dkr

(n−1) dS
dkr

(n−1)
(5.11a)

γ(n)
z =

dS
dkz

(n) dS
dkz

(n)

dS
dkz

(n−1) dS
dkz

(n−1)
(5.11b)

Step size can be obtained by minimizing objective function S with respect to

step size β(n) as follows

β(n)
r =

dT
dkr

n
(Ti − Tmi)

( dT
dkr

n
)T dT

dkr

n (5.12a)

β(n)
z =

dT
dkz

n
(Ti − Tmi)

( dT
dkz

n
)T dT

dkz

n (5.12b)

5.2.3 Modeling and results

To validate the inverse analysis procedure, model is used from table (2.1).Using

finite volume code, developed in earlier chapter, temperature distribution on surface

of the rod was obtained. Assumptions made during this study are as follows.

• Axisymmetric Modeling

• Transient thermal Analysis

• Ambient temperature is assumed as 300 K

Temperature data at 5 points as shown in Fig.5.2 are used as input to inverse

analysis. Moreover, dimensions and thermal properties of the fuel rod are also used

as input to inverse analysis. Aim of this study is to centre-line temperature from

given input.

Algorithm depicted in earlier section is used for predicting heat generation rate.

The model assumes a constant internal heat generation rate. Simulated temperature

data is generated by running the forward problem using finite volume method. The

temperature at the location shown in fig (5.2) at different time steps with added noise
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Figure 5.2. Schematic model of partially cooled cylindrical rod for inverse analysis.

was given as input to inverse analysis formulation. Noise was added according to the

Eqn.( 5.19).

Tnoise = ±
√
−2σ2 lnR (5.13)

Where R = Random number between 0 and 1. σ =Standard deviation

Table. 5.1 shows the result from the inverse analysis for noise with different

normal distribution profiles. It is observed that inverse analysis formulation provides

good results even with added noise in the measurement.
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Table 5.1. Results from Inverse analysis

Properties Actual Value Predicted Value
σ = 0 σ = 0.01 σ = 0.05 σ = 0.1

Heat Generation
rate(W/m3) 8 x 107 7.999 x 107 8.004 x 107 7.9984 x 107

Heat Transfer
Coefficient(W/m2K)
hi1 1000 999.9991 999.934 999.89 1001
hi2 1000 999.9991 1000.0004 1002.82 999.8
hi3 1000 999.9991 999.993 999.68 999.1
hi4 10 9.9998 9.9635 10.48 9.9
hi5 10 9.9997 9.9917 10.28 9.3

5.3 Thermal conductivity prediction from rod surface temperature

In this section, numerical inverse analysis is used to predict thermal properties

of heat generating material (thermal conductivity) by measuring temperature at sur-

face. Accuracy and efficiency of the method is enhanced by using accurate sensitivity

information by use of Semi-Analytical Complex Variable Method(CVSAM). Steady

state heat transfer analysis with an axi-symmetric model was carried out using fi-

nite volume method. Temperature obtained from this analysis, is used as input for

the inverse method. Objective function for the optimization is difference between

computed and measured temperature. This function was minimized with Conjugate

Gradient Method (CGM). Coefficients obtained from CVSAM were used in gradient

based optimization method. The robustness of developed approach was evaluated by

adding Gaussian noise these temperature values. Material properties predicted from

this method show close agreement with published values.
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5.3.1 Earlier Work and overview

Over the past decades, the inverse analysis has been carried out for estimation

of material properties as thermal conductivity, specific heat etc. [21, 27, 108–118]

using measurement taken at surface. In previous works, temperature measurements

at multiple locations had to be provided as input to get accurate estimate of the

material thermal properties.

The formulation for inverse determination of temperature distribution inside

a heat generating cylinder subjected to homogeneous boundary condition, has been

presented for estimating thermal conductivity of the cylinder. A finite volume code

is developed and optimization is carried out with conjugate gradient method. A

test involving a heat generating cylinder with orthotropic thermal properties exposed

to air, is used to demonstrate the developed method. The convection boundary

conditions on the surfaces were determined using heat transfer coefficients that are

available in the literature. With the given value of heat generation, the temperature

distribution in the interior of the cylinder is obtained using the finite volume code.

The temperature distribution if the cylinder obtained from finite volume code was

given as input to the developed inverse analysis formulation. In order to simulate

the measurement error, noise with normal distribution was added to the temperature

distribution which given as input to the inverse analysis and the robustness of the

developed approach is evaluated. The sensitivity of the inverse formulation to the

location of temperature measurement was analyzed using Semi Analytical Complex

Variable Sensitivity Analysis Method (CVSAM). The orthotropic thermal properties

were obtained from inverse analysis. The calculations showed consistent results.

It should be emphasized that the developed approaches are general and may

be applied to other heat transfer problems as well. In the present work, the material

properties have been determined using measured temperature distribution along only
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one surface. This method is advantageous as it can be easily automated along with

single thermal imaging system to predict properties.

5.3.2 Problem Definition

A cylindrical body of radius R and height L as shown schematically in Fig.5.3

is considered. Heat Generation rate Q is assumed to be constant inside the cylinder.

It is also assumed that cylinder exchanges heat with surrounding by convective heat

transfer. Heat transfer coefficient of hr and hz are considered for outer surfaces

along the radial and longitudinal directions respectively. For present paper, both

heat transfer coefficients are taken to be (10 W/m2K) [119]. Considering rotational

symmetry, variation with respect to θ-coordinate is ignored.

Figure 5.3. Schematic model of axisymmetric heat generating cylindrical rod.
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General form of the governing energy equation for the cylinder is given by

Eqn.( 5.14). It is assumed that heat generation is constant through out the cylinder:

(
1

r

∂T

∂r

(
kr
∂T

∂r

)
+ kz

∂2T

∂z2

)
+Q = 0 (5.14)

Where k = Thermal Conductivity, r =radius in m, z = length in m, T =

temperature, Q = Volumetric heat generation

The governing equation in Eqn.( 5.14) subjected to boundary condition (ex-

plained in earlier section) is solved using finite volume formulation.

kr
∂T

∂r
= hr[T − T∞] at r = R1 z ∈ [0, L] (5.15)

kz
∂T

∂z
= hz[T − T∞] at z = 0 r ∈ [0, R] (5.16)

kz
∂T

∂z
= hz[T − T∞] at z = L r ∈ [0, R1] (5.17)

kr
∂T

∂r
= 0 at r = 0 z ∈ [0, L] (5.18)

Where r, z = directions, hz = hr =Heat transfer coefficient, T∞ =300 K, L =

Length of cylinder, R1 = Radius of cylinder, Kz, Kr = Thermal conductivity in z

and r direction.

5.3.3 Algorithm

To find thermal conductivity of heat generating cylinder in r and z direction

following algorithm is used:

1. Specify physical domain, governing equation,boundary conditions and surface tem-

perature of the cylinder. For given case, with the known value of thermal conductivity

forward problem is solved to get surface temperature value of the cylinder.
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2. Solve entire problem with initial guess of thermal conductivity. (thermal conduc-

tivity will be updated after each iteration )

3. Compute objective function as given in Eqn ( 5.1).

4. Check for the stopping criteria for given objective function. If it is less than 10−6

then stop calculation otherwise follow step 5.

5. Calculate sensitivity matrix using equation ( 5.8a).

6. Calculate gradient direction using equation ( 5.10a).

7. Calculate Conjugation Coefficient using equation ( 5.11a).

8. Calculate the direction of descend from equation ( 5.10a).

9. Calculate step size from equation ( 5.12a).

10. Calculate new thermal conductivity kr and kz and go to next iteration i.e. (n+1)

11. Go to step 2.

5.3.4 Test Case

A cylindrical rod of radius 0.013 m and length 0.066 m, as shown in Fig. C.1 is

considered as model problem to test developed method for inverse analysis. It can be

considered as battery as referred in [120]. Convective heat transfer occurs with air,

having film coefficient h (10 W/m2 ) K and ambient temperature 300 K. Material is

assumed to be linearly orthotropic for the analysis. Thermal conductivity in r and z

direction are considered to be differ in values Kr = 0.15 W/m2K , Kz = 32 W/m2K .

Heat generation value is assumed as constant over time for calculation.

Convective heat transfer boundary conditions are applied on outer edge of

cylinder, which is exposed to air as shown in Fig. (C.1). Simulation is initiated

with heat generation and applying boundary condition. Temperature distribution

obtained from this simulation at surface are used as input to the inverse analysis.

57



However sensitivity with reference to orthotropic thermal conductivity is calculated

and shown in figure. This data gives valuable information for selection of thermal

measurement points. Hence only two points and five points at surface z = L is

taken for measurement and inverse analysis. Temperature measurement on one sur-

face gives advantage of using thermal camera and automate the program for thermal

conductivity measurement.

Figure 5.4. Sensitivity plot - dT/dkr and dT/dkz .

Considering real scenario, there is always noise in terms of measurement error.

To show robustness of the method, noise in form of Gaussian distribution has been

added to temperature data, which was obtained from numerical solution of the prob-

lem. The results for different values of standard deviation of profile of noise is shown

in Fig 5.5.
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Figure 5.5. Temperature data in r direction at z = 0.066m direction with addition
of different simulated noise.

The model is subjected to constant internal heat generation rate of 6 W .

Simulated data is generated by running the forward problem using finite volume

method.The temperature at the location z = L with added noise was given as input

to inverse analysis formulation. Noise was added according to the Eqn.( 5.19).

Tnoise = ±
√
−2σ2 lnR (5.19)

Where R = Random number between 0 and 1. σ =Standard deviation

5.3.5 Results

Case 1: Two measurement points

The temperature at the location r = 0.013 m, r = 0.01274 m with added noise

was given as input to inverse analysis as this location has least sensitivity along

radial surface. Percentage error between predicted thermal conductivity with that of

obtained from literature [120] is shown in Fig.(5.6)
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Figure 5.6. Percentage error at different standard deviation - Two Measurement
Points.

Case 2: Five measurement points

In this case, five measurement points at surface z = 0.013 m are used for inverse anal-

ysis for estimation of thermal conductivity. Error between estimated and literature

value is shown in Fig.(5.7). It has been seen that error reduces with more measuring

points at surface.
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Figure 5.7. Percentage error at different standard deviation- Five Measurement
Points.
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Case 3: Five measurement points and different ratio of orthotropy

In this case different ratio of anisotropy (i.e. Kz/Kr) was considered for the model,

where Kr is kept constant and value of kz is changed.This model was used for inverse

analysis for prediction of thermal conductivity. For consistency of results, same five

measurement points are used as input to inverse method. Moreover 20 simulations

were carried out with same initial guess for specific standard deviation and degree

of orthorpic value. Average error is calculated as difference between these estimated

values with actual values (i.e. Kz/Kr) and plotted for different orthotropy ratio and

standard deviation as shown in Fig.(5.8).
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Figure 5.8. Percentage error at different standard deviation and orthotropy ratio.

5.4 Inverse Analysis using fluid temperature

In this section, inverse analysis approach was used for predicting temperature

over heat generating body from fluid temperature measurement. In earlier discussion,

it has been observed that measurement need to taken on the surface of heat generating

cylinder. Here,the inverse problem for determining temperature profile can be formu-

lated as an optimization problem by defining suitable objective function. Unknown
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coefficients like heat generation rate is design variable , which is used as input to finite

volume (FVM) code that predicts temperature distribution over time. Libraries of

OpenFOAM is utilized for numerical analysis to determine temperature distribution

in solid and fluid. Error between temperature obtained from FVM and measurement

at fluid location is minimized by taking norm of the error as given in Eqn.( 5.1).

Objective function described in Eqn.( 5.1) is minimized using Simplex Method,

which is derivative free method. In absence of sensitivity, location with higher tem-

perature change is selected as input to inverse analysis. Schematic representation of

inverse analysis setup is shown in Fig. 5.9. Temperature measured at location 6 is

used as input to inverse analysis model. The flow chart of the inverse procedure is

shown in Fig. 5.1.

(a) (b)

Figure 5.9. (a) Schematic Inverse Analysis Model (b) Numerical Analysis Model .
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5.4.1 Sensitivity Analysis

For inverse analysis, location of point 6 is really important as higher changes

in temperature aids in predicting heat generation rate and temperature at critical

locations over heat generating body. In fluid domain, three different locations in z

and r direction was chosen. Temperature change was observed at these six locations

and plotted in Fig. 5.10. It is evident from graph that temperature at location 6 which

is at r = 10 mm, z = 85 mm, shows more changes for particular heat generation

rate. Hence for inverse analysis, temperature at location 6 is considered as input to

the model. Temperature obtained at this location is validated with experimental data

also.

5.4.2 Modeling and results

For carrying out inverse analysis simplex method was used. Code was developed

in Python where Simplex library was utilized to predict temperature on centre point as

well as surface temperature. Simulation was carried out on TACC. Optimized results

were obtained after 40 hours of simulation. Temperature from numerical analysis

was compared with predicted temperature from inverse analysis. It shows really good

agreement with maximum error of 1.09% and shown in Fig. 5.11.
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(a)

(b)

Figure 5.10. Temperature in fluid domain (a) Three locations in r direction (b)
Three locations in z direction .
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(a)

(b)

Figure 5.11. Predicted temperature from inverse analysis (a) Heat generation rate
of 5W (b) Heat generation rate of 1W .
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5.5 Observation and Limitation

Inverse analysis for determination of spatially varying temperature distribution

for partially cooled heat generating cylinder, is developed. This formulation can

predict critical temperature of the cylinder. In first method, sensitivity analysis was

carried out using complex variable semi-analytical method, while for second method,

temperature gradient were used for sensitivity analysis . This procedure is analyzed

and validated using simulated measurements. Applicability of this method to realistic

scenario with measurement error has been tested by adding noise to input data to

inverse formulation. Analysis has been carried out with noise following Gaussian

distribution with different standard deviation values. This method predicted accurate

temperature and heat generation values in the cylinder even with this added noise

(Maximum error of 0.59%). However, this approach of inverse analysis has its own

limitation, are depicted below.

• Time required to predict heat generation value is approx 40 hours. It will be

really impractical in real-time application where temperature may reach to high

value within seconds.

• In present study only axi-symmetric model is considered, which needs lot of

computational power.
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CHAPTER 6

MACHINE LEARNING

The limitation of inverse analysis by numerical computation has been reported

in earlier chapter. Searching optimized value in space, takes a long time for simple

problem of two dimensional axi-symmetric model. This problem gets more costlier for

three dimensional models. Keeping this in mind, such IA techniques can not be useful

for real-time prediction. Machine learning technique is analyzed for predicting causal

factor from measured temperature. In this chapter a general overview of machine

learning and its application to heat transfer analysis will be discussed.

6.1 Machine Learning

Machine learning is a method of data analysis that automates analytical model

building. It is a subset of artificial intelligence based on the idea that machines has

ability to learn and adapt through different experience. Machine learning can be

defined as a field of computer science that provides computers the ability to learn

without being explicitly programmed. The name of machine learning was coined in

1959 by Arthur Samuel. [121].

Machine learning and artificial intelligence began in 1950 when Alan Turing

developed ‘Turing Test’ to determine real intelligence of computer. Arthur Samuel

published the first computer learning algorithm in 1952 for checkers game. In 1957,

Frank Rosenblatt designed the first neural network to simulate processing of human

brain. The nearest neighbor algorithm was developed in 1967 where some basic

patterns recognized by computer. In 1990, approach of machine learning changed
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from knowledge driven to data driven. Of late big corporation like Google, IBM,

Facebook, Amazon, Microsoft have contributed largely towards machine learning.

With research in machine learning reaching advanced stages, Elon Musk and Steve

Wozniak have signed an open letter describing of danger of autonomous computation.

Machine learning utilizes computational statistics, that focuses on prediction-

making. It has strong ties to mathematical optimization, which delivers methods,

theory and application domains to the field [122]. Machine learning can be unsu-

pervised and be used to learn and establish baseline behavioral profiles for various

entities [123,124] and then used to find meaningful anomalies [122].

Within the field of data analytic, machine learning is a method used to devise

complex models and algorithms that lend themselves to prediction; in commercial

use, this is known as predictive analytic. These analytical models allow researchers,

data scientists, engineers, and analysts to ”produce reliable, repeatable decisions and

results” as well as uncover ”hidden insights” through learning from historical rela-

tionships and trends in the data [125].

6.2 Artificial Neural Network

Artificial neural networks (ANNs), a form of connectionism, are computing

systems inspired by the biological neural networks that constitute animal brains.

Such systems learn to do tasks by considering examples, generally without task-

specific programming. For example,learning might be carried out to identify numbers

from images that have been handwritten in image recognization. These systems have

found great use in applications that are difficult to express in a traditional computer

algorithm using rule-based programming.

An ANN is based on a collection of connected units called artificial neurons.

These neurons are analogous to biological neurons in an animal brain. Each con-
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nection (synapse) between neurons can transmit a signal to another neuron. The

receiving (postsynaptic) neuron can process the signal(s) and then signal downstream

neurons connected to it. Neurons may have a state. This is generally represented by

real numbers, typically between 0 and 1. As learning proceeds, neurons and synapses

may also have a weight that varies, which can increase or decrease the strength of the

signal that it sends downstream. Furthermore, if neurons have a threshold that only

aggregates the signal above or below that level, then the downstream signal is sent.

Typically, neurons are organized in layers. Different layers may perform differ-

ent kinds of transformations on their inputs. Signals travel from the first (input), to

the last (output) layer, possibly after traversing the layers multiple times. In artificial

networks with multiple hidden layers, the initial layers might detect primitives (e.g.

cars, bikes, no vehicle etc) and their output is fed forward to deeper layers who per-

form more abstract generalizations (e.g. cars, bikes) and so on until the final layers

perform the complex object recognition (e.g. cars).

The original goal of the neural network approach was to solve problems in the

same way that a human brain would. Over time, attention focused on matching

specific mental abilities, leading to deviations from biology such as back-propagation,

or passing information in the reverse direction and adjusting the network to reflect

that information.

Neural networks have been used for numerous applications, including computer

vision, speech recognition, machine translation, social network filtering, playing board

and video games, medical diagnosis and in many other domain. Neural networks are

universal approximates, and it works best if the system you are using them to model

has a high tolerance to error. Some of the areas whether they work well are:

• Capturing pattern and discovering irregularities

• Diversified data and large number of variable
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Figure 6.1. Neural network is group of nodes, akin to vast network of neurons in a
brain .

• Difficulty in establishing relation between input and output

6.3 Machine Learning for Heat transfer analysis

Many researchers has contributed towards use of machine learning in predicting

different variables in heat transfer analysis. L.M.Tam and group [126] have devel-

oped heat transfer correlation of transitional flow in a horizontal tube using support

vector machines. H.K. Tam and group [127] worked to establish correlation for

two phase flow in vertical pipes. Anurag Kumra and team [128] implemented ar-

tificial intelligence approach to predict heat transfer rate of wire on tube type heat

exchanger. Recently Milani et al has determined tubrbulent diffusivity in film cool-

ing flows through machine learning approach [129]. Zhan and team published in

scientifc reports for prediction of thermal boundary resistance by machine learning

method [130].
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6.4 Training Algorithms

The training of neurons involves updating weight of matrices, and that need to

be accurate and fast. For the ANN training, there are several algorithms which could

be used viz.

1. Levenberg-Marquardt algorithm

2. Gradient Descent method

3. Bayesian Regularization

4. Scaled Conjugate Gradient method

5. One Step Secant method

There are number of libraries which are used for pattern recognition/ machine

learning etc. Most of the popular deep learning libraries have interface for Python,

followed by Lua, Java and Matlab. The most popular libraries, to name a few, are

Caffe, DeepLearning, TensorFlow, Theano, Torch. For this thesis, Tensorflow will

be used for training and learning. Tensorflow is an open source software library for

numerical computation. Moreover flexible architecture allows one to deploy com-

putation to one or more CPUs and GPUs in a desktop, server, with a single API.

Advantages of Tensorflow are intuitive construct, easy to train on CPU/GPU with

distributed computing, flexibility in programming.

6.5 TensorFlow

TensorFlow is open-source software library, which was developed by Google

Brain team and released on November 9,2015. It is symbolic math library used for

machine learning applications. [7,131,132]. TensorFlow can run on multiple CPUs and

GPUS [133].TensorFlow is available on different platforms like 64-bit Linux, macOS,
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Windows, Android, IOS. In May 2017, Google announced TensoFlow Lite for Android

development [134].

A TensorFlow computation consists of directed graph, which is composed of a

set of nodes. The graph represents a dataflow computation, with extensions for al-

lowing some kinds of nodes to maintain and update persistent state and for branching

and looping control structures within the graph in a manner similar to Naiad [135].

Computational graph is constructed using one of the supported frontend languages

(C++ or Python). An example for construction and execution a TensorFlow graph

using the Python front end is shown in Fig. (6.2(a)), and the resulting computation

graph in Figure Fig. (6.2(b)).

In a TensorFlow graph, each node has zero or more inputs and zero or more out-

puts, and represents the instantiation of an operation. Values that flow along normal

edges in the graph (from outputs to inputs) are tensors, arbitrary dimensionality ar-

rays where the underlying element type is specified or inferred at graph-construction

time. Special edges, called control dependencies, can also exist in the graph: no data

flows along such edges, but they indicate that the source node for the control depen-

dence must finish executing before the destination node for the control dependence

starts executing. Since TensorFlow model includes mutable state, control depen-

dencies can be used directly to enforce happens before relationships. TensorFlow

implementation also sometimes inserts control dependencies to enforce orderings be-

tween otherwise independent operations as a way of, for example, controlling the peak

memory usage. [7]

An operation has a name, which represents an abstract computation (e.g. add or

Matmul-Matrix Multiplication). An operation can have attributes, which need to be

provided at the time graph-construction in order to instantiate a node for performing

specific operation. One common use of attributes is to make operation polymorphic
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(a)

(b)

Figure 6.2. (a) Example TensorFlow Code Snippet (b) Computation Graph [7] .

over different tensor element types. A Kernel is a particular implementation of an

operation that can be run on particular type of device (e.g. CPU or GPU). Table 6.1

shows different kind of operations built into TensorFlow Library. [7]

Programs interact with TensorFlow system by creating Session. For creating

a computation graph, the Session interface supports an Extend method to augment

the current graph managed by the session with additional nodes and edges. The

initial graph when a session is created is empty. Run is the other primary operation

supported by Session interface, it takes a set of output names ,operational set of
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Table 6.1. TensorFlow Operation types [7]

Category Examples
Mathematical Operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal,...
Array operation Concat, Slice, Split, Constant, Rank, Shape, Shuffle,..

Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Stateful operations Variable, Assign, AssignAdd, ...

tensors to be fed into graph in place of certain output of nodes. Using the arguments

to Run, the TensorFlow implementation can compute the transitive closure of all

nodes that must be executed in order to compute the outputs that were requested,

and can then arrange to execute the appropriate nodes in an order that respects their

dependencies. Most of uses of TensorFlow set up a Session with a graph once, and

then execute the full graph or a few distinct subgraphs thousands or millions of times

via Run calls.

In most computations a graph is executed multiple times. Most tensors do not

survive past a single execution of the graph. However, a Variable is a special kind of

operation that returns a handle to a persistent mutable tensor that survives across

executions of a graph. Handles to these persistent mutable tensors can be passed to

a handful of special operations, such as Assign and AssignAdd (equivalent to +=)

that mutate the referenced tensor. For machine learning applications of TensorFlow,

the parameters of the model are typically stored in tensors held in variables, and are

updated as part of the Run of the training graph for the model.

A tensor in our implementation is a typed, multidimensional array. TensorFlow

support a variety of tensor element types, including signed and unsigned integers
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ranging in size from 8 bits to 64 bits, IEEE float and double types, a complex number

type, and a string type (an arbitrary byte array). Backing store of the appropriate

size is managed by an allocator that is specific to the device on which the tensor

resides. Tensor backing store buffers are reference counted and are deallocated when

no references remain.

The main components in a TensorFlow system are the client, which uses the

Session interface to communicate with the master, and one or more worker processes,

with each worker process responsible for arbitrating access to one or more computa-

tional devices (such as CPU cores or GPU cards) and for executing graph nodes on

those devices as instructed by the master.

6.6 ANN Training

Neural network architecture and training is vital in successful temperature pre-

diction on critical location of heat generating cylinder. Training data consist of In-

put (X) layer and Output (Y ) layer. Fig. (6.12) shows fully connected multilayer

feed-forward network, where each neuron in one layer is connected to all neurons of

subsequent layer. Training is process of finding weights that represents knowledge of

system. In other words, it adjusts weight values in order to define relation between

input and output data. Learning algorithm is an automatic adaptive method which

tried to fit appropriate weights to the neural network system.

The neural network has to be set with data to carry out the learning and

testing processes. All models need an input data pattern to be applied in its input

neurons in order to learn or test data pattern. The data to be applied to the network

must be prepared in a way that the network is able to understand and process it.

Typically, each data pattern must be transformed in a vector of values that represent

the pattern to be applied. The appropriate transformation of the data in the input

75



Figure 6.3. Fully Connected Multilayer neural network .

vector is essential to the learning process [136]. Here temperature data at location

6, time and coolant level are used as input data to the neural network, whereas

temperature measured/calculated at critical location (Location1, Location4, Cylinder

centre location) are used the output of neural network. To make a more robust neural

network, Gaussian noise were added to input temperature data. The neural networks

that need to have input and output patterns presented during the learning process,

the networks based on supervised learning can execute the error correction learning

algorithm. The input pattern is applied to the input neurons, then the signal flows

over the network producing an output. The produced output is compared with the

desired output for the given input pattern. The comparison results in a difference

that is used to do the error correction of the network connection weights.
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(a)

(b)

Figure 6.4. Training data to Neural Network (a) temperature data of 1W showing
input and output to neural network (b) Gaussian Noise added to input of neural
network .
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(a)

(b)

Figure 6.5. Training data to Neural Network (a) Output data at different power (b)
Input data for different power .
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6.7 ANN results

Neural Network training with dataset has been carried out using TensorFlow.

Function loss was stored at each iteration and plotted in Fig.6.6. It has been observed

learning rate of 0.0001 will be advantageous for minimizing the loss.

Figure 6.6. Function loss with different learning rate .

After training, neural network was tested for different scenario. Temperature

data at location 6 as function of time are provided to neural network for checking its

accuracy. Two different scenarios are considered- one with coolant level= 0 and other

is at coolant level= 0.45L. Temperature prediction has been carried out for Location1

and Location4. Data obtained from neural network is validated with experimental

results.
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(a)

(b)

Figure 6.7. Predicted temperature from Machine learning with heat generation of
1W coolant level=0(a) Location1 (b) Location4 .
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(a)

(b)

Figure 6.8. Predicted temperature from Machine learning with heat generation of
3W coolant level=0(a) Location1 (b) Location4 .
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(a)

(b)

Figure 6.9. Predicted temperature from Machine learning with heat generation of
3W coolant level= 0.45L(a) Location1 (b) Location4 .
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(a)

(b)

Figure 6.10. Predicted temperature from Machine learning with heat generation of
4W coolant level= 0.45L(a) Location1 (b) Location4 .
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(a)

(b)

Figure 6.11. Predicted temperature from Machine learning at center rod (a) Level=
0L (b) Level= 0.45L .
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6.8 Augmented Reality

Augmented Reality (AR) is an experience of interacting with real world envi-

ronment whose different elements are -so called- ”‘augmented”’ by various computer

generated perceptual information. This overlaid information can be added to natu-

ral environment or masked over natural environment and interwoven seamlessly with

physical world as it is perceived as an immersive aspect of real environment.

Augmented reality provides value as it brings digital world components into real

world. It doesn’t only display data but also provides experience through integration

of immersive sensation. The first functional AR systems that provided immersive

mixed reality experiences for users were invented in the early 1990s, starting with the

Virtual Fixtures system developed at the U.S. Air Force’s Armstrong Laboratory in

1992. [137–139]

Augmented reality combines real world content with virtual world. It also

provides facility to user to interact with virtual world environment. Milgram and

Kishino [8] published reality-virtuality continuum that defines link between real and

virtual world.AR is just one possible representation of Mixed Reality (MR), which

brings together real and virtual within a single display. AR is mostly grounded in

the real world, with a limited set of virtual objects mixed in. The inverse concept,

Augmented Virtuality (AV), is conceived as a virtual Environment with some real

aspects - a recurring example for AV are video-textured avatars (showing a live video

feed of real people) within a Virtual Environment. The boundary between AR and

AV is not strictly defined [140]. However, we will use Augmented Reality (AR) in the

study.

AR device hardware components are processors, displays,input devices (mi-

crophone,touch, gestures), sensors. Modern mobile devices like smartphones/tablet

computers contain camera,acceleromenter,GPS,compass which make them suitable
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Figure 6.12. Reality-Virtuality Continuum [8].

for AR Environment [141]. A head mounted display (HMD) is a display worn on the

forehead,such as helmet. HMDs shows images of both real world and virtual objects

in the range of user’s field of view. On February 17, 2016, Meta announced the prod-

uct Meta 2,head-mounted display headset uses a sensory array for hand interactions

and positional tracking, visual field view of 90 degrees (diagonal), and resolution dis-

play of 2560 x 1440 (20 pixels per degree), which is considered the largest field of

view (FOV) [?,142–144]. Another well-known head mounted device- Realwear, which

is widely used in industry. Their product HMT-1 is completely hands free, voice

controlled user interface, allowing workers to operate tools and equipment needed for

the field job. This device runs on android 6.0 platform, which makes it useful for

deploying custom applications. It is water-proof, dust tight, drop-proof [145]

For current thesis, components of augmented reality were used to display three

dimensional model of cartridge heater with real-time temperature data. It provides

valuable information to field-workers to understand the system in better way. To build

this demonstration, different software with AR devices were tied together. Three di-

mensional model of catridge heater and experimental setup is prepared using SOLID-

WORKS [146]. This model is exported in OBJ format. For setting up AR enviroment

in UNITY, VUFORIA sdk libraries were used. [147, 148]. Unity provides integrated

development platform for importing and setting up with virtual environment. Three

dimensional model of experimental setup, is imported in Unity. Then Vuforia SDK

is useful in providing relation between QR code (specifically generated for the exper-
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iment) and three dimensional model. It aids in recognizing QR code and overlaying

virtual object on top of that. Unity provides support in building this overall code,

which can be used for different cross-platform operating systems like android, ios,

windows. In addition to AR environment, project was further developed to provide

real temperature data. It is achieved through Firebase real-time database - provides

client libraries to integrate into different applications [149]. One such database was

created and links for the same was integrated inside Unity using C# script. Firebase

database is used for displaying ans storing realtime temperature. Temperature data

measured at fluid region (Location 6) using Ni DAQ and Labview is parsed inside

Python scripts. This data is given as input to trained neural network model. Output

of this model is stored on firebase database. Now it can be displayed in AR environ-

ment. Fig. 6.13(a), 6.13(b) shows complete architecture and demonstration of AR

Field. Following is overview of software utilized to setup augmented reality.

1. C++- Language to setup case in OpenFOAM and getting results

2. OpenFOAM- Carry out Numerical Analysis and get temperature data to train

Neural network Model

3. LabView Temperature Measurement while carrying out experiments

4. TensorFlow Trained Neural network model

5. Python Scripting for taking input from LabView and Sending to Firebase Database

6. Firebase- It is real-time database to store and display data.

7. SOLIDWORKS Three Dimensional Model

8. Vuforia Vuforia engine is required to QR Code recognition

9. UNITY Importing three dimensional model , embedding Vuforia Engine, build-

ing application cross platform (Android)

10. C# Language is needed to compile and scripting UNITY libraries

11. Android Install built library
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12. Java Carry out programming in Android

(a)

(b)

Figure 6.13. Augmented Reality demonstration on Android mobile phone (a) Soft-
ware architecture (b) Real-time pictures on Android mobile .
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6.9 Chapter Summary

In this chapter, machine learning and neural networks were discussed. Their

ability to learn by example makes them very flexible and powerful. Furthermore

there is no need to devise an algorithm in order to perform a specific task; i.e. there

is no need to understand the internal mechanisms of that task. They are also very

well suited for real time systems because of their fast response and computational

times. TensorFlow, widely used, open-source was implemented for predicting center-

line or surface temperature of the cylindrical body by temperature measurement at

fluids. It is observed that neural network model predicts temperature with maximum

error of 0.93 % and 1.66% for surface and center-line temperature prediction respec-

tively. After providing input to neural network, it takes 0.098 seconds for prediction.

This trained neural network study further extended to augmented reality,where field

worker can gauge real time condition and take corrective action through hands-free

AR devices.
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CHAPTER 7

CONCLUDING REMARKS

7.1 Summary

The objective of this thesis is to utilize inverse techniques for predicting max-

imum temperature inside a partially cooled heat generating solid rod by measuring

temperature at fluid region. The study was motivated in providing thermal safety

analysis of spent fuel rods for nuclear power plant and battery management.

Analytical formulation was carried out to study temperature distribution in heat

generating rod. This formulation has limitations in handling discontinuous boundary

and composite material, was also taking lot of time while computation of simple axi-

symmetric model. Hence temperature distribution was analyzed using finite volume

numerical method. For robust study, finite volume control method was extended to

simulate natural convection for two dimensional axi-symmetric model using Open-

FOAM.

While performing inverse analysis techniques, a code was developed using finite

volume code and conjugate gradient method. However, such approach takes a large

computation time. So, neural network (NN) model was adopted for performing in-

verse analysis. This model was trained with different simulated data from numerical

analysis. Predicted values from NN model was in close agreement to maximum tem-

perature rise in rod. For code validation, experiments were conducted to simulate

heat generating rods. This machine learning method was extended to attach aug-

mented reality environment. This facilitates field worker to gauge real time condition

and take corrective action.
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In addition, a framework was developed for predicting anisotropic properties of

material. For this, temperature was measured at different location of surface as input

for predicting thermal conductivity of heat generating rod. Results obtained from

this analysis was validated with published results. This framework is also utilized for

estimating equivalent thermal conductivity of pellets.

7.2 Future work

The analysis proposed in this thesis can be extended to study rod bundles,

that represent actual scenario. This method will allow one to predict maximum

temperature inside a rod in nuclear plants. Operating data from the plant can be

used as basis for training neural network model.

Neural network model with ReLU method is used in this thesis. A much more

comprehensive study is needed using different model like Convolution Neural Network

(CNN), Support Vector.

The current study uses temperature data of one location as input to NN model.

However, NN model should be trained with various locations. This will be advanta-

geous for power plants, where temperature measured at any location can be used as

input data to predict maximum temperature inside the system.

Augmented reality shows how technology can be employed to aid field worker.

Current scenario, real time interaction of worker is not deployed in software. For

future project, this can be extended through developing advanced software techniques.

In the current research, boiling phenomena is not considered during numerical

analysis and coolant level is used as input data to neural network model. In future

work, boiling can be introduced in the numerical study to predict critical coolant level

inside plant.
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Moreover, in this thesis coolant level is assumed as constant for study. Consid-

ering real-time scenario, where the level changes , will require the code modification.

This will allow incorporating changing level at certain rate and predicting critical

temperature inside heat generating body.
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APPENDIX A

Appnedix A-Thermal Conductivity Prediction of pellets
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In this appendix section, numerical inverse analysis is used to predict thermal

properties of porous material by measuring temperature at surface. Accuracy and

efficiency of the method is enhanced by using accurate sensitivity information by use

of Semi-Analytical Complex Variable Method(CVSAM). Steady state heat transfer

analysis with an axi-symmetric model was carried out using finite volume method.

Temperature obtained from this analysis, is used as input for the inverse method.

Objective function for the optimization is difference between computed and measured

temperature. This function was minimized with Conjugate Gradient Method (CGM).

Coefficients obtained from CVSAM were used in gradient based optimization method.

The robustness of developed approach was evaluated by adding Gaussian noise these

temperature values. This work is extension of earlier work carried out, where results

were validated with published results [150].

A.1 Experimentation [151,152]

In order to obtain the proper boundary conditions for the Inverse Analysis

method, a series of experiments were carried out in a closed plastic 2x1x1 ft. plastic

box to allow natural convection. In this box a copper tube of length 0.1905 m, 0.0148

m outer radius, and a wall thickness of 0.0008 m was placed in a horizontal configu-

ration. Inside this tube, a Tutco 750 W electrical cartridge heater with diameter of

0.0128 m was placed in the center. In order to ensure that the heater was centered

inside the copper tube, special fixtures were manufactured, this will create an annular

gap where the porous media will be placed. The top and bottom of the copper tube

are insulated with Asbestos to force radial heat transfer [151].

A set of K-type thermocouples are placed at the surfaces of the cartridge heater

and another set was placed in copper tube surface. The sensors output was mea-

sured by National Instruments NI-9211-channel thermocouple input module which

94



was placed inside a NI-cDAQ 9174 4-slot USB. The channels were configured to write

data in the micro voltage range. This equipment was used alongside with a NI Lab-

VIEW for data acquisition from the thermocouple readings, program can be seen in

Fig A.1.

Figure A.1. LabView Program.

Temperature measurements were taken at every second until steady state heat

transfer was reached, these measurements were taken at four equidistant points on

the surface of the cartridge heater as well as on the copper tube surface. In Fig. A.2

the copper tube and the thermocouples can be seen.

The Tutco cartridge heater was calibrated using a calorimeter as seen on Fig A.3.

The heater was outputting the same power as it was supplied, so it was properly set to

be used in the experiments. The power to the heater in the experiments was supplied

by using a BK Precision, Model VSP12010 programmable PFC DC 120V/10A power

supply, shown in Fig A.4.

In order to verify the voltage and the current that was supplied to the exper-

iment, an Extech instruments, model EX330 multimeter was connected in series to

measure the current, a Fluke 287 True-RMS multimeter was connected in parallel to

measure the voltage. The power supplied to the heater were 1W, 2W and 3W, in or-

der to determine if there is a difference in the conductivities. A K-type thermocouple

measures the ambient temperature inside the box at each experiment run.

95



Figure A.2. Experimental setup.

Table A.1. Different material were used to obtain equivalent thermal conductivity

Number Material Dimensions Type
1 Glass 3 mm diameter bead
2 Silica Catalyst 2 mm dia and 3 mm long cylinder
3 Aluminium unpolished 1/4 inch pellet
4 Aluminium polished finish 3/8 inch pellet
5 Aluminium unpolished 3/8 inch pellet
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Figure A.3. Catridge heater calibration.

Figure A.4. Power supply.

A.2 Results and discussions

Results obtained from inverse heat transfer analysis code are presented in this

table. It is observed that thermal conductivity increases with power supplied to the

system.
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Table A.2. Mean thermal conductivity at 1 W

Number Km (W/mK) ε
1 0.0877 0.5
2 0.0357 0.4968
3 0.1103 0.4057
4 0.1418 0.3868
5 0.1000 0.4528

Table A.3. Mean thermal conductivity at 2 W

Number Km(W/mK) ε
1 0.1018 0.5
2 0.0420 0.4968
3 0.1330 0.4057
4 0.1600 0.3868
5 0.1290 0.4528

Table A.4. Mean thermal conductivity at 3 W

Number Km (W/mK) ε
1 0.1020 0.5
2 0.0430 0.4968
3 0.1390 0.4057
4 0.1660 0.3868
5 0.1340 0.4528
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APPENDIX B

Appendix B- Axi-symmetric Governing Equation
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Axi-symmetric Navier Stokes Equation are explained here.

∂(U)

∂t
+
∂A

∂z
+
∂B

∂r
+
C

r
= 0 (B.1)

Where,

U =



ρ

ρ uz

ρ ur

ρ E


(B.2)

A =



ρ uz

ρ uz uz + p− τzz

ρ ur ur − τrz

ρ uz H + qz − uz τzz − ur τrz


(B.3)

B =



ρ ur

ρ ur uz + p− τrz

ρ ur ur − τrr

ρ ur H + qr − uz τrz − ur τrr


(B.4)

C =



ρ ur

ρ uz ur + p− τrz

ρ ur ur − τrr

ρ ur H + qr − uz τrz − ur τrr


(B.5)
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τzz =
2 µ

3Re

[
2 ∂uz
∂z

− ∂ur
∂r
− ur

r

]
(B.6)

τrr =
2 µ

3Re

[
−∂uz
∂z

+ 2
∂ur
∂r
− ur

r

]
(B.7)

τrz =
µ

3Re

[
∂uz
∂r

+ 2
∂ur
∂z

]
(B.8)

qz =
−µ

Pr(γ − 1)M2 Re

∂T

∂z
(B.9)

qr =
−µ

Pr(γ − 1)M2 Re

∂T

∂r
(B.10)
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APPENDIX C

Appendix C- Finite Volume Method
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A finite volume code was developed in MATLAB in order to get the temperature

distribution in the cylinder with internal heat generation subjected to given boundary

conditions. The governing equation given in Eqn.( 5.14) was solved using finite volume

discretization. The cylinder is discretized by a Cartesian grid of finite volumes. The

heat conduction operator is defined as

Le(T ) =
1

r

∂T

∂r

(
kr
∂T

∂r

)
+
∂T

∂z

(
kz
∂T

∂z

)
(C.1)

The finite volume formulation is obtained from the following expression

Le(T ) =
1

rchihj

∫ ∫
(krTr)r + (krTz)zdrdz

=
1

rchihj

∫
krδT.ndΓ

(C.2)

where rc is the value of r-coordinate at the cell center, h is grid spacing,n is the

normal vector to the boundary of the cell and the subscript indicates the differential

with respect to the sub-scripted variable.

Figure C.1. Schematic control volume (not to scale) [9].

103



The discrete form of the above expression by using central differencing at cell i

is given by

Le,h,i(T ) =
1

rchihj

(
2∑
d=1

F d
i+ 1

2
ed
− F d

i+ 1
2
ed

+ FB
i

)
(C.3)

Where fluxes are given by

F 1
i± 1

2
,j

= ki± 1
2
,jri± 1

2
,j (∓Ti,j ± Ti±1,j)hj/hi (C.4)

F 2
i,j± 1

2
= ki,j± 1

2
ri,j (∓Ti,j ± Ti,j±1)hi/hj (C.5)

The boundary flux is given by FB
i = rBkB

(
∂T
∂nB

)
hj which is obtained through

boundary conditions.

The time discretization is done using the first order backward Euler scheme.

The governing equation can be cast in the form.

T n+1
i =

δt

(ρC)i
Le,h,i

(
T n+1

)
+ S (C.6)

where S = δtQi

(ρC)i
+ T ni
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APPENDIX D

Appnedix D-Video
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Video is attached herewith. In this video, experiment has been carried out

and temperature at location 1 and location 4 has been measured experimentally as

well as through machine learning. It can be seen that whenever mobile camera point

towards specific QR code, current temperature value and schematic representation

of rod appears. Predicted temperature is calculated using machine learning and

temperature at location 6 (fluid temperature around heat generating rod). Predicted

values shows good agreement with experimental data.

Link for video - https://youtu.be/cl_tiWSN68M
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