Development of an advanced geometry toolkit framework for
fitting complex topology-optimized mesh structures

By
Jani Harshit Girishkumar
Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
Of the Requirements

For the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
THE UNIVERSITY OF TEXAS AT ARLINGTON

Copyright © by Jani Harshit Girishkumar 2017

All Rights Reserved

Acknowledgements

| would like to specially thank my research guide Dr. Robert M Talyor for his
constant support, continuous guidance, and research opportunity. | would like to
thank Dr. Ashfag Adnan and Dr. Kent Lawrence for taking their valuable time to
serve on my thesis committee and their insightful suggestions.

Finally, I would like to acknowledge, Mechanical and Aerospace Engineering
Department of University of Texas at Arlington for providing a great opportunity
and support through my research work.

Dedication

| would like to dedicate my work to my parents, Girishkumar Jani and Kumud Jani. My thesis
would have been impossible without their blessings. | would like to thank my friends for their
much-needed motivation. My advisor was my backbone and support system for entire research
work. My big thank to my advisor for spending his valuable time and energy on me.

ABSTRACT

Additive Manufacturing is playing a significant role in developing complex geometries which are
not possible by conventional Manufacturing Processes. Topology optimization is playing key a
role in deciding conceptual design for additive manufacturing. The output of topology
optimization is rough and noisy surfaces. Fitting these surfaces poses challenging task to a
designer as it is a tedious and a time-consuming process. The main aim of this research is to
automate the process of smoothing noisy meshes.

In this research work, | have developed algorithms in MATLAB to create NURBS (Non-Uniform
B-Spline) surface patches from given a set of control points. NURBS is a powerful tool in
geometric modeling with flexibility. Different types of NURBS Surfaces are discussed along with
examples. Each type has its usage. STEP standard has been used for geometry data exchange
between MATAB and CAD Software. The algorithm to export NURBS into STEP file has been
developed to support data exchange.

TABLE OF CONTENT

T INTRODUCTION .ottt et sttt s et ehe s e st st s b et s et b et eae ses e e et eae sea et st et e b bt ses et e bt ens 1
1.0 BACKEIOUNG... ottt ittt sttt es ettt st e ate st st st et es es b et et et aae et st st sessassasbeseesbebensareaneates st sesnnsessesens 1
000 000 A e o Yo Lo <AV @ £ 15 01 2= Lo o VOO SRT 2
1.1.2 Size and Shape OPtiMIZAtiON.......cccciii et sttt st e re s te st st sae s es s e b aseasaneene 3
1.1.3 Additive ManUFaCtUINNG.....ccoeieieir ettt st st e e e b et sarease st st see e sessenberees 4

0072 @ o 1T o Y7 TSRS 6
1.3 IMIEENOM. ¢t b et e b b s e b a sea e e e bbb st et eae s et 6
2 BACKGOUND WORK.....ueteiirt ettt ettt ettt sea e st seb et ettt ses e s s et bt eas st ses e ses b et bt ebn et ees e sebeae s s 7
2.1 What is ge0mMetric MOAEING? ..ottt ettt este st st st e e a b aes s easaresbeebestesnennanenes 7
2.2 rePreSENTATION OF @ CUMVE.....ccui ettt st et et ctee v v ettt ettt sbesbeebesteansansaesaesbesbenssnsensesee sbe ons 7
2.2.1 Parametric representation Of @ CirCle.......i et e e 8

2.3 CUIVE ClasSIfiCAtION....cuireeeieecee ittt sttt ettt et et eb e e et bt s e bt st ee b s e een e 10
2.4 FrE@ FOIM CUINVES w..neieeiiteee ettt ses e sttt s et b st e e b et sa s e e s ses et e e b s senbenebeenenesea 11
25 STEP AP 214ttt et ettt st ettt et et e st sheebtea e sae et besate sae e b beas sheanbeea st e ebe et tennes sheeseenneenreens 16
2.6 Significance of NURBS in additive ManufaCturing........cccccce oo eeiieeceiveieiisiee et 18

3 METHODOLOGY ...ttt ettt ettt sttt ses st st be bt s et eae ses e s et bees et ses et et e sesea sen bt b sebene sen s 20
3.1 Bezier CUIVE fOrMUIATION....cc.ce ittt sttt et s ettt s e et s s e b 20
3.1.1 Control points and basis FUNCLIONS........ccueiiiriirece e st r s s s e sae e s 23
3.1.2 COMPOSITE BEZIET CUINV ...ttt st ettt st ettt bes et e st st st saesaeesasesstessesbes e e st stesaesueenes 25

I 2 B o] [o <IN o = Y 3 0T ot f e o VOO USRS 27
3.3 B-SPliNe CUIVE fOrMUIATION......ccuiece ettt ettt et et es s st st st sae e e s s bbb e s enseeene 33
3.3.1 ClOSEA B-SPIINE CUINVE....c.uitietietieeece e sttt ettt e e e teste st st e e e b et e st arsaaeasesbestesesessessessesansarnanearas 39

3.4 NURBS (NON-UNIfOrmM B-SPIINE)....uiiirieeieeiie sttt et ettt e ste st st e s s s ass et ase e s ste st st sesessessesansens 40

Vi

3.5 B-SPplin@ and NURBS SUIMACE...... .ottt cte ettt ettt et e e ste st ste e eaesbebaesesssassreabesteseeseeasanensases 42

3.5.1 NURBS SUITACE...c.tiiietie ettt sttt sttt ettt et e e e et st e ebe s e e 45

3.6 STEP file data STrUCTUIE....cci it s e e e st e e 47

B RESULT ..ttt ettt ettt ettt et st b e et e et e h e s et eh s et b s s b s et ea sen s ea een et eae sen s eaeeer bt enes 51
5 CONCLUSION. ...ttt sttt sttt st et st s et e s b eae ses b ea e sebeae st seseaeseses et et aes et et eb st ebeesbeebenas 53
6 FUTURE WORK.....e ettt ettt st et e s s e s s e s s e e s e e s et e st se s e en s e ere s 54
APPENDIX A Bezier CUIVE COOE.......oouiieirieeie ittt sttt s st e s s en e s 55
APPENDIX B B-spline Basis FUNCLION COUE........cceviiirieieieeee ettt et st r e e e st sresaneneaeraas 57
APPENDIX C Clamped B-Spling CUIVE COUEcoi ittt ttet e st ste e et st aes e snestesresanenes 58
APPENDIX D Closed B-Spline CUrVE COUE......coeiirieirieeeeieetee vttt ess st st ess e e e e sneasesnesnesn ene 60
APPENDIX E Open B-Splin€ CUIVE COUEuocceevreeireiiiee et eeeereeteteeseesteste e esseesbestsssessestesnsesaessensnnn 62
APPENDIX F NURBS CUIVE COTR......cotiiieritrerietie ettt sttt et se b e se e s s s st s ses s s sensene 64
APPENDIX G Closed NURBS SUIface COE........coviiiiimiiiiieiiciineie sttt st s 66
APPENDIX H Partially Closed NURBS SUIface COE.....uuiviniiiieieestieteeree e eeesteev e e seestesre e e 71
APPENDIX | CUIVE STEP File COUE......oriiiriiireeieiie ettt sttt sttt s et et s et s s e 75
APPENDIX J SUrface STEP File COUE.......oumiieiereee ettt 81

Vi

TABLE OF FIGURES

Figure 1 Optimization Process flIOWCNAIt........c..oveieee ettt e e e e e e bee e e e 1
Figure 1.1 A-arm body With CONSEraiNtS......cciiii it st st s e e e st se e 3
Figure 1.2 Topology Optimized Body Of A-ArMi.......ccccciie ittt sttt sttt sa s s sbe st sae s snsseneens 3
Figure 1.3 shape optimization of cantilever beam.........cccuciiiciice i e 4
Figure 1.4 3D CAD Model and STL Files Of SPRere... ittt sttt et se et st se e 4
Figure 1.5 Topology optimization with manufacturing constraints...........ccccceeeve e, 5
Figure 1.6 Conceptual flow chart for overall research Work ... e 6
Figure 2.1 2D Sketch of Cylinder and CUDEc.uoiriieice ettt sttt sr e sre st e st sreneans 7
Figure 2.2 Parametric Representation 0f @ CIirCle.......oieieieice e et 8
Figure 2.3 SPiral SKETCh 2D PlOT.. it st e e st et b s e e e see st seesresneeresseesaentennens 9
FIGUIE 2.4 HEIIXuueeeeete ettt ettt eteste st e es et et et esssaeeteeteste e esseases et et easeasaseaee st st sessensessessssesersaneanestesrenn 9
FIGUIE 2.5 CYlINAEI ..ttt sttt sttt e ettt et et sbe st st e e s es e b et et et ane st st sessessensassesensansans 10
FIGUIE 2.6 HEIMITE CUINVE ..ttt sttt st ee e e st e e s te st e e saesee s eaneesre et aesstesaneessesntesanersneseesnnenen 12
Figure 2.7 Hermite Basis FUNCLION.......ciciiiie ettt sttt st st e e s s saesnaes e saesneesse s seeensassnes sees 12
FISUIE 2.8 BEZIET CUIMVE...uiuiiieeieeieie et cntieisee st trttesste st et e st st ess e e sueessaes saesusasssesbesasasssesseesrsaessesssessasssesseesnssensnes 14
FIgUre 2.9 MOdified BEZIET CUNVE... .ottt ettt ste st st et se e ettt es e e e e stesbestesnsersassastaesbensensnnsentn s 14
Figure 2.10 B-Spline ClassifiCation........ccccece ittt sttt e et et et ste st st e e e n b e s e s ansenas 15
Figure 2.11 Sample block With CONSTrAINTS......cciiiiieiieiece ettt st st e e e b e 19
Figure 2.12 Optimized BOY.......cccoueeieeieiirrirriece ettt et ettt e e steste e e s s s et et arease st stese e sensessesansanens 19
FIUIE 2.13 NURBS fitui i iiesieiiiietirtint ettt sttt e e et ettt e st st s e e s bt eneeneeness st see e sensensessesensernansanes 19
Figure 3.1 Bezier curve With 6 CONTIrol POINTS......ccciiiciiriieeieec et seesresresrnesnens 20
FIgure 3.2 MOdIfiEd BEZIEI CUIMVE......ciiiie ettt ettt ettt etesteste e e s et e s s easaaeste st ste s sessassesaesansarssrsasesteseenen 21

Figure 3.3 AlgOrithm fOr BEZIEI CUMVE......ci ottt sttt ea e bbbt s e saeebesbe e e e s besbebaesasennanas 22

Figure 3.4 Bezier cure basis function for 4 control POiNtS.......ccccecve e i e bt 23
Figure 3.5 Bezier cure basis function for 5 control points........ccceve v vereeceeisirece e et 23
Figure 3.6 Effect of multiple co-incident points on the Bezier CUrVe........ccoceiiivineece e st 24
Figure 3.7 DiSCONTINUOUS BOZIEI CUNVES....c..uiiiiieieieisiecrtieee e sstteesste sstaeseesaesssaessesstessssessessueasssensesssessssennssseses 25
Figure 3.8 Bezier cUrves With COCONTINUITY......cc.oiueceiceie ettt et sse st e ses s ssssanees 26
Figure 3.9 Bezier cUrves With CLCONTINUILY.......ccvvieie sttt ee e e e s et st st 26
Figure 3.10 Bezier cUrves With C2CONTINUILY..........c.c.euiviieie et ceseescessss e sss e s ettt 26
Figure 3.11 B-spline basis function algorithmMi..........coooveieieee et 31
Figure 3.12 B-spline basis function for 8 control points With 4™ Order........c.cceceveieeeereeeseeene e 32
Figure 3.13 B-spline basis function for 9 control points With 4™ Order........c.cccecvveveeverveieeeeeeeeeeeceeis e 32
Figure 3.14 B-spline basis function for 8 control points with 3™ Order........c.cceeeeeeeveeeeecveeecsieeeeis e 33
Figure 3.15 B-spline basis function for 8 control points With 2™ order...........ccc.ceeverveereeceeeeceeee e 33
Figure 3.16 B-spline CUrVe algOrithme.........c oo st st st sre s st et s s e e e s 35
Figure 3.17 Clamped B-SPlINE CUMVE.......ci ittt et ettt e e e et te e e e e eabae e e e e eabtee e e eeabteeaaesenntaeeeennneeas 36
Figure 3.18 modified clamped b-SPliNe..........o ittt st s s seraene 36
FIgure 3.19 B-SPliNe t0 BEZIEI CUIVE......ccuiiiieiietieieeiieestectesteete st et st aeses e e e e st stestesaesasessassesstesssanaaeesaaessessnnsnes 37
Figure 3.20 Periodic behavior of the b-spline basis fUNCLION..........covieeici i e 37
Figure 3.21 Basis functions for 0pen b-Spling CUIMNVE.......cc.ciiiriiceie ettt 38
Figure 3.22 0PeNn D-SPlINE CUIMNVE.....uiiiieeiee ittt ettt st st e e s s e b et et ese et sbe st se e sesbanserasares 38
Figure 3.23 Construction of a closed b-Spling CUMVE.......c..ceiiiece ettt st e e aeraenes 39
Figure 3.24 B-spline curve in @ hOMOZENEOUS SPACE.......cvicuiierieerie e cteseeeerr e erress s e e e e seesteseesresnasessassanns 40
Figure 3.25 Effect of increasing the WeIght.......... e st e e b 40
Figure 3.26 Projection 0N X-Y PIaN@........c ettt sttt sttt et e e e e st stestesaesrsss et aesbesaen e s nees 40
Figure 3.27 Effect of decreasing the WeIGHT.......... ettt st 40
Figure 3.28 Projection 0N X-Y PIan€....... ettt sttt st e ettt er e e st st sae e s s b et enansanas 41
Figure 3.29 NURBS curve with weightage 2 on the (10,10) POINt.....cccccceeeceireiceceerree e 41
Figure 3.30 NURBS curve with weightage 4 on the (10,10) POINt......cccccueirrireeeeeieee ettt ea e 41
Figure 3.31 NURBS curve with weightage 0.5 on the (10,10) POINt.......cceceeveeieceserereeerierere et 42

Figure 3.32 NURBS curve with weightage 0.1 on the (10,10) POINt.......cceceeeeevececeeerceceerereee et st 42

Figure 3.33 Algorithm for surface CONSTIUCTION........cce vttt st st st e b s 44
FIUIE 3.34 B-SPIINE SUMACE....ccuiiieietiet ittt ettt st st e et et et es e aseatestesee e easassesbesasersanease s 45
Figure 3.35 B-spline surface Single PatCh.......oociiei et s e b eea s 45
Figure 3.36 B-spline SUrface tWo PatChEs... ..ottt sttt bt st st s e e s bt 45
Figure 3.37 B-spline surface thre@ patChes... ... ittt st s naens 45
Figure 3.38 NURBS surface with 2 weightage on (51.14,300,400) control point........ccceeeeveveiereeecececieree e 46
Figure 3.39 NURBS surface with 0.5 weightage on (51.14,300,400) control point........cccccceeeeeeceeceverinrennnn. 46
Figure 3.40 Data structure of the STEP fil......ccc ittt st st s e e e b s 47
Figure 3.41 B-SPHNe CUIVE ENTITY...cceciiece ettt st s et et es e ste st stesaeessessesbesasaasensanease st es 49
Figure 3.42 Result imported in the SolidWorks for CUrVe...... .t st 49
Figure 3.43 B-SPliNg SUMACE ENTITY....cuiiviieeiece ettt sttt et et es e sae st st st e s s bes b asaneans 50
Figure 3.44 B-spline SUrface in IMATLAB.........cooo ittt et ete e ste st e es bt ee e s e atestesaese e sassassesassassansanes 50
Figure 3.45 B-spline SUrface in SOlIAWOIKS.......cccci ittt s st s e e b 50
Figure 4.1 Closed POIYNURBS fit.....cccicoiiiiieeeer sttt et e e e st stestesas et et ass s enbea e s e stestesresns 51
Figure 4.2 MATLAB result for CloSEd CONTOUT........cccuiieiieeiece ettt ettt st st s e e st r et e e ane 51
Figure 4.3 MATLAB SUface reSUlt fOr 2™ OFdEN.......vvueuieeeeieceecee e eee et et ersess e s e es s ess e s s ssseneans 52
Figure 4.4 Open cross section fit from POIYNURBS tOOL..........cuciiiiiiie ettt et st st s eeeans 52
Figure4.5 MATLAB result for partially closed CONTOUT..........cuiieiietieeiecece ettt et st s erans 52

1 Introduction

The Procedure, advantages, and methods of optimization and additive manufacturing
techniques will be discussed alongside with a problem that after topology optimization. The
approach has been presented to tackle the ongoing tedious method after optimization phase.

1.1Background

We are optimizing many things in our daily file knowingly or unknowingly. Finding the fastest
route from home to workplace, optimizing time schedule of tasks for better productivity,
Varying the car’s body shape for reducing drag, in structural optimization, finding the optimal
material distribution or setting the thickness of the truss by varying design variables under
constraints for example keeping design’s von Mises stress under yield stress. First, an objective
function is defined in the optimization problem, and often the aim is to minimize the thickness,
reduce the overall weight, maximization of stiffness, etc. The following figure illustrates the
general procedure in optimization.

[F’reliminar}- Design}

Define Objective function,
(> Design variables and

constraints

l

Perform Optimization

|

Analyze

Does Objective function
achieved ?

[Optimized Design }

Figure 1 Optimization Process flowchart

The steps within the optimization process are 1) Define design and non-design spaces 2) Define
an Objective Function, Design variables, and constraints 3) Perform optimization 4) Analyze the
design and check whether objective function is met or not. Repeat the process until the
objective function is not satisfied. According to the design variables and objective function,
there are three main types of optimization.

1) Topology Optimization
2) Shape Optimization
3) Size Optimization

Min
X
ST.GX) <0

Xmin = X < Xyax

F(X) (1)

Here, the objective function is to minimize the function F(X), X is a design variable, G(X) is
constraints and bounds Xmin and Xmax represent upper and lower bound for the design
variable. [1]

If design variable x is height, thickness, length than the process is size optimization.
If x controls the exterior curve (inner or outer radius), we are considering shape optimization.

If x govern whether a finite element of the geometry is void or solid, it is topology optimization.

1.1.1 Topology Optimization

Topology optimization is carried out in conceptual design stage where a configuration of the
product, the number of holes are not known. Design variable for topology optimization is
density. The below figure shows the overall topology optimization process.

janblicach Desinfe design and o] ti;fi)zpaciligivwith el e
Basic CAD Model Boundary condition, non-desi ngs ace Fr’nanufacturin geooometry after Smotthed geometry Final CAD model
mesh 8N sp constraints 8 optimization

Topology Optimization Flow Chart

CAD Model is first imported, and design and non-design spaces are decided. Finite element
mesh is generated in design space, and loads, boundary condition, design variables, constraints
and objective functions are defined. Topology optimization process distribute the material in
design space according to constraints and objective function. Therefore, the result is coarse
topology which is not suitable for manufacturing. In this type of optimization, the final

geometry is not predicted and can produce complex shapes that are extremely hard to produce
with conventional subtractive manufacturing processes. Therefore, manufacturing constraints
are applied before optimization process to make sure the resultant part is manufacturable with
minimum cost. The coarse topology is smoothened by fitting different cross sections using
spline surface tools. [12]

Density based approach

The design variable is density, and the value is either 0% or 100% at the end of the optimization
process. The following figure 1.1 shows the A-arm with finite element mesh. The red area
shows the design space and green shown the non-design space.

Figure 1.1 A-arm body with constraints

The resultant topology is shown below in figure 1.2. It consists of defects, noises, rough
surfaces with complex geometry. Therefore, Designer uses CAE Tools to fit these noisy surfaces
and curves using NURBS (Non-uniform rational B-spline surface) by picking cross sections.

Figure 1.2 Topology Optimized Body of A-Arm

1.1.2 Size and shape optimization

Size optimization is a process of changing the radius or thickness parameter that is not
associated with the overall shape of the product over a certain range with the defined objective
function. Where, shape optimization uses height, length as a variable to change the shape of

the geometry to obtain objective process. The following figures portray the shape
optimization.[1]

A B
Figure 1.3 shape optimization of cantilever beam A) Constraints B) Result

L-section cantilever bar is shown with applied 100N load at one end and constrained at other.
The objective function is mass minimization with maximum nodal displacement less than 2mm.
The right figure shows the result after shape optimization. The shape has changed, trapezoid
shape has resulted from a rectangular shape. Size optimization uses thickness as a design
variable. In this case, the thickness can be used for size optimization process.

Shape optimization changes the shape of the geometry, here, the height of each node is a
design variable.

1.1.3 Additive Manufacturing

Additive Manufacturing technology uses different approach than subtractive manufacturing. In

AM, 3-D Object is built by adding layer upon layer of material. AM requires 3D CAD model as an
Input with STL or AMF file format. STL file contains the data that represents 3-D Objects created
by CAD Software. [2]

Figure 1.4 3D CAD Model and STL Files of sphere

STL means Stereolithography; it also called “Standard Triangle Language” or “Standard
Tessellation Language.” STL file converts 3D Object into series of linked vertex and triangles,
and it represents the surface geometry of the solid object. The number of triangles describes

the resolution of the given 3D Model. 3D Slicer in AM Machine cut the 3D Object into slices of
predefined thickness as well as defines a path. Figure 1.4 represents the 3D CAD model of
sphere with coarse and fine STL File.

The additive manufacturing process involves eight steps. [2]
1) CAD

2) STL Convert

3) File transfer to machine

4) Machine setup

5) Build

6) Remove

7) Post-Process

8) Application

Topology optimization produces unpredictable shape. Additive manufacturing has a capability
to produce complicated shapes without adding restrictions. On the other hand, in conventional
manufacturing processes, the designer must provide manufacturing constraints before
topology optimization to produce a manufacturable part. But in the additive manufacturing, no
compromise should be made because of the capability of AM.

1.5 Topology optimization with manufacturing constraints

The Figure 1.5 shows the result manufacturing constraints. Here, symmetry and draw
constraints are applied before optimization. There is significant difference in this result from
previous result. These constraints affect the design and performance of the product. Other
constraints like min member size, min hole size, and axisymmetric constraints are applied for
conventional manufacturig processes.

1.2 Objective

After topology optimization, to fit the rough surfaces, the designer must fit the different cross
sections to generate a surface. If a geometry is complex, containing many sub-assemblies than
fitting cross section by hand would be a tedious and time-consuming process. The Objective of
the main research is to automate the process of generating surfaces with various degree of
freedom. Several steps are involved in automating the entire process described in given flow
chart.

30 constrained Topology Noi suaces Cutthe noisy surface and Extract counlour Use square distance method to optimize Generate NURBS Infersection of NURBS Surfaces Generate Sold
me [optimization o extact point cloud data _’fmmpoimc\uuddala_’ B-spine curve towards point cloud data ¥ s and perfome boolean operaliuns_’ model

Figure 1.6 Conceptual flow chart for overall research work

1.3 Method

The main aim of my research is to automate the process of creating NURBS Curves and surfaces
from given a set of inputs as well as export the geometry into STEP AP 214 file for data
exchange with CAD software. Different types of algorithm have been developed to generate
distinct types of NURBS Surfaces.

2 Background work
2.1 What is geometric modeling?

Geometric Modeling is a mathematical way of representing curves, surfaces, and solids for
visual representation in computers. Computer computations are required to construct an entity
from mathematical definition. In fact, use of computers is a primary importance in Geometric
Modeling. Without computation power, one cannot represent complex geometries with
accuracy. Geometric Modeling uses linear algebra, vectors, matrix, polynomial interpolation to
capture the mathematical definition of a geometric entity. Vector and Matrices are useful in
geometric transformations like scaling, rotation, moving, etc. In polynomial interpolation curve
passes through a set of control points. The approximation is used in free form curves like
Bezier, B-spline curves and surfaces where curves are not passing through control points except
first and last points. [3]

A B
Figure 2.1 2D Sketches A) Cylinder B) Cube Sketch

Figure 2.1 shows two objects. The objects can be a 3D solid or 2D sketch but the lines are
placed in a way that gives 3D intuition. From visualization, one cannot interpret the result.
Both, cube and cylinder are 2-D sketches. The main aim of the Geometric Modeling is to
mathematically formulate an entity that is computer compatible.

2.2 Representation method of Curves and surfaces
The table shows three ways to represent a mathematical equation of a line, circle, surface.

Entity Explicit Implicit Representation | Parametric Representation
Representation

Line Y=mx+b Ax+By+(C=0 P, +t(Py —P,)

Circle Y = (r? — X?)1/2 X2+Y2-12=0 X = X, + rcos(t)

Y =Y, +rsin(t)
Surface Z=Ax+By+(C Ax+By+(Cz+d =0 X = ay+au+aw

Any geometric object can represent in three forms Explicit, Implicit and Parametric forms. The
parametric form has been adapted because of advantages over other forms.

In curve and surface modeling, flexibility in modeling is of upmost important. implicit and
explicit expressions are dependent on axis. On the other hand, parametric form provides
independent variables, like u, w, and t in given example. The value of independent variables
controls the shape of the overall geometry. In programming, it is easy to handle and model
entities with parametric equations with independent variable which provides enormous
flexibility.

2.2.1 Parametric representation of a circle:

Y-Axis
¥-Axis

Y-Axis —

C D

Figure 2.2 Parametric Representation of a circle A) Center (0,0) and radius 5 B) Center (-3,0) and
radius 5 C) Semi-Circle D) Arc with radius 5

Figure2.2 shows the resultant circles from an equation from table. The figure 2.2 A shows circle
with center (0,0) and radius 5. Figure 2.2 B shows the circle with different center (-3,0) and

parameter value running from 0 to 2*pi. By changing the value of parameter from “0 to 2pi” to
“0 to pi” we got semi- circle. Figure 2.2 D depicts the arc which is result of parameter value o to

pi/2.

In above illustration, t was the only variable that was varied over a certain range. Now, lets
consider radius as a variable and change the value over some interval.

Y-Axis

Figure 2.3 Spiral 2D Plot

Two variables have generated a spiral geometry. In the first figure 2.3 the domains are 0 <=r <=
5 and 0 <=t <= Pi. Where in the second figure 2.3,0<=r<=5and 0 <=t <= 10 * Pi.

Two variables created a spiral in a plane. Let’s introduce third dimension to our circle definition
and play with other variables.

Y =Y, + rsin(t)

X = X, +rcos(t)

/Z =H;

Here, new variable H is added. If we vary the value of H over certain range than the result will
be cylinder or helix, depending upon whether the input is vector or matrix. Consider a vector as
an input with variables, X, = Y, =0,t=0to2m,H=5

Helix
14 - B
v
12 :
\\
10 4 - o -
o g T | —
>
<C /
N :\
N
4 o —
2ﬁ L~ - — i
ol |
Nmmr"w-] :
. — .
Y-Axis N

Figure 2.4 Helix

The following figure depicts a result for a matrix input.
Cylinder

Y-Axis il X-Axis

Figure 2.5 Cylinder

Starting from a simple circle, by adding few variables and changing magnitude resulted in a
variety of geometries. This kind freedom is required to handle complicated geometries.
Parametric representation is flexible, handy and programming friendly.

2.3 Curve Classification:

1) Plane curves and Space curves

If a curve lies in any of the following plane X-Y, Y-Z, X-Z than a curve is a plane curve. It may be
closed, open, self-intersecting. Ellipse, Circle, Triangle, line, parabola, hyperbola are examples
of a planar curve. Bezier and B-spline can be represented as a plane curve.

A curve which is not a plane curve, is a space curve. It does not lie in a single plane. The figure
2.4 shows that helix is a space curve. On the other hand, figure 2.2 circle and arc are plane
curve.

2) Curves of free forms and known forms

Triangle, circle, ellipse, parabola, line is an example of known form where curve has predefined
forms. Bezier, Hermite, B-spline and NURBS Curve are free form curve which are governed by
the movement of a control points and the degree of the curves. Free form curves have a
greater flexibility and advantages when it comes to fit complex curves and surfaces.[11]

3) Interpolation curves and approximation curves

Hermite is an example of polynomial interpolation. It interpolates tah point and passes through
it. The curve that does not pass through data points called approximation curve. [4]

10

2.4 Free Form Curves

We have discussed earlier free form curves and types. In this section, mathematical
representation is defined for each curve.

1) Hermite Curve:

Hermite or parametric cubic curve is an interpolation curve. It passes through data points to
define a curve. There are ways to define Hermite curve.

A) Algebraic form
B) Geometric form
C) Four-point form
A) Algebraic form:

The algebraic form is given by following equation. [3]
X(w)=A,*u>+ B, *u?>+ C, xu+d, (2)
Y(uw) =Ay, *u® + B, xu*+Cyxu+d,
Zw)=A,xud+B,*u*+C,*u+d,
0<u<1i

The algebraic form is common form of representing Hermite curve. The algebraic form is a third
order algebraic equation that is why this curve also called as parametric cubic curve. It has 12
algebraic coefficients which define the curve shape, size and location is space. Playing with 12
coefficients is not very effective way to define and modify the curve as well as that does not
make any sense of a curve. Therefore, practical approach, the geometric form has been
developed from algebraic form.

B) Geometric form:

P(w) = u2 =3u?+1)P(0) + (—2u3 + 3u®>)P(1) + (u® — 2u? +
w)P*(0) + (u® —u?)P¥*(1)

The above equation represents the geometric form of a curve. P(u) is a vector form, where u is
a parametric variable varying from 0 to 1. P(0) and P(1) are starting and end points respectively.
P*(0) and P*(1) are starting and end tangent vectors respectively. [3]

Where,

B, = 2u3-3u?+1), B, = (—2u® +3u?), B3 = (u®-2u®+u), B,
= (W’ —u?)

11

Here, By, B,, B3, and B, are basis functions of the Hermite curve and
P(0),P (1), P*(0),and P*(1) are geometric coefficients. It is easy to define and modify
geometric coefficients than algebraic coefficients.

Basis Functions

Hermite Curve ' e |;1
6r 7 |-—-B2
0.8 - —B3
5 /55) (155 o) =
/ '\'\ // Y F os
4 / \ E s
F: / \ / B 04 :
<3 / \ / 5
X / \ / -
2 / \ / 8
/ \ / o
/ \ /
1 \
\
[p—t : o 02 : : : : : . s . w w
o 5 N iathd 15 0 01 02 03 04 05 06 07 08 09 1
X - Axis Parameter
Figure 2.6 Hermite Curve Figure 2.7 Hermite Basis Function

Basis functions of Hermite are axis independent. Only one variable u controls them. Basis
functions are responsible for calculating intermediate points values. The figure 2.6 and 2.7
shows the Hermite curve and basis functions for three data points correspondingly.

C) Four-point form

In this point, the curve is defined by supplying four distinct points in space located at equal
parametric interval. Four-point form is derived from algebraic from for four parameter values u
=0; u=1/3,u=2/3, and u = 1. Following equation, we get after solving set of equations for
previously defined parametric values.

P(u) = (—4.5u® + 9u? — 5.5u + 1)P;
+ (13.5u3 — 22.5u? + 9u) P, (3)
+ (—13.5u3 + 18u? — 4.5u)P; + (4.5u® — 4.5u? + WP,

Here, Py, P,, P5, P, are data points where curve passes through.
2) Bezier Curve:

In designing complex structures, intuition about the geometric object is important. A curve or
surface defined a way that designer can have the intuition about the change of shape, more
control over design, etc. Hermite curve interpolates the given control points and passes
through it. Changing the shape of the Hermite curve is not intuitive and does not give a clear
idea about how the curve is going to change the shape. It has limited control and. Bezier curve
provides a solution to this problem. [3]

12

P(u) = Y=o PiBin(uw) (4)
0<u<li

Where, B;, = (7)u'(1 —u)"" (5)
ny n!
(i) il(n =)

P(u) represents Bezier curve with parameter u over domain 0 to 1. B; ,, is a Bernstein
polynomials that govern the behavior of the curve with (n+1) control points. The Bernstein
polynomial gives an nth — degree polynomial. Therefore, Degree of the Bezier curve depends
upon several control points. Bezier is approximation curve. It only interpolates first and last
points and approximated by intermediate points. [13]

Properties of Bezier Curve:

e The tangent of the curve is defined by first two points and last two points
Py, P;, and P,, P,,_;. Similarly, the curvature at end points defined by first three points
Py, Py, P, and last three points and PB,, P,,_1, P,_, as follows,

:2|(P1_Po)*(P2_P1)|
° 31(Py — Py)[?

_ ZI(Pn—l B Pn—z) * (Pn B Pn—l)l
1=
3|(Pn - Pn—l)l3
Where, K, K; represents curvature at first and last points respectively.
e According to the definition of Bernstein polynomial, u and (1-u) are symmetric.

Symmetric means, reversing the order of the control points does not change the shape
of the curve.

e In geometric modeling, the transformation is a vital part. The Bezier curve is invariant
under geometric transformations.

e Convex hull property: convex hull is polygon formed by the control vertices. This
property states that the resultant curve always lies under convex hull. This property
defines a bound for the curve as the curve never goes out of the convex hull. The
following figures illustrate this property.

13

Bezier Curve Bezier Curve _

(10,10)

10 (10,10)

> > 0_(17177_ —
Figure 2.8 Bezier Curve Figure 2.9 Modified Bezier Curve
e Partition of unity:
n

ny . .

> (ua—wr=1
l

=0

Summation of all the basis function at any parameter value u is equal to 1. Bezier curve
is defined by assigning distinct weights to different coordinates.

Sometimes it is hard to handle higher degree curve. So, composite Bezier curves used to
overcome this problem. The application of composite Bezier curve gets limited as a designer
must deal with continuity issue. B- spline curve is a generalization of a Bezier curve and has
advantages over Bezier curve as discussed in the following section.

3) B-spline Curve

B-spline curve consists of more than one curve segments and knot vectors, divide the curve into
different segments. Dividing a curve into several segments provides a local modification control
over curve. Bezier curve does not have local modification control. Modifying one control point
changes the whole curve in the Bezier curve. On the other hand, changing one control point,
only certain number of segments get modified. The degree of the curve is dependent on a
number of control points in Bezier. Degree dependency on number control points poses a
problem when the designer is using more than 15 points to define a single curve segment.
Handling a 14™" degree curve is not recommended for some applications like finding an
intersection of two curves. The B-spline curve has a solution for dependency problem. The
degree of the B-spline curve is independent of a number of control points used. The designer
can explicitly define a desired degree of the curve. B-spline curve requires three inputs number
of control points, knot vector, and degree. B-spline curve interpolates first and end, and
approximates intermediate points. Mathematical Formulation: [3]

P(u) = Xi-o PiNik (6)
Where, Ni,k — (l) ik 1() + (i+k) i+1,k 1()

14

N; . is basis function for B-spline curve. It is a recursive function and uses previous values to
calculate the next value. The first basis function is defined as follows.

Ni,l =1 lf ti <u< ti+1
= 0 Otherwise

t represents knot vector, and parameter K defined the degree (K-1) of the curve. Knot vector is
responsible for breaking the curve into different segments. The standard way of defining knot
vector presented below. Total number of knot vector is defined as n+k+1 (number of control
points + degree of curve).

t; =0 ifj <K (7)
tt=i+K+1 if K<j<n
ti=n—K+2 if j>n

The knot vector definition presented above is for clamped b-spline curve. Modifying the knot
vector results in the different shape of the curve. The parameter value u has ranged from 0 to
n-k+2.

0O<susn—K+2

If the designer is using 5 control points with 2" degree curve, then parameter rangeis 0 < u <
4. Curve is devided into 4 sections 0....1, 1....2, 2....3, and 3....4.

Classification of the b-spline curve

[— 1

Non-Periodic B—splln% Periodic B-slpine
Clamped B-spline

B-spline is classified in two ways, Non-periodic and periodic. Behaviour of knot vector plays an
inportant role in classifying b-spline curve. In the next chapter, classification has been discussed
along with the algorithm for B-spline curves and surfaces.

Open B-spline

Figure 2.10 B-spline classification

Closed B-spline

15

Properties:

e Local modification control

e Convex Hull proprerty

e Partition of unity

e Invarience in transformations

4) Non Uniform Rational B-spline (NURBS):

NURBS is more powerful than b-spline. NURBS is a versatile tool in geometric modeling, and it
has become industry standard. NURBS is a rational version of a B-spline curve. The B-spline
curve cannot represent a circle, conic curves, ellipse, etc. NURBS has an advnatage of
representing known form curves with added degree of freedom. The mathematical formulation
is described below. [7]

n
Y=o hiPiN; (W)
YizohiNig(w)
Here, h; are weights assigned to each control points. NURBS is the generalization of a B-spline

curve. Weights are extra degree of freedom, one can easily modfy weight at any control point
to obtain desired geometry.

P(u) = (8)

2.5 STEP AP 214

In geometric modeling, Geometric construction and data exchange between CAD Package is an
important task. STEP standard has been depicted to complete data exchange task. ISO 10303
known as “ Automation systems and integration — product data representation and exchange”.
ISO 10303 informally known as STEP which means “ Standard for the Exchange of Product
model data”. STEP file has the capability to represent 2D Sketch or 3D Model data into CAD
software. ISO 10303 consists of many parts. [8]

1) Description Methods
e Part 11 - Express data modeling language
e Part 12 - Express-I
e Part 14 - Express X
2) Implementation Methods
e Part 21 - STEP FILE: Clear text encoding of the exchange structure
e Part 22 - SDAI Standard data acess interface specification

e Part 28 - STEP XML
3) Conformance Testing methodology and framework

e Part 31 - General Concepts
e Part 32 - Requirement on testing laboratories and clients

16

e Part 34 - Abstract test method for applization protocol implementations
4) Application Protocols

e Part 203 - Configuration controlled 3D Designs of mechanical parts and

assemblies

e Part 214 - Core data for automotive mechanical design processes
5) Integrated Application Resource Models

e Part 101 - Graughting

e Part 104 - Finite ElIment Aalysis
6) Integrated General Resources

e Part 41 - Fundamentals of product description and support

e Part 42 - Geometric and topological representation

In many CAD Softwares, to save a 3D CAD Model data, AP203 and AP214, two application
protocols have been used widely. In this research work, data structure for AP214 has been
adapted for data exchange.

Data Structure for ISO 10303 - 21. [10]

ISO-10303-21;

HEADER;

FILE_DESCRIPTION(

/* description */ (),

/* implementation_level */);

FILE_NAME(

/* name */

/* time_stamp */,

/* author */

/* organization */

/* preprocessor_version */"'",

/* originating_system *

/* authorization */

FILE_SCHEMA (('AUTOMOTIVE_DESIGN));

ENDSEC;

DATA;

#31=EDGE_CURVE(",#39,#40,435,.T.);
#32=EDGE_CURVE(",#40,#41,#36,.T.);
#36=B_SPLINE_CURVE_WITH_KNOTS(",3,(#94,#95,#96,#97),.UNSPECIFIED.,.F.,.F.,(4,4),(0,1),.UN
SPECIFIED.);
#94=CARTESIAN_POINT(",(31.000000,0.000000,0.000000));
#95=CARTESIAN_POINT(",(32.680000,-1.960000,4.350000));
#96=CARTESIAN_POINT(",(28.330000,3.110000,8.660000));
#97=CARTESIAN_POINT(",(31.000000,0.000000,31.000000));
#33=EDGE_CURVE(",#41,#42,4#37,.T.);
#34=EDGE_CURVE(",#42,#39,4#38,.T.);

17

#39=VERTEX_POINT(",#70);

#70=CARTESIAN_POINT(",(0.000000,0.000000,0.000000));

#40=VERTEX_POINT(" #71);

#71=CARTESIAN_POINT(",(31.000000,0.000000,0.000000));

#41=VERTEX_POINT(" #72);

#72=CARTESIAN_POINT(",(31.000000,0.000000,31.000000));
#42=VERTEX_POINT(",#73);#55=(NAMED_UNIT(*)PLANE_ANGLE_UNIT());
#56=DIMENSIONAL_EXPONENTS(0.,0.,0.,0.,0.,0.,0.);
#57=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.01745329252),#55);
#58=(CONVERSION_BASED_UNIT('DEGREES',#57)NAMED_UNIT(#56)PLANE_ANGLE_UNIT());
#59=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT());
#44=SHAPE_DEFINITION_REPRESENTATION(#45,#62);
#45=PRODUCT_DEFINITION_SHAPE('Document’," #47);
#46=PRODUCT_DEFINITION_CONTEXT('3D Mechanical Parts',#51,'design’);
#47=PRODUCT_DEFINITION('A','First version' #48 #46);

ENDSEC;

END-1SO-10303-21;

The file consists of two sections, 1) Header 2) Data. The header section contains information
like file description, file name, creator of the file, time, etc. Data section represents the
Geometry data, Units, Application protocols. Instance number is used to declare data for
example, cartesian point is defined as #Instance Numer=CARTESIAN_POINT('Name',(X-
coordinate,Y-coordinate,Z-coordinate)). Instance number helps in the mapping of entity. From
above example, Edge curve is defined by two vertex points and one B-spline curve. Therefore,
two vertex points and B-spline Curve are mapped into edge curve entity. The boolean and
logical values are written in capital letters. In B-spline curve entity, two “.F.” boolean operators
are presented which states that the curve is not closed and self intersecting. [6]

2.6 Significance of NURBS in Additive Manufacturing

Complex structures are possible to produce with Additive Manufacturing without any
constraints. As discussed earlier, conventional manufacturing processes have restrictions in
developing complex geometries. Topology optimization method gives us a conceptual design
which can be modified by the designers the way they want. [5]

18

Figure 2.11 Sample block Figure 2.12 optimized body

Sample block has been taken to illustrate the importance of NURBS in figure2.11. Solidthinking
Inspire tool is used for the optimization process. 1000 N load is applied at the right end, and
opposite end is fixed. Topology optimization is run with the objective of mass minimization.

Figure 2.12 shows the result of topology optimization consists of rough surfaces. To fit these
sections, NURBS modeling is required. Standard CAD Tools can be used, but a designer may not
get flexibility. Figure 2.13 illustrates the usage of NURBS tools in fitting one cross section.
Designers have freedom to modify this cross section by moving control points, handles, and
faces. [5]

Figure 2.13 NURBS fit

19

Chapter 3 Methodology

In methodology segment, detailed understanding of properties and algorithms have been
presented for B-spline, Bezier, NURBS and STEP AP 214 file along with examples.

3.1 Bezier Curve Formulation
P(u) = ¥iLoPBin(w) (9)

0<uc<i

ny . .
Where, B; ,, = (,)u‘(l —u)
’ l
(n) n!
i/ il(n—i)!
Bezier Curve properties:
1) Global propagation.

The figure 3.1 shows the 5" degree Bezier curve with 6 control points. Mathematical
formulation of this curve:

5
P(w) =) PiBis(w)
i=0

P(u) = PyBys + PyBy 5+ P,B, 5 + P3B3 5 + P,B, 5 + PsBs 5 (10)
Bezier Curve
6 (4.6) (6,6)

Control Polygon
Bezier Curve

Y - Axis
N

! 22y ! ! ! ! 52y |
1 1.5 2 s 3 3.5 4 4.5 5- s 6

Figure 3.1 Bezier curve with 6 control points

Let’s modify the control point from (4,6) to (4,7). The resulting figure 3.2 shows below. Red
dotted line is the modified Bezier curve and effect is shown clearly. Moving one control
point affects the whole curve. This propagation called global propagation because changing
one coordinate alter the whole curve segment. Consider equation 10 and change the 5%

20

control point by adding position vector v" = j.The resultant vector for new curve is given by

W(u),

W (u) = PyBgs + P1Bys + P;By5 + P3B3s + (Py + U)Bys + PsBs 5

W(u) = PyBys + PiBy s + P;By 5 + P3B3 s + PyBys + VB, 5 + PsBss

W(u) = PyBys + PiBy s + P;By 5 + P3B3 s + PyBys + PsBs 5 + UBy 5

From equiation (10)

W) = P(u) + UBys (11)

The equation states that new curve is nothing but original vector P(u) plus multiplication of
basis B, 5 and position vector ¥. Hence, change in one control point affects the whole curve
segment. The figure 3.2 shows the result.

7

6.5

6

5.5

5

4.5

Y - Axis

4

3.5

3

2.5

Bezier Curve

r . Ty (4, ?)

(6,6)

1.5 2" s 3 3.5 4 4.5 5 5 6
X - Axis

Figure 3.2 Modified Bezier Curve

The red dotted line demonstrates the new Bezier curve and the blue line is the original
Bezier curve. In some applications, global propagation is not required. If designer wants to
modify some portion of the curve then local modification plays important part. B-spline
curve has local modification capability. Algorithm has been developed from mathematical
definition. The figure 3.3 represents the flowchart for the algorithm. The Bezier curve
computation is simple and straight forward. One for loop is running from o to number of
control points which calculates the basis function and calculating X, Y and Z components.
The degree is dependent on number of control points. The algorithm requires X, Y, Z
Coordinates and output is curve segment.

21

‘ Start ’

Enter
Coordinates

Parameteru=0to 1
Number Of Control
points n

Initialize Xu =0,
Yu=0,Zu=0

Indexi=0

Calculating Basis
.g Input Index and
function:
»fnumber of control

Bezier_Basis = oints: i n-1
Basis(i,n-1) points: 1,

Calculating X, Y and Z
component of Venctor:
Xu = Xu + Bezier_Basis*X(i+1); Bezier Basis = ﬁim
Yu = Yu + Bezier_Basis*Y(i+1);
Zu = Zu + Bezier_Basis*Z(i+1);

. ui . (! _ u)n—l

scounti<n

Yes

¥
Plot X,Y and
Z vecor
components

Bezier Curve

Figure 3.3 Algorithm for Bezier curve

3.1.1 Control Points and Basis functions

Behavior and influence of the curve governed by basis functions. The following figure 3.4 and
3.5 shows the basis functions for 4 and 5 control points.

Bezier Basis Functions

\\
0.9 \'\ /
op |\ Basis-1 Basis-40> /
\ Y/
07 \ /
\ /
\ /
0.6 - N . /
g N\ Basis-2 Basis-3 /
> 04t S
y "
S/ N
0.3 \
N
02r / N
o1/ - >

0 0.1 02 03 04 05 06 07 08 09 1
X - Axis

Figure 3.4 Bezier Curve basis functions for 4 control points

Bezier Basis Functions
1.

0.9 3"\.
N
o8| \<JBasis-1

0.7

Basis-50 >

0.5

Y - Axis

0.4
0.3

ozt /

0 0.1 0.2 03 04 05 06 07 0.8 0.9 1
X - Axis

Figure 3.5 Bezier Curve basis functions for 5 control points

The first basis function has 100% influence on the first control point at u = 0. As parameter
value increases the influence of the first basis functions decreases. Similarly, Basis-4 has full
control at u = 1 on the last control point. At u = 1/3 and u = 2/3, Basis-2 and Basis-3 are most
influential respectively. All the basis function starts at u = 0 and ends at u = 1. This behavior
shows the global propagation. Contrary, B-spline curve’s basis functions do not have the
influence on full range. All the basis functions are symmetric to u=0.5. Basis-1 is a mirror of
basis-4, same way basis-2 is a mirror of basis-3 in figure 3.4. Basis functions act as weights for
control points. Defining coincident point increases the weightage of that coordinate. The
subsequent series of figures demonstrate the effect of adding more weight to the single control
point.

23

Bezier Curve
& r (4,6) (6.6)
Control Polygon
Bezier Curve

Y - Axis
IS

\2-¢21 \S,Zg

1 1.5 2 .5 3 3.5 4 4.5 5 .5 6
X - Axis

Bezier Curve

Bezier Curve
6 (4,8) (6.6)

2 I 22 I I I I 52)
25 s 3 3.5 4 4.5 5 s 6
X - Axis

Bezier Curv?
4,8)

o PPN
=, & T, <
1 1.5 2‘ 2‘5 3 3.5 4 4.5 5‘ g5 5

Figure 3.6 a Single Point

Figure 3.6 b Two
coincident points

Figure 3.6 c Three
coincident points

Figure 3.6 d Four
coincident points

Figure 3.6 effect of multiple coincident points on the Bezier curve

24

The figure 3.6 (a) is defined by 6 control points. The figure 3.6 (b) displays defining the same
control point (5,2) twice. The dotted line is the new curve and solid blue line depicts original
curve. As we increase the coincident points, the curve is getting pulled towards the coincident
point. The figure 3.6 (c) shows the same control point again. Result is clearly seen, the curve is
pulled more and more as we add more equivalent ontrol points. In other words, we are adding
weightages to a single contrl point.

3.1.2 Composite Bezier Curve

Single bezier curve segment is not always suitable for modeling. Multiple curve srgment is
required to reduce the degree of the curve and complexity. Sometimes defining a single bezier
curve with 14 or 20 control point is not suitable. Therefore, it is feasible to break the curve into
multiple curve segments. Continuity issue comes into play for composite curve segments.
Parametric continuity between curve segments is defined. Parametric continuity defines in
following ways.[4]

C° = curves are attached

C! = tangent continuous (First derivatives are same)

C? = Curvature Continuous (Second Derivatives are same)
C™ = nth derivatives are same

The figures 3.7 to 3.10 shows the pictorial representation of types of continuity.

Bezier Curve

(4.6)

Second Curve

6.4) (

) (7.4)
(6,3)

Y - Axis
W

figure 3.7 Discontinuous Bezier Curves

25

Bezier Curve
S (4.6)

Y - Axis
W

(2.2)

figure 3.8 Bezier curves with C° continuity

When last point of the first curve and first point of the second curve are joint that represents
C° continuity. C° ensures that curves are joint without any continuity.

Bezier Curve
(4.6)

Y - Axis

(9.2)

Figure 3.9 Bezier curves C* continuity

Ths figure 3.9 portrays tangent contunuity. Where, tangent vectors are same for both the
curve. Accorging to the property of the bezier curve, first two point and last two points are
tangent of the curve. To make tangent continuous there is a one condition. Three point must be
co-linear of both the curve segments as illustrated in figure (5,2), (6,3). (7,4). The last two points
of the first curve and first two points of the second curve must be c-linear to make sure both
the curves are tangent ontinuous at the meeting point.

Bezier Curve
(3.5) (8.5)

&

w

Y - Axis
. : N k
o =2 00N O W O & 0O O

(2.2)

a

o

Q
-
N
W

Figure 3.10 Bezier curves C? continuity

26

Tangent continuity sometime does not work in keen corners. Therefore, curvature continuity
C? is required. Curvature of the bezier curve is defined by three start and end points. Procedure
is same, five points have to be co-linear inorder to satisfy curvature continuity.

If we modify point (6,3) than we have to change other points inorder to maintain curature
continuity which is sometimes not quit efficient in modeling. The handeling become tedious
and time consuming.

So, Bezier curve is flexible and has advantages over Hermite curve. But it has several
disadvantages like global propogation, degree dependancy. B-spline resolves the issue of global
propogation and degree dependency.

3.2 B-spline basis function

The B-spline curve is defined by following equation 12.

u—t;)N;p_1(u tirr —wWNiraw (U
Where, Ni,k — (l) i,k 1()_I_ (i+k) i+1,k 1()
Litk—1 — L tivk — tise

Ni,l = 1lftl SU,S ti+1

= 0 Otherwise

Parameter, O<usn—-K+2
Where, Knot Vector
ti=0 ifj<K (12a)
ti=i+K+1 if K<j<n

ti=n—K+2 if j>n

27

To understand the behavior of the B-spline curve, first, understand the basis function and the
knot vector. The basis function is a recursive function and uses previous two values.

Niq ‘
Nit11 ‘
Nit11 ‘
Nit21 ‘
Nit11 ‘

Nit21 ‘

Nit21 ‘

Nit31 ‘
The flowchart shows the recursive behavior of the basis function. The following calculations are
done for 7 control points with 4t order.

To calculate N; , where i = 0 to 5, we need to calculate N; 3, N; ,, N; ;. From above equation for
knot vectort=(00001234444)and parameter u =0 to 4.

For the first order, k=1

N0’1=1atu=0
N1,1=1atu=0
N2,1=1atu=0

N;;=1at0O<u<l1
Nyi=1latl<u<2
Nsi=1at2<u<3
Ngi=1at3<u<4
Second Order, K=2

According to equation 12,

(u — to)No(u) N (t; —uw)N; 1 (u)
t1 — to b, =t

No,z =

In these calculations, we often encounter terms like 0/0. For calculation purpose,
we are considering 0/0 = 0. After simplifying above equation,

28

Ny2 =0

Similarly applying equation 12 for rest of the calculations.

Ni,=0

Ny =(1—=u)N3;,

N3 =uN3q+ (2 —u)Ny,

Nyp = —=1)Ngq + (B —u)Ns,
Nsp=(u—2)Ns5; +(4—u)Ng
Ne2 = (u—3)Ng1

Third Order, k=3

N0’3 = 0
Niz=(1- u)2N3,1

(2-w)
2u N3, + (2 — u)2N4,1

Nyz=u((l—u)+

1
N33 = 5 [uN31 + Ny (u@ —w) + B —w)(u—1) + (3—u)?Ns,4]

Nps=5[@—1)2Nyq + Ng1(w— DG —w) + @ - w)(u—2)) + (2 -

u)(4 —u)Ng,]

Ny = (u=2)° Ny + [(4—u)(u—2);(4—u)(u—3)] N,

Ngs3= (u— 3)2N6,1
For fourth order k =4,

Nos= (1 —u)*N3,

Ni4=Ngzp[u(l—u)?+ u<1—u;<2—u) N u(2—u>2] Ny (z;u)z

Ny4 = N31[(1 — w)u? + (2—2u)u2 + (3—6u)u2] . N4‘1[(2—2u)u2 4 u(2—u2(3—u) 4
(u—1)6(3—u)2]+ Ns 1 (3-u)3

29

2-wu? +u(u—1)(3—u) +(4—u)(u—1)2 (3-u)3

3
N34 =N3,1%+N4,1[p p p [+ Ns1[

(u-1)(B3-uw)(4—u) (u—2)(2—u)(4—u)]+ N (2—u)(4—u)2

+

+
6 6 6,1 6

_ —_1)2 _ _ _
(3 u)6(u 1) _I_(u 2)(u61)(2 u)_l_
(u—l)(2—6u)(4—u) + (u—3)4(4—u)]

+Nsq|

(u—2)(4—u)>

_ N2
“-wu-2)].|.N6'1[T +

(u-2)2
4

_ —2)2 _ _ —
Ny = N[22 4 LDCEDET (4 —) (u — 3)%)+ N

Ng 4= (u— 3)3N6,1

Algorithm has been developed in MATLAB for plotting and calculating the values for basis
functions. Figure 3.11 represents flow chart for basis function algorithm. In this algorithm, the
inputs are desired order, parameter u, and coordinates. First, second order basis functions are
calculated and stored in a zero matrix. In a second iteration, using the previous calculated
values of second order, rest of the calculations are carried out. The algorithm is generalized for
any number of control points and order. Order of the curve must not exceeds the number of
control points. The MATLAB code is attached in an APPENDIX.

30

Stan

/ Input, Index i,
Degree n, Order k, Parameter u,
7 Number of control paints n.

Initialize Zero
Vector N

Here, Capital K is used as a
parameter in loop and small k is
final Order of the Basis Function,
Starting loop from second order
till last order values by
incrementing order by one,
K=2:k

l_N IsK=27 Yes.
1] l

- Usgin 2nd order
OR Previous basis "
function values to Calculating Basis
values for 2nd order,
calculate the rest
of the values
|
W= tNigo1 W) | (L= WN g (0) Calclating
= f;+:u-xi— : + o —‘t.“ Parameter Values Index i, knat vecdwr L
! for K = 1, First parameter u, Order K
Basis Function
|
i Stlozedlhe‘ Deviding the
calculatec valie Basis Function Values parameter u into
2nd Order segment from ((i)
o (N (B = 0Ny () to1i+1)
rZ tiph-1 ~ i Cipk = Ligy l
L_No Output Values N; | and N,H/
Storing All the values for
second degree basis function
) into zero vecotor for further
Yes calculations
Is Indexi>n?
Yes

Figure 3.11 B-spline Basis Function Algorithm

31

The results from the algorithm for k = 4 (3" degree, 7 control points)

Basis Functions
1.
09%@N0A
0.8 H
@ \ N 3,4
2071 N1,4 N24 @
= N L .
s 06 | .
..a 0.5 - ‘ul / ™,
5 *. N X
L 04 /
@o3f/ |\ NS
m N/
0.2 | X A
0.1 N / S P
0 N T I i
0 0.5 1 15 2 2.5

parameter value
Figure 3.12 B-spline Basis Function for 8 control points and 4" order

The figure 3.12 illustrates the plot of basis functions with respect to parameter value. Local
control is clearly seen as basis functions do not cover the whole parameter range except one
basis function N3 4. But as we increase the number of control points by keeping order four,

none of the basis function covers the complete parameter range as shown in figure 3.13. The
figure 3.14 and 3.15 represents the basis function for 3™ and 2"? order respectively.

; Basis Functions
B |
0.9 [N 0,4 N7,40
08 N 4,4 "I
@© \ N 3,4 ’ |
2971 N1,4 N2.4 {i < N54 NG6,4 |
= '\I Lo C; / ™, '\J_/L' G I‘I
cosf| /N N\
T os Y \ Y \
=1 il FARN \
W g4 'ul / N \
@ | \ \
w \ Y Y \
@ 03[| \
o \ \
\ \V4 \ ! 1
0.2 [X S i {
| \\‘-.) / A 5 ‘II
0.1 \)/ \\ I'l
] 0.5 1 15 2 2.5 3 3.5 4 45 5

parameter value

Figure 3.13 B-spline Basis Function for 9 control points and 4" order

32

Basis Functions Basis Functions

1 1 \ i
| \ \ \ [
ool 0.9 f| \ \ /
\ \ "‘. .‘"
08 0.8 \ \ f
—~ () \
[\
307 VAN Soarr \ |
S0 / © \ \
> / \ = o6l \ |/
= 06 / \ c 0 \ f \ /
5 . \ c \ / \/
Tos| . | A Bos A / A
7 \ \ : \ / M
L ooaf - \ Y o4r | / A
i) \ \ K] \ | /A
a 03 \ g 0.3 \ / -
© H \ [
3] \ @ ‘ [
02} \/ \ 0.2 Y / \
o1} A A 0.1H | / \
i \ \ AN \ i \ | \
0 \\. / L A | 0 4 i L] { \
0 1 2 3 4 5 6 0 1 2 3 4 5 6 7

parameter value parameter value

Figure 3.14 Basis Function k=3, n=7 Figure 3.15 Basis Function k=3, n=7

3.3 B-spline curve formulation

P(u) = Z?=O PiNi,k 13
Equation 13 defines the B-spline curve. Consider the above example of basis function and
understands the construction of the curve. Expanding the equation 13 for N = 6 (7 control
points) and k = 4 (3" degree).
P(u) = PyNy4 + PNy 4+ P,N, 4 + P3N3 4 + PNy 4 + PsNs 4 + PgNg 4 14

In above basis function values, each basis function consists of different segments. Putting all
the values in equation 14 and separating the curve segment results the following equations.

P(u) = Py (1 - u)* + Pyfu(1 — u)? + 2029020 L ME0%) y p (g g2 4 SO0
_ 2 3
%]4_133“? forosu<1
202 _ 2 _ _ _ _n2 _ 2 — —
P(u)1 _p, (2-u) +P2[(2 2u)u +u(2 u2(3 u) n (u 1)6(3 u)]+P3[(2 6u)u +u(u 1;(3 u) n
(1) 112 13
(4 u)6(u 1)]+P4(u61) fori<u<?2
_ _ _ _ _ _ _ _1\2
P(u), = P, & u) 4 Pg[(s w? | @@ 6u)(4 W | @2)C 6u)(4 W 4 p,[C u>6(u v,
)
(u- 2)(u61)(2 u)+(4 ul(u 2)?]+P5(uTZ) for2<u<3
V(91 (4 a4 V()2
P(u), = P, & u)(4 w? 4 p, [0 2)(4 w? | @-1e 6u)(4 W, @ 3)4(4 v +P5[W +
B ()= 3774 (4= for3suss

33

As mentioned earlier, b-spline curve is made up of different curve segments. Here, four vectors
represent four curve segments. Each segment is controlled by four control points. According to
the property, each curve segment is controlled by k number of control points. The algorithm
has been developed to generate the clamed B-spline curve. As we have seen in previous basis
function example, each basis function consists of several curve segments. First segment 0to 1 is
in four basis functions Ny 4, Ny 4, N4, N3 4. Basis functions Ny 4, Ny 4, N34, Nyg4 consists of
1 to 2 segment. As B-spline curve consists of different segments, in given algorithm, | am
calculating basis function one by one, extracting and saving each curve segment values. Figure
3.16 portrays the B-spline curve formulation algorithm.

34

Start

Inputs,
X.Y,Z Coordinates, Degree,
Knot Vector, Parameter

Initializing Zero

vector

Calculating j number basis

function and extracting the cuve
segments values from it

Yes

No
h |
Storing the curve
segment values in
a vector

Ye Isi<n-k+3 7

MNo
y

Plotting all the
curve segment
values and
generate the curve

Figure 3.16 B-spline Curve Algorithm

35

l ~_——(10,10)

— B-Spline Curve

9 Control Polygone
8 f X48) N
L
®L B+
B4
<
> 57
al
sl
o
’ ‘
3 4 5 6 7 8 9 10
X-Axis
Figure 3.17 clamped B-spline Curve
0; (10,10)
—— B-Spline Curve
9+ Control Polygone (9‘9)
] _'_-__,__.;;-:;'—'"-' — 7__7""'-7-.,_\‘
8r X4.8) N/
7F ' :
2 6r X
< /
>

) A

2 Y (82)

¥

X-Axis
Figure 3.18 Modified Clamped B-spline Curve

The figure 3.17 represents the B-spline curve with 7 control points and 3t order (2 degree)

curve. The presented B-spline curve is clamped curve as the curve touches first and last control

points. The cross symbol divide the curve into different segments. Each curve segment is
influenced by k number of control points. As we increase the k value, influence also increases.
In figure 3.18, control point is changed from (10,10) to (9,9). The dotted yellow line shows the
new curve and blue line is the original curve. Local modification can be seen clearly. Some
portion of the curve is affected as we move a coordinate. Local modification is a powerful tool
of the B-spline curve. The local modification depends upon the order of the curve. By keeping
the number of control points and order same we can get Bezier curve from B-spline curve.
Figure 3.19 illustrates the result of B-spline to Bezier.

36

Basis Function Value

Y - Axis

Bezier Curve

(10,10)

Figure 3.19 B-spline to Bezier curve

Basis Functions

A

\
\
‘\/

2

parameter value

Figure 3.20 Periodic Behavior of the b-spline basis function

The figure is for 3" order with 8 control points with knot vector=[0001234566 6].
Examine the basis function is the box. The open b-spline curve does not pass through first and
last points. The basis function behavior and knot vector is defined in different manner basis

functions are presented below.

These basis functions are defined with uniform knot vector=[0123 4567 8 9 10]. They have
similar shape with different position. They are periodic in nature. Open B-spline curve uses
periodic basis functions. The figure below shows the basis functions for open curve. The

clamped curve has first and last basis function which starts from 1 and goes to 0. In open curve,
all the basis functions have identical shape.

37

05 - Open B-spline Basis Functions

\ I
w \|f \ | \ \
E | { | |
FO5F { 'L f l |
> | il l I‘ I\ !
c | I\ \ | il \
il i\ | | I |
© 04 | H \ [A \
2 \ \ | [l |

S \ \ | f |

= | | | [|

F 031 \ i | i l

© \ | | \ \

m \ | | \ \
02+ I‘. "\ | | | I‘u \
0.1 A Aol
. ‘I“ .‘l \\ \E

) \ / \ \
0 | | ! | | u
0 1 2 3 4 5 6 7 8 9 10
Parameter Value

Figure 3.21 Basis functions for open b-spline curve

(o] B-spline C
0. pen Bspline Curve . (10.40)
9r (3.9)
8 [~
._‘\‘
ir |
@ 61 //
B /
QI: \ ‘4"’4, - .l.‘
> 5 ‘(4,5) ,/(\6,5) .j'.:;'
yd \‘\ '/;' ._-‘
4r | ,”’:/"'{_7-" \ - // /
2r _4,2) \“:(8,2)
1651 * -
1 2 3 4 5 6 7 8 9 10
X-Axis

Figure 3.22 Open B-spline Curve
Compare figures 3.21 and 3.20 for open and clamped basis functions; Open b-spline curve uses

the similar set of basis functions. The B-spline curve is termed periodic curve since it uses one
sort of basis function repetitively.

38

3.3.1 Closed B-spline Curve

Open B-spline Curve

10 - _/(10,10)
9 (3.9) '
8
7 -
v 6
z _
=
> s (4.5) 6.5)
4) ;’/i ——
>
e
3 7
7
2 _(4.2)
1 e
1 2 3 a 5 (=3 7 10
X-Axis
Figure 3.23 a
B 1i
10 - Open B-=spline Curve £(10,10)
of (3.9)
al
7
w6
2 \
< Y
> 5| 4.5) (6.5)
al
al
2| ~{a.2)
1 ey — ' g
1 2 3 4 5 (=3 7 10
X-Axis
Figure 3.23 b
‘o Open B-spline Curve £ (10,10)
9 ~(3.,9)
8 /N
7 /-
"/
g 6 e
=+ \
> 5 y “(4,5) (6,5)
B
f
El |
2| 4,2
1 ey — : : . : . '
1 2 3 4 5 8 7 10
X-Axis
Figure 3.23 c
. Open B-spline Curve (10,10)
o (3.9)
ol \
7r -~
s
v
w 6 4
Z /f
< /i \
> 5 /A (4,5) (6.5)
a b ‘."I‘."
|
3 r A |
A T
2+ / > (4,2)
1 e
1 2 3 4 5 & 7 10
X-Axis

Figure 3.23d

Figure 3.23 Construction of a Closed B-spline curve

39

It uses the concept of open B-spline basis functions by repeating the control points to generate
the closed contour. Figure 3.23 demonstrates the effect of repeating each control point one by
one. Reaping each control point creates new curve segment.

3.4 NURBS (Non-Uniform Rational B-spline)

As discussed earlier NURBS is the powerful tool in spline discussion as it is a generalization of B-
spline and Bezier Splines. NURBS provides weight for each control point. Here, third variable is
added in the definition. [12]

X(u)
P(u) =Y(u)
h(u)
h(u) acts as a weight for X and Y control point. Homogeneous co-ordinate system plays an
important role in NURBS design. For clarification, | have represented two different curves in
figure 3.24. Red curve shows the curve constructed by three variables X, Y and h. Where, Blue
curve shows the projection of red curve onto X, Y plane.

© (3,6)

X - Axis

Figure 3.24 B-spline curve in a homogeneous space

1.5 7 O‘Qﬂ
— 6.5 - x&\x‘*?\
\\ ™ ~
! S (N
bl 6 = (3,8)
e k) //: 7
0.5 . _— <)E< 55 e
0. T ———6(3.6) =
7 ~ - "
6 o e 55) 4.5 //
5 B e~ T, —
-t~ _ 25 |
Y - Axis 48?” 1.5 _2 4\1 2 1.4 1.6 1.8 2 22 24 26 2.8 3
X - Axis X - Axis
Figure 3.25 Effect of increasing the weight Figure 3.26 projection on X-Y plan

40

Figure 3.27 Effect of decreasing the weight

T o2
65 S
~
6 =9 (36)
g
@ 7
2 e
<55 ; -
> e
e
5 T e(2.5)
P
>
45 7
a4y

1 1.2 1.4 1.6 1.8 2 22 2.4 26 2.8 3
X - Axis

Figure 3.28 projection on X-Y plan

In the figure 3.25, weight of control point (3,6,) has been changed from 1 to 2 and 0.5. The
result shows the change in 3D as well as the projection figure 3.26. By keeping co-ordinate fix, if
we vary the third parameter h, we can get multiple outcome.

Let’s consider clamped B-spline curve example and see the effect by varying the weights. Take
control point (10,10) in the figure 3.29. In the illustration 3.30, shows the result of doubling the

weight. Next figure 3.31 shows the result for weight = 0.5. So, as we increase the weight, the

curve pulls towards the control points. Similarly, Decreasing the weight push the curve from the

control point. The effect of push and pull depicted below. Weights must be positive integer of
float value; negative weight provides undesirable curve shape. Keeping all weights to one will

give B-spline curve.

NURBS Curve

°

%3.9)
\
N\
(4,5)

Y-Axis
- N W A& 0 O N O ©®

4.2)

1y

1 2 3 4

7(10,10)

5 6 7 8 o 10
X-Axis

Figure 3.29 NURBS Curve with weightage 2 on the control point (10,10)

NURBS Curve

10 7(10,10)
B-spline curve - Vs
a Control Polygone B) X/
8r \
\ //
7r Y
//
© 6 pe
5 \ Yy,
o \(@,5) A(8,5) S
o x : /‘/
3b L
g " ,/
2r 14.2) “(8,2)
1l
1 2 3 4 5 6 7 8 9 10
X-Axis

Figure 3.30 NURBS Curve with weightage 4 on the control point (10,10)

41

NURBS Curve
10 - 7(10,10)

Y-Axis

9

8

7

6 \

5 \@5) {65)
4 <

s

2

1

1 '1_7' 1 L L L 1 L J
1(’) 2 3 4 5 6 7 8 9 10
X-Axis

Figure 3.31 NURBS Curve with weightage 0.5 on the control point (10,10)

NURBS Curve
100 ~7(10,10)

Y-Axis

Figure 3.32 NURBS Curve with weightage 0.1 on the control point (10,10)
3.5 B-spline and NURBS Surface

Surface representation is a function of two parametric variables P = P(u,w). u and w are two
parametric directions of the surface. Previous sections were concentrated on representation of
curves. Understanding the working and properties of curve is important in surface
construction.[7]

P(u,w) = XiLo Xjto PijNigk WN; L (W) 15

The equation 15 represents the definition of B-spline surface. N; ;. (u) and N; , (w) are basis
function is u and w directions respectively. P;; is input control point matrix. (N+1) and (M+1)
are number of control points in two directions. K and L are order in u and w directions
respectively. B-spline curve has different curve segments, B-spline surface consists of different
patches. Single patch is made up of two curve segments from u and w.

Control point matrix for 6 by 7 control points.
P21 P22 P23 P24- P25 P26
Pij=P31 P3; P33 P34 P35 P3g
P41 P4-2 P4-3 P4-4- P45 P4-6
Ps; Ps; Ps3 Psy Pss Psg
Consider an example forn=5, m=5,K=3,L=3

42

n m
Pu,w) = Z Z P;jN;3(w)N;3(w)
= PooNos(W)Nosz(W)+ Py Noz(W)Ny3(W)+ PooNos(WNp3(W) + Po3No 3 (N3 5(W)+ Po aNo 3 (W) Ny 5 (W)+
Po,sNo,s(u)Ns,s (w) +

Py oNy3(W)Noz(W)+ Py 1Ny 3(W)Ny 3(W)+ Py o Ny s (W) N 3(W+ Py 3Ny 5(W)N3 3 (W)+ Py 4Ny 3(u) Ny 5 (w)+
Py 5Ny 3(W)Ns3(w) +

Py 0Ny 3 ()N 3 (W)+ Py Ny 3 (U)Ny 3(W)+ Py o Ny 3 (W) Ny 5(W)+ Py 3Ny 3 (u)N3 3 (W)+ Py y Ny 5 (W) Ny 3 (W)+
P, 5Ny 3(u)Ns 5(w) +

P3 N3 3(u)No 3(W)+ P31 N3 3(u)Ny 3(W)+ P3 N3 3(U) Ny 5(W)+ P3 3N 3(U) N3 5(W)+ P34 N3 3 (W) Ny 5 (W)+
P35N3 3(u)Ns 5(w) +

PyoNyzs(WNo3(W)+ Py 1Ny 3(W)Nys(W)+ Py pNyz(WNy 3(W)+ PysNy3(WN3 3(W)+ Py aNy3(W)Ny 3 (W)+
PysNy3(W)Ns3(w) +

P5 oNs 3(u)No 3(W)+ P51 N5 3(u)Ny 5(W)+ Ps o Ns 3 () Ny 5(W)+ Ps 3Ns 3(u) N3 5(W)+ Ps 4 N 3 (u) Ny 3 (W)+
P5 sNs 3(u)Ns 5(w)

= No3(w)[Po,oNoz W)+ Py1 Ny 3(W)+ P 2Ny 3(W)+ Py 3N3 3(W)+ Py 4Ny 3(W)+ PosNs3(w)]+
Ny 3(W)[P1,0No3(W)+ Py 1Ny z(W)+ Py 2Ny 3(W) + Py 3N3 3(W)+ Py 4Ny 3(W)+ Py sNs 3 (w)] +
Ny 3(W)[P2,0No3(W)+ P21 N1 3(W)+ Py pNp 3(W) + Py 3N3 3(W)+ Py 4Ny 3(W)+ P sNs 3(w)] +
N3 3(u)[P3,0Noz(W)+ P31 Ny 3(W)+ P3Ny 3(W) + P3 3N3 3(W)+ Py 4Ny 3(W)+ P3sNs 3(w)] +
Ny 3(W)[PyoNo3(W)+ Py 1Ny s(W)+ Py aNo 3(W) + Py N3 3(W)+ Py aNys(W)+ PysNsz(w)] +

Ns 3(u)[Ps,oNo3(W)+ Ps 1Ny 3(W)+ Ps Ny 3(W) + Ps 3N3 3(W)+ Ps 4Ny 3(W)+ Ps s N5 3(W) |

The extension gives idea about the behavior of the surface. First curve is created in w
parameter direction using control points and extended in another direction u. It is a recursive
process and double iteration, one for raw and one for column, extract each control point. The
algorithm has been developed. The flow chart below represents the working of the algorithm.
The algorithm requires control point matrix, order, knot vector and parameters. Two separate
loops are running, one for u direction and other for w direction. Index starts from 0 to number
of segments (n-k+2) or (m-1+2). Extracting each segment from both basis function and creating
a patch one by one and finally merging all patches to create the final surface. The patch concept
illustrated in the figures from 3.35 to 3.37. The result is shown in figure 3.34.

43

Start

Inputs, k, I, m, n, Knat Vectors in both the
directions, u and w parameters

!

Index i =0
Index j =0

!

Initializing a Zero
or in w
direction

!

Index ii = 0

!

Initializing Zera
vecor in paramter
u direction

!

index jj = 0

Calculating one
curve segment in
u direction and
multiple segments
in w directions

Converting all the
vector values in
Martrix form and

storing in a
variable

Isjj=1+1 7

b [=
v

Calculating the
patch and storing
in a permanent
variable

No

Extract the next
curve segment
value for w

Extract the next
curve segment
value for u

No

IS | = n-k+2 ?

Yes

Plot all the patch
values and
complete the
surface

End

Figure 3.33 Algorithm for Surface construction

44

Figure 3.34 B-spline Surface Figure 3.35 B-spline Surface single patch

Figure 3.36 B-spline Surface two patches Figure 3.37 B-spline Surface three patches

The figure 3.34 displays the complete B-spline surface defined by 20 control points. The figure
3.35 shows the single patch. The figure 3.36 illustrates the two-combined patched and the
following figure 3.37 is constructed by three patches. The 3D Polygon is referred as a control
net.

3.5.1 NURBS Surface

Lizo Xj=o hyjPyNix GON; | (W)

i=0 &j=

16

P(u,w) =

NURBS Surface uses weightages as an additional degree of freedome than B-spline Surfaces.
Weightages given to the coordinates for further modification. The figure 3.38 and 3.39
illustrates the effect of weightages on the previous model. [3]

45

NURBS Surface

— fasa 3
255 22 31 76 400)
26522 393.14.300)

|
¥

Figure 3.38 NURBS Surface with weightage 2 on (51.14,300,400) control point

NURBS Surface

1255.22.383.14.807)
1255223614 503)
1255.22.383.14.403)

25522 38 14.300)

ZAds

200 o 20 a0 n 0

Figure 3.39 NURBS Surface with weightage 0.5 on (51.14,300,400) control point

Here, weightage of Coordinate (51.14,300,400) has been changed from 1 to 2 in the figure 3.38
which represents the effect of pull. In the next fiure 3.39 depicts push effect with weightage of

0.5.

46

3.6 STEP File data structure

STEP Standard has been adopted for data exchange between MATLAB and other CAD Software.
STEP has ASCII file structure. Therefore, working with ASCII Structure is easy. STEP file is using
different entities defined in AP 214 to capture the geometric definition. First, simple geometric
entities have been tested to understand the logic of STEP File. The following image shows the
STEP File data structure for line geometry.

180-10303-21;

HELDER;
FILZ_DESCRIETION ({ 'STER AZI14'),'1' |;

FIIZ NME ('Lins 214.5TEF', 20:06:28, ('), ("*), "SWSTER 2.0°, "Solidworks 2015',"");
FILZ_SCEEMA (('AVEGMOTIVE DESIGN'));

ENDSEL;

TATR;

§7 = SHAPE DEFINITION REPRESENTATION (#14, #15);

£11 = PRODUCT RELATED PRODUCT CATEGORY ('part’, "' ,(#12)) ;
§17 = APPLICATION PROTOCOL IEFINITION | 'draft ional standard’, 'automotive design', 1398, §23 |;
£28 = APPLICATION PROTOCOL DEFINITION | 'draft in
£14 = PRODUCT DEFINITION SHAPE | 'NONE', 'NORE', $13);

£13 = PRODUCT DEFINITION ('UNRNORN', '', §3, #8);

£3 = PRODUCT DEFINITION FORMATION WITH SPEIFIED SOURCE ('ANY', '',§11, .NOT_KNOWN.);
£12 = PRODUCT

national standard’, 'automotive design', 1398, §20);

ing 214", ' Line 2

EXT | 'automotive design');
15 = GECMETRT TED WIREFRAME SHAPE REPRESENTATION ('Line 2147, [#, #6), §30);

£4 = GEUETRIC

1., .PRRAVETER.);

§24 = DIRECTION ('NOE', [L.
£2 = CARTESIAN POINT | 'NOME', | 000));
ESIAN PCINT ('NOME', (20

§9 = DIRECTION ('NORE', (0
£27 = DIRECTION ('FORE', |
£30 = | GEQMETRIC REPRESENTATION CONTEXT (3) GLOBAL UNCERTAINTY
§26 = UNCERTAINTY MEASURE WITE INIT (LENGTH MEASURE(1.0
£1 = | LENGER UNTT |) NEMED UNIT | *) ST_UNIT | .INGE. |);

§18 = (NAMED UNIT | *) PLANE ANGLE UNIT () SIONIT (§, .RADIAN.));
§29 = (LENGEE ONTT (*) ST UNIT (§, .STERADIZN.) SOLID AWGLZ INIT |) |;

OBAL, UNTT ASSTGNED CoRTEXT (| $1, $18, $29)) REFRESENTATION CONTEXT| 'NONE', 'WOREASPACE'));

003), $1, ‘dis:a:::e_ac:;rdcy_’:alue‘, "NONE') ;

ENDSEL;
END-130-10303-21;

Figure 3.40 Data structure of the STEP File
To understand correctly, the following flow chart has been developed on page 48.

Different entities have the different role to play. For example, AXIS2_PLACEMENT _3 Entity
represents the 3 D Coordinate systems, GEOMETRIC_CURVE_SET shows the geometry line with
magnitude and directions, PRODUCT_DEFINITION_SHAPE used for defining Application protocol
and the name of the file. Similarly, B-spline Surface has B_SPLINE_SURFACE_WITH_KNOTS.
Inputs are required to adequately represent surface. The algorithm has been developed to
write out STEP File from MATLAB by first calculating all the necessary data and converting into
strings. Each entity has its inputs, restrictions and internal mapping.

47

SHAPE_DEFINITION_|
REPRESENTATION (
#14, #15);

#14
PRODUCT_DEFINITI
ON_SHAPE (
'NONE', 'NONE!,

#15
GEOMETRICALLY_BO
UNDED_WIREFRAME

| SHAPE_REPRESENTA

TION ('Line 214", (#4,

#6), #30);

#4
GEOMETRIC_CURV
E_SET ('NONE', (
#22))

#22 TRIMMED_CURVE ('NONE',
#3 #16, (PARAMETER_VALUE (
=PRODUCT_DEFINITI 0.0), “2()i (OF(’)A)R#AZMlE)TETR—VALUE
ON_FORMATION_WI e
TH_SPEIFIED_SOURC
E ('ANY!, " #12,
.NOT_KNOWN.);

N_CONTEXT ('
detailed design ', I

#23, 'design');
#16 LINE ('NONE',

#25);
#12 PRODUCT (———
'Line 214, ' Line #23

‘ #19
214", (#5)); PP“CTAET;?’(\‘—CON CARTESIAN_POINT

‘automotive_desig VIORE, (0,00,
n'); 0.0));

#25 VECTOR (
'NONE', #24,
20.000000);

#6
AXIS2_PLACEMEN
T_3D ('NONE ',
#10, #9, #27)

#10
CARTESIAN_POINT (
'NONE', (0.0, 0.0,

#9 DIRECTION (
'NONE', (0.0, 0.0,

#27 DIRECTION (
'NONE', (1.0, 0.0,
0.0));

#24 DIRECTION (
'NONE', (1.0, 0.0, 0.0)

EXT ('NONE ',);
#20,

'mechanical');

#20
APPLICATION_CONTEXT (
'automotive_design') ;

#30 (
GEOMETRIC_REPRESE
NTATION_CONTEXT (3|

)
GLOBAL_UNCERTAINT

ED_CONTEXT ((#1,
#18,#29))
REPRESENTATION_CO
NTEXT('NONE!,
"WORKASPACE'))

WITH_UNIT
(), #1,
‘distance_acc
uracy_value',
'NONE');

.RADIAN.));

#29 = (LENGTH_UNIT (
*)SI_UNIT ($,
.STERADIAN.)

SOLID_ANGLE_UNIT ()

)3

48

ENTITY b_spline_curve_with_knots

(* SCHEMA step_merged_ap_schema; *)

ENTITY b_spline_curve_with_knots
SUBTYPE OF (b_spline_curve);
knot_multiplicities :
knots : LIST [2:?] OF parameter_value;
knot_spec : knot_type;

DERIVE

upper_index_on_knots

WHERE
wrl:

LIST [2:2] OF INTEGER;

INTEGER := SIZEOF(knots);

constraints_param_b_spline(degree, upper_index_on_knots, upper_index_on_control_points, knot_multiplicities, knots);

wr2

END_ENTITY;

Explicit Attributes

SIZEOF (knot_multiplicities) = upper_index_on_knots;

Entity b_spline curve with_Kkunots /ias the following local and inherited explicit attributes.

closed_curve
self_intersect
knot_multiplicities
knots

knot_spec

LOGICAL

LOGICAL

LIST OF INTEGER

LIST OF parameter_value (REAL)
knot_type (ENUM)

Attribute Type Defined By

name label (STRING) representation_item
degree INTEGER b_spline_curve
control_points_list LIST OF cartesian_point (ENTITY) b_spline_curve
curve_form b_spline_curve_form (ENUM)

b_spline_curve
b_spline_curve
b_spline_curve
b_spline_curve_with_knots
b_spline_curve_with_knots
b_spline_curve_with_knots

Figure 3.41 B-spline curve entity [9]

The entity for b spline curve is shown in the figure 3.41. It shows certain attributes with

different types.

CARTESIAN_FOINT (
CARTESIAN_POINT (
“ARTESIAN POINT (
“ARTESIAN POINT (
(
(

"ARTESIAN_ POINT
§33 = CARTES IAN POINT

GEOMETRICALLY_ BOUNDED_WIREFRAME SHAPE REPRESENTATION ('Spline.stp',
B_SPLINE_CURVE WITH_ENOTS ("NONE', 2 , (#28,%29,§30,§31,#32,433), .UNSPECIFIED., .F., .F.,(3,1,1,1,3),(0,0.25,0.5,0.75,1), .UNSPECIFIED.) ;
'NONE
'NONE
'NONE
'NONE
'NONE
'NONE

.0000000000000000000, 1.0000000000000000000,
.0000000000000000000, 0000000000000000000,
.0000000000000000000, 0000000000000000000,
.0000000000000000000, 0000000000000000000,

[N N

Ly ok

"
"
"l
"
"

', { 4.0000000000000000000, 5.0000000000000000000,

10.0000000000000000000, 10.0000000000000000000, 0.0000000000000000000)

(821, #9), £12) ;

0.0000000000000000000)
.0000000000000000000)
.0000000000000000000)
0.0000000000000000000)

oo

0.0000000000000000000)) ;

The screenshot taken from spline STEP File. The curve is made up of 6 control points with 2"
degree (3" order). The curve is clamped and not self-intersecting. Knot vector has value from 0
to 1 with k order multiplicity. The input must be accurate to run the function. Otherwise it will
give an error. The similar way for surface representation, the entity called
b_spliine_surface_with_knots used.

\

N/

\

Figure 3.42 Result imported in the SolidWorks for curve

The above step file developed in MATLAB and imported in the SolidWorks as depicted in the
figure 3.42. Control polygon is optional in this case.

49

ENTITY b_spline_surface_with_knots

(* SCHEMA step merged ap_schema; *)

ENTITY b_spline_surface_with_knots
SUBTYPE OF (b_spline_supface);
u_multip es 1 LIST [2:?] OF INTEGER;
v_multiplicities : LIST [2:7] OF INTEGER;
u_knots : LIST [2:?] OF parameter_value;
v_knats : LIST [2:7] OF parameter value;
knot_spec : knot_type;
DERTVE
knot_u_upper t+ INTEGER 1= SIZEOF(u_knots)y
knot_v_upper : INTEGER := SIZEOF(v_knots)s
WHERE
wrl:
constraints_paran_b_splina(SELFA\b_spline_surface.u_degree,
wr2:
constraints paran b_spline(SELFAb_spline surface.v_degree,

WR3 1
SIZEOF(u_multiplicities) = knot_u_uppers

SIZEOF(v_multiplicities) = knot_v_upper;
END_ENTITY;

Explicit Attributes

knot_u_upper, SELF\b_spline_surface.u_upper, u_multiplicities, u_knots);

knot_v_upper, SELF\b_spline surface.v_upper, v_multiplicities, v_knots)y

Enrity b_spline_surface_with_knots Jias the folloving local and inherited explicit arrributes:

[Ateribute Type
name label (STRING)
u_degree INTEGER
v_degree INTEGER
control_points_list LIST OF LIST OF cartesian_point (ENTITY)
surface_form b_spline_surface_form (ENUM)
u_closed LOGICAL
v_closed LOGICAL
self_intersect LOGICAL
u_multiplicities LIST OF INTEGER
v_multiplicities LIST OF INTEGER
u_knots LIST OF parameter_value (REAL)
v_knots LIST OF (REAL)
_| knot_spec knot_tvpe (ENUM)

Defined By

b_spline_surface_with_knots
b_spline_surface_with_knots
b_spline_surface_with_knots
b_spline_surface_with_knots

b_spline_surface with knots

Figure 3.43 B-spline surface entity [9]

The following figure3.44 and 3.45 represents the output from MATLAB and STEP Files

correspondingly.

'NURBS Surface

5- z s s

gy

s

Figure 3.44 B-spline Surface

Figure 3.45 B-spline STEP File

50

Chapter 4 Results

Algorithm requires control point information to create a surface. Sample block has been used to
recreate the surface generated in inspire software. Figure 2.11 shows the topology optimization
result. Sample cross sections have been generated using PolyNURBS tools as shows in figure
4.1. Control points have been used in the algorithms to recreate the surface as shown in the
figure 4.2

W
il

Mgy i
T
R

Figure 4.2 MATLAB result for closed contour

Designer can vary the degree in u, w or both the direction, control points, and weightages to
modfy the shape. The figure 4.3 shows the similar contour for 2" order in u and w directions.
Algorithms can be find in Appendix. Figure 4.5 represents the result for partially closed surface.
Algoeihm is capable of producing complicated geometries with ease of handeling.

51

zn

Figure 4.4 Open cross section fit using PolyNURBS tool

Result
-
s
(1= ’/'/"
’//
0
(g 7 \\
AN\
iz ~\\\\ \
- i =§§\\\\\
e 177722\ \ \
< ; 172NN\
: ¢ e \%&\\\\\\
» 0 \\\\\\ \
X
R\
i \\ \
- i) \\
///&%//"/”/I"/I/'I/’”//"/@ %
i 0
/,//4///,//,//,/%/,,/4
sl
L
i
n | | | | | | | | &/44’,’?"//& i
(] 005 o [T 02 (V] 03 0% o iU 0 o an [(X}
X-Aes X-As

]

Figure 4.5 MATLAB result for partially closed contour

52

Chapter 5 Conclusion

In this research work, different types of free form curves and surfaces have been studied and
built framework in the MATLAB to support the creation of various types of surfaces. Designer
has various degrees of freedom to modify the NURBS Surface. Some information is required to
run the Algorithm like control points, knot vector and degree. One can easily change the shape
of the surface by varying knot vector, dragging the control points. Detailed discussion of the
different types of curves and surfaces have been discussed with examples.

STEP AP 214 standard for data exchange has been studied and implemented. Data structure has
been discussed along with examples to illustrate the working of STEP file. STEP file is
compatible in CAD and CAE software. Therefore, it is easy to use the generated geometry from
MATAB in CAD Software.

53

Chapter 6 Future work

The main aim of the research work is to automate the process of creation of NURBS surfaces on
rough topology. It requires intersection, smooth blending of two surfaces, Boolean operation to
complete the task. | have created basic building block. Further operations can be performed
using these algorithms to achieve the task.

In some parametric CAD Software, STEP file does not preserve the control points of the NURBS
surface. To overcome this limitation, CAD software provides their API to create specific
application. One can use these APIs to create an application to create an NURBS surface to
retain the control points.

54

Appendix A Bezier Curve code

BezierCurve.m

clear;clc;

% input coordinate values
X=[123456];
Y=[425123];

% Parameter

u=0:0.01:1;

% Number of control points
n = numel(X) ;

% Initial Values
X_vector=0;

Y_vector =0;

fori=0:n-1

% Calculating Basis Function

B = basis(i,n-1) ;

% Calculating X and Y vectors
X_vector = X_vector + B.*X(i+1);
Y_vector = Y_vector + B.*Y(i+1);

grid on

end

hold on
% plotting X and Y component vector
plot(X,Y,'k")

plot(X_vector,Y_vector,'b')

title('Bezier Curve','fontsize',14)

xlabel(' X - Axis ','fontsize',14)
ylabel('Y - Axis ','fontsize',14)

fori=1: numel(X)

txt = ['(",num2str(X(i)),’,",num2str(Y(i)),")'];
text(X(i)+0.06,Y(i),txt,'fontsize',14)

end

grid on

legend(' Control Polygon ',' Bezier Curve ')

basis.m

function [B] = basis (i, n)
$Parameter

u=0: 0.01:1;

% Calculating Polynomial

o°

C = combination(n,i);
U= u.1 ;

Ui = (1-u)."(n-1i) ;
B = U.*C.*U1i ;

end

combination.m

function [out] = combination(n,i)
X = factorial (n);

Y = factorial (i)

7z = factorial (n-i):;

out = X./(Y*Z);

end

56

Appendix B B-spline Basis Function code

BasisFunction.m

% N Represents the basis funtion final value
function [N] = BasisFunction(ii , t , k , u , n)

% initializing Zero vector for basis function wvalues
N = zeros(n+l , length(u));

for K= 2 : k

if K ==

% Calculating Basis function values for 2nd order

for 1 = 4ii ¢ (i1 + k = 2)
FirstOrder = Primary basis(i , t , u, K-1) ;
Numerator = (u -t (1 + 1))
Denominator = t (i + K) -t (1 + 1) ;
if Denominator ~= 0
N(i+ 1, :) = FirstOrder.* (Numerator./ Denominator)
end
FirstOrder = Primary basis(i + 1 , t , u , K-1) ;
Numerator = (t(i + K + 1) - u) ;
Denominator = t(1 + K+ 1) - t(i1+ 2) ;
if Denominator ~= 0

N(i+ 1, :) =0N(i4+41 , :)+FirstOrder.*(Numerator./ Denominator)

end

end

else
% Rest of the basis function calculations
for i = ii: (i1 + k - K)
Numerator =(u - t(1 + 1)) ;
Denominator = t(1 + K) - t(i1 + 1) ;

if Denominator ~= 0

N(i+ 1 ,:) =N(1i+4+ 1 ,:).*(Numerator./ Denominator) ;
end
Numerator = (¢(1 + K+ 1) - u) ;
Denominator = t(1 + K+ 1) - t(i+ 2) ;

if Denominator ~= 0

N(i4+41 ,:)=N(i+1 ,:) 4+ N(142 ,:).* (Numerator./ Denominator):;
end
end
end
end
end

I4

4

57

Primary basis.m

function [First BasisFunc] = Primary basis(i , t , u, K)
% Using Indexing concept in parameter u to calculate the first order
values

if i <t (end - K + 1)

First BasisFunc (u>t(i1+1) &u<=t(Ci+2)Y)y)

else

First BasisFunc = (u >= t(i+ 1) &du<=¢t(i+2)) ;

end

Appendix C Clamped B-spline Curve code

B_Spline_Cuve_Clamped.m

clear;clc;

% Input Coordinates
X=[1 468 9 4 3];
Y=[1252 95 9];
% Input Order

:4;

% Number of control points
n = length(X) - 1 ;

% initializing Variables
ij = 1;

K=%k -1;

Spacing = 500;
T = zeros (l,n+k+1) ;

% knot vector
for 1 =0 : n + k

T(1+ 1) =n-%k + 2;
end

end
% Adjusting spacing

while 1

if rem(Spacing, T(end)) == 0
break
end
Spacing = Spacing + 1;

end
% Parameter range
u = linspace(T(k) , T(n + 2) , Spacing) ;
hold all

o)

% Initializaing loop from O to number of curve segments
for i = 0: n -k + 1

Temp = BasisFunction (i , T , k , u , n) ;
Ax = Temp (i + 1 , Primary basis (K, T, u, 1)) ;
% initializing zero vector for X and Y Component
X Vector Segment = zeros(1 , numel(Ax)) ;
Y Vector Segment = zeros(1 , numel(Ax)) ;
% Extracting curve segments from basis function
for ii =1 : 1 + k -1
BasisFunc Value = BasisFunction (ii , T , k , u , n) ;
% Calculating the value for a curve segment
X Vector Temp = BasisFunc Value (ii + 1 ,Primary basis(K ,
, 1)) 2 X(1i1+ 1)
Y Vector Temp = BasisFunc Value (ii + 1 ,Primary basis(K ,
, 1)) Y (ii+ 1)

X Vector Segment = X Vector Segment + X Vector Temp ;
Y Vector Segment Y Vector Segment + Y Vector Temp ;

end

K=K+ 1 ;

xlabel ("X-Axis")

ylabel ('Y-Axis")
% Storing curve segments in a single vector
for i = 1 : Spacing/T (end)

X Vector(i1j) = X Vector Segment(i) ;
Y Vector(ij) = Y Vector Segment(i) ;
i3 =13 + 1 ;
end
% plotting control points
for 1 = 1: numel (X)
txt = ["(',num2str(X(i)),", ", num2str(¥Y(i)),")"'1;

text (X (1)+0.06,Y (1), txt)

end
end

K=%k-1;

% Plotting the curve
hold on

plot (X Vector,Y Vector)

% marking curve segments in a plot
for i =0 :n -k +1

Index X = X Vector(1 , Primary basis(K , T , u,
Index Y = Y Vector(1 , Primary basis(K , T , u,
Ix = Index X(end) ;

Iy = Index Y(end) ;

text(Ix , Iy , '"X')

K=K+ 1 ;

end

% Control polygone

plot(X,Y,'r")

legend('Bezier curve', 'Control Polygone', 'Location', 'northwest"')
grid on

title('B-spline Curve')

Appendix D Closed B-spline Curve code

Bspline_Closed_Curve.m

clear;clc;
% Input Coordinates
X=[1 468 9 4 3];

Y= 1252 95 9];

% Input order

k=4 ;

% Number of control points
n = length(X) - 1 ;

% Initializing Variables
ij =1 ;

K=k -1;

Spacing = 5000;

% Defining Knot Vector
t =0 :n+ k;
Adjusting Spacing

o°

while 1
if rem(Spacing,ntk) == 0
break
end
Spacing = Spacing + 1;
end

% Parameter u
u = linspace(t(1) , t(end) , Spacing) ;

hold all

for 1 =0 : n

o

% Defining a constraint for closed curve for repeat control points
if (1 ==n -k + 2)

end
Temp = BasisFunction(i , t , kK, u, n) ;
Segment Size = (Temp (1 + 1 , Primary basis(K, t , u, k)));
% initializing zero vector for X and Y Component
X Vector Segment = zeros(1 , numel(Segment Size)) ;
Y Vector Segment = zeros(1 , numel(Segment Size)) ;
% Extracting Curve segments
for i1 =1 : 1 + k -1

[o)

% constraint for repeating control point
if (i <=n-%k + 1)

Jjz = 1ii ;
else

jz = ii- (n - k + 2) ;
end

if i1 >>=n + 1

ii = i1 + 1 ;
end
BasisFunc Value = BasisFunction(jz , t , k, u, n) ;
% Calculating the value for a curve segment

X Vector Temp = (BasisFunc Value(jz + 1 , Primary basis(K , t ,
u, k))). *X(mod(ii + 1 , n + 2)) ;

Y Vector Temp = (BasisFunc Value(jz + 1 , Primary basis(K , t ,
u, k))).*Y(mod(ii + 1 , n + 2)) ;

X Vector Segment = X Vector Segment + X Vector Temp ;
Y Vector Segment = Y Vector Segment + Y Vector Temp ;

end
K=K+ 1 ;

xlabel ("X-Axis")
ylabel ('Y-Axis")

% Storing curve segments in a single vector
for 1 = 1 : length(X Vector Segment)

X Vector(ij) = X Vector Segment(i) ;
Y Vector(ij) = Y Vector Segment(i) ;
ij = 13 + 1 ;

61

end
% plotting control points
for 1 = 1: numel (X)

txt = ["(',num2str(X(i)),", ", num2str(¥Y(i)),")"'1;

text (X(1i)+0.06,Y (i), txt)

end
end
hold all
% Plotting the curve
plot (X Vector,Y Vector)
% Plotting Control polygon
plot (X,Y)
grid on
title(' Closed B-spline Curve', 'FontSize',6 14)

Appendix E Open B-spline Curve code

Bspline Open Curve.m

t Coordinates
6 8 10 4 3];
5210 5 9 1;
Order

pu
4
2

Number of control points
n = length(X) - 1 ;
% initializing Variables
ij =1 ;
K =k - ;
Spacing 500;
% knot vector
=0 : ntk ;
% Adjusting spacing
while 1

=

=

if rem(Spacing,n+k) == 0

break
end

Spacing = Spacing + 1 ;

end

% Parameter range

u = linspace(T(1) , T(end) , Spacing) ;
hold all

N = zeros(n+l , length(u),k);

62

for i =0 :n -k +1

Temp = BasisFunction(i , T , k , u, n) ;
Ax = Temp (i + 1 , Primary basis(K , T , u, 1)) ;
% initializing zero vector for X and Y Component
X Vector Segment = zeros(1 , numel(Ax)) ;
Y Vector Segment = zeros(1 , numel(Ax)) ;
% Extracting curve segments from basis function
for ii =1 : 1 + k -1
BasisFunc Value = BasisFunction (i1 , T , k , u , n) ;
% Calculating the value for a curve segment
X Vector Temp = BasisFunc Value (ii + 1 , Primary basis(K , T ,
ua, 1)) .*X(4ii + 1)
Y Vector Temp = BasisFunc Value (ii + 1 , Primary basis(K , T ,
a, 1)) .*Y(ii + 1) ;

X Vector Segment = X Vector Segment + X Vector Temp ;
Y Vector Segment Y Vector Segment + Y Vector Temp ;

end

K=K+ 1;

xlabel ("X-Axis")

ylabel ('Y-Axis")
% Storing curve segments in a single vector
for i = 1 : Spacing/T (end)

X Vector(ij) = X Vector Segment(i) ;
Y Vector(ij) = Y Vector Segment(i) ;
i3 =13 + 1 ;
end
% plotting control points
for 1 = 1: numel (X)
txt = [' (', num2str (X(1i)),"', ", num2str(Y(i)),")"1;

text (X (1)+0.06,Y (1), txt)
end

end

K=%k-1;

% Plotting the curve

hold on
plot (X Vector,Y Vector)

% Control polygone

plot(X,Y,'r")

legend ('Bezier curve', 'Control Polygone', 'Location', 'northwest')
grid on
title('B-spline Curve')

63

Appendix F NURBS Curve code
NURBS Curve.m

clear;clc;
% Input Coordinates

X=[14 6 8 10 4 31;

Y=[1 252 10 5 9];

% Input Weightages
WwW=[(1111111];

% Input Order

k = 4;

% Number of control points
n = length(X) - 1 ;

% initializing Variables
ij =1 ;

K=k -1;

Spacing = 500;
T = zeros(1l,n+k+1) ;

% knot vector
for 1 =0 : n + k

if (1 < k)
T(i+ 1) = 0;
elseif (1 >= k && 1 <= n)
T(i+ 1) =1-%k + 1;
else
T(i+4+ 1) =n-%k+ 2;
end
end
% Adjusting spacing
while 1
if rem(Spacing, T(end)) == 0
break
end
Spacing = Spacing + 1 ;
end
% Parameter range
u = linspace(T(k) , T(n + 2) , Spacing) ;
hold all

[o)

% Initializaing loop from O to number of curve segments
for i =0 : n -k +1

Temp = BasisFunction (i , T , k, u, n) ;

Segment Size = Temp (1 + 1 , Primary basis (K, T ,

o)

% initializing zero vector for X and Y Component
X Vector Segment = zeros(1 , numel(Segment Size))

Y Vector Segment = zeros(1 , numel(Segment Size)) ;

Weight = zeros(1 , numel(Segment Size));
% Extracting curve segments from basis function
for ii =1 : 1 + k -1
BasisFunc Value = BasisFunction (i1 , T , kK , u, n) ;
% Calculating the value for a curve segment
X Vector Temp = BasisFunc Value (ii + 1 , Primary basis(K ,
u, 1)) .*X(ii 4+ 1). *W(ii+l) ;
Y Vector Temp = BasisFunc Value (ii + 1 , Primary basis(K ,
u, 1)) .*Y(dii 4+ 1). *W(ii+l) ;
% Calculating the Weight wvalue for a curve segment
Weightl = BasisFunc Value (ii + 1 , Primary basis(K , T ,
)) LKW (ii+1);

X Vector Segment
Y Vector Segment

Weight = Weight + Weightl ;
end

K=K+ 1;

xlabel ('X-Axis', "fontsize',14)

yvla

o
°

o°

bel ('Y-Axis', "fontsize',14)
rationalizing

= X Vector Segment + X Vector Temp ;
Y Vector Segment + Y Vector Temp ;

X Vector Segment rational = X Vector Segment./Weight ;

Y Vector Segment rational

for

end

for

end
end
K =k
hold o
plot (

for 1

Index

Y Vector Segment./Weight ;

i =1 : Spacing/T(end)
X Vector rational(ij) = X Vector Segment rational(i)
Y Vector rational(ij) = Y Vector Segment rational(i)

iy =i + 1 ;

i = 1: numel (X)

txt = [' (', num2str(X(1i)), "', ", num2str(Y(i)),")"1;
text (X(1)+0.06,Y (1), txt, 'fontsize',14)

-1 ;
n
X Vector rational,Y Vector rational)

O :n-%k + 1

X = X Vector rational(1 , Primary basis(K , T , u, 1)

T

T

14

’

1

65

Index Y = Y Vector rational(1 , Primary basis(K ,
Index X(end

Ix =
Iy =
text
K =

end

(
K

Ix ,
+ 1 ;

Iy

plot(X,Y,'r")

legend('B-spline curve', 'Control Polygone', 'Location', 'northwest')

grid on
title ('NURBS Curve', 'fontsize',14)

)
Index Y(end)

"X

’

’

)

Appendix G Closed NURBS Surface code

NURBS_Closed_Surface.m

clear;clc

% Input X,

Y,and Z Coordinates

X=[0.061698 0.071774 0.070062 0.059986
0.065628 0.084467 0.083066 0.064227
0.057123 0.075364 0.075205 0.056964
0.0080743 0.0075549 0.0074432 0.0079626
-0.010412 -0.037753 -0.044874 -0.017533
-0.021948 -0.0306409 -0.040444 -0.025983
0.026669 0.019722 0.022996 0.029943

17

0.037719 0.037811 0.04136 0.04094

Y=[0.061738 0.046845 0.047594 0.062487
.070868
.080518
.083421
.083868
.072696
.041549
.036079

— O OO OO oo

’

OO OO O oo

.079404
.098145
.099943
.095738
.066214
.030444

O O O O oo

.080115 0.071579
.10084 0.083217
.10264 0.08612
.098536 0.08666
.075214 0.081697
.03492 0.046025
.0089147 0.013787 0.040951

Z=[0.050461 0.049951 0.00043675 0.00094618
.050416 0.050713 0.0021967 0.0018999
.049938 0.049571 -0.0010824 -0.0007154
.049866 0.05076 0.0001538 -0.00074082
.049152 0.053339 -0.00095205 -0.005139
.05 0.05 0 0
.050865 0.049426 -0.00093744 0.00050112
054991 0.05253 -0.0028496 -0.00038885

O O O O oo

0.

17

Weightages=|[

PR e e
PR e e
PR e e

66

e
e

e = size(X) ;

Number of Contr

m=Size (2)-1;
% Knot wvector in
T = linspace (0 ,

% Knot vector in
t = linspace (0 ,

USpacing = 200;
% Adjusting Spaci
while 1
if rem (US
break
end
USpacin
end

WSpacing=(m+1l) .* (
Parameter value
= linspace(O,

Parameter value
= linspace (0,1,

o°

s o0 o

=
|

=1 - 1;
K=k -1

.
14

for i=0 :n
% Defining a
points
if (1 == n

K=k -1;
end
Colume=1;

IL=1-1;

% Defining a
points

for =0 : m

e
e

17
u direction

w direction

ol points in w direction

w direction
1, m+ 1+ 1) ;
u direction
1, n+k+1) ;

ng in u and w directions

pacing,n + k)==0
g=USpacing+1;

USpacing./ (k+n)) ;
for u

1 , USpacing) ;
for w

WSpacing) ;

constraint in u direction

-k + 2)

constraint in w direction

to repeat the control

to repeat the control

67

end
% Calculating the size of column in a patch
Patch u dimension =(USpacing./ (n+k));

o)

% initializing zero vector in a u direction segment

Xu Vector Segment=zeros(l,Patch u dimension);Yu Vector Segment=zeros (1l
,Patch u dimension);Zu Vector Segment=zeros(l,Patch u dimension);

o)

% Converting vector into matrix form

[Xu Vector Segment]=meshgrid(Xu Vector Segment);[Yu Vector Segment]=me
shgrid(Yu Vector Segment); [Zu Vector Segment]=meshgrid(Zu Vector Segme
nt);

Weightl=zeros(l,Patch u dimension); [Weightl]=meshgrid(Weightl);

for ii =1 :14 + k -1

% constraint for repeating the control point in u direction
if (1 <=n-%k + 1)

Jjz = 1ii ;
else

jz = ii- (n - k + 2) ;
end

if i1 > n + 1
ii = i1 + 1 ;
end

% Calculating the size of raw in a patch
Patch w dimension=(WSpacing./ (m+1));

[o)

% initializing zero vector in a w direction segment

Xw _Vector Segment=zeros(l,Patch w dimension);Yw Vector Segment=zeros(l
,Patch w dimension);Zw Vector Segment=zeros(l,Patch w dimension);

o)

% Converting vector into matrix form

[Xw Vector Segment]=meshgrid(Xw Vector Segment); [Yw Vector Segment]=me
shgrid(Yw Vector Segment); [Zw Vector Segment]=meshgrid(Zw Vector Segme
nt) ;

Weight=zeros (1,Patch w dimension); [Weight]=meshgrid(Weight) ;

for 33 = j:3+1-1
% constraint for repeating the control point in w direction
if (J <=m-1+1)

zj = 33 7
else

z) =33 - (m-1+2) ;
end

68

if §j3 >=m + 1
JjJ =33+ 1
end
% Calculating values of basisfunctions in u direction
BasisFunc u direction=BasisFunction(jz,t,k,u,n);

% Extracting Curve segments in u direction

Ua=(BasisFunc u direction(jz+1l,Primary basis(K,t,u,1l
Ub=(BasisFunc u direction(jz+1,Primary basis(K,t,u,1l
Uc=(BasisFunc u direction(jz+1l,Primary basis(K,t,u,1l
Uw=(BasisFunc u direction(jz+1l,Primary basis(K,t,u,1l

% Calculating values of basisfunctions in w direction
BasisFunc w direction=BasisFunction(zj,T,1,w,m);

% Extracting Curve segments in w direction

Wx=(BasisFunc w direction(zj+1l,Primary basis(L,T,w,1))) .*X(mod(ii
+ 1, n+ 2), mod(jj + 1 , m+ 2));

Wy=(BasisFunc w direction(zj+1,Primary basis(L,T,w,1))) .*Y(mod(ii
+ 1, n+ 2), mod(jj + 1 , m+ 2));

Wz=(BasisFunc w direction(zj+1l,Primary basis(L,T,w,1))).*Z(mod(ii
+ 1, n+ 2), mod(jj + 1 , m+ 2));

W
=(BasisFunc w direction(zj+l,Primary basis(L,T,w,1))) .*Weightages (mod

ii+1, n+2), mod(JjjJ+1 , m+ 2));

[Ua,Wx]=meshgrid (Ua, Wx) ;
[Ub,Wy]l=meshgrid (Ub, Wy) ;
[Uc,Wz]=meshgrid (Uc,Wz) ;
[Uw,W]=meshgrid (Uw, W) ;

Xw Vector Segment=Xw Vector Segment+Wx;Yw Vector Segment=Yw Vector Seg
ment+Wy;Zw Vector Segment=Zw Vector Segment+Wz;
Weight=Weight+W;

end
Weightl=Weightl+Weight.*Uw;

o)

% Forming a patch

Xu Vector Segment=(Xu Vector Segment+Ua.*Xw Vector Segment);Yu Vector
Segment=(Yu Vector Segment+Ub.*Yw Vector Segment);Zu Vector Segment=(Z
u Vector Segment+Uc.*Zw Vector Segment);

end

% Rationalizing the X,Y, and Z vectors
Xu Vector Segment Rational=Xu Vector Segment./Weightl;Yu Vector Segmen
t Rational=Yu Vector Segment./Weightl;Zu Vector Segment Rational=Zu Ve
ctor Segment./Weightl;

% extracting and Storing the patch wvalues

for I=1:length(Xu Vector Segment)

if i==
Raw=1;

69

else
Raw=i*length (Xu Vector Segment)+1;
end
for kk=l:length (Xu Vector Segment)

Xu Vector (Raw,Colume)=Xu Vector Segment Rational (I,kk);
Yu Vector (Raw,Colume)=Yu Vector Segment Rational (I,kk);
Zu Vector (Raw,Colume)=Zu Vector Segment Rational (I, kk);
Raw=Raw+1;

end
Colume=Colume+1;
end

L=L+1;
end
K=K+1;

end
hold all

TEMP = size(Xu Vector) ;
% Closing the curve by repeating the first raw and column values
for i = 1 : TEMP (1)
Xu Vector (i,TEMP(2)+1) = Xu Vector(i,1l) ;
Yu Vector (i, TEMP (2)+1) Yu Vector (i,1) ;
Zu Vector (i, TEMP(2)+1) = Zu Vector(i,1l) ;
end
TEMP = size (Xu Vector) ;

for 1 = 1 : TEMP(2)

Xu Vector (TEMP(1)+1,i) = Xu Vector(l,i) ;
Yu Vector (TEMP(1)+1,i) = Yu Vector(l,i) ;
Zu Vector (TEMP(1)+1,i) = Zu Vector(l,i) ;

end
% Plotting the closed surface
surf (Xu Vector,Yu Vector,Zu Vector)
colormap summer
% Plotting the control net
plot3(X,Y,2)
plot3(X',Y',z2")
grid on
xlabel ('X-Axis')
ylabel ('Y-Axis")
zlabel ('Z-Axis'")

70

Appendix H Partially Closed NURBS Surface code
NURBS_Clamped_Closed_Surface.m

clear;clc

% Input X,Y,and Z Coordinates and weightage

X=[0.061698 0.071774 0.070062 0.059986
0.065628 0.084467 0.083066 0.064227
0.057123 0.075364 0.075205 0.056964
0.0080743 0.0075549 0.0074432 0.0079626
-0.010412 -0.037753 -0.044874 -0.017533
-0.021948 -0.0306409 -0.040444 -0.025983
0.026669 0.019722 0.022996 0.029943
0.037719 0.037811 0.04136 0.04094
0.061698 0.071774 0.070062 0.0599861];

Y=[0.061738 0.046845 0.047594 0.062487

0.070868 0.079404 0.080115 0.071579
0.080518 0.098145 0.10084 0.083217
0.083421 0.099943 0.10264 0.08612
0.083868 0.095738 0.098536 0.08666
0.072696 0.066214 0.075214 0.081697
0.041549 0.030444 0.03492 0.046025
0.036079 0.0089147 0.013787 0.040951
0.061738 0.046845 0.047594 0.0624871];

Z=[0.050461 0.049951 0.00043675 0.00094618

0.050416 0.050713 0.0021967 0.0018999
0.049938 0.049571 -0.0010824 -0.0007154
0.049866 0.05076 0.0001538 -0.00074082
0.049152 0.053339 -0.00095205 -0.005139
0.05 0.05 0 0
0.050865 0.049426 -0.00093744 0.00050112
0.054991 0.05253 -0.0028496 -0.00038885
0.050461 0.049951 0.00043675 0.000946187;
Weightages=[1 1 1 1
1111
1111
1111
1111
1111
1111
1111
111171;
Size = size (X) ;

[o)

% Number of raws
n=Size (1)-1;

% Number of Columns
m=3Size (2)-1;

o)

o

= 1 -
USpacing

’

100;

Knot vector in u direction
for j=l:n+k+1

end

[o)

€]

if ((5-1)<k

)
t(j) = 0;
elseif ((j-1)>=k && (j-1)<=n)
t(3) = (3-1) - k + 1;
else
t(j) = n - k + 2;
end

Adjusting Spacing in u and w directions

while 1
if rem(USpacing, t (end-k+1))==
break
end
USpacing=USpacing+1;
end

%

T

Knot vector in w direction

linspace(0 , 1 , m + 1 + 1) ;

WSpacing= (m+1) .* (USpacing./t (end-k+1));
Parameter value for w

o°

oe =,

c

linspace (0, 1,WSpacing) ;

Parameter value for u

linspace(t (k) ,t (end-k+1),USpacing);

for i=0 :n-k+1

Colume=1;
IL=1-1;

for j= 0 : m
% Defining a constraint in w direction to repeat the control

points

if (J==m-1+ 2)
L=1-1;

end

% Calculating the size of column in a patch
Patch u dimension=(USpacing./ (n-k+2));

o)

% initializing zero vector in a u direction segment

Xu Vector Segment=zeros(l,Patch u dimension);Yu Vector Segment Rationa

72

l=zeros (1,Patch u dimension);Zu Vector Segment=zeros(l,Patch u dimensi
on);
% Converting vector into matrix form

[Xu Vector Segment]=meshgrid(Xu Vector Segment); [Yu Vector Segment Rat
ional]=meshgrid(Yu Vector Segment Rational); [Zu Vector Segment]=meshgr
id(Zu_Vector Segment);

Weightl=zeros (1,Patch u dimension); [Weightl]=meshgrid(Weightl) ;

for ii = 1i :4 + k -1
Patch w dimension=(WSpacing./(m+1));

Xw Vector Segment=zeros(l,Patch w dimension);Yw Vector Segment=zeros (1l
,Patch w dimension);Zw Vector Segment=zeros(l,Patch w dimension);

[Xw Vector Segment]=meshgrid(Xw Vector Segment);[Yw Vector Segment]=me
shgrid(Yw Vector Segment); [Zw Vector Segment]=meshgrid(Zw Vector Segme
nt);

Weight=zeros (1,Patch w dimension); [Weight]=meshgrid(Weight) ;

for 33 = j:3+1-1
% constraint for repeating the control point in w direction
if (3 <=m-1+1)

zj = 33 7
else

23 =33 - (m=-1+2) ;
end

if 33 >=m + 1
33 jj o+ 1 ;
end

% Calculating values of basisfunctions in u direction
BasisFunc u direction=BasisFunction(ii,t,k,u,n);

% Extracting Curve segments in u direction
Ua=(BasisFunc_u direction(ii+l,Primary basis(
Ub=(BasisFunc u direction (ii+1l,Primary basis
Uc=(BasisFunc u direction (ii+1l,Primary basis
Uw=(BasisFunc u direction (ii+1l,Primary basis

% Calculating values of basisfunctions in w direction
BasisFunc w _direction=BasisFunction(zj,T,1l,w,m);

Wx=(BasisFunc w direction(zj+1,Primary basis(L,T,w,1))) .*X(mod(ii
+ 1, n+ 2), mod(jjJ + 1 , m+ 2));

Wy=(BasisFunc w direction(zj+1l,Primary basis(L,T,w,1))) .*Y(mod(ii
+ 1, n+ 2), mod(jj + 1 , m+ 2));

Wz=(BasisFunc_ w direction(zj+1,Primary basis(L,T,w,1))).*Z(mod(ii
+ 1, n+2), mod(jj + 1 , m+ 2));

W
=(BasisFunc w direction(zj+l,Primary basis(L,T,w,1))) .*Weightages (mod(

ii+1, n+2), mod(Jj + 1 , m + 2));

73

[Ua,Wx]=meshgrid (Ua, Wx) ;
[Ub,Wy]=meshgrid (Ub, Wy) ;
[Uc,Wz]=meshgrid (Uc,Wz) ;
[Uw,W]=meshgrid (Uw, W) ;
Xw Vector Segment=Xw Vector Segment+Wx;Yw Vector Segment=Yw Vector Seg
ment+Wy; 2w Vector Segment=Zw Vector Segment+Wz;
Weight=Weight+W;

end
Weightl=Weightl+Weight.*Uw;

o

% Forming a patch

Xu Vector Segment=(Xu Vector Segment+Ua.*Xw Vector Segment);Yu Vector
Segment Rational=(Yu Vector Segment Rational+Ub.*Yw Vector Segment);Zu
_Vector Segment=(Zu Vector Segment+Uc.*Zw Vector Segment);

end

% Rationalizing the X,Y, and Z vectors

Xu Vector Segment Rational=Xu Vector Segment./Weightl;Yu Vector Segmen
t Rational=Yu Vector Segment Rational./Weightl;Zu Vector Segment Ratio
nal=zZu Vector Segment./Weightl;

o

% extracting and Storing the patch wvalues

for I=1:length(Xu Vector Segment)
if i==
Raw=1;
else
Raw=i*length (Xu Vector Segment)+1;
end
for kk=l:1length (Xu Vector Segment)
Xu Vector (Raw,Colume)=Xu Vector Segment Rational (I,kk);
Yu Vector (Raw,Colume)=Yu Vector Segment Rational (I, kk);
Zu Vector (Raw,Colume)=Zu Vector Segment Rational (I, kk);
Raw=Raw+1;

end
Colume=Colume+1;
end
L=L+1;
end
K=K+1;
end

hold all
X1=X";
Yl=Y"';
Z21=72";

% Plotting the surface
surf (Xu Vector,Yu Vector,Zu Vector)

74

colormap summer
% Plotting the control net
plot3(X,Y, 2)
plot3(X1,Y1,721)

grid on

xlabel ("X-Axis")

ylabel ('Y-Axis")

zlabel ('Z-Axis")

Appendix | Curve STEP File code
STEP_Curve.m

clear;clc;

% Input Control points
X=[14 6 8 10 4];
Y= 1 252 10 5 1;

Z=[0 0 0 0 O O] >

% order

k = 3;

% Name Of the file
Filename ='Spline.stp' ;

StepConversion(X,Y,Z,k,Filename) ;

StepConversion.m

function StepConversion (X,Y,Z,k,Filename)

[o)

% opening a file
fid = fopen (Filename, 'w+tt');

if fid < O
fprintf ("Error \n');
return;

end

format long
% Number of control points
n = length(X)-1 ;

kk=k;

% knot wvector

for i= 0 : n + k

if (1< k)

Knot Vec(1 + 1) 0;
elseif (1 >= %k && 1 <= n)
Knot Vec(1 + 1) =1 - k + 1;
else
Knot Vec(1 + 1) =n - k + 2;
end
end
T = zeros (1 , numel (Knot Vec));

75

i=1;

% onverting Knot vector in zero to one span
for i =1 :n+ k + 1

if 1 <=k

-

T(i) = 0;
elseif i > k && 1i <= n + k + 1 - k
Space = linspace (0 , 1 , n -k + 3) ;
T(i1) = Space (ii+l);
ii = 1ii + 1 ;
else
T(i) =1 ;
end
end
Knot = zeros(l,n-k+3) ;
for 1 = 1 : numel (Knot)
if 1 ==
Knot (i) = k ;
elseif i1 == numel (Knot)
Knot (i) = k ;
else
Knot (i) =1 ;
end
end
Knotl = zeros (l,n-k+3) ;
for 1 = 1 : numel (Knotl)
if 1 == 1
Knotl (i) = 0 ;
elseif i == numel (Knotl)
Knotl (i) =1 ;
else
Knotl (i) = T (kk+1) ;
kk = kk+1 ;
end
end
T = Knot

Temp 3 = 0 ;

for i = 1 : length(T)
Temp 1 = num2str(T(i)) -
Temp 2 = length(Temp 1) ;
Temp 3 Temp 3 + Temp 2 ;

end

Knot Vec=zeros (1, Temp 3+length(T)-1+2);
ii= 1;1=1;33=1;

[o)

% Converting knot vector from double to character class

76

[Knot Vec] = Charconversion (Knot Vec,ii,i,3jj,T) ;
txt Knot = [char(Knot Vec)] ;
T 1 = Knotl ;
Temp 3 = 0 ;
for 1 = 1 : length(T 1)
Temp 1 = num2str (T _1(i)) -
Temp 2 length (Temp 1)
Temp 3 = Temp 3 + Temp 2 ;
end
t=zeros(l,Temp 3+length(T 1)-1+2);
ii= 1;1i=1;33=1;
[t] = Charconversion(t,ii,i,33,T 1) ;
txtl Knot = char(t) ;

[o)

% Calculating number of instances
Number = 28 ;

Entities = zeros(l,length(X));
for i = 1 : length(X)

Entities (i) = [Number];
Number = Number + 1;
end

Intance = Entities;

Temp 3 = 0 ;
for i = 1 : length(Intance)
Temp 1 = numZ2str (Intance(i)) ;
Temp 3 Temp 3 + length(Temp 1) ;
end
T Intance=zeros(l,Temp 3+length (Intance)-1+2);
ii= 1;1i=1;33=1;
[T Intance] = Charconversion(T Intance,ii,i,jj,Intance);

% Converting instnces into character class
txt Intance = char (T Intance) ;

% Header Section

fprintf (fid, 'ISO-10303-21;\n");

fprintf (fid, "HEADER; \n") ;

fprintf(fid,'FILE_DESCRIPTION ((""STEP AP214''),'"'1'");\n");
fprintf (fid, '"FILE NAME (''%s'',''2016-12-06T03:29:56"",(""'""), (""'"'
), ""SWwSTEP 2.0'',''SolidWorks 2015"'"','''");\n',Filename); % change
the name

fprintf (fid, 'FILE SCHEMA ((''AUTOMOTIVE DESIGN''));\n');

fprintf (fid, "ENDSEC;\n") ;

% Data Section
fprintf (fid, "DATA;\n");

fprintf (fid, "#22 = PRODUCT RELATED PRODUCT CATEGORY ('"'"part'', ""''",
(#4)) ;\n'");

fprintf (fid, "#23 = APPLICATION PROTOCOL DEFINITION ('"'draft
international standard'', ''automotive design'', 1998, #8) ;\n');
fprintf (fid, '#24 = APPLICATION PROTOCOL DEFINITION ('"'draft
international standard'', ''automotive design'', 1998, #6) ;\n');

77

fprintf (fid, "\n"');

(
fprintf(fid,'#25 SHAPE_DEFINITION_REPRESENTATION (#1, #26) ;\n");
fprintf (fid, "\n"');
fprintf(fid,'#l = PRODUCT_DEFINITION_SHAPE ("'"NONE'', '"'NONE'', #2)
;A\n');
fprintf(fid,'#2 = PRODUCT_DEFINITION ("'UNKNOWN'', '"'"'"', #3, #7)
;A\n');
fprintf(fid,'#3 = PRODUCTiDEFINITIONiFORMATION7WITHisPECIFIEDisoURCE (
'TANY'', '"''', #4, .NOTiKNOWN. y \n');
fprintf (fid, "#4 = PRODUCT (''Ss'', '"'Ss'', ""'""'' " (#5))
;\n',Filename,Filename) ;
fprintf (fid, '"#5 = PRODUCT CONTEXT (''NONE'', #6, ''mechanical'')
\n')
fprintf (fid, '#6 = APPLICATION CONTEXT (''automotive design'') ;\n');
fprintf (fid, '#7 = PRODUCT DEFINITION CONTEXT (''detailed design'',
#8, '"'design'') ;\n'");
fprintf (fid, '#8 = APPLICATION CONTEXT (''automotive design'') ;\n');

fprintf (fid, "\n");

fprintf (fid, '#26 =
GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION (""$s'', (#21,
#9), #13) ;\n',Filename) ;

% B-spline Curve Entity
Number = 28;

fprintf (fid, '#27 = B _SPLINE CURVE WITH KNOTS (''NONE'', %d
,%s, .UNSPECIFIED., .F., .F.,%s,%s,.UNSPECIFIED.) ; \n', k-

1,txt Intance, txt Knot,txtl Knot);
for i = 1 : length(X)

fprintf (fid, '#%d = CARTESIAN POINT ("'"NONE'', ($1.19f, %1.19f,
%$1.19f)) ;\n',Number,X(1),Y(1),Z(1));

Number = Number + 1 ;

end

Number = 28+length (X) ;
Entities = zeros(l,length(X)-1);

for i = 1 : length(X) -1

Entities (i) = Number;
Number = Number + 7;
end

Intance Entities;

for i = 1 : length(Intance)

Temp 1 = num2str (Intance(i)) ;

Temp 3 Temp 3 + length(Temp 1) ;
end
ii= 1;1i=1;33=1;

while 1
if i ==
T Intance Curveset(jj) = ',"' ;
elseif i == (2*numel (Intance) + 1)
T Intance Curveset(jj) = ")
break

L
4

78

else

if rem(i,2) == 0
if 33 < 1
3 =1
end
if Intance(i/2) > 9 || (length(num2str (Intance(i/2)))) > 1
Temp = num2str (Intance(ii)) ;
T Intance Curveset(jj) = '"#';

jj = 33+ 13

for j = 1 : length(Temp)

T Intance Curveset(jj) = Temp(J) ;
jj = Jj + 1;

end
ii = i1 + 1 ;
else
T Intance Curveset(jj) = '"#';
jj = 33+ 1 ;
T Intance Curveset (jj)= numZstr (Intance(ii)) ;
ii = i1 + 1 ;
jj =33 + 1
end
else
T Intance Curveset(jj) = ',"' ;
jj =33 + 1
end
end
i=1+1;
end
txt Intance = [char(T Intance Curveset)] ;
fprintf (fid, "#21 = GEOMETRIC CURVE SET ("'NONE'', (#27%s

);\n',txt Intance);
Intance trimmed = 28+length (X) ;

I =1;

% Control polygon (Optional)

for i = 1 : length(X) -1

Magnitude = sqrt ((X(1i)-X(i+1))"2+(Y (i)=Y (i+1))"2+(Z2(1)-2(1+1))"2) ;
fprintf (fid, '#%d = TRIMMED CURVE (''NONE'', #%d, (PARAMETER VALUE (

0.0000000000000000000), #%d), (PARAMETER VALUE (
1.000000000000000000), #%d), .T., .PARAMETER.)

;\n',Intance trimmed, Intance trimmed+3*I,Intance trimmed+I,Intance tri
mmed+2*1) ;

fprintf (fid, '#%d = CARTESTIAN POINT ("'"NONE'', (%f, Sf£, %f))
;\n',Intance trimmed+I,X(i),Y(1i),2(1));

fprintf (fid, '#%d = CARTESTIAN POINT ("'"NONE'', (%, S$f£, %f))
;\n',Intance_trimmed+2*I,X(i+l),Y(i+1),Z(i+l));

fprintf (fid, '"#%d = LINE ('"'NONE'', #%d, #%d);

\n',Intance trimmed+3*I,Intance trimmed+5*I,Intance trimmed+4*I);
fprintf (fid, "#%d = VECTOR (''NONE'', #%d, %$f)

;\n',Intance trimmed+4*I,Intance trimmed+6*I,Magnitude);

79

fprintf (fid, "#%d = DIRECTION (''NONE''", (%

;\n',Intance trimmed+6*I, (X(i+1l)-X(1i))/Magnitude,

Y (i))/Magnitude, (Z (i+1)-Z(i))/Magnitude) ;
fprintf (fid, "#%d = CARTESTAN POINT (""NONE "'
;\n',Intance trimmed+5*I,X(1i),Y(i),2(1));
Intance trimmed = Intance trimmed + 7;

end

fprintf (fid, "#9 = AXIS27PLACEMENT73D (""NONE'
;A\n');

fprintf (fid, "#10 = CARTESIAN POINT (""NONE'"',
0.0000000000000000000, 0.0000000000000000000,
) s\n');

, St))

£, %f
(Y (i+1) -

, (st , £, Sf£))

', #10, #11, #12)

(
0.0000000000000000000

fprintf (fid, '#11 = DIRECTION (''NONE'', (0.0000000000000C0COQOOOO,
0.0000000000000000000, 1.000000000000000000)) ;\n');

fprintf (fid, '#12 = DIRECTION (''NONE'', (1.000000000000000000,
0.0000000000000000000, 0.0000000000000000000)) ;\n");
fprintf (fid, "\n"');

fprintf (fid, "#13 =(GEOMETRIC REPRESENTATION CONTEXT (3
GLOBAL_UNCERTAINTY ASSIGNED CONTEXT ((#14))

GLOBAL UNIT ASSIGNED CONTEXT ((#15, #16, #17))

REPRESENTATION CONTEXT (''NONE'', '"'WORKASPACE''));\n'");

fprintf (fid, '#14 = UNCERTAINTY MEASURE WITH UN
1.000000000000000100E-005), #15, ''distance a
"'NONE''");\n'");

fprintf (fid, '#15 =(CONVERSION BASED UNIT (''
LENGTH UNIT () NAMED UNIT (#18));\n');
fprintf (fid, '#18 = DIMENSIONAL EXPONENTS (1.0
0.0000000000000000000, 0.00000000000000000QOO,
0.0000000000000000000, 0.000000000000000000C,
;\n');

IT (LENGTH MEASURE (
ccuracy value''

INCH'', #19)
00000000000000000,

0.00000000000000000OCOQ,
0.0000000000000000000

fprintf (fid, "#19 = LENGTH MEASURE WITH UNIT (LENGTH MEASURE (

0.02539999999999999900), #20);\n');

fprintf (£id, "#20 =(LENGTH_UNIT () NAMED UNIT (*) SI_UNIT (s,
.METRE.));\n'");

fprintf (fid, "#17=(NAMED UNIT (*) SI UNIT ($, .STERADIAN.)
SOLID ANGLE UNIT ());\n');

fprintf (fid, "#16 =(NAMED UNIT (*) PLANE ANGLE UNIT () ST UNIT (

.RADIAN.));\n'");
fprintf (fid, "ENDSEC;\n") ;

fprintf (fid, "END-ISO-10303-21;\n");
fclose (fid) ;

end

Charconversion.m

function [T1] = Charconversion(T1l,ii,i,3j3,T)
while 1
if 1 =1
T1(33) = "(' 5

)

)

Sy

80

elseif 1 == (2*numel (T) + 1)

T1(33) = ")";
break
else
if rem(i,2) == 0
if 33 < 1
jj =13
end
if T(i/2) > 9 || (length (num2str(T(i/2)))) > 1

Temp = num2str (T (ii)) -
for j =1 : length(Temp)
T1(33) = Temp(J)
Jjj =33 + 1;
end
ii = 4ii + 1 ;
else
Tl1(Jj)= num2str(T(ii))
ii = 4ii + 1 ;
Jjj =33 + 1
end
else
T1(33) = ', " ;
jj =33 + 1
end
end
i =141
end

end

Appendix J Surface STEP File code

STEP_surface.m

clear;
clc;
o)

% Open File and input name of the fine
fid = fopen('StepSurface.stp', 'wt+tt');

if fid < 0
fprintf ("Error \n');
return;

end

o)

% Input X,Y,and Z Coordinates
X=[31 25.861 4.419 0

28.34 20.503 0.272 0

32.683 29.25 7.042 0

31 25.861 4.419 -2.156];
Y=[0 12.399 14.220 0

3.11 12.744 10.589 -4.093
-1.968 12.18 16.517 4.356
0 12.399 14.220 5.2807];

Z=[13 13 13 13
8.666 8.666 8.666 8.666
4.356 4.356 4.35 4.356
000 0];

%$Input orders in U and W Directions respectively

k=3;1=3;

Size = size (X) ;

SNumber of raws

n=Size(1l)-1;

ENumber of Columns

m=Size (2)-1;

for i= 0 : n + k

elseif (1 >k && 1 <= n)

TU(1+ 1) =n-%k+ 2;

end
end
T Ul = zeros (1 , numel(T U));
ii = 1 ;

% Converting a knot vector in a zero to one span
for i =1 :n+ k + 1
if i <=k
T Ul(i) = 0;
elseif i > k && 1 <= n + k + 1 - k

Space = linspace (0 , 1 , n -k + 3)
T Ul(i) = Space (ii+l);
ii = i1 + 1 ;

else

T Ul(i) =1 ;

end

end

% Knot vector in w direction

for i= 0 : m + 1
if (1 < 1)
Tw(i+1) =0;
elseif (1 > 1 && 1 <=m)
Tw(i+1)=1-1H+1;
else
Tw(i+1) =m-1H4+ 2;
end
end
T wl = zeros (1 , numel(T w));
ii =1 ;

% Converting a knot vector in a zero to one span
for i =1 :m+ 1+ 1

if i <=1
T wl(i) = 0;
elseif 1 > 1 && i <=m+ 1 + 1 -1
Space = linspace (0 , 1 , m -1+ 3)
T wl(1) = Space (ii+l);
ii = i1 + 1 ;
else
T wi(i) =1 ;
end
end
% Converting knot vector in a character class
[TU,TUl] = Knotvector Conversion (k,kk,n,T Ul) ;
[

TV,TV1l] = Knotvector Conversion(l,1l,m,T wl) ;

[}

% Control Points Arrangments %
Number = 74 ;

Entities = zeros(l, (n+1l)* (m+1));
for i =1 : (n+l)* (m+1)
Entities (i) = Number;
Number = Number + 1;
end
Instance = Entities;
Temp 3 = 0 ;
for i = 1 : length(Instance)
Temp 1 = num2str (Instance(i)) ;
Temp 3 = Temp 3 + length(Temp 1) ;
end

Surface Instance=zeros(l,Temp 3+length (Instance)-

1424 (2% (n+1)) + (n+1) * (m+1)) ;
j = 1;

83

Index = 0 ;
% Converting a control point matrix in a character class
while 1

if § ==
Surface Instance(j) = ' (' ;
j= 3+ 1

elseif j == length(Surface Instance)
Surface Instance(j) = ")' ;
break

else

Instancel = Instance(Instance (Index+1l)<= Instance & Instance
<= Instance (Index+ m +1)) ;

Index = Index + m +1 ;

Temp 3 = 0 ;

for i = 1 : length(Instancel)

Temp 1 = numZ2str (Instancel(i)) -
Temp 3 = Temp 3 + length(Temp 1) ;

end

Temp Instance=zeros(l,Temp 3+length (Instancel)-1+2+m+1);
ii= 1;1i=1;33=1;
Temp Instance =

Charconversion Controlpoints (Temp Instance,ii, i, jj, Instancel)

r

for i = 1 : length(Temp Instance)

Surface Instance(j) = Temp Instance (i) ;
j= 3 + 1;
end

if j < length(Surface Instance)-2

Surface Instance(j) = ',';
j =3 +17
end
end
end
Controlpoint List = char(Surface Instance) ;

[o)

% Header Section

fprintf (fid, 'IS0-10303-21;\n");

fprintf (fid, "HEADER; \n") ;

fprintf (fid, 'FILE DESCRIPTION ((''STEP AP214''),''1'');\n');

84

fprintf (fid, '"FILE NAME (''%s'',''2016-12-06T03:29:56"",("'"""), ('""'"'

), '"SWSTEP 2.0'',''SolidWorks 2015''",'""'"!);\n’,’StepSurface_Matlab');
% change the name
fprintf (fid, 'FILE SCHEMA ((''AUTOMOTIVE DESIGN''));\n');

fprintf (fid, "ENDSEC;\n") ;

% Data Section

fprintf (fid, "DATA;\n");

fprintf (fid, "\n");
fprintf(fid,'#1O=SHAPE7REPRESENTATIONiRELATIONSHIP('"',"",#62,#22);
\n'");

fprintf(fid,'#11=COLOUR7RGB("",O.,O.,O.);\n');

fprintf (fid, '#12=FILL_AREA STYLE COLOUR('''',#11);\n');

fprintf (fid, '#13=FILL AREA STYLE('''', (#12));\n');

fprintf (fid, '#14=SURFACE_STYLE FILL AREA (#13);\n');
fprintf(fid,'#15:SURFACE_SIDE_STYLE("",(#l4))i\n');
fprintf(fid,'#16:SURFACE_STYLE_USAGE(.BOTH.,#15);\n');
fprintf(fid,'#17:MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATI
ON("""', (#19),4#61);\n");
fprintf(fid,'#18:PRESENTATION_STYLE_ASSIGNMENT((#16))i\n');

fprintf (fid, '#19=STYLED ITEM('''', (#18),#21);\n");
fprintf (fid, '#20=PRESENTATION LAYER ASSIGNMENT (''Default'','''"', (#21))
;An');

fprintf (fid, '#21=SHELIL, BASED SURFACE MODEL (''shell 1'', (#23));\n');
fprintf (fid, '\n");

fprintf (fid, '#22=MANIFOLD SURFACE_SHAPE REPRESENTATION (''shell rep 0''
, (#21,464) ,#61);\n") ;

fprintf (fid, "#23=0PEN SHELL('''', (#24));\n");
fprintf(fid,’#24:ADVANCED_FACE("",(#25),#43,.T.);\n');
fprintf(fid,’#25=FACE_OUTER_BOUND("",#26,.T.);\n');

fprintf (fid, '#26=EDGE_LOOP ('''", (#27,#28,#29,#30));\n");

fprintf (fid, '#27=ORIENTED EDGE (''"'',*,*,#31,.T.);\n");

fprintf (fid, '#28=ORIENTED EDGE (''"'',*,*,#32,.T.);\n");

fprintf (fid, '#29=ORIENTED EDGE ('''',*,*,#33,.T.);\n');

fprintf (fid, '#30=ORIENTED EDGE ('''', *,*, #34,.T.);\n");

fprintf (fid, "#31=EDGE CURVE ('''', #39,#40,#35,.T.);\n");

fprintf (fid, "#32=EDGE CURVE ('''', #40,#41,#36, .T.);\n");

fprintf (fid, "#33=EDGE CURVE ('''', #41,#42,#37,.T.);\n");

fprintf (fid, "#34=EDGE CURVE ('''', #42,#39,#38,.T.);\n");
fprintf(fid,'#39=VERTEX_POINT("",#70);\n');

fprintf (fid, "#70=CARTESIAN POINT ('''', (%f,%f,%f));\n',X(1,1),Y(1,1),Z(
1,1));

fprintf (fid, '#40=VERTEX POINT ('''',#71);\n");

fprintf (fid, '#71=CARTESIAN POINT('''"', (%f,%f,%f));\n',X(end,1),¥Y(end,1
),Z(end,1));

fprintf (fid, '#41=VERTEX POINT ('''',#72);\n');

fprintf (fid, "#72=CARTESIAN POINT('''', (%f,%£,%f));\n',X(end,end), ¥ (end
,end), Z(end,end)) ;

fprintf (fid, "#42=VERTEX POINT ('''',#73);\n");

fprintf (fid, "#73=CARTESIAN POINT('''', (%f,%f,%f));\n',X(1l,end),¥Y(1l,end

),Z2(1,end));
fprintf(fid,'#44=SHAPE_DEFINITION_REPRESENTATION(#45,#62);\n');
fprintf (fid, '#45=PRODUCT DEFINITION SHAPE (''Document'',6'''', #47);\n");

85

fprintf(fid,'#46=PRODUCT_DEFINITION_CONTEXT("3D Mechanical

Parts'',#51, "'design'');\n");
fprintf(fid,’#47=PRODUCT_DEFINITION("A","First

version'', #48,#46);\n'");

fprintf (fid, '#48=PRODUCT DEFINITION FORMATION WITH SPECIFIED SOURCE(

A'',"'"First version'', #53 .MADE.) ; \n') ;

fprintf (fid, '#49=PRODUCT RELATED PRODUCT CATEGORY (''tool'',''tool'', (#
3)):;\n");

fprintf (fid, "#50=APPLICATION PROTOCOL DEFINITION(''Draft International

Standard'',''automotive design'',1999,#51);\n");

fprintf (fid, "#51=APPLICATION CONTEXT (''data for automotive mechanical

design processes'');\n'");

fprintf (fid, "#52=PRODUCT CONTEXT (''3D Mechanical

Parts'',#51, ' 'mechanical'');\n");

fprintf (fid, '#53=PRODUCT (' 'Document'"', ' 'Document'"', ''"Rhino converted

to STEP'', (#52));:;\n");
fprintf(fid,'#54=((LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.))
;\n');

fprintf (fid, '#55=(NAMED UNIT (*)PLANE ANGLE UNIT ());\n');
fprintf(fid,'#56=DIMENSIONAL_EXPONENTS(O.,O.,O.,O.,O.,O.,O.);\n');
fprintf(fid,'#57=PLANE_ANGLE_MEASURE_WITH_UNIT(PLANE_ANGLE_MEASURE(0.0
1745329252) ,#55);\n") ;
fprintf(fid,'#58=(CONVERSION_BASED_UNIT("DEGREES",#57)NAMED_UNIT(#56
) PLANE_ANGLE_UNIT());\n');
fprintf(fid,'#59=(NAMED_UNIT(*)SI_UNIT($,.STERADIAN.)SOLID_ANGLE_UNIT(
)):\n');
fprintf(fid,’#60=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.00l),#

54, ''DISTANCE ACCURACY VALUE'', ''Maximum model space distance between

geometric entities at asserted connectivities'');\n');
fprintf(fid,'#61=(GEOMETRIC REPRESENTATION CONTEXT(3)GLOBAL_UNCERTAINT

Y_ASSIGNED_CONTEXT((#60))GLOBAL UNIT ASSIGNED CONTEXT((#59,#58,#54))RE

PRESENTATION CONTEXT (''ID1'',''3D''));\n');

fprintf (fid, "\n");

fprintf (fid, '#62=SHAPE REPRESENTATION (''Document'', (#63,#64),4#61);\n")

fprintf (fid, '#63=AXIS2 PLACEMENT 3D('''', #69,#65,#66);\n");
fprintf (fid, "#64=AXIS2 PLACEMENT_BD("",#690,#67,#68) \n');
fprintf (fid, "#65=DIRECTION('""'"', (0.,0.,1.));\n");
fprintf (fid, "#66=DIRECTION('"''', (1.,0.,0.));\n');
fprintf (£id, "#67=DIRECTION(''"'', (0.,0.,1.));\n");
fprintf (fid, '#68=DIRECTION("'""'", (1. O ,0.)):;\n");
fprintf (fid, '#69=CARTESIAN POINT('''"', (0. ,O.,O.));\n'),
fprintf (£id, "#690= CARTESIAN_POINT("" (0 .,0.)):\n");

(LI I I B e]

fprintf fid,'#43=B_SPLINE_SURFACE_WITH_KNOTS(,%d,%d, %s, .UNSPECIFIE
D.,.F.,.F.,.F.,%s,%s,%s,%s, .UNSPECIFIED.);\n',k-1,1-
1,Controlpoint List,TU,TV,TUl,TV1);
% Calculating instance numbers for four B-spline curves
Number = 74 ;
Numberl = 74 ;
for i =1 : n+l
for 3 =1 : m+l

86

fprintf (fid, '#%d=CARTESIAN POINT(''"'"',

i,j),Z(i,j)),’

Number = Number + 1 ;

Numberl = Numberl +1 ;
end

end

Number Curve U = Number ;

Entities = zeros(l,n+1);
for i =1 n +1
Entities (i) = Numberl;
Numberl = Numberl + 1;

end

Intance = Entities;

Temp 3 = 0 ;

for i =1
Temp 1

length (Intance)
= num2str (Intance(i)) ;

Temp 3 = Temp 3 + length(Temp 1);

end

($f,%f,%f));\n'",Number,X(1,73),Y(

Temp Instance=zeros(l,Temp 3+length(Intance)-1+2);

ii= 1;1i=1;33=1;
Temp Instance =

Charconversion Controlpoints (Temp Instance,ii,i,jJj,Intance) ;

Instance U = char (Temp Instance) ;

fprintf(fid,'#35:B_SPLINE_CURVE_WITH_KNOTS("",%d,%s,.UNSPECIFIED.,.F
.,.F.,%s,%s, .UNSPECIFIED.);\n',k-1,Instance U,TU,TUl);

for 1 =1 : n+l

fprintf (fid, '#%d=CARTESIAN POINT(''"'"',

(1,1),Y(i,1),2(1i,1));
Number Curve U

end

Number Curve Vend = Number Curve U ;

Entities = zeros(l,m);
for 1 =1 m +1

Entities (i) = Numberl;
Numberl = Numberl + 1;

end

Intance = Entities;
Temp 3 = 0 ;
for i =1 length (Intance)
Temp 1 = numZstr (Intance(i)) ;
Temp 3 = Temp 3 + length (Temp 1)
end

= Number Curve U + 1 ;

(3£,%f,%f));\n',Number Curve U,X

87

Temp Instance=zeros (l,Temp 3+length (Intance)-1+2);

ii= 1;1i=1;33=1;

Temp Instance =

Charconversion Controlpoints (Temp Instance,ii, i, jJj,Intance) ;

Instance Vend = char (Temp Instance) ;
fprintf(fid,'#36:B78PLINE7CURVE7WITH7KNOTS('"',%d,%s,.UNSPECIFIED.,.F
.,.F.,%s,%s, .UNSPECIFIED.);\n',1-1, Instance Vend, TV, TV1l);

for i =1 : m+l

fprintf (fid, '#%d=CARTESIAN POINT ('''', (%f,%£f,%f));\n',Number Curve Ven
d,X(end,1),Y¥(end,1),Z2(end,i));
Number Curve Vend = Number Curve Vend + 1 ;
end
Number Curve Uend = Number Curve Vend ;
Entities = zeros(l,n+1);
for 1 =1 : n +1
Entities (i) = Numberl;
Numberl = Numberl + 1;
end
Intance = Entities;

Temp 3 = 0 ;
for 1 = 1 : length(Intance)
Temp 1 = numZ2str (Intance(i)) ;
Temp 3 Temp 3 + length(Temp 1) ;

end

Temp Instance=zeros(l,Temp 3+length(Intance)-1+2);

ii= 1;1i=1;33=1;

Temp Instance =

Charconversion Controlpoints (Temp Instance,ii,i,jj,Intance) ;

Instance Uend = char (Temp Instance) ;
fprintf(fid,'#37:BisPLINE7CURVE7WITH7KNOTS('"',%d,%s,.UNSPECIFIED.,.F
.,.F.,%s,%s, .UNSPECIFIED.);\n', k-1, Instance Uend, TU,TUl) ;

for i = n+l : -1 : 1

fprintf (fid, '#%d=CARTESIAN POINT ('''', (%f,%f,%f));\n',Number Curve Uen
d,X(i,end),¥(i,end),Z(i,end));

Number Curve Uend = Number Curve Uend + 1 ;

end

Number Curve V = Number Curve Uend ;

Entities = zeros(l,m+1);
for i =1 m+1
Entities (i) = Numberl;
Numberl = Numberl + 1;

end

88

Intance = Entities;
Temp 3 = 0 ;
for i = 1 : length(Intance)
Temp 1 = numZ2str (Intance(i)) ;
Temp 3 Temp 3 + length(Temp 1) ;
end
Temp Instance=zeros(l,Temp 3+length(Intance)-1+2);
ii= 1;1i=1;33=1;
Temp Instance =
Charconversion Controlpoints (Temp Instance,ii, i,jj,Intance) ;
Instance V = char (Temp Instance) ;

fprintf (fid, '#38=B SPLINE CURVE WITH KNOTS('''',%d,%s, .UNSPECIFIED.,.F

.,.F.,%s,%s, .UNSPECIFIED.);\n',1-1,Instance V,TV,TV1l);

for 1 = m+l : -1 : 1

fprintf (fid, '#%d=CARTESIAN POINT ('''', (%f,%f,%f));\n',Number Curve V,X
(1,1),Y(1,1),2(1,1));

Number Curve V = Number Curve V + 1 ;

end

fprintf (fid, "ENDSEC;\n") ;
fprintf (fid, "END-ISO-10303-21;\n") ;

% Closing the file
fid(close);

Knotvector_Conversion.m

function [T,T1l] = Knotvector Conversion (k,kk,n,T Ul)
Knot = zeros(l,n-k+3) ;
for i = 1 : numel (Knot)
if 1 ==
Knot (1) = k ;
elseif 1 == numel (Knot)
Knot (1) = k ;
else
Knot (1) = 1 ;
end
end
Knotl = zeros(l,n-k+3) ;
for i = 1 : numel (Knotl)
if 1 == 1
Knotl (i) = 0 ;
elseif i1 == numel (Knotl)
Knotl (i) =1 ;
else

89

Knotl(i) = T Ul (kk+1l) ;
kk = kk+1 ;

for 1 = 1 : length(T Ul)
Temp 1 = numZstr (T Ul(i)) -
Temp 2 = length(Temp 1) ;
Temp 3 = Temp 3 + Temp 2 ;
end
T=zeros (1, Temp 3+length(T Ul)-1+2);
ii= 1;41i=1;33=1;
[T] = Charconversion(T,ii,1i,33j,T _Ul) ;
T = char(T) ;

Temp = Knotl ;
Temp 3 = 0 ;

for i = 1 : length(Temp)
Temp 1 = numZstr (Temp(i)) ;
Temp 2 = length(Temp 1) ;
Temp 3 = Temp 3 + Temp 2 ;

end

Tl=zeros (1, Temp 3+length(Temp)-1+2);

ii= 1;1i=1;33=1;

[T1] = Charconversion(T1l,ii,i,jJ,Temp) ;
Tl = char(T1l) ;
end

Charconversion_Controlpoints.m

function [T Instance] =
Charconversion Controlpoints (T Instance,ii,i,jj,Instancel)

while 1
if 1 ==
T Instance(jj) = "(' ;
elseif 1 == (2*numel (Instancel) + 1)
T Instance(jj) = ")';
break
else
if rem(i,2) == 0
if 33 < 1
33 =i
end
if Instancel(i/2) > 9 || (length(num2str (Instancel (i/2))))
> 1
Temp = num2str (Instancel (ii))
T Instance(jj) = "#';

90

Jjj =33+ 1

for j = 1 : length(Temp)

T Instance(jj) = Temp(j) ;
33 =33+ 1;

end
ii = i1 + 1 ;
else
T Instance(jj) = "#';

jj = 33+ 1 ;
T Instance(jj)= numZ2str (Instancel(ii)) ;

ii = i1 + 1 ;
jj =33 + 13
end
else
T Instance(jj) = "',"' ;
jj = 33 + 13
end

end
i=1+1;

end

References

[1] Achille Messac, “Optimization in Practice with MATLAB®: For
Engineering Students and Professionals”, March 18, 2015

[2] lanGibson- DavidRosen, BrentStucker “Additive Manufacturing Technologies: 3D Printing,
Rapid Prototyping, and Direct Digital Manufacturing”, 2015

[3] Michael Mortenson, “Geometric Modeling”, April 15, 2006
[4] David Salomon,” Curves and Surfaces for Computer Graphics”, September 8, 2005

[5] D.Brackett, 1. Ashcroft, R. Hague,” TOPOLOGY OPTIMIZATION FOR ADDITIVE
MANUFACTURING”, August 17 2011

[6] Robert W. Schuler, “The Application of ISO 10303-11 (the EXPRESSLanguage) in Defining
Data Models for Software Designand Implementation”, April 2001

[7] Les Piegl, University of South Florida , “On NURBS: A Survey”, January 1991

[8] David Loffredo,” Fundamentals of STEP Implementation”, STEP Tools, Inc., Rensselaer Technology
Park, Troy, New York 12180

[9] Ap214, Steptools.com, Available online at:
“http://www.steptools.com/stds/stp_aim/html/schema.html#tstep_merged_ap_schema” [Accessed:
15- July 2016]

[10]1SO 10303-21, Wikipedia, [Online]. Available at : https://en.wikipedia.org/wiki/ISO 10303-21
[Accessed: 22 May 2016]

[11] Vince, John A, “Mathematics for Computer Graphics”,2013.

[12] Martin Philip Bendsoe, Ole Sigmund,” Topology Optimization: Theory, Methods, and Applications”,
December 1, 2003

[13] Richard H. Bartels, John C. Beatty, “ An introduction to the use of splines in computer graphics” May
1995

92

https://en.wikipedia.org/wiki/ISO_10303-21

Biographical Information

Harshit Jani has completed his bachelors in Automotive engineering from Gujarat

Technological University, Ahmedabad, India in the year 2013. During his
undergraduate period, he found keen interest in CAD/CAE and programming.
Therefore, he joined the university of Texas Arlington in August 2014 for pursuing

his dream.

93

