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Abstract 
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GOKARNA NEUPANE, MS 
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Supervising Professor: Dr. Leonidas Fegaras 

Committee Member: Dr. Ramez Elmasri 

Committee Member: Mr. David Levine 

 

With explosive growth of data in past few years, discovering previously unknown, 

frequent patterns within the huge transactional data sets has been one of the most 

challenging and ventured fields in data mining. Apriori algorithm is widely used and one 

of the most researched field for frequent pattern mining. The exponential increase in the 

size of the input data has adverse effect on the efficiency of the traditional or centralized 

implementation of this algorithm. Thus, various distributed Frequent Itemset Mining(FIM) 

algorithms have been developed. MapReduce is a programming framework that allows 

the processing of large datasets with a distributed algorithm over a distributed cluster. 

During this research, I have implemented a parallel Apriori algorithm in Hadoop 

MapReduce framework with large volumes of input data and generate frequent patterns 

based on user defined parameters. I have implemented hash tree data structure to 

represent the candidate itemsets which aids in faster search for those candidates within a 
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transaction. These experiments were conducted in real-life datasets and varying 

parameters. Based on various evaluations, the proposed algorithm turns out to be 

scalable and efficient method to generate frequent item-sets from a large dataset over a 

distributed network. 
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Chapter 1  

Introduction 

Today, there are countless number of businesses running side by side competing 

with each other for success. Most of these might be from different regions, design 

different products and target different customers but all share one common outcome 

which is data. With today’s consumption rate, there must be huge amount of data being 

generated on daily basis for all organizations. The proper processing and analysis of this 

data to spawn useful information is vital in efficient operation of these businesses. So, 

data mining plays key role in generation of such valuable information. In addition to top 

business organizations, various scientific researches are known to adopt data mining 

techniques to achieve their targets. 

 

Frequent Itemset Mining(FIM) is a data mining technique used to explore 

interesting connections within a huge transactional data. FIM aims to find information 

based on how frequent the interesting events occur in the database[1]. The most typical 

application of FIM is in Market Basket Analysis(MBA) which analyzes the purchasing 

behaviour of customers[3]. For example, in Consumer Package Goods(CPG) industry, 

FIM is used to identify patterns in customer purchases, mainly, which items tend to be 

bought together[2]. 

 

FIM is one of the most researched field in data mining and various algorithms have been 

developed and studied for this purpose. With the astronomical increase in the size of 
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data, the traditional centralized FIM algorithms failed to prove effeciency regardless of 

any strategy. The processing and storage capacity of a single machine was not enough 

to efficiently generate frequent item sets from large volume of data. Thus, parallel 

versions of these algorithms were developed that ran in a distributed cluster which 

appeared to improve the mining performance than the centralized version of the 

algorithm. Even though the mining performances were improved, distributed computation 

added overhead of managing the distributed system as described in [3]. These issues 

can be overcome by the MapReduce framework developed by Google [3]. MapReduce is 

a scalable and highly efficient distributed programming model for processing and 

analyzing big data. 

 

During this research, I have implemented the parallel Apriori algorithm for mining 

frequent item-sets on Hadoop MapReduce Framework and reviewed the performance 

with varying user defined parameters based on real-life dataset. In addition, I have 

highlighted the limitations of the parallel Apriori algorithm with a discussion of future 

improvements that can be brought in this field. 



3 

Chapter 2  

Apriori Algorithm 

 
2.1 Problem Statement 

 

The problem of mining frequent itemsets over basket data was introduced by R. 

Agrawal in [4]. As described in [5], the problem can be formally stated as follows. Let T = 

{T1, T2, T3, ..., Tn} be a transaction database containing n transactions. Each transaction 

Ti = {i1, i2, i3, ..., im} contains a set of items from I = {i1, i2, i3, ..., ip} where p≥m such 

that Ti ⊆ I. An itemset X with k items from I is called a k-itemset. A transaction Ti 

contains an itemset X if and only if X ⊆ Ti. The support of an itemset X in T denoted as 

supp(X) indicates the number of transactions in TDB containing X. An itemset is frequent 

if its support, supp(X) is greater than a support threshold called minimum support. 

 

2.2 The Apriori Algorithm 

 

Apriori is an influential algorithm for generating frequent item-sets from a transactional 

database. It uses a bottom-up approach where frequent subsets are extended one at a 

time and those item-sets satisfying the minimum support threshold and Apriori property 

are kept and rest are pruned [6]. The Apriori property states that, “Any subset of a 

frequent item-set must also be frequent”. 
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For example, let us suppose a transactional database D with n items and m transactions. 

To extract k-frequent item-sets, this algorithm scans the transaction database k times. 

This algorithm uses a pre-defined minimum support threshold to filter out the frequent 

item-sets. Firstly, the algorithm scans the database to generate frequent 1 item set. For 

rest of the process, the algorithm seeks to join two k-1 frequent item-sets to generate 

possible k item-sets combination. Since determining the support for every possible 

combination of the previous collection of item-sets is expensive, this method prunes all 

the item-sets which does not satisfy the Apriori property. The item-sets obtained after 

pruning are called candidate item-sets. Then the algorithm computes the support of each 

candidate item-sets and those having support lower than given threshold are discarded 

and rest are extracted as frequent item-sets. The algorithm ends when there are no 

candidate item-sets. 

 

Algorithm (Serial Apriori): 

D = Transactional database 

t = A transaction in D 

min_support = Minimum threshold support 

Lk = Frequent k item-sets 

Ck = Candidate k item-sets 
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1. Calculate L1 from the database from the first scan. 

2. For k>2, do. 

3. Join Lk-1 with itself to create possible k item-sets. 

4. Calculate Ck by pruning the item-sets not satisfying the Apriori property. 

5. For each transaction t in the database D, do. 

6. Calculate and increase the count of all the candidates Ck present in t. 

7. Extract Lk from the candidate sets which satisfy the minimum support threshold. 

8. End do. 

9. Increase k to k+1 and go to step 2 until Ck = ø. 

 

 
2.3 Apache Hadoop MapReduce Framework 

 

Hadoop is a large-scale distributed batch processing infrastructure for parallel processing 

of big data on large cluster of commodity computers [7]. Hadoop is an open source 

project of Apache [8] which implemented Google's File System [9] as Hadoop Distributed 

File System (HDFS) and Google's MapReduce [10] as Hadoop MapReduce programming 

model. 
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Hadoop Distributed File System (HDFS) is distributed file system that holds a 

large volume of data in terabytes or petabytes scale and provides fast and scalable 

access to such data [7]. It stores files in a replicated manner across different machine to 

provide fault tolerance and high availability during execution of parallel applications [7].  

HDFS is a block-structured file system and breaks a file into fixed size blocks 

(default block size is 64MB) to store across several machines. Hadoop uses two types of 

machine working in a master-worker fashion, a NameNode as master machine and a 

number of DataNodes as worker machines. The NameNode assigns block ids to the 

blocks of a file and stores metadata (file name, permission, replica, location of each 

block) of the file system in its main memory providing fast access to this information. 

DataNodes are the individual machines in the clusters which store and retrieve the 

replicated blocks of multiple files [7].  

MapReduce is a parallel programming model designed for parallel processing of large 

volumes of data by breaking the job into independent tasks across a large number of 

machines[7]. According to [11], a MapReduce program is composed of a  procedure 

(method) that performs filtering and sorting (such as sorting students by first name into 

queues, one queue for each name) and a Reduce() method that performs a summary 

operation (such as counting the number of students in each queue, yielding name 

frequencies). The "MapReduce System" (also called "infrastructure" or "framework") 

orchestrates the processing by marshalling the distributed servers, running the various 

tasks in parallel, managing all communications and data transfers between the various 

parts of the system, and providing for redundancy. 
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The model is a specialization of the split-apply-combine strategy for data analysis.[12] It 

is inspired by the map and reduce functions commonly used in ,[13] although their 

purpose in the MapReduce framework is not the same as in their original forms.[14] The 

key contributions of the MapReduce framework are not the actual map and reduce 

functions, but the scalability and fault-tolerance achieved for a variety of applications by 

optimizing the execution engine. As such, a single-threaded implementation of 

MapReduce will usually not be faster than a traditional (non-MapReduce) 

implementation; any gains are usually only seen with multi-threaded implementations. 

[15] The use of this model is beneficial only when the optimized distributed shuffle 

operation (which reduces network communication cost) and fault tolerance features of the 

MapReduce framework come into play. Optimizing the communication cost is essential to 

a good MapReduce algorithm.[15] 

 

Figure 1: Hadoop MapReduce Framework 
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Following explains the MapReduce core functionality according to [15]: 

• Input Reader: Divides the input file into appropriate size splits (default 64MB) 

which gets assigned to a Map function for processing. 

• Map Function: Maps the file data to smaller, intermediate (key, value) pairs. 

• Partition Function: finds the correct reducer: given the key number of reducers, 

returns the desired reduce node 

• Compare Function: input for the reduce is pulled from the Map intermediate 

output and sorted according to the compare function. 

• Reduce Function: takes intermediate values and reduces to a smaller solution 

handledback to the framework. 

• Output writer: writes file output. 

 

2.4 Parallel Implementation of Apriori Algorithm 

 

As discussed earlier, when the size of data increases, the I/O cost of centralized Apriori 

algorithm increases exponentially because of iterative scan of the large database and 

high memory consumption. Hence, the need for parallel Apriori algorithm to process huge 

transactional data. To implement any parallel algorithm on MapReduce framework, it is 

vital to design map and reduce function and convert the datasets in the form of (key, 

value) pairs. These maps and reduce functions run on different machines in parallel and 
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produce aggregated output from each reducer. Since, Apriori algorithm is an iterative 

process, it requires multiple execution of the map-reduce jobs to extract k frequent item-

sets. During this research, we implement the parallel Apriori Count Distribution(CD) 

algorithm to generate k frequent item-sets. 

 

Count Distribution algorithm is categorized under data parallelism where the data is split 

into various blocks and transmitted to various machines to process in parallel. It reduces 

the overhead of synchronization and processor communication [3]. According to [3], 

following is the algorithm that describes the Count Distribution. 

 

D = Original Large Transactional database 

Di = Local data partition 

Pi = Local Processor 

t = A transaction in D 

min_support = Minimum threshold support 

Lk = Frequent k item-sets 

Ck = Candidate k item-sets 
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1. Candidate 1-item-sets, C1 = I, the set of all items. 

2. To generate Ck, where k >= 1 join two of Lk-1, generating k item-sets and 

prune these item-sets according to apriori property. 

3. To generate Lk, where k >= 1 processor Pi scan the local partition Di and 

find the local support counts of candidates in Ck 

4. Processor Pi exchange the local counts with other processors to find 

global counts of candidates Ck. 

5. Find the frequent k-item-sets Lk from Ck as Lk = all candidates of Ck with 

minimum support threshold. 

6. Repeat from step 2 until Ck is empty. 

 

 

Figure 2: Parallel Implementation of Apriori Algorithm 
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Figure 2, describes the components of the parallel implementation of the apriori algorithm 

and shows the data flow in the process. At, first we take the source data which is to be 

processed and format it in HDFS. We use two separate mappers, one combiner and one 

reducer for this entire task. 

 

2.4.1 First Mapper Setup 

 

The primary purpose of the first mapper is to find out frequent 1 item-sets. In the first 

mapper job, the input database D is split into smaller chunks of Di(default is 64MB) and 

distributed to i processors. The mapper reads the input line by line and reads each item 

separated by a delimiter. Then each item is set as key and the value is set to 1. 1 

represents the frequency for that item. Thus obtained (key, value) pair is then passed to 

subsequent combiner / reducer. Following is the pseudo code for the first mapper. 

 

• for each transaction t in the chunk Di do 

o for every item I in the transaction t do 

§ set key = item and value = 1 

§ send (key, value) as output 

o end for 

• end for 
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2.4.2 Rest Mapper Setup 

 

After the generation of 1 frequent item-sets, to generate rest of the item-sets, the mapper 

phase adopts different approach.  

Starting from the process to generate 2 or more item-sets, each mapper gets chunk of 

the dataset and Lk-1 frequent item-sets generated by previous reducers as the distributed 

cache. Thus, obtained database from the distributed cache is joined with itself to create k 

item-sets. Now the k item-sets is passed to a pruning function that prunes all the item-

sets that does not satisfy the apriori property, i.e. every subset of the item-set must also 

be frequent. This creates a set of candidates’ item-sets. 

Now the rest mapper reads all available candidates as distributed cache and counts the 

presence of each candidate within each transaction in the database chunk. If a candidate 

is present in the transaction, the mapper writes (candidate, 1) as key-value pair and send 

it to the combiner. Following is the pseudo code for this mapper: 

 

• Lk-1 = read from HDFS as distributed cache 

• Join Lk-1 with itself to create k item-sets 

• Prune thus obtained item-sets to generate candidate k item-sets 

o for each k item-set calculate all k-1 subsets do 

§ check if all subsets present in Lk-1 obtained from 

distributed cache 

§ if yes, store it as a candidate 
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§ else, discard the item-set 

§ end for 

• for each transaction t in Di do 

o if candidate k item-set present in t, set key = candidate, value = 1 

o output (key, value) 

• end for 

 

 

2.4.3 Combiner Setup 

 

A Combiner, also known as a semi-reducer, is an optional class that operates by 

accepting the inputs from the Map class and thereafter passing the output key-value pairs 

to the Reducer class [16]. The main function of a Combiner is to summarize the map 

output records with the same key. The output (key-value collection) of the combiner will 

be sent over the network to the actual reducer task as input [16]. 

 

For our algorithm, the combiner class takes the (key, value) pair from the mapper output 

and aggregates the count of each key and sets the value as the aggregated count then 

sends the output to the reducer as (key, value) pair. Following is the pseudo code for the 

combiner class: 
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• for each key do 

o aggregate the count for each key 

• end for 

• set value = aggregated count 

• output new (key, value) pair 

 

 

2.4.4 Reducer Setup 

 

The reducer is common for all iterations. Like the combiner, the reducer class takes the 

(key, value) pair from the combiner output and again aggregates the count and checks if 

the count satisfies the minimum support threshold. If yes then the reducer outputs the key 

and the aggregated count as value and discard the rest nor satisfying the condition. 

Following is the pseudo code for the reducer class: 

 

• for each key do 

o aggregate the count for each key 

• end for 

• check if the aggregate count of each key is >= minimum support 

threshold 

o if yes do  
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§ set value = aggregated count 

§ output (key, value) pair 

o else, continue 

 

2.5 Systems Used for Evaluation 

 

We have used two different system for the performance evaluation purposes: 

• UTA’s Hadoop Cluster: 

o Cluster of 8 Linux Servers 

o Each server has 4 Xeon cores at 3.2 GHz with 4GB Memory 

• Personal Computer 

o Single server with 4 cores at 2.5 GHz with 8GB memory. 

 

 

2.6 Input Data 

 

WebDocs is a huge real-life transactional dataset publicly available to the Data Mining 

community through the FIMI (Frequent Itemset Mining Dataset) repository. It was built 

from a spidered collection of about 1.7 million web html documents. It is processed and 

stemmed to create a transaction dataset with distinct terms appearing within the 

document as items. 
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Resulting dataset of size 1.48GB 

• Total transaction: 1,692,082 

• Total items: 5,267,656 

• Max length of a transaction: 71,472 

In addition to WebDocs, we created two more transactional datasets using the WebDocs. 

WebDocs1GB 

• Size: 1.04GB 

• Number of Transactions: 1,200,000 

 

WebDocs2GB 

• Size: 1.93GB 

• Number of Transactions: 2,184,163 
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Figure 3: Input Data Format 

 
 

2.7 Output Data 

 

Each iteration of a MapReduce job produces a definite output. In this case after each 

iteration, the first column of the output represents the frequent item-set combination and 

the second and the final column represents the support count of those frequent item-sets. 

 

 

Figure 4: Frequent 3-itemsets 
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Figure 5: Frequent 2-itemsets 

    

Figure 6: Frequent 1-itemsets 

 
Above figures 4, 5 and 6 demonstrate the output format for 3, 2 and 1 item-sets 

respectively. 

 

2.8 Bottleneck 

 
As the size of the database increases, the number of candidate generated are increased 

given a certain threshold. Because of increased number of candidate-sets, the number of 

scans required to generate count of those frequent item-sets increase. This requires 
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excess resources i.e. memory and storage and hence increasing the computational 

costs. 

 

 

2.9 Execution 

We ran the program in UTA’s Hadoop cluster with varying parameters for all 

three datasets. We used different threshold for all three datasets to evaluate the 

execution. In all conditions, the results showed that the time required for generation of 

frequent item-sets increases as the number of candidate item-sets increase. The 

graphical representation of the execution time against threshold parameter is shown in 

following figures: 

 

 

Figure 7: Execution of 1.48GB Webdocs Data 
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Figure 8: Execution of 1.04GB Webdocs data 

 

Figure 9: Execution of 1.93GB Webdocs data 
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Chapter 3  

Performance Evaluation 

 
3.1 Scaleup 

Evaluates the ability of the algorithm to grow both the system and dataset size. It is 

defined by ability of a n-times larger system to perform a n-times larger job in similar time. 

We used a single server system with 4 cores and UTA’s Hadoop cluster with 32 cores for 

this purpose. We took 1/8th of input data to run on single server. We performed scale up 

performance for 3 different thresholds (11%, 15% and 20%). 

The results showed that our algorithm scales well and maintains around 70% and above 

scalability for the dataset. 

 

Figure 10: Scale-up 
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3.2 Size-up 

 

By holding the number of cores in the system constant we grow the size of the dataset. 

This measure how much longer it takes on a given system, when dataset is n times larger 

than original dataset. 

We tested with three different datasets for three different thresholds. 

Our experiment showed that as the threshold increases, the execution time difference 

drops drastically even though there is significant size difference between the datasets. 

 

Figure 11: Size-up 
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3.3 Speed-up 

 

It measures the performance of the algorithm varying the number of cores for 

parallel execution. For that we varied the number of reducers and kept the dataset 

constant. We tested for five different number of reducers. The performance improved as 

we increased the number of reducers. But the progress was stagnant after 4 reducers as 

the communication cost plays part among numerous processors in increasing the 

execution time. The following figure illustrates the experiment. 

 

Figure 12: Speed-up 
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3.4 Threshold 

 

It measures the performance of algorithm for varying minimum support threshold. 

We used three different threshold values (11%, 15% and 20%). The algorithm was 

quickest when the threshold was higher. I.e. 20%, and slowest when the threshold was 

lower. i.e. 11%. Higher the threshold, lower the number of candidate item-sets and hence 

the faster execution of the program. 

 

Figure 13: Varying threshold 
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Chapter 4  

Source Code 

 
Driver Class: 

 

public static void main(String[] args) throws Exception, IOException, InterruptedException 

{ 

     

int sys = ToolRunner.run(new myApriori(), args); 

System.exit(sys); 

    

} 

@Override 

public int run(String[] args) throws Exception, IOException, InterruptedException { 

   

String inputF = args[0]; 

String candiP = args[1]; 

String outputF = args[2]; 

Integer minS = Integer.parseInt(args[3]); 

long startTime = System.currentTimeMillis(); 

int numF = 1; 

int numOfReducers = 4; 

Configuration newConf = new Configuration(); 

newConf.setInt("minSupport", minS); 

newConf.setInt("numF", numF); 
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Job aprioriJob = Job.getInstance(newConf, "Apriori"); 

aprioriJob.setJarByClass(myApriori.class); 

aprioriJob.setMapperClass(firstItemSetMapper.class); 

aprioriJob.setNumReduceTasks(numOfReducers); 

aprioriJob.setReducerClass(firstItemSetReducer.class); 

aprioriJob.setOutputKeyClass(Text.class); 

aprioriJob.setOutputValueClass(IntWritable.class); 

FileInputFormat.addInputPath(aprioriJob, new Path(inputF)); 

//System.out.println(outputF + numF); 

FileOutputFormat.setOutputPath(aprioriJob, new Path(outputF + numF)); 

boolean isJob1done = (aprioriJob.waitForCompletion(true) ? true : false); 

 

      

for(int i = 2; i<=4; i++) 

      { 

       

numF = i; 

int cacheNum = numF-1; 

       

       

       

Configuration confCand = this.getConf(); 

confCand.setInt("minSupport", minS); 

confCand.setInt("numF", numF); 

confCand.setInt("numOfReducers", numOfReducers); 
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//confName.setBoolean("mapreduce.map.output.compress", true); 

//confName.set("mapreduce.map.output.compression.type", 

CompressionType.BLOCK.toString()); 

//confName.setClass("mapreduce.map.output.compression.codec", GzipCodec.class, 

CompressionCodec.class); 

//confName.setBoolean("mapreduce.output.fileoutputformat.compress", false); 

Job candGen = Job.getInstance(confCand, "candGen"+i); 

candGen.setJarByClass(myApriori.class); 

candGen.setMapperClass(candMapper.class); 

//myAprioriJob.setNumReduceTasks(1); 

//myAprioriJob.setNumReduceTasks(numOfReducers); 

candGen.setReducerClass(candReducer.class); 

candGen.setOutputKeyClass(Text.class); 

candGen.setOutputValueClass(IntWritable.class); 

FileInputFormat.addInputPath(candGen, new Path(candiP)); 

FileOutputFormat.setOutputPath(candGen, new Path(outputF + "Candidate" + numF)); 

for(int j = 0; j<numOfReducers; j++) 

       { 

candGen.addCacheFile(new Path(outputF + cacheNum +"/part-r-0000"+j).toUri()); 

       } 

boolean isCandGendone = (candGen.waitForCompletion(true) ? true : false); 

Configuration confName = this.getConf(); 

confName.setInt("minSupport", minS); 

confName.setInt("numF", numF); 

confName.setInt("numOfReducers", numOfReducers); 
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//confName.setBoolean("mapreduce.map.output.compress", true); 

 //confName.set("mapreduce.map.output.compression.type", 

CompressionType.BLOCK.toString()); 

//confName.setClass("mapreduce.map.output.compression.codec", GzipCodec.class, 

CompressionCodec.class); 

 //confName.setBoolean("mapreduce.output.fileoutputformat.compress", false); 

Job myAprioriJob = Job.getInstance(confName, "Apriori"+i); 

myAprioriJob.setJarByClass(myApriori.class); 

myAprioriJob.setMapperClass(restMapper.class); 

myAprioriJob.setCombinerClass(combiner.class); 

myAprioriJob.setNumReduceTasks(numOfReducers); 

myAprioriJob.setReducerClass(firstItemSetReducer.class); 

myAprioriJob.setOutputKeyClass(Text.class); 

myAprioriJob.setOutputValueClass(IntWritable.class); 

FileInputFormat.addInputPath(myAprioriJob, new Path(inputF)); 

FileOutputFormat.setOutputPath(myAprioriJob, new Path(outputF + numF)); 

myAprioriJob.addCacheFile(new Path(outputF + "Candidate" + numF +"/part-r-

00000").toUri()); 

       

boolean isJobdone = (myAprioriJob.waitForCompletion(true) ? true : false); 

       

      } 

    

    return 1; 

   } 
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First Mapper: 

 

public static class firstItemSetMapper extends Mapper<Object, Text, Text, IntWritable> { 

private final static IntWritable one = new IntWritable(1); 

private Text word = new Text(); 

 

public void map(Object key, Text value, Context context) throws IOException, 

InterruptedException { 

StringTokenizer itr = new StringTokenizer(value.toString()); 

while (itr.hasMoreTokens()) { 

word.set(itr.nextToken()); 

context.write(word, one); 

}        

}   

} 

 

Combiner: 

 

public static class combiner extends Reducer < Text, IntWritable, Text, IntWritable > { 

    private IntWritable result = new IntWritable(); 

    public void reduce(Text key, Iterable < IntWritable > values, 

        Context context 

    ) throws IOException, InterruptedException { 

        int sum = 0; 
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        Integer minSup = 

Integer.parseInt(context.getConfiguration().get("minSupport")); 

        for (IntWritable val: values) { 

            sum += val.get(); 

        } 

        result.set(sum); 

        context.write(key, result); 

    } 

} 

 

Reducer: 

 

public static class firstItemSetReducer extends Reducer < Text, IntWritable, Text, 

IntWritable > { 

    private IntWritable result = new IntWritable(); 

 

public void reduce(Text key, Iterable < IntWritable > values, Context context) throws 

IOException, InterruptedException { 

        int sum = 0; 

        Integer minSup = 

Integer.parseInt(context.getConfiguration().get("minSupport")); 

        for (IntWritable val: values) { 

            sum += val.get(); 

        } 

        result.set(sum); 
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        if (result.get() >= minSup) { 

            context.write(key, result); 

        } 

    } 

} 

 
Candidate Mapper: 

 

public static class candMapper extends Mapper < Object, Text, Text, IntWritable > { 

private List < List < Integer >> previousFreqItemsets = new ArrayList < List < Integer >> 

(); 

    private List < List < Integer >> candidates = new ArrayList < List < Integer >> ();; 

    private List < Integer > uniqueItemsFromPrev = new ArrayList < Integer > (); 

    private final static IntWritable one = new IntWritable(1); 

    private static HashMap < String, Integer > prevItemSetsHashMap = new HashMap < > 

(); 

    private static HashMap < String, Integer > twoSetHashMap = new HashMap < > (); 

 

    @Override 

    protected void setup(Context context) throws IOException, InterruptedException { 

        Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF")); 

        Integer numberOfReducers = 

Integer.parseInt(context.getConfiguration().get("numOfReducers")); 

        FileSystem fileSystem = FileSystem.get(context.getConfiguration()); 

        for (int k = 0; k < numberOfReducers; k++) { 

            URI mappingFileUri = context.getCacheFiles()[k]; 
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            Path p = new Path(mappingFileUri); 

            InputStreamReader inputRead = new InputStreamReader(fileSystem.open(p)); 

            BufferedReader buffRead = new BufferedReader(inputRead); 

 

            String line = null; 

            while ((line = buffRead.readLine()) != null) { 

                line = line.trim(); 

                String[] tokens = line.split("[\\s\\t]+"); 

                List < Integer > items = new ArrayList < Integer > (); 

 

                if (tokens.length < 2) { 

                    items.add(Integer.parseInt(tokens[0])); 

                } else { 

                    String[] firstToken = tokens[0].split(","); 

                    prevItemSetsHashMap.put(tokens[0], 1); 

                    for (int i = 0; i < firstToken.length; i++) { 

                        String itm = firstToken[i]; 

                        items.add(Integer.parseInt(itm)); 

                    } 

                } 

                previousFreqItemsets.add(items); 

 

            } 

        } 
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        uniqueItemsFromPrev = uniqueItems.getUniqueItems(previousFreqItemsets); 

 

candidates = getCandidates.getAllCandidates(previousFreqItemsets, 

uniqueItemsFromPrev, prevItemSetsHashMap, itemSetNum); 

        //System.out.println(candidates); 

 

    } 

 

    public void map(Object key, Text value, Context context) throws IOException, 

InterruptedException { 

        for (List < Integer > newCand: candidates) { 

            String s = ""; 

            int size = newCand.size(); 

            for (int x: newCand) { 

                if (x != newCand.get(size - 1)) { 

                    s = s + x + ","; 

                } else 

                    s = s + x; 

            } 

            Text data = new Text(s); 

            context.write(data, one); 

        } 

    } 

} 
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Candidate Reducer: 

 

public static class candReducer 

extends Reducer < Text, IntWritable, Text, IntWritable > { 

    private final static IntWritable one = new IntWritable(1); 

 

    public void reduce(Text key, Iterable < IntWritable > values, 

        Context context 

    ) throws IOException, InterruptedException { 

        context.write(key, one); 

 

    } 

} 

 

Rest Mapper: 

 

public static class restMapper extends Mapper < Object, Text, Text, IntWritable > { 

 

    private List < List < Integer >> candidates = new ArrayList < List < Integer >> ();; 

    private final static IntWritable one = new IntWritable(1); 

    htNode root = new htNode(); 

 

    @Override 

    protected void setup(Context context) throws IOException, InterruptedException { 

        Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF")); 
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        FileSystem fileSystem = FileSystem.get(context.getConfiguration()); 

 

        URI mappingFileUri = context.getCacheFiles()[0]; 

        Path p = new Path(mappingFileUri); 

        InputStreamReader inputRead = new InputStreamReader(fileSystem.open(p)); 

        BufferedReader buffRead = new BufferedReader(inputRead); 

 

        String line = null; 

        while ((line = buffRead.readLine()) != null) { 

            line = line.trim(); 

            String[] tokens = line.split("[\\s\\t]+"); 

            List < Integer > items = new ArrayList < Integer > (); 

 

            if (tokens.length < 2) { 

                items.add(Integer.parseInt(tokens[0])); 

            } else { 

                String[] firstToken = tokens[0].split(","); 

                for (int i = 0; i < firstToken.length; i++) { 

                    String itm = firstToken[i]; 

                    items.add(Integer.parseInt(itm)); 

                } 

            } 

            candidates.add(items); 

 

        } 



36 

 

        /* 

         * Build a hash tree to store all the candidate itemsets with root as "null" 

         * */ 

 

        for (List < Integer > itemSet: candidates) { 

            htNode parent = null; 

            htNode child = root; 

            for (int i = 0; i < itemSetNum; i++) { 

                parent = child; 

                HashMap < Integer, htNode > nextNode = child.nextNode; 

                Integer item = itemSet.get(i); 

 

                if (nextNode.containsKey(item)) { 

                    child = nextNode.get(item); 

                } else { 

                    child = new htNode(); 

                    nextNode.put(item, child); 

                } 

 

                parent.nextNode = nextNode; 

            } 

 

            child.isLeaf = true; 

            child.itemset.add(itemSet); 
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        } 

 

    } 

 

    public void map(Object key, Text value, Context context) throws IOException, 

InterruptedException { 

        String mline = (value.toString()).trim(); 

        String[] toks = mline.split("[\\s\\t]+"); 

        List < Integer > newItems = new ArrayList < Integer > (); 

        List < List < Integer >> allCandsInInputLine = new ArrayList < List < Integer >> (); 

        Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF")); 

        HashMap < String, Integer > allSubs = new HashMap < > (); 

        SortedSet newItSet = new TreeSet(); 

 

        for (int i = 0; i < toks.length; i++) { 

            newItSet.add(Integer.parseInt(toks[i])); 

        } 

 

        newItems.addAll(newItSet); 

 

        if (newItems.size() >= itemSetNum) { 

            allCandsInInputLine = recursiveSearchTree.searchTree(root, 0, newItems); 

 

            for (List < Integer > newCand: allCandsInInputLine) { 

                String s = ""; 
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                int size = newCand.size(); 

                for (int x: newCand) { 

                    if (x != newCand.get(size - 1)) { 

                        s = s + x + ","; 

                    } else 

                        s = s + x; 

                } 

                Text data = new Text(s); 

                context.write(data, one); 

 

            } 

        } 

    } 

} 

 

Candidate Generation Class: 

 

public static List < List < Integer >> getAllCandidates(List < List < Integer >> 

prevFrequentSets, List < Integer > uniqueSet, HashMap < String, Integer > 

prevItemSetsHashMap, int itemSetSize) { 

 

List<List<Integer>> newCandidates = new ArrayList<List<Integer>>(); 

List<List<Integer>> afterPruningCandidates = new ArrayList<List<Integer>>(); 

      

  for (List < Integer > itemS: prevFrequentSets) { 
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        for (int itm: uniqueSet) { 

            List < Integer > x = new ArrayList(itemS); 

            if (itm > Collections.max(itemS)) { 

                x.add(itm); 

                newCandidates.add(x); 

            } 

        } 

    } 

    if (itemSetSize > 2) { 

        afterPruningCandidates = pruneCandidates(newCandidates, 

prevItemSetsHashMap, itemSetSize); 

        return afterPruningCandidates; 

    } else 

        return newCandidates; 

} 

 

public static List < List < Integer >> pruneCandidates(List < List < Integer >> cand, 

HashMap < String, Integer > prevItemSetsHashMap, int itemSetSize) { 

 

    List < List < Integer >> prunedCandidates = new ArrayList < List < Integer >> (); 

    for (List < Integer > x: cand) { 

        if (ifAllSubsFrequent(x, prevItemSetsHashMap, itemSetSize)) { 

            prunedCandidates.add(x); 

        } else 

            continue; 
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    } 

 

    return prunedCandidates; 

 

} 

 

public static boolean ifAllSubsFrequent(List < Integer > candSet, HashMap < String, 

Integer > prevItemSetsHashMap, int itemSetSize) { 

 

    for (int i = 0; i < itemSetSize; i++) { 

        List < Integer > temp = new ArrayList < Integer > (); 

        temp.addAll(candSet); 

        temp.remove(i); 

        int size = temp.size(); 

        String s = ""; 

        for (int x: temp) { 

            if (x != temp.get(size - 1)) { 

                s = s + x + ","; 

            } else 

                s = s + x; 

        } 

        if (!prevItemSetsHashMap.containsKey(s)) { 

            return false; 

        } 

    } 
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    return true; 

} 

 

Tree Searching Class: 

 

public static class recursiveSearchTree { 

    public static List < List < Integer >> searchTree(htNode root, int index, List < Integer > 

newItems) { 

        List < List < Integer >> txCandItemSet = new ArrayList < List < Integer >> (); 

 

        if (root.isLeaf) { 

            return root.itemset; 

        } 

 

        for (int i = index; i < newItems.size(); i++) { 

            int itm = newItems.get(i); 

            HashMap < Integer, htNode > nwNode = root.nextNode; 

 

            if (nwNode.containsKey(itm)) { 

                htNode temp = nwNode.get(itm); 

                List < List < Integer >> newset = searchTree(temp, i + 1, newItems); 

                txCandItemSet.addAll(newset); 

            } 
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        } 

        return txCandItemSet; 

    } 

} 

 

Class to get unique items from k-1 frequent Itemset: 

 

public static class uniqueItems { 

 

    public static List < Integer > getUniqueItems(List < List < Integer >> prevFrequentSets) 

{ 

 

 List<Integer> unItems = new ArrayList<Integer>(); 

SortedSet<Integer> temp = new TreeSet<Integer>(); 

    

        for (List < Integer > itemS: prevFrequentSets) { 

            for (int itm: itemS) { 

                temp.add(itm); 

            } 

        } 

        unItems.addAll(temp); 

        return unItems; 

    } 

 

}  



43 

Chapter 5  

Application and Future Work 

 

5.1 Application 

 

Following are few areas of application for our algorithm: 

• Supermarkets: 

o Develop combo offers based on product purchased together. 

o Organize and place associated products nearby inside the store. 

o Control inventory based on product demands and what products sell 

together. 

• Internet Service Providers: 

o Analysis of web browsing patterns. 

• Financial Services Company: 

o Analysis of cash, credit and debit card purchases. 

 

In addition to above mentioned examples, this algorithm can be implemented to find 

frequent patterns in any kind of transactional database. 
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5.2 Future Work 

 

Multiple scans of the database is one of the major hinderance in better performance in 

this algorithm. We can work on some way to either decrease or eliminate multiple 

database scans. In addition to multiple scans of database, another major performance 

issue of this algorithm is candidate generation. In order to generate candidates of k-

itemsets, this algorithm requires to perform a cartesian product of k-1 frequent itemset 

with itself. It causes in high usage of resources and causing the computational cost to 

increase. In future, we could work on techniques to eliminate the need for creating 

candidate item-sets. 
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Chapter 6  

Conclusion 

 

Frequent Itemset Mining (FIM) is one of the most important and ventured field in data 

mining. Almost every large or small, business or research organizations use various FIM 

techniques to find frequent patters to aid in extracting knowledge from huge amount to 

data. Apriori algorithm is one of the primitive and effective algorithm to do so. During this 

research, we parallelized the algorithm to handle big data over a distributed network and 

performed various experiments with huge real-life data. These experiments were 

performed in different environments with varying parameters. We found that our 

implementation is scalable, efficient and performed better with increase in the database 

size. 
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