
A PARALLEL IMPLEMENTATION OF APRIORI ALGORITHM FOR MINING FREQUENT
ITEMSETS IN HADOOP MAPREDUCE FRAMEWORK

by

GOKARNA NEUPANE

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree, of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2017

ii

Copyright © by Gokarna Neupane 2017

All Rights Reserved

iii

Acknowledgements

The completion of this project would not have been possible without the constant

help and support of various individuals. I would like to express a great deal of gratitude to

all the people involved in motivating and guiding me to accomplish the targets of my

research.

Firstly, I am very grateful to Dr. Leonidas Fegaras for agreeing to supervise my

project and helping me in every step with my queries and issues. He provided me with

vital comments and remarks to further improve my work and complete the thesis in time.

Additionally, I would like to thank my committee members Dr. Ramez Elmasri and Mr.

David Levine.

I would like to thank my friends for constant encouragement and moral support to

achieve my goals. I would like to mention Achyut Paudel, Gaurav Thapa, Nigesh Shakya

and Ishwor Timilsina for their continued support.

Lastly, I would like to thank Ms. Camille Costabile for helping me in the process

of final report submission and presentation.

April 20, 2017

iv

Abstract

A PARALLEL IMPLEMENTATION OF APRIORI ALGORITHM FOR MINING FREQUENT

ITEMSETS IN HADOOP MAPREDUCE FRAMEWORK

GOKARNA NEUPANE, MS

The University of Texas at Arlington, 2017

Supervising Professor: Dr. Leonidas Fegaras

Committee Member: Dr. Ramez Elmasri

Committee Member: Mr. David Levine

With explosive growth of data in past few years, discovering previously unknown,

frequent patterns within the huge transactional data sets has been one of the most

challenging and ventured fields in data mining. Apriori algorithm is widely used and one

of the most researched field for frequent pattern mining. The exponential increase in the

size of the input data has adverse effect on the efficiency of the traditional or centralized

implementation of this algorithm. Thus, various distributed Frequent Itemset Mining(FIM)

algorithms have been developed. MapReduce is a programming framework that allows

the processing of large datasets with a distributed algorithm over a distributed cluster.

During this research, I have implemented a parallel Apriori algorithm in Hadoop

MapReduce framework with large volumes of input data and generate frequent patterns

based on user defined parameters. I have implemented hash tree data structure to

represent the candidate itemsets which aids in faster search for those candidates within a

v

transaction. These experiments were conducted in real-life datasets and varying

parameters. Based on various evaluations, the proposed algorithm turns out to be

scalable and efficient method to generate frequent item-sets from a large dataset over a

distributed network.

vi

Table of Contents

Acknowledgements ... iii	

Abstract ... iv	

List of Illustrations ... viii	

Chapter 1 Introduction .. 1	

Chapter 2 Apriori Algorithm .. 3	

2.1 Problem Statement .. 3	

2.2 The Apriori Algorithm ... 3	

2.3 Apache Hadoop MapReduce Framework .. 5	

2.4 Parallel Implementation of Apriori Algorithm .. 8	

2.4.1 First Mapper Setup ... 11	

2.4.2 Rest Mapper Setup ... 12	

2.4.3 Combiner Setup .. 13	

2.4.4 Reducer Setup .. 14	

2.5 Systems Used for Evaluation ... 15	

2.6 Input Data .. 15	

2.7 Output Data .. 17	

2.8 Bottleneck .. 18	

2.9 Execution ... 19	

Chapter 3 Performance Evaluation .. 21	

3.1 Scaleup .. 21	

3.2 Size-up ... 22	

3.3 Speed-up ... 23	

3.4 Threshold ... 24	

Chapter 4 Source Code .. 25	

vii

Chapter 5 Application and Future Work ... 43	

5.1 Application ... 43	

5.2 Future Work ... 44	

Chapter 6 Conclusion ... 45	

References ... 46	

viii

List of Illustrations

Figure 1: Hadoop MapReduce Framework .. 7	

Figure 2: Parallel Implementation of Apriori Algorithm ... 10	

Figure 3: Input Data Format ... 17	

Figure 4: Frequent 3-itemsets .. 17	

Figure 5: Frequent 2-itemsets .. 18	

Figure 6: Frequent 1-itemsets .. 18	

Figure 7: Execution of 1.48GB Webdocs Data ... 19	

Figure 8: Execution of 1.04GB Webdocs data ... 20	

Figure 9: Execution of 1.93GB Webdocs data ... 20	

Figure 10: Scale-up .. 21	

Figure 11: Size-up .. 22	

Figure 12: Speed-up ... 23	

Figure 13: Varying threshold .. 24	

1

Chapter 1

Introduction

Today, there are countless number of businesses running side by side competing

with each other for success. Most of these might be from different regions, design

different products and target different customers but all share one common outcome

which is data. With today’s consumption rate, there must be huge amount of data being

generated on daily basis for all organizations. The proper processing and analysis of this

data to spawn useful information is vital in efficient operation of these businesses. So,

data mining plays key role in generation of such valuable information. In addition to top

business organizations, various scientific researches are known to adopt data mining

techniques to achieve their targets.

Frequent Itemset Mining(FIM) is a data mining technique used to explore

interesting connections within a huge transactional data. FIM aims to find information

based on how frequent the interesting events occur in the database[1]. The most typical

application of FIM is in Market Basket Analysis(MBA) which analyzes the purchasing

behaviour of customers[3]. For example, in Consumer Package Goods(CPG) industry,

FIM is used to identify patterns in customer purchases, mainly, which items tend to be

bought together[2].

FIM is one of the most researched field in data mining and various algorithms have been

developed and studied for this purpose. With the astronomical increase in the size of

2

data, the traditional centralized FIM algorithms failed to prove effeciency regardless of

any strategy. The processing and storage capacity of a single machine was not enough

to efficiently generate frequent item sets from large volume of data. Thus, parallel

versions of these algorithms were developed that ran in a distributed cluster which

appeared to improve the mining performance than the centralized version of the

algorithm. Even though the mining performances were improved, distributed computation

added overhead of managing the distributed system as described in [3]. These issues

can be overcome by the MapReduce framework developed by Google [3]. MapReduce is

a scalable and highly efficient distributed programming model for processing and

analyzing big data.

During this research, I have implemented the parallel Apriori algorithm for mining

frequent item-sets on Hadoop MapReduce Framework and reviewed the performance

with varying user defined parameters based on real-life dataset. In addition, I have

highlighted the limitations of the parallel Apriori algorithm with a discussion of future

improvements that can be brought in this field.

3

Chapter 2

Apriori Algorithm

2.1 Problem Statement

The problem of mining frequent itemsets over basket data was introduced by R.

Agrawal in [4]. As described in [5], the problem can be formally stated as follows. Let T =

{T1, T2, T3, ..., Tn} be a transaction database containing n transactions. Each transaction

Ti = {i1, i2, i3, ..., im} contains a set of items from I = {i1, i2, i3, ..., ip} where p≥m such

that Ti ⊆ I. An itemset X with k items from I is called a k-itemset. A transaction Ti

contains an itemset X if and only if X ⊆ Ti. The support of an itemset X in T denoted as

supp(X) indicates the number of transactions in TDB containing X. An itemset is frequent

if its support, supp(X) is greater than a support threshold called minimum support.

2.2 The Apriori Algorithm

Apriori is an influential algorithm for generating frequent item-sets from a transactional

database. It uses a bottom-up approach where frequent subsets are extended one at a

time and those item-sets satisfying the minimum support threshold and Apriori property

are kept and rest are pruned [6]. The Apriori property states that, “Any subset of a

frequent item-set must also be frequent”.

4

For example, let us suppose a transactional database D with n items and m transactions.

To extract k-frequent item-sets, this algorithm scans the transaction database k times.

This algorithm uses a pre-defined minimum support threshold to filter out the frequent

item-sets. Firstly, the algorithm scans the database to generate frequent 1 item set. For

rest of the process, the algorithm seeks to join two k-1 frequent item-sets to generate

possible k item-sets combination. Since determining the support for every possible

combination of the previous collection of item-sets is expensive, this method prunes all

the item-sets which does not satisfy the Apriori property. The item-sets obtained after

pruning are called candidate item-sets. Then the algorithm computes the support of each

candidate item-sets and those having support lower than given threshold are discarded

and rest are extracted as frequent item-sets. The algorithm ends when there are no

candidate item-sets.

Algorithm (Serial Apriori):

D = Transactional database

t = A transaction in D

min_support = Minimum threshold support

Lk = Frequent k item-sets

Ck = Candidate k item-sets

5

1. Calculate L1 from the database from the first scan.

2. For k>2, do.

3. Join Lk-1 with itself to create possible k item-sets.

4. Calculate Ck by pruning the item-sets not satisfying the Apriori property.

5. For each transaction t in the database D, do.

6. Calculate and increase the count of all the candidates Ck present in t.

7. Extract Lk from the candidate sets which satisfy the minimum support threshold.

8. End do.

9. Increase k to k+1 and go to step 2 until Ck = ø.

2.3 Apache Hadoop MapReduce Framework

Hadoop is a large-scale distributed batch processing infrastructure for parallel processing

of big data on large cluster of commodity computers [7]. Hadoop is an open source

project of Apache [8] which implemented Google's File System [9] as Hadoop Distributed

File System (HDFS) and Google's MapReduce [10] as Hadoop MapReduce programming

model.

6

Hadoop Distributed File System (HDFS) is distributed file system that holds a

large volume of data in terabytes or petabytes scale and provides fast and scalable

access to such data [7]. It stores files in a replicated manner across different machine to

provide fault tolerance and high availability during execution of parallel applications [7].

HDFS is a block-structured file system and breaks a file into fixed size blocks

(default block size is 64MB) to store across several machines. Hadoop uses two types of

machine working in a master-worker fashion, a NameNode as master machine and a

number of DataNodes as worker machines. The NameNode assigns block ids to the

blocks of a file and stores metadata (file name, permission, replica, location of each

block) of the file system in its main memory providing fast access to this information.

DataNodes are the individual machines in the clusters which store and retrieve the

replicated blocks of multiple files [7].

MapReduce is a parallel programming model designed for parallel processing of large

volumes of data by breaking the job into independent tasks across a large number of

machines[7]. According to [11], a MapReduce program is composed of a procedure

(method) that performs filtering and sorting (such as sorting students by first name into

queues, one queue for each name) and a Reduce() method that performs a summary

operation (such as counting the number of students in each queue, yielding name

frequencies). The "MapReduce System" (also called "infrastructure" or "framework")

orchestrates the processing by marshalling the distributed servers, running the various

tasks in parallel, managing all communications and data transfers between the various

parts of the system, and providing for redundancy.

7

The model is a specialization of the split-apply-combine strategy for data analysis.[12] It

is inspired by the map and reduce functions commonly used in ,[13] although their

purpose in the MapReduce framework is not the same as in their original forms.[14] The

key contributions of the MapReduce framework are not the actual map and reduce

functions, but the scalability and fault-tolerance achieved for a variety of applications by

optimizing the execution engine. As such, a single-threaded implementation of

MapReduce will usually not be faster than a traditional (non-MapReduce)

implementation; any gains are usually only seen with multi-threaded implementations.

[15] The use of this model is beneficial only when the optimized distributed shuffle

operation (which reduces network communication cost) and fault tolerance features of the

MapReduce framework come into play. Optimizing the communication cost is essential to

a good MapReduce algorithm.[15]

Figure 1: Hadoop MapReduce Framework

8

Following explains the MapReduce core functionality according to [15]:

• Input Reader: Divides the input file into appropriate size splits (default 64MB)

which gets assigned to a Map function for processing.

• Map Function: Maps the file data to smaller, intermediate (key, value) pairs.

• Partition Function: finds the correct reducer: given the key number of reducers,

returns the desired reduce node

• Compare Function: input for the reduce is pulled from the Map intermediate

output and sorted according to the compare function.

• Reduce Function: takes intermediate values and reduces to a smaller solution

handledback to the framework.

• Output writer: writes file output.

2.4 Parallel Implementation of Apriori Algorithm

As discussed earlier, when the size of data increases, the I/O cost of centralized Apriori

algorithm increases exponentially because of iterative scan of the large database and

high memory consumption. Hence, the need for parallel Apriori algorithm to process huge

transactional data. To implement any parallel algorithm on MapReduce framework, it is

vital to design map and reduce function and convert the datasets in the form of (key,

value) pairs. These maps and reduce functions run on different machines in parallel and

9

produce aggregated output from each reducer. Since, Apriori algorithm is an iterative

process, it requires multiple execution of the map-reduce jobs to extract k frequent item-

sets. During this research, we implement the parallel Apriori Count Distribution(CD)

algorithm to generate k frequent item-sets.

Count Distribution algorithm is categorized under data parallelism where the data is split

into various blocks and transmitted to various machines to process in parallel. It reduces

the overhead of synchronization and processor communication [3]. According to [3],

following is the algorithm that describes the Count Distribution.

D = Original Large Transactional database

Di = Local data partition

Pi = Local Processor

t = A transaction in D

min_support = Minimum threshold support

Lk = Frequent k item-sets

Ck = Candidate k item-sets

10

1. Candidate 1-item-sets, C1 = I, the set of all items.

2. To generate Ck, where k >= 1 join two of Lk-1, generating k item-sets and

prune these item-sets according to apriori property.

3. To generate Lk, where k >= 1 processor Pi scan the local partition Di and

find the local support counts of candidates in Ck

4. Processor Pi exchange the local counts with other processors to find

global counts of candidates Ck.

5. Find the frequent k-item-sets Lk from Ck as Lk = all candidates of Ck with

minimum support threshold.

6. Repeat from step 2 until Ck is empty.

Figure 2: Parallel Implementation of Apriori Algorithm

11

Figure 2, describes the components of the parallel implementation of the apriori algorithm

and shows the data flow in the process. At, first we take the source data which is to be

processed and format it in HDFS. We use two separate mappers, one combiner and one

reducer for this entire task.

2.4.1 First Mapper Setup

The primary purpose of the first mapper is to find out frequent 1 item-sets. In the first

mapper job, the input database D is split into smaller chunks of Di(default is 64MB) and

distributed to i processors. The mapper reads the input line by line and reads each item

separated by a delimiter. Then each item is set as key and the value is set to 1. 1

represents the frequency for that item. Thus obtained (key, value) pair is then passed to

subsequent combiner / reducer. Following is the pseudo code for the first mapper.

• for each transaction t in the chunk Di do

o for every item I in the transaction t do

§ set key = item and value = 1

§ send (key, value) as output

o end for

• end for

12

2.4.2 Rest Mapper Setup

After the generation of 1 frequent item-sets, to generate rest of the item-sets, the mapper

phase adopts different approach.

Starting from the process to generate 2 or more item-sets, each mapper gets chunk of

the dataset and Lk-1 frequent item-sets generated by previous reducers as the distributed

cache. Thus, obtained database from the distributed cache is joined with itself to create k

item-sets. Now the k item-sets is passed to a pruning function that prunes all the item-

sets that does not satisfy the apriori property, i.e. every subset of the item-set must also

be frequent. This creates a set of candidates’ item-sets.

Now the rest mapper reads all available candidates as distributed cache and counts the

presence of each candidate within each transaction in the database chunk. If a candidate

is present in the transaction, the mapper writes (candidate, 1) as key-value pair and send

it to the combiner. Following is the pseudo code for this mapper:

• Lk-1 = read from HDFS as distributed cache

• Join Lk-1 with itself to create k item-sets

• Prune thus obtained item-sets to generate candidate k item-sets

o for each k item-set calculate all k-1 subsets do

§ check if all subsets present in Lk-1 obtained from

distributed cache

§ if yes, store it as a candidate

13

§ else, discard the item-set

§ end for

• for each transaction t in Di do

o if candidate k item-set present in t, set key = candidate, value = 1

o output (key, value)

• end for

2.4.3 Combiner Setup

A Combiner, also known as a semi-reducer, is an optional class that operates by

accepting the inputs from the Map class and thereafter passing the output key-value pairs

to the Reducer class [16]. The main function of a Combiner is to summarize the map

output records with the same key. The output (key-value collection) of the combiner will

be sent over the network to the actual reducer task as input [16].

For our algorithm, the combiner class takes the (key, value) pair from the mapper output

and aggregates the count of each key and sets the value as the aggregated count then

sends the output to the reducer as (key, value) pair. Following is the pseudo code for the

combiner class:

14

• for each key do

o aggregate the count for each key

• end for

• set value = aggregated count

• output new (key, value) pair

2.4.4 Reducer Setup

The reducer is common for all iterations. Like the combiner, the reducer class takes the

(key, value) pair from the combiner output and again aggregates the count and checks if

the count satisfies the minimum support threshold. If yes then the reducer outputs the key

and the aggregated count as value and discard the rest nor satisfying the condition.

Following is the pseudo code for the reducer class:

• for each key do

o aggregate the count for each key

• end for

• check if the aggregate count of each key is >= minimum support

threshold

o if yes do

15

§ set value = aggregated count

§ output (key, value) pair

o else, continue

2.5 Systems Used for Evaluation

We have used two different system for the performance evaluation purposes:

• UTA’s Hadoop Cluster:

o Cluster of 8 Linux Servers

o Each server has 4 Xeon cores at 3.2 GHz with 4GB Memory

• Personal Computer

o Single server with 4 cores at 2.5 GHz with 8GB memory.

2.6 Input Data

WebDocs is a huge real-life transactional dataset publicly available to the Data Mining

community through the FIMI (Frequent Itemset Mining Dataset) repository. It was built

from a spidered collection of about 1.7 million web html documents. It is processed and

stemmed to create a transaction dataset with distinct terms appearing within the

document as items.

16

Resulting dataset of size 1.48GB

• Total transaction: 1,692,082

• Total items: 5,267,656

• Max length of a transaction: 71,472

In addition to WebDocs, we created two more transactional datasets using the WebDocs.

WebDocs1GB

• Size: 1.04GB

• Number of Transactions: 1,200,000

WebDocs2GB

• Size: 1.93GB

• Number of Transactions: 2,184,163

17

Figure 3: Input Data Format

2.7 Output Data

Each iteration of a MapReduce job produces a definite output. In this case after each

iteration, the first column of the output represents the frequent item-set combination and

the second and the final column represents the support count of those frequent item-sets.

Figure 4: Frequent 3-itemsets

18

Figure 5: Frequent 2-itemsets

Figure 6: Frequent 1-itemsets

Above figures 4, 5 and 6 demonstrate the output format for 3, 2 and 1 item-sets

respectively.

2.8 Bottleneck

As the size of the database increases, the number of candidate generated are increased

given a certain threshold. Because of increased number of candidate-sets, the number of

scans required to generate count of those frequent item-sets increase. This requires

19

excess resources i.e. memory and storage and hence increasing the computational

costs.

2.9 Execution

We ran the program in UTA’s Hadoop cluster with varying parameters for all

three datasets. We used different threshold for all three datasets to evaluate the

execution. In all conditions, the results showed that the time required for generation of

frequent item-sets increases as the number of candidate item-sets increase. The

graphical representation of the execution time against threshold parameter is shown in

following figures:

Figure 7: Execution of 1.48GB Webdocs Data

20

Figure 8: Execution of 1.04GB Webdocs data

Figure 9: Execution of 1.93GB Webdocs data

21

Chapter 3

Performance Evaluation

3.1 Scaleup

Evaluates the ability of the algorithm to grow both the system and dataset size. It is

defined by ability of a n-times larger system to perform a n-times larger job in similar time.

We used a single server system with 4 cores and UTA’s Hadoop cluster with 32 cores for

this purpose. We took 1/8th of input data to run on single server. We performed scale up

performance for 3 different thresholds (11%, 15% and 20%).

The results showed that our algorithm scales well and maintains around 70% and above

scalability for the dataset.

Figure 10: Scale-up

22

3.2 Size-up

By holding the number of cores in the system constant we grow the size of the dataset.

This measure how much longer it takes on a given system, when dataset is n times larger

than original dataset.

We tested with three different datasets for three different thresholds.

Our experiment showed that as the threshold increases, the execution time difference

drops drastically even though there is significant size difference between the datasets.

Figure 11: Size-up

23

3.3 Speed-up

It measures the performance of the algorithm varying the number of cores for

parallel execution. For that we varied the number of reducers and kept the dataset

constant. We tested for five different number of reducers. The performance improved as

we increased the number of reducers. But the progress was stagnant after 4 reducers as

the communication cost plays part among numerous processors in increasing the

execution time. The following figure illustrates the experiment.

Figure 12: Speed-up

24

3.4 Threshold

It measures the performance of algorithm for varying minimum support threshold.

We used three different threshold values (11%, 15% and 20%). The algorithm was

quickest when the threshold was higher. I.e. 20%, and slowest when the threshold was

lower. i.e. 11%. Higher the threshold, lower the number of candidate item-sets and hence

the faster execution of the program.

Figure 13: Varying threshold

25

Chapter 4

Source Code

Driver Class:

public static void main(String[] args) throws Exception, IOException, InterruptedException

{

int sys = ToolRunner.run(new myApriori(), args);

System.exit(sys);

}

@Override

public int run(String[] args) throws Exception, IOException, InterruptedException {

String inputF = args[0];

String candiP = args[1];

String outputF = args[2];

Integer minS = Integer.parseInt(args[3]);

long startTime = System.currentTimeMillis();

int numF = 1;

int numOfReducers = 4;

Configuration newConf = new Configuration();

newConf.setInt("minSupport", minS);

newConf.setInt("numF", numF);

26

Job aprioriJob = Job.getInstance(newConf, "Apriori");

aprioriJob.setJarByClass(myApriori.class);

aprioriJob.setMapperClass(firstItemSetMapper.class);

aprioriJob.setNumReduceTasks(numOfReducers);

aprioriJob.setReducerClass(firstItemSetReducer.class);

aprioriJob.setOutputKeyClass(Text.class);

aprioriJob.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(aprioriJob, new Path(inputF));

//System.out.println(outputF + numF);

FileOutputFormat.setOutputPath(aprioriJob, new Path(outputF + numF));

boolean isJob1done = (aprioriJob.waitForCompletion(true) ? true : false);

for(int i = 2; i<=4; i++)

 {

numF = i;

int cacheNum = numF-1;

Configuration confCand = this.getConf();

confCand.setInt("minSupport", minS);

confCand.setInt("numF", numF);

confCand.setInt("numOfReducers", numOfReducers);

27

//confName.setBoolean("mapreduce.map.output.compress", true);

//confName.set("mapreduce.map.output.compression.type",

CompressionType.BLOCK.toString());

//confName.setClass("mapreduce.map.output.compression.codec", GzipCodec.class,

CompressionCodec.class);

//confName.setBoolean("mapreduce.output.fileoutputformat.compress", false);

Job candGen = Job.getInstance(confCand, "candGen"+i);

candGen.setJarByClass(myApriori.class);

candGen.setMapperClass(candMapper.class);

//myAprioriJob.setNumReduceTasks(1);

//myAprioriJob.setNumReduceTasks(numOfReducers);

candGen.setReducerClass(candReducer.class);

candGen.setOutputKeyClass(Text.class);

candGen.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(candGen, new Path(candiP));

FileOutputFormat.setOutputPath(candGen, new Path(outputF + "Candidate" + numF));

for(int j = 0; j<numOfReducers; j++)

 {

candGen.addCacheFile(new Path(outputF + cacheNum +"/part-r-0000"+j).toUri());

 }

boolean isCandGendone = (candGen.waitForCompletion(true) ? true : false);

Configuration confName = this.getConf();

confName.setInt("minSupport", minS);

confName.setInt("numF", numF);

confName.setInt("numOfReducers", numOfReducers);

28

//confName.setBoolean("mapreduce.map.output.compress", true);

 //confName.set("mapreduce.map.output.compression.type",

CompressionType.BLOCK.toString());

//confName.setClass("mapreduce.map.output.compression.codec", GzipCodec.class,

CompressionCodec.class);

 //confName.setBoolean("mapreduce.output.fileoutputformat.compress", false);

Job myAprioriJob = Job.getInstance(confName, "Apriori"+i);

myAprioriJob.setJarByClass(myApriori.class);

myAprioriJob.setMapperClass(restMapper.class);

myAprioriJob.setCombinerClass(combiner.class);

myAprioriJob.setNumReduceTasks(numOfReducers);

myAprioriJob.setReducerClass(firstItemSetReducer.class);

myAprioriJob.setOutputKeyClass(Text.class);

myAprioriJob.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(myAprioriJob, new Path(inputF));

FileOutputFormat.setOutputPath(myAprioriJob, new Path(outputF + numF));

myAprioriJob.addCacheFile(new Path(outputF + "Candidate" + numF +"/part-r-

00000").toUri());

boolean isJobdone = (myAprioriJob.waitForCompletion(true) ? true : false);

 }

 return 1;

 }

29

First Mapper:

public static class firstItemSetMapper extends Mapper<Object, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context) throws IOException,

InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

}

Combiner:

public static class combiner extends Reducer < Text, IntWritable, Text, IntWritable > {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable < IntWritable > values,

 Context context

) throws IOException, InterruptedException {

 int sum = 0;

30

 Integer minSup =

Integer.parseInt(context.getConfiguration().get("minSupport"));

 for (IntWritable val: values) {

 sum += val.get();

 }

 result.set(sum);

 context.write(key, result);

 }

}

Reducer:

public static class firstItemSetReducer extends Reducer < Text, IntWritable, Text,

IntWritable > {

 private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable < IntWritable > values, Context context) throws

IOException, InterruptedException {

 int sum = 0;

 Integer minSup =

Integer.parseInt(context.getConfiguration().get("minSupport"));

 for (IntWritable val: values) {

 sum += val.get();

 }

 result.set(sum);

31

 if (result.get() >= minSup) {

 context.write(key, result);

 }

 }

}

Candidate Mapper:

public static class candMapper extends Mapper < Object, Text, Text, IntWritable > {

private List < List < Integer >> previousFreqItemsets = new ArrayList < List < Integer >>

();

 private List < List < Integer >> candidates = new ArrayList < List < Integer >> ();;

 private List < Integer > uniqueItemsFromPrev = new ArrayList < Integer > ();

 private final static IntWritable one = new IntWritable(1);

 private static HashMap < String, Integer > prevItemSetsHashMap = new HashMap < >

();

 private static HashMap < String, Integer > twoSetHashMap = new HashMap < > ();

 @Override

 protected void setup(Context context) throws IOException, InterruptedException {

 Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF"));

 Integer numberOfReducers =

Integer.parseInt(context.getConfiguration().get("numOfReducers"));

 FileSystem fileSystem = FileSystem.get(context.getConfiguration());

 for (int k = 0; k < numberOfReducers; k++) {

 URI mappingFileUri = context.getCacheFiles()[k];

32

 Path p = new Path(mappingFileUri);

 InputStreamReader inputRead = new InputStreamReader(fileSystem.open(p));

 BufferedReader buffRead = new BufferedReader(inputRead);

 String line = null;

 while ((line = buffRead.readLine()) != null) {

 line = line.trim();

 String[] tokens = line.split("[\\s\\t]+");

 List < Integer > items = new ArrayList < Integer > ();

 if (tokens.length < 2) {

 items.add(Integer.parseInt(tokens[0]));

 } else {

 String[] firstToken = tokens[0].split(",");

 prevItemSetsHashMap.put(tokens[0], 1);

 for (int i = 0; i < firstToken.length; i++) {

 String itm = firstToken[i];

 items.add(Integer.parseInt(itm));

 }

 }

 previousFreqItemsets.add(items);

 }

 }

33

 uniqueItemsFromPrev = uniqueItems.getUniqueItems(previousFreqItemsets);

candidates = getCandidates.getAllCandidates(previousFreqItemsets,

uniqueItemsFromPrev, prevItemSetsHashMap, itemSetNum);

 //System.out.println(candidates);

 }

 public void map(Object key, Text value, Context context) throws IOException,

InterruptedException {

 for (List < Integer > newCand: candidates) {

 String s = "";

 int size = newCand.size();

 for (int x: newCand) {

 if (x != newCand.get(size - 1)) {

 s = s + x + ",";

 } else

 s = s + x;

 }

 Text data = new Text(s);

 context.write(data, one);

 }

 }

}

34

Candidate Reducer:

public static class candReducer

extends Reducer < Text, IntWritable, Text, IntWritable > {

 private final static IntWritable one = new IntWritable(1);

 public void reduce(Text key, Iterable < IntWritable > values,

 Context context

) throws IOException, InterruptedException {

 context.write(key, one);

 }

}

Rest Mapper:

public static class restMapper extends Mapper < Object, Text, Text, IntWritable > {

 private List < List < Integer >> candidates = new ArrayList < List < Integer >> ();;

 private final static IntWritable one = new IntWritable(1);

 htNode root = new htNode();

 @Override

 protected void setup(Context context) throws IOException, InterruptedException {

 Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF"));

35

 FileSystem fileSystem = FileSystem.get(context.getConfiguration());

 URI mappingFileUri = context.getCacheFiles()[0];

 Path p = new Path(mappingFileUri);

 InputStreamReader inputRead = new InputStreamReader(fileSystem.open(p));

 BufferedReader buffRead = new BufferedReader(inputRead);

 String line = null;

 while ((line = buffRead.readLine()) != null) {

 line = line.trim();

 String[] tokens = line.split("[\\s\\t]+");

 List < Integer > items = new ArrayList < Integer > ();

 if (tokens.length < 2) {

 items.add(Integer.parseInt(tokens[0]));

 } else {

 String[] firstToken = tokens[0].split(",");

 for (int i = 0; i < firstToken.length; i++) {

 String itm = firstToken[i];

 items.add(Integer.parseInt(itm));

 }

 }

 candidates.add(items);

 }

36

 /*

 * Build a hash tree to store all the candidate itemsets with root as "null"

 * */

 for (List < Integer > itemSet: candidates) {

 htNode parent = null;

 htNode child = root;

 for (int i = 0; i < itemSetNum; i++) {

 parent = child;

 HashMap < Integer, htNode > nextNode = child.nextNode;

 Integer item = itemSet.get(i);

 if (nextNode.containsKey(item)) {

 child = nextNode.get(item);

 } else {

 child = new htNode();

 nextNode.put(item, child);

 }

 parent.nextNode = nextNode;

 }

 child.isLeaf = true;

 child.itemset.add(itemSet);

37

 }

 }

 public void map(Object key, Text value, Context context) throws IOException,

InterruptedException {

 String mline = (value.toString()).trim();

 String[] toks = mline.split("[\\s\\t]+");

 List < Integer > newItems = new ArrayList < Integer > ();

 List < List < Integer >> allCandsInInputLine = new ArrayList < List < Integer >> ();

 Integer itemSetNum = Integer.parseInt(context.getConfiguration().get("numF"));

 HashMap < String, Integer > allSubs = new HashMap < > ();

 SortedSet newItSet = new TreeSet();

 for (int i = 0; i < toks.length; i++) {

 newItSet.add(Integer.parseInt(toks[i]));

 }

 newItems.addAll(newItSet);

 if (newItems.size() >= itemSetNum) {

 allCandsInInputLine = recursiveSearchTree.searchTree(root, 0, newItems);

 for (List < Integer > newCand: allCandsInInputLine) {

 String s = "";

38

 int size = newCand.size();

 for (int x: newCand) {

 if (x != newCand.get(size - 1)) {

 s = s + x + ",";

 } else

 s = s + x;

 }

 Text data = new Text(s);

 context.write(data, one);

 }

 }

 }

}

Candidate Generation Class:

public static List < List < Integer >> getAllCandidates(List < List < Integer >>

prevFrequentSets, List < Integer > uniqueSet, HashMap < String, Integer >

prevItemSetsHashMap, int itemSetSize) {

List<List<Integer>> newCandidates = new ArrayList<List<Integer>>();

List<List<Integer>> afterPruningCandidates = new ArrayList<List<Integer>>();

 for (List < Integer > itemS: prevFrequentSets) {

39

 for (int itm: uniqueSet) {

 List < Integer > x = new ArrayList(itemS);

 if (itm > Collections.max(itemS)) {

 x.add(itm);

 newCandidates.add(x);

 }

 }

 }

 if (itemSetSize > 2) {

 afterPruningCandidates = pruneCandidates(newCandidates,

prevItemSetsHashMap, itemSetSize);

 return afterPruningCandidates;

 } else

 return newCandidates;

}

public static List < List < Integer >> pruneCandidates(List < List < Integer >> cand,

HashMap < String, Integer > prevItemSetsHashMap, int itemSetSize) {

 List < List < Integer >> prunedCandidates = new ArrayList < List < Integer >> ();

 for (List < Integer > x: cand) {

 if (ifAllSubsFrequent(x, prevItemSetsHashMap, itemSetSize)) {

 prunedCandidates.add(x);

 } else

 continue;

40

 }

 return prunedCandidates;

}

public static boolean ifAllSubsFrequent(List < Integer > candSet, HashMap < String,

Integer > prevItemSetsHashMap, int itemSetSize) {

 for (int i = 0; i < itemSetSize; i++) {

 List < Integer > temp = new ArrayList < Integer > ();

 temp.addAll(candSet);

 temp.remove(i);

 int size = temp.size();

 String s = "";

 for (int x: temp) {

 if (x != temp.get(size - 1)) {

 s = s + x + ",";

 } else

 s = s + x;

 }

 if (!prevItemSetsHashMap.containsKey(s)) {

 return false;

 }

 }

41

 return true;

}

Tree Searching Class:

public static class recursiveSearchTree {

 public static List < List < Integer >> searchTree(htNode root, int index, List < Integer >

newItems) {

 List < List < Integer >> txCandItemSet = new ArrayList < List < Integer >> ();

 if (root.isLeaf) {

 return root.itemset;

 }

 for (int i = index; i < newItems.size(); i++) {

 int itm = newItems.get(i);

 HashMap < Integer, htNode > nwNode = root.nextNode;

 if (nwNode.containsKey(itm)) {

 htNode temp = nwNode.get(itm);

 List < List < Integer >> newset = searchTree(temp, i + 1, newItems);

 txCandItemSet.addAll(newset);

 }

42

 }

 return txCandItemSet;

 }

}

Class to get unique items from k-1 frequent Itemset:

public static class uniqueItems {

 public static List < Integer > getUniqueItems(List < List < Integer >> prevFrequentSets)

{

 List<Integer> unItems = new ArrayList<Integer>();

SortedSet<Integer> temp = new TreeSet<Integer>();

 for (List < Integer > itemS: prevFrequentSets) {

 for (int itm: itemS) {

 temp.add(itm);

 }

 }

 unItems.addAll(temp);

 return unItems;

 }

}

43

Chapter 5

Application and Future Work

5.1 Application

Following are few areas of application for our algorithm:

• Supermarkets:

o Develop combo offers based on product purchased together.

o Organize and place associated products nearby inside the store.

o Control inventory based on product demands and what products sell

together.

• Internet Service Providers:

o Analysis of web browsing patterns.

• Financial Services Company:

o Analysis of cash, credit and debit card purchases.

In addition to above mentioned examples, this algorithm can be implemented to find

frequent patterns in any kind of transactional database.

44

5.2 Future Work

Multiple scans of the database is one of the major hinderance in better performance in

this algorithm. We can work on some way to either decrease or eliminate multiple

database scans. In addition to multiple scans of database, another major performance

issue of this algorithm is candidate generation. In order to generate candidates of k-

itemsets, this algorithm requires to perform a cartesian product of k-1 frequent itemset

with itself. It causes in high usage of resources and causing the computational cost to

increase. In future, we could work on techniques to eliminate the need for creating

candidate item-sets.

45

Chapter 6

Conclusion

Frequent Itemset Mining (FIM) is one of the most important and ventured field in data

mining. Almost every large or small, business or research organizations use various FIM

techniques to find frequent patters to aid in extracting knowledge from huge amount to

data. Apriori algorithm is one of the primitive and effective algorithm to do so. During this

research, we parallelized the algorithm to handle big data over a distributed network and

performed various experiments with huge real-life data. These experiments were

performed in different environments with varying parameters. We found that our

implementation is scalable, efficient and performed better with increase in the database

size.

46

References

[1] Janos Illes and Istvan Vajk, “Performance Evaluation of Apriori Algorithm on a

Hadoop”,

[2] Ning Li, Li Zeng, Qing He and Zhongzhi Shi, “Parallel Implementation of Apriori

Algorithm Based on MapReduce”

[3] Sudhakar Singh, Rakhi Garg, PK Mishra, “Review of Apriori Based Algorithms on

MapReduce Framework”,

[4] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of

Items in Large Database,”

[5] Yanbin Ye, Chia-Chu Chiang, “A Parallel Apriori Algorithm for Frequent Itemsets

Mining”

[6] Dao-I Lin, Zvi M. Kedem, “Pincer-Search: An Efficient Algorithm for Discovering the

Maximum Frequent Set”

[7] Yahoo! Hadoop Tutorial,

[8] Apache Hadoop,

[9] S. Ghemawat, H. Gobioff and S. Leung, “The Google File System,” in ACM SIGOPS

Operating Systems Review, vol. 37, no. 5, pp. 29-43, 2003.

[10] J. Dean, and S. Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters” in ACM Commun., vol. 51, pp. 107-113, 2008.

[11] MapReduce,

[12] Wickham, Hadley (2011). "The split-apply-combine strategy for data analysis".

Journal of Statistical Software.

47

[13] Our abstraction is inspired by the map and reduce primitives present in Lisp and

many other functional languages." -, by Jeffrey Dean and Sanjay Ghemawat;

from Google Research

[14] Lämmel, R. (2008). "Google's Map Reduce programming model — Revisited".

Science of Computer Programming. 70: 1–30.

[17] Eui-Hong Han, George Karypis, Vipin Kumar. “Scalable Parallel Data Mining for

Association rules.”

[18] F. Bodon and L. Ronyai, “Trie: An Alternative Data Structure for Data Mining

Algorithms.”

