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ABSTRACT

Numerical and Analytical Study of Curvature Effects in Laminar

Shock Wave/Boundary Layer Interactions

James R. Grisham IV, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Frank Lu

Shock wave/boundary-layer interactions (SBLIs) are one of the most complex

flow phenomena because of the different types of physics involved (i.e., viscous ver-

sus inviscid) and their side effects such as boundary layer separation and extreme

localized heating. Control surfaces based on compliant mechanisms are becoming a

reality and introduce an additional variable into the already complex SBLI, namely

surface curvature. The purpose of the present work is to systematically study the

effects of surface curvature on laminar, ramp-induced SBLIs. This is accomplished

using numerical and theoretical approaches in the form of numerical solutions to the

compressible Navier–Stokes equations and triple-deck theory, respectively. Results

include a unique comparison between triple-deck theory and numerical solutions to

the Navier–Stokes equations, a new scaling relationship involving Reynolds number,

Mach number and radius of curvature, and unsteady three-dimensional results for

a select case, which was undertaken to investigate the onset of unsteadiness in the

nominally steady, two-dimensional SBLI.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation

Shock wave/boundary layer interactions (SBLIs) are one of the most complex

flow phenomena because of the different types of physics involved (e.g., viscous ver-

sus inviscid) and their many side effects (e.g., boundary layer separation). At the

heart of SBLIs are inviscid–viscous interactions. Due to Prandtl’s breakthrough, it

is well-known that viscous effects are mostly confined to a thin region near solid sur-

faces in wall-bounded flows which is called the boundary layer. When a shock wave

penetrates a boundary layer, the drastic increase in pressure, often termed adverse

pressure gradient, encourages boundary layer thickening which may lead to separa-

tion, as indicated by negative wall shear stress. As the boundary layer thickens, it

sheds compression waves into the inviscid region which will eventually coalesce into a

shock wave, hence the coupling between the viscous boundary layer and the inviscid

freestream. This concept will be further elaborated in later sections.

An understanding of the interactions between shock waves and boundary lay-

ers is critical in the design of high-speed flight vehicles. These interactions can be

responsible for adverse effects such as boundary layer separation, localized heating,

and unsteady loading. One of the side effects of boundary layer separation is poor

pressure recovery, which has profound impacts on the design of wings, inlets, and

turbine blades, for example. Although these interactions have been studied since

the 1950s, many questions remain [3, 4]. One such question that has not been well-

addressed pertains to flow separation and the effects of surface curvature. As we move
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Figure 1.1: Adaptive compliant trailing edge (www.nasa.gov).

deeper into the twenty-first century, morphing control surfaces based on compliant

mechanisms are becoming a reality. These control surfaces are smooth, continuous,

and flexible. See Figure 1.1 for an example of a compliant mechanism-based control

surface. If these control surfaces were used on high-speed flight vehicles, they would

introduce another variable to the already complex shock wave/boundary layer inter-

actions, namely, radius of curvature. How does the radius of curvature affect the

shock wave/boundary-layer interaction? Furthermore, how does radius of curvature

affect the onset of separation, often termed incipient separation? These are questions

this work will attempt to address.

Although morphing control surfaces represent an application for the present

work, they are not the focus of the study. Rather, the focus is on fundamentally

understanding how changes in surface curvature affect shock wave/boundary layer

interactions.

The present study is focused on laminar SBLIs to avoid the additional uncer-

tainty introduced by turbulence modeling. Turbulence is a complicated phenomenon

by itself. There are many precedents for such a simplification which will be presented

in the literature review. As such, laminar simulations were performed using a well-

validated computational fluid dynamics code, FUN3D, and analytical solutions were

2
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Figure 1.2: Unseparated interaction.
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Figure 1.3: Separated interaction.

sought using triple-deck theory. The next sections provide some background on SBLIs

and a literature review of related work.

1.2 Background

The essence of the incipient separation phenomenon can be described using

Figures 1.2 and 1.3. The first shows an unseparated interaction. The incoming

boundary layer has thickness δ0. The finely dotted line represents the sonic line. The

flow is deflected through an angle α, resulting in the formation of an oblique shock

wave. The adverse pressure gradient causes some boundary layer thickening, but is

not strong enough to cause the boundary layer to separate in this case. Figure 1.3

shows the case in which the flow deflection angle is incremented by a small angle,

∆α, which increases the strength of the shock enough to result in the separation of

the boundary layer. A recirculation region, also known as a separation bubble, is

3



present near the corner. Moving from left to right, the first feature is the separation

shock which is caused by the flow deflection due to the separation bubble. Below the

dotted line, the flow is subsonic. The dashed line represents a line of zero velocity.

The beginning and end of this dashed line represent separation and reattachment,

respectively. Further downstream, the next shock is caused again by turning the

flow, this time due to reattachment. Compression waves can be seen coalescing into

the reattachment shock wave. High localized heating can occur in the reattachment

region due to the slow velocity of the flow presenting nearly stagnant conditions. The

flow can be considered incipiently separated when it exists between the two states

shown in Figures 1.2 and 1.3. More explicitly, incipient separation can be described

as a situation in which the flow is on the verge of separation.

Early in shock wave/boundary layer interaction research, it was thought that

incipient separation is sudden – a bifurcation. Settles performed experiments of com-

pression corner configurations, from which he found that separation was gradual,

rather than abrupt [5]. He suggested that incipient separation should be classified

not based on whether or not a separation bubble exists, but rather based on the size

of the separated region. The review by Délery and Marvin further classifies incipient

separation as true incipient separation and effective incipient separation [6]. They

regard true incipient separation to be of academic interest, and effective incipient

separation as the case where the effects of the separation begin to have practical con-

sequences. This background on incipient separation is useful to set the stage for later

discussion.

In early SBLI research, one focus was providing an explanation for upstream

influence. The upstream influence length, L0, is shown schematically in Figure 1.4,

using the surface pressure distribution as an indicator. It is defined as the distance

between the point where pressure rise due to the shock wave begins and the location

4
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Figure 1.4: Example surface pressure for ramp-induced SBLI.

where the shock would impinge if the flow were inviscid [7]. The upstream influence

length can be thought of as the distance that viscous effects spread the pressure rise

in the upstream direction. Without viscous effects, the pressure rise is discontinuous,

as shown by the dashed line in Figure 1.4.

The nature of the governing equations is now considered to further elucidate the

mechanism responsible for upstream influence. The inviscid, freestream flow outside

of the boundary layer is governed by the Euler equations, which are hyperbolic, while

the boundary layer equations are parabolic [8]. The goal was to explain how the

viscous solution could affect the pressure upstream when the types of the governing

equations indicated that information could not propagate upstream. It was suggested

by some that disturbances were propagating upstream from a separated region to

create the upstream influence. However, it was shown that the subsequent streamwise

scale was too small [9]. Furthermore, upstream influence is still present in flows with

unseparated boundary layers.

5



The traditional approach to boundary layer analysis involves partitioning the

flow into two different regions: the inviscid freestream and the boundary layer. The

inviscid solution is used to find the pressure which is imposed on the boundary layer.

This approach works well for flows with attached boundary layers. In the case of

boundary layer separation, a singularity arises in the boundary layer equations, known

as the Goldstein singularity [10]. This singularity prevented theoretical studies of

separated flows until Lighthill’s groundbreaking work [9, 11].

Lighthill surveyed a large amount of experimental data and developed a theo-

retical approach for describing boundary layer separation. He suggested separating

the flow into three regions or decks.1 Lighthill’s approach, which was generalized by

Stewartson and Williams, allows for theoretical study of separated boundary layers

[8].

More specifically, Lighthill discussed two mechanisms for upstream influence

[9, 11, 12]. The first proposed mechanism suggests that when a boundary layer

is subjected to some disturbance which creates an adverse pressure gradient, the

boundary layer thickness increases, which causes compression waves to be shed into

the freestream which in turn creates an adverse pressure gradient further upstream.

The second mechanism pertains to the spreading of the separation bubble. Assum-

ing a large enough pressure gradient exists, the boundary layer will separate. The

separated region will then affect the external flow. That is, the displacement thick-

ness will grow, which then causes deflection of streamlines and an adverse pressure

gradient further upstream. The separated region continues to grow in this manner

until the adverse pressure gradient induced upstream is not enough to cause further

separation. According to Lighthill, the first mechanism is unique to supersonic flow,

while the second is present in subsonic and supersonic flows. In his second paper,

1More about this approach will be explained in Chapter 2.
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Lighthill used an analytical approach to study the second mechanism in more detail

[11].

Chapman, et al., performed experiments of several different configurations, such

as ramps and impinging shocks, over a large range of Mach numbers and Reynolds

numbers with the goal of developing a better understanding of flow separation and

upstream influence (0.4 6M∞ 6 3.6 and 4 000 6 Re 6 5 000 000) [13]. An important

result of their study was the development of free interaction theory which suggested

that the upstream part of the interaction is independent of downstream events or

disturbances. The theory allowed for a prediction of the pressure in the separated

region which closely matches experimental results. The free interaction concept is

important for this dissertation because the results in Chapter 3 will be discussed in

terms of free interaction.

Although much work has been done in laminar, two-dimensional SBLIs, and

some would consider the physics to be well-understood, it is believed that further

physical understanding can be gained by examining these simplified configurations. A

recent study that focused on two-dimensional, laminar SBLIs is that of Sansica, et al.,

who used a laminar, impinging shock configuration in an effort to better understand

the source of unsteadiness in turbulent SBLIs [14]. Smith and Khorrami developed

a new numerical scheme for solving the triple-deck equations and suggested that

there was some critical ramp angle beyond which singularities arise [15]. Korolev, et

al., used two numerical schemes to solve the triple-deck equations and showed that

additional eddies form inside the separation bubble [16]. They also showed that the

singularity discussed by Smith and Khorrami was not present in their solutions. As

such, it can be argued that the singularity was due to the numerical method used to

solve the triple-deck equations rather than the equations themselves.

7



Inger investigated the effects of curvature on streamlines and the subsequent

production of Görtler vortices in supersonic SBLIs by a modification of Oswatitsch’s

expression of streamline curvature [17]. Inger also examined curvature effects in

turbulent, transonic flows via triple-deck theory and found that increasing convex

surface curvature increases the size of the interaction [18]. Additionally, he found

that modifications to the surface curvature are capable of postponing the onset of

separation to a small degree.

Some early experimental work by Sturek and Danberg focused on turbulent

interactions over an isentropic compression ramp [19, 20]. It seems the motivation

of the study was to produce reliable turbulence data in the mean sense. Donovan,

et al., used a single curved ramp geometry to experimentally examine the effects of

surface curvature on the large-scale turbulent structures in a turbulent, supersonic

SBLI [21]. Wang used analysis and experiments to study mixing layers subjected to

curvature with the emphasis being on turbulence [22].

This review of the literature reveals that there is no systematic study which

adequately quantifies the effects of curvature on laminar or turbulent SBLIs. Much

of the previous experimental and computational work has been focused on only a few

configurations and flow conditions. The previous theoretical work concentrated on

streamline curvature in the supersonic regime and surface curvature in the transonic

regime. All this points to the fact that the effects of curvature on laminar, supersonic

shock wave/boundary layer interactions have not been studied in depth. As such,

there is still room for contributions. A better understanding of the physics of laminar

SBLIs may open up new ways to attack the more complicated turbulent SBLIs. We

now move to a discussion of the methods used to obtain results.
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1.3 Outline and contributions

The present study of curvature effects in laminar shock wave/boundary layer

interactions is approached using theory and numerics. For the sake of simplicity,

two-dimensional interactions are considered first, followed by three-dimensional, un-

steady numerical solutions to the Navier–Stokes equations. In chapter 2, triple-deck

theory will be introduced and numerical results will be presented. Chapter 3 presents

the numerical method used to compute solutions to the compressible Navier–Stokes

equations along with results. Chapter 4 consists of a novel comparison between

supersonic triple-deck theory and development of a new correlation for incipient sep-

aration. Chapter 5 focuses on three-dimensional, unsteady numerical simulations of

the compressible Navier–Stokes equations.

In a broad sense, the contribution of the present work is a systematic study of

laminar, compression ramp-induced shock wave/boundary layer interactions. More

specifically, the individual contributions are: (1) a novel comparison between triple-

deck theory and CFD, (2) a free-interaction theory-based correlation for the scaling

of the separation bubble, (3) a new scaling relationship involving Reynolds number,

Mach number and radius of curvature, and (4) a criterion for incipient separation

which was developed using CFD results and triple-deck scalings.

9



CHAPTER 2

TRIPLE-DECK THEORY

Triple-deck theory represents a simplification of the Navier–Stokes equations.

This simplification is achieved using knowledge of the physics and asymptotic theory.

In pursuit of an explanation of the upstream influence present in SBLIs, Lighthill laid

the groundwork for triple-deck theory via a linearized solution [9, 11]. Stewartson and

Williams, and Neiland independently formalized the theory and presented numerical

solutions to the nonlinear triple-deck equations [8, 23]. In the present section, some

background on the underpinnings of triple-deck theory will be provided and the nu-

merical method used to obtain solutions will be explained. The chapter will conclude

with results.

2.1 Background

The derivation of the simplified form of the governing equations assumes an

initially undisturbed incoming flow, i.e., a transformed Blasius profile, into which a

disturbance is introduced. The boundary layer is then divided into three main regions,

or decks. Simplifying assumptions based on knowledge of the flow physics are then

made. The solution in each deck is then sought with matching at the interfaces

accomplished via the method of matched asymptotic expansions (MMAE) [24]. For

a comprehensive view of asymptotic methods, see reference 25.

Considering the flow over the flat plate portion of a ramp, upstream of the

compression corner, the solution is given by a compressibility transformation, such

as the Howarth–Dorodnitsyn transformation. Introducing a small disturbance in the

10
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Figure 2.1: Triple-deck scales.

incoming profile, ε, which could be due to interaction with the freestream, we may

write the solution in terms of asymptotic expansions as

u(X, Y ) = U0(Y ) +
∞∑

n=1

εnun(X, Y ), (2.1a)

v(X, Y ) = V0(Y ) +
∞∑

n=1

εnvn(X, Y ), (2.1b)

p(X, Y ) = p∞ +
∞∑

n=1

εnpn(X, Y ), (2.1c)

ρ(X, Y ) = ρ0(Y ) +
∞∑

n=1

εnρn(X, Y ), (2.1d)

where X and Y are new coordinates which are defined so that they are O(1) in the

boundary layer and terms with subscript 0 denote the undisturbed flow.

The resulting triple-deck structure is shown in Figure 2.1. The streamwise

extent of the interaction is O(Re−3/8) [8]. Region 1 represents the inviscid freestream.

Inserting asymptotic expansions in terms of some small parameter ε into the Navier–

Stokes equations and keeping terms of order ε while neglecting viscosity reveals that

11



the governing equation in this region is the Prandtl–Glauert equation, which is given

by

(1−M2
∞)
∂2p2

∂X2
+
∂2p2

∂Y 2
= 0. (2.2)

Region 2 is the middle deck, where inserting a similar asymptotic expansion into

the Navier–Stokes and simplifying shows that the flow in this deck is inviscid, but

rotational. As such, the main effect of the middle deck is to transmit disturbances

from the lower deck to the upper deck via streamline divergence. This streamline

divergence is defined via a pressure-deflection relationship. For a supersonic flow,

this relationship is given by the Ackeret formula [26]:

p = −∂A
∂x

+
∂f

∂x
, (2.3)

where A(x) is the displacement thickness and f(x) is the surface geometry.

Region 3 is the lower deck. Stewartson derives the equations for the lower deck

by enforcing the no-slip condition, as well as imposing the undisturbed profile1 at

the beginning of the interaction region. New scaled variables are then introduced to

simplify the final form of the governing equations. For all the details, see Stewartson

and Williams original paper [8]. After much effort, the following result is achieved:

∂u

∂x
+
∂v

∂y
= 0, (2.4a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
, (2.4b)

which are subject to

u|y=0 = v|y=0 = 0, lim
y→∞

u = y + A+ . . . , lim
x→−∞

u = y. (2.5)

1The Blasius profile with an appropriate compressibility transformation is imposed at the begin-

ning of the interaction.
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The equations given in (2.4) are the conventional incompressible boundary layer equa-

tions in nondimensional form, subject to unconventional boundary conditions which

come about due to matching requirements and an undisturbed initial profile.

The goal is to solve the equations in each deck and match the solutions. An

exact solution to the Prandtl–Glauert equation (2.2) is known [8]. In the middle deck,

Ackeret’s equation gives a relationship between the pressure, displacement thickness

and surface geometry. However, the pressure and displacement thickness are not

known. They must be determined by solving (2.4). Treating the pressure and dis-

placement thickness as unknowns in this way avoids the singularity described by

Goldstein [10].

Because of the nonlinear convective terms in (2.4), approximate solutions have

been sought using perturbation methods and numerical methods. Myriad numeri-

cal solution approaches have been proposed over the years which have been partly

documented in chapter seven of the text by Sychev et al. [26]. The given equations

can be challenging to solve because (1) they are nonlinear, (2) the pressure and dis-

placement thickness are not known, and (3) boundary conditions must be enforced

at ±∞. Now, a few example applications of triple-deck theory are discussed and the

numerical scheme used in the present work is explained.

2.2 Triple-deck applications

The literature on triple-deck theory is rich and diverse. Triple-deck theory has

been applied to study laminar and turbulent flows in subsonic, transonic, supersonic

and hypersonic speed regimes. For some examples, see [18, 27, 28, 29, 30]. Modi-

fications have been made to the theory to account for nonadiabatic walls [31]. The

theory has also been extended for the purposes of stability analysis by Smith, with

some recent work on supersonic stability analysis undertaken by Ryzhov [32, 33].
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2.3 Numerical solution of triple-deck equations

The nonlinear triple-deck equations given by (2.4) must now be solved. Due to

the nonlinearity, a numerical solution is undertaken. Specifically, a numerical method

developed by Ruban was implemented using the C++ language [34]. The numerical

method will now be described.

The scalings used in the lower deck are as follows

x̃ = ρ−1/2
w µ−1/4

w λ−5/4β−3/4Re
−3/8
0 x, (2.6a)

ỹ = ρ−1/2
w µ1/4

w λ−3/4β−1/4Re
−5/8
0 (y − f(x)), (2.6b)

ũ = ρ−1/2
w µ1/4

w λ1/4β−1/4Re
−1/8
0 u, (2.6c)

ṽ = ρ−1/2
w µ3/4

w λ3/4β1/4Re
−3/8
0 (v − df/dx), (2.6d)

p̃− 1 = λ1/2µ1/2
w β−1/2Re

−1/4
0 p, (2.6e)

t̃ = λ−3/2µ−1/2
w β−1/2Re

−1/4
0 t, (2.6f)

where the subscript w denotes properties at the wall, λ = 0.332, β = (M2
∞ − 1)1/2,

f(x) is the surface geometry2 and

Re0 =
ρ∞U∞L

µ0

, (2.7)

where µ0 is the dynamic viscosity evaluated at a reference enthalpy of U2
∞. A Prandtl

transposition is incorporated in the scalings (that is, f(x) and df/dx in (2.6). The

scaled ramp angle is given by

α̃ = λ1/2µ1/2
w β1/2Re

−1/4
0 α. (2.8)

It should be noted that all (̃ ) variables are dimensionless with respect to L, U∞,

ρ∞U
2
∞, ρ∞, U2

∞, and µ0.

2The surface geometry has been incorporated in the scalings and thus in the triple-deck equations

via a Prandtl transposition.
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Beyond the Prandtl transposition, an additional coordinate transformation is

introduced so that the computational plane is defined by x̂ ∈ [−1, 1] and ŷ ∈ [0, 1].

The transformation is

x̂ =
2

π
tan−1

(x
a

)
, (2.9a)

ŷ =
2

π
tan−1

(y
b

)
, (2.9b)

where a and b are constants which can be used to control the clustering of the mesh

toward the corner. This transformation eliminates the need to enforce boundary

conditions at ±∞. Results will be presented in Chapter 3.

It should be noted that the surface definition used in the triple-deck solutions

is

f(x) =
α

2

(
x+
√
x2 + r2

)
, (2.10)

rather than the typical compression ramp geometry:

f(x) =





0, x < 0,

α, x > 0.

(2.11)

The reason for using (2.10) is because the formulation is dependent upon the

second derivative, d2f/dx2. The typical compression ramp geometry has a discon-

tinuity in slope. The surface definition given in (2.10) is at least C2 continuous.

Additional solutions were attempted with the C1 continuous geometry which was

used for the CFD work, but the numerical scheme did not converge. See Figure 2.2

for a plot of (2.10) at α = 3, and r = 5.
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Figure 2.2: Example geometry used in triple-deck solutions.

For reasons that will be evident later, the triple-deck equations, (2.4), are recast

in terms of the stream function, ψ, and scaled shear stress, τ , where

u =
∂ψ

∂y
(2.12a)

v = −∂ψ
∂x

(2.12b)

τ =
∂u

∂y
(2.12c)

The result is

∂τ

∂t
+ u

∂τ

∂x
+ v

∂τ

∂y
=
∂2τ

∂y2
(2.13)

Using (2.12), ψ and τ can be related as follows:

τ =
∂2ψ

∂y2
(2.14)

It should be noted that the present formulation makes use of the unsteady form of the

triple-deck equations. The strategy is to start with an initial guess for the solution

and to march in time until convergence is achieved.

The boundary conditions are given by (2.5), and are repeated here:

u|y=0 = v|y=0 = 0, lim
y→∞

u = y + A+ . . . , lim
x→−∞

u = y (2.15)
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Inserting (2.12) yields

ψ|y=0 =
∂ψ

∂y

∣∣∣∣
y=0

= 0, lim
x→−∞

τ = 1, lim
x→∞

τ = 1, lim
y→∞

τ = 1 (2.16)

The displacement function, A, which is unknown, is no longer present in the boundary

conditions.

The attentive reader will notice that the boundary conditions must be enforced

in the limit as (x, y)→ (±∞,∞). Many previous studies have enforced these bound-

ary conditions approximately by generating a large computational domain. Introduc-

ing the transformations given by (2.9) so that boundary conditions can be enforced

at (x̂, ŷ)→ (±1, 1),

∂τ

∂t
+ u

Γ(x̂)

a

∂τ

∂x̂
+ v

Γ(ŷ)

b

∂τ

∂ŷ
=

Γ(ŷ)

b

Γ′(ŷ)

b

∂τ

∂ŷ
+

Γ2(ŷ)

b2

∂2τ

∂ŷ2
(2.17a)

Γ(ŷ)

b

∂

∂ŷ

(
Γ(ŷ)

b

∂ψ

∂ŷ

)
= τ (2.17b)

where the function Γ(x) is given by

Γ(x) =
1 + cos(πx)

π
(2.18)

The interaction law can be written as

Γ(0)

b

∂τ

∂ŷ

∣∣∣∣
ŷ=0

= −Γ(x̂)Γ′(x̂)

a2

∂ϕ

∂x̂
− Γ2(x̂)

a2

∂2ϕ

∂x̂2
+
∂2f

∂x2
(2.19)

where

ϕ = b

∫ 1

0

τ − 1

Γ(ŷ)
dŷ (2.20)

Lastly, the relationship between the velocity components and the stream function

becomes

u =
Γ(ŷ)

b

∂ψ

∂ŷ
, v = −Γ(x̂)

a

∂ψ

∂x̂
(2.21)

Now, the goal is to numerically solve the momentum equation, given by (2.17a),

subject to (2.16) and (2.19).
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The domain in the streamwise direction is truncated at some finite value, ŷmax,

in order to satisfy the boundary condition u ∼ y as y approaches infinity. A uniform

mesh over x̂ ∈ [−1, 1], ŷ ∈ [0, ŷmax] must be supplied by the user.

Equation (2.17a) is now discretized using finite differences with second-order

spatial accuracy and first-order temporal accuracy. Doing so yields

τni,j − τn−1
i,j

∆t
+

Γ(x̂i)

a

[
u
∂τ

∂x̂

]n−1

i,j

+
Γ(ŷj)

b
vn−1
i,j

(
τni,j+1 − τni,j−1

2∆ŷ

)
= (2.22)

Γ(ŷj)Γ
′(ŷj)

b2

(
τni,j+1 − τni,j−1

2∆ŷ

)
+

Γ2(ŷj)

b2

(
τni,j+1 − 2τni,j + τni,j−1

(∆ŷ)2

)

The streamwise convective term is evaluated at the previous timestep because of how

it must be computed in reversed flow (i.e., upwinding vs downwinding). If the flow is

not reversed, upwind differencing is used. Otherwise, the direction is reversed. That

is,

[
u
∂τ

∂x̂

]n−1

i,j

=





un−1
i,j

3τn−1
i,j − 4τn−1

i−1,j + τn−1
i−2,j

2∆x̂
, for un−1

i,j > 0

−un−1
i,j

3τn−1
i,j − 4τn−1

i+1,j + τn−1
i+2,j

2∆x̂
, for un−1

i,j < 0

(2.23)

According to Cassel, et al., this method for handling separated flow should yield better

results than previous methods which set the streamwise convective term to zero for

reversed flow [1]. Terms which involve the velocities are calculated at the previous

timestep, denoted n− 1, in order to avoid having to deal with the nonlinearity via an

iterative method.

Solving the system of equations in (2.22) yields τni,j at each node. The tridiagonal

problem may be stated as

c−j τ
n
i,j−1 + cjτ

n
i,j + c+

j τ
n
i,j+1 = dj (2.24)
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where

cj = −2A− 1

∆t
(2.25a)

c−j = A− Γ(ŷj)

2b∆ŷ

(
Γ′(ŷj)

b
− vn−1

i,j

)
(2.25b)

c+
j = 2A− c−j (2.25c)

dj =
Γ(x̂i)

a

[
u
∂τ

∂x̂

]n−1

i,j

− τni,j − 1

∆t
(2.25d)

A =
Γ2(ŷj)

(b∆ŷ)2
(2.25e)

Equations (2.25) may be manipulated into the following form

τni,j = Rjτ
n
i,j−1 +Qj for j = 2, . . . , J (2.26)

where I and J are the number of points in the streamwise and normal directions,

respectively. To satisfy the boundary conditions, RJ = 0 and QJ = 1. Also,

Rj = −
c−j

cj + c+
j Rj+1

(2.27a)

Qj = −
c+
j Qj+1 − dj
cj + c+

j Rj+1

(2.27b)

which are evaluated from j = J−1 to j = 2. Examining (2.26) shows that τi,j can be

found as long as τi,j−1 is known. Thus, as long as τi,1 is known, the above equations

may be used to find the solution at all the other points. Using this knowledge and

manipulating the above equations,

τi,j = Ci,jτi,1 +Bi,j for j = 1, . . . , J (2.28)

with Ci,1 = 1 and Bi,1 = 0. Furthermore,

Ci,j = RjCi,j−1 (2.29a)

Bi,j = RjBi,j−1 +Qj (2.29b)
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which are evaluated for j = 2, . . . , J . If the shear stress at the wall, τi,1, can be found,

the momentum equation may be solved for the shear stress at all the remaining points

using the formulation above.

The objective now is to come up with a way to find τi,1. The integral in the

interaction law may be represented approximately using the trapezoidal rule:

ϕ = b

∫ ŷmax

0

τ − 1

Γ(ŷ)
dŷ ≈ ∆ŷ

2

J∑

j=2

[
b

Γ(ŷj)
(τi,j − 1) +

b

Γ(ŷj−1)
(τi,j−1 − 1)

]
(2.30)

Using (2.29) in (2.30) yields

ϕ = Niτi,1 +Mi (2.31)

where

Ni =
∆ŷ

2

J∑

j=2

[
b

Γ(ŷj)
Ci,j +

b

Γ(ŷj−1)
Ci,j−1

]
(2.32a)

Mi =
∆ŷ

2

J∑

j=2

[
b

Γ(ŷj)
(Bi,j − 1) +

b

Γ(ŷj−1)
(Bi,j−1 − 1)

]
(2.32b)

The normal derivative of the shear stress on the left hand side of the interaction law

is now written using second-order accurate forward differences as follows:

∂τ

∂ŷ

∣∣∣∣
ŷ=0

=
4Ci,2 − 3− Ci,3

2∆ŷ
τi,1 +

4Bi,2 −Bi,3

2∆ŷ
(2.33)

Now, a tridiagonal system for the wall shear stress may be formed:

c̄−i τi−1,1 + c̄iτi,1 + c̄+
i τi+1,1 = d̄i for i = 2, . . . , I − 1 (2.34)
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with

c̄i =
Γ2(x̂i)

a2

2Ni

(∆x̂)2
− Γ(0)

b

(
4Ci,2 − 3− Ci,3

2∆ŷ

)
(2.35a)

c̄−i = −Γ2(x̂i)

a2

Ni−1

(∆x̂)2
+

Γ(x̂i)Γ
′(x̂i)

a2

Ni−1

2∆x̂
(2.35b)

c̄+
i = −Γ2(x̂i)

a2

Ni+1

(∆x̂)2
− Γ(x̂i)Γ

′(x̂i)

a2

Ni+1

2∆x̂
(2.35c)

d̄i =
Γ2(x̂i)

a2

(
Mi+1 − 2Mi +Mi−1

(∆x̂)2

)
+

Γ(x̂i)Γ
′(x̂i)

a2

(
Mi+1 −Mi−1

2∆x̂

)
− d2f

dx2

∣∣∣∣
x=xi

(2.35d)

+
Γ(0)

b

(
4Bi,2 −Bi,3

2∆ŷ

)

The tridiagonal system of equations may be solved for the wall shear stress using

Thomas algorithm. After the wall shear stress is known, the shear stress at all the

other points is computed using (2.28). Now, assuming that τ has been computed at

each point, the streamwise velocity, u, and the stream function may be computed via

integration:

u = b

∫ ŷ

0

τ

Γ(ŷ)
dŷ (2.36a)

ψ = b

∫ ŷ

0

u

Γ(ŷ)
dŷ (2.36b)

This integration was accomplished using the trapezoidal rule. The normal veloc-

ity component, v, may be computed from the stream function, using second-order

accurate finite differences as follows:

vi,j =
−Γ(x̂i)

a

ψi+1,j − ψi−1,j

2∆x̂
(2.37)

Information about pressure is not included in the above formulation, but it can be

computed as a post-processing step. This is accomplished using the following equation

which comes from the interaction law:

pi =
df

dx

∣∣∣∣
x=xi

− Γ(x̂i)

a

(
Ni+1τi+1,1 +Mi+1 −Ni−1τi−1,1 −Mi−1

2∆x̂

)
(2.38)
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Figure 2.3: Comparison between developed code and results of Cassel, et al [1].

The algorithm described above was implemented in the C++ language. The

convergence criterion used was based on the L2 norm of the difference between the

wall shear stress at the current time and at the previous time step. That is,

E =

√∑

i

(
τni,1 − τn−1

i,1

)2
(2.39)

The code was run until the change in the wall shear stress fell below a prespecified

tolerance of 1× 10−6.

2.4 Results

Results will now be presented in terms of the scaled wall shear stress and scaled

pressure. The results from the developed code will be compared against the results

of Cassel, et al., after which curvature effects will be investigated.

2.4.1 Comparison with previous results

To ensure that the developed code was correct, the scaled shear stress distribu-

tions at scaled ramp angles of 1.0 and 3.5 are compared against the results of Cassel,
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et al. [1]. Figure 2.3 shows that the present results match those of Cassel, et al. very

closely. This result serves as validation that the code was developed correctly.

2.4.2 Scaled ramp angle sweep

Results are now presented for several values of the scaled ramp angle ranging

from 0.5 to 3.5. The computations were performed by restarting solutions from the

preceding ramp angle thereby allowing for faster convergence. The results are depicted

in Figure 2.4. Figure 2.4(b) shows the emergence of the pressure plateau as the scaled

ramp angle increases which is typical of ramp-induced shock wave/boundary layer

interactions. Figure 2.4(a) shows the variation of the scaled wall shear stress as a

function of the scaled ramp angle. At scaled ramp angles of 2 and greater, negative

wall shear stress indicates boundary layer separation and reversed flow. An iterative

approach was used to find the scaled deflection angle required for incipient separation.

The function which was minimized to find the scaled ramp angle is as follows:

min |τ(α)| = 0 (2.40)

Minimizing the above function using optimization results in αis = 1.8226.

The separation and reattachment points for various scaled ramp angles were

calculated by finding the locations where the scaled wall shear stress underwent a

sign change. The result is shown in Figure 2.5. The corner is located at x = 0.

Interestingly, the reattachment point exhibits a linear trend with decreasing scaled

ramp angle. The same can be said for the separation point below a scaled ramp angle

of approximately 2.5. The trend lines of the separation and reattachment points

intersect near the scaled ramp angle required for incipient separation, which was

independently found using an iterative approach.
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Figure 2.4: Scaled shear stress and scaled pressure distribution at a range of scaled
ramp angles.

The expected trends are present in Figure 2.5, namely the size of the sepa-

rated region increases as the scaled ramp angle increases. The triple-deck equations

represent a simplification of the full set of governing equations. As such, triple-deck

theory can be said to be an approximation of the actual physics. The mentioned
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Figure 2.5: Scaled separation and reattachment points vs scaled ramp angle.

linear trends call into question whether the separation and reattachment points from

solutions to the full set of governing equations will also exhibit linear trends when

scaled using the triple-deck scalings.

2.4.3 Curvature effects

Curvature effects are now investigated using the variable r̃ present in the ge-

ometric definition given by (2.10). The effects of changing surface curvature on the

geometry definition can be seen in Figure 2.6. Increasing r̃ gradually smooths the

corner.

Figure 2.7 shows how the changes in the surface curvature affect the scaled

pressure and scaled shear stress distributions. The changes in the surface pressure

distributions due to changes in surface curvature are very minor (see Figures 2.7(a),

2.7(c), 2.7(e)). However, the changes in the shear stress distributions due to the

changes in curvature are more readily evident. More specifically, Figure 2.7(b) shows

that the minimum value of shear stress, which occurs at the corner, increases as the
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Figure 2.6: Effect of increasing surface curvature on triple-deck ramp geometry.

surface curvature increases. Figure 2.7(d) shows that increasing surface curvature

actually removes the small separated region. That is, for r̃ = 1 in Figure 2.7(d), there

is no separation, as evidenced by the fact that the shear stress is always positive. For

the case of α = 3 as depicted in Figure 2.7(f), a much larger separated region is

present as compared to the case with α = 2. Changes in the surface curvature has

less of an effect on this larger separated region, as compared to the small separated

region present in the α = 2 interaction.

Figure 2.8 shows a plot of the separation and reattachment points versus the

parameter which controls the surface curvature, r̃. For the scaled ramp angle of 3,

changes in surface curvature have little effect on the separation and reattachment

points. However, increasing the parameter r̃ from 0.75 to 1 for the α = 2 case results

in removal of the small separated region. Said another way, increasing the surface

curvature gradually shrinks the size of the separated region until it is removed al-

together. These results suggest that it is possible to mitigate small separations via

increasing surface curvature. This is possible because increasing the radius of curva-

ture has the effect of decreasing the pressure gradient by spreading the pressure rise
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over a larger distance. This might be of limited use since for such a small separation,

the adverse effects of shock wave/boundary layer interactions such as flow unsteadi-

ness and increased heat transfer are likely not severe. We now move to numerical

solutions of the full set of governing equations.
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(b) Scaled shear stress for α = 1.
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(c) Scaled pressure for α = 2.
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(d) Scaled shear stress for α = 2.
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(e) Scaled pressure for α = 3.
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(f) Scaled shear stress for α = 3.

Figure 2.7: Surface curvature effects on scaled pressure and scaled shear stress distri-
butions.
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CHAPTER 3

TWO-DIMENSIONAL NUMERICAL SOLUTIONS

In general, the numerical solution of partial differential equations requires three

steps: pre-processing, solution of the discretized system, and post-processing. The

pre-processing step involves defining the geometry and generating meshes. The mesh

and relevant physical quantities, such as freestream Mach number and Reynolds num-

ber, are inputs to the flow solver. The flow solver outputs data which must then be

further reduced to a form from which meaningful insights may be drawn. These steps

are described next, followed by results and discussion.

3.1 Geometry and mesh generation

Figure 3.1 shows the geometry which was modeled. Compression ramps have

a geometric discontinuity in the first derivative, dy/dx. In the present work, this

discontinuity has been shifted to the second derivative by using a circular arc with

radius r to turn the flow more gradually than a sharp ramp. The length of the flat

r
r

L

Virtual corner

V∞

x

y

Figure 3.1: Schematic of ramp geometry.
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plate portion is measured relative to the beginning of the circular arc. The surface

definitions and derivatives are plotted in Figure 3.2 to elucidate the discontinuities. A

circular arc was used rather than, for example, an isentropic ramp because the radius

of curvature is constant. An isentropic ramp geometry involves variable radius of

curvature, therefore making it more difficult to quantify a characteristic length scale

related to radius.

Figure 3.2(a) shows the surface geometry and the slope for the normal com-

pression ramp. There is a very obvious discontinuity in the first derivative at x = 0.

Figure 3.2(b) shows the surface geometry, the slope and the curvature of the ramp

with the circular arc at the corner. The geometry is continuous up until the second

derivative, hence the mention of shifting the discontinuity to a higher derivative.

Pointwise® Glyph scripting was used to automate mesh generation. Only struc-

tured meshes are used in the present work to avoid biasing that may be introduced by

tetrahedral and prism elements. For more information about tetrahedra and prisms

in FUN3D, see [35]. An example mesh with every third point shown for clarity is

provided in Figure 3.3. The dense clustering near the left side of the mesh is necessary

to resolve the leading edge growth of the boundary layer. The mesh is also clustered

in the wall-normal direction so that the boundary layer is resolved. Additional clus-

tering is included where the boundary layer is ingested at the outlet. Specifics about

the boundary conditions are discussed in the next section.

3.2 Numerical scheme

The FUN3D (Fully Unstructured Navier–Stokes 3D) code was used to numeri-

cally solve the governing equations [36]. FUN3D is a node-based finite volume code

which has been in continuous development at NASA Langley Research Center since

the 1980s. The code has many advanced capabilities such as adjoint and feature-based
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Figure 3.2: Ramp geometries and derivatives.

mesh refinement, static and dynamic aeroelastic simulations, and adjoint-based de-

sign optimization, to name a few. Second-order spatial accuracy was used in the

present work along with dissipative LDFSS flux construction and a van Albada flux
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Figure 3.3: Example ramp mesh (every third point shown).

limiter [36]. The geometry creation, mesh generation and execution of the flow solver

were automated using the TCL and Python scripting languages.

An overview of the numerical scheme will now be provided. For more details,

see reference 37. The three-dimensional compressible Navier–Stokes can be written

as a conservation law of the following form:

∂q

∂t
+∇ · F(q) = 0 (3.1)
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where F is a tensor of rank 2 whose columns are flux vectors in each direction, and q

is a vector of conserved variables:

q =




ρ

ρu

ρv

ρw

E




(3.2)

where E = ρ e + 1
2
ρ(u · u). The inviscid or advective fluxes at a face can be written

as

Finv =




ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

HV




(3.3)

where V is the contravariant velocity, defined by V = unx + vny + wnz and H is the

total enthalpy, H = E + p. The viscous fluxes are written as

Fvisc =




0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτxx + nyτxy + nzτxz

nxΘx + nyΘy + nzΘz




(3.4)

where

Θx = uτxx + vτxy + wτxz − qx (3.5a)

Θy = uτyx + vτyy + wτyz − qy (3.5b)

Θz = uτzx + vτzy + wτzz − qz (3.5c)
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The stress tensor can be written in index notation as

τij =
µM∞
Re

(
ui,j + uj,i −

2

3
δijuk,k

)
(3.6)

Using Fourier’s law, the heat transfer terms can be written as

qi = − M∞
Re(γ − 1)

µ

Pr
(a2),i (3.7)

Viscosity is computed using Sutherland’s law. The ideal gas equation of state is used

to close the system of equations:

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2 + w2)

)
(3.8)

Integrating (3.1) over a finite control volume, Ω,

∫

Ω

∂q

∂t
dΩ +

∫

Ω

(∇ · F) dΩ = 0 (3.9)

Using the divergence theorem, (3.9) becomes

∫

Ω

∂q

∂t
dΩ +

∮

Γ

(F · n̂) dΓ =

∫

Ω

∂q

∂t
dΩ +

∮

Γ

(Finv − Fvisc) dΓ = 0 (3.10)

Assuming the solution is constant over the control volume, (3.10) can be written as

dq

dt
=

1

Ω

[
N∑

i=1

(Finv − Fvisc)i ∆Si

]
(3.11)

Now, the system of partial differential equations has been reduced to a system of

coupled ordinary differential equations, which can be integrated in time. For more

details about finite volume schemes, see the text by Blazek [38].

The boundary conditions used for the computations are shown schematically in

Figure 3.4. The freestream state was set along the left boundary. A short inviscid wall

preceded the viscous wall so that sharp gradients in the flow solution are not close to

the inlet boundary. An extrapolate boundary condition was used at the exit of the
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Figure 3.4: Computational domain.

domain and along the boundary. The boundary condition at the outlet extrapolates

the state at the boundary if the local flow is supersonic. If the local Mach number

was less than one, a back pressure was used to compute the state at the boundary.

This back pressure was set using the inviscid pressure rise across a shock due to

the deflection α. This boundary condition is necessary to allow for ingestion of the

subsonic portion of the boundary layer profile. An adiabatic, no-slip wall boundary

was used along the flat plate of length L and the ramp.

3.3 Post-processing

Data reduction and visualization were accomplished using a combination of

Python scripts, Tecplot®, and VisIt [39]. Specifically, Python scripts were developed

for tasks such as extracting boundary layer profiles and computing integral thicknesses

(e.g., displacement thickness). VisIt and Tecplot® were used mainly for visualization.
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3.4 Validation

To ensure that FUN3D was capable of capturing the relevant physics, results

from the code were compared against theoretical and experimental results. Each

comparison is described in detail below.

3.4.1 Flat plate

In this section, FUN3D results are compared against theoretical results for

self-similar, laminar, supersonic flow over a flat plate. The theoretical results are ob-

tained by transforming the flow to an equivalent incompressible flow via the Howarth–

Dorodnitsyn compressibility transformation.

The Howarth–Dorodnitsyn transformation is one of several compressibility trans-

formations which were constructed for the purpose of transforming compressible

boundary layer problems into more simple incompressible problems. The main as-

sumptions in the Howarth–Dorodnitsyn transformation are µ ∝ T and a Prandtl

number of unity [40].
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(a) Velocity profiles.
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Figure 3.5: Howarth–Dorodnitsyn compressibility transformation results.
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Essentially, the method involves “stretching” the normal coordinate via inte-

gration as follows:

Y =

∫ y

0

ρ(ỹ)

ρe
dỹ, (3.12)

where the subscript e refers to conditions at the edge of the boundary layer. The

governing equations are then recast in terms of a compressible stream function. The

resulting equation very much resembles Blasius equation. As such, Blasius solution

can be defined in the (x, Y ) plane. Finding the compressible solution requires invert-

ing the transformation as follows:

y =

∫ Y

0

ρe

ρ(Ỹ )
dỸ . (3.13)

Doing so yields the solution in the physical, (x, y) plane. For more information, see

the original paper by Howarth [41].

A C++ code was developed for obtaining laminar boundary layer solutions

using the Howarth–Dorodnitsyn transformation. The energy equation was solved

simultaneously. The Odeint library from Boost was used to integrate the coupled

system of ordinary differential equations, along with the NLopt library for performing

the shooting procedure necessary to satisfy the boundary conditions [42, 43]. Sample

results for an adiabatic wall can be seen in Figure 3.5.

FUN3D was used to simulate laminar flow over a flat plate of length L = 4 m

at ReL = 300 000, M∞ = 2.0, T∞ = 100 K, and Pr = 1. The previously described

Howarth–Dorodnitsyn transformation code was then run at the same conditions. Ve-

locity profiles from FUN3D at different streamwise locations were then plotted in

terms of the Blasius similarity variable, η. A comparison between the theoretical

velocity profile and FUN3D velocity profiles is shown in Figure 3.6. The collapse of

the FUN3D velocity profiles shows that they are indeed self-similar. Also, the profiles

compare relatively well.
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The total temperature should be constant since the flow is adiabatic, Pr = 1,

and the gas is assumed to be calorically perfect. Figure 3.7 shows the static and

total temperature profiles in the boundary layer at x/` = 0.5. As expected, the stag-

nation temperature is essentially constant. The self-similarity of the CFD velocity

39



0.0 0.5 1.0 1.5 2.0

x/L

1.00

1.25

1.50

1.75

2.00

p
/p
∞

level 1

level 2

level 3

level 4

Experiment

(a) Surface pressure distribution.

0.0 0.5 1.0 1.5 2.0

x/L

−0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

c f
(x

)

(b) Skin friction coefficient.

Figure 3.8: Comparison between FUN3D and Sfeir’s experimental results [2].

105 106

N

0.60

0.65

0.70

0.75

0.80

0.85

0.90

(x
R
−
x
S

)/
L

Figure 3.9: Size of separated region versus number of nodes in the mesh.

profiles along with the good comparison between CFD and theory and constant stag-

nation temperature in the boundary layer instill confidence that the code is capable

of resolving the relevant physics.

3.4.2 Ramp

A comparison with the experiments of Sfeir was undertaken to ensure that

FUN3D is capable of adequately capturing the physics of laminar SBLIs [2]. The

40



experiments made use of a compression ramp which was preceded by a 4 inch long

flat plate. FUN3D was compared against test cases with ReL = 140 000, M∞ = 2.64,

and an adiabatic wall. This comparison also allows for the determination of the

necessary mesh resolution required for a mesh-independent solution. Results can be

seen in Figure 3.8. In this case, the origin is at the beginning of the plate rather than

the corner.

Figure 3.8(a) shows a comparison between the experimental pressure distribu-

tion and CFD pressure distributions for various mesh resolutions. Close examination

reveals that there is not much change in the surface pressure distribution between

levels 3 and 4. This conclusion is further reinforced by Figure 3.8(b), which shows

little change in the skin friction distribution between levels 3 and 4.

Since the scaling of the separated region is to be studied, it is of interest to

examine how the mesh resolution affects the size of the separated region. Figure 3.9

shows the size of the separated region versus the number of nodes in the mesh. As the

mesh resolution increases, the growth of the separated region plateaus. This result is

indicative of reaching a mesh resolution beyond which the metrics of interest do not

substantially change. That is, the fine mesh is adequate to resolve the interaction.

Figures 3.10 and 3.11 show contours of Mach number and a computational

schlieren image for the given experimental conditions, respectively. Schlieren images

make use of the fact that density gradients change the index of refractivity of light.

The image shown in Figure 3.11 was computed by plotting contours of the norm

of the density gradient, |∇ρ|. The overall structure of compression ramp-induced

SBLIs, which was discussed in Chapter 1, is present in this figure. The separation

bubble is evident near the corner, as is the separation shock, which is followed by the

reattachment shock. The dark region near the wall in the computational schlieren

is due to the large density variations in the boundary layer. The leading edge shock
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Figure 3.10: Contours of Mach number at ReL = 140 000, M∞ = 2.64 and α = 11
degrees.

originates at the beginning of the flat plate region, where x/L = 0, and is due to the

displacement thickness of the boundary layer which effectively deflects the flow.

3.5 Parametric sweep

To investigate the effects of the radius of curvature, Reynolds number and Mach

number on the interaction, a parameter sweep was undertaken. The parameters can

be seen in Table 3.1. The values of the radius (in inches) that were used are 0.05,

0.5, 1, 2, 3, 4, 5. Two different ramp angles of 8 degrees and 12 degrees were used

to examine how the flow deflection affects the trends. A full-factorial sweep of these

parameters yielded 420 flow solves, which were accomplished using the Lonestar 5

cluster at the Texas Advanced Computing Center.
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Figure 3.11: Computational schlieren image at ReL = 140 000, M∞ = 2.64 and α = 11
degrees.

Table 3.1: List of parameters.

Parameter Initial value Final value Increment

M∞ 2 4 0.5
ReL 50 000 200 000 30 000
r [in] 0.05 5.0 —

3.5.1 Data reduction

The data reduction tasks were accomplished using a Python script which se-

quentially performed the following tasks: imported skin friction and surface pressure,

computed upstream influence using a new, edge detection-based approach which is

outlined in Appendix A, extracted boundary layer profiles at location of upstream

influence using VisIt, computed integral thicknesses and shape factor, and plotted

results. The boundary layer edge, denoted δ0, was determined by interpolating for
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the y-location at which u = 0.99U∞. The integrals required to compute displacement

thickness and momentum thickness were accomplished using Simpson’s rule. The

equations for integral thicknesses are provided below for completeness:

δ1 =

∫ δ0

0

(
1− ρ(y)u(y)

ρeUe

)
dy (3.14)

δ2 =

∫ δ0

0

(
1− u(y)

Ue

)
ρ(y)u(y)

ρeUe
dy (3.15)

H =
δ1

δ2

(3.16)

The results are presented in terms of the separation point, reattachment point, up-

stream influence, total size of separated region and shape factor at the location of

upstream influence.

3.5.2 α = 8 degrees

Figure 3.12 shows the scaling of the separation point, normalized by the dis-

placement thickness computed at the location of upstream influence, as a function of

the Reynolds number based on displacement thickness, freestream Mach number and

radius of curvature in inches. Mach number effects are indicated by the different color

plot markers. Radius of curvature effects are denoted by different symbols. For the

cases with Mach number higher than 2.5, changes in the radius of curvature have lit-

tle effect on the separation point. This finding is in accordance with free interaction.

That is, the upstream portion of the shock boundary/layer interaction is independent

of downstream events. In this case, changes in the downstream radius of curvature

do not affect the location of boundary layer separation upstream.

Figure 3.14 shows how the location of boundary layer reattachment varies with

Mach number, Reynolds number and radius of curvature. One difference between the

separation and reattachment points is that the radius of curvature has an obvious

44



500 1000 1500 2000 2500
Reδ1

0

10

20

30

40

50

x
S
/
δ 1

M∞ = 2.0

M∞ = 2.5

M∞ = 3.0

M∞ = 3.5

M∞ = 4.0

r = 0.05

r = 0.50

r = 1.00

r = 2.00

r = 3.00

r = 4.00

r = 5.00

Figure 3.12: Separation point as a function of Reynolds number based on displacement
thickness, Mach number and radius of curvature (inches).
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Figure 3.13: Upstream influence length as a function of Reynolds number based on
displacement thickness, Mach number, and radius of curvature (inches).

effect on the point of reattachment. As the radius of curvature increases, the point at

which the boundary layer reattaches moves downstream. This effect of elongating the
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Figure 3.14: Reattachment point as a function of Reynolds number based on dis-
placement thickness, Mach number, and radius of curvature (inches).
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Figure 3.15: Size of separated region as a function of Reynolds number based on
displacement thickness, Mach number, and radius of curvature (inches).

separation bubble increases as Mach number decreases, as indicated by the increasing

spread of the data from Mach 4 to Mach 2.
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Figure 3.15 shows the total size of the separated region. The trends in the

overall separation size follow the trends of the separation and reattachment points.

The figure is included for completeness.

Figure 3.16 shows the boundary layer shape factor as a function of the differ-

ent parameters. The shape factor is important because it can be used to judge the

“health” of the boundary layer. Increasing shape factor indicates increasing adverse

pressure gradient imposed on the boundary layer. Examination of the figure reveals

that the shape factor at the location of upstream influence is largely independent of

Reynolds number and radius of curvature. This is somewhat expected due to the lo-

cation at which the boundary layer profiles were extracted. The location of upstream

influence represents the furthest upstream that the shock wave/boundary-layer in-

teraction has a noticeable effect. If the upstream influence identification procedure

that was developed is correct, it should identify the most downstream point at which

the flow is representative of flow over a flat plate. Laminar compressible flow over a

flat plate is self-similar which implies that the shape factors at different streamwise

locations should be identical. This fact is represented in Figure 3.16 and represents

validation that the procedure developed to identify the location of upstream influence

is correct.

3.5.3 α = 12 degrees

A full parametric sweep was accomplished at a flow deflection angle of 12 degrees

in order to assess the effects of the ramp angle on the interaction. For the 8 degree

flow deflection, the flat plate which preceded the ramp was set to a length of 6 inches.

This distance was found to be too short for a flow deflection of 12 degrees because the

interaction spreads far enough upstream that leading edge effects become significant.

For an example, see Figure 3.17. The figure shows the pressure distribution for a
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Figure 3.16: Shape factor for α = 8 degrees as a function of Reynolds number based
on length, Mach number and radius of curvature (inches).

specific case in which the separation shock is far upstream. This upstream spreading

of the interaction caused issues when computing the upstream influence. The errors

in upstream influence propagated through the data reduction procedure because the

boundary layer profiles were extracted at the location of the upstream influence. To

mitigate this issue, the length of the flat plate portion was doubled from 6 inches to

12 inches and a new parametric sweep was undertaken. Results can be seen in Figure

3.18.

One major difference between the 8 degree flow deflection and the 12 degree

flow deflection is that the separation point is strongly dependent on the radius of

curvature for almost all cases. As the radius of curvature increases, the separation

point moves further upstream. This trend is most evident for the Mach 2 case. For

the highest Reynolds number Mach 2 case, the size of the separated region normalized
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Figure 3.17: Example pressure distribution for α = 12 degrees.

by displacement thickness increases from approximately 150 to 200, which represents

a 33 percent increase.

An additional observation is that the upstream separation point is much further

upstream for the 12 degree flow deflection. This is to be expected since a larger flow

deflection will cause a stronger shock wave to form, which in turn imposes a stronger

adverse pressure gradient on the boundary layer.

Figure 3.19 depicts the effects of radius of curvature, Reynolds number and

Mach number on the upstream influence length. The trends are obviously correlated

with the upstream separation point. The upstream influence is larger than the separa-

tion point, because it represents the furthest upstream that the shock wave/boundary-

layer interaction has a noticeable effect. The separation of the boundary layer is an

effect of the adverse pressure gradient imposed by the shock wave. As such, the

upstream influence length must be larger than the upstream length at which the

boundary layer separates.

Figure 3.20 shows how the reattachment point changes as a function of the

parameters. The same conclusions from the case with a ramp angle of 8 degrees hold

49



500 750 1000 1250 1500 1750 2000 2250
Reδ1

20

40

60

80

100

120

140
x
S
/
δ 1

M∞ = 2.0

M∞ = 2.5

M∞ = 3.0

M∞ = 3.5

M∞ = 4.0

r = 0.05

r = 0.50

r = 1.00

r = 2.00

r = 3.00

r = 4.00

r = 5.00

Figure 3.18: Separation point as a function of Reynolds number based on displacement
thickness, Mach number and radius of curvature (inches).
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Figure 3.19: Upstream influence length as a function of Reynolds number based on
displacement thickness, Mach number and radius of curvature (inches).

in this case, namely that as the radius of curvature increases, the reattachment point

moves further downstream. This observation is reinforced by Figure 3.21, which shows
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Figure 3.20: Reattachment point as a function of Reynolds number based on dis-
placement thickness, Mach number, and radius of curvature (inches).
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Figure 3.21: Size of separated region as a function of Reynolds number based on
displacement thickness, Mach number, and radius of curvature (inches).

how Reynolds number, Mach number and radius of curvature affect the overall size
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Figure 3.22: Shape factor for α = 12 degrees as a function of Reynolds number based
on length, Mach number and radius of curvature (inches).

of the separated region. Increasing Mach number decreases the size of the separated

region, while increasing Reynolds number has the opposite effect.

Figure 3.22 shows the shape factor as a function of Mach number, Reynolds

number, and radius of curvature (represented by different marker shape). The shape

factor is constant with changes in radius of curvature, as expected (see previous

subsection for discussion).

3.5.4 Correlation based on free-interaction theory

Now, we turn to the development of a correlation for the point of separation as

a function of Mach number and Reynolds number. Radius of curvature is excluded

from the correlation initially because of the collapse of data shown in Figure 3.12.

Modifications are then made to account for radius of curvature effects. The goal is to

create a physics-based functional relationship between the parameters.
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From free interaction theory,

L0 ∝ δ∗0(cf0)−1/2(M2
∞ − 1)−1/4, (3.17)

where L0 is the interaction length, δ∗0 and cf0 are the displacement thickness and the

skin friction coefficient at the beginning of the interaction, respectively [7]. From

traditional boundary layer theory, cf ∝ Re−1/2 and δ∗ ∝ Re−1/2 so that

L0 ∝
[
Re(M2

∞ − 1)
]−1/4

. (3.18)

Using the fact that L0 and xS follow roughly the same trends, as is shown in Figures

3.12 and 3.13, the functional relation between the separation point, Reynolds number

and Mach number can be written as

xS
δ1

(Reδ1 ,M∞) = C1Re
C2
δ1

(M2
∞ − 1)C3 , (3.19)

where the constants C1, C2, and C3 are determined by a curve fit. Minimizing the

sum-of-squares error between (3.19) and the CFD data for α = 8 degrees yields

C1 = 3.3× 10−3, C2 = 1.75, and C3 = −2.12. Figure 3.23(a) shows the curve fit. The

functional relation given in (3.19) seems to adequately describe the trends present in

the data. The same can be said for Figure 3.23(b), which shows the separation point,

normalized by the displacement thickness at the location of upstream influence versus

the Reynolds number based on displacement thickness for different Mach numbers for

a flow deflection of 12 degrees. The numerical results and the scaling law compare

well. For this case, the constants determined from the curve fit were C1 = 0.213,

C2 = 1.20, and C3 = −1.56.

Modifications to the functional relation given in (3.19) are now undertaken in

an effort to take curvature effects into account. A new length scale is defined, L′,

which represents a virtual flat plate length. It can be written as

L′ = L+ ∆L (3.20)
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Figure 3.23: Free-interaction theory-based scaling of separation point as a function
of Mach number and Reynolds number for r = 0.05 inches and different ramp angles.
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Figure 3.24: Schematic of ramp geometric parameters.

where L represents the length of the flat plate, and ∆L represents the additional

length required to reach the virtual corner. See Figure 3.24 for a schematic. For the

case of a ramp with a corner that is rounded by a circular arc, (3.20) can be written

as

L′ = L+ r tan
(α

2

)
(3.21)

where r is the radius of the circular arc used to smooth the corner, and α is the ramp

angle. The starting point for the new scaling relationship is what was predicted by

free interaction theory:

xS ∝ L0 ∝
[
Re(M2

∞ − 1)
]−1/4

(3.22)

Again the assumption that xS ∝ L0 is made due to the qualitative agreement between

the trends in xS and L0 presented earlier. In order to take curvature effects into

account, the Reynolds number in (3.22) is based upon the virtual flat plate length,

L′, rather than the flat plate length, L. The functional relation is then multiplied by
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the virtual flat plate length normalized by the displacement thickness at the point of

upstream influence as follows:

xS
δ1

∝ L′(r, α, L)

δ1

[
ReL′(M2

∞ − 1)
]−1/4

(3.23)

This relationship provided partial collapse of the data, but some Mach number effects

were still present. Using a systematic trial-and-error approach, it was found that the

Mach number, Reynolds number, and radius of curvature effects were all collapsed to

a single line for each deflection angle by using the following

xS
δ1

∝M5/4
∞

L′(r, α, L)

δ1

[
ReL′(M2

∞ − 1)
]−1/4

(3.24)

The expression on the right hand side of (3.24) was set to an interaction parameter,

Γ, so that the following functional relation can be written

xS
δ1

= f (α,Γ) (3.25)

Results can be seen in Figure 3.25 This is a new and unique result which has not

been shown in the literature. A more complete scaling law will include the effect of

the ramp deflection angle. The different colors in Figure 3.25 represent different Mach

numbers, while the different symbols represent different radii of curvature, consistent

with the previous plots.

3.5.5 Flow features

While post-processing the data, several interesting flow features were discovered.

For an example, see Figure 3.26, which shows the streamlines inside the separated

region for ReL = 110 000, M∞ = 2, and r = 4 in. Dark arrows point to the small

features inside the separated region.

Upon discovery of these features in the separated region, the fidelity of the

numerical solutions to the compressible Navier–Stokes equations was investigated.
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Figure 3.25: Collapse of Reynolds number, Mach number and radius of curvature
effects for different deflection angles.

Figure 3.27 shows the residual convergence for the case shown in Figure 3.26. The

residuals are a measure of how much the solution is changing between successive

steps. The flow solver is executed with first-order spatial accuracy for the inviscid

fluxes for the first 5000 iterations. The spatial accuracy for the inviscid fluxes is then

switched to second-order for iterations 5000 to 15000. The flux limiter is frozen at

13000 iterations. Figure 3.27 shows that the residuals converged to at least 1× 10−9,

which is satisfactory. Furthermore, oscillatory convergence, which is typical of flows

that are inherently unsteady, is not evident in the figure. As a further check, a few

cases were run in time-accurate mode. Inspection of the results showed that the flow

was indeed steady.

Skepticism about the validity of the results is further alleviated by the similar

CFD results of Brown, et al., and Sivasubramanian and Fasel [44, 45, 46]. Brown

performed steady and unsteady simulations of a flare1-induced shock wave/boundary

1A flare is essentially an axisymmetric ramp.
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Figure 3.26: Example of separated region with multiple small features (ReL =
110 000, M∞ = 2, r = 4 inches).

layer interaction and found similar features to those seen in Figure 3.26. They hy-

pothesized that a secondary separation, near the beginning of the separated region,

destabilizes the separated boundary layer, which behaves as a free shear layer. They

then suggested that the disturbances to the free shear layer are related to the forma-

tion of Görtler vortices. Furthermore, Brown conjectured that the formation of these

additional features are a precursor to the quasi two-dimensional shock wave/boundary

layer interaction becoming unsteady and three-dimensional. Sivasubramanian and

Fasel performed two- and three-dimensional laminar simulations of an oblique shock

impinging on a flat plate, followed by direct numerical simulations and linear sta-

bility analysis. DNS was used to simulate the transition process. Small spanwisre
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Figure 3.27: Residual convergence for ReL = 110 000, M∞ = 2, and r = 4 inches.

features were evident prior to the onset of instability. The idea that the nominally

two-dimensional shock wave/boundary layer interaction becomes three-dimensional

and unsteady was also investigated by Robinet using DNS and linear stability analysis

[47]. Robinet found a three-dimensional, stationary global instability to be the cause

of the three-dimensionality of the flow. Beyond the CFD results of other researchers,

small spanwise features and secondary separations have also been seen in triple-deck

solutions [16]. As such, it is believed that the observed features are physical and are

not a numerical artifact.

Assuming the features inside the separated region are physical, the Mach num-

ber, Reynolds number, and radius of curvature effects on the number of features are

now discussed. Mach number effects are presented first.

Figure 3.28 shows contours of Mach number for α = 12 degrees, ReL = 200 000,

and r = 4 in. As the Mach number increases from 2, to 2.5, the small features below
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(a) Mach 2.

(b) Mach 2.5.

(c) Mach 3.

Figure 3.28: Mach number effects on the separated region (ReL = 200 000, r = 4 in.).

the separated boundary layer and the secondary separations disappear. No additional

features appear at the higher Mach numbers. In their comprehensive experimental

study, Chapman, et al., found that increasing the Mach number increases the stability

of the free shear layer [13]. In the present results, increasing the Mach number

decreases the number of features inside the separated region, which calls into question

the influence of the free shear layer on the formation of these features.
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Figure 3.29 shows how increases in Reynolds number change the features inside

the separation bubble. As the Reynolds number increases, the number of features

increases. Increasing the Reynolds number from 50 000 to 80 000 as shown in Figures

3.29(a-b), the large separation bubble splits into two smaller features. Increasing

the Reynolds number further to 110 000, two secondary separations appear along the

wall, and another feature appears near the shear layer, bringing the total number

of features near the shear layer to three. Further increases in Reynolds number to

200 000 do not increase the number of features.

Radius of curvature effects are depicted in Figure 3.30 for ReL = 110 000, and

M∞ = 2. Beginning with Figure 3.30(a), three features are present, one secondaryy

separation near the corner and two features near the separated boundary layer. In-

creasing the radius of curvature from 0.05 inches to 0.5 inches causes the secondary

separation near the corner to grow larger, as is shown in Figure 3.30(b). Moving to

a radius of curvature of 1 inch, an additional separation appears along the wall. In-

creasing further to r = 3 in., an additional feature arises near the separated boundary

layer and the secondary separations grow larger.

Increasing the Reynolds number above some critical value would lead to in-

stability and eventually transition. With regard to Mach trends, Chapman, et al.,

suggested that increasing Mach number has a stabilizing effect on the free shear layer.

Since increasing the Reynolds number increases the number of features present in the

separated region, and increasing the Mach number decreases the number of features, it

is of interest to consider the effects of these features on instability. To this end, three-

dimensional numerical simulations were undertaken to determine when the shock

wave/boundary layer interaction moves from a steady, nominally two-dimensional

interaction to an unsteady three-dimensional interaction. Prior to presenting the
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three-dimensional results, a novel comparison of triple-deck solutions and numerical

solutions to the compressible Navier–Stokes equations is presented.
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(a) ReL = 50 000.

(b) ReL = 80 000.

(c) ReL = 110 000.

(d) ReL = 140 000.

(e) ReL = 170 000.

Figure 3.29: Reynolds number effects on the separated region (M∞ = 2, r = 4 in.).
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(a) r = 0.05 in.

(b) r = 0.5 in.

(c) r = 1.0 in.

(d) r = 2.0 in.

(e) r = 3.0 in.

Figure 3.30: Radius of curvature effects (ReL = 110 000, M∞ = 2).
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CHAPTER 4

COMPARISON BETWEEN TRIPLE-DECK THEORY AND CFD

In this chapter, a novel comparison between triple-deck theory and numerical

solutions to the full set of governing equations will be presented. The comparison will

be in terms of the triple-deck scaled variables. It will be shown that scaling the CFD

results using the triple deck scalings results in some interesting trends which have not

been seen in the literature.

4.1 Scaling of CFD results

In order to compare the triple-deck results to numerical solutions of the full set

of governing equations, the CFD results from FUN3D were scaled using the triple-deck

scalings. The results are presented in terms of scaled separation point, reattachment

point, and overall separation size. The scalings used are as follows:

x′

L′
= ρ−1/2

w µ−1/4
w λ−5/4β−3/4Re

−3/8
0 x (4.1a)

α′ = λ1/2µ1/2
w β1/2Re

−1/4
0 α (4.1b)

where ( )′ variables are dimensional, L′ is a reference length, ρw and µw are dimen-

sionless density and viscosity at the wall (dimensionless with respect to ρ′∞ and µ′0),

λ is a constant of O(1), β ≡ (M2
∞ − 1)1/2, and Re0 is

Re0 =
ρ′∞U

′
∞L
′

µ′0
(4.2)

where µ′0 is computed using a reference enthalpy of U ′∞. The constant, λ, was set to

0.332 for the present work, and the viscosity at the wall was determined using the

adiabatic wall temperature and the Sutherland viscosity law [7].
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Figure 4.1: Scaled separation point as a function of scaled ramp angle from triple-deck
and Navier–Stokes solutions.

4.2 Comparison between triple-deck results and compressible Navier–Stokes results

Figure 4.1 shows a comparison between the scaled separation point from nu-

merical solutions to the triple-deck equations and numerical solutions to the full set of

governing equations. Mach number trends are indicated by different symbols, while

different ramp angles are indicated by different shades of gray. The figure shows good

qualitative agreement between Navier–Stokes solutions and triple-deck solutions. For

the triple-deck results, the results are fairly linear below a scaled ramp angle of 2.75

and above a scaled ramp angle of 3.0. There is a noticeable slope change in the

triple-deck results at a scaled ramp angle of approximately 2.8. To more clearly show

the presence of this trend in the Navier–Stokes solutions, one set of data were plotted

against triple-deck results and can be seen in Figure 4.2.
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Figure 4.2: Scaled separation point as a function of scaled ramp angle for specific
case of M∞ = 3 and α = 8 degrees.

Figure 4.2 shows Navier–Stokes results for M∞ = 3, and α = 8 degrees. The

qualitative agreement between the Navier–Stokes results and triple-deck results is

more obvious in this figure. Specifically, both data sets show relatively linear trends

with a slight change in slope, albeit at different scaled ramp angles.

4.3 Incipient separation criterion

The convergence of the linear trends at the lower scaled ramp angles to a single

value suggests that the triple-deck scalings can be used to develop a criterion for

incipient separation. To accomplish this, an optimization-based approach was used

to determine the scaled ramp angle required for incipient separation using numerical
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Figure 4.3: Optimizer convergence to incipiently separated conditions.

solutions to the compressible Navier–Stokes equations. The optimization problem

was posed as

minimize
ReL

f(ReL)

subject to 5 000 ≤ ReL/L ≤ 250 000

where the objective function was defined as

f(ReL) = |min(cf (x,ReL))| (4.3)

Each call to the objective function changes the input file for FUN3D, runs the flow

solve, extracts the skin friction profile on the wall, and returns the absolute value of

the minimum skin friction.

Two cases were run with Mach numbers of 2 and 3 and a physical ramp de-

flection angle of 8 degrees. Figure 4.3 shows the convergence of the optimization

algorithm to the scaled ramp angles required for incipient separation. Each dot on

the plot represents a flow solve. The Mach 2 case converged to a scaled ramp angle

of 1.3354, while the Mach 3 case converged to a scaled ramp angle of 1.2915. The dif-
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ference suggests that there are some Mach number trends in the incipient separation

phenomena which are not completely captured by the triple-deck scalings. The final

result is

α′is ≈ 1.2915λ1/2µ1/2
w β1/2Re

−1/4
0 (4.4)
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(a) Skin friction.
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Figure 4.4: Skin friction and pressure distribution for incipiently separated conditions
at M∞ = 3 and α′ = 8 degrees.
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Figure 4.5: Numerical schlieren image of incipient separation conditions (M∞ = 3,
α = 8 degrees, ReL = 11 232).

Figure 4.4 shows the surface pressure distribution and skin friction distribution

for the incipiently separated result at M∞ = 3 for a flow deflection angle of 8 degrees.

Figure 4.5 shows a numerical schlieren image for the same case. The skin friction

distribution, shown in Figure 4.4(a), shows that the minimum value of the skin friction

occurs at the corner, where x/L = 0, and that it is approximately zero. The pressure

distribution lacks the typical pressure plateau which accompanies a separation bubble,

as expected.

4.4 Comparison with existing criteria

In previous studies, Inger developed a triple-deck-based criterion and compared

it to existing criteria [48]. It was shown in chapter 2 that the scaled ramp angle

required for incipient separation was approximately 1.8226, which is higher than the

value of 1.57 quoted by Inger [31]. Chapman, et al., developed a pressure-based

correlation for incipient separation based on experimental data [13]. In the present
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section, the developed criterion will be compared against the aforementioned criteria

by Inger and Chapman, et al.

The correlation by Inger is

Cp =

[(
Tref

T∞

)
ReL(M2

∞ − 1)

]−1/4

(4.5)

where Tref is a characteristic boundary-layer reference temperature which can be at-

tributed to Eckert [49]. The correlation by Chapman, et al., is

Cp = 0.093
[
(M2

e − 1)Re
]−1/4

(4.6)

The newly developed criterion requires some modification in order to allow for com-

parison with pressure-based criterion because it is written in terms of the deflection

angle required to produce incipient separation, not pressure. However, at incipiently

separated conditions, there is no noticeable separation shock or reattachment shock

(see Figure 4.5). As such, the deflection angle is related to the pressure across the

shock wave using the traditional relations from inviscid gas dynamics. Doing so yields

Cp =
2

γM2
∞

[
p

p∞

(
α′is(ReL,M∞),M∞

)
− 1

]
(4.7)

where α′is represents the ramp deflection angle required for incipient separation as

determined by (4.4). Figure 4.6 shows a comparison between the three criteria

for different Mach and Reynolds numbers. All three correlations agree that as the

Reynolds number increases, the pressure required to produce incipient separation de-

creases. According to Babinsky, this trend reverses above Reδ ≈ 105 [7]. Increasing

Mach number also decreases the pressure ratio required to produce incipient sepa-

ration. There is good qualitative agreement amongst the three criteria. However,

the triple-deck-based correlation does not decay the same as the correlations by Inger
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Figure 4.6: Comparison between correlations for incipient separation based on pres-
sure coefficient.

and Chapman. Both of the existing correlations have the same functional dependence

upon Reynolds number and Mach number. That is,

Cp ∝
[
ReL(M2

∞ − 1)
]−1/4

(4.8)

This suggests that as the Mach number increases, the pressure ratio required to pro-

duce incipient separation decreases. The triple-deck-based correlation for the scaled

ramp angle required to produce incipient separation is

α′is ∝ (M2
∞ − 1)1/4Re

−1/4
0 (4.9)

which implies that the deflection angle required to produce incipient separation in-

creases as the Mach number increases. Maintaining the same Reynolds number and

increasing the deflection angle increases the pressure ratio across the shock wave. This

is an interesting finding which requires further investigation. One way to investigate

the trends would be to use the optimization-based method described in the previous
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section to compute the conditions necessary for incipient separation over a range of

Mach and Reynolds numbers.
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CHAPTER 5

THREE-DIMENSIONAL NUMERICAL SOLUTIONS

In this chapter, results from three-dimensional solutions to the compressible

Navier-Stokes equations are presented. Results are compared against two-dimensional

results from previous chapters and experimental results. The motivation for the three-

dimensional numerical solutions is to investigate when the nominally two-dimensional

shock wave/boundary layer interaction becomes three-dimensional and unsteady. A

single case with a freestream Mach number of 2 and a radius of curvature of 4 inches

was selected for the unsteady flow solves. This case was selected because of the

numerous features inside the separated region. What follows is a discussion of the

mesh generation process, validation via a mesh-independence study, selection of the

time step, and unsteady, three-dimensional results.

5.1 Mesh generation and boundary conditions

The meshing process was automated using Pointwise Glyph scripting. A sample

mesh1 can be seen in Figure 5.1. Figure 5.2 shows the boundary meshes excluding

the closest domains for the sake of clarity. The inlet, left-most, and upper domains

were set to a freestream boundary condition. The blue boundary is set to extrapolate

for supersonic flow and back pressure for subsonic flow. The far side wall boundary is

marked in red. The side wall boundaries were set to inviscid walls. The short orange

portion represents an inviscid wall. The green portion is the flat plate and ramp and

was set to an adiabatic, no-slip wall boundary condition.

1Only every third point is shown for clarity.
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Figure 5.1: Sample three-dimensional mesh (every third point shown).

5.2 Validation

A mesh-independence study was undertaken to determine the mesh resolution

required to resolve the shock wave/boundary layer interaction. The results are com-

pared against the two-dimensional results from Chapter 3 and the experimental data

from Sfeir [2]. Pressure and skin friction distributions were extracted at the middle

of the span.

Figure 5.3 shows a comparison between wall pressure distributions from two-

and three-dimensional numerical solutions to the compressible Navier–Stokes equa-

tions and the experiments of Sfeir [2]. The pressure distributions for mesh resolution

levels 2-4 collapse into what is essentially one curve which indicates mesh indepen-
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Figure 5.2: Schematic of mesh boundaries.
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Figure 5.3: Surface pressure distribution comparison between 2D/3D numerical re-
sults and experimental results from Sfeir [2].

dence. This conclusion is further reinforced by Figure 5.4 which shows the total size

of the separated region as a function of the number of nodes in the mesh. Increasing
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Figure 5.4: Size of separated region versus number of nodes in the mesh for three-
dimensional numerical solutions.

Table 5.1: Details of meshes used in mesh-independence study.

Level Dimensions (i× j × k)

1 243× 100× 100
2 485× 199× 199
3 536× 220× 220
4 608× 249× 249

the mesh resolution higher than level 2 has relatively little effect on the overall size of

the separated region. For this reason, the level 3 mesh was selected for the unsteady

flow solves. The mesh dimensions in each direction along with the total number of

nodes are shown in Table 5.1. Robinet used mesh dimensions of 600×180×60 for his

study, comparable to the level 3 mesh used in the present study which has dimensions

of 536× 220× 220.

Figure 5.5 shows results from the three-dimensional numerical solutions for

Sfier’s case in the form of a slice taken at the midspan of the ramp. The separation

and reattachment shocks are evident, as is the separated region (i.e., the blue region).
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Figure 5.5: Slice showing contours of Mach number for Sfeir’s case.

Figure 5.6 shows the residual convergence for the case shown in Figure 5.5.

The inviscid terms were set to first order accuracy for the first 5000 iterations. The

flow solver residuals converged to at least 1× 10−12 by roughly 4200 iterations, after

which the spatial accuracy was switched to second-order, as indicated by the spike

in the residual values. Around 6000 iterations, oscillations become evident in the

residuals which are indicative of flux limiter buzz. The flux limiters are frozen after

5000 second-order accurate iterations. This allowed the residuals to converge further

78



0 2000 4000 6000 8000 10000 12000

Iteration

10−15

10−13

10−11

10−9

10−7
R

es
id

u
al

s

Continuity

x-momentum

y-momentum

z-momentum

Energy

Figure 5.6: Residual convergence for the level 3 mesh.

so that all were below 1× 10−12. The convergence of the residuals suggests that the

case studied by Sfeir is indeed steady.

For Sfeir’s case, the flat plate was only 4 inches long. In order to facilitate

a proper comparison between the two- and three-dimensional results, the flat plate

portion was lengthened to 12 inches, identical to what was used for the 12 degree

ramp in Chapter 3. The spatial resolution determined in the mesh-independence

study was enforced which resulted in a mesh with dimensions of 852 × 263 × 220,

which corresponds to a mesh with approximately 49.3 million nodes.
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5.3 Numerical solution procedure

The dimensionless form of the compressible Navier–Stokes equations were nu-

merically solved using FUN3D. The relevant features of FUN3D have been discussed

in Chapter 3. The main difference between the previous two-dimensional flow solves

and the flow solves accomplished for the present chapter is how time advancement

was accomplished. Up to this point, only the steady-state flow solver has been used.

This means that local time stepping and other solution acceleration methods were

used to aid in the convergence to steady-state. As such, the steady-state flow solves

were not time-accurate. In what follows, the flow solver is run in time-accurate mode,

using an implicit optimized second-order backward difference formula [36].

We now turn to selection of the time step used in the numerical scheme. Ac-

cording to Robinet, the global instabilities of interest usually have relatively low

frequencies which correspond to timescales of O[10−5] seconds [47]. Robinet used a

time step of 6.82×10−6 [47]. In the present work, a characteristic time was estimated

using the length of the flat plate and the freestream velocity (i.e., tchar = L/U∞). The

result is a characteristic time of 7.213×10−4. A physical timestep of 3×10−6 seconds

was used to ensure that the relevant temporal phenomena were being captured.

5.4 Unsteady results

A single case with r = 4 in., ReL = 200 000, and M∞ = 2 was chosen for further

investigation because of the multiple features inside the separated region. The case

was run for approximately 1200 timesteps on 672 processors on the TACC Lonestar

5 cluster, which required approximately 120 hours.

Wall pressures were extracted along a midspan slice at locations of x/L =

−0.1, −0.05, and 0.1 The location of the slice is indicated by the gray line shown
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Figure 5.7: Schematic of locations at which wall pressures were extracted.

in Figure 5.7. Figure 5.8 shows plots of these wall pressures as a function of time.

A quick examination of the figures suggests that the flow has reached steady-state.

However, as shown by the zoomed inset plots, there are still fluctuations in pressure

at the various locations, which suggests there are some spatio-temporal phenomena

occurring.
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Figure 5.8: Wall pressure time history at different streamwise locations at the middle
of the span.
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Isosurfaces of Q-criterion, colored by Mach number, were plotted at different

instances in time and are shown in Figure 5.9. Mathematically, the Q-criterion is the

second invariant of the velocity gradient tensor, ∇u, or ui,j [50]. Close examination of

the figure reveals a complex flowfield inside and downstream of the separated region.

The flow field qualitatively appears to be either transitional or turbulent. Another

interesting feature is the presence of streamwise features evident in the isosurface near

reattachment. These features may be the beginnings of Görtler vortices.

To ensure that the present unsteady results were not the result of starting

transients in the flow solver, the same case was run using the steady solver in FUN3D.

If the flow is actually steady, this fact should be reflected in the residual convergence.

Two cases with Reynolds number based on flat plate length of 170 000 and 200 000

were solved using FUN3D. The resulting residual convergence histories can be seen

in Figure 5.10. Both cases show oscillatory behavior, although the oscillations are

higher frequency for the ReL = 170 000 case.

No efforts were undertaken to ensure that all the relevant scales were resolved for

a turbulent flow. As such, if the present case is actually transitional or turbulent, the

results cannot be discussed in a physically meaninful way. Although this flow is likely

transitional or turbulent, the unsteady, three-dimensional numerical solutions still

serve a purpose in that they suggest that the two-dimensional numerical simulations

are not capable of capturing the unsteady behavior of the shock wave/boundary-layer

interaction at the higher Reynolds numbers presented in this study.
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Figure 5.9: Isosurfaces of Q-criterion colored by Mach number at different instances
in time.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Summary

The goal of the present work was to improve the physical understanding of

radius of curvature effects in shock wave/boundary layer interactions. This task has

been accomplished via a joint computational and analytical approach (i.e., numerical

solutions of the compressible Navier–Stokes equations and triple deck theory). New

findings have been presented, namely, the linear trends in the separation point at

low scaled ramp angle for CFD and triple deck results. Beyond this discovery, it

was found that several small features appear inside the separated region at low Mach

numbers. The number of features inside the separated region was determined to

be a function of Mach number, Reynolds number and radius of curvature, with the

effects of each parameter being discussed. A new, free-interaction theory-based scaling

relationship was developed. This scaling relationship provides a convenient way to

represent Mach, Reynolds and radius of curvature effects in a single curve for each flow

deflection angle. Three-dimensional steady and unsteady numerical solutions of the

compressible Navier–Stokes equations were sought with the purpose of exploring when

the nominally steady, two-dimensional SBLI becomes unsteady and three dimensional.

It was found that two-dimensional numerical solutions are not necessarily capable of

capturing the transient behavior of the SBLIs at the higher Reynolds numbers used

in the present study (i.e. ReL ≈ 200 000).
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6.2 Future work

The scaling relationship which relates Mach number, Reynolds number, and

radius of curvature was developed based on free interaction theory which was derived

for a flat plate. It would be interesting to develop a new relationship for curved sur-

faces by writing the Navier–Stokes equations in a curvilinear coordinate system (polar

coordinates for the case of a circular arc), and applying boundary layer assumptions

and order of magnitude analysis, followed by applying the streamwise momentum

equation at the wall. In this way, it might be possible to develop a more physically

meaningful scaling relationship for interactions over a curved surface.

As shown in the previous chapter,the flow becomes unsteady at the higher

Reynolds numbers. This unsteadiness may be related to an instability which arises

as the Reynolds number increases. It would be interesting to run more unsteady

flow solves to determine at what Reynolds number the flow becomes unsteady and

three-dimensional. It would also be interesting to apply relatively new methods from

stability analysis to find the most unstable mode and find the wave maker (i.e., the

region where perturbations are amplified the most). There is also the possibility of

applying transient growth analysis to the present case.
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APPENDIX A

Upstream influence length calculation
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In this appendix, the method used to find the upstream influence will be ex-

plained. The method is based on edge-detection algorithms from the field of image

processing.

The upstream influence length, L0, can be defined as the distance between the

point where the pressure rise due to the shock wave begins and the location where

the pressure rise would occur if the flow were inviscid1. The goal is to be able to

automatically identify upstream influence, rather than undertaking the tedious task

of visually inspecting the pressure distributions for each case. This problem can

essentially be thought of as a one-dimensional edge-detection problem.

One approach to edge detection involves convolving the derivative of the discrete

Gaussian distribution. The discrete Gaussian distribution is

g[n] =
1√
2πσ

exp

[−n2

2σ2

]
, (A.1)

where σ is the standard deviation. Taking the derivative with respect to n,

h[n] =
dg

dn
=
−n√
2πσ3

exp

[−n2

2σ2

]
. (A.2)

Now, convolving (A.2) with the surface pressure distribution yields the signal seen in

Figure A.1, where the convolution may be written as

y[n] =
N−1∑

k=0

h[n− k]p[k], (A.3)

where p[n] is the surface pressure distribution written in discrete form, h[n] is the

derivative of the discrete Gaussian distribution, y[n] is the convolved signal, and N

is the total number of points in the sequence, h[n]. The peaks in the plot correspond

to the pressure rises from the shock waves in the pressure distribution. Therefore,

identifying the locations of the peaks allows the x-coordinates of the pressure rises to

1See Chapter 1 for more information.
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Figure A.2: Initial upstream influence point.

be determined. After finding the locations of the pressure rises, and restricting the

range of values to −4/5 6 x/L 6 0.0, the point lies essentially in the middle of the

pressure rise due to the separation shock (see Figure A.2).

Now, the point is “relaxed” until the slope of the pressure distribution is below

some desired tolerance. The tolerance in the present work was set to 1 × 10−3. The

resulting upstream influence can be seen in Figure A.3.

This method was implemented using the Python scripting lanuage so that the

upstream influence length can be identified automatically using the surface pressure

distribution from any data source (e.g., experiments or CFD).
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