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ABSTRACT

Virtual Reality and Augmented Reality
Applications

TUAN P. M. HO (Tuan Ho), Ph.D.

The University of Texas at Arlington,

Supervising Professor: K. R. Rao

Committee: Madhukar Budagavi, Ioannis D. Schizas, Jonathan Bredow, William E.

Dillon

Virtual Reality (VR) and augmented reality (AR) are the emerging fields of

research. VR enables the immersive, being-there feeling of the viewers in a recorded

or virtual environment, while AR enhances the real-world perception with the aid

of an electronic device. On the VR part, this thesis introduces the novel 360-degree

video stitching algorithms for dual-fisheye lens cameras, which are compact and af-

fordable. On the AR section, this work presents a new approach in compressing

the 3-dimensional point cloud models that are used in free view-point sports and

tele-immersive applications.
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CHAPTER 1

Fisheye-len Stitching Algorithm

1.1 Background

360-degree videos and images have become very popular with the advent of

easy-to-use 360-degree viewers such as Cardboard [4] and GearVR [5]. This has led

to renewed interest in convenient cameras for 360-degree capturing. A 360-degree

image captures all the viewing directions simultaneously and gives users the sense

of immersion when viewed. Early 360-degree imaging systems used a catadioptric

camera [6], which combines lens (dioptric) and mirror (catoptric), to record 360-

degree contents. Although the lens plus mirror geometry is sophisticated and usually

requires proper calibration, such as one in [7] [8], to generate good visual results,

a catadioptric system can produce panoramas without seams. However, due to the

inherent lens+mirror arrangement, the captured field of view is typically limited to

less than 360x180 degrees, and some of the catadioptric systems are not compact.

An alternate method for 360-degree recording is using a polydioptric system

which incorporates multiple wide-angle cameras with overlapping field of views. The

images from the multiple cameras are stitched together to generate 360-degree pic-

tures. However, due to camera parallax, stitching artifacts are typically observed at

the stitching boundaries. Example 360-degree polydioptric cameras include Ozo [9],

Odyssey [10], and Surround360 [11] by some of the major companies. The number of

1



Figure 1.1: (a) Samsung Gear 360 Camera (left). (b) Gear 360 dual-fisheye output
image (7776 x 3888 pixels) (right). Left half: image taken by the front lens. Right
half: image taken by the rear lens.

cameras used in these systems ranges from 8 to 17. These cameras typically deliver

professional quality, high-resolution 360-degree videos.

On the downside, these high-end 360-degree cameras are bulky and extremely

expensive, even with the decreasing cost of image sensors, and are out of reach for

most of the regular users. To bring the immersive photography experience to the

masses, Samsung has presented Gear 360 camera, shown in Figure 1.1(a). To make

the camera compact, Gear 360 uses only two fisheye lenses whose field of view is close

to 195 degrees each. The images generated by the two fisheye lenses (Figure 1.1(b))

have very limited overlapping field of views but can, however, be stitched together to

produce a full spherical 360x180 panorama.

1.2 Previous Works

For stitching of images from the multiple cameras, a feature-based stitching

algorithm [12][13] is typically used to extract the features of the images being stitched.

These features are then matched together. An iterative method is carried out to

eliminate the incorrect matches (outliers). The reliability of this process not only
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Figure 1.2: Image stitching illustration. Left column: (a) Regular pictures with good
overlaps. (b)(c) Features Matching using SIFT and outlier removal using RANSAC.
(d) Image warping and panorama creation. Right column: (e) Fisheye images taken
by Samsung Gear 360. (f)(g) Features Matching (using SIFT) and outlier removal
(using RANSAC). Courtesy: VLFeat [1] toolbox.

depends on the iterative method being used but also on the size of the overlapping

regions. With sufficient overlap, more reliable matches (inliers) are retained while

outliers get removed. Using these inliers, a homography matrix is computed to warp

and register the pictures together (assuming the camera matrix is already estimated)

before stitching them.

However, this conventional stitching method does not work well on Gear 360-

produced pictures since there is very limited overlap between the two fisheye images.
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Figure 1.2 shows the stitching processes for the photos taken by the regular rectilinear

lens and the ones taken by Samsung Gear 360. The pictures on the left column, from

[1], in Figure 1.2 have a good overlap and can be aligned and stitched well. In contrast,

Gear 360 has limited overlap leading to a small number of inlier matches only on the

outer ring of the fisheye images. This results in a homography matrix that is invalid

for the interior of the fisheye images. Hence, a conventional stitching process cannot

be directly used for stitching fisheye images from two-lens systems such as Gear 360.

1.3 The Proposed Algorithm

We have introduced a novel stitching method [2][14][15] that adaptively mini-

mizes the discontinuities in the overlapping regions of Gear 360 images to align and

stitch them together. The proposed algorithm has four steps. The first step describes

how to measure and compensate for the intensity fall off of the camera’s fisheye lenses.

The second phase explains the geometry transformation to unwarp the fisheye im-

ages to a spherical 2-Dimensional (equirectangular projection [16]) image. The next

stage introduces our proposed two-step alignment to register the fisheye unwarped im-

ages. Finally, the aligned images are blended to create a full spherical 360x180-degree

panorama. Figure 1.3 shows the block diagram of our fisheye stitching framework.

Figure 1.3: Block Diagram of Our Fisheye Images Stitching [2].

4



Figure 1.4: (a) Fisheye profiling experiment (left). (b) Intensity fall-off curve (right).
Coordinate in x-direction is in pixel unit.

1.3.1 Fisheye Lens Intensity Compensation

Before stitching the two fisheye images, one needs to compensate for the light

fall-off of the two fisheye images.

Vignetting is an optical phenomenon in which the intensity of the image reduces

at the periphery compared to the center. To compensate for this light fall-off, we

captured an image of a large white blank paper using Gear 360 and measured the

variation of pixel intensity along the radius of the fisheye image toward its periphery

in Figure 1.4. The intensity is normalized to one at the center of the picture. We

used a polynomial function p(x) to fit the light fall-off data.

p(x) = p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (1.1)

whereas x is the radius from the center of the image. Figure 1.5 shows the result of

this process.
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Figure 1.5: Compensation result. Without intensity compensation (left); with inten-
sity compensation (right).

1.3.2 Fisheye Unwarping

Fisheye lenses can produce ultra-wide field of views by bending the incident

lights. As a result, the image looks severely distorted, particularly in the periphery.

Therefore, a fisheye unwarping–a geometric transformation is necessary to generate a

natural appearance for the Gear 360 fisheye-produced picture. Instead of rectifying

the fisheye-distorted image, we use a method that unwarps the image and returns a

2-D spherical projected picture for 360-degree purposes.

This method involves two steps, shown in Figure 1.6. First, each point P′(x′, y′)

in the input fisheye image is projected to a 3-D point P(cos θs sin θs, cosϕs cos θs, sin θs)

in the unit sphere. ϕs and θs can be derived by considering the coordinates of the

fisheye image directly as pitch and yaw. Therefore, θs = (f ∗ x)/W − 0.5, and

6



Figure 1.6: Fisheye Unwarping.

ϕs = (f ∗ y)/H − 0.5, where f is the lens’ field of view (in degree), W and H are

image width and height respectively. The second step derives the distance between

the projected center and the 3-D point P (x, y, z): ρ = H/f ∗ tan−1
√

(x2 + z2)/y,

whereas x = cosϕs sin θs, y = cosϕs cos θs, z = sinϕs. Then the 2-D spherical

(equirectangular) projected point P′′(x′′, y′′) is constructed as x′′ = 0.5W + ρ cos θ,

y′′ = 0.5H + ρ sin θ, and θ = tan−1 z/x. In this equirectangular projection, x′′ and y′′

are pitch and yaw respectively. The unwarped image can be viewed on a 360-degree

player. Figure 1.7 shows the result of the unwarping process. Figure 1.7 (a) illus-

trates the natural look of the unwarped image when viewed on a 360-degree viewer

compared to the distorted appearance of the original fisheye image.

Unwarping is a necessary process in fisheye image stitching. However, result

in Figure 1.7 (b) shows that the unwarped images, when put together in a 360x180

plane, are not aligned with each other. Therefore, further steps have to be taken to

register the pictures together.

1.3.3 Two-step Image Alignment

After unwarping, the two images are not aligned with each other. The between-

lenses misalignment patterns are similar for different Gear 360 cameras of the same
7



model. To minimize this misalignment we have used a control-point-based approach

followed by a refined alignment as follows.

1.3.3.1 Control Point-based Alignment

In the setup in Figure 1.8, we position the Gear 360 so that both the lenses

see the checkerboards on their sides. Therefore, they have the same view of the

overlapping regions. Also, the distance between the camera and the checkerboards is

around 2m, which is about the maximum reach that the checkerboard corners are still

clearly visible for control point selection. The images taken by the Gear 360 left and

right lenses are unwarped using the method introduced in section 2.2, and arranged

in 360x180-degree planes shown in Figure 1.9. About 200 pairs of control points are

then manually selected from the overlapping regions between the unwarped pictures,

and are used to estimate a 6-parameter affine matrix A, which warps a point B(x2, y2)

to T (x1, y1) as follows:

[x1, y1, 1] = [x2, y2, 1] A, whereas A =


a b 0

c d 0

tx ty 1

 (1.2)

1.3.3.2 Refined Alignment

The first registration helps align the images, as shown in Figure 1.10. However,

when the objects in the boundaries move closer or further away from the camera, the

horizontal discontinuities become visible as shown in Figure 1.11(c).

To minimize the discontinuity in the overlapping regions, we choose to maximize

the similarity in these areas. To this end, a novel adaptive alignment that involves a

8



(a)

(b)

Figure 1.7: Unwarping results: (a) Fisheye-unwarped image whose view port dis-
played on a 360-degree viewer; (b) Two unwapred images arranged in a 360x180
image.
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Figure 1.8: Experimental Setup for Gear 360 Dual-lens Mis-alignment.

fast template matching for objects in the overlapping region and utilizes the matching

displacement to derive a refined affine matrix to align the images further is proposed.

The matching is a normalized cross-correlation operation. The cross-correlation

of two signals maximizes at a point when the two signals match each other. In

addition, since there are always some level of exposure differences in the overlapping

regions, the template and reference images to be matched should be normalized. This

proposal employs a fast normalized cross-correlation algorithm [17]:

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][t(x− u, y − v)− t̄ ]

{
∑

x,y[f(x, y)− f̄u,v ]2
∑

x,y[t(x− u, y − v)− t̄ ]2}0.5
(1.3)

where γ is the normalized cross-correlation, f is the reference image, t̄ is mean

of the template image, f̄(u, v) is the mean of f(x, y) in the region under the template.

The template and reference are taken from the top and bottom unwarped images

respectively, as shown in Figure 1.11(a).

10



Figure 1.9: Control point selection on the overlapping area. The fisheye images are
unwarped using the method presented in section 2.2.

Figure 1.10: Result of the control point-based alignment. (a) Without the first align-
ment. (b) With the first alignment.
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Figure 1.11: (a) A person close to the camera and between the lens boundaries. (b)
The blended overlaps with the proposed refined alignment (discontinuity minimized).
(c) The blended overlaps without the proposed refined alignment (very visible dis-
continuity). The first alignment is already applied for both (b) and (c) to align the
images vertically.

The maximum value of the normalized cross-correlation returns the displace-

ment of where the best match occurs. This shift indicates how much the template

– a rectangular window has to move to match the reference. The proposed method

then estimates an affine matrix from vertices of the matching windows (four in each

overlapping region) and warp the bottom image to align it further with the top one.

Figure 1.11 shows that the refined alignment helps align the images by max-

imizing the similarity in the overlapping region. The person, close and in the lens

boundary, appears as a complete one (i.e. no visible duplicate or missing any body

parts) in the stitched 360x180-degree picture.

1.4 Implementation and Results

We have implemented the proposed approach in C++ with OpenCV library

and Matlab. The affine matrix in the first alignment is pre-computed off-line and

included as part of the fisheye unwarping process. The refined alignment, however,

is computed on-line, adaptively to the scene. The polynomial coefficients in section

12



2.1 are: p1 = −7.5625 × 10−17, p2 = 1.9589 × 10−13, p3 = −1.8547 × 10−10, p4 =

6.1997× 10−8, p5 = −6.9432× 10−5, p6 = 0.9976. We found that the field of view of

193 degrees, which is very close to the documented 195-degree, gives the best results

as shown in Figures 1.12 and 1.13. Our approach can also accurately stitch images

taken by different Gear 360 cameras of same model thanks to the proposed refined

alignment that operates adaptively and can compensate for the geometric mismatch

between Gear 360 lenses.

1.5 Conclusions

This proposal introduces a new stitching method for 360-degree cameras with

dual-fisheye lens. It uses a novel alignment algorithm that adaptively maximizes the

similarities in the boundary regions of the images from the two fisheye lenses for ac-

curate registration and stitching. In summary, the proposed approach compensates

for fisheye lens’ intensity fall-off, unwarps the fisheye images, then registers them to-

gether using the proposed adaptive alignment, and applies blending on the registered

images to create a 360x180-degree panorama that is viewable on 360-degree players.

Results show that not only this method can stitch Gear 360 images that have limited

overlap, but it can also produce well-stitched pictures even if there are objects that

are at an arbitrary distance to the camera and stand in the lenses boundaries.
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(a)

(b)

Figure 1.12: Samsung Gear360 360x180-degree panoramas stitched by the proposed
method: (a) A person not close to the lenses overlapping boundaries; (b) A person
close to the lenses overlapping boundaries.
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(a)

(b)

Figure 1.13: Samsung Gear360 360x180-degree panoramas stitched by the proposed
method: (a) Garage; (b) Building with patterned ground.
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CHAPTER 2

360-degree Video Stitching Based On Rigid
Moving Least Squares

In the approach presented in Chapter 1, the first step compensates for the

geometric misalignment between the two fisheye lenses and depends on the camera

parameters. The second step is a more refined alignment that adjusts any disconti-

nuities caused by objects with varying depth in the stitching boundaries. In the first

alignment, [2] solves an over-determined system for a warping matrix which is then

used to align the images. This results in a least-squares approximated solution which

globally transforms the images. Our observation is that typically the control points

in the central part of the 360-degree image get aligned well resulting in improved

quality compared to prior techniques. However, the control points at the top and

bottom part of the image do not get aligned precisely leading to stitching artifacts in

those regions. Figure 2.1 shows an example of visible discontinuities in the stitching

boundary of pictures with patterns on the background.

This chapter discusses our method in [18] that improves the image alignment

and stitching performance over the entire stitched 360x180-degree panoramas. It

uses rigid moving least squares approach to achieve the improved alignment. We

also extends the work to video stitching by incorporating a new temporal-coherent

algorithm to produce jitter-free 360-degree videos.

16



Figure 2.1: 360x180-degree panorama stitched by [2] and the discontinuities in the
overlapping regions.

2.1 The proposed algorithm

Figure 2.2: Block Diagram of the 360-degree Video Stitching.

Figure 2.2 shows the block diagram of the proposed algorithm in this paper.

Similar to [2], the proposed image alignment also has two steps – the first one is

dependent on camera parameters, and the second step works adaptively to the scene.

However, instead of estimating a warping matrix in a least-squares sense to align the

pictures in the first step, we generate interpolation grids to deform the image based

on rigid moving least squares (MLS) approach.

17



2.1.1 Rigid Moving Least Squares

Let p and q be the control points in the overlapping regions of the original

and deformed images respectively. [19] defines three properties of an image deforma-

tion function f which are: interpolation (f(pi) = qi under deformation), smoothness

(preserves smooth transition among pixels), and identity (qi = pi ⇒ f(v) = v).

For every point in the image, we solve for a transformation matrix M that

minimizes the weighted least squares:

argmin
M

∑
i

wi

∥∥∥p̂iM − q̂i

∥∥∥2

(2.1)

where the weights wi are proportional to the distance between the image point v and

the control point pi in the sense that wi gets smaller when v moves further away from

pi (i.e. the least squares minimization depends on the point of evaluation, thus the

name moving least squares). When v → pi, f interpolates f(v) = qi. [19] defines such

weights as:

wi =
1

|pi − v|2α

p̂i = v − p∗ and q̂i = q∗ are derived from each point v in the image and the weighted

centroids p∗ and q∗ [19].

For control points selection, we adopted the checkerboard experiment from [2]

with our method of picking the correspondence points. In this experiment, both fish-

eye lenses, each has 195-degree field of view, see the same checkerboards on their sides.

The images taken by the fisheye lenses are unwarped to 360x180-degree equirectan-

gular planes. We then arrange the unwarped images so that the right image is po-

sitioned at the center of the 360x180-degree plane, while the left image is split and

put to the sides of the plane. With this arrangement, the overlapping regions are
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ready for control-point selection. By choosing the same checkerboards’ cross sections

on the unwarped images, one can visualize the geometric misalignment between the

two lenses. Figure 2.3 shows the selected control points {p}i and {q}i, which indicate

the differentiated positions of the same points in the stitching boundaries of the two

images. Our interest is to determine the function fr that does the transformation

fr(pi) = qi in the overlapping regions while keeping the other areas of the image as

visually intact as possible.

While the MLS is general in the matrix M in (2.1), we are only interested in the

rigid transformation since it generates more realistic results than affine and similarity

transformations. The similarity transformations are a subset of the affine transfor-

mations that have only translation, rotation, and uniform scaling. The similarity

matrix M is defined such that MTM = λ2I (e.g. a rotation matrix). λ2 acts as a

uniform scaling factor. In rigid transformation, it is desirable that no uniform scaling

is included. [19] proposed a theorem that relates the MLS solution for MTM = λ2I

(similarity transformation) to its solution of MTM = I (rigid transformation), and

derived the solution for the rigid MLS function fr. We invite readers to read [19] for

more details about the mathematical treatment used here.

We generate the rigid-MLS interpolation grids to deform the right unwarped

image (i.e. to apply fr over the image), thus aligning it with the left one. Figure 2.4

shows the right unwarped fisheye image gets deformed by the rigid MLS method.

While the portions of the image in proximity to the stitching boundaries are trans-

formed to match the other image, the remaining of the deformed picture have no

discernible difference compared to the original.
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2.1.2 Refined Alignment

The rigid MLS aligns the control points around the stitching boundary, thus

registering the two unwarped fisheye images together. However, when the depth of

the object in the overlapping areas changes, it introduces misalignment to the scene.

Therefore, a refined alignment is necessary after the rigid MLS deformation. To this

end, we adopt the same adaptive method of using the normalized cross-correlation

matching in [2] to further align the images.

The refined alignment performs a fast template matching and utilizes the match-

ing displacements on both stitching boundaries to generate eight pairs of control

points. These points are then used to solve for a 3x3 affine matrix to warp the de-

formed image. As a least-squares solution, this refined method is not sufficient in

registering images with complicated misalignment patterns, but it works very well for

those with minor misalignment such as the one caused by the varied object’s depth.

Figure 2.5 shows that the refined alignment minimizes the discontinuity when the

person is sitting close to the camera’s stitching boundary.

2.2 Extension to 360-degree video

In the 360-degree video stitching, it is essential to minimize jitters–the abrupt

transition between the stitched frames so that the final video appears continuous

and comfortable to view. Adjacent frames in the sequence that are not stitched

by the same measure can generate jitters. In the work presented here, when a bad

match occurs without getting filtered out in the refined alignment, it generates a false

warping matrix that abruptly distorts the stitching boundary of the picture. This

attenuated scene causes jitter which is the result of the sudden transition between

the previous well-stitched frame and the current bad-stitched one. Therefore, it is
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Figure 2.3: Left: the overlapping areas on the unwarped left image and {q}i (green
dots). Right: unwarped right image and {p}i (yellow dots).

important to guarantee good matches throughout the entire sequence to maintain

smooth frame-to-frame transition, and thus minimize jitters.

Algorithm 1: Refined Alignment (with jitter control)
Input: leftImage, rightImage (deformed)

1 (scoreLeft, scoreRight) ← TemplMatch();
2 if ( both matching scores are good ) then
3 Estimate affine warping matrix affineMat;
4 Store affineMat for the next frame;
5 warpEn ← 1;
6 else // bad scores on either boundary
7 if matching scores of the previous frame are good then
8 warpEn ← 1;
9 affineMat ← previous affineMat;

10 else
11 warpEn ← 0; // don't warp image
12 end
13 end
14 if ( warpEn ) then
15 Warp rightImage by affineMat;
16 end
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Figure 2.4: The original and the rigid-MLS-deformed images with their control points
{p}i and {q}i overlayed.

Algorithm 1 illustrates our method to maintain the temporal coherence for the

sequence. A good score is returned at one stitching boundary if all of the followings

satisfied. First, the peak normalized cross-correlation is larger than 0.85/1.0. Sec-

ond, the returned vertical displacement is in the margin of [−10,+10] pixels. Third,

the horizontal displacement of the current match must not exceed 10% margin com-

pared to its of the previous frame. These constraints, obtained from our empirical

experiments, are set to eliminate bad matching caused by poor lighting and abrupt

movements of the boundaries in horizontal and vertical directions.

2.3 Implementation and Results

We have implemented the proposal algorithm in C++ with OpenCV library.

The rigid MLS grids are precomputed. It takes around 500ms to stitch one 3840x1920

360-degree frame on a laptop with Intel core i7 1.8 GHz, 8GB RAM, 256GB SSD

(excluding the one-time configuration setup, such as reading MLS deform 2-D inter-
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Figure 2.5: The person sitting close to the camera and in the stitching boundary.
Left: after rigid MLS deformation. Right: after rigid MLS deformation and refined
alignment.

polation grids, etc., in prior to the stitching process). In addition, the deformation is

an interpolation process that can be accelerated by GPU.

Figure 2.6(a) illustrates an image stitched by the proposed method. In this pic-

ture, there are a fence, buildings, and patterned background on the stitching bound-

aries. Figure 2.6(b) shows the comparison of the stitching boundaries in the image

stitched by the proposal and by [2] (also in Figure 2.1). While the discontinuities ap-

pear in the stitching boundaries in [2] as the result of the least-squares solution, the

proposed method produces seamless 360-degree panorama thanks to the rigid MLS

deformation.

For video stitching1, Figure 2.7 demonstrates the adjacent stitched frames cre-

ated by the proposal (top row, no jitter) and by [2] (bottom row). In the bottom

row, the first jitter occurs when the refined alignment lets a bad match get through,

resulting in an affine transformation that moves the image on the right side of the
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Figure 2.6: (a) 360x180-degree panorama stitched by this proposal. (b)(c) The stitch-
ing boundaries in (a) (top row) compared to the same image stitched by [2] (bottom
row).

Figure 2.7: Stitching boundary in consecutive frames. Stitched by the proposal (top
row), and by [2] (bottom row).

stitching boundary to the left. As a result, the car in the boundary gets distorted

leading to an abrupt transition between the frames.

2.4 Conclusion

This chapter has introduced a novel method for stitching the images and video

sequences generated by the dual-fisheye lens cameras. The proposed alignment has

two steps. The first one, carried out offline, compensates for the sophisticated ge-

ometric misalignment between the two fisheye lenses on the camera based on rigid
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Figure 2.8: Images captured by the dual-fisheye lens camera (Gear 360).

moving least squares approach. The second step, applied online and adaptively to

the scene, provides a more refined adjustment for any misalignment created by the

objects with varying depth on the stitching boundaries. We extend the proposed

approach to 360-degree video stitching with the relevant constraints to maintain the

smooth transition between frames and therefore minimize jitters. Results show that

our method not only generates more accurately stitched 360x180-degree images but

also jitter-free 360-degree videos.
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(a)

(b)

Figure 2.9: 360x180-degree panoramas stitched by the proposed method with input
images as shown in Figure 2.8.
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(a)

(b)

Figure 2.10: 360x180-degree panoramas stitched by the proposed method with input
images as shown in Figure 2.8.
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CHAPTER 3

Point Cloud Compression

While 360-degree videos enable the being-there / immersive feeling of viewers,

the novel 6-degree-of-freedom (6 DoF) or free-viewpoint video (Figure 3.1) not only

brings the experience of immersion but also the possibility to adjust the viewpoint at

the viewer’s discretion.

To this end, a 360-degree background and the 3-D models, e.g. the basketball

players, are captured. Each point in the 3-D model typically has 6 attributes, three

of which define the point geometric position in the 3-D space. The other three specify

the color of the point. A million point-model is not uncommon in practice. Such 3-D

model, which is comprised of 3-D points, is called a point cloud. Figure 3.3 illustrates

a point cloud representing a person.

Figure 3.1: Free-viewpoint video. Courtesy: MPEG.
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Figure 3.2: A 3-D point cloud model. Courtesy: MPEG.

The 3-D point cloud in its raw format is stored at 54 bits per input point for

integer geometry, i.e. 3×10-bit for geometry, plus 3×8-bit for color. Floating geom-

etry requires 3×32-bit for accurate geometric representation. Million-point models

demand huge storage. Hence, a novel 3-D point cloud compression is developed to

address this emerging issue. This chapter introduces our work for MPEG’s call for

proposal (cfp) [20] on point cloud compression [21][22][23][24].

3.1 Previous Works

A widely-used approach to compress the 3-D point clouds is based on the octree

data structure [25][26]. [3], which was developed on top of the Point Cloud Library [27]

and adopted as MPEG anchor for point cloud compression, composes the input point

cloud model into an octree structure [28] and applies compression for its geometry
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Figure 3.3: MPEG Point Cloud Compression Anchor.

and color components separately. In this method, the geometry atrributes are coded

based on the voxel position in the octree, while the color attributes are coded using

a JPEG coder. Figure 3.3 shows the block diagram of the point cloud compression

introduced in [3].

While the octree-based approaches are tailored to the geometry attributes, it

does not take full advantage of the state-of-the-art video coding standards to maximize

the compression efficiency.

3.2 Our Approach

Instead of composing the 3-D point cloud into the octree data structure, we

propose to map the former into 2-D video which are, then, compressed by the High

Efficiency Video Coding Standard (HEVC) [29]. Figure 3.4 shows the block diagram

of the proposed method.

For encoding, a 3-D point cloud model is mapped into 2-D frames by our sorting

method based on the geometric distribution of the points in the model. A sub-
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Figure 3.4: Block Diagram of the proposed point cloud compression.

sampling process is then applied to reduce the number of samples in the 2-D frames

before encoding. In addition, to reconstruct the 3-D model, a binary map which

indicates the position of the write data is compressed and stored into the bitstream.

The benefits of this approach are two-fold. First, it allows the fast industry

adoption to meet quickly emerging applications such as AR due to:

• Use of existing high-performance hardware implementations (if codecs

such as HEVC Main10 are used).

• Use of existing ISOBMFF (ISO base media file format) based delivery

methods.
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Figure 3.5: The proposed 3-D to 2-D mapping.

Second, the performance will be automatically improved with the on-going future

video codec development.

3.3 The Proposed Mapping

Figure 3.5 depicts our proposed method to map a 3-D point cloud model into

a 2-D frame. This approach is comprised of two main steps. First, the 3-D model

is scanned by its longest coordinate axis to produce the 2-D cross-section slices. For

example, the model illustrated in Figure 3.5 is a human-shaped one, so scanning

the model by the y-axis, the longest dimension in this case, would preserve the shape

better. Second, each slices produced from the first step are scanned in a shortest path
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Figure 3.6: A sample binary map image and its corresponding binary map bitstream.

manner and written to the 2-D frame line by line. The result are two 2-D frames, one

of which is for the geometry attribute, and the other is for color.

In addition, to reconstruct the point cloud correctly, a binary map that indicates

the position of points that retain after the subsampling process is stored. Figure 3.6

shows a sample binary map image.

3.4 Evaluation

3.4.1 Encoding Profile

We use HEVC 4:4:4 Screen content coding [30] profile with an intra period of

either 1 or 32 and a GOP size of 1 (no B frame). HEVC 10-bit and 8-bit are used to

encode the geometry and color attributes respectively.

3.4.2 Distortion Metric

To evaluate the distortion of the reconstruction point cloud, [31] proposes a

metric that calculates the geometric and color distortions of the decoded point cloud.

In short, this method finds a nearest neighbor in the original point cloud for each

point in the reconstructed one (the vice versa search is also supported). Once a

pair of correspondence is established, the direct geometric (point-to-point) distortion

and the YUV color distortion are calculated. In addition, a point-to-plane distortion

is produced based on the projected vector of the distance along the normal vector
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direction. The latter distortion is supposed to provide better metric for the perceptual

of the reconstructed point cloud since it estimates the error along the surface of

the 3-D point cloud. A normal vector set is required to perform the point-to-plane

distortion.

3.5 Results

We have written the 3-D mapping in Matlab and tested our proposed com-

pression method for the complete Category-2 dataset of the MPEG PCC CfP which

includes five dynamic point clouds at five bitrates within the limits specified in the

MPEG CfP (Call for Proposal) [21]. We use HM codec using the following configu-

ration:

• HEVC 4:4:4 Screen content coding profile.

• Geometry (XYZ) and color (RGB) is subsampled and coded either loss-

lessly or in a lossy fashion.

• All-Intra and random-access coding with an intra period of 32.

Figure 3.7 and Figure 3.8 show the BD-rate comparison between our proposed

scheme and MPEG PCC software for all-intra and random-access compression, respec-

tively. Numbers with a green/red background indicate a higher/lower performance

of our PCC compared to MPEG PCC. Numbers with a white background show an

almost equal performance.

Although our lossy results are not objectively dominating those of MPEG PCC

in all cases, subjective evaluation shows a significant gain toward our PCC. Screen-

shots of the reconstructed point clouds (still image of the ’Longdress’ test point cloud)

by [3] and the proposed approach, at different target birates are shown in Figure 3.9

to Figure 3.12 (the 0.6 bit per point is equal to the compression ratio of 90:1 for
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the 10-bit geometry point cloud models). In addition, the screenshots of the recon-

structed point clouds at different bitrates are shown in Figure 3.13 to Figure 3.17.

In addition, the mapping algorithm has a very-high capability for parallel processing

since each row of the point cloud model is independently mapped into a line of the

2-D video frame.

3.6 Conclusion

This section presents our approach for encoding 3-D point cloud videos. The

proposed algorithm maps the 3-D models into 2-D frames and uses the state-of-the-art

HEVC to encode the video. The presented approach takes advantage of the advanced

video codec and is low complex and parallel processing-capable. The results show

that the proposed method produces better visual quality than the anchor software

from MPEG at the time of evaluation.
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Figure 3.7: The BD-rate comparison of our proposed PCC compared to MPEG PCC
for all-intra coding.

Figure 3.8: The BD-rate comparison of our proposed PCC compared to MPEG PCC
for random access.
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Figure 3.9: Single point cloud frame distortion at 8 bit per point. Left: original,
middle and right: compressed/reconstructed by [3] and the proposed method respec-
tively. 37



Figure 3.10: Single point cloud frame distortion at 4.5 bit per point. Left: origi-
nal, middle and right: compressed/reconstructed by [3] and the proposed method
respectively.
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Figure 3.11: Single point cloud frame distortion at 2 bit per point. Left: original,
middle and right: compressed/reconstructed by [3] and the proposed method respec-
tively.
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Figure 3.12: Single point cloud frame distortion at 0.6 bit per point. Left: origi-
nal, middle and right: compressed/reconstructed by [3] and the proposed method
respectively. 40



Figure 3.13: Screenshot of the reconstructed point cloud ’Longdress’ at different
bitrates.

Figure 3.14: Screenshot of the reconstructed point cloud ’Loot’ at different bitrates.
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Figure 3.15: Screenshot of the reconstructed point cloud ’Queen’ at different bitrates.

Figure 3.16: Screenshot of the reconstructed point cloud ’RedandBlack’ at different
bitrates.
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Figure 3.17: Screenshot of the reconstructed point cloud ’Soldier’ at different bitrates.
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ACRONYM

SIFT Scale-invariant feature transform

RANSAC Random sample consensus

MPEG Moving Picture Experts Group

JCT-VC Joint Collaborative Team on Video Coding - ITU
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