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ABSTRACT 

Additive Manufacturing is playing a significant role in developing complex geometries which are 

not possible by conventional Manufacturing Processes. Topology optimization is playing key a 

role in deciding conceptual design for additive manufacturing. The output of topology 

optimization is rough and noisy surfaces. Fitting these surfaces poses challenging task to a 

designer as it is a tedious and a time-consuming process. The main aim of this research is to 

automate the process of smoothing noisy meshes. 

In this research work, I have developed algorithms in MATLAB to create NURBS (Non-Uniform 

B-Spline) surface patches from given a set of control points. NURBS is a powerful tool in 

geometric modeling with flexibility. Different types of NURBS Surfaces are discussed along with 

examples. Each type has its usage. STEP standard has been used for geometry data exchange 

between MATAB and CAD Software. The algorithm to export NURBS into STEP file has been 

developed to support data exchange.   

 

 

 

 



vi 
 

 

 

 

 

TABLE OF CONTENT  

1 INTRODUCTION …………………………………………………………………………………………………………………………………1 

   1.1 Background…………………………………………………………………………………………………………………….……………...1 

       1.1.1 Topology Optimization…….……………………………………………………………………………………...……………….2  

       1.1.2 Size and shape optimization….……………………………………………………………………………….…………………3 

        1.1.3 Additive manufacturing…………………………………………………………………………………………………………...4 

  1.2 Objective….…………….………………………………………………………………………………………………………………………..6  

  1.3 Method..………………………………………………………………………………………………………………………………………….6 

2 BACKGOUND WORK…………………………………………………………………………………………………………………………..7 

    2.1 What is geometric modeling?......…………………………………………………………………………………………………..7  

    2.2 representation of a curve……………………………………………….………………………………………………………………7 

        2.2.1 Parametric representation of a circle……………………………………………………………………………………….8 

    2.3 Curve classification..………………………………………………….………………………………………………………………...10 

    2.4 Free form curves ………………………………………………………………………………………………………………………….11  

    2.5 STEP AP 214…………………………………………………………………………………………….……………………………………16 

    2.6 Significance of NURBS in additive manufacturing…………………………………………………………………………18 

3 METHODOLOGY……………………………………………………………………………………………………………………………….20 

     3.1 Bezier curve formulation……….…………………………………………………………………………………………………….20 

         3.1.1 Control points and basis functions………………………………………………………………………………………..23 

         3.1.2 Composite Bezier curve………………………………………………………………………………………………………..25 

     3.2 B-spline basis function…………………………………………………………………………………………………………………27 

     3.3 B-spline curve formulation………………………………………………………………………………………………………..…33  

         3.3.1 Closed B-spline curve…………………………………………………………………………………………………………….39        

     3.4 NURBS (Non-Uniform B-spline)….………………………………………………………………………..……………………...40 



vii 
 

     3.5 B-spline and NURBS Surface………………………………………………………………………………………………………..42 

        3.5.1 NURBS Surface……………………………………………………………………………………………………..…45 

3.6 STEP file data structure……………………………………………………………………………………………………..47 

4 RESULT………………………………………………………………………………………………………………………………….51 

5 CONCLUSION…………………………………………………………………………………………………………………………53 

6 FUTURE WORK………………………………………………………………………………………………………………………54 

APPENDIX A Bezier Curve Code..………………………………………………………………………………………………55 

APPENDIX B B-spline Basis Function Code..………………………………………………………………………………57 

APPENDIX C Clamped B-spline Curve Code .…………………………………………………………………………….58 

APPENDIX D Closed B-spline Curve Code.…………………………………………………………………………………60 

APPENDIX E Open B-spline Curve Code .………………………………………………………………………………….62 

APPENDIX F NURBS Curve Code…………………………………………………………………………………………….…64 

APPENDIX G Closed NURBS Surface Code…………………………………………………………………………………66 

APPENDIX H Partially Closed NURBS Surface Code…………………………………………………………………..71 

APPENDIX I Curve STEP File Code……………………………………………………………………………………………. 75 

APPENDIX J Surface STEP File Code………………………………………………………………………………………….81 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

 

 

 

 

 

 

TABLE OF FIGURES  

Figure 1 Optimization Process flowchart…………………………………………………………….......................................1 

Figure 1.1 A-arm body with constraints…………………………………………………………………………………………………..3  

Figure 1.2 Topology Optimized Body of A-Arm…………………………………………………….………………………………….3 

Figure 1.3 shape optimization of cantilever beam……………………………………………………………………………………4 

Figure 1.4 3D CAD Model and STL Files of sphere…………………………………………………………………………………….4 

Figure 1.5 Topology optimization with manufacturing constraints………………………………….……………………….5 

Figure 1.6 Conceptual flow chart for overall research work …………………………………………………….………………6 

Figure 2.1 2D Sketch of Cylinder and Cube ……………………………………………………………………………………………..7 

Figure 2.2 Parametric Representation of a circle……………………………………………….…………………………………….8 

Figure 2.3 Spiral Sketch 2D plot……………………………………………………………………………………………………………….9 

Figure 2.4 Helix………………………………………………………………………………………………………………………………………..9 

Figure 2.5 Cylinder…………………………………………………………………………………………………………………………………10 

Figure 2.6 Hermite Curve……………………………………………………………………………………………………………………….12 

Figure 2.7 Hermite Basis Function…………..…………………………………………………………………………………………….12 

Figure 2.8 Bezier Curve……………………………………………………………………………………………………………………….…14 

Figure 2.9 Modified Bezier Curve…………………………………………………………………………………………………………..14 

Figure 2.10 B-spline classification………………………………………………………………………………………………………….15 

Figure 2.11 Sample block with constraints…………………………………………………………………………………………….19 

Figure 2.12 Optimized Body…………………………………………………………………………………………………………………..19 

Figure 2.13 NURBS fit…………………………………………………………………………………………………………………………….19 

Figure 3.1 Bezier curve with 6 control points…………………………………………………………………………………………20 

Figure 3.2 Modified Bezier curve……………………………………………………………………………………………………………21 



ix 
 

Figure 3.3 Algorithm for Bezier curve…………………………………………………………………………………………………….22 

Figure 3.4 Bezier cure basis function for 4 control points………………………………………………………………………23 

Figure 3.5 Bezier cure basis function for 5 control points………………………………………………………………………23 

Figure 3.6 Effect of multiple co-incident points on the Bezier curve………………..…………………………………….24 

Figure 3.7 Discontinuous Bezier curves………………………………………………………………………………………………….25 

Figure 3.8 Bezier curves with 𝐶0continuity…………………………...………………………………………………………………26 

Figure 3.9 Bezier curves with 𝐶1continuity…………………………...………………………………………………………………26 

Figure 3.10 Bezier curves with 𝐶2continuity………….………………...……………………………………………………………26 

Figure 3.11 B-spline basis function algorithm…………………………………………………………………………………………31 

Figure 3.12 B-spline basis function for 8 control points with 4th order……………………………………………………32 

Figure 3.13 B-spline basis function for 9 control points with 4th order……………………………………………………32 

Figure 3.14 B-spline basis function for 8 control points with 3rd order……………….…………………….……………33 

Figure 3.15 B-spline basis function for 8 control points with 2rd order….………………………………….……………33 

Figure 3.16 B-spline curve algorithm……………………………………………………………………………………………………..35 

Figure 3.17 Clamped B-spline curve…….………………………………..…….............................................................36 

Figure 3.18 modified clamped b-spline………………………………………………………………………………………………….36  

Figure 3.19 B-spline to Bezier curve………………………………………………………………………………….......................37 

Figure 3.20 Periodic behavior of the b-spline basis function………………………………………………………………….37 

Figure 3.21 Basis functions for open b-spline curve……………………………………………………………………………….38 

Figure 3.22 open b-spline curve…………………………………………………………………………………………………………….38 

Figure 3.23 Construction of a closed b-spline curve…………..…………………………………………………………………..39 

Figure 3.24 B-spline curve in a homogeneous space…………………………………..………………………………………….40 

Figure 3.25 Effect of increasing the weight…………………………………………………………………………………………….40 

Figure 3.26 Projection on X-Y Plane……………………………………………………………………………………………………….40 

Figure 3.27 Effect of decreasing the weight………………….……………………………………………………………………….40 

Figure 3.28 Projection on X-Y plane……………………………………………………………………………………………………….41 

Figure 3.29 NURBS curve with weightage 2 on the (10,10) point…………………………………………………………..41 

Figure 3.30 NURBS curve with weightage 4 on the (10,10) point…………………………………………………………..41 

Figure 3.31 NURBS curve with weightage 0.5 on the (10,10) point………………………………………………………..42 



x 
 

Figure 3.32 NURBS curve with weightage 0.1 on the (10,10) point………………………………………………………..42 

Figure 3.33 Algorithm for surface construction………………………………………………………………………………………44 

Figure 3.34 B-spline surface…………………………………………………………………………………………………………………..45 

Figure 3.35 B-spline surface single patch……………………………………………………………………………………………….45 

Figure 3.36 B-spline surface two patches……………………………………………………………………………………………….45 

Figure 3.37 B-spline surface three patches…………………………………………………………………………………………….45 

Figure 3.38 NURBS surface with 2 weightage on (51.14,300,400) control point………………………………….…46 

Figure 3.39 NURBS surface with 0.5 weightage on (51.14,300,400) control point……………………………….…46 

Figure 3.40 Data structure of the STEP file…………………………………………………………………………………………….47 

Figure 3.41 B-spline curve entity……………………………………………………………………………………………………………49 

Figure 3.42 Result imported in the SolidWorks for Curve………………………………………………………………………49 

Figure 3.43 B-spline surface entity…………………………………………………………………………………………………………50 

Figure 3.44 B-spline surface in MATLAB……..………………………………………………………………………………………….50 

Figure 3.45 B-spline Surface in solidWorks…………………………………………………………………………………………….50 

Figure 4.1 Closed polyNURBS fit…………………………………………………………………………………………………………….51 

Figure 4.2 MATLAB result for closed contour…………………………………………………………………………………………51 

Figure 4.3 MATLAB surface result for 2nd order………………………………………………………………………………………52 

Figure 4.4 Open cross section fit from PolyNURBS tool………………………………………………………………………….52 

Figure4.5 MATLAB result for partially closed contour…………………………………………………………………………….52 

                                      

                                     



1 
 

1 Introduction  

The Procedure, advantages, and methods of optimization and additive manufacturing 

techniques will be discussed alongside with a problem that after topology optimization. The 

approach has been presented to tackle the ongoing tedious method after optimization phase.  

1.1 Background  

We are optimizing many things in our daily file knowingly or unknowingly. Finding the fastest 

route from home to workplace, optimizing time schedule of tasks for better productivity, 

Varying the car’s body shape for reducing drag, in structural optimization, finding the optimal 

material distribution or setting the thickness of the truss by varying design variables under 

constraints for example keeping design’s von Mises stress under yield stress. First, an objective 

function is defined in the optimization problem, and often the aim is to minimize the thickness, 

reduce the overall weight, maximization of stiffness, etc. The following figure illustrates the 

general procedure in optimization.  

 

Figure 1 Optimization Process flowchart 
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The steps within the optimization process are 1) Define design and non-design spaces 2) Define 

an Objective Function, Design variables, and constraints 3) Perform optimization 4) Analyze the 

design and check whether objective function is met or not. Repeat the process until the 

objective function is not satisfied. According to the design variables and objective function, 

there are three main types of optimization. 

1) Topology Optimization 

2) Shape Optimization  

3) Size Optimization  

                                                                     
𝑀𝑖𝑛
𝑋

 𝐹(𝑋)                                                       (1) 

 𝑆. 𝑇.  𝐺(𝑋)  ≤ 0 

𝑋𝑀𝑖𝑛 ≤ 𝑋 ≤ 𝑋𝑀𝑎𝑥 

Here, the objective function is to minimize the function F(X), X is a design variable, G(X) is 

constraints and bounds Xmin and Xmax represent upper and lower bound for the design 

variable. [1] 

If design variable x is height, thickness, length than the process is size optimization. 

If x controls the exterior curve (inner or outer radius), we are considering shape optimization. 

If x govern whether a finite element of the geometry is void or solid, it is topology optimization. 

1.1.1 Topology Optimization  

Topology optimization is carried out in conceptual design stage where a configuration of the 

product, the number of holes are not known. Design variable for topology optimization is 

density. The below figure shows the overall topology optimization process.  

 

Topology Optimization Flow Chart 

CAD Model is first imported, and design and non-design spaces are decided. Finite element 

mesh is generated in design space, and loads, boundary condition, design variables, constraints 

and objective functions are defined. Topology optimization process distribute the material in 

design space according to constraints and objective function. Therefore, the result is coarse 

topology which is not suitable for manufacturing. In this type of optimization, the final 

Basic CAD Model 
Apply load, 

Boundary condition, 
mesh

Desinfe design and 
non-design space 

Topology 
optimization with 

manufacturing 
constraints 

Noisy surface 
geooometry after 

optimization 
Smotthed geometry Final CAD model 
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geometry is not predicted and can produce complex shapes that are extremely hard to produce 

with conventional subtractive manufacturing processes. Therefore, manufacturing constraints 

are applied before optimization process to make sure the resultant part is manufacturable with 

minimum cost. The coarse topology is smoothened by fitting different cross sections using 

spline surface tools. [12]  

Density based approach  

The design variable is density, and the value is either 0% or 100% at the end of the optimization 

process. The following figure 1.1 shows the A-arm with finite element mesh. The red area 

shows the design space and green shown the non-design space.  

 

Figure 1.1 A-arm body with constraints  

The resultant topology is shown below in figure 1.2. It consists of defects, noises, rough 

surfaces with complex geometry. Therefore, Designer uses CAE Tools to fit these noisy surfaces 

and curves using NURBS (Non-uniform rational B-spline surface) by picking cross sections. 

 

Figure 1.2 Topology Optimized Body of A-Arm 

1.1.2 Size and shape optimization  

Size optimization is a process of changing the radius or thickness parameter that is not 

associated with the overall shape of the product over a certain range with the defined objective 

function. Where, shape optimization uses height, length as a variable to change the shape of 
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the geometry to obtain objective process. The following figures portray the shape 

optimization.[1] 

 

                            A                                                                                               B 

Figure 1.3 shape optimization of cantilever beam A) Constraints B) Result 

L-section cantilever bar is shown with applied 100N load at one end and constrained at other. 

The objective function is mass minimization with maximum nodal displacement less than 2mm. 

The right figure shows the result after shape optimization. The shape has changed, trapezoid 

shape has resulted from a rectangular shape. Size optimization uses thickness as a design 

variable. In this case, the thickness can be used for size optimization process. 

Shape optimization changes the shape of the geometry, here, the height of each node is a 

design variable.  

1.1.3 Additive Manufacturing  

Additive Manufacturing technology uses different approach than subtractive manufacturing. In 

AM, 3-D Object is built by adding layer upon layer of material. AM requires 3D CAD model as an 

Input with STL or AMF file format. STL file contains the data that represents 3-D Objects created 

by CAD Software. [2] 

 

Figure 1.4 3D CAD Model and STL Files of sphere  

STL means Stereolithography; it also called “Standard Triangle Language” or “Standard 

Tessellation Language.” STL file converts 3D Object into series of linked vertex and triangles, 

and it represents the surface geometry of the solid object. The number of triangles describes 
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the resolution of the given 3D Model. 3D Slicer in AM Machine cut the 3D Object into slices of 

predefined thickness as well as defines a path. Figure 1.4 represents the 3D CAD model of 

sphere with coarse and fine STL File.  

The additive manufacturing process involves eight steps. [2] 

1) CAD 

2) STL Convert  

3) File transfer to machine  

4) Machine setup  

5) Build 

6) Remove 

7) Post-Process  

8) Application  

Topology optimization produces unpredictable shape. Additive manufacturing has a capability 

to produce complicated shapes without adding restrictions. On the other hand, in conventional 

manufacturing processes, the designer must provide manufacturing constraints before 

topology optimization to produce a manufacturable part. But in the additive manufacturing, no 

compromise should be made because of the capability of AM.  

 

1.5 Topology optimization with manufacturing constraints 

The Figure 1.5 shows the result manufacturing constraints. Here, symmetry and draw 

constraints are applied before optimization. There is significant difference in this result from 

previous result. These constraints affect the design and performance of the product. Other 

constraints like min member size, min hole size, and axisymmetric constraints are applied for 

conventional manufacturig processes. 
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1.2  Objective  

After topology optimization, to fit the rough surfaces, the designer must fit the different cross 

sections to generate a surface. If a geometry is complex, containing many sub-assemblies than 

fitting cross section by hand would be a tedious and time-consuming process. The Objective of 

the main research is to automate the process of generating surfaces with various degree of 

freedom. Several steps are involved in automating the entire process described in given flow 

chart. 

 

 

Figure 1.6 Conceptual flow chart for overall research work 

 

1.3  Method  

The main aim of my research is to automate the process of creating NURBS Curves and surfaces 

from given a set of inputs as well as export the geometry into STEP AP 214 file for data 

exchange with CAD software. Different types of algorithm have been developed to generate 

distinct types of NURBS Surfaces.  
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2 Background work 
2.1  What is geometric modeling? 

Geometric Modeling is a mathematical way of representing curves, surfaces, and solids for 

visual representation in computers. Computer computations are required to construct an entity 

from mathematical definition. In fact, use of computers is a primary importance in Geometric 

Modeling. Without computation power, one cannot represent complex geometries with 

accuracy. Geometric Modeling uses linear algebra, vectors, matrix, polynomial interpolation to 

capture the mathematical definition of a geometric entity. Vector and Matrices are useful in 

geometric transformations like scaling, rotation, moving, etc. In polynomial interpolation curve 

passes through a set of control points. The approximation is used in free form curves like 

Bezier, B-spline curves and surfaces where curves are not passing through control points except 

first and last points. [3] 

 

                                   A                                                                             B 

Figure 2.1 2D Sketches A) Cylinder B) Cube Sketch 

Figure 2.1 shows two objects. The objects can be a 3D solid or 2D sketch but the lines are 

placed in a way that gives 3D intuition. From visualization, one cannot interpret the result. 

Both, cube and cylinder are 2-D sketches. The main aim of the Geometric Modeling is to 

mathematically formulate an entity that is computer compatible.  

2.2  Representation method of Curves and surfaces 
The table shows three ways to represent a mathematical equation of a line, circle, surface. 

 

Entity Explicit 
Representation 

Implicit Representation Parametric Representation 

Line 𝑌 = 𝑚𝑥 + 𝑏 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0 𝑃1 + 𝑡(𝑃1 − 𝑃2) 

Circle 𝑌 =  (𝑟2 − 𝑋2)1/2 𝑋2 + 𝑌2 − 𝑟2 = 0 𝑋 = 𝑋0 + 𝑟cos (𝑡) 
𝑌 = 𝑌0 + 𝑟𝑠𝑖𝑛 (𝑡) 

Surface 𝑍 = 𝐴𝑥 + 𝐵𝑦 + 𝐶 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝑑 = 0 𝑋 =  𝑎0 + 𝑎1𝑢 + 𝑎2𝑤 
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Any geometric object can represent in three forms Explicit, Implicit and Parametric forms.  The 

parametric form has been adapted because of advantages over other forms. 

In curve and surface modeling, flexibility in modeling is of upmost important. implicit and 

explicit expressions are dependent on axis. On the other hand, parametric form provides 

independent variables, like u, w, and t in given example. The value of independent variables 

controls the shape of the overall geometry. In programming, it is easy to handle and model 

entities with parametric equations with independent variable which provides enormous 

flexibility.  

2.2.1 Parametric representation of a circle: 

 

                                           A                                                                                 B  

 

                                           C                                                                                  D 

Figure 2.2 Parametric Representation of a circle A) Center (0,0) and radius 5 B) Center (-3,0) and 

radius 5   C) Semi-Circle D) Arc with radius 5 

Figure2.2 shows the resultant circles from an equation from table. The figure 2.2 A shows circle 

with center (0,0) and radius 5. Figure 2.2 B shows the circle with different center (-3,0) and 

parameter value running from 0 to 2*pi. By changing the value of parameter from “0 to 2pi” to 

“0 to pi” we got semi- circle. Figure 2.2 D depicts the arc which is result of parameter value o to 

pi/2.   

In above illustration, t was the only variable that was varied over a certain range. Now, lets 

consider radius as a variable and change the value over some interval.  
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Figure 2.3 Spiral 2D Plot 

 

Two variables have generated a spiral geometry. In the first figure 2.3 the domains are 0 <= r <= 

5 and 0 <= t <= Pi. Where in the second figure 2.3, 0 <= r <= 5 and 0 <= t <= 10 * Pi. 

Two variables created a spiral in a plane. Let’s introduce third dimension to our circle definition 

and play with other variables.  

        𝑌 = 𝑌0 + 𝑟 sin(𝑡) 

 

 

   𝑍 = 𝐻 ; 

Here, new variable H is added. If we vary the value of H over certain range than the result will 

be cylinder or helix, depending upon whether the input is vector or matrix. Consider a vector as 

an input with variables, 𝑋0 = 𝑌0 = 0 , t = 0 to 2π, H = 5 

.  

Figure 2.4 Helix 

 

𝑋 = 𝑋0 + 𝑟cos (𝑡) 
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The following figure depicts a result for a matrix input.  

 

Figure 2.5 Cylinder 

Starting from a simple circle, by adding few variables and changing magnitude resulted in a 

variety of geometries. This kind freedom is required to handle complicated geometries. 

Parametric representation is flexible, handy and programming friendly.  

2.3 Curve Classification: 

1) Plane curves and Space curves 

If a curve lies in any of the following plane X-Y, Y-Z, X-Z than a curve is a plane curve. It may be 

closed, open, self-intersecting. Ellipse, Circle, Triangle, line, parabola, hyperbola are examples 

of a planar curve. Bezier and B-spline can be represented as a plane curve. 

A curve which is not a plane curve, is a space curve. It does not lie in a single plane. The figure 

2.4 shows that helix is a space curve. On the other hand, figure 2.2 circle and arc are plane 

curve. 

2) Curves of free forms and known forms  

Triangle, circle, ellipse, parabola, line is an example of known form where curve has predefined 

forms. Bezier, Hermite, B-spline and NURBS Curve are free form curve which are governed by 

the movement of a control points and the degree of the curves. Free form curves have a 

greater flexibility and advantages when it comes to fit complex curves and surfaces.[11]  

3) Interpolation curves and approximation curves  

Hermite is an example of polynomial interpolation. It interpolates tah point and passes through 
it. The curve that does not pass through data points called approximation curve. [4] 
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2.4 Free Form Curves  

We have discussed earlier free form curves and types. In this section, mathematical 

representation is defined for each curve.  

1) Hermite Curve:  

Hermite or parametric cubic curve is an interpolation curve. It passes through data points to 

define a curve. There are ways to define Hermite curve.  

A) Algebraic form 

B) Geometric form 

C) Four-point form 

A)  Algebraic form:  

The algebraic form is given by following equation. [3] 

                                    𝑋(𝑢) = 𝐴𝑥 ∗ 𝑢3 + 𝐵𝑥 ∗ 𝑢2 + 𝐶𝑥 ∗ 𝑢 + 𝑑𝑥                           (2) 

𝑌(𝑢) = 𝐴𝑦 ∗ 𝑢3 + 𝐵𝑦 ∗ 𝑢2 + 𝐶𝑦 ∗ 𝑢 + 𝑑𝑦 

𝑍(𝑢) = 𝐴𝑧 ∗ 𝑢3 + 𝐵𝑧 ∗ 𝑢2 + 𝐶𝑧 ∗ 𝑢 + 𝑑𝑧 

0 ≤ 𝑢 ≤ 1 

The algebraic form is common form of representing Hermite curve. The algebraic form is a third 

order algebraic equation that is why this curve also called as parametric cubic curve. It has 12 

algebraic coefficients which define the curve shape, size and location is space. Playing with 12 

coefficients is not very effective way to define and modify the curve as well as that does not 

make any sense of a curve. Therefore, practical approach, the geometric form has been 

developed from algebraic form. 

B) Geometric form:  

𝑃(𝑢) = (2𝑢3 − 3𝑢2 + 1)𝑃(0) + (−2𝑢3 + 3𝑢2)𝑃(1) + (𝑢3 − 2𝑢2 +

𝑢)𝑃𝑢(0) + (𝑢3 − 𝑢2)𝑃𝑢(1)  

The above equation represents the geometric form of a curve. P(u) is a vector form, where u is 

a parametric variable varying from 0 to 1. P(0) and P(1) are starting and end points respectively. 

𝑃𝑢(0) and 𝑃𝑢(1) are starting and end tangent vectors respectively. [3] 

Where,  

𝐵1 = (2𝑢3 − 3𝑢2 + 1),  𝐵2 = (−2𝑢3 + 3𝑢2),  𝐵3 = (𝑢3 − 2𝑢2 + 𝑢),  𝐵4

= (𝑢3 − 𝑢2)  
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Here, 𝐵1, 𝐵2, 𝐵3, 𝑎𝑛𝑑 𝐵4 are basis functions of the Hermite curve and 

𝑃(0), 𝑃(1), 𝑃𝑢(0), 𝑎𝑛𝑑 𝑃𝑢(1) are geometric coefficients. It is easy to define and modify 

geometric coefficients than algebraic coefficients.  

 

  Figure 2.6 Hermite Curve                               Figure 2.7 Hermite Basis Function  

 

Basis functions of Hermite are axis independent. Only one variable u controls them. Basis 

functions are responsible for calculating intermediate points values. The figure 2.6 and 2.7 

shows the Hermite curve and basis functions for three data points correspondingly.  

C) Four-point form  

In this point, the curve is defined by supplying four distinct points in space located at equal 

parametric interval. Four-point form is derived from algebraic from for four parameter values u 

= 0; u = 1/3, u = 2/3, and u = 1. Following equation, we get after solving set of equations for 

previously defined parametric values.  

𝑃(𝑢) = (−4.5𝑢3 + 9𝑢2 − 5.5𝑢 + 1)𝑃1

+ (13.5𝑢3 − 22.5𝑢2 + 9𝑢)𝑃2                                                             (3)

+ (−13.5𝑢3 + 18𝑢2 − 4.5𝑢)𝑃3 + (4.5𝑢3 − 4.5𝑢2 + 𝑢)𝑃4 

Here, 𝑃1, 𝑃2, 𝑃3, 𝑃4 are data points where curve passes through.  

2) Bezier Curve:  

In designing complex structures, intuition about the geometric object is important. A curve or 

surface defined a way that designer can have the intuition about the change of shape, more 

control over design, etc. Hermite curve interpolates the given control points and passes 

through it. Changing the shape of the Hermite curve is not intuitive and does not give a clear 

idea about how the curve is going to change the shape. It has limited control and. Bezier curve 

provides a solution to this problem. [3] 
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                                                         𝑃(𝑢) =  ∑ 𝑃𝑖𝐵𝑖,𝑛(𝑢)𝑛
𝑖=0                                                     (4) 

 0 ≤ 𝑢 ≤ 1 

                                             𝑊ℎ𝑒𝑟𝑒, 𝐵𝑖,𝑛 = (𝑛
𝑖
)𝑢𝑖(1 − 𝑢)𝑛−𝑖                                        (5) 

(
𝑛

𝑖
) =  

𝑛!

𝑖! (𝑛 − 𝑖)!
 

 

𝑃(𝑢) represents Bezier curve with parameter u over domain 0 to 1. 𝐵𝑖,𝑛 is a Bernstein 

polynomials that govern the behavior of the curve with (n+1) control points. The Bernstein 

polynomial gives an nth – degree polynomial. Therefore, Degree of the Bezier curve depends 

upon several control points. Bezier is approximation curve. It only interpolates first and last 

points and approximated by intermediate points. [13] 

Properties of Bezier Curve:  

• The tangent of the curve is defined by first two points and last two points 

𝑃0, 𝑃1, 𝑎𝑛𝑑 𝑃𝑛, 𝑃𝑛−1. Similarly, the curvature at end points defined by first three points 

𝑃0, 𝑃1, 𝑃2 and last three points and  𝑃𝑛, 𝑃𝑛−1, 𝑃𝑛−2 as follows,  

𝐾0 =
2|(𝑃1 − 𝑃0) ∗ (𝑃2 − 𝑃1)|

3|(𝑃1 − 𝑃0)|
3

 

 

𝐾1 =
2|(𝑃𝑛−1 − 𝑃𝑛−2) ∗ (𝑃𝑛 − 𝑃𝑛−1)|

3|(𝑃𝑛 − 𝑃𝑛−1)|
3

 

Where, 𝐾0, 𝐾1 represents curvature at first and last points respectively.  

• According to the definition of Bernstein polynomial, u and (1-u) are symmetric. 

Symmetric means, reversing the order of the control points does not change the shape 

of the curve.  

• In geometric modeling, the transformation is a vital part. The Bezier curve is invariant 

under geometric transformations.  

• Convex hull property: convex hull is polygon formed by the control vertices. This 

property states that the resultant curve always lies under convex hull. This property 

defines a bound for the curve as the curve never goes out of the convex hull. The 

following figures illustrate this property.  
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                                 Figure 2.8 Bezier Curve                                    Figure 2.9 Modified Bezier Curve 

• Partition of unity:  

∑(
𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛−𝑖 = 1

𝑛

𝑖=0

 

Summation of all the basis function at any parameter value u is equal to 1. Bezier curve 

is defined by assigning distinct weights to different coordinates.  

Sometimes it is hard to handle higher degree curve. So, composite Bezier curves used to 

overcome this problem. The application of composite Bezier curve gets limited as  a designer 

must deal with continuity issue. B- spline curve is a generalization of a Bezier curve and has 

advantages over Bezier curve as discussed in the following section. 

3) B-spline Curve  

B-spline curve consists of more than one curve segments and knot vectors, divide the curve into 

different segments. Dividing a curve into several segments provides a local modification control 

over curve. Bezier curve does not have local modification control. Modifying one control point 

changes the whole curve in the Bezier curve. On the other hand, changing one control point, 

only certain number of segments get modified. The degree of the curve is dependent on a 

number of control points in Bezier. Degree dependency on number control points poses a 

problem when the designer is using more than 15 points to define a single curve segment. 

Handling a 14th degree curve is not recommended for some applications like finding an 

intersection of two curves. The B-spline curve has a solution for dependency problem. The 

degree of the B-spline curve is independent of a number of control points used. The designer 

can explicitly define a desired degree of the curve. B-spline curve requires three inputs number 

of control points, knot vector, and degree. B-spline curve interpolates first and end, and 

approximates intermediate points. Mathematical Formulation: [3] 

                                                           𝑃(𝑢) = ∑ 𝑃𝑖𝑁𝑖,𝑘
𝑛
𝑖=0                                                  (6) 

𝑊ℎ𝑒𝑟𝑒,      𝑁𝑖,𝑘 = 
(𝑢 − 𝑡𝑖)𝑁𝑖,𝑘−1(𝑢)

𝑡𝑖+𝑘−1 − 𝑡𝑖
+

(𝑡𝑖+𝑘 − 𝑢)𝑁𝑖+1,𝑘−1(𝑢)

𝑡𝑖+𝑘 − 𝑡𝑖+1
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𝑁𝑖,𝑘 is basis function for B-spline curve. It is a recursive function and uses previous values to 

calculate the next value. The first basis function is defined as follows. 

𝑁𝑖,1 = 1 𝑖𝑓 𝑡𝑖 ≤ 𝑢 ≤ 𝑡𝑖+1 

= 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

t represents knot vector, and parameter K defined the degree (K-1) of the curve. Knot vector is 

responsible for breaking the curve into different segments. The standard way of defining knot 

vector presented below. Total number of knot vector is defined as n+k+1 (number of control 

points + degree of curve).  

                                                             𝑡𝑗 = 0          𝑖𝑓 𝑗 < 𝐾                                       (7) 

          𝑡𝑗 = 𝑖 + 𝐾 + 1    𝑖𝑓  𝐾 ≤ 𝑗 ≤ 𝑛 

𝑡𝑗 = 𝑛 − 𝐾 + 2   𝑖𝑓  𝑗 > 𝑛 

The knot vector definition presented above is for clamped b-spline curve. Modifying the knot 

vector results in the different shape of the curve. The parameter value u has ranged from 0 to 

n-k+2.  

0 ≤ 𝑢 ≤ 𝑛 − 𝐾 + 2 

If the designer is using 5 control points with 2nd degree curve, then parameter range is 0 ≤ 𝑢 ≤

4. Curve is devided into 4 sections 0….1, 1….2, 2….3, and 3….4.  

Classification of the b-spline curve 

 

Figure 2.10 B-spline classification 

B-spline is classified in two ways, Non-periodic and periodic. Behaviour of knot vector plays an 

inportant role in classifying b-spline curve. In the next chapter, classification has been discussed 

along with the algorithm for B-spline curves and surfaces.  
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Properties:  

• Local modification control  

• Convex Hull proprerty 

• Partition of unity  

• Invarience in transformations  

 

4) Non Uniform Rational B-spline (NURBS):  

NURBS is more powerful than b-spline. NURBS is a versatile tool in geometric modeling, and it 

has become industry standard. NURBS is a rational version of a B-spline curve. The B-spline 

curve cannot represent a circle, conic curves, ellipse, etc. NURBS has an advnatage of 

representing known form curves with added degree of freedom. The mathematical formulation 

is described below. [7] 

                                        𝑃(𝑢) =
∑ ℎ𝑖𝑃𝑖𝑁𝑖,𝑘(𝑢)𝑛

𝑖=0

∑ ℎ𝑖𝑁𝑖,𝑘
𝑛
𝑖=0 (𝑢)

                                             (8) 

Here, ℎ𝑖 are weights assigned to each control points. NURBS is the generalization of a B-spline 

curve. Weights are extra degree of freedom, one can easily modfy weight at any control point 

to obtain desired geometry.  

2.5 STEP AP 214 

In geometric modeling, Geometric construction and data exchange between CAD Package is an 

important task. STEP standard has been depicted to complete data exchange task. ISO 10303 

known as “ Automation systems and integration – product data representation and exchange”. 

ISO 10303 informally known as STEP which means “ Standard for the Exchange of Product 

model data”.  STEP file has the capability to represent 2D Sketch or 3D Model data into CAD 

software. ISO 10303 consists of many parts. [8] 

1) Description Methods  

• Part 11 - Express data modeling language   

• Part 12 - Express-I  

• Part 14 - Express X 

2) Implementation Methods 

• Part 21 - STEP FILE: Clear text encoding of the exchange structure  

• Part 22 - SDAI Standard data acess interface specification 

• Part 28 - STEP XML 
3) Conformance Testing methodology and framework 

• Part 31 - General Concepts  

• Part 32 - Requirement on testing laboratories and clients  
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• Part 34 - Abstract test method for applization protocol implementations  

4) Application Protocols 

• Part 203 - Configuration controlled 3D Designs of mechanical parts and 

assemblies 

• Part 214 - Core data for automotive mechanical design processes  

5) Integrated Application Resource Models 

• Part 101 - Graughting  

• Part 104 - Finite Elment Aalysis 

6) Integrated General Resources 

• Part 41 - Fundamentals of product description and support  

• Part 42 - Geometric and topological representation 

In many CAD Softwares, to save a 3D CAD Model data, AP203 and AP214, two application 

protocols have been used widely. In this research work, data structure for AP214 has been 

adapted for data exchange.  

Data Structure for ISO 10303 - 21. [10] 

ISO-10303-21; 
HEADER; 
FILE_DESCRIPTION( 
/* description */ (), 
/* implementation_level */); 
FILE_NAME( 
/* name */  
/* time_stamp */, 
/* author */  
/* organization */  
/* preprocessor_version */ ' ', 
/* originating_system * 
/* authorization */  
FILE_SCHEMA (('AUTOMOTIVE_DESIGN ‘)); 
ENDSEC; 
DATA; 
#31=EDGE_CURVE('',#39,#40,#35,.T.); 
#32=EDGE_CURVE('',#40,#41,#36,.T.); 
#36=B_SPLINE_CURVE_WITH_KNOTS('',3,(#94,#95,#96,#97),.UNSPECIFIED.,.F.,.F.,(4,4),(0,1),.UN
SPECIFIED.); 
#94=CARTESIAN_POINT('',(31.000000,0.000000,0.000000)); 
#95=CARTESIAN_POINT('',(32.680000,-1.960000,4.350000)); 
#96=CARTESIAN_POINT('',(28.330000,3.110000,8.660000)); 
#97=CARTESIAN_POINT('',(31.000000,0.000000,31.000000)); 
#33=EDGE_CURVE('',#41,#42,#37,.T.); 
#34=EDGE_CURVE('',#42,#39,#38,.T.); 
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#39=VERTEX_POINT('',#70); 
#70=CARTESIAN_POINT('',(0.000000,0.000000,0.000000)); 
#40=VERTEX_POINT('',#71); 
#71=CARTESIAN_POINT('',(31.000000,0.000000,0.000000)); 
#41=VERTEX_POINT('',#72); 
#72=CARTESIAN_POINT('',(31.000000,0.000000,31.000000)); 
#42=VERTEX_POINT('',#73);#55=(NAMED_UNIT(*)PLANE_ANGLE_UNIT()); 
#56=DIMENSIONAL_EXPONENTS(0.,0.,0.,0.,0.,0.,0.); 
#57=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.01745329252),#55); 
#58=(CONVERSION_BASED_UNIT('DEGREES',#57)NAMED_UNIT(#56)PLANE_ANGLE_UNIT()); 
#59=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT()); 
#44=SHAPE_DEFINITION_REPRESENTATION(#45,#62); 
#45=PRODUCT_DEFINITION_SHAPE('Document','',#47); 
#46=PRODUCT_DEFINITION_CONTEXT('3D Mechanical Parts',#51,'design'); 
#47=PRODUCT_DEFINITION('A','First version',#48,#46); 
ENDSEC; 
END-ISO-10303-21; 
 

The file consists of two sections, 1) Header 2) Data. The header section contains information 
like file description, file name, creator of the file, time, etc. Data section represents the 
Geometry data, Units, Application protocols. Instance number is used to declare data for 
example, cartesian point is defined as #Instance Numer=CARTESIAN_POINT('Name',(X-
coordinate,Y-coordinate,Z-coordinate)). Instance number helps in the mapping of entity. From 
above example, Edge curve is defined by two vertex points and one B-spline curve. Therefore, 
two vertex points and B-spline Curve are mapped into edge curve entity. The boolean and 
logical values are written in capital letters. In B-spline curve entity, two “.F.” boolean operators 
are presented which states that the curve is not closed and self intersecting. [6] 
 

2.6 Significance of NURBS in Additive Manufacturing  

Complex structures are possible to produce with Additive Manufacturing without any 

constraints. As discussed earlier, conventional manufacturing processes have restrictions in 

developing complex geometries. Topology optimization method gives us a conceptual design 

which can be modified by the designers the way they want. [5] 
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Figure 2.11 Sample block                          Figure 2.12 optimized body 

Sample block has been taken to illustrate the importance of NURBS in figure2.11. Solidthinking 

Inspire tool is used for the optimization process. 1000 N load is applied at the right end, and 

opposite end is fixed. Topology optimization is run with the objective of mass minimization. 

Figure 2.12 shows the result of topology optimization consists of rough surfaces. To fit these 

sections, NURBS modeling is required. Standard CAD Tools can be used, but a designer may not 

get flexibility. Figure 2.13 illustrates the usage of NURBS tools in fitting one cross section. 

Designers have freedom to modify this cross section by moving control points, handles, and 

faces. [5] 

 

Figure 2.13 NURBS fit  
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Chapter 3 Methodology  

In methodology segment, detailed understanding of properties and algorithms have been 

presented for B-spline, Bezier, NURBS and STEP AP 214 file along with examples.  

3.1 Bezier Curve Formulation  

                                                  𝑃(𝑢) =  ∑ 𝑃𝑖𝐵𝑖,𝑛(𝑢)𝑛
𝑖=0                                                   (9) 

 0 ≤ 𝑢 ≤ 1 

𝑊ℎ𝑒𝑟𝑒, 𝐵𝑖,𝑛 = (
𝑛

𝑖
) 𝑢𝑖(1 − 𝑢)𝑛−𝑖 

(
𝑛

𝑖
) =  

𝑛!

𝑖! (𝑛 − 𝑖)!
 

Bezier Curve properties: 

1) Global propagation.  

The figure 3.1 shows the 5th degree Bezier curve with 6 control points. Mathematical 

formulation of this curve:  

𝑃(𝑢) = ∑𝑃𝑖𝐵𝑖,5(𝑢)

5

𝑖=0

 

                𝑃(𝑢) = 𝑃0𝐵0,5 + 𝑃1𝐵1,5 + 𝑃2𝐵2,5 + 𝑃3𝐵3,5 + 𝑃4𝐵4,5 + 𝑃5𝐵5,5                     (10) 

 

Figure 3.1 Bezier curve with 6 control points 

Let’s modify the control point from (4,6) to (4,7). The resulting figure 3.2 shows below. Red 

dotted line is the modified Bezier curve and effect is shown clearly. Moving one control 

point affects the whole curve. This propagation called global propagation because changing 

one coordinate alter the whole curve segment. Consider equation 10 and change the 5th 
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control point by adding position vector 𝑣 ⃗⃗⃗  =  𝑗.̂The resultant vector for new curve is given by 

W(u), 

𝑊(𝑢) = 𝑃0𝐵0,5 + 𝑃1𝐵1,5 + 𝑃2𝐵2,5 + 𝑃3𝐵3,5 + (𝑃4 + 𝑣 )𝐵4,5 + 𝑃5𝐵5,5 

𝑊(𝑢) = 𝑃0𝐵0,5 + 𝑃1𝐵1,5 + 𝑃2𝐵2,5 + 𝑃3𝐵3,5 + 𝑃4𝐵4,5 + 𝑣 𝐵4,5 + 𝑃5𝐵5,5 

𝑊(𝑢) = 𝑃0𝐵0,5 + 𝑃1𝐵1,5 + 𝑃2𝐵2,5 + 𝑃3𝐵3,5 + 𝑃4𝐵4,5 + 𝑃5𝐵5,5 + 𝑣 𝐵4,5 

𝐹𝑟𝑜𝑚 𝑒𝑞𝑢𝑖𝑎𝑡𝑖𝑜𝑛 (10)  

                                                                     𝑊(𝑢) = 𝑃(𝑢) + 𝑣 𝐵4,5                                                             (11) 

 

The equation states that new curve is nothing but original vector 𝑃(𝑢) plus multiplication of 

basis 𝐵4,5 and position vector 𝑣 . Hence, change in one control point affects the whole curve 

segment. The figure 3.2 shows the result.  

 

Figure 3.2 Modified Bezier Curve 

The red dotted line demonstrates the new Bezier curve and the blue line is the original 

Bezier curve. In some applications, global propagation is not required. If designer wants to 

modify some portion of the curve then local modification plays important part. B-spline 

curve has local modification capability. Algorithm has been developed from mathematical 

definition. The figure 3.3 represents the flowchart for the algorithm. The Bezier curve 

computation is simple and straight forward. One for loop is running from o to number of 

control points which calculates the basis function and calculating X, Y and Z components. 

The degree is dependent on number of control points. The algorithm requires X, Y, Z 

Coordinates and output is curve segment.   
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Figure 3.3 Algorithm for Bezier curve 
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3.1.1 Control Points and Basis functions  

Behavior and influence of the curve governed by basis functions. The following figure 3.4 and 

3.5 shows the basis functions for 4 and 5 control points. 

 

Figure 3.4 Bezier Curve basis functions for 4 control points 

 

Figure 3.5 Bezier Curve basis functions for 5 control points 

The first basis function has 100% influence on the first control point at u = 0. As parameter 

value increases the influence of the first basis functions decreases. Similarly, Basis-4 has full 

control at u = 1 on the last control point. At u = 1/3 and u = 2/3, Basis-2 and Basis-3 are most 

influential respectively. All the basis function starts at u = 0 and ends at u = 1. This behavior 

shows the global propagation. Contrary, B-spline curve’s basis functions do not have the 

influence on full range. All the basis functions are symmetric to u=0.5. Basis-1 is a mirror of 

basis-4, same way basis-2 is a mirror of basis-3 in figure 3.4. Basis functions act as weights for 

control points. Defining coincident point increases the weightage of that coordinate. The 

subsequent series of figures demonstrate the effect of adding more weight to the single control 

point.  
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Figure 3.6 effect of multiple coincident points on the Bezier curve 

Figure 3.6 a Single Point 

Figure 3.6 b Two 

coincident points 

Figure 3.6 c Three 

coincident points 

 

Figure 3.6 d Four 

coincident points 
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The figure 3.6 (a) is defined by 6 control points. The figure 3.6 (b) displays defining the same 

control point (5,2) twice. The dotted line is the new curve and solid blue line depicts original 

curve. As we increase the coincident points, the curve is getting pulled towards the coincident 

point. The figure 3.6 (c)  shows the same control point again. Result is clearly seen, the curve is 

pulled more and more as we add more equivalent ontrol points. In other words, we are adding 

weightages to a single contrl point.  

3.1.2 Composite Bezier Curve  

Single bezier curve segment is not always suitable for modeling. Multiple curve srgment is 

required to reduce the degree of the curve and complexity. Sometimes defining a single bezier 

curve with 14 or 20 control point is not suitable. Therefore, it is feasible to break the curve into 

multiple curve segments. Continuity issue comes into play for composite curve segments. 

Parametric continuity between curve segments is defined. Parametric continuity defines in 

following ways.[4] 

 𝐶0 = curves are attached  

𝐶1 = tangent continuous ( First derivatives are same ) 

𝐶2 = Curvature Continuous ( Second Derivatives are same ) 

𝐶𝑛 = nth derivatives are same  

The figures 3.7 to 3.10 shows the pictorial representation of types of continuity.  

 

figure 3.7 Discontinuous Bezier Curves 
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figure 3.8 Bezier curves with 𝐶0 continuity 

When last point of the first curve and first point of the second curve are joint that represents 

𝐶0 continuity. 𝐶0 ensures that curves are joint without any continuity. 

 

Figure 3.9 Bezier curves 𝐶1 continuity 

Ths figure 3.9 portrays tangent contunuity. Where, tangent vectors are same for both the 

curve. Accorging to the property of the bezier curve, first two point and last two points are 

tangent of the curve. To make tangent continuous there is a one condition. Three point must be 

co-linear of both the curve segments as illustrated in figure (5,2), (6,3). (7,4). The last two points 

of the first curve and first two points of the second curve must be c-linear to make sure both 

the curves are tangent ontinuous at the meeting point. 

 

Figure 3.10 Bezier curves 𝐶2 continuity 
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Tangent continuity sometime does not work in keen corners. Therefore, curvature continuity 

𝐶2 is required. Curvature of the bezier curve is defined by three start and end points. Procedure 

is same, five points have to be co-linear inorder to satisfy curvature continuity. 

If we modify point (6,3) than we have to change other points inorder to maintain curature 

continuity which is sometimes not quit efficient in modeling. The handeling become tedious 

and time consuming.  

So, Bezier curve is flexible and has advantages over Hermite curve. But it has several 

disadvantages like global propogation, degree dependancy. B-spline resolves the issue of global 

propogation and degree dependency.  

3.2 B-spline basis function 

The B-spline curve is defined by following equation 12.  

 

                                                          𝑃(𝑢) = ∑ 𝑃𝑖𝑁𝑖,𝑘
𝑛
𝑖=0                                                (12) 

𝑊ℎ𝑒𝑟𝑒,      𝑁𝑖,𝑘 = 
(𝑢 − 𝑡𝑖)𝑁𝑖,𝑘−1(𝑢)

𝑡𝑖+𝑘−1 − 𝑡𝑖
+

(𝑡𝑖+𝑘 − 𝑢)𝑁𝑖+1,𝑘−1(𝑢)

𝑡𝑖+𝑘 − 𝑡𝑖+1
 

 

𝑁𝑖,1 = 1 𝑖𝑓 𝑡𝑖 ≤ 𝑢 ≤ 𝑡𝑖+1 

= 0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 0 ≤ 𝑢 ≤ 𝑛 − 𝐾 + 2 

Where, Knot Vector  

                                                 𝑡𝑗 = 0          𝑖𝑓 𝑗 < 𝐾                                                  (12a) 

          𝑡𝑗 = 𝑖 + 𝐾 + 1    𝑖𝑓  𝐾 ≤ 𝑗 ≤ 𝑛 

𝑡𝑗 = 𝑛 − 𝐾 + 2   𝑖𝑓  𝑗 > 𝑛 
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To understand the behavior of the B-spline curve, first, understand the basis function and the 

knot vector. The basis function is a recursive function and uses previous two values. 

 

The flowchart shows the recursive behavior of the basis function. The following calculations are 

done for 7 control points with 4th order. 

To calculate 𝑁𝑖,4 where i = 0 to 5, we need to calculate 𝑁𝑖,3, 𝑁𝑖,2, 𝑁𝑖,1.  From above equation for 

knot vector t = (0 0 0 0 1 2 3 4 4 4 4) and parameter u = 0 to 4. 

For the first order, k = 1  

𝑁0,1 = 1 at u = 0 

𝑁1,1 = 1 at u = 0 

𝑁2,1 = 1 at u = 0 

𝑁3,1 = 1 at 0 ≤ u < 1 

𝑁4,1 = 1 at 1 ≤ u < 2 

𝑁5,1 = 1 at 2 ≤ u < 3 

𝑁6,1 = 1 at 3 ≤ u ≤ 4 

Second Order, K = 2 

According to equation 12, 

     𝑁0,2 = 
(𝑢 − 𝑡0)𝑁0,1(𝑢)

𝑡1 − 𝑡0
+

(𝑡2 − 𝑢)𝑁1,1(𝑢)

𝑡2 − 𝑡1
 

In these calculations, we often encounter terms like 0/0. For calculation purpose, 

we are considering       0/0 = 0. After simplifying above equation,   

𝑁𝑖,3

𝑁𝑖,2

𝑁𝑖,1

𝑁𝑖+1,1

𝑁𝑖+1,2

𝑁𝑖+1,1

𝑁𝑖+2,1

𝑁𝑖,4

𝑁𝑖,3

𝑁𝑖,2

𝑁𝑖,1

𝑁𝑖+1,1

𝑁𝑖+1,2

𝑁𝑖+1,1

𝑁𝑖+2,1

𝑁𝑖+1,3

𝑁𝑖+1,2

𝑁𝑖+1,1

𝑁𝑖+2,1

𝑁𝑖+2,2

𝑁𝑖+2,1

𝑁𝑖+3,1
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     𝑁0,2 = 0  

Similarly applying equation 12 for rest of the calculations.  

     𝑁1,2 = 0  

     𝑁2,2 = (1 − 𝑢)𝑁3,1   

     𝑁3,2 = 𝑢𝑁3,1 + (2 − 𝑢)𝑁4,1   

     𝑁4,2 = (𝑢 − 1)𝑁4,1 + (3 − 𝑢)𝑁5,1    

     𝑁5,2 = (𝑢 − 2)𝑁5,1 + (4 − 𝑢)𝑁6,1    

     𝑁6,2 = (𝑢 − 3)𝑁6,1    

Third Order, k = 3  

     𝑁0,3 = 0  

     𝑁1,3 =  (1 − 𝑢)2𝑁3,1 

     𝑁2,3 = 𝑢((1 − 𝑢) +
(2−𝑢)

2
) 𝑁3,1 +  (2 − 𝑢)2𝑁4,1 

     𝑁3,3 = 
1

2
[𝑢2𝑁3,1 + 𝑁4,1(𝑢(2 − 𝑢) + (3 − 𝑢)(𝑢 − 1) +  (3 − 𝑢)2𝑁5,1] 

     𝑁4,3 = 
1

2
[(𝑢 − 1)2𝑁4,1 + 𝑁5,1((𝑢 − 1)(3 − 𝑢) + (2 − 𝑢)(𝑢 − 2)) + (2 −

𝑢)(4 − 𝑢)𝑁6,1] 

     𝑁5,3 = 
(𝑢−2)

2

2
𝑁5,1 +

[(4−𝑢)(𝑢−2)+(4−𝑢)(𝑢−3)]

2
𝑁6,1 

     𝑁6,3 =  (𝑢 − 3)2𝑁6,1 

For fourth order k = 4, 

     𝑁0,4 =  (1 − 𝑢)3𝑵𝟑,𝟏 

     𝑁1,4 = 𝑵𝟑,𝟏[𝑢(1 − 𝑢)2 +
𝑢(1−𝑢)(2−𝑢)

 2
+

𝑢(2−𝑢)

2

2
] +𝑵𝟒,𝟏

(2−𝑢)

2

2
 

     𝑁2,4 = 𝑵𝟑,𝟏[(1 − 𝑢)𝑢2 +
(2−𝑢)𝑢

2

2
+

(3−𝑢)𝑢

6

2
] +𝑵𝟒,𝟏[

(2−𝑢)𝑢

2

2
+

𝑢(2−𝑢)(3−𝑢)

 6
+

(𝑢−1)(3−𝑢)

6

2
]+ 𝑵𝟓,𝟏

(3−𝑢)

6

3
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     𝑁3,4 =𝑵𝟑,𝟏
𝑢3

6
+ 𝑵𝟒,𝟏[

(2−𝑢)𝑢

6

2
+

𝑢(𝑢−1)(3−𝑢)

 6
+

(4−𝑢)(𝑢−1)

6

2
]+ 𝑵𝟓,𝟏[

(3−𝑢)

6

3
+

(𝑢−1)(3−𝑢)(4−𝑢)

 6
+                 

(𝑢−2)(2−𝑢)(4−𝑢)

 6
]+  𝑵𝟔,𝟏

(2−𝑢)(4−𝑢)

6

2
 

     𝑁4,4 =𝑵𝟒,𝟏
(𝑢−1)

6

3
+ 𝑵𝟓,𝟏[

(3−𝑢)(𝑢−1)

6

2
+

(𝑢−2)(𝑢−1)(2−𝑢)

 6
+

(4−𝑢)(𝑢−2)

6

2
]+ 𝑵𝟔,𝟏[

(𝑢−2)(4−𝑢)

4

2
+                

(𝑢−1)(2−𝑢)(4−𝑢)

 6
+

(𝑢−3)(4−𝑢)

4
] 

     𝑁5,4 =  𝑵𝟔,𝟏[
(4−𝑢)(𝑢−2)

4

2
+

(𝑢−4)(𝑢−3)(4−𝑢)

 2
+ (4 − 𝑢)(𝑢 − 3)2]+ 𝑵𝟓,𝟏

(𝑢−2)

4

2
 

     𝑁6,4 =  (𝑢 − 3)3𝑵𝟔,𝟏 

Algorithm has been developed in MATLAB for plotting and calculating the values for basis 

functions. Figure 3.11 represents flow chart for basis function algorithm.  In this algorithm, the 

inputs are desired order, parameter u, and coordinates. First, second order basis functions are 

calculated and stored in a zero matrix. In a second iteration, using the previous calculated 

values of second order, rest of the calculations are carried out. The algorithm is generalized for 

any number of control points and order. Order of the curve must not exceeds the number of 

control points. The MATLAB code is attached in an APPENDIX. 
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Figure 3.11 B-spline Basis Function Algorithm 
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The results from the algorithm for k = 4 (3rd degree, 7 control points) 

 

Figure 3.12 B-spline Basis Function for 8 control points and 4th order 

The figure 3.12 illustrates the plot of basis functions with respect to parameter value. Local 

control is clearly seen as basis functions do not cover the whole parameter range except one 

basis function 𝑁3,4.  But as we increase the number of control points by keeping order four, 

none of the basis function covers the complete parameter range as shown in figure 3.13. The 

figure 3.14 and 3.15 represents the basis function for 3rd and 2nd order respectively. 

 

Figure 3.13 B-spline Basis Function for 9 control points and 4th order 
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              Figure 3.14 Basis Function k=3, n=7                               Figure 3.15 Basis Function k=3, n=7                                                         

            

3.3 B-spline curve formulation  

 

                                                         𝑃(𝑢) = ∑ 𝑃𝑖𝑁𝑖,𝑘
𝑛
𝑖=0                                                    13 

Equation 13 defines the B-spline curve. Consider the above example of basis function and 

understands the construction of the curve. Expanding the equation 13 for N = 6 (7 control 

points) and k = 4 (3rd degree).  

                              𝑃(𝑢) = 𝑃0𝑁0,4 + 𝑃1𝑁1,4 + 𝑃2𝑁2,4 + 𝑃3𝑁3,4 + 𝑃4𝑁4,4 + 𝑃5𝑁5,4 + 𝑃6𝑁6,4          14 

In above basis function values, each basis function consists of different segments. Putting all 

the values in equation 14 and separating the curve segment results the following equations. 

𝑃(𝑢) = 𝑃0 (1 − 𝑢)3 + 𝑃1[𝑢(1 − 𝑢)2 +
𝑢(1−𝑢)(2−𝑢)

 2
+

𝑢(2−𝑢)

2

2
]  + 𝑃2[(1 − 𝑢)𝑢2 +

(2−𝑢)𝑢

2

2
+

(3−𝑢)𝑢

6

2
] + 𝑃3

𝑢3

6
                                                                                                                           for 0 ≤ u < 1                            

𝑃(𝑢)1 = 𝑃1
(2−𝑢)

2

2
+ 𝑃2[

(2−𝑢)𝑢

2

2
+

𝑢(2−𝑢)(3−𝑢)

 6
+

(𝑢−1)(3−𝑢)

6

2
] + 𝑃3[

(2−𝑢)𝑢

6

2
+

𝑢(𝑢−1)(3−𝑢)

 6
+

(4−𝑢)(𝑢−1)

6

2
] + 𝑃4

(𝑢−1)

6

3
                                                                                                              for 1 ≤ u < 2                           

𝑃(𝑢)2 = 𝑃2
(3−𝑢)

6

3
+ 𝑃3[

(3−𝑢)

6

3
+

(𝑢−1)(3−𝑢)(4−𝑢)

 6
+

(𝑢−2)(2−𝑢)(4−𝑢)

 6
] + 𝑃4[

(3−𝑢)(𝑢−1)

6

2
+

(𝑢−2)(𝑢−1)(2−𝑢)

 6
+

(4−𝑢)(𝑢−2)

6

2
] + 𝑃5

(𝑢−2)

4

2
                                                                              for 2 ≤ u < 3                            

𝑃(𝑢)3 = 𝑃3
(2−𝑢)(4−𝑢)

6

2
+ 𝑃4[

(𝑢−2)(4−𝑢)

4

2
+ 

(𝑢−1)(2−𝑢)(4−𝑢)

 6
+

(𝑢−3)(4−𝑢)

4
] + 𝑃5[

(4−𝑢)(𝑢−2)

4

2
+

(𝑢−4)(𝑢−3)(4−𝑢)

 2
+ (4 − 𝑢)(𝑢 − 3)2] + 𝑃6 (𝑢 − 3)3                                                              for 3 ≤ u ≤ 4                            
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As mentioned earlier, b-spline curve is made up of different curve segments. Here, four vectors 

represent four curve segments. Each segment is controlled by four control points. According to 

the property, each curve segment is controlled by k number of control points. The algorithm 

has been developed to generate the clamed B-spline curve. As we have seen in previous basis 

function example, each basis function consists of several curve segments. First segment 0 to 1 is 

in four basis functions 𝑁0,4, 𝑁1,4 ,  𝑁2,4 ,  𝑁3,4. Basis functions  𝑁1,4, 𝑁2,4 ,  𝑁3,4 ,  𝑁4,4 consists of 

1 to 2 segment. As B-spline curve consists of different segments, in given algorithm, I am 

calculating basis function one by one, extracting and saving each curve segment values. Figure 

3.16 portrays the B-spline curve formulation algorithm. 
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Figure 3.16 B-spline Curve Algorithm  
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Figure 3.17 clamped B-spline Curve 

 

Figure 3.18 Modified Clamped B-spline Curve 

The figure 3.17 represents the B-spline curve with 7 control points and 3th order (2rd degree) 

curve. The presented B-spline curve is clamped curve as the curve touches first and last control 

points. The cross symbol divide the curve into different segments. Each curve segment is 

influenced by k number of control points. As we increase the k value, influence also increases. 

In figure 3.18, control point is changed from (10,10) to (9,9). The dotted yellow line shows the 

new curve and blue line is the original curve. Local modification can be seen clearly. Some 

portion of the curve is affected as we move a coordinate. Local modification is a powerful tool 

of the B-spline curve. The local modification depends upon the order of the curve. By keeping 

the number of control points and order same we can get Bezier curve from B-spline curve. 

Figure 3.19 illustrates the result of B-spline to Bezier. 
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Figure 3.19 B-spline to Bezier curve 

 

 

Figure 3.20 Periodic Behavior of the b-spline basis function 

The figure is for 3rd order with 8 control points with knot vector = [0 0 0 1 2 3 4 5 6 6 6]. 

Examine the basis function is the box. The open b-spline curve does not pass through first and 

last points. The basis function behavior and knot vector is defined in different manner basis 

functions are presented below.  

These basis functions are defined with uniform knot vector = [0 1 2 3 4 5 6 7 8 9 10]. They have 

similar shape with different position. They are periodic in nature. Open B-spline curve uses 

periodic basis functions. The figure below shows the basis functions for open curve. The 

clamped curve has first and last basis function which starts from 1 and goes to 0. In open curve, 

all the basis functions have identical shape.   
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Figure 3.21 Basis functions for open b-spline curve 

 

 

 Figure 3.22 Open B-spline Curve  

Compare figures 3.21 and 3.20 for open and clamped basis functions; Open b-spline curve uses 

the similar set of basis functions. The B-spline curve is termed periodic curve since it uses one 

sort of basis function repetitively. 
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3.3.1 Closed B-spline Curve  

 

                                       Figure 3.23 a 

  

                                      Figure 3.23 b 

 

                                    Figure 3.23 c 

  

                                   Figure 3.23 d 

Figure 3.23 Construction of a Closed B-spline curve 

X= [ 1 4 6 8 10 4 3] 

Y= [ 1 2 5 2 10 5 9] 

X= [ 1 4 6 8 10 4 3 1] 

Y= [ 1 2 5 2 10 5 9 1] 

X= [ 1 4 6 8 10 4 3 1 4] 

Y= [ 1 2 5 2 10 5 9 1 2] 

X= [ 1 4 6 8 10 4 3 1 4 6] 

Y= [ 1 2 5 2 10 5 9 1 2 5] 
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It uses the concept of open B-spline basis functions by repeating the control points to generate 

the closed contour. Figure 3.23 demonstrates the effect of repeating each control point one by 

one. Reaping each control point creates new curve segment.  

3.4 NURBS (Non-Uniform Rational B-spline) 

As discussed earlier NURBS is the powerful tool in spline discussion as it is a generalization of B-

spline and Bezier Splines. NURBS provides weight for each control point. Here, third variable is 

added in the definition. [12] 

𝑃(𝑢) =

𝑋(𝑢)
𝑌(𝑢)
ℎ(𝑢)

 

ℎ(𝑢) acts as a weight for X and Y control point. Homogeneous co-ordinate system plays an 

important role in NURBS design. For clarification, I have represented two different curves in 

figure 3.24. Red curve shows the curve constructed by three variables X, Y and h. Where, Blue 

curve shows the projection of red curve onto X, Y plane.  

 

Figure 3.24 B-spline curve in a homogeneous space  

 

  

         Figure 3.25 Effect of increasing the weight                       Figure 3.26 projection on X-Y plan 
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           Figure 3.27 Effect of decreasing the weight                     Figure 3.28 projection on X-Y plan 

 

In the figure 3.25, weight of control point (3,6,) has been changed from 1 to 2 and 0.5. The 

result shows the change in 3D as well as the projection figure 3.26. By keeping co-ordinate fix, if 

we vary the third parameter h, we can get multiple outcome. 

Let’s consider clamped B-spline curve example and see the effect by varying the weights. Take 

control point (10,10) in the figure 3.29. In the illustration 3.30, shows the result of doubling the 

weight. Next figure 3.31 shows the result for weight = 0.5. So, as we increase the weight, the 

curve pulls towards the control points. Similarly, Decreasing the weight push the curve from the 

control point. The effect of push and pull depicted below. Weights must be positive integer of 

float value; negative weight provides undesirable curve shape. Keeping all weights to one will 

give B-spline curve. 

 

Figure 3.29 NURBS Curve with weightage 2 on the control point (10,10) 

 

Figure 3.30 NURBS Curve with weightage 4 on the control point (10,10) 
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Figure 3.31 NURBS Curve with weightage 0.5 on the control point (10,10)

 

Figure 3.32 NURBS Curve with weightage 0.1 on the control point (10,10) 

3.5 B-spline and NURBS Surface 

Surface representation is a function of two parametric variables P = P(u,w). u and w are two 

parametric directions of the surface. Previous sections were concentrated on representation of 

curves. Understanding the working and properties of curve is important in surface 

construction.[7]  

                                  𝑃(𝑢,𝑤) = ∑ ∑ 𝑃𝑖𝑗𝑁𝑖,𝑘(𝑢)𝑁𝑗,𝐿(𝑤)𝑚
𝑗=0

𝑛
𝑖=0                                    15 

The equation 15 represents the definition of B-spline surface. 𝑁𝑖,𝑘(𝑢) and 𝑁𝑖,𝑘(𝑤) are basis 

function is u and w directions respectively. 𝑃𝑖𝑗 is input control point matrix. (N+1) and (M+1) 

are number of control points in two directions. K and L are order in u and w directions 

respectively. B-spline curve has different curve segments, B-spline surface consists of different 

patches. Single patch is made up of two curve segments from u and w. 

Control point matrix for 6 by 7 control points.  

𝑃𝑖𝑗  = 

𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31

𝑃41

𝑃51

𝑃32

𝑃42

𝑃52

𝑃33

𝑃43

𝑃53

    

𝑃14 𝑃15 𝑃16

𝑃24 𝑃25 𝑃26

𝑃34

𝑃44

𝑃54

𝑃35

𝑃45

𝑃55

𝑃36

𝑃46

𝑃56

 

Consider an example for n = 5, m = 5, K = 3, L = 3  
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𝑃(𝑢,𝑤) = ∑∑𝑃𝑖𝑗𝑁𝑖,3(𝑢)𝑁𝑗,3(𝑤)

𝑚

𝑗=0

𝑛

𝑖=0 

 

         =   𝑃0,0𝑁0,3(𝑢)𝑁0,3(𝑤)+ 𝑃0,1𝑁0,3(𝑢)𝑁1,3(𝑤)+ 𝑃0,2𝑁0,3(𝑢)𝑁2,3(𝑤) + 𝑃0,3𝑁0,3(𝑢)𝑁3,3(𝑤)+ 𝑃0,4𝑁0,3(𝑢)𝑁4,3(𝑤)+ 

𝑃0,5𝑁0,3(𝑢)𝑁5,3(𝑤) + 

    𝑃1,0𝑁1,3(𝑢)𝑁0,3(𝑤)+ 𝑃1,1𝑁1,3(𝑢)𝑁1,3(𝑤)+ 𝑃1,2𝑁1,3(𝑢)𝑁2,3(𝑤+ 𝑃1,3𝑁1,3(𝑢)𝑁3,3(𝑤)+ 𝑃1,4𝑁1,3(𝑢)𝑁4,3(𝑤)+ 

𝑃1,5𝑁1,3(𝑢)𝑁5,3(𝑤) + 

𝑃2,0𝑁2,3(𝑢)𝑁0,3(𝑤)+ 𝑃2,1𝑁2,3(𝑢)𝑁1,3(𝑤)+ 𝑃2,2𝑁2,3(𝑢)𝑁2,3(𝑤)+ 𝑃2,3𝑁2,3(𝑢)𝑁3,3(𝑤)+ 𝑃2,4𝑁2,3(𝑢)𝑁4,3(𝑤)+ 

𝑃2,5𝑁2,3(𝑢)𝑁5,3(𝑤) + 

   𝑃3,0𝑁3,3(𝑢)𝑁0,3(𝑤)+ 𝑃3,1𝑁3,3(𝑢)𝑁1,3(𝑤)+ 𝑃3,2𝑁3,3(𝑢)𝑁2,3(𝑤)+ 𝑃3,3𝑁3,3(𝑢)𝑁3,3(𝑤)+ 𝑃3,4𝑁3,3(𝑢)𝑁4,3(𝑤)+ 

𝑃3,5𝑁3,3(𝑢)𝑁5,3(𝑤) + 

   𝑃4,0𝑁4,3(𝑢)𝑁0,3(𝑤)+ 𝑃4,1𝑁4,3(𝑢)𝑁1,3(𝑤)+ 𝑃4,2𝑁4,3(𝑢)𝑁2,3(𝑤)+ 𝑃4,3𝑁4,3(𝑢)𝑁3,3(𝑤)+ 𝑃4,4𝑁4,3(𝑢)𝑁4,3(𝑤)+ 

𝑃4,5𝑁4,3(𝑢)𝑁5,3(𝑤) + 

   𝑃5,0𝑁5,3(𝑢)𝑁0,3(𝑤)+ 𝑃5,1𝑁5,3(𝑢)𝑁1,3(𝑤)+ 𝑃5,2𝑁5,3(𝑢)𝑁2,3(𝑤)+ 𝑃5,3𝑁5,3(𝑢)𝑁3,3(𝑤)+ 𝑃5,4𝑁5,3(𝑢)𝑁4,3(𝑤)+ 

𝑃5,5𝑁5,3(𝑢)𝑁5,3(𝑤) 

 

= 𝑁0,3(𝑢)[𝑃0,0𝑁0,3(𝑤)+ 𝑃0,1𝑁1,3(𝑤)+ 𝑃0,2𝑁2,3(𝑤)+ 𝑃0,3𝑁3,3(𝑤)+ 𝑃0,4𝑁4,3(𝑤)+ 𝑃0,5𝑁5,3(𝑤) ] +    

    𝑁1,3(𝑢)[𝑃1,0𝑁0,3(𝑤)+ 𝑃1,1𝑁1,3(𝑤)+ 𝑃1,2𝑁2,3(𝑤) + 𝑃1,3𝑁3,3(𝑤)+ 𝑃1,4𝑁4,3(𝑤)+ 𝑃1,5𝑁5,3(𝑤) ] +    

   𝑁2,3(𝑢)[𝑃2,0𝑁0,3(𝑤)+ 𝑃2,1𝑁1,3(𝑤)+ 𝑃2,2𝑁2,3(𝑤) + 𝑃2,3𝑁3,3(𝑤)+ 𝑃2,4𝑁4,3(𝑤)+ 𝑃2,5𝑁5,3(𝑤) ] +    

   𝑁3,3(𝑢)[𝑃3,0𝑁0,3(𝑤)+ 𝑃3,1𝑁1,3(𝑤)+ 𝑃3,2𝑁2,3(𝑤) + 𝑃3,3𝑁3,3(𝑤)+ 𝑃3,4𝑁4,3(𝑤)+ 𝑃3,5𝑁5,3(𝑤) ] +    

  𝑁4,3(𝑢)[𝑃4,0𝑁0,3(𝑤)+ 𝑃4,1𝑁1,3(𝑤)+ 𝑃4,2𝑁2,3(𝑤) + 𝑃4,3𝑁3,3(𝑤)+ 𝑃4,4𝑁4,3(𝑤)+ 𝑃4,5𝑁5,3(𝑤) ] +    

𝑁5,3(𝑢)[𝑃5,0𝑁0,3(𝑤)+ 𝑃5,1𝑁1,3(𝑤)+ 𝑃5,2𝑁2,3(𝑤) + 𝑃5,3𝑁3,3(𝑤)+ 𝑃5,4𝑁4,3(𝑤)+ 𝑃5,5𝑁5,3(𝑤) ]  

 

The extension gives idea about the behavior of the surface. First curve is created in w 

parameter direction using control points and extended in another direction u. It is a recursive 

process and double iteration, one for raw and one for column, extract each control point. The 

algorithm has been developed. The flow chart below represents the working of the algorithm. 

The algorithm requires control point matrix, order, knot vector and parameters. Two separate 

loops are running, one for u direction and other for w direction. Index starts from 0 to number 

of segments (n-k+2) or (m-l+2). Extracting each segment from both basis function and creating 

a patch one by one and finally merging all patches to create the final surface. The patch concept 

illustrated in the figures from 3.35 to 3.37. The result is shown in figure 3.34.  
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Figure 3.33 Algorithm for Surface construction  
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              Figure 3.34 B-spline Surface                             Figure 3.35 B-spline Surface single patch 

 

Figure 3.36 B-spline Surface two patches                Figure 3.37 B-spline Surface three patches                 

The figure 3.34 displays the complete B-spline surface defined by 20 control points. The figure 

3.35 shows the single patch. The figure 3.36 illustrates the two-combined patched and the 

following figure 3.37 is constructed by three patches. The 3D Polygon is referred as a control 

net.  

3.5.1 NURBS Surface    

 

                                𝑃(𝑢, 𝑤) =
∑ ∑ ℎ𝑖𝑗𝑃𝑖𝑗𝑁𝑖,𝑘(𝑢)𝑁

𝑗,𝐿
(𝑤)𝑚

𝑗=0
𝑛
𝑖=0 

∑ ∑ ℎ𝑖𝑗𝑁𝑖,𝑘(𝑢)𝑁
𝑗,𝐿

(𝑤)𝑚
𝑗=0

𝑛
𝑖=0 

                                   16  

NURBS Surface uses weightages as an additional degree of freedome than B-spline Surfaces. 

Weightages given to the coordinates for further modification. The figure 3.38 and 3.39 

illustrates the effect of weightages on the previous model. [3] 
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                      Figure 3.38 NURBS Surface with weightage 2 on (51.14,300,400) control point 

 

                      Figure 3.39 NURBS Surface with weightage 0.5 on (51.14,300,400) control point 

 

Here, weightage of Coordinate (51.14,300,400) has been changed from 1 to 2 in the figure 3.38 

which represents the effect of pull. In the next fiure 3.39 depicts push effect with weightage of 

0.5. 
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3.6 STEP File data structure  

STEP Standard has been adopted for data exchange between MATLAB and other CAD Software. 

STEP has ASCII file structure. Therefore, working with ASCII Structure is easy. STEP file is using 

different entities defined in AP 214 to capture the geometric definition. First, simple geometric 

entities have been tested to understand the logic of STEP File.  The following image shows the 

STEP File data structure for line geometry. 

 

Figure 3.40 Data structure of the STEP File 

To understand correctly, the following flow chart has been developed on page 48. 

Different entities have the different role to play. For example, AXIS2_PLACEMENT_3 Entity 

represents the 3 D Coordinate systems, GEOMETRIC_CURVE_SET shows the geometry line with 

magnitude and directions, PRODUCT_DEFINITION_SHAPE used for defining Application protocol 

and the name of the file. Similarly, B-spline Surface has B_SPLINE_SURFACE_WITH_KNOTS. 

Inputs are required to adequately represent surface. The algorithm has been developed to 

write out STEP File from MATLAB by first calculating all the necessary data and converting into 

strings. Each entity has its inputs, restrictions and internal mapping. 
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SHAPE_DEFINITION_
REPRESENTATION ( 

#14, #15 ); 

#14 
PRODUCT_DEFINITI

ON_SHAPE ( 
'NONE', 'NONE', 

#13); 

#13 
PRODUCT_DEFI

NITION ( 
'UNKNOWN', '', 

#3, #8 );

#3 
=PRODUCT_DEFINITI
ON_FORMATION_WI
TH_SPEIFIED_SOURC

E ( 'ANY', '',#12, 
.NOT_KNOWN. ); 

#12 PRODUCT ( 
'Line 214', ' Line 
214', '', ( #5 ) );

#5 
PRODUCT_CONT

EXT ( 'NONE ', 
#20, 

'mechanical' );

#20 
APPLICATION_CONTEXT ( 

'automotive_design' ) ; 

#8 
PRODUCT_DEFINITIO

N_CONTEXT ( ' 
detailed design ', 

#23, 'design' ); 

#23  
APPLICATION_CON

TEXT ( 
'automotive_desig

n' ); 

#15  
GEOMETRICALLY_BO
UNDED_WIREFRAME
_SHAPE_REPRESENTA
TION ( 'Line 214', ( #4, 

#6), #30);

#4  
GEOMETRIC_CURV
E_SET ( 'NONE', ( 

#22 ) ) 

#22 TRIMMED_CURVE ( 'NONE', 
#16, ( PARAMETER_VALUE ( 

0.0), #2 ), ( PARAMETER_VALUE 
( 1.00 ), #21 ), .T., 

.PARAMETER.); 

#16  LINE ( 'NONE', #19, 
#25);

#19  
CARTESIAN_POINT 
( 'NONE', ( 0.0, 0.0, 

0.0 ) );

#25  VECTOR ( 
'NONE', #24, 
20.000000 );

#24  DIRECTION ( 
'NONE', ( 1.0, 0.0, 0.0 ) 

);

#6 
AXIS2_PLACEMEN

T_3D ( 'NONE ', 
#10, #9, #27 )

#10 
CARTESIAN_POINT ( 

'NONE', (0.0, 0.0, 
0.00 ) ); 

#9 DIRECTION ( 
'NONE', (0.0, 0.0, 

1.0));

#27  DIRECTION ( 
'NONE', ( 1.0, 0.0, 

0.0 ) );

#30  ( 
GEOMETRIC_REPRESE
NTATION_CONTEXT ( 3 

) 
GLOBAL_UNCERTAINT
Y_ASSIGNED_CONTEXT 

( ( #26 ) ) 
GLOBAL_UNIT_ASSIGN

ED_CoNTEXT ( ( #1, 
#18, #29 ) ) 

REPRESENTATION_CO
NTEXT( 'NONE', 

'WORKASPACE' ) )

#26  
UNCERTAINT
Y_MEASURE_
WITH_UNIT 

(), #1, 
'distance_acc
uracy_value', 

'NONE'); 

#1  ( 
LENGTH_UNI

T ( ) 
NAMED_UNI

T ( * ) 
SI_UNIT ( 
.INCH. ) );

#18  ( 
NAMED_UNI

T ( * ) 
PLANE_ANGL

E_UNIT ( ) 
SI_UNIT ( $, 
.RADIAN. ) );

#29 = ( LENGTH_UNIT ( 
* ) SI_UNIT ( $, 
.STERADIAN.) 

SOLID_ANGLE_UNIT ( ) 
);
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Figure 3.41 B-spline curve entity [9] 

The entity for b spline curve is shown in the figure 3.41. It shows certain attributes with 

different types.  

 

The screenshot taken from spline STEP File. The curve is made up of 6 control points with 2nd 

degree (3rd order). The curve is clamped and not self-intersecting. Knot vector has value from 0 

to 1 with k order multiplicity. The input must be accurate to run the function. Otherwise it will 

give an error.  The similar way for surface representation, the entity called 

b_spliine_surface_with_knots used. 

 

Figure 3.42 Result imported in the SolidWorks for curve 

The above step file developed in MATLAB and imported in the SolidWorks as depicted in the 

figure 3.42. Control polygon is optional in this case.  
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Figure 3.43 B-spline surface entity [9] 

The following figure3.44 and 3.45 represents the output from MATLAB and STEP Files 

correspondingly.  

 

               Figure 3.44 B-spline Surface                                     Figure 3.45 B-spline STEP File  
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Chapter 4 Results  

Algorithm requires control point information to create a surface. Sample block has been used to 

recreate the surface generated in inspire software. Figure 2.11 shows the topology optimization 

result. Sample cross sections have been generated using PolyNURBS tools as shows in figure 

4.1. Control points have been used in the algorithms to recreate the surface as shown in the 

figure 4.2 

 

 

Figure 4.1 Closed polyNURBS fit  

 

Figure 4.2 MATLAB result for closed contour  

Designer can vary the degree in u, w or both the direction, control points, and weightages to 

modfy the shape. The figure 4.3 shows the similar contour for 2nd order in u and w directions. 

Algorithms can be find in Appendix. Figure 4.5 represents the result for partially closed surface. 

Algoeihm is capable of producing complicated geometries with ease of handeling.   
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Figure 4.3 MATLAB surface result for 2nd order  

 

Figure 4.4 Open cross section fit using PolyNURBS tool  

 

Figure 4.5 MATLAB result for partially closed contour  
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Chapter 5 Conclusion  

In this research work, different types of free form curves and surfaces have been studied and 

built framework in the MATLAB to support the creation of various types of surfaces. Designer 

has various degrees of freedom to modify the NURBS Surface. Some information is required to 

run the Algorithm like control points, knot vector and degree. One can easily change the shape 

of the surface by varying knot vector, dragging the control points. Detailed discussion of the 

different types of curves and surfaces have been discussed with examples. 

STEP AP 214 standard for data exchange has been studied and implemented. Data structure has 

been discussed along with examples to illustrate the working of STEP file. STEP file is 

compatible in CAD and CAE software. Therefore, it is easy to use the generated geometry from 

MATAB in CAD Software.   
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Chapter 6 Future work   

The main aim of the research work is to automate the process of creation of NURBS surfaces on 

rough topology. It requires intersection, smooth blending of two surfaces, Boolean operation to 

complete the task. I have created basic building block. Further operations can be performed 

using these algorithms to achieve the task.  

In some parametric CAD Software, STEP file does not preserve the control points of the NURBS 

surface. To overcome this limitation, CAD software provides their API to create specific 

application. One can use these APIs to create an application to create an NURBS surface to 

retain the control points. 
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Appendix A Bezier Curve code 

 BezierCurve.m 

clear;clc; 

% input coordinate values 

X = [1 2 3 4 5 6 ] ; 

Y = [4 2 5 1 2 3]; 

% Parameter  

u = 0:0.01 :1 ; 

% Number of control points  

n = numel(X) ; 

% Initial Values  

X_vector= 0; 

Y_vector = 0; 

 

for i = 0 : n-1  

% Calculating Basis Function  

B = basis(i,n-1) ;  

% Calculating X and Y vectors       

X_vector = X_vector + B.*X(i+1); 

Y_vector = Y_vector + B.*Y(i+1); 

grid on 

 

end 

 

hold on 

% plotting X and Y component vector  

plot(X,Y,'k') 

plot(X_vector,Y_vector,'b') 
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title('Bezier Curve','fontsize',14) 

xlabel(' X - Axis ','fontsize',14) 

ylabel(' Y - Axis ','fontsize',14) 

for i = 1: numel(X) 

txt = ['(',num2str(X(i)),',',num2str(Y(i)),')']; 

text(X(i)+0.06,Y(i),txt,'fontsize',14) 

end 

grid on  

legend(' Control Polygon ',' Bezier Curve ') 

 

basis.m 

function [B] = basis(i,n) 

%Parameter  

u = 0: 0.01:1; 

% Calculating Polynomial  

C = combination(n,i); 

  

U = u.^i ; 

Ui = (1-u).^(n-i) ;  

B = U.*C.*Ui ; 

end 

 

combination.m 

function [out] = combination(n,i) 

  

X = factorial (n); 

Y = factorial (i); 

Z = factorial (n-i); 

  

out = X./(Y*Z); 

  

end 
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Appendix  B B-spline Basis Function code 

BasisFunction.m 

% N Represents the basis funtion final value  

function [N] = BasisFunction(ii , t , k , u , n) 

% initializing Zero vector for basis function values  

N = zeros( n+1 , length(u) ); 

  

for K = 2 : k 

     

    if   K == 2 

        % Calculating Basis function values for 2nd order  

        for i = ii : ( ii + k - 2 ) 

             

            FirstOrder = Primary_basis( i , t , u, K-1 ) ;                                            

            Numerator = ( u - t ( i + 1 ) ) ;                                

            Denominator = t ( i + K ) - t ( i + 1 ) ;   

             

            if Denominator ~= 0 

            N( i + 1 , : ) = FirstOrder.*( Numerator./ Denominator ) ;                                        

            end 

             

            FirstOrder = Primary_basis( i + 1 , t , u , K-1 ) ;                  

            Numerator = ( t( i + K + 1 ) - u ) ;                               

            Denominator = t( i + K + 1 ) - t( i + 2 ) ;   

             

            if Denominator ~= 0  

 N( i + 1 , :) = N( i+1 , :)+FirstOrder.*( Numerator./ Denominator ) ;    

            end            

        end      

    else  

         % Rest of the basis function calculations   

          for i = ii:(ii + k - K)                                       

              Numerator =( u - t( i + 1 ) ) ;                                

              Denominator = t( i + K ) - t( i + 1 ) ;  

               

            if Denominator ~= 0 

           N( i + 1 ,:) = N( i + 1 ,:).*( Numerator./ Denominator ) ;                                        

            end           

             

              Numerator = (t( i + K + 1 ) - u ) ;                               

              Denominator = t( i + K + 1 ) - t( i + 2 ) ;   

               

            if Denominator ~= 0  

       N( i+1 ,:)=N( i+1 ,:) + N( i+2 ,:).*(Numerator./ Denominator);    

            end    

          end  

    end 

end 

end 
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Primary_basis.m 
    

function [ First_BasisFunc ] = Primary_basis( i , t , u, K ) 

% Using Indexing concept in parameter u to calculate the first order 

values 

if i < t ( end - K + 1 )   

First_BasisFunc = ( u >= t( i + 1 ) & u < t( i + 2 ) ) ; 

else 

First_BasisFunc = ( u >= t( i + 1 ) & u <= t( i + 2 ) ) ;     

end 

 

Appendix C Clamped B-spline Curve code 

B_Spline_Cuve_Clamped.m 

clear;clc;    

% Input Coordinates  

X=[ 1 4 6 8 9 4 3]; 

Y=[ 1 2 5 2 9 5 9]; 

% Input Order  

k = 4; 

 

% Number of control points   

n = length(X) - 1 ; 

% initializing Variables  

ij = 1; 

K = k - 1; 

  

Spacing = 500; 

T = zeros(1,n+k+1) ; 

% knot vector  

for i = 0 : n + k      

     

    if ( i < k ) 

         

        T( i + 1 ) = 0; 

         

    elseif ( i >= k && i <= n ) 

         

        T( i + 1 ) = i - k + 1; 

         

    else 

         

        T( i + 1 ) = n - k + 2; 

         

    end 

     

end 

% Adjusting spacing  
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while 1 

     

        if rem( Spacing, T( end ) ) == 0      

            break 

        end  

          Spacing = Spacing + 1; 

end 

% Parameter range  

u = linspace(T( k ) , T( n + 2 ) , Spacing) ;  

hold all 

% Initializaing loop from 0 to number of curve segments  

for i = 0: n - k + 1 

     

    Temp = BasisFunction (i , T , k , u , n) ;  

     

    Ax =  Temp ( i + 1 , Primary_basis ( K , T , u , 1 ) )  ;  

   % initializing zero vector for X and Y Component    

    X_Vector_Segment = zeros( 1 , numel( Ax ) ) ; 

    Y_Vector_Segment = zeros( 1 , numel( Ax ) ) ;   

  % Extracting curve segments from basis function  

    for ii = i : i + k - 1  

         

    BasisFunc_Value = BasisFunction ( ii , T , k , u , n ) ;    

  % Calculating the value for a curve segment 

    X_Vector_Temp = BasisFunc_Value ( ii + 1 ,Primary_basis( K , T , u 

, 1 ) ) .* X( ii + 1 ) ; 

    Y_Vector_Temp = BasisFunc_Value ( ii + 1 ,Primary_basis( K , T , u 

, 1 ) ) .* Y( ii + 1 ) ; 

      

    X_Vector_Segment = X_Vector_Segment + X_Vector_Temp ; 

    Y_Vector_Segment = Y_Vector_Segment + Y_Vector_Temp ; 

     

    end    

    K = K + 1 ; 

    xlabel('X-Axis') 

    ylabel('Y-Axis')      

   % Storing curve segments in a single vector  

    for i = 1 : Spacing/T(end) 

         

        X_Vector( ij ) = X_Vector_Segment( i ) ; 

        Y_Vector( ij ) = Y_Vector_Segment( i ) ; 

        ij = ij + 1 ; 

         

    end  

    % plotting control points  

    for i = 1: numel(X) 

         

        txt = ['(',num2str(X(i)),',',num2str(Y(i)),')']; 

        text(X(i)+0.06,Y(i),txt) 

         

    end 

end 
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 K = k - 1 ; 

 % Plotting the curve   

 hold on  

 plot(X_Vector,Y_Vector) 

 % marking curve segments in a plot  

 for i = 0 : n - k + 1 

   

 Index_X = X_Vector( 1 , Primary_basis( K , T , u , 1 ) ) ; 

 Index_Y = Y_Vector( 1 , Primary_basis( K , T , u , 1 ) ) ; 

 Ix = Index_X( end ) ; 

 Iy = Index_Y( end ) ; 

 text( Ix , Iy , 'X' ) 

 K = K + 1 ; 

  

 end 

 % Control polygone  

 plot(X,Y,'r') 

 legend('Bezier curve','Control Polygone','Location','northwest') 

 grid on  

title('B-spline Curve') 

 

Appendix D Closed B-spline Curve code 

Bspline_Closed_Curve.m 

clear;clc;     

% Input Coordinates  

X=[ 1 4 6 8 9 4 3]; 

Y=[ 1 2 5 2 9 5 9]; 

% Input order  

k = 4 ;  

% Number of control points      

n = length(X) - 1 ;  

% Initializing Variables  

ij = 1 ; 

K = k - 1 ; 

  

Spacing = 5000; 

% Defining Knot Vector  

t =0 : n + k ; 

% Adjusting Spacing  

while 1     

        if rem( Spacing,n+k ) == 0             

            break 

        end   

          Spacing = Spacing + 1; 

end 

% Parameter u  

 u = linspace( t( 1 ) , t( end ) , Spacing ) ; 
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hold all 

     

for i = 0 : n   

 % Defining a constraint for closed curve for repeat control points     

 if ( i == n - k + 2 ) 

      

     K = k - 1 ; 

      

 end 

  

    Temp = BasisFunction( i , t , k , u , n ) ; 

     

    Segment_Size = ( Temp ( i + 1 , Primary_basis( K , t , u , k ) ));  

     % initializing zero vector for X and Y Component   

    X_Vector_Segment = zeros( 1 , numel( Segment_Size ) ) ; 

    Y_Vector_Segment = zeros( 1 , numel( Segment_Size ) ) ; 

    % Extracting Curve segments  

    for ii = i : i + k - 1 

    % constraint  for repeating control point     

         if ( i <= n - k + 1 ) 

    jz = ii ; 

         else 

    jz = ii- ( n - k + 2 ) ; 

         end 

          

         if ii >= n + 1 

             ii = ii + 1 ; 

         end 

          

    BasisFunc_Value = BasisFunction( jz , t , k , u , n ) ;  

     % Calculating the value for a curve segment 

    X_Vector_Temp = ( BasisFunc_Value( jz + 1 , Primary_basis( K , t , 

u , k ) ) ).*X( mod( ii + 1 , n + 2 ) ) ; 

    Y_Vector_Temp = ( BasisFunc_Value( jz + 1 , Primary_basis( K , t , 

u , k ) ) ).*Y( mod( ii + 1 , n + 2 ) ) ; 

     

    X_Vector_Segment = X_Vector_Segment + X_Vector_Temp ; 

    Y_Vector_Segment = Y_Vector_Segment + Y_Vector_Temp ; 

     

    end 

     

    K = K + 1 ; 

     

    xlabel('X-Axis') 

    ylabel('Y-Axis') 

    % Storing curve segments in a single vector  

    for i = 1 : length( X_Vector_Segment ) 

         

        X_Vector( ij ) = X_Vector_Segment( i ) ; 

        Y_Vector( ij ) = Y_Vector_Segment( i ) ; 

        ij = ij + 1 ; 
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    end  

     % plotting control points 

     for i = 1: numel(X) 

         

        txt = ['(',num2str(X(i)),',',num2str(Y(i)),')']; 

        text(X(i)+0.06,Y(i),txt) 

         

    end 

end 

hold all  

% Plotting the curve  

 plot(X_Vector,Y_Vector) 

% Plotting Control polygon  

 plot(X,Y) 

 grid on  

 title(' Closed B-spline Curve','FontSize',14) 

  

 

Appendix E Open B-spline Curve code 

Bspline_Open_Curve.m 
  

  

 % Input Coordinates 

X=[ 1 4 6 8 10 4 3 ]; 

Y=[ 1 2 5 2 10 5 9 ]; 

% Input Order 

k = 4;  

% Number of control points    

n = length(X) - 1 ;  

% initializing Variables  

ij = 1 ; 

K = k - 1 ; 

Spacing = 500; 

% knot vector 

T =0 : n+k ; 

% Adjusting spacing  

while 1 

     

        if rem( Spacing,n+k ) == 0  

             

            break 

        end   

         

          Spacing = Spacing + 1 ; 

end 

% Parameter range  

u = linspace( T( 1) , T(end) , Spacing ) ;  

hold all 

N = zeros( n+1 , length(u),k ); 
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for i = 0 : n - k + 1 

     

    Temp = BasisFunction( i , T , k , u , n ) ;  

     

    Ax =  Temp ( i + 1 , Primary_basis( K , T , u , 1 ) )  ;  

   % initializing zero vector for X and Y Component    

    X_Vector_Segment = zeros( 1 , numel( Ax ) ) ; 

    Y_Vector_Segment = zeros( 1 , numel( Ax ) ) ;   

  % Extracting curve segments from basis function  

    for ii = i : i + k - 1  

         

    BasisFunc_Value = BasisFunction ( ii , T , k , u , n ) ;    

  % Calculating the value for a curve segment 

    X_Vector_Temp = BasisFunc_Value ( ii + 1 , Primary_basis( K , T , 

u , 1 ) ) .* X( ii + 1 ) ; 

    Y_Vector_Temp = BasisFunc_Value ( ii + 1 , Primary_basis( K , T , 

u , 1 ) ) .* Y( ii + 1 ) ; 

      

    X_Vector_Segment = X_Vector_Segment + X_Vector_Temp ; 

    Y_Vector_Segment = Y_Vector_Segment + Y_Vector_Temp ; 

     

    end 

     

    K = K + 1 ; 

    xlabel('X-Axis') 

    ylabel('Y-Axis')      

   % Storing curve segments in a single vector  

    for i = 1 : Spacing/T(end) 

         

        X_Vector( ij ) = X_Vector_Segment( i ) ; 

        Y_Vector( ij ) = Y_Vector_Segment( i ) ; 

        ij = ij + 1 ; 

         

    end  

    % plotting control points  

    for i = 1: numel(X) 

         

        txt = ['(',num2str(X(i)),',',num2str(Y(i)),')']; 

        text(X(i)+0.06,Y(i),txt) 

         

    end 

     

end 

 K = k - 1 ; 

 % Plotting the curve   

 hold on  

 plot(X_Vector,Y_Vector) 

 % Control polygone  

 plot(X,Y,'r') 

 legend('Bezier curve','Control Polygone','Location','northwest') 

 grid on  

title('B-spline Curve') 
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Appendix F NURBS Curve code 

NURBS_Curve.m 
 

clear;clc;     

% Input Coordinates  

X=[ 1 4 6 8 10 4 3]; 

Y=[ 1 2 5 2 10 5 9]; 

% Input Weightages  

W =[1 1 1 1 1 1 1]; 

% Input Order  

k = 4; 

% Number of control points     

n = length(X) - 1 ; 

% initializing Variables 

ij = 1 ; 

K = k - 1 ; 

  

Spacing = 500; 

T = zeros(1,n+k+1) ; 

% knot vector  

for i = 0 : n + k      

    if ( i < k ) 

        T( i + 1 ) = 0; 

    elseif ( i >= k && i <= n )  

        T( i + 1 ) = i - k + 1;   

    else  

        T( i + 1 ) = n - k + 2;  

    end 

end 

% Adjusting spacing  

while 1 

     

        if rem( Spacing, T( end ) ) == 0  

             

            break 

        end   

         

          Spacing = Spacing + 1 ; 

end 

% Parameter range  

u = linspace( T( k ) , T( n + 2 ) , Spacing ) ;  

hold all 

% Initializaing loop from 0 to number of curve segments  

for i = 0 : n - k + 1 

     

    Temp = BasisFunction ( i , T , k , u , n ) ;  

  

    Segment_Size =  Temp ( i + 1 , Primary_basis ( K , T , u , 1 ));  

    % initializing zero vector for X and Y Component    

    X_Vector_Segment = zeros( 1 , numel( Segment_Size ) ) ; 
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    Y_Vector_Segment = zeros( 1 , numel( Segment_Size ) ) ;   

    Weight = zeros( 1 , numel( Segment_Size ) ); 

    % Extracting curve segments from basis function  

    for ii = i : i + k - 1  

         

    BasisFunc_Value = BasisFunction ( ii , T , k , u , n ) ;    

     % Calculating the value for a curve segment 

    X_Vector_Temp = BasisFunc_Value ( ii + 1 , Primary_basis( K , T , 

u , 1 ) ) .* X( ii + 1 ).*W(ii+1) ; 

    Y_Vector_Temp = BasisFunc_Value ( ii + 1 , Primary_basis( K , T , 

u , 1 ) ) .* Y( ii + 1 ).*W(ii+1) ; 

      % Calculating the Weight value for a curve segment 

    Weight1 =  BasisFunc_Value ( ii + 1 , Primary_basis( K , T , u , 1 

) ).*W(ii+1); 

    X_Vector_Segment = X_Vector_Segment + X_Vector_Temp ; 

    Y_Vector_Segment = Y_Vector_Segment + Y_Vector_Temp ; 

    Weight = Weight + Weight1 ; 

    end 

     

    K = K + 1 ; 

     

    xlabel('X-Axis','fontsize',14) 

     

    ylabel('Y-Axis','fontsize',14)    

%    %  rationalizing 

    X_Vector_Segment_rational = X_Vector_Segment./Weight ;  

    Y_Vector_Segment_rational = Y_Vector_Segment./Weight ;  

     

    for i = 1 : Spacing/T(end) 

         

        X_Vector_rational( ij ) = X_Vector_Segment_rational( i ) ; 

        Y_Vector_rational( ij ) = Y_Vector_Segment_rational( i ) ; 

        ij = ij + 1 ; 

         

    end  

     

    for i = 1: numel(X) 

         

        txt = ['(',num2str(X(i)),',',num2str(Y(i)),')']; 

        text(X(i)+0.06,Y(i),txt,'fontsize',14) 

         

    end 

     

end 

  

 K = k - 1 ; 

 hold on  

 plot( X_Vector_rational,Y_Vector_rational) 

  

 for i = 0 : n - k + 1 

   

 Index_X = X_Vector_rational( 1 , Primary_basis( K , T , u , 1 ) ) ; 
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 Index_Y = Y_Vector_rational( 1 , Primary_basis( K , T , u , 1 ) ) ; 

 Ix = Index_X( end ) ; 

 Iy = Index_Y( end ) ; 

 text( Ix , Iy , 'X' ) 

 K = K + 1 ; 

  

 end 

 plot(X,Y,'r') 

 legend('B-spline curve','Control Polygone','Location','northwest') 

 grid on  

title('NURBS Curve','fontsize',14) 

   

Appendix G Closed NURBS Surface code 

NURBS_Closed_Surface.m 

clear;clc 

% Input X, Y,and Z Coordinates  

X=[0.061698 0.071774 0.070062 0.059986 

    0.065628 0.084467 0.083066 0.064227 

    0.057123 0.075364 0.075205 0.056964 

    0.0080743 0.0075549 0.0074432 0.0079626 

    -0.010412 -0.037753 -0.044874 -0.017533 

    -0.021948 -0.0306409 -0.040444 -0.025983 

    0.026669 0.019722 0.022996 0.029943 

    0.037719 0.037811 0.04136 0.04094 

  ]; 

  

Y=[0.061738 0.046845 0.047594 0.062487 

    0.070868 0.079404 0.080115 0.071579 

    0.080518 0.098145 0.10084 0.083217 

    0.083421 0.099943 0.10264 0.08612 

    0.083868 0.095738 0.098536 0.08666 

    0.072696 0.066214 0.075214 0.081697 

    0.041549 0.030444 0.03492 0.046025 

    0.036079 0.0089147 0.013787 0.040951 

    ]; 

  

Z=[0.050461 0.049951 0.00043675 0.00094618 

    0.050416 0.050713 0.0021967 0.0018999 

    0.049938 0.049571 -0.0010824 -0.0007154  

    0.049866 0.05076 0.0001538 -0.00074082 

    0.049152 0.053339 -0.00095205 -0.005139 

    0.05 0.05 0 0 

    0.050865 0.049426 -0.00093744 0.00050112 

    0.054991 0.05253 -0.0028496 -0.00038885 

   ]; 

Weightages=[ 1 1 1 1 

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  
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             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1 ]; 

          

% input order in u direction  

k=4; 

% input order in w direction  

l=3; 

Size = size(X) ;  

% Number of control points in u direction  

n=Size(1)-1; 

% Number of Control points in w direction  

m=Size(2)-1; 

  

% Knot vector in w direction  

T = linspace(0 , 1 , m + l + 1 ) ; 

% Knot vector in u direction  

t = linspace(0 , 1 , n + k + 1 ) ; 

  

USpacing = 200; 

% Adjusting Spacing in u and w directions  

while 1 

        if rem(USpacing,n + k)==0  

            break 

        end   

          USpacing=USpacing+1; 

end 

  

WSpacing=(m+l).*(USpacing./(k+n)); 

% Parameter value for u   

u = linspace( 0, 1 , USpacing ) ;  

% Parameter value for w 

w = linspace(0,1,WSpacing) ; 

  

L = l - 1; 

K = k - 1 ; 

  

for i=0 :n 

    % Defining a constraint in u direction  to repeat the control 

points 

     if ( i == n - k + 2 ) 

      

     K = k - 1 ; 

     end 

    Colume=1; 

     

    L=l-1;    

    % Defining a constraint in w direction  to repeat the control 

points 

    for j=0  : m 
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    if ( j == m - l + 2 ) 

      

     L = l - 1 ; 

      

    end 

    % Calculating the size of column in a patch  

    Patch_u_dimension =(USpacing./(n+k)); 

    % initializing zero vector in a u direction segment 

    

Xu_Vector_Segment=zeros(1,Patch_u_dimension);Yu_Vector_Segment=zeros(1

,Patch_u_dimension);Zu_Vector_Segment=zeros(1,Patch_u_dimension); 

    % Converting vector into matrix form  

    

[Xu_Vector_Segment]=meshgrid(Xu_Vector_Segment);[Yu_Vector_Segment]=me

shgrid(Yu_Vector_Segment);[Zu_Vector_Segment]=meshgrid(Zu_Vector_Segme

nt); 

     Weight1=zeros(1,Patch_u_dimension);[Weight1]=meshgrid(Weight1); 

      

    for ii = i :i + k -1     

    % constraint  for repeating the control point in u direction      

         if ( i <= n - k + 1 ) 

    jz = ii ; 

         else 

    jz = ii- ( n - k + 2 ) ; 

         end 

          

         if ii >= n + 1 

             ii = ii + 1 ; 

         end 

          

    % Calculating the size of raw in a patch      

    Patch_w_dimension=(WSpacing./(m+l)); 

    % initializing zero vector in a w direction segment 

    

Xw_Vector_Segment=zeros(1,Patch_w_dimension);Yw_Vector_Segment=zeros(1

,Patch_w_dimension);Zw_Vector_Segment=zeros(1,Patch_w_dimension); 

    % Converting vector into matrix form  

    

[Xw_Vector_Segment]=meshgrid(Xw_Vector_Segment);[Yw_Vector_Segment]=me

shgrid(Yw_Vector_Segment);[Zw_Vector_Segment]=meshgrid(Zw_Vector_Segme

nt); 

     Weight=zeros(1,Patch_w_dimension);[Weight]=meshgrid(Weight); 

      

    for jj = j:j+l-1   

    % constraint  for repeating the control point in w direction      

         if ( j <= m - l + 1 ) 

    zj = jj ; 

         else 

    zj = jj - ( m - l + 2 ) ; 

         end 
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         if jj >= m + 1 

             jj = jj + 1 ; 

         end 

    % Calculating values of basisfunctions in u direction        

    BasisFunc_u_direction=BasisFunction(jz,t,k,u,n);  

     

    % Extracting Curve segments in u direction  

    Ua=(BasisFunc_u_direction(jz+1,Primary_basis(K,t,u,1))); 

    Ub=(BasisFunc_u_direction(jz+1,Primary_basis(K,t,u,1)));    

    Uc=(BasisFunc_u_direction(jz+1,Primary_basis(K,t,u,1)));    

    Uw=(BasisFunc_u_direction(jz+1,Primary_basis(K,t,u,1)));   

     

    % Calculating values of basisfunctions in w direction        

    BasisFunc_w_direction=BasisFunction(zj,T,l,w,m);    

     

    % Extracting Curve segments in w direction  

    Wx=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*X(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 )); 

    Wy=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Y(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 )); 

    Wz=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Z(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 ));  

    W 

=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Weightages(mod( 

ii + 1 , n + 2 ), mod( jj + 1 , m + 2 )); 

     

    [Ua,Wx]=meshgrid(Ua,Wx); 

    [Ub,Wy]=meshgrid(Ub,Wy); 

    [Uc,Wz]=meshgrid(Uc,Wz); 

    [Uw,W]=meshgrid(Uw,W); 

    

Xw_Vector_Segment=Xw_Vector_Segment+Wx;Yw_Vector_Segment=Yw_Vector_Seg

ment+Wy;Zw_Vector_Segment=Zw_Vector_Segment+Wz; 

    Weight=Weight+W; 

     

    end  

    Weight1=Weight1+Weight.*Uw; 

    % Forming a patch  

    

Xu_Vector_Segment=(Xu_Vector_Segment+Ua.*Xw_Vector_Segment);Yu_Vector_

Segment=(Yu_Vector_Segment+Ub.*Yw_Vector_Segment);Zu_Vector_Segment=(Z

u_Vector_Segment+Uc.*Zw_Vector_Segment);  

    end 

    % Rationalizing the X,Y, and Z vectors 

    

Xu_Vector_Segment_Rational=Xu_Vector_Segment./Weight1;Yu_Vector_Segmen

t_Rational=Yu_Vector_Segment./Weight1;Zu_Vector_Segment_Rational=Zu_Ve

ctor_Segment./Weight1; 

    % extracting and Storing the patch values 

    for I=1:length(Xu_Vector_Segment)  

        if i==0 

            Raw=1;     
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        else  

            Raw=i*length(Xu_Vector_Segment)+1; 

        end 

    for kk=1:length(Xu_Vector_Segment) 

        Xu_Vector(Raw,Colume)=Xu_Vector_Segment_Rational(I,kk); 

        Yu_Vector(Raw,Colume)=Yu_Vector_Segment_Rational(I,kk); 

        Zu_Vector(Raw,Colume)=Zu_Vector_Segment_Rational(I,kk); 

        Raw=Raw+1; 

         

    end 

      Colume=Colume+1;  

    end   

     

    L=L+1;  

    end 

    K=K+1; 

     

end 

  

hold all 

  

TEMP = size(Xu_Vector)  ; 

% Closing the curve by repeating the first raw and column values  

for i = 1 : TEMP(1) 

    Xu_Vector(i,TEMP(2)+1) = Xu_Vector(i,1) ;  

    Yu_Vector(i,TEMP(2)+1) = Yu_Vector(i,1) ;  

    Zu_Vector(i,TEMP(2)+1) = Zu_Vector(i,1) ;  

end 

TEMP = size(Xu_Vector)  ; 

for i = 1 : TEMP(2) 

    Xu_Vector(TEMP(1)+1,i) = Xu_Vector(1,i) ;  

    Yu_Vector(TEMP(1)+1,i) = Yu_Vector(1,i) ;  

    Zu_Vector(TEMP(1)+1,i) = Zu_Vector(1,i) ;  

end 

% Plotting the closed surface  

 surf(Xu_Vector,Yu_Vector,Zu_Vector) 

colormap summer 

% Plotting the control net  

plot3(X,Y,Z) 

plot3(X',Y',Z')  

grid on 

xlabel('X-Axis') 

ylabel('Y-Axis') 

zlabel('Z-Axis') 
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Appendix H Partially Closed NURBS Surface code 

NURBS_Clamped_Closed_Surface.m 

clear;clc 

% Input X,Y,and Z Coordinates and weightage  

X=[0.061698 0.071774 0.070062 0.059986 

    0.065628 0.084467 0.083066 0.064227 

    0.057123 0.075364 0.075205 0.056964 

    0.0080743 0.0075549 0.0074432 0.0079626 

    -0.010412 -0.037753 -0.044874 -0.017533 

    -0.021948 -0.0306409 -0.040444 -0.025983 

    0.026669 0.019722 0.022996 0.029943 

    0.037719 0.037811 0.04136 0.04094 

   0.061698 0.071774 0.070062 0.059986]; 

  

Y=[0.061738 0.046845 0.047594 0.062487 

    0.070868 0.079404 0.080115 0.071579 

    0.080518 0.098145 0.10084 0.083217 

    0.083421 0.099943 0.10264 0.08612 

    0.083868 0.095738 0.098536 0.08666 

    0.072696 0.066214 0.075214 0.081697 

    0.041549 0.030444 0.03492 0.046025 

    0.036079 0.0089147 0.013787 0.040951 

    0.061738 0.046845 0.047594 0.062487]; 

  

Z=[0.050461 0.049951 0.00043675 0.00094618 

    0.050416 0.050713 0.0021967 0.0018999 

    0.049938 0.049571 -0.0010824 -0.0007154  

    0.049866 0.05076 0.0001538 -0.00074082 

    0.049152 0.053339 -0.00095205 -0.005139 

    0.05 0.05 0 0 

    0.050865 0.049426 -0.00093744 0.00050112 

    0.054991 0.05253 -0.0028496 -0.00038885 

    0.050461 0.049951 0.00043675 0.00094618]; 

  

Weightages=[ 1 1 1 1 

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1  

             1 1 1 1 ]; 

      

Size = size(X) ;  

% Number of raws 

n=Size(1)-1; 

% Number of Columns 

m=Size(2)-1; 
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% input order in u direction  

k=3; 

% input order in w direction  

l=3; 

  

K = k - 1 ; 

L = l - 1; 

USpacing = 100; 

% Knot vector in u direction  

for j=1:n+k+1     

    if ((j-1)<k) 

        t(j) = 0; 

    elseif ((j-1)>=k && (j-1)<=n) 

        t(j) = (j-1) - k + 1; 

    else 

        t(j) = n - k + 2; 

    end 

end 

  

% Adjusting Spacing in u and w directions  

while 1 

        if rem(USpacing,t(end-k+1))==0  

            break 

        end   

          USpacing=USpacing+1; 

end 

  

% Knot vector in w direction  

T = linspace(0 , 1 , m + l + 1 )  ; 

WSpacing=(m+l).*(USpacing./t(end-k+1)); 

% Parameter value for w 

w = linspace(0,1,WSpacing) ; 

% Parameter value for u  

u = linspace(t(k),t(end-k+1),USpacing); 

  

for i=0 :n-k+1   

    Colume=1; 

    L=l-1;    

     

    for j= 0  : m 

    % Defining a constraint in w direction  to repeat the control 

points     

    if ( j == m - l + 2 )     

     L = l - 1 ; 

      

    end 

     

    % Calculating the size of column in a patch 

    Patch_u_dimension=(USpacing./(n-k+2)); 

    % initializing zero vector in a u direction segment 

    

Xu_Vector_Segment=zeros(1,Patch_u_dimension);Yu_Vector_Segment_Rationa



73 
 

l=zeros(1,Patch_u_dimension);Zu_Vector_Segment=zeros(1,Patch_u_dimensi

on); 

    % Converting vector into matrix form  

    

[Xu_Vector_Segment]=meshgrid(Xu_Vector_Segment);[Yu_Vector_Segment_Rat

ional]=meshgrid(Yu_Vector_Segment_Rational);[Zu_Vector_Segment]=meshgr

id(Zu_Vector_Segment); 

    Weight1=zeros(1,Patch_u_dimension);[Weight1]=meshgrid(Weight1); 

     

    for ii = i :i + k -1           

    Patch_w_dimension=(WSpacing./(m+l));     

    

Xw_Vector_Segment=zeros(1,Patch_w_dimension);Yw_Vector_Segment=zeros(1

,Patch_w_dimension);Zw_Vector_Segment=zeros(1,Patch_w_dimension);    

    

[Xw_Vector_Segment]=meshgrid(Xw_Vector_Segment);[Yw_Vector_Segment]=me

shgrid(Yw_Vector_Segment);[Zw_Vector_Segment]=meshgrid(Zw_Vector_Segme

nt); 

    Weight=zeros(1,Patch_w_dimension);[Weight]=meshgrid(Weight); 

     

    for jj = j:j+l-1   

    % constraint  for repeating the control point in w direction       

         if ( j <= m - l + 1 ) 

    zj = jj ; 

         else 

    zj = jj - ( m - l + 2 ) ; 

         end 

          

         if jj >= m + 1 

             jj = jj + 1 ; 

         end    

          

    % Calculating values of basisfunctions in u direction      

    BasisFunc_u_direction=BasisFunction(ii,t,k,u,n);  

    % Extracting Curve segments in u direction  

    Ua=(BasisFunc_u_direction(ii+1,Primary_basis(K,t,u,1))); 

    Ub=(BasisFunc_u_direction(ii+1,Primary_basis(K,t,u,1)));     

    Uc=(BasisFunc_u_direction(ii+1,Primary_basis(K,t,u,1)));     

    Uw=(BasisFunc_u_direction(ii+1,Primary_basis(K,t,u,1))); 

     

    % Calculating values of basisfunctions in w direction      

    BasisFunc_w_direction=BasisFunction(zj,T,l,w,m);    

     

    Wx=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*X(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 ));     

    Wy=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Y(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 ));    

    Wz=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Z(mod( ii 

+ 1 , n + 2 ), mod( jj + 1 , m + 2 ));  

    W 

=(BasisFunc_w_direction(zj+1,Primary_basis(L,T,w,1))).*Weightages(mod( 

ii + 1 , n + 2 ), mod( jj + 1 , m + 2 )); 
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    [Ua,Wx]=meshgrid(Ua,Wx);    

    [Ub,Wy]=meshgrid(Ub,Wy);    

    [Uc,Wz]=meshgrid(Uc,Wz); 

    [Uw,W]=meshgrid(Uw,W); 

    

Xw_Vector_Segment=Xw_Vector_Segment+Wx;Yw_Vector_Segment=Yw_Vector_Seg

ment+Wy;Zw_Vector_Segment=Zw_Vector_Segment+Wz; 

    Weight=Weight+W; 

     

    end  

    Weight1=Weight1+Weight.*Uw; 

    % Forming a patch  

    

Xu_Vector_Segment=(Xu_Vector_Segment+Ua.*Xw_Vector_Segment);Yu_Vector_

Segment_Rational=(Yu_Vector_Segment_Rational+Ub.*Yw_Vector_Segment);Zu

_Vector_Segment=(Zu_Vector_Segment+Uc.*Zw_Vector_Segment);  

    end 

    % Rationalizing the X,Y, and Z vectors 

    

Xu_Vector_Segment_Rational=Xu_Vector_Segment./Weight1;Yu_Vector_Segmen

t_Rational=Yu_Vector_Segment_Rational./Weight1;Zu_Vector_Segment_Ratio

nal=Zu_Vector_Segment./Weight1; 

    % extracting and Storing the patch values 

     

    for I=1:length(Xu_Vector_Segment)  

        if i==0 

            Raw=1;     

        else  

            Raw=i*length(Xu_Vector_Segment)+1; 

        end 

    for kk=1:length(Xu_Vector_Segment) 

        Xu_Vector(Raw,Colume)=Xu_Vector_Segment_Rational(I,kk); 

        Yu_Vector(Raw,Colume)=Yu_Vector_Segment_Rational(I,kk); 

        Zu_Vector(Raw,Colume)=Zu_Vector_Segment_Rational(I,kk); 

        Raw=Raw+1; 

         

    end     

      Colume=Colume+1;      

    end       

    L=L+1;    

    end     

    K=K+1; 

end 

  

hold all 

X1=X'; 

Y1=Y'; 

Z1=Z'; 

% Plotting the surface 

surf(Xu_Vector,Yu_Vector,Zu_Vector) 
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colormap summer 

% Plotting the control net 

plot3(X,Y,Z) 

plot3(X1,Y1,Z1) 

grid on 

xlabel('X-Axis') 

ylabel('Y-Axis') 

zlabel('Z-Axis') 

 

Appendix I Curve STEP File code 

STEP_Curve.m 

clear;clc; 

% Input Control points  

X=[ 1 4 6 8 10 4 ]; 

Y=[ 1 2 5 2 10 5 ]; 

Z=[ 0 0 0 0 0 0] ; 

% order  

k = 3; 

% Name Of the file  

Filename ='Spline.stp' ; 

StepConversion(X,Y,Z,k,Filename) ; 

 

StepConversion.m 
function StepConversion(X,Y,Z,k,Filename) 

  

% opening a file  

fid = fopen(Filename,'w+t'); 

if fid < 0 

    fprintf('Error \n'); 

    return; 

end 

  

format long 

% Number of control points  

n = length(X)-1 ;  

kk=k; 

% knot vector  

for i= 0 : n + k        

    if ( i < k )        

        Knot_Vec( i + 1 ) = 0;         

    elseif ( i >= k && i <= n )         

        Knot_Vec( i + 1 ) = i - k + 1;         

    else        

        Knot_Vec( i + 1 ) = n - k + 2;         

    end     

end 

  

T = zeros ( 1 , numel(Knot_Vec)); 
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ii = 1 ; 

% onverting Knot vector in zero to one span  

for i = 1 : n + k + 1      

   if i <= k         

       T(i) = 0;    

   elseif i > k && i <= n + k + 1 - k       

     Space  =   linspace ( 0 , 1 , n - k + 3  ) ;      

     T( i ) = Space (ii+1);       

     ii = ii + 1 ;     

   else         

       T(i) = 1 ;        

   end    

end 

  

Knot = zeros(1,n-k+3) ; 

  

for i = 1 : numel(Knot) 

    

    if i == 1 

            Knot(i) = k ;  

    elseif i == numel(Knot) 

            Knot(i) = k ;  

    else 

            Knot(i) = 1 ; 

    end     

end 

  

Knot1 = zeros(1,n-k+3) ; 

  

for i = 1 : numel(Knot1) 

    

   if i == 1 

            Knot1(i) = 0 ;  

    elseif i == numel(Knot1) 

            Knot1(i) = 1 ;  

    else 

            Knot1(i) = T(kk+1) ; 

            kk = kk+1 ; 

    end     

end 

  

T = Knot ; 

Temp_3 = 0 ;  

for i = 1 : length(T) 

    Temp_1 = num2str(T(i)) ;  

    Temp_2 = length(Temp_1) ;  

    Temp_3 = Temp_3 + Temp_2 ;  

end 

  

Knot_Vec=zeros(1,Temp_3+length(T)-1+2); 

ii= 1;i=1;jj=1;  

% Converting knot vector from double to character class  



77 
 

[Knot_Vec] = Charconversion(Knot_Vec,ii,i,jj,T) ; 

%  

txt_Knot  = [ char(Knot_Vec) ] ;  

  T_1 = Knot1 ; 

  Temp_3 = 0 ;  

for i = 1 : length(T_1) 

    Temp_1 = num2str(T_1(i)) ;  

    Temp_2 = length(Temp_1) ;  

    Temp_3 = Temp_3 + Temp_2 ;  

end 

t=zeros(1,Temp_3+length(T_1)-1+2); 

ii= 1;i=1;jj=1; 

[t] = Charconversion(t,ii,i,jj,T_1) ; 

txt1_Knot  = char(t) ;  

  

% Calculating number of instances  

Number = 28 ; 

Entities = zeros(1,length(X) ); 

for i = 1 : length(X)  

Entities(i) = [Number]; 

Number = Number + 1; 

end 

Intance = Entities; 

  

Temp_3 = 0 ;  

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 

T_Intance=zeros(1,Temp_3+length(Intance)-1+2); 

ii= 1;i=1;jj=1;  

[T_Intance] = Charconversion(T_Intance,ii,i,jj,Intance); 

  

% Converting instnces into character class 

txt__Intance  = char(T_Intance) ;  

% Header Section  

fprintf(fid,'ISO-10303-21;\n'); 

fprintf(fid,'HEADER;\n'); 

fprintf(fid,'FILE_DESCRIPTION (( ''STEP AP214'' ),''1'' );\n'); 

fprintf(fid,'FILE_NAME (''%s'',''2016-12-06T03:29:56'',( '''' ),( '''' 

),''SwSTEP 2.0'',''SolidWorks 2015'','''' );\n',Filename); % change 

the name 

fprintf(fid,'FILE_SCHEMA (( ''AUTOMOTIVE_DESIGN'' ));\n'); 

fprintf(fid,'ENDSEC;\n'); 

% Data Section  

fprintf(fid,'DATA;\n'); 

fprintf(fid,'#22 = PRODUCT_RELATED_PRODUCT_CATEGORY ( ''part'', '''', 

( #4 ) ) ;\n'); 

fprintf(fid,'#23 = APPLICATION_PROTOCOL_DEFINITION ( ''draft 

international standard'', ''automotive_design'', 1998, #8 ) ;\n'); 

fprintf(fid,'#24 = APPLICATION_PROTOCOL_DEFINITION ( ''draft 

international standard'', ''automotive_design'', 1998, #6 ) ;\n'); 
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fprintf(fid,'\n'); 

fprintf(fid,'#25 = SHAPE_DEFINITION_REPRESENTATION ( #1, #26 ) ;\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#1 = PRODUCT_DEFINITION_SHAPE ( ''NONE'', ''NONE'',  #2 ) 

;\n'); 

fprintf(fid,'#2 = PRODUCT_DEFINITION ( ''UNKNOWN'', '''', #3, #7 ) 

;\n'); 

fprintf(fid,'#3 = PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE ( 

''ANY'', '''', #4, .NOT_KNOWN. ) ;\n'); 

fprintf(fid,'#4 = PRODUCT ( ''%s'', ''%s'', '''', ( #5 ) ) 

;\n',Filename,Filename); 

fprintf(fid,'#5 = PRODUCT_CONTEXT ( ''NONE'', #6, ''mechanical'' ) 

;\n'); 

fprintf(fid,'#6 = APPLICATION_CONTEXT ( ''automotive_design'' ) ;\n'); 

fprintf(fid,'#7 = PRODUCT_DEFINITION_CONTEXT ( ''detailed design'', 

#8, ''design'' ) ;\n'); 

fprintf(fid,'#8 = APPLICATION_CONTEXT ( ''automotive_design'' ) ;\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#26 = 

GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION ( ''%s'', ( #21, 

#9 ), #13 ) ;\n',Filename);  

% B-spline Curve Entity 

Number = 28; 

fprintf(fid,'#27 = B_SPLINE_CURVE_WITH_KNOTS ( ''NONE'', %d 

,%s,.UNSPECIFIED., .F., .F.,%s,%s,.UNSPECIFIED. ) ; \n',k-

1,txt__Intance,txt_Knot,txt1_Knot); 

for i = 1 : length(X) 

fprintf(fid,'#%d = CARTESIAN_POINT ( ''NONE'',( %1.19f, %1.19f, 

%1.19f) ) ;\n',Number,X(i),Y(i),Z(i)); 

Number = Number + 1 ; 

end 

  

Number = 28+length(X) ; 

Entities = zeros(1,length(X)-1 ); 

  

for i = 1 : length(X) -1 

Entities(i) = Number; 

Number = Number + 7; 

end 

Intance = Entities; 

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 

ii= 1;i=1;jj=1;  

  

while 1 

     if i == 1 

         T_Intance_Curveset(jj) = ',' ; 

     elseif i == (2*numel(Intance) + 1) 

         T_Intance_Curveset(jj) = ')'; 

         break    
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     else  

        if rem(i,2) == 0 

            if jj < i  

                jj = i ; 

            end 

            if Intance(i/2) > 9 || (length(num2str(Intance(i/2)))) > 1 

                Temp = num2str(Intance(ii)) ; 

                T_Intance_Curveset(jj) = '#'; 

                jj = jj+ 1 ; 

                for j = 1 : length(Temp) 

                T_Intance_Curveset(jj) = Temp(j) ; 

                     jj = jj + 1;     

                end        

                ii = ii + 1 ; 

            else 

        T_Intance_Curveset(jj) = '#'; 

        jj = jj+ 1 ; 

        T_Intance_Curveset(jj)= num2str(Intance(ii)) ;  

         ii = ii + 1 ; 

         jj = jj + 1 ; 

            end   

        else   

         T_Intance_Curveset(jj) = ',' ;  

         jj = jj + 1 ;  

        end  

     end 

 i = i + 1 ; 

end 

  

txt__Intance  = [ char(T_Intance_Curveset) ] ; 

fprintf(fid,'#21 = GEOMETRIC_CURVE_SET ( ''NONE'', ( #27%s  

);\n',txt__Intance); 

Intance_trimmed = 28+length(X) ;  

I = 1; 

% Control polygon (Optional) 

for i = 1 : length(X) - 1  

Magnitude = sqrt((X(i)-X(i+1))^2+(Y(i)-Y(i+1))^2+(Z(i)-Z(i+1))^2) ;   

fprintf(fid,'#%d = TRIMMED_CURVE ( ''NONE'', #%d, ( PARAMETER_VALUE ( 

0.0000000000000000000 ), #%d ), ( PARAMETER_VALUE ( 

1.000000000000000000 ), #%d ), .T., .PARAMETER. ) 

;\n',Intance_trimmed,Intance_trimmed+3*I,Intance_trimmed+I,Intance_tri

mmed+2*I); 

fprintf(fid,'#%d = CARTESIAN_POINT ( ''NONE'',  ( %f, %f, %f ) ) 

;\n',Intance_trimmed+I,X(i),Y(i),Z(i)); 

fprintf(fid,'#%d = CARTESIAN_POINT ( ''NONE'',  ( %f, %f, %f ) ) 

;\n',Intance_trimmed+2*I,X(i+1),Y(i+1),Z(i+1)); 

fprintf(fid,'#%d  = LINE ( ''NONE'', #%d, #%d); 

\n',Intance_trimmed+3*I,Intance_trimmed+5*I,Intance_trimmed+4*I); 

fprintf(fid,'#%d  = VECTOR ( ''NONE'', #%d, %f ) 

;\n',Intance_trimmed+4*I,Intance_trimmed+6*I,Magnitude); 
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fprintf(fid,'#%d  = DIRECTION ( ''NONE'',  ( %f, %f, %f ) ) 

;\n',Intance_trimmed+6*I,(X(i+1)-X(i))/Magnitude,(Y(i+1)-

Y(i))/Magnitude,(Z(i+1)-Z(i))/Magnitude); 

fprintf(fid,'#%d  = CARTESIAN_POINT ( ''NONE'',  (%f , %f, %f ) ) 

;\n',Intance_trimmed+5*I,X(i),Y(i),Z(i)); 

Intance_trimmed = Intance_trimmed + 7;  

end 

fprintf(fid,'#9 = AXIS2_PLACEMENT_3D ( ''NONE'', #10, #11, #12 ) 

;\n'); 

fprintf(fid,'#10 = CARTESIAN_POINT ( ''NONE'',  ( 

0.0000000000000000000, 0.0000000000000000000, 0.0000000000000000000 ) 

) ;\n'); 

fprintf(fid,'#11 = DIRECTION ( ''NONE'',  ( 0.0000000000000000000, 

0.0000000000000000000, 1.000000000000000000 ) ) ;\n'); 

fprintf(fid,'#12 = DIRECTION ( ''NONE'',  ( 1.000000000000000000, 

0.0000000000000000000, 0.0000000000000000000 ) ) ;\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#13 =( GEOMETRIC_REPRESENTATION_CONTEXT ( 3 ) 

GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT ( ( #14 ) ) 

GLOBAL_UNIT_ASSIGNED_CONTEXT ( ( #15, #16, #17 ) ) 

REPRESENTATION_CONTEXT ( ''NONE'', ''WORKASPACE'' ) );\n'); 

fprintf(fid,'#14 = UNCERTAINTY_MEASURE_WITH_UNIT (LENGTH_MEASURE( 

1.000000000000000100E-005 ), #15, ''distance_accuracy_value'', 

''NONE'');\n'); 

fprintf(fid,'#15 =( CONVERSION_BASED_UNIT ( ''INCH'', #19 ) 

LENGTH_UNIT ( ) NAMED_UNIT ( #18) );\n'); 

fprintf(fid,'#18 = DIMENSIONAL_EXPONENTS ( 1.000000000000000000, 

0.0000000000000000000, 0.0000000000000000000, 0.0000000000000000000, 

0.0000000000000000000, 0.0000000000000000000, 0.0000000000000000000 ) 

;\n'); 

fprintf(fid,'#19 = LENGTH_MEASURE_WITH_UNIT ( LENGTH_MEASURE( 

0.02539999999999999900 ), #20 );\n'); 

fprintf(fid,'#20 =( LENGTH_UNIT ( ) NAMED_UNIT ( * ) SI_UNIT ( $, 

.METRE. ) );\n'); 

fprintf(fid,'#17=( NAMED_UNIT ( * ) SI_UNIT ( $, .STERADIAN. ) 

SOLID_ANGLE_UNIT ( ) );\n'); 

fprintf(fid,'#16 =( NAMED_UNIT ( * ) PLANE_ANGLE_UNIT ( ) SI_UNIT ( $, 

.RADIAN. ) );\n'); 

fprintf(fid,'ENDSEC;\n'); 

fprintf(fid,'END-ISO-10303-21;\n'); 

fclose(fid) ;  

end 

 

Charconversion.m 

 
function [T1] = Charconversion(T1,ii,i,jj,T) 

  

while 1 

     if i == 1 

         T1(jj) = '(' ; 
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     elseif i == (2*numel(T) + 1) 

         T1(jj) = ')'; 

         break    

     else  

        if rem(i,2) == 0 

            if jj < i  

                jj = i ; 

            end 

            if T(i/2) > 9 || (length(num2str(T(i/2)))) > 1 

                Temp = num2str(T(ii)) ;  

                for j = 1 : length(Temp) 

                T1(jj) = Temp(j) ; 

                     jj = jj + 1;     

                end        

                ii = ii + 1 ; 

            else  

        T1(jj)= num2str(T(ii)) ;  

         ii = ii + 1 ; 

         jj = jj + 1 ; 

            end   

        else   

         T1(jj) = ',' ;  

         jj = jj + 1 ;  

        end  

     end 

 i = i + 1 ; 

 end 

  

end 

 

Appendix J Surface STEP File code 

STEP_surface.m 

clear; 

clc; 

% Open File and input name of the fine 

fid = fopen('StepSurface.stp','w+t'); 

if fid < 0 

    fprintf('Error \n'); 

    return; 

end 

% Input X,Y,and Z Coordinates 

X=[31 25.861 4.419 0 

    28.34 20.503 0.272 0 

    32.683 29.25 7.042 0 

    31 25.861 4.419 -2.156]; 

Y=[0 12.399 14.220 0 
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    3.11 12.744 10.589 -4.093  

    -1.968 12.18 16.517 4.356 

    0 12.399 14.220 5.280]; 

Z=[13 13 13 13 

    8.666 8.666 8.666 8.666 

    4.356 4.356 4.35 4.356 

    0 0 0 0]; 

%Input orders in U and W Directions respectively  

k=3;l=3; 

Size = size(X) ;  

%Number of raws 

n=Size(1)-1; 

%Number of Columns 

m=Size(2)-1; 

  

K = k - 1 ; 

L = l - 1; 

  

kk=k; 

ll=l; 

% Knot vector in u direction  

for i= 0 : n + k     

     

    if ( i < k ) 

         

        T_U( i + 1 ) = 0; 

         

    elseif ( i >= k && i <= n ) 

         

        T_U( i + 1 ) = i - k + 1; 

         

    else 

         

        T_U( i + 1 ) = n - k + 2; 

         

    end 

     

end 

T_U1 = zeros ( 1 , numel(T_U)); 

ii = 1 ; 

  

% Converting a knot vector in a zero to one span 

for i = 1 : n + k + 1     

   if i <= k         

       T_U1(i) = 0;    

   elseif i > k && i <= n + k + 1 - k        

     Space  =   linspace ( 0 , 1 , n - k + 3  ) ;       

     T_U1( i ) = Space (ii+1);       

     ii = ii + 1 ;      

   else         

       T_U1(i) = 1 ; 
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   end 

    

end 

  

% Knot vector in w direction  

for i= 0 : m + l       

    if ( i < l )        

        T_w( i + 1 ) = 0;       

    elseif ( i >= l && i <= m )       

        T_w( i + 1 ) = i - l + 1;       

    else        

        T_w( i + 1 ) = m - l + 2;        

    end    

end 

T_w1 = zeros ( 1 , numel(T_w)); 

ii = 1 ; 

  

% Converting a knot vector in a zero to one span 

for i = 1 : m + l + 1      

   if i <= l        

       T_w1(i) = 0;    

   elseif i > l && i <= m + l + 1 - l        

     Space  =   linspace ( 0 , 1 , m - l + 3  ) ;       

     T_w1( i ) = Space (ii+1);       

     ii = ii + 1 ;      

   else        

       T_w1(i) = 1 ;       

   end   

end 

  

% Converting knot vector in a character class 

[TU,TU1] = Knotvector_Conversion(k,kk,n,T_U1) ;  

[TV,TV1] = Knotvector_Conversion(l,ll,m,T_w1) ;  

  

% Control Points Arrangments % 

Number = 74 ; 

Entities = zeros(1,(n+1)*(m+1) ); 

for i = 1 : (n+1)*(m+1)  

Entities(i) = Number; 

Number = Number + 1; 

end 

  

Instance = Entities; 

Temp_3 = 0 ;  

for i = 1 : length(Instance) 

    Temp_1 = num2str(Instance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 

  

Surface_Instance=zeros(1,Temp_3+length(Instance)-

1+2+(2*(n+1))+(n+1)*(m+1)); 

j = 1;  
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Index = 0 ; 

% Converting a control point matrix in a character class  

while 1 

     

    if j == 1       

        Surface_Instance(j) = '(' ;       

        j = j + 1; 

         

    elseif j == length(Surface_Instance)        

         Surface_Instance(j) = ')' ;         

         break 

          

    else  

     

        Instance1 = Instance(Instance(Index+1)<= Instance & Instance 

<= Instance (Index+ m +1 ) ) ;      

        Index = Index + m +1 ;        

        Temp_3 = 0 ;  

         

          for i = 1 : length(Instance1) 

             

              Temp_1 = num2str(Instance1(i)) ;               

              Temp_3 = Temp_3 + length(Temp_1)  ; 

               

          end 

           

         Temp_Instance=zeros(1,Temp_3+length(Instance1)-1+2+m+1);        

         ii= 1;i=1;jj=1;  

         Temp_Instance = 

Charconversion_Controlpoints(Temp_Instance,ii,i,jj,Instance1) ; 

         

         for i = 1 : length(Temp_Instance)           

          Surface_Instance(j) = Temp_Instance(i) ;          

          j= j + 1;         

         end 

          

          if j < length(Surface_Instance )-2              

             Surface_Instance(j) = ',';              

             j = j + 1 ;  

              

          end          

    end               

end 

  

Controlpoint_List = char(Surface_Instance) ;  

  

% Header Section  

fprintf(fid,'ISO-10303-21;\n'); 

fprintf(fid,'HEADER;\n'); 

fprintf(fid,'FILE_DESCRIPTION (( ''STEP AP214'' ),''1'' );\n'); 
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fprintf(fid,'FILE_NAME (''%s'',''2016-12-06T03:29:56'',( '''' ),( '''' 

),''SwSTEP 2.0'',''SolidWorks 2015'','''' );\n','StepSurface_Matlab'); 

% change the name 

fprintf(fid,'FILE_SCHEMA (( ''AUTOMOTIVE_DESIGN'' ));\n'); 

fprintf(fid,'ENDSEC;\n'); 

% Data Section  

fprintf(fid,'DATA;\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#10=SHAPE_REPRESENTATION_RELATIONSHIP('''','''',#62,#22);

\n'); 

fprintf(fid,'#11=COLOUR_RGB('''',0.,0.,0.);\n'); 

fprintf(fid,'#12=FILL_AREA_STYLE_COLOUR('''',#11);\n'); 

fprintf(fid,'#13=FILL_AREA_STYLE('''',(#12));\n'); 

fprintf(fid,'#14=SURFACE_STYLE_FILL_AREA(#13);\n'); 

fprintf(fid,'#15=SURFACE_SIDE_STYLE('''',(#14));\n'); 

fprintf(fid,'#16=SURFACE_STYLE_USAGE(.BOTH.,#15);\n'); 

fprintf(fid,'#17=MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATI

ON('''',(#19),#61);\n'); 

fprintf(fid,'#18=PRESENTATION_STYLE_ASSIGNMENT((#16));\n'); 

fprintf(fid,'#19=STYLED_ITEM('''',(#18),#21);\n'); 

fprintf(fid,'#20=PRESENTATION_LAYER_ASSIGNMENT(''Default'','''',(#21))

;\n'); 

fprintf(fid,'#21=SHELL_BASED_SURFACE_MODEL(''shell_1'',(#23));\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#22=MANIFOLD_SURFACE_SHAPE_REPRESENTATION(''shell_rep_0''

,(#21,#64),#61);\n'); 

fprintf(fid,'#23=OPEN_SHELL('''',(#24));\n'); 

fprintf(fid,'#24=ADVANCED_FACE('''',(#25),#43,.T.);\n'); 

fprintf(fid,'#25=FACE_OUTER_BOUND('''',#26,.T.);\n'); 

fprintf(fid,'#26=EDGE_LOOP('''',(#27,#28,#29,#30));\n'); 

fprintf(fid,'#27=ORIENTED_EDGE('''',*,*,#31,.T.);\n'); 

fprintf(fid,'#28=ORIENTED_EDGE('''',*,*,#32,.T.);\n'); 

fprintf(fid,'#29=ORIENTED_EDGE('''',*,*,#33,.T.);\n'); 

fprintf(fid,'#30=ORIENTED_EDGE('''',*,*,#34,.T.);\n'); 

fprintf(fid,'#31=EDGE_CURVE('''',#39,#40,#35,.T.);\n'); 

fprintf(fid,'#32=EDGE_CURVE('''',#40,#41,#36,.T.);\n'); 

fprintf(fid,'#33=EDGE_CURVE('''',#41,#42,#37,.T.);\n'); 

fprintf(fid,'#34=EDGE_CURVE('''',#42,#39,#38,.T.);\n'); 

fprintf(fid,'#39=VERTEX_POINT('''',#70);\n'); 

fprintf(fid,'#70=CARTESIAN_POINT('''',(%f,%f,%f));\n',X(1,1),Y(1,1),Z(

1,1)); 

fprintf(fid,'#40=VERTEX_POINT('''',#71);\n'); 

fprintf(fid,'#71=CARTESIAN_POINT('''',(%f,%f,%f));\n',X(end,1),Y(end,1

),Z(end,1)); 

fprintf(fid,'#41=VERTEX_POINT('''',#72);\n'); 

fprintf(fid,'#72=CARTESIAN_POINT('''',(%f,%f,%f));\n',X(end,end),Y(end

,end),Z(end,end)); 

fprintf(fid,'#42=VERTEX_POINT('''',#73);\n'); 

fprintf(fid,'#73=CARTESIAN_POINT('''',(%f,%f,%f));\n',X(1,end),Y(1,end

),Z(1,end)); 

fprintf(fid,'#44=SHAPE_DEFINITION_REPRESENTATION(#45,#62);\n'); 

fprintf(fid,'#45=PRODUCT_DEFINITION_SHAPE(''Document'','''',#47);\n'); 
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fprintf(fid,'#46=PRODUCT_DEFINITION_CONTEXT(''3D Mechanical 

Parts'',#51,''design'');\n'); 

fprintf(fid,'#47=PRODUCT_DEFINITION(''A'',''First 

version'',#48,#46);\n'); 

fprintf(fid,'#48=PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE(''

A'',''First version'',#53,.MADE.);\n'); 

fprintf(fid,'#49=PRODUCT_RELATED_PRODUCT_CATEGORY(''tool'',''tool'',(#

53));\n'); 

fprintf(fid,'#50=APPLICATION_PROTOCOL_DEFINITION(''Draft International 

Standard'',''automotive_design'',1999,#51);\n'); 

fprintf(fid,'#51=APPLICATION_CONTEXT(''data for automotive mechanical 

design processes'');\n'); 

fprintf(fid,'#52=PRODUCT_CONTEXT(''3D Mechanical 

Parts'',#51,''mechanical'');\n'); 

fprintf(fid,'#53=PRODUCT(''Document'',''Document'',''Rhino converted 

to STEP'',(#52));\n'); 

fprintf(fid,'#54=((LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.))

;\n'); 

fprintf(fid,'#55=(NAMED_UNIT(*)PLANE_ANGLE_UNIT());\n'); 

fprintf(fid,'#56=DIMENSIONAL_EXPONENTS(0.,0.,0.,0.,0.,0.,0.);\n'); 

fprintf(fid,'#57=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.0

1745329252),#55);\n'); 

fprintf(fid,'#58=(CONVERSION_BASED_UNIT(''DEGREES'',#57)NAMED_UNIT(#56

)PLANE_ANGLE_UNIT());\n'); 

fprintf(fid,'#59=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT(

));\n'); 

fprintf(fid,'#60=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.001),#

54,''DISTANCE_ACCURACY_VALUE'',''Maximum model space distance between 

geometric entities at asserted connectivities'');\n'); 

fprintf(fid,'#61=(GEOMETRIC_REPRESENTATION_CONTEXT(3)GLOBAL_UNCERTAINT

Y_ASSIGNED_CONTEXT((#60))GLOBAL_UNIT_ASSIGNED_CONTEXT((#59,#58,#54))RE

PRESENTATION_CONTEXT(''ID1'',''3D''));\n'); 

fprintf(fid,'\n'); 

fprintf(fid,'#62=SHAPE_REPRESENTATION(''Document'',(#63,#64),#61);\n')

; 

fprintf(fid,'#63=AXIS2_PLACEMENT_3D('''',#69,#65,#66);\n'); 

fprintf(fid,'#64=AXIS2_PLACEMENT_3D('''',#690,#67,#68);\n'); 

fprintf(fid,'#65=DIRECTION('''',(0.,0.,1.));\n'); 

fprintf(fid,'#66=DIRECTION('''',(1.,0.,0.));\n'); 

fprintf(fid,'#67=DIRECTION('''',(0.,0.,1.));\n'); 

fprintf(fid,'#68=DIRECTION('''',(1.,0.,0.));\n'); 

fprintf(fid,'#69=CARTESIAN_POINT('''',(0.,0.,0.));\n'); 

fprintf(fid,'#690=CARTESIAN_POINT('''',(0.,0.,0.));\n'); 

fprintf(fid,'#43=B_SPLINE_SURFACE_WITH_KNOTS('''',%d,%d,%s,.UNSPECIFIE

D.,.F.,.F.,.F.,%s,%s,%s,%s,.UNSPECIFIED.);\n',k-1,l-

1,Controlpoint_List,TU,TV,TU1,TV1); 

% Calculating instance numbers for four B-spline curves 

 Number = 74 ;  

 Number1 = 74 ;  

for i = 1 : n+1 

    for j = 1 : m+1 
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fprintf(fid,'#%d=CARTESIAN_POINT('''',(%f,%f,%f));\n',Number,X(i,j),Y(

i,j),Z(i,j)); 

 Number  = Number + 1 ; 

 Number1 = Number1 +1 ; 

    end 

end 

  

Number_Curve_U = Number ;  

Entities = zeros(1,n+1 ); 

for i = 1 : n +1 

Entities(i) = Number1; 

Number1 = Number1 + 1; 

end 

  

Intance = Entities; 

Temp_3 = 0 ;  

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1);  

     

end 

Temp_Instance=zeros(1,Temp_3+length(Intance)-1+2); 

ii= 1;i=1;jj=1;  

Temp_Instance = 

Charconversion_Controlpoints(Temp_Instance,ii,i,jj,Intance) ; 

Instance_U = char(Temp_Instance) ; 

fprintf(fid,'#35=B_SPLINE_CURVE_WITH_KNOTS('''',%d,%s,.UNSPECIFIED.,.F

.,.F.,%s,%s,.UNSPECIFIED.);\n',k-1,Instance_U,TU,TU1); 

  

for i = 1 : n+1  

 

fprintf(fid,'#%d=CARTESIAN_POINT('''',(%f,%f,%f));\n',Number_Curve_U,X

(i,1),Y(i,1),Z(i,1)); 

Number_Curve_U  = Number_Curve_U + 1 ; 

  

     

end 

  

Number_Curve_Vend = Number_Curve_U ; 

Entities = zeros(1,m ); 

for i = 1 : m +1 

Entities(i) = Number1; 

Number1 = Number1 + 1; 

end 

  

Intance = Entities; 

Temp_3 = 0 ;  

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 
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Temp_Instance=zeros(1,Temp_3+length(Intance)-1+2); 

ii= 1;i=1;jj=1; 

Temp_Instance = 

Charconversion_Controlpoints(Temp_Instance,ii,i,jj,Intance) ; 

Instance_Vend = char(Temp_Instance) ; 

fprintf(fid,'#36=B_SPLINE_CURVE_WITH_KNOTS('''',%d,%s,.UNSPECIFIED.,.F

.,.F.,%s,%s,.UNSPECIFIED.);\n',l-1,Instance_Vend,TV,TV1); 

  

for i = 1 : m+1    

 

fprintf(fid,'#%d=CARTESIAN_POINT('''',(%f,%f,%f));\n',Number_Curve_Ven

d,X(end,i),Y(end,i),Z(end,i)); 

 Number_Curve_Vend  = Number_Curve_Vend + 1 ; 

    

end 

  

Number_Curve_Uend =  Number_Curve_Vend ; 

Entities = zeros(1,n+1 ); 

for i = 1 : n +1 

Entities(i) = Number1; 

Number1 = Number1 + 1; 

end 

  

Intance = Entities; 

Temp_3 = 0 ;  

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 

Temp_Instance=zeros(1,Temp_3+length(Intance)-1+2); 

ii= 1;i=1;jj=1; 

Temp_Instance = 

Charconversion_Controlpoints(Temp_Instance,ii,i,jj,Intance) ; 

Instance_Uend = char(Temp_Instance) ; 

fprintf(fid,'#37=B_SPLINE_CURVE_WITH_KNOTS('''',%d,%s,.UNSPECIFIED.,.F

.,.F.,%s,%s,.UNSPECIFIED.);\n',k-1,Instance_Uend,TU,TU1); 

  

for i = n+1 : -1 : 1   

 

fprintf(fid,'#%d=CARTESIAN_POINT('''',(%f,%f,%f));\n',Number_Curve_Uen

d,X(i,end),Y(i,end),Z(i,end)); 

 Number_Curve_Uend  = Number_Curve_Uend + 1 ; 

     

end 

  

Number_Curve_V = Number_Curve_Uend ; 

Entities = zeros(1,m+1 ); 

for i = 1 : m+1  

Entities(i) = Number1; 

Number1 = Number1 + 1; 

end 
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Intance = Entities; 

Temp_3 = 0 ;  

for i = 1 : length(Intance) 

    Temp_1 = num2str(Intance(i)) ;   

    Temp_3 = Temp_3 + length(Temp_1)  ;  

end 

Temp_Instance=zeros(1,Temp_3+length(Intance)-1+2); 

ii= 1;i=1;jj=1; 

Temp_Instance = 

Charconversion_Controlpoints(Temp_Instance,ii,i,jj,Intance) ; 

Instance_V = char(Temp_Instance) ; 

fprintf(fid,'#38=B_SPLINE_CURVE_WITH_KNOTS('''',%d,%s,.UNSPECIFIED.,.F

.,.F.,%s,%s,.UNSPECIFIED.);\n',l-1,Instance_V,TV,TV1); 

  

for i = m+1 : -1 : 1    

 

fprintf(fid,'#%d=CARTESIAN_POINT('''',(%f,%f,%f));\n',Number_Curve_V,X

(1,i),Y(1,i),Z(1,i)); 

 Number_Curve_V  = Number_Curve_V + 1 ; 

     

end 

fprintf(fid,'ENDSEC;\n'); 

fprintf(fid,'END-ISO-10303-21;\n'); 

% Closing the file 

fid(close); 

 

Knotvector_Conversion.m 

function [T,T1] = Knotvector_Conversion(k,kk,n,T_U1) 

Knot = zeros(1,n-k+3) ; 

for i = 1 : numel(Knot) 

    

    if i == 1 

            Knot(i) = k ;  

    elseif i == numel(Knot) 

            Knot(i) = k ;  

    else 

            Knot(i) = 1 ; 

    end     

end 

  

Knot1 = zeros(1,n-k+3) ; 

  

for i = 1 : numel(Knot1) 

    

   if i == 1 

            Knot1(i) = 0 ;  

    elseif i == numel(Knot1) 

            Knot1(i) = 1 ;  

    else 
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            Knot1(i) = T_U1(kk+1) ; 

            kk = kk+1 ; 

    end     

end 

  

T_U1 = Knot ; 

Temp_3 = 0 ;  

for i = 1 : length(T_U1) 

    Temp_1 = num2str(T_U1(i)) ;  

    Temp_2 = length(Temp_1) ;  

    Temp_3 = Temp_3 + Temp_2 ;  

end 

T=zeros(1,Temp_3+length(T_U1)-1+2); 

ii= 1;i=1;jj=1;  

[T] = Charconversion(T,ii,i,jj,T_U1) ; 

 T = char(T) ; 

  

 Temp = Knot1 ; 

  Temp_3 = 0 ;  

for i = 1 : length(Temp) 

    Temp_1 = num2str(Temp(i)) ;  

    Temp_2 = length(Temp_1) ;  

    Temp_3 = Temp_3 + Temp_2 ;  

end 

T1=zeros(1,Temp_3+length(Temp)-1+2); 

ii= 1;i=1;jj=1; 

[T1] = Charconversion(T1,ii,i,jj,Temp) ; 

T1 = char(T1) ; 

end 

 

Charconversion_Controlpoints.m 

function [T_Instance] = 

Charconversion_Controlpoints(T_Instance,ii,i,jj,Instance1) 

  

while 1 

     if i == 1 

         T_Instance(jj) = '(' ; 

     elseif i == (2*numel(Instance1) + 1) 

         T_Instance(jj) = ')'; 

         break    

     else  

        if rem(i,2) == 0 

            if jj < i  

                jj = i ; 

            end 

            if Instance1(i/2) > 9 || (length(num2str(Instance1(i/2)))) 

> 1 

                Temp = num2str(Instance1(ii)) ; 

                T_Instance(jj) = '#'; 
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                jj = jj+ 1 ; 

                for j = 1 : length(Temp) 

                T_Instance(jj) = Temp(j) ; 

                     jj = jj + 1;     

                end        

                ii = ii + 1 ; 

            else 

        T_Instance(jj) = '#'; 

        jj = jj+ 1 ; 

        T_Instance(jj)= num2str(Instance1(ii)) ;  

         ii = ii + 1 ; 

         jj = jj + 1 ; 

            end   

        else   

         T_Instance(jj) = ',' ;  

         jj = jj + 1 ;  

        end  

     end 

 i = i + 1 ; 

  

end 
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