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ABSTRACT

A NEW ADAPTIVE MULTISCALE APPROACH FOR THE DYNAMIC

MODELING AND SIMULATION OF BIOMOLECULAR SYSTEMS

ASHLEY CHASE GUY, Ph.D.

The University of Texas at Arlington, 2018

Supervising Professor: Alan Bowling

This dissertation presents three developments in the simulation of sub-micron

dynamical systems. First, a new thermostat formulation is shown to strictly enforce

the constant temperature constraint necessary in many thermodynamic ensembles.

This formulation also allows the system to quickly evolve to a low-potential state.

Next, this new thermostat formulation is leveraged to extend a continuum-regime

multiscale formulation to the atomistic regime allowing for equivalent time histories

to be generated in significantly less computation time. Finally, an adaptive multiscale

formulation allows for potential forces with time varying magnitudes to contribute to

the overall dynamics similarly resulting in equivalent time histories in significantly

less computation time.

Sub-micron dynamical simulations traditionally require extensive computational

resources to generate desired time evolutions. Microscale phenomena are often driven

by even smaller scale dynamics, requiring multiscale system definitions to combine

these effects. At the smallest scale, large active forces lead to large resultant accelera-

tions, requiring small integration time steps to fully capture the motion and dictating
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the integration time for the entire model. Multiscale modeling techniques aim to

reduce this burdensome computational cost.

A multiscale method has been previously shown to greatly reduce the real time

required to generate equivalent data. This method identifies a portion of the active

and dissipative forces that cancel and contribute little to the overall motion. By

scaling these forces, high-frequency vibrations are diminished without significantly

affecting the time histories. Integration step sizes can then be increased, reducing the

total number of required integration steps and reducing the real time required. This

method has been previously applied to systems at length scales ranging from several

hundred nanometers to large coarse grained organic molecules.

This multiscale method is first extended to the atomistic regime using a new

thermostat formulation. Equivalent results were generated in significantly less time

while maintaining the constant temperature constraint. Unlike previous multiscale

formulations, this approach relies on a time-variant term to satisfy the multiscale

analysis. This reliance on time-variant terms raised the question of how to reformulate

the multiscale method to account for the changing proportions in the equations of

motion.

The multiscale method was then extended to include an adaptive scaling consid-

eration for forces whose magnitude changes significantly. This adaptive consideration

accounts for instances in which certain small forces are not canceled. This consider-

ation allows for small forces acting over long time periods to still produce significant

results on the overall time history. Adaptively scaled results showed equivalent time

histories to the unscaled case with computation time reduction consistent with pre-

vious works.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation presents several advancements in the modeling and simulation

of micro and nanoscale systems. An established multiscale method has been shown to

significantly reduce the computation time required to generate equivalent time histo-

ries in continuum regime microscale dynamical simulations by allowing the smallest

bodies to be observable from larger time scales. Chapter 2 presents a derivation of

this multiscale method and shows its application to a simulation of the Ebola virus

glycoprotein receptor interacting with a nanoparticle. While attempting to extend

this multiscale method to the atomistic regime, it was necessary to implement a tem-

perature control mechanism called a thermostat. It was found that modifications

to a popular thermostat would more strictly enforce the temperature constraint and

quickly move the system to a low potential state. Chapter 3 presents the modifica-

tion and testing of that thermostat. Chapter 4 presents how that modified thermostat

can be leveraged to extend the continuum regime multiscale method to the atomistic

regime, similarly reducing the computation time required to generate the atomistic

time histories. Chapter 5 then presents an extension to the continuum multiscale

formulation to adaptively scale potential forces that have significant changes in mag-

nitude over long time frames. This adaptive approach is necessary to capture the work

done by these small forces acting consistently over time. The appendices present some

of the technical tools used, such as a recursive forward dynamics formulation, Euler

parameters, and online constraint embedding.
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1.2 Interests in Micro and Nanoscale Systems

Advancements in micro and nanoscale systems have led to impressive devel-

opments in medicine [1, 2, 3, 4], materials science [5, 6], sensing [7, 8], and energy

generation [9, 10, 11]. Engineering systems at this scale allows for some properties

to be minimized - such as the number of defects per volume - while others can be

maximized - such as surface area per volume. When these considerations are applied

at such small a scale, the larger scale properties can exhibit significant changes [12].

Micro and nanoscale engineered systems in medicine and therapeutics are now smaller

than individual cells and are capable of manipulating biochemistry at the molecular

level, leading to significant improvements in patients’ health and quality of life. Along

with our ability to manufacture these small scale systems has come an increased need

for visualization, understanding, and control.

An active and exciting area of research in medicine is the use of nanoparticles

for targeted drug delivery. Nanoparticles are synthesized submicron bodies that can

be tailored to control properties such as diffusivity, preferential binding, and decom-

position. For example, the size and surface charge of the particle can affect diffusivity

through arterial walls, the blood-brain barrier, and cellular membranes. Structures

like antibodies and biopolymers conjugated, or connected, to the nanoparticle surface

allow researchers and physicians to externally direct them to specific regions and cells

within the patient, reducing collateral damage to healthy tissue. Hollow nanopar-

ticles can enclose drug molecules that passively diffuse into surrounding tissue [13]

while other particles are themselves the mechanism of treatment through toxicity

[14] or mechanically destroying pathogens [15]. Current works are even personalizing

nanoparticles for specific patients [16].

Manufacturing and testing such bioengineered systems can be costly and time

consuming, creating a bottleneck in the discovery process. For even a small proposed
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change in nanoparticle or conjugate structure, an entirely new experiment would need

to be performed to test the efficacy of the proposed structure. These experiments then

can be overly reliant on trial and error when there is no other supporting method of

investigation in place. Simulations of nanoparticles can investigate a whole range

of structures without the need for costly materials or laboratory space. However,

simulations require some prior knowledge in order to know what system should be

modeled. Combining the empirical studies with simulations allows for each method

to inform the other, increasing the rate at which new discoveries are made.

1.3 Micro and Nanoscale Simulations

Simulations of sub-micron dynamical systems have a well established history

dating back to the early days of computation [17, 18, 19, 20]. These simulations

rely on developments in physics, chemistry, and thermodynamics, the foundations

of which were formed long before Alan Turing cracked the Enigma machine. While

the idea of using a machine to compute time histories for individual atoms, much less

systems with thousands or millions of distinct bodies, must have seemed far-fetched at

the time, pioneers such as Boltzmann, Gibbs, Kelvin, Maxwell, and others laid down

the mathematical formulations connecting macroscale properties to atomistic scale

quantities. These formulations form the basis of the fields of Statistical Mechanics

and Thermodynamics today. Combining their discoveries with the laws of mechanics

defined by Newton and Euler allows for micro and nanoscale systems to be simulated

with high levels of accuracy and precision.

However, simulations of sub-micron dynamical systems are notorious for requir-

ing significant computational resources to generate even modest time evolutions. In

both the continuum and atomistic regimes, the large computational burden can be

attributed to the complexities of solving the forward dynamics problem. For large
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kinematic chains, the interconnectedness of the bodies leads to joint constraints and

reaction forces that must be addressed. For large multibody systems, body-to-body

potential interactions must be resolved to solve for potential forces. For even simple

systems, mass terms are often several orders of magnitude smaller than the active

forces, leading to large resultant accelerations and high frequency vibrations that

require small integration time steps to fully capture. Generally, as the size of the

modeled bodies decreases, so does the integration step size. These small step sizes

can be sub-nano for continuum models and sub-femto for atomistic models.

Depending on the phenomena being studied, these small integration step sizes

may not inherently be a problem. For investigations of short-duration pico- and

nanosecond effects, a femtosecond integration step may be appropriate. However,

fast dynamical systems such as biopolymers [21, 22] are connected to engineered

systems like nanoparticles [23]. The potential interactions of these fast systems can

significantly affect the overall system time history but require small step sizes to fully

resolve. If these engineered systems were simulated, milliseconds worth of data may

be needed to observe the overall behavior of the large bodies, requiring a daunting

number of integration steps. Methods for reducing the real time required to simulate

such systems either reduce the computational cost of solving the forward dynamics

or increase the integration step size to reduce the total number of integration steps

required.

Methods for reducing the time required to compute the forward dynamics

include computational and algorithmic methods. Computational methods include

parallel processing and octrees. Parallel processing using graphics processing units

(GPUs) and field-programmable gate arrays (FPGAs) is highly effective for dynamical

simulations, computational fluid dynamics, and structural analysis. The CUDA [24]

and OpenCL [25] libraries allow independent computations to be distributed among
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numerous GPU and FPGA cores and calculated concurrently. In addition to resolving

independent calculations, such as the numerous body-to-body potential interactions,

parallel processing is also highly useful for performing the linear algebra common in

kinematic analysis. Divide-and-conquer formulations separate both branching and

non-branching kinematic chains into subgroups to resolve them concurrently [26, 27].

These parallel processing approaches have been shown to reduce computation time

by orders of magnitude [28, 29]. Another useful computational tool is the octree, a

method of data structuring used to partition the simulation volume into subspaces

[30]. Long-range potential interactions can then be approximated, reducing the num-

ber of interactions that are calculated.

Some algorithmic methods include numerical formulations for large kinemati-

cally linked systems that avoid inversion of mass matrices [31, 26, 27, 32, 33, 34, 35, 36,

37, 38]. Included in these is the the Newton Euler Inverse Mass Operator (NEIMO)

method for calculating the forward dynamics in joint space rather than cartesian [31],

allowing for integration time steps an order larger than expected for systems with ex-

plicit hydrogens [39]. Also included is the useful reformulation of the equations of

motion to solve them in an iterative, recursive fashion [32, 26, 27]. This recursive ap-

proach eliminates reaction forces using joint constraints. Mass matrices and forces are

modified through back substitution to reflect the effective inertia and forces experi-

enced at each joint. The symbolic equations of motion are thereby avoided completely.

While inverting a dense matrix has a computational cost of O(N3), these recursive

formulations can have a computational cost as low as O(logN) when parallelized, a

significant improvement over symbolic approaches for large systems.

Another algorithmic approach to reduce computation time is the use of a po-

tential field calculator for minimizing the number of potential interactions that must

be calculated explicitly. A molecular dynamics “truth” model would require that
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each atom or charged point interact with every other point in the model, excluding

those on a shared rigid body. Popular force field calculators, such as the Particle-Mesh

(PM) and Particle-Particle-Particle-Mesh (P3M) method, replace the interacting bod-

ies with a mesh [40, 41, 42, 43]. The force acting on a particular body may then be

found without the need to solve each point-to-point interaction explicitly. While the

PM method uses the mesh to approximate all interactions, the P3M method uses

the mesh for long-range interactions and point-to-point for close interactions. Many

long-range force approximations neglect the resultant moments, but recent work has

provided the necessary derivations [44]. The efficacy of these force field formulations

continues to be improved [45, 46]. Another alternative is to simply neglect long-

range potential calculations, though this approach is usually accompanied by some

compensation to account for the omitted energy [47, 48, 49].

Other algorithmic methods reformulate the equations of motion to eliminate

high frequency vibrations. This can be accomplished by eliminating high frequency

modes to isolate the higher order dynamics [50] or by isolating low order perturbations

[51, 52, 53]. Another method considers the significantly large damping term compared

to the mass and omits the mass term altogether [54, 55, 56]. Since these massless

models halve the number of integrated variables, computation time is reduced, but

underdamped behavior can no longer be predicted. This approximation leads to the

reduced order models described by the well-known overdamped Langevin equation.

Another popular approach is to define the model at larger scales and reduce

resolution. This usually involves coarse grained models that approximate clusters of

bodies such that internal degrees of freedom can be eliminated [57]. By removing these

degrees of freedom, high frequency vibrations are eliminated and integration step

sizes can be increased. Finer coarse graining methods remove the degrees of freedom

associated with bond angle and bond length while retaining rotations about single
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bonds [32]. For biopolymers, residue based coarse graining groups the atoms into

backbone and residue clusters [58] while shape-based approaches use neural nets for

identifying clusters [59]. Some implementations allows for system resolution to change

dynamically by identifying and constraining kinematically inactive joints forming

larger rigid bodies and a coarser graining [60, 61].

While coarse graining an entire model may be tempting, since many slow phe-

nomena are in fact driven by fast mechanics [21, 22], observation of slower phenomena

may require that higher resolution be retained, at least in some critical regions. For

the simulation of biopolymers, some dynamically active regions of the polymer might

require an atomistic resolution. For the simulation of conjugated nanoparticles [23],

coarse grained biopolymers are still several orders of magnitude smaller than the host

bodies. Combining all these bodies into a single system model leads to a multiscale

problem in which integration step sizes are defined by the smallest bodies included.

The term multiscale refers to a system in which multiple phenomena at various scales

are combined to show the interconnectedness of these phenomena. It can be seen

then that it is difficult to avoid multiscale problems in biological simulations at the

micro and nanoscale and it is clear from the research it is an on-going consideration

[62, 63, 64]. Multiscale system definitions provide distinct opportunities for address-

ing the problem of burdensome computation time.

1.4 Multiscale Systems at the Micro and Nanoscale

Methods for accommodating multiscale problems can be classified as serial and

concurrent approaches. Serial approaches separate the whole system into several

subsystems defined at varying resolution [65]. These systems are arranged in a hi-

erarchical manner where high-resolution system states are used to define inputs for

medium-resolution systems, which in turn define inputs for lower-resolution systems.
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These formulations are useful for studies in which properties are easily delineated by

scale [66]. Concurrent methods combine each of the simulation layers and share infor-

mation between layers [67]. These formulations have found extensive use in material

studies [68] and investigations of crack propagation [69, 70].

Another approach for addressing the multiscale problem is to model all bod-

ies together and reformulate the equations of motion such that the motion of the

small bodies may be observable from a larger time scale consistent with the larger

bodies. Previous works have developed a multiscale formulation applicable to the

continuum regime that has been shown to significantly reduce the required com-

putation time while generating equivalent time histories to the unscaled models

[71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. This multiscale method identifies a signifi-

cant disproportionality in the equations of motion. The method of multiple scales

[51] then uses that disproportionality to reveal a scaling of the generalized forces such

that they do not produce large accelerations, but do yield an accurate estimate of

the system’s motion. This formulation has been successfully applied to simulations of

nanobeads in optical tweezers [76], estrogen docking [77], motor protein-cytoskeleton

interactions [79], and long kinematic chains of amino acids [80]. In the case of [76],

a computation time reduction of 99.9% was achieved while more closely matching

experimental results than the unscaled case. These works applied this multiscale

method to systems of differing scales and complexity within the continuum regime.

While later chapters present extensions to this multiscale method, Chapter 2 provides

a derivation of this method and shows its application to a simulation of the Ebola

virus glycoprotein receptor interacting with a nanoparticle.
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CHAPTER 2

CONTINUUM REGIME MULTISCALE METHOD

2.1 Introduction

This chapter presents the established continuum regime multiscale method and

shows its application to a simulation of a finely coarse grained biopolymer. Previous

works have applied this multiscale method to systems at various length scales rang-

ing from nanobeads with radii of hundreds of nanometers [76], to coarsely grained

biopolymers [79], to cholesterol molecules with radii on the order of Angstroms [77].

In [79], coarse graining was applied to a model of Myosin V walking along an actin

filament. This coarse graining did not consider individual residues or rotations about

single bonds. In this chapter, a model of a finely coarse grained protein is used to

demonstrate the multiscale method. This fine coarse graining retains the degrees of

freedom about single bonds within dynamically active residue sidechains.

The model chosen is the receptor site of the Ebola virus (EBOV) glycoprotein

(GP) interacting with a theoretical drug particle. Figure 2.1 shows a colored trans-

mission electron micrograph of an EBOV virion. The EBOV GP is a virally encoded

trimer bound within the virion envelope. Figure 2.2 shows a 3D model of the EBOV

GP structure under physiological conditions [81]. The interaction between this struc-

ture and host cell receptors has been shown to play a key role in host cell infection

[82, 83, 84]. Each protein within the trimer is composed of 676 amino acids and is

divided into the GP1 region containing the active site and the GP2 region serving as

a transmembrane anchor. The GP1 region is structurally distinct from human recep-

tors, meaning this structure could be selectively targeted by drugs. The GP1 receptor
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Figure 2.1. Transmission electron micrograph of Ebola virion. c© Cynthia Goldsmith,
CDC.

site is a protein consisting of 148 amino acids spanning residues 54-201 in the GP

primary sequence. Five specific amino acids form the receptor site: leucine-57 (L57),

leucine-63 (L63), arginine-64 (R64), phenylalanine-88 (F88), and lysine-95 (K95). A

theoretical drug particle is modeled which interacts with the GP1 receptor site.

The multiscale analysis is applied to the this system and shown to significantly

reduce the computation time required to generate the time evolution data. While the

multiscale analysis had been applied to coarse grained biopolymers before [79], the

work detailed in this chapter is the first application of this method to a fine coarse

graining allowing rotations around individual chemical bonds.

2.2 Multiscale Derivation

Consider the equation of motion for a rigid multibody model:

M(q) q̈ + C(q, q̇) = ΓΓΓ(q, q̇) (2.1)
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Figure 2.2. Ebola Glycoprotein physiological structure.

where M(q) ∈ RN×N denotes the mass matrix where N is the number of degrees

of freedom, q ∈ RN×1 is a vector containing the generalized coordinates with time

derivatives q̇ and q̈, and C(q, q̇) ∈ RN×1 is the nonlinear accelerations. The term

ΓΓΓ(q, q̇) ∈ RN×1 on the right side of Eqn. (2.1) denotes the generalized active forces

and is defined by:

ΓΓΓ(q, q̇) = ΓΓΓdamping(q, q̇) + ΓΓΓothers(q) (2.2)

ΓΓΓdamping = −β D(q) q̇ (2.3)

where the subscript damping denotes the friction forces and others denotes all other

active forces. The term −βD(q)q̇ models the friction forces where β is a scalar

characteristic damping term and D(q) ∈ RNxN maps the friction to the generalized

speeds.

Deriving the multiscale formulation begins by rearranging Eqn. (2.1):

m M(q) q̈ + m C(q, q̇) + β D(q) q̇ = ΓΓΓothers(q) (2.4)
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where m is a characteristic mass term that has been extracted from M and C leaving

the modified M and C terms, respectively. Normalizing Eqn. (2.4) by the damping

term β yields:

m

β
M(q) q̈ +

m

β
C(q, q̇) + D(q) q̇ =

ΓΓΓothers(q)

β
(2.5)

At the sub-micron scale, mass terms are often several orders of magnitude smaller

than damping terms. A small parameter may then be defined to represent this dis-

proportionality:

ε =
m

β
(2.6)

Using this new parameter ε, Eqn. (2.5) may now be written as:

ε M(q) q̈ + ε C(q, q̇) + D(q) q̇ =
ΓΓΓothers(q)

β
(2.7)

When a small parameter such as ε appears on the leading term of a differential

equation, the result is a singular perturbation problem where it can be difficult to

find exact solutions. An approximate solution to this perturbation problem can be

found by replacing the terms with asymptotic expansions. The Method of Multiple

Scales [51] uses the small parameter ε to similarly expand time into an asymptotic

series: Ti = εi t. The time derivatives can then be expanded into series:

q̇ =
∞∑
i=0

εi
∂q

∂Ti
(2.8)

q̈ =
∞∑
i=0

∞∑
j=0

εi εj
∂2q

∂Ti∂Tj
(2.9)

Substituting these expansions into Eqn. (2.7) and arranging by increasing order of ε

yields:

0 = ε0
(
D(q)

∂q

∂T0
− ΓΓΓothers(q)

β

)
+ ε1

(
M(q)

∂2q

∂T 2
0

+ C00 + · · ·
)

+ · · · (2.10)
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where

C00 =
∂M(q)

∂T0

∂q

∂T0
−
(∂qT

∂T0
M(q)

∂q

∂T0

)
(2.11)

Cij = εiεj
(∂M(q)

∂Ti

∂q

∂Tj
− ∂

∂q

(∂qT

∂Ti
M(q)

∂q

∂Tj

))
(2.12)

Note that the first term on the left side of Eqn. (2.10) contains the damping and

remaining active forces. The second term contains the generalized accelerations and

the first set of higher order terms. Considering the definition of the small parameter

ε in Eqn. (2.6), for Eqn. (2.10) to equal zero, the first term on the left side must

largely cancel. If these forces cancel, they do no work and produce no motion. These

forces then can be scaled to eliminate the large portions of these forces that cancel

without significantly affecting the time evolution.

Note that the claim above assumes the generalized accelerations are not signifi-

cantly large. Often in unscaled “truth” models, the first term in Eqn. (2.10) does not

equal zero resulting in large accelerations. These accelerations can be oscillatory, re-

quiring small integration step sizes to resolve but ultimately do not contribute to the

overall time evolution. This oscillatory behavior becomes even more pronounced for

finer coarse grained and atomistic models, but is still present in lower resolution mod-

els and is often the result of stiff conformational springs. The multiscale formulation

shown here imposes the assumption of small accelerations by scaling the generalized

active forces.

The scaling of the generalized active forces is accomplished by splitting these

forces into small and large parts:

(a1 + a2)
(
D(q)

∂q

∂T0
− ΓΓΓothers(q)

β

)
=
(
D(q)

∂q

∂T0
− ΓΓΓothers(q)

β

)
(2.13)
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where the scalars a1 + a2 = 1 and a1 � a2. Substituting this definition into Eqn.

(2.4) yields the scaled equation of motion:

M(q) q̈ + C(q, q̇) + a2 β D(q) q̇ = a2 ΓΓΓothers(q) (2.14)

where it is assumed that the forces associated with the a1 term cancel such that Eqn.

(2.10) is true. This scaled equation of motion suggests that for systems satisfying the

initial assumptions, specifically that the characteristic damping term is significantly

larger than the characteristic mass, the generalized active forces may be scaled by

the small parameter a2. The value a2 is user-specified and found by comparing scaled

and unscaled response for short-time simulations. A useful first guess is a2 ≈ ε. The

practical effect of this force scaling is an elimination of the high frequency accelerations

that require small integration time steps to resolve. This allows for integration to be

performed at larger time steps, usually an order of magnitude increase. By increasing

the integration time step, the number of integration steps that must be performed is

reduced, thus reducing the real time required to generate the time evolution data.

The multiscale formulation derived above was extended to accommodate a

multibody coarse grained biopolymer system with conformational forces arising from

torsional springs [79]. That analysis showed that when the spring constant is signifi-

cantly large, the conformational forces may be included within the scaled portion of

Eqn. (2.10). If these spring constants show a large disproportinality with respect to

the damping term, two small parameters, ε1 and ε2, can be defined. This analysis

yields the scaled equation of motion:

M(q) q̈ + C(q, q̇) + a2 β D(q) q̇ + a2b2ΓΓΓk(q) = a2b2ΓΓΓothers(q) (2.15)

where ΓΓΓk(q) ∈ RN×1 denotes the forces produced by conformational springs and b2 is

a second scaling factor. This formulation was used in damped coarse-grained models
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in which the conformational forces showed a large disproportionality with respect to

the damping forces. By using two scaling factors, all forces are brought into an order

similar to that of the mass.

2.3 Model Description and Equations of Motion

As mentioned before, the system selected for testing the multsicale method on

coarse grained biopolymers is a drug particle interacting with a EBOV GP1 receptor.

The equation of motion is similar to that given by Eqn. (2.14):

M(q) q̈ + C(q, q̇) + a2 β D(q) q̇ = a2 ΓΓΓp(q) (2.16)

where ΓΓΓp(q) ∈ RN×1 denotes forces arising from potential interactions.

This model consists of a large body branching into five kinematic trees and

an ungrounded spherical drug particle. The large body represents the bulk of the

receptor protein and is considered to be in a state of internal equilibrium and behave

as a rigid body. This bulk protein is connected by a rotational joint to a fixed base

- assumed to the remainder of the GP1 structure. The five kinematic trees model

the five amino acid residues identified as the specific receptor site: leucine-57 (L57),

leucine-63 (L63), arginine-64 (R64), phenylalanine-88 (F88), and lysine-95 (K95). A

fine coarse graining is applied to the residues which removes the degrees of freedom

associated with bond length and bond angle but retains the rotations about single

bonds. The drug particle is modeled as a sphere with three degrees of translation.

Figure 2.3 shows the mechanical model for this system.

The forward dynamics are solved using a recursive numerical approach similar

to [26] in which quantities are defined using 6-dimensional spatial notation. This

approach eliminates reaction forces using joint constraints. Mass matrices and forces

are modified through back substitution to reflect the effective inertia and forces ex-
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Figure 2.3. System model showing the bulk protein with active-site side chain groups.

perienced at each joint. A derivation of such a recursive formulation can be seen in

Appendix A.

2.4 Forces and Energy

The system is driven by the point-to-point potential interactions between charged

points. These interactions are calculated between points on the receptor proteins and

the points on the drug particle. Also considered are interactions amongst the points

on the receptor protein when those points are separated by at least three joints.
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The potential energy is modeled using a combination of Coulomb and Lennard-Jones

terms:

Φij(r) =
cicj

4πε0εrrij
+ 4εij

[(σij
rij

)12
−
(σij
rij

)6]

εij =
√
εiεj

σij =
σi + σj

2

(2.17)

where Φ denotes a potential energy quantity, r is the distance between the ith and

jth points, c is the point charge, ε0 is the permittivity of free space, εr is the relative

permittivity of the medium, and ε and σ are Lennard-Jones constants. The subscripts

i and j are iterated over all the points in the model. Equation (2.17) can also be

written as:

Φij(r) =
Aij
r12ij
− Bij

r6ij
+

Cij
rij

(2.18)

where:

Aij = 4εijσ
12
ij

Bij = 4εijσ
6
ij

Cij =
cicj

4πε0εr

(2.19)

The force arising from these potential interactions are then found by taking the deriva-

tive of the energy expression:

Γp(r) =
dΦ

dr
r̄ (2.20)

where r̄ denotes the unit vector along which the resultant force acts. For higher resolu-

tion biopolymer models, a four-term [85] or six-term potential expression [86] is more

appropriate. Since the coarse grain model used here removes the degrees of freedom

associated with bond angle and bond length and since the dihedral bonds associated
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with backbone alpha carbons are contained within the bulk protein, both of those

expressions simplify to the expression given by Eqn. (2.17). These more complex

potential expressions arise from the matching of simulation data with experimental

vibrational analysis [86].

The theoretical drug particle and bulk protein body are large enough to satisfy

the continuum assumption, so viscous friction is appropriate. This is determined by

calculating the Knudsen number for the bodies:

Kn =
λ

L
(2.21)

where λ denotes the mean free path of the medium and L is the characteristic length

of the body. Damping terms were calculated using Stoke’s Law:

β = 6πηRv (2.22)

where η denotes the dynamic viscosity of the medium, R is the radius of the body,

and v is the flow velocity relative to the body. This friction is linearly distributed

among the protein components as a function of relative mass. For atomistic models,

especially when the degrees of freedom associated with bond length and bond angle

are retained, a more appropriate friction model for the small molecular components is

a temperature controlling thermostat that redistributes energy to enforce a constant

temperature constraint. Temperature control and thermostats are further discussed

in Chapter 3.

Energy conservation and dynamic consistency are confirmed by summing the

instantaneous kinetic and potential energies and subtracting the thermostat work:

T + ΦΦΦ − W = constant (2.23)
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where T denotes the kinetic energy, ΦΦΦ is the total potential energy, and work done

by friction is calculated from:

W =

∫ t2

t1

N∑
i=1

Γdamping,i · q̇i dt (2.24)

The constant on the right hand side of Eqn. (2.23) shows that for all time, the total

energy of the system must be a constant.

2.5 Hardware and Simulation Parameters

Simulation files were coded using C++ programming language using the Eigen

library [87]. Numerical integration was performed on a DELL PowerEdge 2900 III

Server with two quad-core, 2.0 GHz processors running Linux 12.04.5 LTS operating

system. The integration was performed by a Kutta-Merson algorithm [88] with adap-

tive integration step sizes for reducing the numerical error. Relative and absolute

errors were 10−7 and 10−8 respectively. Data comes from systems printing data every

100 fs. Final simulation time was 6.4 ns. A unit system of (zg, nm, ns) was selected

to keep the order of terms in the side chain equations of motion near unity. The value

of a2 selected was 10−3. Table D.1 in Appendix D lists the values of the parameters

used.

GP1 structure and initial conditions were estimated from x-ray crystallography

data [89, 90]. Since the primary sequence is known, the actual mass and estimated

inertia can be determined from the known primary sequence and estimated structure.

For calculating the drag coefficient, the bulk protein was approximated as a sphere

with radius of 225 nm. The drug particle has a radius of 1.5 nm and a mass of 0.4 zg.

Figure 2.4 shows a plot of the drug particle interacting with the EBOV GP1 receptor.
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Figure 2.4. Plot of drug particle interacting with EBOV GP1 receptor.

2.6 Results Analysis

Figure 2.5 shows the time evolution of six of the generalized coordinates. These

coordinates correspond to the joint angles of the bulk protein and the base link of each

of the five side chains. The darker line denotes the unscaled system and the lighter

line denotes the scaled system. It can be seen that while some variance is present,

the scaled and unscaled results are largely consistent. The standard deviations in

absolute differences for plots (a)-(f) are 0.0013, 0.0108, 0.0128, 0.0082, 0.0833, and

0.3923 radians, respectively.

Figure 2.6 shows the position of the drug particle center of mass defined in the

inertial frame. Similarly to the data in Fig. 2.5, some variance is present but the
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results are largely consistent. Standard deviations in absolute differences for plots

(a)-(c) are 0.6629, 0.2726, and 1.6545 Å, respectively.

Figures 2.7 and 2.8 show the system energies of the unscaled and scaled systems,

respectively. The dark flat line denotes the total system energy, the lighter line with

large negative values is the potential energy, the lighter line with small positive values

is the kinetic energy, and the dashed line is the work done by friction. It should be

noted that there is a change in the vertical scale between the two figures. As potential

energy is the antiderivative of the potential force and the potential force is scaled by

a2, it is therefore necessary to scale the potential energy as well. Because of this

change in scale, the kinetic energy profile is much more visible in Fig. 2.8 due to the

smaller resolution.

Figure 2.9 shows the potential energy of both the unscaled and scaled systems

plotted together for comparison. The darker line denotes the unscaled system and the

lighter line denotes the scaled system. It can be seen both the scaled and unscaled

systems evolve into similar low-potential states. The change in potential energy is

converted to kinetic energy and then dissipated by the friction. It can be seen that

tracking the work done by friction confirms the dynamic consistency of the model

as given by Eqn. (2.23). This time evolution is consistent with theories of mechan-

ics stating that systems evolve into low-potential states coinciding with equilibrium

positions. Note that the scaled system potential energy has been multiplied by a−12

to bring both data sets into the same scale. The standard deviation in absolute

difference is 1.547 ∗ 10−25 J.

2.7 Computation Time Reduction

The unscaled system took 11481 minutes to integrate while the scaled system

took 1636 minutes. This reduction in computation time was approximately 86%. It
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was observed that the unscaled system was integrated at sub-femtosecond time steps.

It was also observed that the scaled system could be integrated at 100 fs without

consistent reduction of the time step. For much of the time evolution, the scaled

system could be integrated at even larger time steps (≥1 ps) providing even greater

computation time reduction. However, these savings must be balanced against the

loss of resolution. This increase in integration time step reduced the number of

total integration steps calculated, significantly reducing the overall computation time

required to generate the data. These results were consistent with previous studies on

continuum systems [76, 77, 79].

2.8 Conclusions

This chapter presents an investigation of the continuum regime multiscale method

applied to a finely coarse grained biopolymer system. The multiscale analysis shows

that a portion of the dissipative and active forces cancel, meaning that these canceled

forces can be removed from the dynamics while still accurately predicting overall

behavior. The selected model was chosen because previous works had not yet inves-

tigated the application of this multiscale analysis to such finely grained biopolymer

systems.

Results show that application of the multiscale method reduced the compu-

tation time required to generate the time evolution by 86%. While some variance

exists between the results of the scaled and unscaled system, this variance can be

mitigated through selection of the a2 scaling factor. It was also seen that, compared

to the unscaled system, the scaled system could be integrated at a time step an or-

der of magnitude larger. These results show that the presented multiscale method

can significantly reduce the computation time required for fine grained biopolymer

systems.
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Figure 2.5. Bulk protein and side chain base link joint angles. (a) bulk protein, (b)
L57, (c) L63, (d) R64, (e) F88, (f) K95.
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Figure 2.6. Position of drug particle in inertial frame. (a) N̂1 direction, (b) N̂2, (c)
N̂3.
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Figure 2.7. Energy of unscaled system.
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Figure 2.8. Energy of scaled system.
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Figure 2.9. Comparison of potential energy from unscaled and scaled systems. Note
that the scaled system potential has been multiplied by a−12 .
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CHAPTER 3

MODIFICATION TO THE NÒSE-HOOVER THERMOSTAT

3.1 Introduction

This chapter discusses temperature control in atomistic simulations and presents

a modification to an established temperature control approach. Various constraints

were assumed in the initial derivations connecting macroscale thermodynamic prop-

erties to discrete atomistic quantities [91]. Common sets of constraints are defined

by ensembles. These constraints include constant temperature, constant pressure,

constant volume, and a constant number of bodies, among others. While a constraint

on the volume or number of bodies requires only the consideration of the researcher,

constraints on temperature and pressure requires mechanisms for calculating and

controlling these quantities.

The constant temperature constraint appears in the NVT (constant-volume,

constant-temperature), NPT (constant-pressure, constant temperature), and NST

(constant-stress, constant-temperature) ensembles. Methods for controlling system

temperature are collectively called thermostats. Of the numerous formulations avail-

able [92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102], thermostats can be broadly classified

based upon how they measure and control temperature: by kinetic energy using gen-

eralized speeds or by system configuration using generalized positions. Some of these

formulations reassign or scale the velocities between integration steps [92, 95], but

those methods are not deterministic, time-reversible, or dynamically consistent. As

an alternative to kinetic energy-based thermostats, configurational thermostats pe-

riodically modify the system’s configuration to model random temperature effects
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[98]. However, these formulations are also not deterministic, time-reversible, or dy-

namically consistent. A characteristic of these formulations is a mean temperature

converging to a steady state value consistent with a target. However, temperature

fluctuations periodically appear in the response, even after this steady state has been

reached.

A comparison of four thermostats found the Nóse-Hoover thermostat, initially

formulated by Nóse [96] and later extended by Hoover [97], produced the most favor-

able time averaged temperature and phase space distributions [103]. The Nóse-Hoover

thermostat is a popular formulation and has been widely applied to systems at vari-

ous time and length scales [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,

116, 117, 118, 119, 120]. The mechanism used is a feedback-based force modifying the

generalized momentum of the system. As the mechanism is force based, there are no

discontinuities in generalized positions or speeds and the system is dynamically con-

sistent. Similar to the other formulations, Nóse-Hoover response is characterized by a

mean temperature converging to a target temperature with oscillations in the actual

system temperature consistently appearing with time. Furthermore, this thermostat

has been shown to produce ergodic results, meaning that given sufficient simulation

time, all points within the phase space will be periodically occupied. Ergodic systems

can therefore be modeled probabilistically. The original formulation is a type of single

variable thermostat, which have been shown to lead to non-ergodic results for small

systems [121, 122, 123]. As such, it is often used in chains to ensure a more ergodic

result [124].

Applications and modifications of this thermostat are far ranging. Hoover’s

continued work with collaborators commonly used harmonic oscillators to characterize

the thermostat [104, 109, 112, 114] and showed that deterministic thermostats can

be applied to non-equilibrium problems [125]. A combination of the Nóse-Hoover
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thermostat and the NEIMO formulation showed this approach gave rise to a canonical

distribution and stable dynamics for a simulation of two amorphous polymers [108].

An application of the Nóse-Hoover thermostat with a coarse grained simulation of

RNA was used to convert the generalized thermostat forces to spatial forces acting at

kinematic joints [118]. Works studying carbon nanotubes have used the thermostat

in the testing mechanical response, heat conduction, and flow of fluids through the

tubes [113, 115, 116, 117]. Other applications include biopolymers [106, 107, 111],

heat conduction [119, 120], Lie algebras [105], and quantum systems [110].

Nóse-Hoover response is characterized by a time-averaged system temperature

converging to a target but with short term oscillations consistently appearing that

do not diminish with time. There are user specified parameters associated with

the thermostat, and while modifying them does affect response it will not prevent

these oscillations. As nanoscale simulations are often integrated at the femtosecond

scale, short-term temperature oscillations may be interpreted as near-instantaneous

fluctuations in local temperature. In some fields this oscillatory response is acceptable.

However, these temperature oscillations are coupled with an oscillatory control history

that acts as a forcing function on system response. From a multibody dynamics

perspective, the oscillatory control history acts more as a driving force on the system

than a constraint and may become more significant when the simulation is integrated

at large time steps. A constraint should not cause motion of the system, it should

only define a subspace of possible motions while other forces move the system around

in this subspace. This system can then evolve in a manner more consistent with the

theory that systems naturally evolve toward a low-energy equilibrium state, eventually

minimizing the system energy. From this perspective, a control law maintaining an on-

target instantaneous temperature while minimizing fluctuations would better enforce

the temperature constraint. Thermal disturbances may be implemented through
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some stochastic Brownian motion-like force or time-variant non-equilibrium target

temperatures.

Efforts to reduce oscillations in temperature response have been pursued. In

[99], two configurational thermostats were formulated similarly to [97] and found

reductions in temperature response oscillation compared to [96] and [98]. As these are

configurational thermostats, they share the same problems of non-time-reversibility

and state modifying mentioned before.

The modification of the Nóse-Hoover thermostat presented in this chapter is

intended to reduce the oscillations in temperature response. The system selected to

test this proposed formulation is a molten solution of sodium and potassium nitrate

salts. Included in this molten solution is a large cluster, or nanoparticle, of silicon

dioxide molecules. This silicon dioxide nanoparticle is assumed to have a negative

surface charge that will introduce a potential gradient to the salt solution. These

nanoparticle-salt solutions are commonly used as heat transfer fluids in energy storage

systems as the inclusion of nanoparticles has been shown to significantly increase the

heat capacity of the fluid [126, 127]. It is theorized this increase in heat capacity arises

from the aggregation and organization of ions around the nanoparticles as observed

under electron microscopy.

Since the salt solution is molten, the weak ionic bonds have broken, allowing

the salt molecules to dissociate into negatively-charged anions and positively-charged

cations. These ions are all modeled as particles, including the trigonal planar nitrate

anions. Each of these particles can translate in three dimensions, but no rotations are

considered. It was assumed that the approximation of the nitrate anions as particles

would not affect the testing of the proposed formulation efficacy.

A comparison of temperature response shows that the response oscillations are

significantly reduced in magnitude, resulting in a more strictly enforced constant
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temperature constraint. This tight control of temperature occurred for systems both

with and without stochastic forces. An interesting result of the modified thermostat

is the swift evolution of the system to a low potential state. It is expected that this

result is due to the lack of an oscillatory thermostat force consistently disrupting the

low potential positions.

3.2 Nóse-Hoover Formulation

Consider the equation of motion for a simple particle model:

M(q)q̈ + ΓΓΓNH(q, q̇) = ΓΓΓ(q) (3.1)

where M(q) ∈ RNxN denotes the mass matrix where N is the number of degrees

of freedom, q ∈ RNx1 is a vector containing the generalized coordinates with time

derivatives q̇ and q̈, ΓΓΓ(q) ∈ RNx1 is a vector of forces, and the subscriptNH associates

the quantity with the Nóse-Hoover thermostat.

This thermostat connects the modeled system to a thermal reservoir capable

of donating or receiving energy from the system as needed to reduce the error in

temperature. The Nóse-Hoover thermostat is implemented by extending the dynamics

to include an additional generalized coordinate (ζ) and speed (ζ̇). The new speed

variable is defined as the scaled error in instantaneous kinetic energy:

ζ̇ =
(
q̇TM q̇ − NkBTd

) 1

Q
(3.2)

where kB denotes the Boltzmann constant, Td is the absolute target system tempera-

ture, and Q is a mass-like term associated with the thermal reservoir. For reference,

ζ and ζ̇ have the units s−1 and s−2, respectively. It is of note that ζ̇ may be either
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positive or negative, depending on the error. It is also of note that Eqn. (3.2) comes

from the connection between kinetic energy and temperature:

T =
1

2
NkBTd (3.3)

where T denotes kinetic energy. Note that the 1
2

in Eqn. (3.3) has been combined

with Q in Eqn. (3.2). As the target temperature is user specified, it may be defined

as time variant for non-equilibrium studies. The error ζ̇ is then integrated and used

in feedback to modify the generalized momenta:

ΓΓΓNH = −ζM q̇ (3.4)

The thermostat control law in Eqn. (3.4) is a force similar to friction and resembles

a classical controller using integrated state feedback.

While this simple implementation can produce ergodic results for many systems,

it fails to produce ergodic results for small or stiff systems. This exception comes from

the assumption made during formulation that the trajectory average can be taken into

the phase space average [124]. For these systems, a chain of Nóse-Hoover thermostats

can implemented:

M q̈ − ζ1M q̇ = ΓΓΓ

ζ̇1 =
(
q̇TM q̇ − NkBTd

) 1

Q1

− ζ1ζ2

ζ̇j =
(
Qj−1ζ

2
j−1 − kBTd

) 1

Qj

− ζjζj+1

ζ̇k =
(
Qk−1ζ

2
k−1 − kBTd

) 1

Qk

(3.5)

where j denotes an iteration over a set of k thermostats. This set of thermostat chains

can produce ergodic results for small or stiff systems, but still has the aforementioned

problem of periodic, non-damping oscillations in response.
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To reduce oscillations in temperature response arising from the standard ther-

mostat, the control law seen in Eq. (3.4) is modified to include the ζ̇ term:

ΓΓΓMNH = −
(
ζ + kdζ̇

)
M q̇ (3.6)

where kd is a gain associated with the derivative term. This control law is constructed

similar to classical controllers with higher order states used to diminish oscillations.

The independent gain kd is included to allow tuning of the thermostat response.

3.3 Model Description and Equations of Motion

As mentioned before, the system selected for testing the proposed modified

Nóse-Hoover thermostat is a molten blend of sodium and potassium nitrate salts.

Figure 3.1 shows the mechanical model for this system. The equation of motion is

similar to that given by Eqn. (3.1):

M(q)q̈ + ΓΓΓMNH(q, q̇) = ΓΓΓ(q)

ΓΓΓ(q) = ΓΓΓp(q) + ΓΓΓv(q) + ΓΓΓs

(3.7)

where the subscripts MNH denotes the modified Nóse-Hoover thermostat, p de-

notes potential forces, v denotes volume constraint forces, and s denotes time-variant

stochastic forces.

Solving the equations of motion for a set of linear differential equations such

as Eqn. (3.7) often involves summing all the known and calculated quantities and

inverting the mass matrix. As this system is a particle model, the mass matrix is

diagonal and thus quickly inverted. Since the mass matrix is constant, this inversion

may be performed in preprocessing. However, mass matrix inversion is avoidable

as the vector of known quantities may be iterated over and simply divided by the

respective mass term to solve for the generalized acceleration. While parallelization
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Figure 3.1. Mechanical model of the sodium, potassium, and nitrate ions represented
by spherical particles.

was not used to generate the results shown in this chapter, these problems are highly

parallelizable as the equation of motion for each degree of freedom is independent from

all other equations, meaning the entire set of equations can be solved concurrently.

3.4 Forces and Energy

Active forces in atomistic simulations are dominated by body-to-body potential

interactions. These potential interactions are modeled as a combination of Coulomb

and Lennard-Jones terms similar to method described in Chapter 2:

Φp,ij(rij) =
Aij
r12ij
− Bij

r6ij
+

Cij
rij

(3.8)
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where the force arising from a potential interaction is found by taking the derivative:

Γp(r) =
dΦp

dr
r̄ (3.9)

The Lennard-Jones forces provide a small attractive force at large distances and a

large repulsive term to model collisions. These potential interactions are calculated

body-to-body with a specified threshold distance. Any interaction with a distance

beyond this threshold is omitted to facilitate faster computations. The threshold is

user-specified such that errors in potential energy calculation are minimized. The

volume constraint is enforced by an uncharged potential interaction between each

particle and the volume wall. This potential contains only a Lennard-Jones term in

which the constants are defined by the body:

Φv,i(ri) =
Ai
r12i
− Bi

r6i

Γv(r) =
dΦv

dr

(3.10)

Potential forces arising from gravity were not considered because, at the atomistic

scale, these force are approximately ten orders of magnitude smaller than the Coulomb

and Lennard-Jones terms. While these forces can have significant effects over long

time periods, they will not have a significant effect for shorter simulations.

Stochastic forces are modeled to represent thermal noise and interactions be-

tween modeled and non-modeled bodies. The method used to implement these

stochastic forces is similar to an implementation of Brownian motion previously used

for motor proteins and optical tweezers [128, 129]. As Brownian motion is a contin-

uum phenomena, these stochastic forces are not explicitly considered as such. The

random force acting on a particular body may be defined, for example, as:

Γs = B1(t) N̂1 + B2(t) N̂2 + B3(t) N̂3 (3.11)
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where the Bi(t) terms represent forces produced by randomly fluctuating thermal

noise and non-modeled collisions. Each component of the random force is treated

independently as a normally distributed random variable. They have the following

expectations, E[·], or weighted average values:

E [ Bi(t) ] = 〈 Bi(t) 〉 = 0 (3.12)

and are governed by a fluctuation-dissipation relation:

E [ Bi(t1) Bj(t2) ] = 2 β kB T δ(t1 − t2)δi,j (3.13)

where β is a drag coefficient, kB the Boltzmann constant, and T the instantaneous

absolute system temperature. Note that in an implementation of Brownian motion,

the β term is often taken from Stoke’s law. For the work detailed in this chapter,

the value of β was selected such that the magnitude of the Γs term approximated a

collision. The collection of these random forces comprise ΓΓΓs. The randomly generated

variables are updated at each integration step and held constant for that single step.

As a means of confirming energy conservation, many works utilizing thermostats

present quasi-Hamiltonians including potential and kinetic terms associated with the

thermal reservoir [99, 121, 123, 119, 120, 130, 131, 132, 133]. In this study, the work

done by the thermostat on the system is calculated by defining the derivative of work

at each time step and integrating:

WNH =

∫ t2

t1

N∑
i=1

ΓNHi · q̇i dt =

∫ t2

t1

−ζq̇TM q̇ dt (3.14)

WMNH =

∫ t2

t1

N∑
i=1

ΓMNHi · q̇i dt =

∫ t2

t1

−
(
ζ + kdζ̇

)
q̇TM q̇dt (3.15)

where W is the work done. Energy conservation is then confirmed by summing the

instantaneous kinetic and potential energies and subtracting the work:

T + ΦΦΦ − W = constant (3.16)
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where ΦΦΦ is the total potential energy including both the interaction and volume

constraint potentials. For a particle model, the kinetic energy can be easily calculated

from:

T =
1

2
q̇TM q̇ (3.17)

The constant on the right hand side of Eqn. (3.16) shows that for all time, the total

energy of the system must be a constant. Note that the work done by the thermostat

is also the change in thermal reservoir energy.

3.5 Hardware and Simulation Parameters

Simulation files were coded in the C++ programming language using the Eigen

library [87]. Numerical integration was performed on a DELL PowerEdge 2900 III

Server with two quad-core, 2.0 GHz processors running Ubuntu 12.04 LTS operat-

ing system. The integration was performed by a Kutta-Merson algorithm [88] with

adaptive integration step sizes for reducing the numerical error. Relative and abso-

lute errors were 10−4 and 10−5, respectively. Data comes from systems with 100 ions

printing data every 100 fs. A unit system of (zg, nm, ns) was selected to keep the

order of terms in the equations of motion near unity. Table D.2 in Appendix D lists

the values of the parameters used.

Figures 3.2 and 3.4 show the initial and final positions of the modified thermo-

stat system, respectively. For comparison, 3.3 shows the final positions of the original

thermostat system. The size of the ions are enlarged in these figures for easier view-

ing. It can be seen by comparing Figs. 3.4 and 3.3 that the modified thermostat

formulation leads to aggregation of cations on the negatively charged nanoparticle

surface. As will be discussed later, this aggregation of cations is consistent with a

reduction in the potential energy of the modified thermostat system energy.
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Figure 3.2. Initial positions. Cations (small) and anions (medium) are shown here
interacting with a silicon dioxide nanoparticle (large). Ionic radii are enlarged for
viewing.

Table D.2 shows the values of the simulation parameters. Many of these quanti-

ties are shown with an iterative subscript. The mi mass terms are used in constructing

the diagonal mass matrix M . The ci, εi, and σi terms are used to define the Coulomb

and Lennard-Jones constants in Eqns. (3.8) - (3.10). Specific values used are based

upon which two ions’ interaction is currently being evaluated. The Lennard-Jones

constants for the sodium and potassium cations were taken from [134]. The Lennard-

Jones constants for the nitrate anions, denoted †, were approximated. It is assumed

that this approximation did not affect the testing of the modified formulation effi-
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Figure 3.3. Final positions for system using the original Nóse-Hoover thermostat.

cacy. Relative permittivity is taken as an average of the quantities for sodium and

potassium nitrate.

3.6 Results Analysis

Figures 3.5 and 3.6 show the temperature response of the standard and modified

thermostats, respectively. The subplots show fixed and stepped target temperature

profiles. Stochastic forces are disabled to isolate the performance of the thermostat.

Figures 3.7 and 3.8 show data from similar experiments, but with Brownian motion

enabled to show the thermostat capacity to control these disturbances. It can be seen
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Figure 3.4. Final positions for system using the modified Nóse-Hoover thermostat.

the standard thermostat response is oscillatory with large oscillations. The modified

thermostat response is also oscillatory, but the magnitude of those oscillations is

significantly reduced.

For these simulations, O(Q) = 1 and O(kd) = 10−2 where O(x) is the order

of magnitude of x. It is of note that in the case of the stepped target temperature,

the increase in system temperature is wholly in response to the thermostat. This

increase in kinetic energy can be tracked by calculating thermostat work. There was

no additional velocity scaling or momentum balance required.
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Figure 3.5. Temperature response of standard thermostat showing fixed and stepped
target temperature profiles. Stochastic forces disabled.

Figures 3.6 and 3.8 show the modified thermostat significantly reduces the tem-

perature oscillations associated with the standard formulation. For the data sets

shown in Fig. 3.5 and 3.6, the standard deviation in temperature response is 112.2

and 0.6 for the standard and modified thermostats, respectively, for the fixed target

temperature data sets. While the inclusion of stochastic forces affects time evolution,

no significant change in overall behavior is observed. The modified thermostat is able

to tightly maintain the constant temperature constraint regardless of the presence

of stochastic forces. These figures also show that both thermostats respond well to
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Figure 3.6. Temperature response of modified thermostat showing fixed and stepped
target temperature profiles. Stochastic forces disabled.

instantaneous changes in target temperature, producing short-term mean tempera-

tures consistent with the target. It can also be seen that oscillation magnitude is

proportional to target temperature.

Figure 3.9 shows the effects of varying the modified thermostat mass Q and

derivative gain kd on temperature response. The magnitude of Q increases by orders

of magnitude from Figs. 3.9a - 3.9d. As the value of Q is increased, the frequency

of the response oscillations is decreased and the relative time required to approach a

bounded steady state increases.
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Figure 3.7. Stochastic forces enabled.

The solid dark line indicates O(kd) = 10−5, the smallest derivative gain used

in the experiment. It can be seen that a low kd gain leads to a highly oscillatory

response. The highest derivative gain is indicated by the dashed lighter line and

creates the least oscillatory response. The dataset shown by the dashed lighter line

in Fig. 3.9a has the same Q and kd gains as the simulation data shown in Figs. 3.5 -

3.8. It can be seen that as kd approaches zero, the modified thermostat becomes the

standard. These results show the Nóse-Hoover response behavior shares a degree of

similarity with that of a classic spring-mass-damper system.
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Figure 3.8. Stochastic forces enabled.

Figure 3.10 shows the effects of varying Q and kd on the simulation time. Sim-

ulation time using the standard thermostat is included in Fig. 3.10 for comparison

and is shown as the lowest point on the log scale. Unfortunately, the inclusion of the

ζ̇ term in the modified control law adversely affects the time required to the run the

simulation. It can be seen that lower Q and higher kd values generally trend toward

longer simulation times. Low Q values lead to high frequency response oscillations.

Large kd values create a “stiff” system with large thermostat terms and large resultant

accelerations requiring small integration time steps to fully capture.
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Considering the trends shown in Figs. 3.9 and 3.10, investigators may select

gains for favorable responses with acceptable simulation times. Actual values of ideal

gains will be greatly dependent on the nature and scale of the model.

Figure 3.11 shows simulation energy over time. Included is the kinetic energy,

potential energy, work done by the thermostat, and total as per Eqn. (3.16). Fig-

ures 3.11(a) and 3.11(b) show systems using the standard and modified thermostats,

respectively. The kinetic and potential energies are shown by the solid lighter lines.

The kinetic energy is the oscillatory and relative smooth lines seen at the top of Figs.

3.11a and 3.11b, respectively. The work done by the thermostat is calculated and

shown by the dashed line. The dark solid line, denoted as Total, shows that Eqns.

(3.14) - (3.16) accurately measure the energy shared with the reservoir and that to-

tal energy is conserved. The data in this plot comes from a system with stochastic

forces disabled as these forces would introduce energy not originating from the reser-

voir. The work done by these stochastic forces could be easily calculated if needed.

Similarly to Figs. 3.5 - 3.8, O(Q) = 1 and O(kd) = 10−2.

Figure 3.11(c) shows a comparison of the system energies from Figs. 3.11(a)

and 3.11(b) plotted on the same scale. Note that this quantity is the sum of kinetic

and potential energy. It may be seen in Fig. 3.11(c) that the modified thermostat

allows the system to evolve into a low potential state significantly faster than the

standard. While the modified control law increases simulation time, there is a signifi-

cant reduction in integration steps required to reach this low-potential state, allowing

overall savings in time.

3.7 Conclusions

This chapter presented an investigation of a modified form of the popular Nóse-

Hoover thermostat. This modification was intended to reduce the temperature re-
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sponse oscillations that consistently appear when using the standard Nóse-Hoover

formulation. The results showed that this modification significantly reduced the mag-

nitude of these oscillations. For a study of 100 bodies at a fixed target temperature,

the standard deviation in temperature error was 112.2 and 0.6 for the standard and

modified thermostats, respectively.

Data plots also showed the interesting result of a swift system evolution to a

low-potential state. This result is consistent with the idea that dynamic systems

evolve into a low-potential equilibrium state. In the plots of final state, it can be

seen that this low potential state is consistent with an accumulation of cations on

the surface of the negatively charged silicon dioxide cluster. This result highlights

the possibility of this modified thermostat being used to find low-potential states of

other dissimilar systems.

This modified thermostat has a set of user specified parameters that may be

tuned to control temperature response. These parameters should be selected with

care as poor choices can lead to poor results - “stiff” systems with long simulation

runtimes or “loose” systems with minimal reduction of temperature oscillations.
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Figure 3.9. Effect of varying gains on response. (a) O(Q) = 1; (b) O(Q) = 10; (c)
O(Q) = 100; (d) O(Q) = 1000. Insert shows the order of the derivative gain.
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Figure 3.10. Effect of varying gains on simulation time.
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Figure 3.11. System energy and thermostat work. (a) standard thermostat; (b)
modified thermostat; (c) comparison of total system energy from (a) and (b).
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CHAPTER 4

ATOMISTIC REGIME MULTISCALE METHOD

4.1 Introduction

This chapter presents an extension to the established multiscale method that is

applicable to temperature controlled atomistic systems. As mentioned before, a key

component in the derivation of the continuum multiscale method is the large dispro-

portionality between the mass and viscous damping terms often seen at that scale.

This disproportinality is leveraged to eliminate portions of the active and dissipa-

tive forces from the dynamics, significantly reducing the computation time required

to generate time histories. As atomistic simulations also suffer from burdensome

computation times, a similar formulation for the atomistic regime was desired.

Since viscous damping is a continuum approximation of atomistic interactions,

it is only appropriate for bodies large enough to satisfy the continuum assumption.

The role of viscous friction in continuum analysis is to dissipate the kinetic energy of

the modeled bodies into the surrounding medium. When that continuum medium is

replaced with discrete bodies, that dissipation of energy then becomes a redistribution

of energy amongst the modeled bodies. A useful replacement for viscous friction

for atomistic bodies is one of the thermostats described in Chapter 3. To satisfy

the multiscale analysis, the thermostat selected should be force based with terms

large enough to define a significant disproportinoality in the equations of motion.

Attempts at scaling using the original Nóse-Hoover formulation were ineffective as

the thermostat coordinate ζ was shown to not be large enough to justify the scaling

[135]. However, the modified formulation seen in Chapter 3 introduced the thermostat
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speed ζ̇ into the control law which was shown to be large enough to justify the scaling

[136]. This modified Nóse-Hoover thermostat was therefore selected to form the new

atomistic multiscale formulation.

However, simply replacing viscous friction with a thermostat does not guaran-

tee that the multiscale analysis is justified. Defining the system at a characteristic

time scale traditionally used for atomistic studies yields a multiscale analysis result

suggesting that no scaling may be used - it is only when the system is defined at a

larger time scale that the analysis suggests scaling is appropriate. These larger time

scales correlate to the higher tiers of resolution and coarse graining used by other

multiscale approaches [65, 67]. By defining all bodies at these larger time scales, the

disproportionality between terms can be leveraged to justify a scaling of the large

forces that bring all terms in the equations of motion closer to the order of the mass.

The mixture selected for simulation is a eutectic blend of molten sodium and

potassium nitrate. A target system temperature Td of 773 K was selected such

that the salt mixture is molten. These salts are therefore ionized into sodium and

potassium cations and nitrate anions, wholly constituting the solvent and defining

its properties. All ions are modeled as spherical bodies, including the trigonal planar

nitrate anions. As the four atoms in a nitrate anion remain bonded at the simulated

temperature, they are therefore considered a rigid body. Each body has three degrees

of freedom associated with translation. Potential forces all act along vectors passing

through centers of mass, so no torques are created. Since there are no torques,

rotations are not considered. It was assumed that modeling the ions as spheres and

eliminating the degrees of freedom associated with rotations and the internal bonds of

the nitrate anions would not significantly affect the testing of the atomistic multiscale

formulation efficacy.
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A negatively charged cluster of several silicon dioxide molecules is included to

create a potential gradient. As the selected target temperature is well below the

melting point of silicon dioxide, this cluster of molecules will not ionize and dissociate

and is thus treated as a single spherical rigid body.

4.2 Disproportionality Assumptions

Consider the equation of motion for a particle model using the modified Nóse-

Hoover thermostat presented in Chapter 3:

M q̈ + ( ζ + kdζ̇ )M q̇ = ΓΓΓ(q) (4.1)

where M ∈ RN×N denotes the symmetrical mass matrix where N is the degrees

of freedom, q ∈ RN×1 is a vector containing the generalized coordinates with time

derivatives q̇ and q̈ denoting the generalized speeds and accelerations, respectively, ζ

and ζ̇ are the scalar thermostat terms with gain kd, and ΓΓΓ ∈ RN×1 is the generalized

active forces. Note that since this is a particle model, the mass matrix is not a

function of the states. Recall that ζ and ζ̇ are the new generalized coordinate and

speed associated with the thermostat where ζ̇ is calculated as the scaled error in

instantaneous kinetic energy:

ζ̇ =
(
q̇TM q̇ − NkBTd

) 1

Q
(4.2)

In the established multiscale method, a small parameter ε was defined by the ratio

of the damping term to the mass. Since the damping term has been replaced by the

thermostat, this small parameter may now be defined as:

ε =
m

β
−→

ε =
m

kdζ̇m
=

1

kdζ̇

(4.3)
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selected number of
O(1

ζ
) O( 1

kdζ̇
)time scale scaling factors

Case I ps < 100 100 0
Case II ns 100 10−3 1
Case III µs 10−3 10−6 2

Table 4.1. Equations of motion disproportionalities.

where m is used to denote a mass extracted from the mass matrix. It is of note that,

unlike the definition of ε used in the established multiscale method, this new small

parameter is independent of the mass. In order to develop the multiscale analysis, it

must be shown that this parameter ε is significantly small.

The magnitude of the small parameter ε can be manipulated through the selec-

tion of the characteristic time scale. The result then is that as the atomistic bodies

are observed from increasingly larger time scales the disproportionality between the

terms in Eqn. (4.1) becomes more extreme. Depending on the time scale selected,

and the resulting magnitude of the thermostat terms, three cases are possible. These

cases are summarized in Table 4.1. These three cases produce three distinct results

from the multiscale analysis: no scaling; one scaling factor; and two scaling factors.

Case I was encountered when the system was defined at the picosecond scale.

This time scale is within the range traditionally selected for atomistic simulations

as it keeps all terms in the equations of motion close in magnitude to one. In this

case, both the ζ and ζ̇ terms are not significantly large. This results in a small

thermostat term compared to the mass term and active forces. Since no significant

disprorportionality exists, multiscale analysis shows that scaling is not justified.
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Case II was encountered when the characteristic time scale was increased from

picoseconds to nanoseconds. This time scale is useful for simulations of sub-micron

sized bodies such as nanoparticles and coarse-grained protein polymers. Selection

of this time scale yielded large ζ̇ terms but still relatively small ζ terms. Since a

single large disproportionality exists, a single small parameter ε may be defined. The

resulting multiscale analysis produces a scaled equation of motion with a single scaling

factor.

Case III was encountered when the characteristic time scale was increased from

picoseconds to microseconds. Because of the extreme time scale selected, both the ζ

and ζ̇ terms have grown significantly large. Since ζ̇ is several orders of magnitude

larger than ζ, two disproportionalities exist and two small parameters, ε1 and ε2 may

be defined. The resulting multiscale analysis is similar to that discussed in [79] and

results in a scaled equation of motion using two scaling factors.

Since Case III was only encountered when the system was defined at an extreme

characteristic time scale, Case II was investigated and is assumed for the remainder

of this chapter. Let us therefore assume that the ratios defined for Case II in Table

4.1 are true. By making these assumptions, an atomistic model may be simulated for

longer time periods in reasonable real time. These assumptions will be later confirmed

by the results to justify the scaling procedure.

4.3 Multiscale Derivation

Consider again the equation of motion for a particle model using the modified

Nóse-Hoover thermostat given by Eqn. (4.1). If the Case II conditions in Table 4.1
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are true, then the ζ term is approximately on the same order as the mass and the ζ̇

term is significantly larger. Normalizing Eqn. (4.1) by the kdζ̇M term yields:

M−1M

kdζ̇
q̈ +

M−1ζM

kdζ̇
q̇ + q̇ =

M−1 ΓΓΓ(q)

kdζ̇

1

kdζ̇
q̈ +

ζ

kdζ̇
q̇ + q̇ =

M−1 ΓΓΓ(q)

kdζ̇

(4.4)

The kdζ̇ term can therefore be used to define a small parameter ε:

1

kdζ̇
= ε (1 ns) (4.5)

such that ε is unitless and small, according to Table 4.1 and the (1 ns) is a constant.

Note that since Case II was assumed, a characteristic time scale of (ns) was selected

for this work. Rearranging Eqn. (4.4) and introducing ε yields:

0 = ε (1 ns) q̈ + ε (1 ns) ζq̇ + q̇ − M−1 ΓΓΓ(q)

kdζ̇

0 = ε ¨̄q + ε ζ ˙̄q + q̇ − M−1 ΓΓΓ(q)

kdζ̇

(4.6)

According to the method of multiple scales [51], the small parameter ε can be used

to decompose time into different scales according to Ti = εit. The time derivatives

q and q̈ are then expanded into series:

q̇ =
dq

dt
= ε0

∂q

∂T0
+ ε1

∂q

∂T1
+ ε2

∂q

∂T2
+ · · · (4.7)

¨̄q =
d2q̄

dt2
=

∞∑
i=0

∞∑
j=0

εiεj
∂2q̄

∂Ti ∂Tj
(4.8)

Substituting these expansions into Eqn. (4.6) and collecting terms by increasing order

of ε yields:

0 = ε0
( ∂q

∂T0
− M−1 ΓΓΓ(q)

kdζ̇

)
+ ε1

( ∂2q̄

∂T 2
0

+ ζ
∂q̄

∂T0
+

∂q

∂T1

)
+ · · · (4.9)
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Knowing that ε is small and ε0 = 1, and assuming that the ε1 acceleration terms

are not excessively large, it can be seen that the first term on the right hand side of

Eqn. (4.9) must largely cancel such that the whole expression equals zero. That first

term contains the generalized active forces and the ζ̇ term of the modified thermostat.

Separating those forces into large and small parts yields:

∂q

∂T0
− M−1 ΓΓΓ(q)

kdζ̇
= (a1 + a2)

( ∂q

∂T0
− M−1 ΓΓΓ(q)

kdζ̇

)
(4.10)

where the scalars a1 + a2 = 1 and a1 � a2. Substituting this definition into the

equation of motion yields:

0 = M q̈ + ζM q̇ + (a1 + a2)
(
kdζ̇M q̇ − ΓΓΓ(q)

)
(4.11)

If a portion of the generalized active and thermostat forces cancel, those canceled

forces can be eliminated from the model without affecting the dynamics. Assum-

ing the bulk of these forces - those associated with the a1 term - cancel such that

Eqn. (4.9) is true, removing them from the model and rearranging yields the scaled

temperature controlled equation of motion:

M q̈ + ( ζ + a2 kdζ̇ )M q̇ = a2 ΓΓΓ(q) (4.12)

This scaled equation of motion suggests that for systems satisfying the initial assump-

tions, specifically that the ζ̇ term of the modified thermostat is significantly large, the

active forces and ζ̇ thermostat term may be scaled by the small parameter a2. Note

that a2 is a user-specified scaling factor that removes a significant portion of the forces

from the calculations. The practical effect of this scaling is an elimination of many

of the high-frequency vibrations that require small integration time steps to resolve

but do not contribute to the overall time evolution. By removing these vibrations,

the integration time step may be increased - usually by an order of magnitude - sig-

nificantly reducing the real computation time required to capture the time evolution.
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The actual value of a2 can be adjusted to minimize relative differences between the

scaled and unscaled results, but usually a2 ≥ ε is an approximate starting point.

In the established multiscale formulation, the damping term is a constant and

the disproportionality between the mass and damping terms is therefore also a con-

stant. However, in the atomistic multiscale formulation presented above, the time

variant ζ̇ term is used. This time variant disproportionality raises the possibility of

time variant scaling. In this chapter however, the a2 term is assumed to be constant.

4.4 Model Description and Equations of Motion

An ionic particle model was selected with canonical ensemble constraints placed

on the number of bodies, volume, and temperature. The temperature constraint is

enforced using the modified Nóse-Hoover thermostat as previously discussed. The

equation of motion for this system is the multiscale temperature controlled equation

formulated in Sec. 4.3 and written in the general form:

M q̈ + ( ζ + a2kdζ̇ )M q̇ = a2 ΓΓΓ(q) (4.13)

The active forces in this model are:

ΓΓΓ(q) = ΓΓΓPot(q) + ΓΓΓV ol(q) (4.14)

where ΓΓΓPot(q) denotes forces arising from potential interactions and ΓΓΓV ol(q) denotes

potential-like volume constraint forces. It can be seen that the modified Nóse-Hoover

thermostat force is included on the left-hand-side of Eqn. (4.13).

To test the efficacy of the proposed multiscale formulation, the multiscale tem-

perature controlled system is compared against an unscaled temperature controlled

system with the equation of motion:

M q̈ + ( ζ + kdζ̇ )M q̇ = ΓΓΓ(q) (4.15)
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and an unscaled system using the standard Nóse-Hoover thermostat with equation of

motion:

M q̈ + ζM q̇ = ΓΓΓ(q) (4.16)

4.5 Forces and Energy

Active forces in atomistic simulations are dominated by body-to-body potential

interactions. These potential interactions are modeled as a combination of Coulomb

and Lennard-Jones terms similar to the methods described in Chapters 2 and 3:

Φp,ij(rij) =
A

r12ij
− B

r6ij
+

Cij
rij

(4.17)

where the force arising from a potential interaction is found by taking the derivative:

Γp(r) =
dΦp

dr
r̄ (4.18)

The Lennard-Jones forces provide a small attractive force at large distances and a

large repulsive term to model collisions. These potential interactions are calculated

body-to-body with a specified threshold distance. Any interaction with a distance

beyond this threshold is skipped to facilitate faster computations. The threshold is

user-specified such that errors in potential energy calculation are minimized. The

volume constraint is enforced by an uncharged potential interaction between each

particle and the volume wall. This potential contains only a Lennard-Jones term in

which the constants are defined by the body:

Φv,i(ri) =
Ai
r12i
− Bi

r6i

Γv(r) =
dΦv

dr
r̄

(4.19)

Potential forces arising from gravity were not considered because, at the atomistic

scale, these force are approximately ten orders of magnitude smaller than the Coulomb
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and Lennard-Jones terms. While these forces can have significant effects over long

time periods, they will not have a significant effect for shorter simulations.

To ensure energy conservation and dynamic consistency, the work done by the

thermostat forces must be calculated. The derivative of work is defined at each time

step and integrated:

WMNH =

∫ t2

t1

N∑
i=1

ΓMNHi · q̇idt =

∫ t2

t1

−
(
ζ + kdζ̇

)
q̇TM q̇dt (4.20)

where W is the work done. Energy conservation is then confirmed by summing the

instantaneous kinetic and potential energies and subtracting the work done:

T + ΦΦΦ − W = constant (4.21)

where ΦΦΦ is the total potential energy including both the interaction and volume

constraint potentials.

4.6 Determining Appropriate Q and kd Values

As mentioned before, the value of Q is user-specified, but because of its inter-

action with ζ̇ according to Eqn. (4.2), it also affects the multiscale analysis presented

in Sec. 4.3. Similarly, the value of kd is user-specified and also plays a critical role

in the derivation. Selection of these values then will greatly affect the efficacy of the

proposed method.

The role of Q in thermostat response is similar to that of the mass in a classic

spring-mass-damper system. Much like the relationship ωn =
√
k/m, as Q is in-

creased, the frequency of oscillation in temperature response will similarly decrease.

The value of Q was selected considering only the unscaled standard Nóse-Hoover

system given by Eqn. (4.16) such that the period of temperature oscillation was ap-

proximately 7 ps and approximately three full periods could be observed in a 20 ps
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time frame. Selection of larger values of Q will result in longer oscillation periods,

but those oscillations grow in magnitude and are therefore not ideal for systems with

significant initial errors in temperature.

The role of kd and ζ̇ is similar to that of the damper in a spring-mass-damper

system. Vary large Q values will diminish the effects of the ζ̇ “damping” term,

requiring a larger kd value to ensure temperature convergence in reasonable time.

The value of kd was therefore selected using the previously selected Q value and

considering only the unscaled modified Nóse-Hoover system given by Eqn. (4.15).

Small values of kd lead to a lightly damped system requiring more time to reach

target temperature. However, large kd values create a “stiff” system resulting in fast

convergence but ultimately poor computational performance: the thermostat forces

become overly large, creating artificial vibrations in the motion of the bodies and

smaller integration step sizes.

Selection of Q and kd then follows this procedure: considering both the effects

on temperature oscillation and desired initial errors, select Q for only the unscaled

standard Nóse-Hoover system. Then, implement the unscaled modified Nóse-Hoover

formulation and find an appropriate kd that promotes convergence without negatively

affecting computation time. With Q and kd selected, consider that the magnitude of

the disproportionality in the equations of motion will vary as the observed time scale

is changed. The user can then define the time scale at which to observe the system

and calculate the small parameter ε from short unscaled simulations. Once ε has been

determined, an appropriate a2 scaling factor can found with the useful initial guess

a2 ≈ ε.
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4.7 Hardware and Simulation Parameters

Simulation files were coded in the C++ programming language using the CUDA

[24] and Eigen [87] libraries. Parallel processing was used to concurrently resolve the

numerous point-to-point potential interactions. Numerical integration was performed

on a computation server with Intel Xeon E5-2680 v3 processors running Ubuntu

16.04 operating system. Parallelization was performed on an NVIDIA GTX 980 Ti

GPU. The integration was performed by a Kutta-Merson algorithm [88] with adaptive

integration step sizes for reducing the numerical error. Relative and absolute errors

were 10−6 and 10−7, respectively. A unit system of (10 yg, nm, ns) was selected to

keep the mass of all ions in the 100 - 101 range. Table D.2 in Appendix D lists the

values of the parameters used.

Initial positions are user-specified and can be seen in Fig. 4.1. Final positions of

particles produced by the time evolution can be seen in Fig. 4.2. As time progresses,

these particles disperse to form a more uniform distribution. Initial velocity directions

are randomly generated but constrained by magnitude to ensure an error in initial

system temperature such that convergence may be observed.

Presented data comes from systems with 1025 bodies. As the mixture is a

eutectic blend of the salts, 256 of these bodies are sodium cations, 256 are potassium

cations, and 512 are nitrate anions, plus the single large cluster of silicon dioxide. The

user-specified parameters are the mass-like term associated with the thermostat Q,

the derivative gain kd, and, for the scaled system, the scaling factor a2. The following

values were selected: Q = 6000 (10)yg nm2; kd = 0.3; a2 = 10−3. The model volume

is a cube of approximately 157 nm3. The silicon dioxide cluster has a diameter of 4.2

nm.
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Figure 4.1. Initial positions. Smaller bodies are sodium and potassium cations.
Larger bodies are nitrate anions. The large central body is the silicon dioxide cluster.

4.8 Results Analysis

Figure 4.3 shows a comparison of the temperature responses produced by the

three simulations. The open circles are the system using the original Nóse-Hoover

thermostat, the dashed line is the unscaled system, and the solid line is the scaled

system.

It can be seen that the original Nóse-Hoover thermostat leads to a non-attenuating

oscillatory response, which is expected. The frequency of these oscillations is regu-

lated by the mass-like term Q in Eqn. (4.2). The unscaled modified thermostat

significantly reduces the magnitude of these oscillations. The unscaled modified ther-
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Figure 4.2. Final positions.

mostat also results in near-instant convergence of temperature to the target, and this

temperature constraint is tightly maintained for the duration of the simulation. For

comparison, the original formulation exhibits temperature errors of approximately

±100 K while the unscaled system exhibits errors of approximately ±3 K. These

results are consistent with those presented in Chapter 3. The scaled modified ther-

mostat exhibits some oscillation initially, but these oscillations do attenuate with

time, causing the instantaneous temperature to eventually settle around the target.

Initial oscillations are approximately ±50 K. Using this atomistic multiscale formu-
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Figure 4.3. Temperature response for the three simulations.

lation, the constant temperature constraint is loosened during the transient state but

maintained in the steady state.

Figures 4.4 - 4.6 show the system energies from the original thermostat, the

unscaled modified thermostat, and the scaled modified thermostat systems, respec-

tively. In these plots, the open circles are the potential energy, the dots are the kinetic

energy, the solid line is the work done by the thermostat, and the dashed line is the

total. It can be seen that Eqns. (4.20) and (4.21) successfully tracked the work done

by the thermostat forces and that total energy is conserved.

It is of note that the total energy in Fig. 4.6 is increased compared to Figs.

4.4 and 4.5. This increase in total energy for the scaled system is not erroneous

but an expected result of scaling the potential forces. Consider again the definition
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Figure 4.4. System energy using the original thermostat.

of potential energy and potential force given by Eqns. (4.17) - (4.19). It can be

seen in these equations that potential energy is the antiderivative of potential force.

Therefore, if the potential forces are scaled by the factor a2, the potential energy must

also be scaled by this same factor. This means that the potential energy of the system

is reduced by a2. It can be seen in Figs. 4.4 and 4.5 that the initial value of potential

energy is negative. Hence, by scaling this negative value, the total calculated energy

of the scaled system increases.

Phase plots of the thermostat variables ζ and ζ̇ are useful for justifying the

disproportionality assumptions made in Sec. 4.2. From these plots we can observe

the magnitudes of these variables at the initial conditions and as the system moves
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Figure 4.5. System energy using the unscaled modified thermostat.

towards an equilibrium. Data near the origin imply that the temperature constraint

is tightly enforced.

Figure 4.7 shows the phase plots for the three simulations. The open circles are

the system using the original Nóse-Hoover thermostat, the dashed line is the unscaled

system, and the solid line is the scaled system. It can be seen that the original Nóse-

Hoover thermostat produces a phase plot constrained within a limit cycle with small

disturbances. This limit cycle coincides with the temperature oscillations seen in Fig.

4.3. As the temperature oscillations do not damp with time, the phase plot remains

constrained within this limit cycle even for longer time evolutions. The unscaled

modified thermostat produces a phase plot that quickly moves toward the origin. This

fast convergence to the origin coincides with the fast convergence of temperature to
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Figure 4.6. System energy using the scaled modified thermostat.

the target seen in Fig. 4.3. The phase plot for the scaled modified thermostat is still

oscillatory, but decays towards the origin. The decaying oscillatory portion of this

response coincides with the transient portion of the temperature response seen in Fig.

4.3. It is of note that both the unscaled and scaled systems never arrive and remain

at the origin. As the systems are driven by inter-particle potential interactions, these

plots will continually hover around the origin, but at significantly smaller values than

those of the original thermostat limit cycle.

As mentioned, the phase plots are useful for justifying the disproportionality

assumptions defined by Case II in Table 4.1. Note that these assumption should

hold for both the unscaled and scaled systems. It can be seen in Fig. 4.7 that this
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Figure 4.7. Phase plots for all three simulated systems.

assumption holds for scaled system, even as it oscillates around the origin. However,

given the axes used, the behavior of the unscaled system cannot be easily observed.

Figure 4.8 shows the phase plot for only the unscaled system. It can be seen

that the assumption defined by Case II in Table 4.1 holds for the unscaled system

as well. However, these phase plots do highlight a significant difference between the

existing continuum multiscale formulation and the atomistic formulation presented

here: while the continuum equation of motion has a constant disproportionality be-

tween terms, the disproportionality in the atomistic model is time variant, and - at

the characteristic time scale selected - may not hold for all time. Note that this con-

dition where the assumptions are sometimes satisfied occurs within a small range of

characteristic scales. Were a slightly larger time scale selected, the Case II assump-
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Figure 4.8. Phase plot for the unscaled modified thermostat.

tions would always hold. These assumptions would continue to hold as that scale was

further increased until a scale was reached where the Case III assumptions begin to

be satisfied. Also, given that the disproportionalities defined in Table 4.1 establish an

approximate starting point for a2, the ideal value of a2 will change with time as well.

This time variant disproportionality in the equations of motion is further discussed

in Chapter 5.

4.9 Computation Time Reduction

The time required to perform the numerical integration for the original, un-

scaled, and scaled systems was approximately 65 hours, 64 hours, and 49 hours,

respectively. The difference between the original and unscaled systems is not consid-
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ered significant and attributed to differences in initial conditions and time evolutions.

This equivalent computation time is consistent with the results of [136] for the user-

specified thermostat values selected. The computation time reduction achieved by

the multiscale thermostat formulation was 24%. It was observed that the scaled

case integrated at time steps about a half an order larger than the other cases. The

main mechanism for these savings was therefore a decrease in the total number of

integration steps required to generate equivalent time evolutions.

While a 24% reduction in computation time is a significant contribution, this

reduction may be further enhanced. First, it is known that increasing system com-

plexity leads to a reduction in scaling effectiveness [77, 79, 80]. Smaller systems then

might therefore achieve greater computational savings. Second, the Lennard-Jones

potential used in this work establishes an upper limit on possible savings. The poten-

tial force defined by Eqns. (4.17) - (4.19) contains a Lennard-Jones power-twelve term

that models a repulsive force. This repulsive term increases with decreasing distance

and is responsible for bringing the relative velocity between two particles to zero to

model a collision. This force will grow, even when scaled, to a magnitude necessary

to elicit this change in the particles’ trajectories. It was observed that this repulsive

term quickly increases during collisions, forcing smaller integration steps. If these

collision interactions could be resolved without these large, spiky repulsive forces, in-

tegration step sizes could be further increased providing even greater computational

savings.

4.10 Conclusions

This chapter presented an extension to the continuum regime multiscale method

making it applicable to atomistic bodies. The goal of this reformulation was to allow

simulations consisting of atomistic bodies to be integrable at larger time steps, reduc-
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ing the computation time required to generate time evolutions by reducing the total

number of integration steps. This reformulation replaced the viscous friction used in

the continuum derivation with a force-based temperature controlling thermostat to

define a large disproportionality in the equations of motion. This disproportionality

justifies the removal of a large portion of the active and thermostat forces that would

otherwise cancel.

The scaled system results were compared to those of two unscaled systems. It

was shown that the proposed atomistic multiscale formulation reduced the computa-

tion time required by 24%. Temperature response showed a loosening of the constant

temperature constraint during the transient phase of temperature change. However,

response oscillations did diminish and convergence was achieved in approximately 20

picoseconds. This 24% reduction in computation time allows for temperature con-

trolled atomistic systems to be simulated in significantly less real time while exhibiting

fast convergence to a target temperature.

This work also suggested that a time variant scaling factor may be needed to

address the time variant disproportionalities in the equations of motion. Chapter

5 presents an extension of the continuum regime multiscale method to account for

forces whose magnitude changes significantly over the time history.
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CHAPTER 5

ADAPTIVE MULTISCALE METHOD

5.1 Introduction

This chapter presents a second extension to the established multiscale method

that accounts for forces whose magnitude changes significantly across the time history.

Recall that a key component in the derivation of this multiscale method is the dispro-

portionality between the viscous damping and mass terms. This disproportionality

is used to identify a portion of the active and damping forces that cancel which can

be eliminated from the dynamics without significantly affecting the long-term results.

In previous works, the magnitude of the active forces - and thus the portion of forces

eliminated - was assumed to be a constant. However, potential functions often decay

exponentially with increasing distance leading to resultant force magnitudes that can

vary greatly across the time history [137, 40, 41, 42, 43, 138].

It is well established that small forces can have a significant effect on larger

scale phenomena over relatively long time frames [139, 140, 141], so it is critical that

small contributing forces not be scaled along with the large forces. As the scaling

process reduces the magnitude of the scaled forces by several orders, if this process is

applied to a small force that is not canceled by other forces, any effect that force has

on the time evolution could be greatly diminished. In order for scaled system results

to match those of the unscaled system, it is therefore necessary that small potential

forces be allowed to affect the system dynamics without inappropriate scaling.

In this chapter, it is assumed that some of the active forces, such as those

produced by conformational springs and Brownian motion, result in vibratory motion
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and do not contribute significantly to the final states. Meanwhile, other forces such as

those produced by long-range potential interactions, act constantly over a long time

frame to elicit more significant effects on final states. An adaptive scaling approach

is therefore proposed to remove portions of the large, non-contributing active and

dissipative forces while retaining the small, contributing potential forces. When these

potential forces grow to a significant enough magnitude, they are similarly scaled

along with the large active and dissipative forces.

The specific model selected for testing the efficacy of this proposed adaptive

scaling method is a 400 nm nanoparticle conjugated with Glycoprotein 1b (GP1b)

proteins interacting with von Willebrand factor (VWF) proteins. This system is

similar to that seen in [23]. The GP1b protein is a component of the greater GP1b-

IX-V complex found on the surface of thrombocytes, or platelets. This protein is

well researched and known to bind to VWF proteins expressed on damaged sub-

endothelial arterial cells [142, 143, 144, 145, 146]. These ligand-receptor interactions

are currently showing great promise as a mechanism for targeted delivery and tissue

regeneration [23, 147, 148].

5.2 Adaptive Scaling

Recall that in Chapter 2, the multiscale formulation was presented for a rigid

multibody model satisfying the continuum assumption such that viscous damping

was applied to the bodies. After defining a small parameter ε and using that small

parameter to expand the time derivatives q̇ and q̈ into series, a new equation of

motion was given by Eqn. (2.10) which is repeated here:

0 = ε0
(
D(q)

∂q

∂T0
− ΓΓΓothers

β

)
+ ε1

(
M(q)

∂2q

∂T 2
0

+ C00 + · · ·
)

+ · · · (5.1)
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In Chapter 2 it was assumed that a significant portion of the forces in the first term

on the right side canceled, justifying the scaling of these forces. It was also assumed

that the forces were significantly large compared to the acceleration term. These

assumptions led to the scaled equation of motion given by Eqn. (2.14) which is

repeated here:

M(q) q̈ + C(q, q̇) + a2 β D(q) q̇ = a2 ΓΓΓothers (5.2)

Consider now the case where the potential forces are several orders of magni-

tude smaller than the other forces, a disproportionality similar in scale to the small

parameter ε. In this case, the ΓΓΓp term contributes little to Eqn. (5.1) equaling zero

and does not cancel any significant portion of the other forces. Scaling this potential

term is therefore not justified by the multiscale analysis. Rearranging Eqn. (5.1) to

reflect this consideration yields:

0 = ε0
(
D(q)

∂q

∂T0
− ΓΓΓothers

β

)
+ ε1

( ΓΓΓp
ε1β

+ M(q)
∂2q

∂T 2
0

+ C00 + · · ·
)

+ · · ·

(5.3)

If it is assumed that the accelerations are not significantly large, it can be seen that

the first term on the right side of Eqn. (5.3) must largely cancel such that the whole

equation is equal to zero. The assumption that the accelerations are not significantly

large can then be imposed by scaling the forces contained within that first term.

Similarly to the procedure in Chapter 2, this is accomplished by splitting these forces

into small and large parts:

0 = (a1 + a2)
(
D(q)

∂q

∂T0
− ΓΓΓothers

β

)
+ ε1

( ΓΓΓp
ε1β

+ M(q)
∂2q

∂T 2
0

+ C00 + · · ·
)

+ · · ·

(5.4)

where it is assumed that the forces associated with the a1 term cancel. Eliminating

the forces associated with the a1 term leads to a new scaled equation of motion:

M(q) q̈ + C(q, q̇) + a2β D(q) q̇ = a2ΓΓΓothers + ΓΓΓp (5.5)
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For potential forces whose magnitude changes significantly over the time history,

both Eqns. (5.2) and (5.5) may be justified at various points. These two cases can

be simultaneously represented by the adaptively scaled equation of motion:

M(q) q̈ + C(q, q̇) + a2 β D(q) q̇ = a2 ΓΓΓothers + a∗2 ΓΓΓp (5.6)

where the a∗2 term denotes a time-variant scaling factor. In this chapter, it is only

considered whether scaling the potential forces is or is not justified, leading to an

adaptive scaling scheme similar to a bang-bang controller:

if
ΓΓΓp
β
> α −→ a∗2 = a2

else a∗2 = 1

(5.7)

where α is a user-specified threshold. Note that a∗2 = 1 implies that the potential

forces are not scaled. In this work, this threshold is identified with respect to the

magnitudes of the other forces as measured in short-time unscaled cases.

5.3 Model Description and Equation of Motion

A rigid multibody model connected by kinematic joints was selected to test

the proposed method. This model represents a coarse grained approximation of the

GP1b-conjugated nanoparticle discussed above. The sequence and structure of the

GP1b protein are well documented [149]. This protein is modeled as four rigid bodies

connected by spherical joints. Figure 5.1 shows the mechanical model of this system.

This model consists of a floating base with numerous kinematic chains attached.

Each kinematic joint is spherical allowing three degrees of rotation. The equations

of motion for this system are the set of adaptively scaled equations given by Eqn.

(5.6). The forward dynamics are solved using a recursive numerical approach similar

to [26] in which quantities are defined using 6-dimensional spatial notation. Mass
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B

C DN

Figure 5.1. Model of the conjugated nanoparticle. Nanoparticle center of mass at
point O. Bodies A, B, C, and D are the four sub-bodies of the coarse grained GP1b
protein.

matrices and vectors of known quantities are modified through back substitution to

reflect the effective inertia and forces experienced at each joint. This back substitution

eliminates the unknown reaction forces, allowing for accelerations to be calculated for

each joint in a succinct, computationally efficient manner. Appendix A provides a

thorough derivation and discussion of this approach.

For each spherical joint, Euler parameters are used to define the joint rota-

tion such that the singularities associated with other methods are avoided. When

solving for the accelerations at a particular spherical joint, the equation of motion,

which nominally has the dimensions 3× 1, is transformed into the 4× 1 vector space

corresponding to the Euler parameters. Appendix B provides a discussion of Eu-

ler parameters, including how they can be combined with the recursive equations of

motion.

Once an equation of motion is transformed into the 4×1 Euler parameter vector

space, the 4 × 4 mass matrix is singular and non-invertible. These equations must

then be reduced back the minimal form such that the mass matrix is invertible. While
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many methods exist for accomplishing this reduction, an online constraint embedding

technique [150] was used to enforce the Euler parameter normality constraints:

eTe = 1 (5.8)

ėT ė = 0 (5.9)

where e denotes the 4× 1 set of Euler parameters and ė is the time derivatives. This

technique reduces the size of the equation of motion by eliminating the degree of

freedom associated with a specified dependent Euler parameter. The reduced mass

matrix is inverted and used to solve for the three independent accelerations. In this

manner, the constraints given by Eqns. (5.8) and (5.9) are defined implicitly through

numerical integration. Appendix C provides a discussion of this online constraint

embedding technique.

The ideal dependent Euler parameter is best identified by mass matrix condi-

tion number to ensure minimal error during inversion. As the condition number is a

function of the parameters and the parameters are time variant, the specified depen-

dent parameter must also change throughout the time history. However, each time

this variable changes, it results in some error due to renormalization of the Euler

parameters and speeds. An efficient approach for selecting the dependent variable

while minimizing error is presented in [151].

5.4 Forces and Energy

Four forces are implemented in the model:

ΓΓΓ = ΓΓΓp + ΓΓΓd + ΓΓΓk + ΓΓΓb (5.10)

where ΓΓΓp denotes potential forces arising from potential interactions, ΓΓΓd is the damp-

ing forces modeling friction, ΓΓΓk is the conformational forces arising from springs, and
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ΓΓΓb are the stochastic Brownian motion forces modeling thermal noise and random

fluctuations in the medium.

As mentioned in previous chapters, the driving forces in micro and nanoscale

dynamical systems arises from inter-atomic potential interactions and are often mod-

eled as a combination of Coulomb and Lennard-Jones terms. These forces are found

by taking the derivative of the potential energy expressions:

Φij(rij) =
A

r12ij
− B

r6ij
+

C

rij
(5.11)

Γp(r) =
dΦ

dr
r̄ (5.12)

In this work, explicit atoms are not modeled and an approximate potential function

was generated for each of the coarse grained bodies:

Φij(rij) =
A∗

r12ij
− B∗

r6ij
+

C∗

rij
(5.13)

where A∗, B∗, and C∗ are the modified Lennard-Jones and Coulomb terms, respec-

tively. These approximate terms model the potential for all of the atoms within the

body. The resultant potential forces act through the bodies’ centers of mass. As this

work is not a docking study, it was assumed that these approximations in potential

would not affect the testing of the proposed adaptive multiscale formulation’s efficacy.

Numerous potential functions exist for the various levels of coarse grained

biopolymers, but all decay at long range [137, 40, 41, 85, 42, 43, 86, 138]. Because

of this decay, it is possible that the magnitude of the resultant potential force could

change significantly across the time history. Considering this, it is expected that an-

other potential expression in place of Eqn. (5.13) would also be compatible with the

proposed formulation.

All bodies within the model are large enough to satisfy the continuum assump-

tion. These bodies are assumed to be spherical such that Stokes law may be used to
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calculate the β drag terms. Coarse grained biopolymers approximate secondary and

tertiary structures - alpha helices and beta sheets for example - and are often not

spherical. Any drag model may be selected as appropriate for the modeled system

and will still satisfy the continuum multiscale method as long as that damping term

is significantly large enough compared to the mass term. This damping term is used

to define the forces arising from friction:

ΓΓΓd = −βD(q)q̇ (5.14)

Torsional springs are considered for each of the kinematic joints to model the

bending stiffness of the biopolymer. The values of these springs depend on the specific

geometry and chemical bonding at that joint. The forces arising from these torsional

springs comprise ΓΓΓk.

Brownian motion is included to model stochastic forces generated through ran-

dom motion and thermal noise in the medium. The method used to implement Brow-

nian motion is similar to that used in [76]. The random force acting on a particular

body may be defined as:

ΓΓΓb = B1(t)N̂1 + B2(t)N̂2 + B3(t)N̂3 (5.15)

where the Bi term represents the stochastic force. Each component of the random

forces is treated independently as a uniformly distributed random variable. They

have the following expectations E[·], or weighted average values:

E[ Bi(t) ] = 〈 Bi(t) 〉 = 0 (5.16)

and are governed by a fluctuation-dissipation relation:

E[ Bi(t1) Bj(t2) ] = 2 β kBT δ(t1 − t2)δij (5.17)
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where kB denotes the Boltzmann constant and T is the absolute system temperature.

The collection of these random forces comprise ΓΓΓb. The randomly generated variables

are updated after a specified period of integration steps and held constant for each

period.

To ensure energy conservation and dynamic consistency, the kinetic and poten-

tial energies are often totaled with the work done by dissipative and stochastic forces

to show a constant across the time evolution. However, an interesting result in [152]

was a shift in total system energy produced by scaling potential forces. As potential

energy is the anti-derivative of potential forces, any scaling of the forces must also

scale the energy. This was not a problem in [152] as the scaling was a constant.

However, this scheme cannot be used in this work as adaptive scaling of the potential

forces would result in discontinuities in the potential energy calculated.

As an alternative confirmation of dynamic consistency, the work done by all the

forces can be calculated and compared with the kinetic energy to show a constant

across the time evolution:

T − Wd − Wk − Wp − Wb = constant (5.18)

where T denotes the kinetic energy and W is work. The work is calculated through

numerical integration of the total instantaneous change in work Ẇ , or the power

produced by the forces. The work done by the damping force for example is therefore:

Wd =

∫ t2

t1

bodies∑
i=1

fd,i · ϑi (5.19)

where f and ϑ denote the spatial definitions of force and velocity, respectively, i

iterates over all bodies, and the [·] operator is the dot product. Appendix A further

discusses the spatial quantities used in this investigation.
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5.5 Hardware and Simulation Parameters

A generalized forward dynamics toolbox was constructed to simulate the con-

jugated nanoparticle. This toolbox was written first in MATLAB and then in the

C++ programming language using the CUDA library [24] for parallel processing on

NVIDIA GPUs. The MATLAB toolbox performs the calculations serially on the CPU

and was used in development to confirm the accuracy of the overall process. The C++

toolbox was used to generate the simulation data presented in this chapter. A model

description defined in preprocessing specified the number of bodies, joint kinematics,

and mass and inertial properties. This model description was then passed to the

derivative file along with a vector of current states. A model-specific subprocess re-

turned vectors of forces for each body. Using the provided model, forces, and states,

the generalized accelerations were calculated using the recursive algorithm, Euler pa-

rameters for spherical joints, and online constraint embedding processes mentioned

above. This forward dynamics process is described in fine detail in the appendices.

The forward dynamics and numerical integration were solved wholly on the

GPU. Because of the independence of calculations, the point-to-point potential inter-

actions between all bodies were resolved concurrently. Kinematic calculations along

each protein chain were also performed concurrently. All linear algebra calculations

were performed using an optimum number of blocks and threads to maximize GPU

bandwidth. Because parallel processing was used, this otherwise burdensome com-

putational process was resolved in significantly less real time. The production of this

dynamics toolbox was a significant development and can be reused in later studies.

Numerical integration was performed on an HP Z230 Workstation with an Intel

Xeon E3-1225 v3 processor with 12 GB of RAM running Ubuntu 16.04 operating

system. Parallelization was performed on an NVIDIA Quadro P1000 4GB GPU. The

integration was performed by a Kutta-Merson algorithm [88] with adaptive integration
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Figure 5.2. Initial positions.

step sizes for reducing the numerical error. Relative and absolute errors were 10−5

and 10−6, respectively.

Eight GP1b proteins were attached to the nanoparticle surface in a circular

arrangement. While exact conjugation densities of surface ligands are difficult to cal-

culate, this density of ligands is an extrapolation of the methodology in [23]. Twenty

VWF proteins were modeled as fixed points on the (N̂2, N̂3) plane. Potential inter-

actions were calculated between these VWF proteins and all protein bodies.

The mass and inertial properties of the nanoparticle were also extrapolated from

[23]. The mass of the proteins were calculated from totaling the mass of all the residues

in the primary sequence of each coarse grained body. The inertia properties were

calculating using the determined mass and a size estimated from x-ray crystallography
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Figure 5.3. Final positions of the adaptively scaled simulation.

data from an online research aggregate database [149]. A unit system of (fg, µm, µs)

was selected. This unit system keeps the mass of the nanoparticle in the 100 - 101

range. The time and distance scales were selected for convenient observation. Tables

D.3 and D.4 in Appendix D list the values of the parameters used.

For the conformational spring constants, the specific structure at each kinematic

joint was considered and approximated from available sources. For example, bodies

C and D together model a helical structure. The joint between them models the

bending of this helix by allowing some relative motion but the that torsional spring

is significantly stiffer than the others. Body B meanwhile approximates a chain of

residues bound with di-sulfide bonds, so a relatively looser spring was used.
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Initial nanoparticle position was 250 nm from the (N̂2, N̂3) plane containing the

VWF proteins. The nanoparticle has a radius of 200 nm. Because the GP1b proteins

are attached in a circular arrangement, the nanoparticle must traverse approximately

65 nm for the protein to closely interact with the VWF receptors. Initial nanoparticle

orientation is such that the GP1b proteins are directed towards the VWF receptors

in the (N̂2, N̂3) plane. The initial positions can be seen in Fig. 5.2. Final positions

produced by the adaptively scaled system can be seen in Fig. 5.3. A flow velocity

was defined as 1 mm/s in the N̂3 direction.

5.6 Results Analysis

Three simulations were performed on unscaled, constantly scaled, and adap-

tively scaled systems. The constantly scaled system was simulated to show the need

for the adaptive approach. Figure 5.4 shows plots of the q1 coordinate over time

for the three cases. This coordinate tracks the motion of the nanoparticle in the

N̂1 direction. The adaptively scaled case is given by the solid line, the constantly

scaled case is given by the dashed line, and the unscaled case is given by the dotted

line. Since the VWF receptor proteins are in the positive N̂1 direction relative to

the nanoparticle, the q1 coordinate will increase as the nanoparticle approaches the

VWF receptors. It can be seen that in constantly scaled case, the scaling of the small

potential forces reduces the work done by those forces and no significant displacement

of the nanoparticle is observed. It can be seen that for both the scaled and unscaled

cases, the nanoparticle moves toward the VWF receptors and eventually docks. While

the two trajectories are similar, there is some noticeable variance. It can be seen that

the unscaled case requires more time to reach an equivalent position. The standard

deviation between these two trajectories is approximately 5 nm.
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Figure 5.4. Nanoparticle position in N̂1 direction for the adaptively scaled, constantly
scaled, and unscaled cases.

Figures 5.5 and 5.6 show the system energies from the adaptively scaled and

unscaled cases, respectively. The quantities plotted include the kinetic energy and

the work done by the various forces. Recall that since an adaptive scaling method is

applied to the potential forces, the potential energy cannot be used to confirm energy

conservation. Scaling of the potential forces yields a discontinuous potential energy,

so the work done is calculated instead.

The energy quantities are separated into two plots to conveniently show the time

evolutions of the large and small quantities. Since the works done by stochastic and

damping forces are significantly larger than the other quantities, it is impossible to

observe the trajectories of the small quantities when all are plotted together. The work

done by potential forces is included in the plots of large quantities for comparison.
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Figure 5.5. Adaptively scaled system energy. W denotes the work done by friction
(subscript d), potential (p), Brownian (b), and conformational (k) forces. T denotes
kinetic energy.

These plots confirm that Eqn. (5.18) can be used to check for energetic consistency,

even when the adaptive scaling method is implemented.

Figure 5.7 shows a plot of the forces over time in the adaptively scaled system.

The quantities plotted are the total magnitude of each of these forces found through

summation across all bodies. The damping forces are given by the dashed line, the

conformational forces are the small dots, the potential forces are the solid line, and

the Brownian motion forces are the open dots. It can be seen that the damping forces
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Figure 5.6. Unscaled system energy. W denotes the work done by friction (subscript
d), potential (p), Brownian (b), and conformational (k) forces. T denotes kinetic
energy.

are relatively large at initial conditions and increase with nanoparticle velocity. It

can also be seen that the potential forces increase exponentially with decreasing dis-

tance between the nanoparticle and the VWF receptors. Note that magnitude of the

stochastic forces is a constant. Recall from the discussion above on the implementa-

tion of the stochastic forces that sets of uniformly distributed variables are generated

and normalized to specify the unit vectors for forces of constant magnitude. The

dashed vertical line is included to show the time where the adaptive scaling term a∗2
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Figure 5.7. Force magnitudes from the scaled system. Forces shown are damping
(subscript d), conformational (k), potential (p), and Brownian (b). Dashed vertical
line denotes time when adaptive scaling is activated.

is activated by the control law given by Eqn. (5.7). Recall that this adaptive scaling

is activated once the value of Fp exceeds a user-specified threshold. There is a no-

ticeable change in the damping force Fd following this change. This response will be

addressed later and correlated to other data.

Figure 5.8 shows a plot of the adaptive scaling factor a∗2 over time. It can be seen

that the adaptive scaling is activated at approximately 4.7 µs. This time corresponds

to the vertical dashed line seen in Fig. 5.7. While the the adaptive scaling algorithm

allows for the scaling to deactivate, the potential forces remained large throughout

the remainder of the simulation.
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Figure 5.8. Adaptive scaling factor a∗2 over time.

Figures 5.9 and 5.10 are including to further observe the effects of system scal-

ing. Figure 5.9 shows plots of the kinetic energy for the adaptively scaled and unscaled

cases. The adaptively scaled case is given by the solid line and the unscaled case is

given by the dotted line. The dashed vertical line denotes the time when the adaptive

scaling is activated. As in Fig. 5.7, a noticeable change occurs once the adaptive scal-

ing has activated. The scaling of the potential forces brings it into the same scaled

order of the damping and stochastic forces. This means that there is a discontinuity

in the magnitude of the potential forces experienced by the system. It can be seen

that prior to the scaling activating, the kinetic energy was swiftly increasing, corre-

sponding to an increase in nanoparticle velocity. By diminishing the potential forces,

the damping forces dissipate some kinetic energy, slowing the nanoparticle. This can
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Figure 5.9. Comparison of kinetic energy from the adaptively scaled and unscaled
simulations. Solid line is the adaptively scaled case and the dashed line is the unscaled
case. Dashed vertical line denotes time when adaptive scaling is activated.

be seen by the reduction in kinetic energy immediately following the activation of

the scaling. Even when scaled, the potential forces still do work on the nanoparticle

bringing it closer to the VWF proteins. It can be seen that after the initial reduction

in kinetic energy, the nanoparticle accelerates again once the potential forces have

grown. By comparison, the kinetic energy of the unscaled system experiences a rel-

atively smooth trajectory. While some variance exists between these two data sets,

especially near the point of scaling activation, the trajectories and final values are

similar. The dip in kinetic energy after scaling activation can be considered then a

correction toward a more accurate estimation of the time evolution.
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Figure 5.10. Comparison of work done by damping (subscript d) and Brownian (b)
forces from the adaptively scaled and unscaled simulations.

Figure 5.10 shows plots of the work done by damping and Brownian forces for

the scaled and unscaled systems. The work done by damping are denoted by the

solid and dashed lines for the scaled and unscaled cases, respectively, and the work

done by Brownian forces are denoted by the open and closed dots for the scaled and

unscaled cases, respectively. For Fig. 5.10, these quantities have been normalized

and scaled to show the similarity in time histories. These quantities do however have

significantly different actual values, as can be seen in Figs. 5.5 and 5.6. This large

difference arises from the scaling of the damping and Brownian forces. Since the forces

are diminished in magnitude, they do less work on the system. A key outcome of

applying the multiscale analysis is a reduction in forces, and thus a reduction in large
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resultant accelerations. The difference between the two profiles then is a visualization

of the work eliminated by the scaling procedure.

5.7 Computation Time Reduction

The time required to perform the numerical integration for the scaled and un-

scaled systems was approximately 837 minutes and 32310 minutes, respectively. The

computation time reduction achieved by the adaptive multiscale formulation was ap-

proximately 97.4%. This computation time reduction is consistent with the results

seen in [76]. It was observed that the scaled system would integrate with step sizes

approximately in the 100 - 50 ps range. The unscaled system would integrate with

step sizes approximately in the 1 - 0.5 ps range. The main mechanism for the com-

putational savings was therefore a decrease in the total number of integration steps

required to generate the time evolutions.

5.8 Conclusions

This chapter presented a second extension to the continuum multiscale formu-

lation to accounted for active forces whose magnitude changes significantly over the

duration of the simulation. By not scaling the potential forces initially, when the

magnitudes were small, the forces were allowed to contribute to the time evolution

through consistent application of small forces. Once these forces grew to a significant

enough magnitude, they were scaled in a manner consistent with the other forces.

This formulation resulted in a significant reduction in computation time by allow-

ing for integration step sizes approximately two orders of magnitude larger to be

implemented.
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The adaptive control scheme used was similar to a bang-bang controller. This

method, though effective, is a relatively simply implementation. The work detailed

here can be further expanded to allow the value of a∗2 to vary across a range of values

depending on the current magnitude of forces. This further work may produce adap-

tive scaling schemes that reduce the error in overall time history by better accounting

for the changes in force cancelation.

5.9 Future Work

This dissertation presented three developments in the field of micro and nanoscale

dynamical simulation. Each of these developments have succeeded in their respec-

tive goals, but more work can always been done in applying these developments to

new systems and the refining of methods. The modified Nóse-Hoover thermostat has

only been applied to the models of molten nitrate salts shown in Chapters 3 and

4. Future works can apply this thermostat and the atomistic multiscale analysis to

other systems, possibly other phases of matter, to investigate the effects on calculated

thermodynamic quantities.

The atomistic multiscale formulation, though effective, has much room for im-

provement. The current result of 24% computation time reduction is limited by the

repulsive Lennard-Jones term used to model collisions between particles. This nonlin-

ear force term grows, even when scaled, to a magnitude large enough to elicit a change

in relative velocity between two particles. When this force is scaled, the distance be-

tween the two particles reduces, leading to larger forces. The accelerations resultant

from these collisions is approximately the same for both the scaled and unscaled case,

leading to similarly small integration step sizes during those collision events. A future

work is investigating how those collisions can be resolved by replacing the repulsive

terms with an analytical contact-impact analysis [153].
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The adaptive scaling results shown in this chapter are similar to those of the

unscaled case, but variances in trajectories can be observed. It is also seen in the

plots of kinetic energy and forces that the activation of the scaling does result in

a correction period in which the nanoparticle first loses energy, then regains it. It

is possible then that the specified scaling threshold is too high and should activate

earlier to prevent this abrupt correction period. Future works will also investigate the

application of a more complex adaptive scaling algorithm, such as an initial activation

of the scaling factor and then further changes of the scaling factor along a continuous

range of values. Continuous control laws using hyperbolic functions could also be

used. While future works will continue to expand these methods, the investigations

detailed in this dissertation show that each of these new methods are useful in the

development of micro and nanoscale dynamical simulations.
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APPENDIX A

RECURSIVE FORWARD DYNAMICS ALGORITHM
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A.1 Recursive Formulation Introduction

This appendix presents the derivation of a recursive formulation of the Newton-

Euler equations of motion. As an alternative to solving the equations of motion

in symbolic form using linear algebra and the inversion of a mass matrix, recursive

approaches are often numerical, avoiding symbolic solutions altogether. This recursive

formulation uses back substitution to eliminate the unknown reaction forces until a

point is reached when a set of generalized accelerations for a single body can be

calculated. This set of known accelerations is then propagated along the kinematic

link and successive accelerations can thus be calculated.

To see this concept visually, consider the triangularization of a dense matrix:

A =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 −→

α11 0 0

α21 α22 0

α31 α32 α33

 (A.1)

where Aij 6= αij. Note that the specific values of the entries in A changed, but the

indices and axes did not. Similarly, the inverse of the two matrices are identical. If

A were included in a linear set of non-homogeneous differential equations:

Aq̈ = b (A.2)

where q̈ and b ∈ R3x1, either of the forms given in Eqn. (A.1) would satisfy the

equation for the same q̈ and b. The triangularized form of A implies that there

is some way to restructure the matrix A such that the first unknown term in q̈ is

independent of the others. This term could be calculated by expanding Eqn. (A.2)

into a series of scalar equations and isolating it. This first term could then be used

to solve for the second, which could then be used to solve for the third. Similarly

for the recursive forward dynamics algorithm, the inertias and forces are modified
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through back substitution until the generalized accelerations of the first body can be

calculated independent of the other joints.

The derivation presented here was used in the study detailed in Ch. 5. This

derivation is intended as an intuitive and easy-to-follow introduction to the concept

of recursive algorithms. This recursive algorithm is by no means unique. Similar

formulations may be seen in [154, 155, 156, 157, 158, 26, 27, 159, 160], among many

others. Similar recursive formulations have also been developed for the inverse and

hybrid dynamics problems. These algorithms allows for joints with multiple degrees

of freedom - and thus multiple generalized accelerations - to be resolved simultane-

ously, even when a rotation is combined with a translation. However, this derivation

is simplified to account only for rotations. The assumptions associated with this sim-

plification are highlighted in the derivation and the resulting algorithm can be easily

modified for the general case.

This derivation makes use of spatial algebra which is the collection of transla-

tional and rotational equations into a single set of expressions. For example, a general

spatial force vector would contain both forces and moments:

f =

F

M

 (A.3)

This arrangement allows for the interdependence of the translational and rotational

variables to be easily accommodated. By using this notation, a single set of equations

of motion is defined for each body. Note that in this derivation, the spatial reaction

and spatial external forces are denoted by r and g, respectively.

Also used in this derivation is the representation of the vector cross product

operation as matrix multiplication using skew symmetric matrices. This representa-
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tion is useful in constructing transformation matrices which for rotational joints are

constant and can be defined in preprocessing. Consider two general vectors a and b:

a = a1̂i + a2̂j + a3k̂ (A.4)

b = b1̂i + b2̂j + b3k̂ (A.5)

If a third vector c is defined as:

c = a× b (A.6)

then c can also be expressed as

c = (a×) b (A.7)

where (a×) can be used to denote the skew symmetric form of a. This form is

sometimes also seen as ã. For the general vector a, the skew symmetric form is:

a× =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (A.8)

For example, the skew symmetric form of the position vector PAB is PAB×.

For the following derivation, consider the system shown in Fig. A.1. Body A is

a floating base with center of mass at point A and frame Â attached. Bodies B and

C are kinematically connected by rotational joints at points B and C and have their

own respective body frames attached. The expanded view shows the spatial reaction

forces, denoted by ri where i is the body. For each kinematic relation, there will be

a parent and a child body, sometimes denoted by λ and i, respectively, in recursive

derivations. For example, body A is the parent of B; body B is therefore the child of

body A. Note that the points B and C are not the centers of mass for these bodies.

These points denote the kinematic joint between the parent and child bodies and are

sometimes called “handles” in recursive derivations.
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Figure A.1. Kinematic chain with floating base parent body. Free body diagrams
show spatial reaction forces.

A.2 Spatial Velocity and Acceleration

This section defines the spatial velocities and accelerations of each body. A

vector of known quantities di and matrix φi must be defined for each body after the

ungrounded parent. Both di and φi are defined not in the i frame, but in that of its

parent link. For a rotational joint, the matrix φi is a constant and may be defined in

the preprocessing model description.

A.2.1 Body A

The spatial velocity and acceleration of body A is defined as:

ϑA =

 VA

NωA

 (A.9)
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ϑ̇A =

 V̇A

N ω̇A

 (A.10)

Note that since body A is unconstrained with respect to the ground, the quantities

given by Eqns. (A.9) and (A.10) can be fully populated.

A.2.2 Body B

The spatial velocity of the middle body B is constructed from the linear velocity

of point B and angular velocity of body B:

VB = VA + AVAB + NωA ×PAB (A.11)

NωB = NωA + AωB (A.12)

Note that the system shown in Fig. A.1 has only rotational joints. While this method

can be further generalized to allow for prismatic joints, this derivation is simplified

to account for only rotational joints. Therefore it is assumed that all slip velocities

are zero (iVij = 0). Stacking these quantities and collecting terms yields:

ϑB =

 VB

NωB

 =

 I3 −PAB×

0 I3


 VA

NωA

 +

 0

AωB



ϑB = φBϑA + sBq̇B

(A.13)

where q̇B ∈ Rn×1 denotes the joint velocities where n is the degrees of freedom for

that joint and sB ∈ R6×n is a vector defining the AB joint space. For example, the

quantity s for joint i allowing a single rotation around a shared Y-axis is:

si =

[
0 0 0 0 1 0

]T
(A.14)

Note that for joints with multiple degrees of freedom, the quantity s is a matrix and

not a vector.
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The spatial acceleration of body B is constructed from the linear acceleration

of point B and the angular acceleration of body B:

V̇B = V̇A + AV̇AB + N ω̇A×PAB+ 2 NωA×AVAB + NωA×(NωA×PAB) (A.15)

N ω̇B = N ω̇A + Aω̇B + NωA × AωB (A.16)

where, since it is assumed that AVAB = 0, the slip and coriolis acceleration terms are

zero. Stacking Eqns. (A.15) and (A.16) and collecting terms yields:

ϑ̇B =

 V̇B

N ω̇B

 =

 I3 −PAB×

0 I3


 V̇A

N ω̇A

 +

 0

Aω̇B

+

NωA × (NωA ×PAB)

NωA × AωB



ϑ̇B = φBϑ̇A + sBq̈B + dB

(A.17)

A.2.3 Body C

The spatial velocity of the distal body C is constructed from the linear velocity

of point C and the angular velocity of body C:

VC = VB + BVBC + NωB ×PBC (A.18)

NωC = NωB + BωC (A.19)

Stacking Eqns. (A.18) and (A.19) and collecting terms yields:

ϑC =

 VC

NωC

 =

 I3 −PBC×

0 I3


 VB

NωB

 +

 0

BωC



ϑC = φCϑB + sCq̇C

(A.20)

The spatial acceleration of body C is constructed from the linear acceleration of point

C and the angular acceleration of body C:

V̇C = V̇B + BV̇BC + N ω̇B×PBC+ 2 NωB×BVBC + NωB×(NωB×PBC) (A.21)
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N ω̇C = N ω̇B + Bω̇C + NωB × BωC (A.22)

Assuming the the slip and coriolis terms are zero, stacking Eqns. (A.21) and (A.22)

and collecting terms yields:

ϑ̇C =

 V̇C

N ω̇C

 =

 I3 −PBC×

0 I3


 V̇B

N ω̇B

 +

 0

Bω̇C

+

NωB × (NωB ×PBC)

NωB × BωC



ϑ̇C = φCϑ̇B + sCq̈C + dC

(A.23)

A.3 Newton-Euler Equations of Motion

This section defines the spatial equations of motion. These equations are con-

structed by stacking the Newton-Euler equations. Included in these equations are the

unknown reaction forces which will be eliminated through back substitution. For the

floating base body A, the sum of moments is taken about the center of mass. For

all other bodies, the sum of moments is taken about the input joint. By defining the

equations about this point rather than center of mass, the moment created by the

reaction forces at that joint is eliminated, simplifying the calculations. A vector of

known quantities bi must be defined for each body. This vector is defined in the i

frame.

A.3.1 Body A

The Newton-Euler equations for body A are:

(
∑

F)A =
d

dt
KA =

d

dt
(mAVA)

FA∗ − FB = ṁAVA + mAV̇A

(A.24)
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(
∑

M)A =
d

dt
HA =

d

dt
(IAA

NωA)

MA∗ − MB − PAB × FB = İAA
NωA + IAA

N ω̇A + NωA × IAANωA

(A.25)

where H and K ∈ R3×1 denote angular and linear momenta, respectively, IAA ∈ R3×3

denotes the inertia tensor of body A taken about point A, mA is the scalar mass of

body A, MA∗ and FA∗ ∈ R3×1 denote the external moments and forces acting upon

body A, and MB and FB ∈ R3×1 denote the reaction moments and forces from the

A-B joint acting on body A. Note that the external moment and force terms include

actuation and control inputs. Also note that it is assumed in this derivation that

these bodies are rigid, so the quantities İAA and ṁA are both zero. Stacking Eqns.

(A.24) and (A.25) and collecting terms yields:FA∗

MA∗

−
 I3 0

PAB× I3


FB

MB

 =

mAI3 0

0 IAA


 V̇A

N ω̇A

+

 0

NωA × IAANωA



gA − ψBrB = MAϑ̇A + bA

(A.26)

It is of note that the matrix used to modify the reaction forces ψi is in fact the

transpose of φi.

A.3.2 Body B

For bodies B and C, Euler’s second law may be taken about the input joint,

but Newton’s second law must be taken with respect to the center of mass. Recall

that for body B, the center of mass is point D. The Newton-Euler equations for body

B are therefore:

(
∑

F)B =
d

dt
KB =

d

dt
(mBVD)

FB∗ + FB − FC = mB

[
V̇B + N ω̇B ×PBD + NωB × (NωB ×PBD)

] (A.27)
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(
∑

M)B =
d

dt
HB =

d

dt
(IBB

NωB)

MB∗ + MB −MC −PBC × FC = mBPBD × V̇B + IBB
N ω̇B + NωB × IBBNωB

(A.28)

Note the form of Eqn. (A.28) arises from taking the sum of moments about the input

joint at point B - which is not the center of mass. For further explanation of this form,

a thorough derivation can be seen in [160]. Also note that IBB is the inertia of body

B about point B. This quantity must be constructed using the parallel axis theorem

as appropriate. Stacking Eqns. (A.27) and (A.28) and collecting terms yields:FB∗

MB∗

 +

FB

MB

−
 I3 0

PBC× I3


FC

MC



=

 mBI3 −mBPBD×

mBPBD× IBB


 V̇B

N ω̇B

 +

mB
NωB × (NωB ×PBD)

NωB × IBBNωB



gB + rB − ψCrC = MBϑ̇B + bB

(A.29)

A.3.3 Body C

The Newton-Euler equations for body C are:

(
∑

F)C =
d

dt
KC =

d

dt
(mCVE)

FC∗ + FC = mC

[
V̇C + N ω̇C ×PCE + NωC × (NωC ×PCE)

] (A.30)

(
∑

M)C =
d

dt
HC =

d

dt
(ICC

NωC)

MC∗ + MC = mCPCE × V̇C + ICC
N ω̇C + NωC × ICCNωC

(A.31)
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Stacking Eqns. (A.30) and (A.31) and collecting terms yields:FC∗

MC∗

+

FC

MC

 =

 mCI3 −mCPCE×

mCPCE× ICC


 V̇C

N ω̇C

+

mC
NωC × (NωC ×PCE)

NωC × ICCNωC



gC + rC = MCϑ̇C + bC

(A.32)

A.4 Back Substitution

This section shows how the Newton-Euler equations can be combined with the

definitions of spatial acceleration to eliminate the reaction forces. This process begins

with the distal body and moves along the kinematic chain back to the parent body.

A.4.1 Body C

Consider the spatial acceleration and Newton-Euler equation of body C, given

by Eqns. (A.23) and (A.32):

ϑ̇C = φCϑ̇B + sCq̈C + dC

gC + rC = MCϑ̇C + bC

Inserting Eqn. (A.23) into (A.32) and collecting terms yields:

gC + rC = MC

[
φCϑ̇B + sCq̈C + dC

]
+ bC

rC = MC

[
φCϑ̇B + sCq̈C

]
+
[
MCdc + bC − gC

]
rC = MC

[
φCϑ̇B + sCq̈C

]
+ hC

(A.33)

It it known that there will not be a reaction force or moment in the joint space of the

degree of freedom:

sTi ri = 0 (A.34)
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This identity can be used to solve for the generalized acceleration in terms of the par-

ent body spatial acceleration while eliminating the remaining unknown joint reaction

forces:

0 = sTc rC = sTc

[
MC

[
φCϑ̇B + sCq̈C

]
+ hC

]

sTCMCsC q̈C = −sTc
[
MCφCϑ̇B + hC

]
q̈C = −u−1C sTc

[
MCφCϑ̇B + hC

]
(A.35)

where

uC = sTCMCsC (A.36)

For a single-degree-of-freedom joint, the quantity ui is a scalar value. Substituting

Eqn. (A.35) into (A.33) and collecting terms yields:

rC = MC

[
φCϑ̇B − sCu

−1
C sTC

[
MCφCϑ̇B + hC

]]
+ hC

rC =
[
MCφC −MCsCu

−1
C sTCMCφC

]
ϑ̇B +

[
I6 −MCsCu

−1
C sTC

]
hC

rC = PCMCφCϑ̇B + PChC

(A.37)

where

PC =
[
I6 −MCsCu

−1
C sTC

]
(A.38)

The reaction force at point C has been solved for in terms of the parent body spatial

acceleration and vectors of known values only. It can be seen from Eqn. (A.35) that

the generalized acceleration can be calculated once the spatial acceleration of the

parent body is defined. These forces may now be propagated to the parent body B.
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A.4.2 Body B

Consider the reaction force at point C and Newton-Euler equation of body B,

given by Eqns. (A.37) and (A.29):

rC = PCMCφCϑ̇B + PChC

gB + rB − ψCrC = MBϑ̇B + bB

Inserting Eqn. (A.37) into (A.29) and collecting terms yields:

gB + rB − ψC
[
PCMCφCϑ̇B + PChC

]
= MBϑ̇B + bB

rB =
[
MB + ψCPCMCφC

]
ϑ̇B +

[
bB − gB + ψCPChC

]
rB = M∗

Bϑ̇B +
[
bB − gB + ψCPChC

]
(A.39)

Recall the spatial acceleration of body B given by Eqn. (A.17):

ϑ̇B = φBϑ̇A + sBq̈B + dB

Inserting Eqn. (A.17) into (A.39) and collecting terms yields:

rB = M∗
B

[
φBϑ̇A + sBq̈B + dB

]
+
[
bB − gB + ψCPChC

]
rB = M∗

B

[
φBϑ̇A + sBq̈B

]
+
[
M∗

BdB + bB − gB + ψCPChC
]

rB = M∗
B

[
φBϑ̇A + sBq̈B

]
+
[
hB + ψCPChC

]
rB = M∗

B

[
φBϑ̇A + sBq̈B

]
+ h∗B

(A.40)
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Using the identity in Eqn. (A.34) to eliminate the reaction forces and solve for the

generalized acceleration:

0 = sTBrB = sTB

[
M∗

B

[
φBϑ̇A + sBq̈B

]
+ h∗B

]

sTBM
∗
BsB q̈B = −sTB

[
M∗

BφBϑ̇A + h∗B
]

q̈B = −u−1B sTB
[
M∗

BφBϑ̇A + h∗B
]

(A.41)

where

uB = sTBM
∗
BsB (A.42)

Inserting Eqn. (A.41) into (A.40) and collecting terms yields:

rB = M∗
B

[
φBϑ̇A − sBu−1B sTB

[
M∗

BφBϑ̇A + h∗B
]]

+ h∗B

rB =
[
M∗

BφB −M∗
BsBu

−1
B sTBM

∗
BφB

]
ϑ̇A +

[
I6 −M∗

BsBu
−1
B sTB

]
h∗B

rB = PBM
∗
BφBϑ̇A + PBh∗B

(A.43)

where

PB =
[
I6 − M∗

BsBu
−1
B sTB

]
(A.44)

The reaction forces at point B have been solved for in terms of the parent body spatial

acceleration and vectors of known values only. These forces may now be propagated

to the parent body A.

A.4.3 Body A

Consider the reaction force at point B and Newton-Euler equation of body A,

given by Eqns. (A.43) and (A.26):

rB = PBM
∗
BφBϑ̇A + PBh∗B
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gA − ψBrB = MAϑ̇A + bA

Inserting Eqn. (A.43) into (A.26) and collecting terms yields:

gA − ψB
[
PBM

∗
BφBϑ̇A + PBh∗B

]
= MAϑ̇A + bA

0 =
[
MA + ψBPBM

∗
BφB

]
ϑ̇A +

[
bA − gA + ψBPBh∗B

]
0 = M∗

Aϑ̇A +
[
hA + ψBPBh∗B

]
0 = M∗

Aϑ̇A + h∗A

(A.45)

The spatial acceleration of the floating base parent body can now be found by invert-

ing the augmented mass matrix of body A:

ϑ̇A = −
(
M∗

A

)−1(
h∗A
)

(A.46)

Consider what this algorithm has accomplished: by eliminating the unknown

reaction forces at joints, the generalized accelerations of the parent body can be solved

for independently by inversion of, at most, a 6 × 6 matrix. These calculated accel-

erations can then be propagated forward to solve for the next set of accelerations,

and so on. Using this algorithm, the symbolic equations of motion can be avoided

entirely. As mentioned before, methods that invert the symbolic mass matrix have

a computational cost of O(N3) that scales with the degrees of freedom cubed. The

recursive algorithm has a computational cost of O(N) when performed serially and

O(logN) when performed in parallel. For small systems, the symbolic approach per-

forms admirably, but is quickly outpaced for larger systems.

A.5 Further Comments

In the case of spherical joints, the calculated joint accelerations ω̇ cannot be

directly integrated to find useable joint velocities ω. These joints are often described
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using Euler angles or Euler parameters. Euler angles, which consist of a series of

three simple rotations, are simple to implement but susceptible to singularity when

the middle rotation is such that the first and third axes are aligned. While there

are several combinations of Euler angles that can be selected, each of these choices

suffers from the same singularity problem. A more difficult but more robust solution

is the use of Euler parameters which defines the rotation using four coordinates.

This rotation definition is singularity free, even at the specific orientation that causes

Euler angles to fail. However, this definition requires that the equation of motion

be converted into the Euler parameter vector space and that a normality constraint

be implemented. The work described in Ch. 5 used the recursive algorithm detailed

above with Euler parameters at each joint. How the recursive algorithm was adapted

for Euler parameters is described in Appendices B and C.

Also, it should be noted this derivation makes no mention of the frames of the

quantities. As such, the user must take care to consider what frames each quantity

is defined in. When two quantities are added or subtracted, it must be ensured that

these quantities are in the same frame. The user may find it convenient to define

transformation matrices of the form:

χ =

 R 03×3

03×3 R

 (A.47)

where R denotes a (3× 3) rotation matrix.
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APPENDIX B

EULER PARAMETERS
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B.1 Euler Parameters Introduction

This appendix presents the Euler parameters formulation used to avoid the sin-

gularity problem associated with general rotations between coordinate frames. Body

attached coordinate frames are convenient for defining the changes in orientation ex-

perienced by moving bodies. This change in orientation is referred to as a rotation.

For the simplest case, this rotation occurs about a single axis shared by both frames.

These single axis rotations are often referred to as simple rotations. Consider the

simple rotation shown in Fig. B.1 where the frame Â rotates with respect to an

intuitively known and non-moving frame N̂. From this diagram, a series of claims

can be made defining the axes of the Â frame with respect to the N̂ frame:

Â1 = cos(θ)N̂1 + sin(θ)N̂2

Â2 = −sin(θ)N̂1 + cos(θ)N̂2

Â3 = N̂3

(B.1)

These claims can be written in vector-matrix form:
Â1

Â2

Â3

 =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1




N̂1

N̂2

N̂3



Â = N
AR N̂

(B.2)

where N
AR defines the rotation of frame Â with respect to frame N̂. Recognize that this

matrix transforms vectors defined in the N̂ frame into the Â frame. For transforming

vectors defined in the Â frame into the N̂ frame, the transpose of N
AR may be used:

N̂ = A
NR Â

A
NR = N

AR
T

(B.3)

111



N1

N2

A1A2

θ

θ

Figure B.1. Simple rotation about a shared 3̂ axis.

These simple rotations can also be staged in series across multiple frames:

B̂ = A
BR Â

Â = N
AR N̂

−→ B̂ = A
BR

N
AR N̂ = N

BR N̂

(B.4)

Defining the general rotation of one frame with respect to another frame is most

intuitively done using Euler angles, a sequence of three simple rotations about any

set of non-consecutive orthogonal vectors:

N
AR = R1(θ1) R2(θ2) R3(θ3) (B.5)

where each rotation angle θi is the Euler angle. This definition shows that for an

arbitrary rotation, there are three degrees of freedom. In the dynamics of aircraft,

these Euler angles are often referred to as roll, pitch, and yaw.

However, regardless of the sequence of vectors chosen - be they defined in inertial

or body frame - the resulting rotation matrix is susceptible to singularities at certain

orientations. These singularities occur when the middle angle is such that the first

and third rotation axes are aligned. A singularity here refers to a mathematical event
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in which a matrix loses rank or a quantity becomes ambiguous. In the case of Euler

angles, the individual angles become unrecoverable and ambiguous. This singularity

can lead to failures in simulations and control mechanisms.

Many alternatives to Euler angles exist for defining general rotations, such as

Principle Axis-Angles and Rodrigues Parameters. For further discussion on these two

formulations, see [160]. Another alternative to Euler angles is Euler parameters, a

set of four homogenous coordinates:

e = [ e0 e1 e2 e3 ]T (B.6)

where e denotes the four-tuple of Euler parameters. These four Euler parameters can

be related to the Principle Axis-Angles rotation definition. Considering the general

rotation shown in Fig. B.2, the Euler parameters are defined by:

e0 = cos
(φ

2

)
e1 = cos(θ1) sin

(φ
2

)
e2 = cos(θ2) sin

(φ
2

)
e3 = cos(θ3) sin

(φ
2

)
(B.7)

where

cos(θ1) = n̂ · N̂1 cos(θ2) = n̂ · N̂2 cos(θ3) = n̂ · N̂3 (B.8)

and n̂ denotes the principle axis of rotation and φ is a rotation angle about that

principle axis.

Recall that the definition of Euler angles shows that there are three degrees of

freedom associated with an arbitrary rotation, so some constraint must exist amongst
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n

Figure B.2. Rotation about an arbitrary axis n̂.

the Euler parameters to address the fourth coordinate. A normality constraint is often

implemented of the form:

e20 + e21 + e22 + e23 = 1

eTe = 1

(B.9)

where the derivative of Eqn. (B.9) provides the useful speed constraint:

e0ė0 + e1ė1 + e2ė2 + e3ė3 = 0

ėTe + eT ė = 0

→ ėTe = 0

(B.10)
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Given a set of Euler parameters e, the rotation matrix associated with transforming

vectors from the Â frame to N̂ frame is given by:

A
NR = 2


1
2
− e22 − e23 e1e2 − e3e0 e1e3 + e2e0

e1e2 + e3e0
1
2
− e21 − e23 e2e3 − e1e0

e1e3 − e2e0 e2e3 + e1e0
1
2
− e21 − e22

 (B.11)

The same rotation matrix may also be generated from:

A
NR = I3

[
1− 2 εT ε

]
+ 2 ε εT + 2 e0ε×

ε =

[
e1 e2 e3

]T (B.12)

where I3 denotes a 3× 3 identity matrix.

B.2 Angular Velocity

The angular velocity vector ω can be related to the time derivatives of the Euler

parameters:

ė =
1

2



e0 −e3 e2 e1

e3 e0 −e1 e2

−e2 e1 e0 e3

−e1 −e2 −e3 e0


ω̄

ė =
1

2
Eω̄

(B.13)

where ω̄ denotes ω mapped to (4× 1) space:

ω̄ =

ω
0

 (B.14)

Equation (B.13) may also be written as:

ė =
1

2
EηTω (B.15)
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where ηT is a 4× 3 matrix used to map ωto a 4× 1 vector space:

ηT =

 I3

01×3

 (B.16)

Note that the angular velocity ω is defined strictly in the body frame. Equation

(B.15) may be rearranged to solve for ω in terms of ė:

ω = 2ηET ė (B.17)

It can be seen from Eqns. (B.15) and (B.17) that η might be unncessary if E were

defined as a 4 × 3 matrix. However, it is necessary to define E as a 4 × 4 matrix to

ensure that the inverse of E is also the transpose:

E−1 = ET (B.18)

such that

ETE = EET = I4 (B.19)

Taking the derivative of Eqn. (B.19) leads to the useful identity:

ĖTE + ET Ė = ĖET + EĖT = 04×4 (B.20)

B.3 Angular Acceleration

The angular acceleration can be found by taking the derivative of Eqn. (B.17)

ω̇ = 2η
[
ET ë + ĖT ė

]
(B.21)

where Ė is defined by taking the derivative of E:

Ė =
d

dt
E (B.22)

Equation (B.21) may also be found by taking the derivative of Eqn. (B.15):

ë =
1

2
[ EηT ω̇ + ĖηTω ] (B.23)
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and by taking advantage Eqn. (B.19) and the useful identity:

η ηT = I3 (B.24)

the quantity ω̇ may be isolated:

1

2
EηT ω̇ = ë − 1

2
ĖηTω

ηT ω̇ = 2ET ë − ET ĖηTω

ω̇ = 2ηET ë − ηET ĖηTω

(B.25)

Inserting Eqn. (B.15) into Eqn. (B.25) yields:

ω̇ = 2ηET ë − 2ηET ĖηTηET ė (B.26)

Consider the second terms on the left hand sides of Eqn. (B.21) and (B.26). For

those two equations to be equal, the following claim must be shown to be true:

2ηĖT = −2ηET ĖηTηET (B.27)

This equivalence can be shown by:

ĖT = −ET ĖηTηET

EĖT = −ĖηTηET

ET ĖTE = −ĖηTη

ET ĖTEηT = −ĖηT

ET ĖTE = −Ė

ĖTE = −ET Ė

ĖTE + ET Ė = 0

(B.28)
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which is the identity given in Eqn. (B.20). Equation (B.26) may therefore be ex-

pressed as

ω̇ = 2ηET ë − 2ηĖT ė (B.29)

which is Eqn. (B.21).

B.4 Change in Angular Momentum

Consider Euler’s second law:

(
∑

M) =
d

dt
H = Iω̇ + ω × Iω (B.30)

Inserting Eqns. (B.17) and (B.21) into Eqn. (B.30) yields:

Ḣ = I(2ηET ë− 2ηĖT ė) + (2ηET ė)× I(2ηET ė) (B.31)

For convenience, an intermediate variable L and its time derivative L̇ can be defined:

L = 2ηET

L̇ = 2ηĖT

(B.32)

Equation (B.31) may now be expressed as:

Ḣ = I(Lë + L̇ė) + (Lė)× I(Lė) (B.33)

For convenience, an intermediate variable K can be defined:

K = IL̇ė + (Lė)× I(Lė) (B.34)

Equation (B.33) may now be expressed as:

Ḣ = ILë + K (B.35)

It can be seen that L and K are both known quantities and are size 3× 4 and 3× 1,

respectively.
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B.5 Equations of Motion

Of the multiple methods for generating the equations of motion, consider the

method formulated by Thomas Kane [150]. Kane’s method is an iterative process

exceptionally useful for generating the equations of motion when using Euler param-

eters. The scalar equation of motion for the ith degree of freedom is given by:

Fi − F ∗i = 0 (B.36)

Fi =
bodies∑
j

[
(
∑

F)j ·
∂Vj

∂q̇i
+ (

∑
M)j ·

∂ωj

∂q̇i

]
(B.37)

F ∗i =
bodies∑
j

[
mjV̇j ·

∂Vj

∂q̇i
+ Ḣj ·

∂ωj

∂q̇i

]
(B.38)

where Fi and F ∗i are called the Generalized Active Forces and Generalized Inertia

Forces, respectively. It can be seen that there are several quantities that must be

defined:

1. Linear and angular velocity ( V and ω )

2. Change in linear and angular momentum ( mV̇ and Ḣ )

3. Sum of forces and moments ( (
∑

F) and (
∑

M) )

Consider an ungrounded body A with body attached frame Â. Body A has six

degrees of freedom associated with translation and rotation. This body has a known

mass m and inertia matrix I about its center of mass defined in body frame. Euler

parameters are used to avoid singularity problems when defining the rotation matrix

for the floating base. There are then seven generalized coordinates consisting of the

three translations and four Euler parameters:

r = [ q1 q2 q3 ]T (B.39)

e = [ q4 q5 q6 q7 ]T (B.40)

q = [ rT eT ]T (B.41)
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with the vectors q̇ and q̈ denoting the time derivatives. The position, velocity, and

acceleration of the center of mass may be defined as:

PNA = q1 N̂1 + q2 N̂2 + q3 N̂3 (B.42)

VA = q̇1 N̂1 + q̇2 N̂2 + q̇3 N̂3 (B.43)

V̇A = q̈1 N̂1 + q̈2 N̂2 + q̈3 N̂3 (B.44)

The rotation matrix R, transformation matrix E, and its time derivative Ė are defined

using e and ė according to Eqns. (B.11), (B.13), and (B.22). The angular velocity

and angular accelerations are defined according to Eqns. (B.17) and (B.21) and are

repeated here:

ω = 2ηET ė

ω̇ = 2η
[
ET ë + ĖT ė

]
The change in angular momentum Ḣ is given by Eqn. (B.35) and is repeated here:

Ḣ = ILë + K

A known set of external forces and moments are defined as:

F =
[
F1 F2 F3

]T
(B.45)

M =
[
M1 M2 M3

]T
(B.46)

All the quantities required for generating the equations of motion using Kane’s

method are now defined. For the three degrees of freedom associated with trans-

lation, the partial derivatives are:

∂ω

∂q̇1−3
= 0 (B.47)

∂VA

∂q̇1−3
= I3 (B.48)
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The Generalized Active Forces and Generalized Inertia Forces are then:

F1−3 = F · I3 = F (B.49)

F∗1−3 = mV̇A · I3 = mV̇A (B.50)

The equations of motion for the three translational degrees of freedom may be suc-

cinctly expressed as:

F1−3 − F∗1−3 = F − mV̇A = 0 (B.51)

The equation of motion for the translation of the body in the N̂1 direction is then:

mq̈1 = F1 (B.52)

For the three degrees of freedom associated with rotation, the partial derivatives are:

∂ω

∂q̇4−7
=

∂ω

∂ė
= 2ηET (B.53)

∂VA

∂q̇4−7
=

∂VA

∂ė
= 0 (B.54)

The Generalized Active Forces and Generalized Inertia Forces are then:

F4−7 = M · (2ηET ) = 2(ηET )TM = 2EηTM (B.55)

F∗4−7 = Ḣ · (2ηET ) = 2(ηET )T (ILë +K) = 2EηT
(
ILë + K

)
(B.56)

The equations of motion for the four Euler parameters may be expressed as:

F4−7 − F∗4−7 = 2EηTM− 2EηT (ILë +K) = 0 (B.57)

Rearranging Eqn. B.57 yields:

2EηT IL ë + 2EηTK = 2EηTM

LT IL ë + LTK = LTM

(B.58)
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which may be further rearranged to collect all known quantities:

LT IL ë = LT (M−K) (B.59)

Equation (B.58) can be represented by the general form:

M(e) ë + C(e, ė) = ΓΓΓ(e) (B.60)

These rotational equations of motion can be combined with the equations for trans-

lation shown in Eqn. (B.51). These combined equations of motion can then be

represented by the general form:

M(q) q̈ + C(q, q̇) = ΓΓΓ(q) (B.61)

where M(q), C(q, q̇), and ΓΓΓ(q) denote the mass matrix, nonlinear velocity product

terms, and the Generalized Active Forces, respectively, mapped to the 7-dimensional

space corresponding to translation and the Euler parameters. Note that in the case

of a spherical joint, the dimensions of Eqn. (B.60) are 4× 1.

Consider the equation of motion for an ungrounded body A solved using the

recursive formulation presented in Appendix A:

M∗
Aϑ̇A = −h∗A (B.62)

The M∗
A term denotes a modified mass matrix and has dimensions 6× 6. To solve for

ëA in place of N ω̇A, Eqn. (B.62) must be transformed to the Euler parameter vector

space similar to Eqn. (B.59). This may be accomplished by:

Y T
AM

∗
AYAϑ̇

†
A = −Y T

A h∗A (B.63)

YA =

 I3 03×4

03×3 LA

 (B.64)
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ϑ̇
†
A =

V̇A

ëA

 (B.65)

Also, consider the equation of motion for the kinematic joint B shown by Eqn. (A.41),

which is repeated here:

sTBM
∗
BsB q̈B = −sTB

[
M∗

BφBϑ̇A + h∗B
]

(B.66)

If joint B is spherical, the dimensions of sB are 6 × 3. The sTBM
∗
BsB term denotes

a modified mass matrix and has dimensions 3 × 3. Since the spatial acceleration

of body A is calculated first it is known with respect to solving Eqn. (B.66). This

equation then can be converted to a form similar to Eqn. (B.59) to solve for the Euler

accelerations at that joint:

LTBs
T
BM

∗
BsBLB ëB = −LTBsTB

[
M∗

BφBϑ̇A + h∗B
]

(B.67)

where the new mass matrix is given by LTBs
T
BM

∗
BsBLB and has the dimensions 4× 4.

Because the mass matrices in Eqns. (B.58), (B.63), and (B.67) have been mapped

to the Euler parameter vector space, they are singular and non-invertible. However,

there is the normality constraint associated with the Euler parameters, given by Eqn.

(B.9), that can be applied to eliminate a dependent degree of freedom. Application

of this constraint will reduce the size of the mass matrix by one, allowing that mass

matrix to be inverted to solve for the independent accelerations. Those independent

accelerations can then be used to solve for the dependent acceleration. These accel-

erations can be integrated to update states for the next integration step. Appendix

C discusses constraints and presents the online constraint embedding procedure used

to accommodate Euler parameters for the work shown in Chapter 5.
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APPENDIX C

CONSTRAINT EMBEDDING
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C.1 Constraint Embedding Introduction

This appendix presents the online constraint embedding approach used to en-

force the Euler parameter normality constraint in the work presented in Chapter

5. This approach can be used to apply holonomic constraints, such as the Euler

parameter constraint, as well as non-holonomic constraints, such as those seen in

contact-impact problems [161, 162]. Since mass matrices mapped to Euler parameter

vector spaces are non-invertible, either this or some similar method must be used to

reduce the mass matrix such that it is invertible. The application of this method to

the work in Chapter 5 is similar to the implementation seen in [163].

Numerous methods have been formulated to address the Euler parameter con-

straint problem. Some common approaches use Lagrange multipliers [164, 165, 166,

167, 168, 169], constraint projection [170, 171], and symbolic constraint embedding

[165, 150, 167, 172]. The methods using Lagrange multipliers and constraint projec-

tion solve the equations of motion and differential constraint equations simultaneously.

These approaches do however lead to errors in the integrated coordinates requiring

continuous renormalization to prevent drift [173, 174, 175].

The online approach detailed here is based on the coordinate partitioning method

introduced in [165] and reduces the equations of motion to a minimal form such that

the constraints are satisfied implicitly during numerical integration [165, 167, 172].

This approach requires identification of a dependent coordinate which may be resolved

by singular value decomposition [176, 174, 175], QR decomposition [174, 175, 177],

LU factorization [176], or projection [167, 178]. The first three of these methods lead

to well conditioned equations but are computationally expensive [167]. While the

projection method has a lower computational cost then the others, it requires the

inverse of the original matrix which cannot be used with Euler parameters. The on-

line approach has a lower computational cost than the decompositions and does not
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require an inversion of the mass matrix for performing the reduction. This method

partitions the mass matrix into an invertible subspace using a constraint Jacobian

matrix relating the dependent and independent speeds. This matrix subspace corre-

sponds to the reduced set of independent speeds and is invertible. The equations of

motion can then be solved for the independent accelerations.

C.2 Constraint Embedding Procedure

Consider again the Euler parameter constraints, given by Eqns. (B.9) and

(B.10), which are repeated here:

e20 + e21 + e22 + e23 = 1

e0ė0 + e1ė1 + e2ė2 + e3ė3 = 0

(C.1)

Equation (C.1) can be rearranged to solve for one of the speeds in terms of the others.

This is useful for defining a specified dependent variable using a constraint Jacobian

matrix. Consider the case where e0 is selected as the dependent variable:

ė0 = − 1

e0
(e1ė1 + e2ė2 + e3ė3)

ė0 =

[
− e1
e0
− e2
e0
− e3
e0

]
ė1

ė2

ė3


(C.2)

For a general set of generalized coordinates, Eqn. (C.2) may be represented by:

q̇p = Apmq̇m (C.3)

where q̇p ∈ Rnp×1 and q̇m ∈ Rnm×1 denotes the dependent and independent gen-

eralized coordinates, respectively, where np and nm are the number of dependent

and independent coordinates, respectively. Note that np + nm must equal the to-

tal number of generalized coordinates. The matrix Apm ∈ Rnp×nm is the constraint
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Jacobian matrix relating the dependent and independent speeds. Note that as the

dependent coordinate approaches zero, the matrix A becomes singular. It is therefore

critical that the dependent coordinate change throughout a simulation to prevent this

singularity. However, each time the dependent coordinate changes, some error is gen-

erated. A thorough investigation of the error generated by switching the dependent

coordinate at various points in the simulation process is presented in [163].

The vector of all generalized speeds can be easily rearranged to isolate the

dependent and independent terms using a permutation matrix P :q̇m

q̇p

 = P T q̇ (C.4)

In the case of a single set of Euler parameters in which e0 is identified as the dependent

variable, the matrix P would be:

P =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



T

(C.5)

such that P T isolates the dependent and independent speeds and P returns the iso-

lated speeds to their original vector arrangement. Equation (C.3) can also be differ-

entiated to yield the useful expression:

q̈p = Apmq̈m + Ȧpmq̇m (C.6)

Consider again the equation of motion for a rigid multibody model first shown

in Eqn. (2.1) and repeated here:

M(q) q̈ + C(q, q̇) = ΓΓΓ(q, q̇) (C.7)
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The permutation matrix P can be used to decompose this equation into the dependent

and independent parts:

(P TMP )(P T q̈) + P TC = P TΓΓΓMmm Mmp

Mpm Mpp


q̈m

q̈p

 +

Cm
Cp

 =

ΓΓΓm

ΓΓΓp

 (C.8)

Recall that linear algebraic expressions are used to represent a set of scalar equations

which can always be recovered through decomposition. Equation (C.8) can be shown

in a form consistent with Kane’s method [150] by decomposing and rearranging:

Fm − F∗m = ΓΓΓm −Mmmq̈m −Mmpq̈p − Cm = 0

Fp − F∗p = ΓΓΓp −Mpmq̈m −Mppq̈p − Cp = 0

(C.9)

The matrix Apm can be used reduce the equations of motion to their minimal form

[150]:

F̃m − F̃∗m = Fm − F∗m + ATpm(Fp − F∗p) = 0 (C.10)

Inserting Eqn. (C.9) into (C.10) yields:

F̃m − F̃∗m =
[
ΓΓΓm −Mmmq̈m −Mmpq̈p − Cm

]
+

ATpm
[
ΓΓΓp −Mpmq̈m −Mppq̈p − Cp

]
= 0

(C.11)

[
ΓΓΓm + ATpmΓΓΓp

]
=
[
Mmm + ATpmMpm

]
q̈m +[

Mmp + ATpmMpp

]
q̈p +

[
Cm + ATpmCp

] (C.12)

Inserting Eqn. (C.6) into (C.12) yields:[
ΓΓΓm + ATpmΓΓΓp

]
=
[
Mmm + ATpmMpm

]
q̈m +[

Mmp + ATpmMpp

][
Apmq̈m + Ȧpmq̇m

]
+
[
Cm + ATpmCp

] (C.13)

[
ΓΓΓm + ATpmΓΓΓp

]
=
[
Mmm + ATpmMpm +MmpApm + ATpmMppApm

]
q̈m +[

Cm + ATpmCp + (MmpȦpm + ATpmMppȦpm)q̇m
] (C.14)
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Equation (C.14) can be simplified to:

M̃mq̈m + C̃m = Γ̃ΓΓm (C.15)

where

M̃m =
[
Mmm + ATpmMpm +MmpApm + ATpmMppApm

]
C̃m =

[
Cm + ATpmCp + (MmpȦpm + ATpmMppȦpm)q̇m

]
Γ̃ΓΓm =

[
ΓΓΓm + ATpmΓΓΓp

] (C.16)

Equation (C.15) shows the reduced equations of motion. The independent general-

ized accelerations can then be calculated by inverting the reduced mass matrix M̃m.

Equation (C.6) can then be used to solve for the dependent generalized accelerations.

A vector of these isolated accelerations can then be converted back to the original

vector of accelerations for integration using the permutation matrix P :

q̈ = P

q̈m

q̈p

 (C.17)

C.3 Further Comments

Considering the content presented in Appendices A and B and the online con-

straint embedding approach presented above, the full process of simulating large kine-

matic systems using recursive dynamics and Euler parameters is now revealed. The

recursive algorithm presented in Appendix A is used to numerically calculate vectors

and matrices of known quantities for each body in a forward kinematics initial pass

along the kinematic chain. These terms are then modified through the back substi-

tution routines that eliminate the unknown reaction forces. This process is repeated

until the unknown accelerations for the parent body can be solved for in terms of only

known quantities. The generalized accelerations of each body can then be solved for

in a final pass along the kinematic chain. If the generalized accelerations for a par-
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ticular body include Euler accelerations, the numerically generated mass matrix and

vector of known quantities are then converted into the Euler parameter vector space

using the approach presented in Appendix B. This conversion extends the dimension

of the equation of motion by one and yields a non-invertible mass matrix. The online

constraint embedding approach presented in this appendix can then be used to reduce

the order of the newly extended equation of motion to a minimal form. Note that this

extension-reduction procedure yields an invertible mass matrix that is distinct from

the original produced by the recursive algorithm. This reduced equation of motion

can then be used to solve for the independent generalized accelerations by inverting

the reduced mass matrix.

This forward dynamics process is applied across the full length of the kinematic

system to fully solve the equations of motion in a computationally efficient manner

yielding small errors in the integration of the Euler parameters. This process is com-

patible with systems of any scale and any appropriate force and drag model. The

recursive algorithm can also be reformulated for prismatic joints. Further compu-

tational savings can be achieved using the methods discussed in Chapter 1 such as

parallel processing.
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APPENDIX D

SIMULATION PARAMETERS
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D.1 Simulation Parameters Introduction

This appendix presents the simulation parameters used in the works presented

in Chapters 2 - 5. Many of these parameters, such as the Coulomb and Lennard-Jones

potential constants for ions are well defined and easily found in research literature

and textbooks.

For the EBOV receptor protein polymer modeled in Chapter 2, the primary

sequence was taken from an online aggregate database [179, 180]. This primary

sequence was used to calculate the total mass of the receptor. The rigid components

of the residue side chains are modeled as rigid bodies. The atoms comprising each of

these side chain components were modeled in a body attached coordinate frame to

identify the location of the center of mass and calculate the rigid body inertia using

parallel axis theorem. The primary sequence then established how these residues and

side chains were kinematically connected. Initial positions were selected to match

structural studies [84]. The theoretical drug particle is modeled as a sphere. Mass

and inertia properties are estimated by assuming the drug particle has the same

density as the EBOV receptor. The parameters used in Chapter 2 are summarized

in Table D.1.

For the molten nitrate salt solution modeled in Chapters 3 and 4, the mass

and charge properties of the individual ions are widely available. The trigonal planar

nitrate anions are modeled as spheres to eliminate the degrees of freedom associated

with rotation to facilitate faster computations. It was assumed this assumption would

not affect the testing of the modified thermostat and atomistic multiscale formula-

tions. The mass and inertia properties of the silicon dioxide particle are estimated by

assuming a particle density consistent with fine grain commercially available silicon

dioxide powder. The charge of this particle is estimated by assuming the individual

silicon dioxide molecules become negatively charged when exposed to water molecules

132



in air during the initial mixture into solution. This charge was then scaled to account

for how a cation attracted to a silicon dioxide molecule within the particle would

also interact with the adjoining silicon dioxide molecules. The parameters used in

Chapters 3 and 4 are summarized in Table D.2.

For the conjugated nanoparticle modeled in Chapter 5, the primary sequence of

the GP1b protein was taken from an online aggregate database [149]. This sequence

was coarse grained into four sub-bodies. The primary sequence of each coarse grained

body was used to calculate the total mass of that body. The inertia properties were

found by approximating the bodies as spheres with radii estimated from structural

studies [181]. Conformational spring constants were estimated from similar works

on coarse grained biopolymers [79]. Potential constants were estimated to approxi-

mate the sum of potential interactions between all the atoms within a coarse grained

sub-body and a VWF receptor. Nanoparticle size, mass and inertia properties, and

conjugated ligand density were estimated from [23]. The parameters used in Chapter

5 are summarized in Tables D.3 and D.4.
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Table D.1. Chapter 2 Simulation Parameters

Quantity Definition Units Value Used
Nanoparticle

mn Mass zg 0.4
Ln Characteristic length (radius) nm 1.5

Bulk protein
mbp - - 4.6
Lbp - - 2.5

Carbon
mC - - 1.994 ∗ 10−2

εC Lennard-Jones constant zg nm2 ns−2 294
σC Lennard-Jones constant nm 0.355

Nitrogen
mN - - 2.326 ∗ 10−2

εN - - 425
σN - - 0.326

Hydrogen
mH - - 1.674 ∗ 10−3

εH - - 126
σH - - 0.257

AbsErr Absolute Error unitless 10−8

RelErr Relative Error unitless 10−7
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Table D.2. Chapters 3 and 4 Simulation Parameters

Quantity Definition Units Value Used
Sodium

mNa mass zg 0.03817
cNa electric charge C +1 e
εNa Lennard-Jones constant zg nm2ns−2 597.794
σNa Lennard-Jones constant nm 0.273

Potassium
mK - - 0.06493
cK - - +1 e
εK - - 694.105
σK - - 0.305

Nitrate
mNO3 - - 0.10296
cNO3 - - −1 e
εNO3 - - 1500†
σNO3 - - 0.450†

AbsErr Absolute Error unitless 10−7

RelErr Relative Error unitless 10−6

† Estimated value
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Table D.3. Chapter 5 Simulation Parameters

Quantity Definition Units Value Used
Nanoparticle

mO Mass fg 10.72
IO Inertia about center of mass fg µm2 0.29
βv,O Translational damping constant fg µs−1 3.36 ∗ 103

βω,O Rotational damping constant fg µm2 µs−1 178.95
LO Characteristic length (radius) µm 0.2

Body A
mA - - 3.91 ∗ 10−5

IA - - 6.25 ∗ 10−11

βv,A - - 33.55
βω,A - - 1.79 ∗ 10−4

LA - - 2 ∗ 10−3

A∗A Lennard-Jones constant fg µm14 µs−2 4.23 ∗ 10−27

B∗A Lennard-Jones constant fg µm8 µs−2 3.15 ∗ 10−11

C∗A Coulomb constant fg µm3 µs−2 0
kA Spring constant fg µm2 µs−2 1 ∗ 10−3

Body B
mB - - 9.31 ∗ 10−6

IB - - 8.38 ∗ 10−12

βv,B - - 25.16
βω,B - - 7.55 ∗ 10−5

LB - - 1.5 ∗ 10−3

A∗B - - 2.98 ∗ 10−29

B∗B - - 1.31 ∗ 10−12

C∗B - - 2.66 ∗ 10−6

kB - 2 ∗ 10−3

Body C
mC - - 1.66 ∗ 10−5

IC - - 1.04 ∗ 10−11

βv,C - - 20.97
βω,C - - 4.37 ∗ 10−5

LC - - 1.3 ∗ 10−3

A∗C - - 6.12 ∗ 10−30

B∗C - - 8.02 ∗ 10−13

C∗C - - 2.66 ∗ 10−6

kC - 2 ∗ 10−3
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Table D.4. Chapter 5 Simulation Parameters Continued

Quantity Definition Units Value Used
Body D

mD Mass fg 1.63 ∗ 10−5

ID Inertia about center of mass fg µm2 1.02 ∗ 10−11

βv,D Translational damping constant fg µs−1 20.97
βω,D Rotational damping constant fg µm2 µs−1 4.37 ∗ 10−5

LD Characteristic length (radius) µm 1.3 ∗ 10−3

A∗D Lennard-Jones constant fg µm14 µs−2 5.94 ∗ 10−30

B∗D Lennard-Jones constant fg µm8 µs−2 7.79 ∗ 10−13

C∗D Coulomb constant fg µm3 µs−2 2.66 ∗ 10−6

kD Spring constant fg µm2 µs−2 5 ∗ 10−3

AbsErr Absolute Error unitless 10−6

RelErr Relative Error unitless 10−5
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oscillators with a temperature gradient,” Phys. Rev. E, vol. 89, no. 4, 2014.

151



[120] J. Li and J. D. Lee, “Reformulation of the nóse-hoover thermostat for heat
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