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Introduction: 

Discovery of new materials has always been a precursor to progress throughout history. 

Various era in human evolution are marked by metals, e.g. the Copper age (4200 BCE), Bronze 

age (2300 – 700 BCE), the Iron age (1500 BCE) etc. Besides this, ceramic engineering in the 

form of pottery and glass manufacturing forms the oldest industry known to mankind. 

Excavations from the Indus valley civilization (3300 – 1300 BCE) sites have revealed distinctive 

examples of pottery and tiles. The concept of glasses was known to ancient Egyptians in 8000 

BCE who used soda-lime glass to glaze their pottery. Ceramics are deeply ingrained in our 

modern life as well. Silica (SiO2) glass windows in our homes, ceramic engine parts (Si3N4) in 

automobiles, micro-electronics such as integrated circuits in computers, silica (SiO2) fibre optics 

in telecommunications or ceramic orthopaedic prostheses for biomedical applications – the 

ceramic materials are ubiquitous. 

Ceramics are broadly defined as inorganic, non-metallic materials with ionic or covalent 

bonds. [1] They can be crystalline – where the atoms are ordered and the unit cell (primary 

building block) repeats periodically in all dimensions; or amorphous – where the atoms are 

placed randomly in a non-periodic manner. Glasses form a special case of amorphous material 

that have a glass-transition temperature (Tg). The glass-liquid transition temperature (Tg) (or 

simply glass transition temperature) is the temperature at which a material changes from the 

liquid phase into the glassy phase. (See Figure 1) In the glassy phase, the viscosity is so great 

that it does not allow for the diffusion of atoms/molecules. Unlike the transition of liquid to 

solid, transition of a liquid to a glass is not associated with a drastic change in volume, energy or 

viscosity. This indicates a second order transition. This glassy state, is notably, much more brittle 

compared to a crystalline solid. Definitions of Tg based on thermodynamic properties are 

arbitrary and not consolidated. In particular, heat capacity and thermal expansion most 

commonly used to determine Tg as both properties show drastic changes at the glass transition 

temperature. 
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Figure 1: Schematic diagram illustrating glass transition temperature for an amorphous solid 

Computational modeling of amorphous ceramics and glasses is relatively a new field of research. 

Before the advent of computers the only way to predict properties of a system was to build 

mechanical models using ball-bearings. The use of computer simulations as an exploratory tool 

was first applied to dense liquids. The first reported simulation of real material was published in 

1960. [2] Few years later, the first data for liquid Argon was published that used a simple two-

body Lennard-Jones potential to describe the interaction between atoms. [3] Since the last 60 

years, computers have undergone a vast change in processing power– from 100 mega flops per 

processor in the 1960s to 93 peta flops per second in 2017. [4] Computational simulations now 

range from approximate methods like molecular dynamics (MD) that depend on Newtonian 

mechanics to accurate methods like Density Functional Theory (DFT) that is based on quantum 

mechanics. 

Molecular dynamics simulations involve the numerical solution of the classical equations of 

motion. [5] The basic algorithm is outlined in Figure 2. An empirical potential descibes the inter-

atomic interaction. The total time of simulation is divided into many small discrete time-steps 

(typically 10-12 or 10-15 s). At each time-step, forces are computed and atom positions updated 

based on Newton’s laws of motion. With parallization across multiple CPU’s, MD calculations 

are fast and enables us to compute properties of a system consisting of a few thousand atoms 
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easily. However, force fields or empirical potentials implemented in MD simulations are 

inherently approximations and thus needs to be used with caution. 

	

Figure 2: Flow-chart of a Molecular Dynamics simulation 

Density functional theory (DFT) is based on Hohenburg-Kohn theorem that states that the total 

ground state energy, E, of a system is a functional of it’s electron density, ρ. [6] However, this 

ground state energy E[ρ], includes a term for electron exchange and correlation – EXC, that is 

realized via many approximations. One such example is the Local Density Approximation 

(LDA) that assumes that EXC density at every position in space for the molecule is the same as it 

would be for the homogeneous electron gas (HEG) having the same density as found at that 

position. DFT is undoubtedly one of the most promising and accurate approaches to compute the 

electronic structure of matter. Yet DFT has it’s limitations: 1) Approximation of EXC 2) works 

best for systems consisting of < 1000 atoms within realistic time scales and 3) fails for strongly 

correlated systems. [7, 8] 

The work in this thesis involves modeling amorphous ceramics and glasses using the tools of 

DFT and classical MD. Systems investigated include: metal-silicate glasses (in particular HfO2-

SiO2), composite coatings (comprising of Zr-Si-B-C-N), and the refractory materials amorphous 

silicon nitride (a-Si3N4) and amorphous silicon boron nitride (a-SiBN). Modeling techniques 
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include traditional “melt-and-quench” simulations combined with simulated annealing. 

Structures are further investigated for their physical and chemical properties. A brief overview of 

each chapter is given below:  

Hafnia-silica glasses (HfO2-SiO2) find applications in microelectronics and optical 

waveguides. I did a computational study of the thermochemistry of these compounds exploring 

enthalpy of mixing and solubility. Additional analysis of vibrational modes in mixed glasses 

highlighted that adding a heavy Hafnium (Hf) atom will reduce thermal conductivity in these 

glasses. [9] 

Zirconium borides, carbides, and nitrides are Ultra High Temperature Ceramics (UTHCs) 

and candidates for thermal protective coatings in hypersonic vehicles. At elevated temperatures 

these materials have poor oxidation resistance. Adding silicon nitride promoted formation of a 

protective silica glass layer upon oxidation. With this goal in mind, I modeled Zr-Si-B-C-N 

ceramics, mixtures of ZrB2, ZrN, ZrC and Si3N4 with different composition and analyzed the 

impact of Si3N4 on their mechanical properties. [10] This project is a part of the “Materials 

Genome Initiative” which aims to accelerate advanced materials discovery. [11]  

Amorphous silicon nitride (Si3N4) and silicon boron nitride (SiBN) ceramics exhibit 

outstanding thermal and mechanical properties and are used as high-temperature protective 

coatings in extreme environments. I provided a comparative study of empirical potentials for 

modeling Si3N4 and outlined quality – and failure – of seven different approaches. My study also 

highlights the capabilities of one “forgotten” potential, which should receive more credit in 

research. [12] For a-SiBN, I study the impact of composition, density and temperature on the 

thermal conductivity of the material. The dispersion of segregated boron nitride (BN) domains 

inside a-SiBN structure impact the thermal transport in these materials. [13, 14] 
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CHAPTER 1 

STRUCTURE AND THERMODYNAMIC PROPERTIES OF HAFNIA-SILICA 

GLASSES WITH LOW HAFNIA CONTENT1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scope and Motivation 

																																																								
1  This chapter has been published in Journal of Non-Crystalline solids and is being used with the 



	 8	

Based on chemical composition, glasses are broadly classified as either oxide or non-oxide 

glasses. The most common and historically oldest example of oxide glasses are “silicate” glasses 

which are primarily composed of silica (SiO2). Other examples are P2O5, GeO2, B2O3 etc. Non-

oxide glasses contain chalcogenide (e.g. As2S3), halide (e.g. ZrF4-BaF2-LaF3-AlF3) and metallic 

(e.g. Cu50Zr50) components instead of oxygen. Depending on microstructure, glasses are further 

classified as as network formers (e.g. SiO2, B2O3), network modifiers (e.g. Na2O, PbO) and 

intermediate network formers (e.g. Al2O3, TiO2). Network former glasses such as SiO2 are often 

“doped” with transition metal ions for improved functionality. [1] [2] [3] 

HfO2-SiO2 glasses are an amorphous mixture of silica doped with small amounts (< 10 mol 

%) of hafnia. Hafnia-silica glasses are formed as a byproduct of oxidation of Ultra-High 

Temperature Ceramics (UHTCs) e.g. HfB2. These glasses are generally synthesized via the sol-

gel route or by various sputtering methods. [4] Hafnia-silica glasses have major applications in 

microelectronics and as planar waveguides. [5-7] Recently HfO2-SiO2 glasses were used as high 

refractive index coatings on multilayer mirrors in optical systems including LIGO, the Laser 

Interferometric Gravitational Wave Observatory. [8] In Chapter 1, I focus on modelling and 

property calculations of hafnia-silica glasses (HfO2-SiO2). 

A systematic computational study was done on HfO2-SiO2 models with small amounts (3-10 

mol %) of hafnia dissolved in silica. Small models of HfO2-SiO2 glass with 100 - 112 atoms are 

studied for their structure and thermochemistry. The focus of the study is to determine the impact 

of HfO2 on the network structure of SiO2. An appendix follows the peer-reviewed article where I 

include additional data concerning my study with hafnia-silica glass. The data was omitted from 

the publication as it appeared redundant, however it will be useful for future research in the study 

of Hafnia-Silica glass.   

References: 

[1] R.W. Cahn, P. Haasen, E.J. Kramer, J. Zarzycki, Mater. Sci. Tech., Glasses and Amorphous 

Materials, Wiley 1996. 



	 9	

[2] Glass and Glass-Ceramics, Ceramic Materials: Science and Engineering, Springer New York, 

2007, pp. 379-399. 

[3] S.D. Stookey, Explorations in Glass: An Autobiography, Wiley-Blackwell, 2000. 

[4] C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mortier, E. Moser, R. 

Retoux, G.C. Righini, Rare earth-activated silica-based nanocomposites, J. Nanomater.  2007 

[5] S. Berneschi, S. Soria, G.C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. 

Jestin, M. Ferrari, S. Guddala, E. Moser, S.N.B. Bhaktha, B. Boulard, C.D. Arfuso, S. Turrell, 

Rare-earth-activated glass-ceramic waveguides, Opt. Mater. 32(12) (2010) 1644-1647. 

[6] G.C. Righini, S. Berneschi, G.N. Conti, S. Pelli, E. Moser, R. Retoux, P. Feron, R.R. 

Goncalves, G. Speranza, Y. Jestin, M. Ferrari, A. Chiasera, A. Chiappini, C. Armellini, Er3+-

doped silica-hafnia films for optical waveguides and spherical resonators, J. Non-Cryst. Solids 

355(37-42) (2009) 1853-1860. 

[7] M. Ferrari, G.C. Righini, Glass-Ceramic Materials for Guided-Wave Optics, Int. J. Appl. 

Glass. Sci. 6(3) (2015) 240-248. 

[8] M. Principe, Reflective coating optimization for interferometric detectors of gravitational 

waves, Opt. Express 23(9) (2015) 10938-10956. 

 

	  



	 10	

Structure and Thermodynamic Properties of Hafnia-Silica Glasses with Low Hafnia 

Content 

Atreyi Dasmahapatra and Peter Kroll*, 

Department of Chemistry and Biochemistry, The University of Texas at Arlington, 

700 Planetarium Place, Arlington, Texas 76019, United States. 

Abstract 

Using density functional calculations we study structural, elastic, vibrational and thermo-

chemical properties of hafnia-silica glasses with low hafnia content (≤ 10 mol%). Melt-quench-

generated models show a preference for Hf-O-Hf linkages and early formation of HfOx-clusters. 

We compute an enthalpy of mixing of HfO2 in SiO2 of (0.8 ±	0.3) eV/HfO2, and estimate a 

solubility of HfO2 in SiO2 of 1.9 [-0.3/+11.6] mol% at 1873 K. Elastic moduli of hafnia-silica 

glasses are comparable to those of pure silica for the range of compositions addressed here. Heat 

capacities of mixed glasses follow a simple rule of mixture. Addition of hafnia to silica glass 

shifts high-frequency modes to lower wave numbers. Our data suggests that Hf atoms and small 

HfOx-clusters pin floppy modes in silica glass, visible in a depletion of low-frequency vibrational 

modes. 
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1. Introduction  

Amorphous alloys of hafnia (HfO2) and silica (SiO2) find major applications in optical and 

microelectronic devices. For example, current demand for new high-k dielectric materials 

indicate hafnia-silica compounds as leading contenders.[1] Moreover, hafnia-silica glasses are 

used as planar waveguides with remarkable characteristics.[2] Not at least, hafnia-silica melts 

occur as oxidation product of hafnia-based ultra-high temperature ceramics (HfC, HfN, HfB2).[3] 

The solubility of hafnia in silica glass has been experimentally investigated more than 40 

years ago. Ledneva et al. determined a limit of 3 mol% HfO2 in SiO2 at 1873 K.[4] It is possible 

to produce hafnia-silica compounds with even higher hafnia content, however, by a variety of 

non-equilibrium methods.[5-7] Goncalves et al. synthesized HfO2-SiO2 glasses with up to 30 

mol% HfO2 via the sol-gel route.[5] Neumayer et. al. prepared hafnia-silica films with 15-75 

mol% hafnia by spin casting of chemical solutions.[6] These compounds are not necessarily 

thermodynamically stable, since they undergo phase separation in the amorphous state during 

annealing prior to crystallization [6] 

A few computational studies addressed amorphous hafnia-silica compounds. Using first-

principles methods Broqvist et al. studied the evolution of dielectric constants and band gaps in 

hafnia-silica mixtures.[8, 9] A brief study by Ikeda et. al proposes favorable mixing of 

amorphous hafnia and silica glass, with an onset of phase separation at 10 mol% HfO2.[10] 

Scopel et al. modeled hafnia silica glass with hafnia content larger than 25 mol% using melt-

quench techniques and studied structural imperfections and oxygen vacancies.[11] The impact of 

adding hafnia to silica in low concentrations, towards the dilute limit, remained unexplored. 

In this work, we investigate HfO2-SiO2 glass with low hafnia content (2.8 – 10.0 mol%) 

using Density Functional Theory calculations. The paper is organized as follows: in the next 

section we present computational details for structure generation as well as property calculations 

of HfO2-SiO2 models. Thereafter, we present and discuss our results. We focus on the impact of 

the metal oxide on glass structure and thermochemistry, and investigate the change of vibrational 
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and elastic properties upon adding hafnia to silica. We also trace a depletion of low-frequency 

modes, which appears counterintuitive. Finally, we summarize our results and present our 

conclusions. 

2. Computational Methods 

Throughout this work, we perform Density Functional Theory [12] calculations as implemented 

in the Vienna Ab Initio Simulation Package (VASP).[13-15] We use the Projector Augmented 

Wave (PAW) [16, 17] method together with the Generalized Gradient Approximation (GGA) of 

electron exchange and correlation. For optimizations and property calculations we use a cutoff 

energy of 350 eV for the expansion of the wave function into a plane wave basis. The Brillouin 

zone was sampled at the Γ-point. We performed selected calculations using “harder” 

pseudopotentials and a higher cutoff energy (500 eV), but found no significant deviations from 

trends we report for structure and properties. 

Models of HfO2-SiO2 glass are generated via ab inito molecular dynamics (aiMD) simulation 

under periodic boundary conditions using the “melt-quench” approach. In our procedure, an 

ensemble of atoms is placed into a cubic box of appropriate volume and heated at 5000 K, 

producing a melt-like structure. After 10 ps at 5000 K all memory of a pre-existing configuration 

is lost. Subsequently, the system is cooled to 3000 K within 20 ps (cooling rate of 1014 Ks-1). At 

3000 K we keep the temperature of the system constant for 20 ps. A second cooling step to 2000 

K lasts 20 ps (cooling rate of 5·1013 Ks-1) and is followed by a second hold at 2000 K for another 

20 ps. We finally quench the system to 300 K within 20 ps (cooling rate of 8.5·1013 Ks-1). To 

reduce the computational costs, the cutoff energy during aiMD simulations is reduced to 205 eV. 

We use a time-step of 2 fs for the integration of the equations of motions and adjust the 

temperature via velocity rescaling throughout the aiMD simulations.  

The structure obtained after quenching to 300 K is finally optimized, allowing atomic 

positions and cell parameters to adjust to a local minimum energy state. Forces are converged to 
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5·10-3 eV/Å, which is necessary to avoid spurious negative frequencies in subsequent phonon 

calculations. 

Second-order stiffness coefficients (elastic constants) cij are computed via the strain-stress 

relationship given by Hooke’s Law. We estimate Bulk modulus B, Young’s modulus E, shear 

modulus G, and Poisson’s ratio σ, for each structure within the Reuss-Voigt-Hill 

approximations.[18-20] The bulk modulus B is confirmed by a Murnaghan fit to volume-energy 

data obtained from separate calculations.[21] 

Vibrational frequencies, infrared (IR) spectra, and thermodynamic properties are computed 

within Density Functional Perturbation Theory (DFPT) in conjunction with the PHONOPY 

package.[22] Final spectra are obtained by convoluting the individual frequencies with a 

Gaussian function of width 50 cm-1. Vibrational frequencies obtained via the finite displacement 

method agree within 1% with DFPT results. Thermodynamic properties are derived from phonon 

spectra using the harmonic approximation.[23] Infrared intensities of vibrational modes are 

calculated using Born effective charges employing the method published by Gianozzi and 

Baroni.[24]  

3. Results and Discussions: 

3.1. Structure  

We chose mol-ratios HfO2:SiO2 of 1:36, 2:36, 3:36, and 4:36 to study the impact of adding small 

quantities of hafnia to silica glass. The mol ratios correspond to mol% HfO2 of 2.7, 5.3, 7.7, and 

10.0 in the hafnia-silica glass, respectively. The compositions reflect the addition of one or more 

units of HfO2 into a system of 36 SiO2 and facilitate analyzing the impact of mixing HfO2 into 

SiO2, e.g. to compute the enthalpy of mixing. For each composition of the mixed glasses we 

generated six models via independent melt-quench simulations and compare the results with 

models of vitreous silica (a-SiO2, denoted 0:36; six models) and amorphous hafnia (a-HfO2, one 
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model), which we created using the same approach. In addition, we computed crystalline 

structures of α-quartz (α-SiO2) and monoclinic hafnia (m-HfO2) for reference. 

 

 

Figure 1: (Top) Representative models of mixed amorphous HfO2-SiO2 structures in a polyhedral view. 
Blue polyhedra represent SiO4–units while yellow polyhedra represent HfOn-environments (n = 4, 5, 6). 
From left to right the mol ratio of HfO2 to SiO2 is increasing from 1:36, 2:36, 3:36 to 4:36. (Bottom) 
Local environments of Hf in amorphous HfO2-SiO2 structures displaying different Hf coordination. The 
typical Hf-O bond length is 1.90-2.10 Å. Examples of extended Hf-O bonds (dashed) occuring in five 
and six-fold coordinated Hf are shown. 

Representative structures for each composition are shown in Figure 1(top). We find – throughout 

our models – Si being four-fold, approximately tetrahedrally coordinated by O. None of the 

structures exhibit three-fold coordinated Si, and the distance from Si to a fifth O is always larger 

than 2.5 Å. The Si-O bonds form a network into which the Hf is embedded. Detailed looks into 

structures reveal local environments of Hf as shown in Figure 1 at the bottom.  

Hf appears four- or five-fold coordinated, only three of 24 models contain a 6-fold 

coordinated Hf. With four O neighbors Hf adopts an approximately tetrahedral environment 

(Figure 1). Surrounded by five O, we find coordination environments close to square-pyramids 



	 15	

and trigonal bi-pyramids. Six-fold coordinated Hf is found only in three models of composition 

4:36, approximately forming octahedra. For both 5- and 6-fold coordinated Hf we find large 

variations in bond lengths within the polyhedron. For example, all 5-coordinated Hf exhibit three 

or four “short” bonds (1.90-2.10 Å) and one or two longer bonds (2.20 - 2.49 Å). Thus, these 

coordination environments are better described as (4+1) or (3+2) coordination. Such elongated 

Hf-O bonds for higher coordinated Hf has been reported before.[8, 9] The bond length variation 

is also visible in the distance pair correlation function g(r) discussed further below. Taking the 

longer Hf-O bonds into account, the average coordination number (CN) of Hf in 1:36, 2:36, 3:46, 

and 4:36 models (averaged over Hf sites within the same model as well as over six models for 

each composition) is 4.6, 4.5, 4.5 and 4.8, respectively. Hence, the CN of Hf is approximately 

constant in models with low hafnia content. Previously, Broqvist et al. reported a correlation 

between hafnia content and average CN of Hf in HfxSi1-xO2 models (x = 0.3, 0.5, 1.0) with 30-%, 

50-% and 100-% HfO2 in SiO2.[8, 9]  

Nevertheless, the average CN of Hf in our amorphous models is significantly smaller than 

that in crystalline structures of HfSiO4 (CN=6) and m-HfO2 (CN=7). This relates, for instance, to 

the CN of Al in alumina and aluminosilicate glasses.[25-27] While Al adopts six-fold 

coordination in the crystal structure of corundum α-Al2O3, it appears 4-and 5- connected to 

oxygen in aluminosilicate glasses at ambient pressures.  

Oxygen atoms appear two- or three-fold coordinated by cations, never four-fold. Three-fold 

coordinated O is, with one single exception, always bonded to 5- or 6-fold coordinated Hf. 

Looking at all 24 HfO2-SiO2 glass models, three-fold oxygen is found for 12.7% of O atoms. 

Neither Hf=O nor Si=O double bonds are present. 

Simulated site-site distance pair correlation functions g(r) of two representative models of 

composition 1:36 and 4:36, respectively, are shown in Figure 2. Each g(r) shows two distinct 

peaks with maxima at 1.63 Å and at 1.93 Å. These are due to Si-O and Hf-O bonds, respectively. 

A third peak located at 2.63 Å results from O···O distances in SiO4-tetrahedra. An O···O 

correlation originating from HfO4-tetrahedra shows up at about 3.13 Å. A closer look at the Hf-O 
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partial pair correlation (Figure 2) shows strong asymmetry of the signal located at 1.93 Å, which 

tails off to longer distances. This reflects elongated Hf-O bonds in coordination environments 

highlighted in Figure 1 at the bottom. A tetrahedral environment HfO4 exhibits Hf-O distances in 

the range 1.90 to 2.01 Å with the exception of three models which show a Hf-O bond > 2.01 Å. 

In a (4+1) five-fold coordination, four bonds occur in the range of 1.90 to 2.04 Å, while a fifth 

bond has a length between 2.20 and 2.49 Å. A (3+2) five fold coordinated hafnium atom shows 

short Hf-O bond distances between 1.92 and 2.01 Å and long bond distances between 2.08 and 

2.43 Å. A six-fold coordination environment is less well defined, with Hf-O bonds as long as 

2.50 Å. 

 

Figure 2: Simulated total and partial site−site pair correlation functions g(r) for representative models of 
compositions 1:36 (left) and 4:36 (right) HfO2-SiO2 glass. Individual entries are convoluted with a 
Gaussian with FWHM of 3 pm. The functions are drawn to scale and the difference between two ticks on 
the ordinate is 20. The total g(r) is normalized so that it approaches the value 10 at infinite distance. Its 
maximum value attained for the first Si-O distance peak is off scale, at 233 and at 213, for 1:36 and 4:36, 
respectively. Partial g(r)’s are normalized to 1 at infinite distance. 

Returning a last time to the details of the atomistic structure, we focus on the presence of Hf-O-

Hf linkages that appear in the models. We find no such linkage in any of the six 2:36 models, but 
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eight Hf-O-Si linkages in 3:36 models (average of 1.3 per model), and 13 linkages in 4:36 

models (2.2 per model). Assuming a random network model of tetrahedrally coordinated Si and 

Hf (thus, neglecting that some Hf are 5- and 6-fold coordinated) the probability of Hf-O-Hf 

linkages can be computed using a combinatorial approach. The network is topologically 

equivalent to a 4-connected network (omitting the O atoms) and the probability to find Hf 

coordinated by (4-k) Hf atoms and k Si atoms (k = 0, 1, 2, 3, 4) is given by 

 , with	 	and	

. The probabilities to find the bonds PO-Si and PO-Hf are set by the molar 

ratio of Hf and Si. This approach is valid for an infinitely large model, but does not take into 

account the finite size of models considered here. Such systems will show a higher probability of 

finding Hf-O-Hf linkages due to periodic boundary conditions. Therefore, we generated about 

100,000 random network models with sizes matching those studied here under periodic boundary 

conditions using our previously published method.[28] 

We find that for composition 4:36 the probability of finding a model without any Hf-O-Hf 

linkages is 57%. The average number of Hf-O-Hf linkages present in a single 4:36 model is 0.53. 

Hence, the expected total number of Hf-O-Hf linkages in six models with composition 4:36 is 

3.2 –– which considerably smaller than 13 linkages we count for the models we simulated. While 

these numbers hold for 4-fold coordinated Hf, modeling 4:36 networks with average 

coordination of 4.5 or 5 does not alter severly the findings. Therefore, our models exhibit 

agglomeration of Hf atoms forming Hf-O-Hf bonds and, ultimately, a tendency to form (HfO)x-

clusters at these concentrations. Indeed, Hf-O-Hf linkages always occur between 5- and 6-fold 

coordinated Hf, and we find no less than six instances of Hf with two Hf-O-Hf linkages 

simultaneously forming Hf-(OHf)2(OSi)n (n=3,4) environments. These “clusters” affect 

vibrational properties of the models and induce non-linear trends, which will be discussed further 

below. More Hf-O-Hf linkages than expected are also found in 3:36 models, but only one model 

shows a “clustering” of these linkages. For 2:36 models the probability of finding a model 

P[SikHf4−k ]=
4!

k!(4− k)!
(PHf −O−Hf )

4−k ⋅ (PHf −O−Si )
k

PHf −O−Hf = (PO−Hf )
2

PHf −O−Si = 2 ⋅PO−Hf ⋅PO−Si
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without Hf-O-Hf linkages is about 89%, and the expected total number of Hf-O-Hf linkages in 

six models with composition 2:36 is 0.7. Our 2:36 models, which do not exhibit any Hf-O-Hf 

linkage, may, therefore, still be random. 

3.2. Thermochemistry  

In Figure 3 (left) we plot the energy of pure silica and of mixed hafnia-silica models as a 

function of the number of HfO2 units in the structure. Since the difference in composition 

between two models is a multiple of HfO2, our approach allows a facile estimate of the enthalpy 

associated with incorporating hafnia into silica glass. We choose to plot the lowest energy model 

obtained for each composition. Taking the average energy of the six different models of a 

composition yields similar trends. 

  

Figure 3: (Left) Energy of HfO2-SiO2 as a function of HfO2 units added to SiO2 (36 f.u.). A linear fit to 
the data is included as a line. (Right) Solubility of HfO2 in SiO2 as a function of temperature based on a 
regular mixing model using ΔHmix = (0.8 ± 0.3) eV/HfO2. Red dashed lines bracketing the blue solubility 
line mark the upper and lower bounds of uncertainty based on the error in ΔHmix.  

A linear fit to the data in Figure 3(left) yields a slope of -29.7± 0.3 eV/HfO2. This energy, 

essentially, represents the partial enthalpy of HfO2 in hafnia silica glass models with low hafnia 

content obtained via melt-quench ab inito molecular dynamics. With reference to the energy of 

monoclinic-HfO2, for which we compute a value of -30.589 eV/HfO2, we obtain an enthalpy of 
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mixing ΔHmix of 0.8 eV/HfO2 (±0.3 eV/HfO2). While non-linear fits can be used to model the data 

shown in Figure 3, none of these has – within the error margin – a higher significance than the 

linear fit. Hence, up to 10 mol% HfO2 ΔHmix does not depend on concentration itself. 

Using the computed ΔHmix we estimate the solubility of HfO2 in SiO2 as a function of 

temperature within the scope of a regular mixing model.[29] We assume that ΔHmix neither 

depends on temperature nor on concentration. The (ideal) entropy of mixing ΔSmix is given by 

ΔSmix = -R (x·ln (x)+(1-x)·ln (1-x)), with x being the mol fraction of HfO2. Using the equilibrium 

condition ΔGmix = ΔHmix -T·ΔSmix = 0, solubility of HfO2 in SiO2 is computed and shown in Figure 

3 (right). At the melting point of silica glass (1873 K) we determine a solubilty of 1.9 mol% 

HfO2 in SiO2. Propagating the error estimate of the enthalpy of mixing, we obtain a lower 

boundary of 0.3 mol% HfO2 and an upper boundary of 11.6 mol% HfO2 in hafnia silica glass. 

Experimentally, a value of 3 mol% was determined for the solubility of hafnium dioxide in 

quenched silica glass at 1873 K.[4] Applying the regular mixing model, this value corresponds to 

ΔHmix = 0.73 eV/HfO2, which in turn is well within our error margin. Goncalves et al. reported 

sol-gel synthesis of Erbium-doped HfO2-SiO2 glass with 30 mol% HfO2 in silica.[5] The latter 

compounds (synthesized at 1173 K) are not in equilibrium according to Figure 3 (right). Ikeda et 

al. compared the energy of mixed HfO2-SiO2 glass structures only relative to amorphous HfO2 

and amorphous SiO2.[10] They found a negative enthalpy of formation for less than 10 mol% 

HfO2 dissolved in SiO2. 

3.3. Elastic properties 

For every model, we computed elastic constants (without symmetry there are 21 independent 

stiffness coefficiets cij) and derived aggregate bulk modulus (B), shear modulus (G), and 

Young’s modulus (E).[30] Bulk moduli were confirmed via additonal volume-energy 

calculations. To compare the elastic moduli for different HfO2-SiO2 compositions we first 

estimated a “projected density” for each composition assuming a linear rule of mixture for hafnia 

silica glasses and molar volumes of 26.94 cm3 for a-SiO2 and 22.32 cm3 for HfO2. We obtain a 



	 20	

density of 2.23 g/cm3 for a-SiO2, and densities of 2.39, 2.54, 2.69 and 2.83 g/cm3 for mixed 

HfO2-SiO2 glasses of composition 1:36, 2:36, 3:36, and 4:36, repectively. However, we are left 

with the problem that models simulated with same composition end up with different densities 

after final optimization, necessitating a “calibration” of the computed moduli to the projected 

density for that composition. This is achieved through interpolation assuming that, for a given 

composition, B, G, and E depend linearly on density. Our results are given in Table 1. 

Experimental data for silica glass is 37, 31 and 73 GPa for B, G and E, respectively.[31] For the 

range of hafnia content in silica glass studied here, we do not find significant trends of moduli 

relating to composition. Experimental data of hafnia-silica films with hafnia content of 50-mol% 

report a Young’s Modulus of 68 GPa increasing to 152 GPa with increasing HfO2 content. [32] 

 

Composition 
(mol%) 

Expected Density 
[g/cm3]	

Bulk Modulus 
[GPa] 

Shear Modulus 
[GPa] 

Young’s Modulus 
[GPa] 

0:36 (0)	 2.23 42 33 81 

1:36 (2.7) 2.39 46 33 80 

2:36 (5.3) 2.54 48 31 77 

3:36 (7.6) 2.69 45 32 81 

4:36 (10.) 2.83 44 31 75 

Table 1 : Computed Bulk Modulus, Shear modulus and Young’s modulus of hafnia silica glass for 
densities expected for the mixed models. We estimate an error of 4 GPa for each elastic modulus. 

3.4. Vibrational Properties – Phonon Density of States and IR-Spectrum 

Phonon Density of States (phDOS) of hafnia silica glasses with different compositions are shown 

in Figure 4 (left). Each graph is an average of six models for that composition. We included 

computed phDOSs of a-SiO2 and a-HfO2 into the same figure for comparison . 
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Figure 4: (Top Left) Phonon density of states for various hafnia-silica glasses shown together with those 
of a-SiO2 and a-HfO2 for comparison; (Top Right) Partial phonon density of states (Si and Hf only) of 
hafnia-silica models; (Bottom Left) IR spectra of a-SiO2 and a-HfO2; (Bottom Right) IR spectra of HfO2-
SiO2 glass. All three spectra are obtained by convoluting individual frequencies with a Gaussian function 
of width 50 cm-1 

The phDOS of a-SiO2 shows a strong band below 500 cm-1, a peak at 780 cm-1, and a double 

peak at 1030 and 1130 cm-1. The double peak structure at high wavenumbers is characteristic of 

a-SiO2 and has been found in experimental inelastic neutron scattering spectrum.[33, 34] The 

phDOS of a-HfO2, in contrast, extends only up to 870 cm-1 and exhibits pronounced peaks at 104 

cm-1 and 450 cm-1. No experimental data is available for the phDOS of a-HfO2. However, our 
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computed results agree well with previous DFT calculations.[35] The mixed models show 

significant changes with increasing hafnia content. Since the atomic mass of Hf is more than six 

times that of Si, we can expect that low frequencies become more populated with increasing Hf 

content. Indeed, we find that the region of highest frequencies shifts towards lower wave 

numbers: its edge is at 890 cm-1 in the 4:36 model in comparison to 930 cm-1 in a-SiO2. The 

pronounced peak at 780 cm-1 decreases in intensity with increasing HfO2 content, while the 

region at 150 cm-1, characteristic for a-HfO2, increases in its relative intensity with increasing 

HfO2-content.  

Partial phonon densities of states for Hf and Si in mixed models (Fig 4, top-right) show 

similar trends; strong vibrations of Hf at low frequencies (< 200 cm-1) and vibrations of Si 

predominately at higher frequencies. Our results agree with computed phDOS of Hf1-xSixO2 (x = 

0, 0.25, 0.50) of Chen et al.[36] 

3.5. IR spectra  

Computed IR spectra for hafnia silica glasses, shown in Figure 4 (right), underline the impact of 

hafnia on vibrational properties of the mixed glasses. Most prominent is a shift of the 

characteristic peak at 1030 cm-1 towards lower frequencies (1015 cm-1 for 10 mol% HfO2), 

accompanied by a shift in the lower frequency-edge of this peak and by a decrease of its 

intensity. The signal at 470 cm-1 does not change significantly when HfO2 is added to SiO2. 

Interestingly, a line at 270 cm-1, which would be characteristic of HfO2, does not develop even in 

models containing 10 mol% HfO2. 

3.6. Heat Capacity at Constant Volume (Cv) 

Figure 5 shows heat capacities at constant volume (Cv) as a function of temperature for models 

of silica and hafnia silica glasses. Cv is based on vibrational data and computed using the 

harmonic approximation.[23] Each curve represents an average over six models. We obtain 

standard errors for the data for temperatures above 300 K ranging from 1 J/(K·mol) for 0:36 
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models to 3 J/(K·mol) for 4:36 models. At high temperatures Cv approaches the Dulong-Petit 

limit. Therefore, values at high temperatures highlight the addition of one unit HfO2 from one 

composition to the next; since the number of atoms increases, the number of degrees of freedom 

increases too. Consequently, at high temperatures Cv appears to increase by a constant amount 

characteristic of adding one unit of HfO2. The impact of HfO2 can, therefore, be analyzed by 

taking the difference between Cv of different models, approximating a “partial Cv” of a-HfO2 in 

mixed hafnia silica glasses (see Figure 5, right). Essentially, we find that the partial Cv of a-HfO2 

in hafnia silica glasses agrees with Cv of pure a-HfO2. Note that the error of this data is 2 times 

the error of Cv, mentioned above.  

           

 

Figure 5: (Left) Cv of HfO2-SiO2 glass as a function of temperature (the unit mol refers to the number of 
atoms in the simulation cell times NA); (Right) Partial Heat capacity of HfO2 in SiO2 obtained by taking 
differences of Cv from models with different compositions. 

3.7. Non-linear changes in the phDOS and a possible rupture of Floppy Modes 

A last analysis is devoted to low frequency vibrational modes, in particular the range below 200 

cm-1. In a simple one-dimensional chain of atoms, replacement of Si by heavier Hf will increase 

the population of low-frequency modes.[37] A comparison of the phDOSs of silica and hafnia in 

Figure 4 indicates that this holds for the overall “center of mass” of the graph, and in particular 

refers to the modes below 200 cm-1. Figure 4 also indicates growth in relative intensity of the 
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region at 150 cm-1, characteristic for a-HfO2. However, the models differ by added units of HfO2, 

and for quantifying the relative change per cation, thus studying the effect of replacing Si by Hf, 

we need to calibrate the data “per mol of cations”. Evidently, at very high temperatures, in the 

Dulong-Petit limit, such calibrated phDOS curves of (HfO2)x(SiO2)1-x will look identical, since 

they have the same number of atoms and degrees of freedom. The difference between phDOSs of 

models with different composition, thus, will be zero at high temperatures. At intermediate 

temperatures, however, the difference will reflect the impact of replacing Si by Hf.  

We introduce two new quantities to charactertize the impact of HfO2 in mixed hafnia silica 

glasses. First dDOS(ν), which is the difference between normalized PhDOS(ν)’s of two different 

compositions. Since we compare normalized spectra of (HfO2)x(SiO2)1-x with identical number of 

atoms and degrees of freedom, dDOS(ν) will be zero for low frequencies as well as for high 

frequencies, but will show positive or negative values at intermediate frequencies. Due to the 

nature of the frequency data we compute, we find that all dDOS(ν)’s show rapid oscillations 

making it very difficult to visualize trends. To further the analysis we, therefore, introduce a 

second quantity, IdDOS(ν), the integration of dDOS(ν): IdDOS(ν) =  

 where x2 > x1. Since we study trends with composition, we 

focus on pairs (x2,x1) = (0.027,0), (0.053,0.027), (0.076,0.053), (0.1,0.076), reflecting the 

successive substitution of Si by Hf. IdDOS(ν) simply counts the accumulated surplus or 

deficiency in the number of modes per atom (or cation) from zero wavenumber up to a given 

wavenumber ν. At high wavenumbers IdDOS(ν) will be zero. One may expect that the IdDOS 

will be positive throughout the frequency range for any pair (x2,x1), if only x2 > x1, since 

replacement of Si by Hf populates lower frequency modes. Interestingly, regions with negative 

IdDOS exist even for wavenumbers below 500 cm-1 (see Figure 6). 

phDOSx2

0

ν

∫ (ν ' )− phDOSx1 (ν ' )dν '
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Figure 6: dDOS(ν) (upper curve) and IdDOS(ν) (lower curve) comparing vibrational spectra (normalized 
phDOS(ν)) of 1:36 and 0:36 (left) and 4:36 and 3:36 (right). Graphs have been stacked to show the 
relation between dDOS and its integration, IdDOS. The initial data (normalized phDOS) was obtained by 
convoluting individual frequencies with a Gaussian function of 15 cm-1 width. A negative value of 
IdDOS(ν) implies that the composition with higher Hf content has a deficiency of vibrational modes 
accumulated up to this wavenumber. 

dDOS(ν) and IdDOS(ν) comparing 1:36 and 0:36 models (x=0.027 and x=0) are shown in 

Figure 6 (left). Large positive values at 970 cm-1 and negative values at 1050 cm-1 indicate a shift 

of the high frequency peak towards lower wave numbers upon addition of HfO2 to the glass (see 

also Figure 6). A negative value of the dDOS at ~800 cm-1 reflects the decrease of frequencies in 

this region upon adding HfO2. Unfortunately, despite being averaged over six models, the dDOS 

varies rapidly and direct inspection does not yield further details. Nonetheless, there are 

systematic trends in the dDOS which become apparent in the IdDOS. Overall, the IdDOS is 

positive, as expected. However, negative values at 50 cm-1 indicate that the model with higher Hf 

content is deficient of low-frequency vibrational modes. Hence, replacing SiO2 partially by HfO2 

de-populates low frequency modes. This effect is barely seen in the dDOS, which has more 

negative than positive contributions, but oscillates rapidly around zero. Admittedly, the depletion 

of low-frequency modes in HfO2-doped SiO2 is not large, but it is persistent. We observe it 

comparing models 1:36 and 0:36 and to lesser extend for models 2:36 and 1:36. There is no 
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depletion comparing models 3:36 and 2:36. Still a pronounced negative IdDOS at 55 cm-1 

appears comparing 4:36 and 3:36, see Figure 6 (right). 

We speculate that the observed depletion relates to “floppy modes” and the extent of 

collective movements of larger clusters of atoms in SiO2.[37, 38] Adding a heavy Hf atom into 

the structure (by replacing Si by Hf) “pins” such modes and, consequently, reduces partially 

some low-frequency modes. The more pronounced negative IdDOS at 55 cm-1 comparing 4:36 

and 3:36 then is due to larger (HfO)x–units built by clustering Hf-O-Hf linkages. A focused 

modeling targeting these effects in larger models may yield more insight into this effect. 

4. Conclusion 

We present a detailed investigation of the structural, mechanical, vibrational and thermodynamic 

properties of hafnia-silica glasses with low hafnia content (≤ 10 mol%) using density functional 

calculations. Models generated by a melt-quench procedure comprise Si in four-fold 

coordination, while Hf shows four, five and six-fold coordination with oxygen. Network 

statistics show an excess of Hf-O-Hf linkages indicative of formation of HfOx-clusters. We 

compute an enthalpy of mixing of HfO2 in SiO2 of (0.8 ±	0.3) eV/HfO2, and within a regular 

solution model we predict a solubility of HfO2 in SiO2 of 1.9 [-0.3/+11.6] mol% at 1873 K. 

Elastic moduli for mixed glasses are not significantly different from those of pure silica glass. 

The heat capacity of mixed glasses is well described by a simple rule of mixture model, adding 

Cv of a-HfO2 and a-SiO2 in appropriate amounts. We detail the impact of hafnia on vibrational 

modes of the silica glass, notably a down-shift of the high-frequency IR-signal, which should be 

accessible though experiment. Our data also suggests a depletion of low-frequency vibrational 

modes, if HfO2 is added to SiO2. Heavy Hf atoms and small HfOx-clusters effectively pin floppy 

modes in silica glass. 
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Appendix 1: 

In this section, I include supplementary data related to the HfO2-SiO2 project.  

A1) Fitting Equation of State to volume-energy data for HfO2-SiO2 models to extract Bulk 

Modulus:  

Bulk modulus is defined as the ratio of the infinitesimal pressure increase to the resulting 

decrease of the volume. In thermodynamic terms,  

𝐵 =  −𝑉
𝑑𝑃
𝑑𝑉 ;𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝐵𝑢𝑙𝑘 𝑚𝑜𝑑𝑢𝑙𝑢𝑠,𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑛𝑑 𝑃 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  

Hence B is the inverse of compressibility. A typical way to calculate bulk modulus of solid 

systems is to fit a thermodynamic equation of state (EOS) to a plot of total energy of the system 

as a function of system volume. There are different equations of states for the matter. I choose 

the Murnaghan equation to 4 representative HfO2-SiO2 models with varying composition. [1] 

The Murnaghan EOS assumes that B varies linearly with pressure, P. Thus: 

E V =  
B!V
B!!

V!
V

!!!

B!! − 1
+ 1 −

B!V!
B!! − 1

+ E! 

 

Where: B0, V0 and E0 is the zero-pressure bulk modulus, volume and energy respectively. The 

pressure derivative of zero-pressure bulk modulus is B!! . The Murnaghan EOS works very well 

for small compressions. All my computations increase/decrease the cell parameters no greater 

than 3 % of it’s original values.  

The curve-fittings for representative models for all compositions of a-HfSiO are included in 

Figure A1.1. Recall that I used 6 models for each composition of a-HfSiO. An average B0 

calculated over these 6 models are in agreement, except for a-SiO2, with values calculated from 

elastic stiffness matrix. (See table A1) 
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Figure A1.1: Murnaghan EOS fitting to Energy-Volume data of HfO2: SiO2 amorphous models. Top 
row: far left - 0:36; middle – 1:36 and far right – 2:36; Bottom row: left and right – 3:36 and 4:36 
respectively. The zero-pressure Bulk modulus for 0:36, 1:36, 2:36. 3:36 and 4:36 is 37 GPa, 48 GPa, 42 
GPa, 36 GPa and 44 GPa, respectively.  

Composition (mol%) 
Density 

(g�cm-3) 

B0 from E-V fitting 

(GPa) 

B from stiffness matrix 

(GPa) 

0:36 (0) 2.01 37 ± 1 42 ± 1 

1:36 (2.7) 2.31 46 ± 2 46 ± 2 

2:36 (5.3) 2.47 47 ± 2 48 ± 2 

3:36 (7.6) 2.52 44 ± 3 43 ± 2 

4:36 (10.) 2.68 42 ± 2 46 ± 3 
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Table A1.1: Computed Bulk modulus of hafnia silica glass from 1) EOS fitting to E-V data 2) Calculated 
from elastic stiffness matrix. All values are an average over 6 models with standard error between 1-3 
GPa. Densities listed are actual average densities of models, and not those calculated from a rule of 
mixing (as in Table 1 of published manuscript)  

A2) Linear dependence of B, G and E on the mol fraction of HfO2 in a-HfSiO models 

In this section, I include plots (See Fig. A1.2) of elastic moduli – B, G and E for a given 

composition as a function of the average density of the 6 models generated for that composition. 

This data is crucial, as an assumption is made in the manuscript that for a given composition, B, 

G, and E depend linearly on density. Linear fits to the data demonstrate that B, G and E depend 

very weakly on the average model density for any composition. However, this trend is sufficient 

to extrapolate the moduli values for the expected density of HfO2-SiO2 glass from a simple rule 

of mixture.  

     

Figure A1.2: Average elastic moduli – bulk moduli B (left), shear moduli G (middle) E (right) of HfO2-
SiO2 models plotted as a function of the average density of the models. The lines in each diagram are 
linear fits to the data. Error bars in each figure represent computed standard error. 

A3) Thermal conductivity of HfO2-SiO2 models from Clarke’s model: [2] 

The Young’s modulus E, computed from elastic stiffness matrix enables us to calculate the 

minimum lattice thermal conductivity (κmin) of HfO2-SiO2 glass using the phenomenological 

Clarke’s model according to: 

 
κmin = 0.87kBN A

2
3 m

2
3ρ

1
6E

1
2

M
2
3
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where: E is Young’s modulus, M is the mass, m is the number of atoms in the system, kB is the 

Boltzmann constant and NA is the Avogadro’s number. The minimum phonon mean free path is 

assumed to be the cube root of the volume of the system and the mean phonon velocity includes 

only the acoustic modes. 

The data (Table A1.2) shows no significant difference between the κmin of amorphous silica 

and that of mixed HfO2-SiO2 models. This result is expected as Clarke’s model assumes a 

material is homogenous when estimating the phonon mean free path, which produces a bulk 

scalar quantity for thermal conductivity. This assumption of homogeneity does not allow for 

individual atom mass, local chemistry or defects in structure to contribute to the thermal 

conductivity. Thus in a binary system, such as hafnia- silica, the Clarke’s model does not account 

for the clustering of hafnia or the large difference in mass between hafnium and silicon. This 

stands as a failure of the method as the hafnia-silica glasses shows depletion of low-frequency 

phonon modes in their phonon density of states. These low frequency phonon models are known 

to dominate heat conduction in solids. [3](More details included in Section A3) 

 

Composition (mol%) 
Density 

(g�cm-3) 

E 

(GPa) 

(M/m) 

(Kg) 

κmin 

(Wm-1K-1) 

0:36 (0) 2.01 71 20.03 1.1 

1:36 (2.7) 2.31 76 21.24 1.1 

2:36 (5.3) 2.47 77 22.67 1.0 

3:36 (7.6) 2.52 70 23.88 1.0 

4:36 (10.) 2.68 75 25.04 1.0 
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Table A1.2: Minimum lattice thermal conductivity of hafnia-silicate glass using Clarke’s 
phenomenological model 

A4) Non-linear changes in phDOS and a possible rupture of floppy modes 

A major conclusion from my study with HfO2-SiO2 glass is that there is a depletion of low 

frequency vibrational modes when HfO2 is added to SiO2 glass. The dDOS, or difference 

between normalized phonon density of states (phDOS) and IdDOS, which is integrated dDOS, 

illustrates this phenomena nicely with the difference of: 0:36 and 1:36 and 3:36 and 4:36. It is 

interesting to note what happens if differences are considered between models that vary in their 

HfO2 composition by more than one unit. I define the IdDOS(2) as: 𝑝ℎ𝐷𝑂𝑆!! 𝜗! −!
!

𝑝ℎ𝐷𝑂𝑆!! 𝜗! 𝑑𝜗 where x4 – x2 = (10. – 5.3), (7.6 – 2.7) and (5.3 – 0). Similarly IdDOS(3) is 

defined as 𝑝ℎ𝐷𝑂𝑆!! 𝜗! − 𝑝ℎ𝐷𝑂𝑆!! 𝜗! 𝑑𝜗!
!  where x4 – x1 = (10.0 – 2.7) and (7.6 – 0). One 

representative plots of IdDOS (2), in particular between (10.0 – 5.3) and IdDOS (3), specifically 

(10.0 – 2.7) is shown is Figure A1.3. Considering mass effects in a 1-D linear chain model for 

atomic vibrations in solids, it is expected to observe a higher population of vibrational states in 

the low frequency regions in the 4:36 model compared to the 1:36 or 2:36 model due to the 

presence of more Hf atoms in the 4:36 model. [3] However, I observe negative difference 

between populated phonon modes for IdDOS(2)[10.0 – 5.3] at 44 cm-1 and IdDOS(3)[10.0 – 2.7] 

at 22 cm-1. Thus, the effect of “pinning floppy modes” is observed. This negative IdDOS is 

attributed to larger (HfO)x built by clustering Hf–O–Hf linkages, best observed in 4:36 models.  
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Figure A1.3: dDOS(ν) (upper curve, red) and IdDOS(ν) (lower curve, blue) comparing vibrational 
spectra (normalized phDOS(ν)) of 4:36 and 2:36 (left) and 4:36 and 1:36 (right). Graphs have been 
stacked to show the relation between dDOS and its integration, IdDOS. The initial data (normalized 
phDOS) was obtained by convoluting individual frequencies with a Gaussian function of 15 cm-1 widths. 
A negative value of IdDOS (2) at 44 cm-1 and IdDOS (3) at 22 cm-1 implies that the composition with 
higher Hf content has a deficiency of vibrational modes accumulated up to this wavenumber and shows 
the effect of pinning floppy modes in glasses.  
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Summary: 

Hafnia-silica glasses (HfO2-SiO2) with low hafnia content are the subject of interest in this 

project. Small, yet realistic models of HfO2-SiO2 are constructed containing 108 – 120 atoms. Hf 

atoms adopt 4, 5 and 6 fold geometry and show a preference for clustering, or formation of Hf–

O–Hf linkages. These HfOx clusters contribute to the pinning of low frequency vibrational 

modes (also known as floppy modes). The absence of these floppy modes are predicted to affect 

the thermal conductivity of these glasses. In addition, further investigation shows that a single 

unit of HfO2 is enough to trigger the pinning effect. Heat capacity and vibrational spectra (both 

phonon density of states – phDOS  and IR spectra) for these glass compositions are in 

accordance to expectation. They exhibit a simple rule of mixing where the properties of the 

mixed sytem are a weighted means of the properties of the pure systems. However, computed 

elastic moduli and minimum lattice thermal conductivity are exceptions as these properties show 

almost no impact of the added HfO2.  

This work is a valuable addition to other computational studies done so far on HfO2-SiO2 due 

to the following reasons: 

1. Previous work on HfO2-SiO2 glass targets higher (> 25) mol % of HfO2 dissolved in 

SiO2. This is the first instance of a reliable study with small quantities of HfO2.  

2. For the first time, the solubility of HfO2 in SiO2 is verified using precise quantum 

chemical calculations. The reported values (1.9 [-0.3/+11.6] mol% at 1873 K) also 

agree to the only available experimental data within limits of standard error. 

3. Absence of low frequency floppy modes in hafnia-silica glass compositions due to 

presence of HfOx clusters is also observed for the first time.  

Future research may involve extensive study of the thermal conductivity of these models. As 

phonons are main carriers of heat in amorphous systems, modal dependency of thermal 

conductivity using Green-Kubo approach [1] may be an interesting find. Moreover, the dielectric 

constant for these systems may be investigated as they are target materials for gate dielectrics.   
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CHAPTER 2 

FIRST PRINCIPLES MODELING AND SIMULATION OF Zr-Si-B-C-N CERAMICS: 

DEVELOPING HARD AND RESISTANT COATINGS2 

 

 

 

 

 

 

 

 

 

 

 

 

 

																																																								
2  This work has been published in Acta Materialia and is being used with the permission of the 
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Scope and Motivation 

Zirconium borides, carbides, and nitrides belong to a prominent and valued category of ceramics 

known as Ultra-High Temparature Ceramics (UTHCs). UTHCs  are known as such due to their 

high melting points (> 3000 K), high thermal conductivity and thermal shock resistance. [1] 

These materials are also classified as “hard materials” with hardness values more than 20 GPa. 

[2] Popular applications of Zr-based compounds are cutting tools, drill bits and as coatings on 

engine valves. However, these materials have poor oxidation resistance at high temperature. For 

example, ZrB2 reacts with oxygen to form B2O3 that volatilizes above 1373 K according to the 

reaction: 2 ZrB2 + 5 O2 à 2 ZrO2 (s) + 2 B2O3 (l, g) 

In contrast to zirconium based ceramics, silicon based ceramics (e.g. SiC, Si3N4, etc.) possess 

excellent oxidation resistance up to 1800 K. This oxidation resistance is due to the formation of 

an outer layer of SiO2 glass that inhibits oxygen diffusion into the inner parent material. Thus by 

combining functional properties such as hardness and oxidative resistance of different 

compounds (here zirconium and silicon based ceramics respectively), we can design materials 

with tailored properties. 

Experimental work conducted at the Department of Material Science and Engineering at 

UTA has investigated amorphous thin films (thickness between 3.5 and 4.1 μm) of ZrBCN. 

These were synthesized by pulsed magnetron sputtering of Zr and B4C targets in flowing N2. 

Films of composition Zr41B30C8N20 showed a high hardness (36 GPa) due to the formation of 

“nano-domains” in the material. However, the oxidation resistance proved poor - only up to 800 

K. [3, 4] The addition of silicon based ceramics to films of Zr41B30C8N20 could improve the 

oxidation resistance. 

In this project, my goal is to model theoretical ZrSiBCN ceramics and study the hardness 

using ab-initio molecular dynamics. This project is a part of the “Materials Genome Initiative” 

which aims to accelerate advanced materials discovery and deployment in the United States. At 

the end of this chapter is an appendix where I include detailed supplementary information.  
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First Principles Modeling and Simulation of Zr-Si-B-C-N ceramics: Developing Hard and 

Resistant Coatings 
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Abstract 

We model amorphous ZrSiBCN ceramics combining ab-initio molecular dynamic simulations 

with melt-quench and simulated annealing techniques. Starting from the parent composition 

Zr42B30C8N18 we systematically increase the Si3N4 content along four different pathways in the 

composition diagram and evaluate trends in structure and properties. Mixtures of ZrB2, ZrN, and 

ZrC exhibit Zr layers as well as ZrB2 and ZrN(C) nuclei, but addition of Si3N4 reduces structural 

order in the models. Elastic moduli decrease with increasing Si3N4 content to values less than 

expected of a simple mixture model. Thus, while addition of Si3N4 to amorphous ZrBCN 

coatings may improve oxidation resistance, this needs to be balanced with desired mechanical 

properties. 
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Introduction: 

Zirconium borides, carbides and nitrides are ultra high temperature ceramics (UHTCs) with 

melting points above 3000° C. [1, 2] They are frequently used as protective coatings due to their 

refractory nature and high hardness. [3, 4] Thin films of ZrB2, ZrC, or ZrN are synthesized via 

physical vapor deposition (PVD) processes, for instance by reactive magnetron sputtering [5] or 

via chemical vapor deposition (CVD) techniques. [6, 7] In a recent study, quaternary ZrBCN 

films with thickness between 3.5 and 4.1 μm have been synthesized by pulsed magnetron 

sputtering of Zr and B4C targets in flowing N2. [8, 9] These coatings exhibit hardness up to 36 

GPa, and the high value is attributed to a nano-domain structure of ZrN grains joined via 

monolayer interfaces. [8, 9]  

At elevated temperatures zirconium-based UHTC’s have poor oxidation resistance, 

unfortunately. [10] ZrB2 forms ZrO2 and B2O3 upon oxidation, and although a protective layer of 

glassy B2O3 forms, it evaporates rapidly at temperatures exceeding 1200° C exposing a non-

protective ZrO2 layer. [11-13] Zirconium carbides oxidize at temperatures lower than ZrB2, at 

1000° C. [14] Zirconium nitrides have the least oxidation resistance forming ZrO2 at temperatures 

as low as 500°C. [15-17] The quaternary ZrBCN films mentioned above show strong oxidation at 

800°C. [8, 9]  

An approach to improve oxidation resistance of zirconium borides at high temperatures is the 

addition of a silicon bearing compound, for example silicon nitride [18] or silicon carbide. [19] 

Significant improvements to oxidation resistance (up to 1900°C) have been reported for ZrB2 and 

20 vol% SiC composites. [20] Oxidation resistance of ZrB2-Si3N4 ceramics was found to increase 

to 1300-1400 °C with increasing Si3N4 content due to formation of a protective layer of 

borosilicate glass. Addition of 10 mol% of Cr and Ta diborides to these ZrB2-Si3N4 coatings 

improved the oxidation resistance further. [21] 

The high temperature mechanical properties of these materials have also been another 

prominent field of study. Addition of 20 vol% SiC to ZrB2 decreases the Young’s modulus of 
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510 GPa at room temperature to 420 GPa at 1400 °C. [22] At 1600 °C, the Young’s modulus then 

plunges to 100 GPa. Another study finds the Young’s modulus of ZrB2-SiC composites dropping 

to 210 GPa at 1500 °C compared to 510 GPa at room temperature. [23] This decrease in Young’s 

modulus is attributed to the presence of oxides at grain boundaries in the polycrystalline 

material. [24] The presence of 5% Si3N4 as a sintering aid in pure ZrB2 also lowers the Young’s 

Modulus to 419 GPa. [25] At room temperature, ZrB2-SiC composites have exhibited Vickers 

hardness of 17-24 GPa depending on the SiC particle size. [26, 27]. Addition of Si3N4 to ZrB2 

and SiC (ZrB2+20 SiC+4 Si3N4), decreases hardness to ~14 GPa. [25] 

In this work, we will investigate the impact of Si3N4 addition on structure and properties of 

ZrSiBCN materials using structure modeling and ab-initio calculations. Previously, Houska et al. 

used computational methods to investigate atomic and electronic structure of ZrBCN. [28] They 

compared different compositions and characterized covalent and metallic bonding in these 

materials. They used rock-salt type Zr(N+C+B) solid-solutions as models to rationalize the high 

hardness observed in ZrBCN films.	 

Our exploration starts with the composition Zr42B32C8N18, a ternary mixture of ZrN, ZrB2, and 

ZrC. This composition is close to the composition Zr41B30C8N19 of sputtered films, for which a 

hardness of 36 GPa has been measured. [8, 9] Varying the ZrN, ZrB2, and Si3N4 phase content, 

we generate structure models via melt-quench and subsequent annealing techniques. We will 

show that formation of nm-sized ZrN and ZrB2 nuclei happens even at the short time-scales of 

our computer simulation. We compute elastic moduli and Vickers hardness and highlight the 

impact of Si3N4 addition to ZrSiBCN materials. 

Computational details: 

Structures and energies of ZrSiBCN models and of crystalline reference phases are computed 

within density functional theory (DFT). [29-33] We use the Generalized Gradient Approximation 

(GGA) [34, 35] for electron exchange and correlation together with the Projector Augmented 

Wave (PAW) method. [36, 37] For optimizations and property calculations we use a cut-off of 
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350 eV for the expansion of the wave function into a plane wave basis set. Sampling of the 

Brillouin zone is done at the Γ-point for amorphous models and using appropriate meshes for all 

crystalline models.  

We create structures of amorphous ZrSiBCN by a “melt-quench” approach, which is 

followed – for selected models – by a sequence of simulated annealing. For both melt-quench 

and the simulated annealing processes, we perform ab-initio molecular dynamic (aiMD) 

simulations under a canonical (NVT) ensemble. We use a time-step of 2 fs for integrating the 

equations of motion and control temperature via velocity rescaling. The velocity rescaling is 

performed at every time-step. To save computational costs, we reduce the cutoff energy to 205 

eV during aiMD simulations. In the beginning of the melt-quench procedure, we place 100 atoms 

randomly into a box with a volume reflecting a mixture of the constituting phases ZrB2, ZrN, 

ZrC, and Si3N4. Then we create a “liquid” state via simulation at 5000 K for 10 ps (5,000 time-

steps) during which the system loses all memory of its initial configuration. This randomization 

is supported by the fact that atoms exchange more than 90 % of their nearest neighbors during 

this period. Subsequently, the ensemble is cooled to 3000 K within 20 ps, which corresponds to a 

cooling rate of 1014 Ks-1. At 3000 K, the system is again equilibrated for 20 ps, after which it is 

cooled to 2000 K within 20 ps (cooling rate of 5·1013 Ks-1) and finally down to 300 K in 20 ps 

(cooling rate of 8.5·1013 Ks-1). The overall simulation time to generate a “melt-quench” structure 

in this study is almost two orders of magnitude (about 50 times) longer in Ref. [28]. The time-

temperature sequence of the melt-quench process is displayed in Figure 1 (left). For each 

composition, we generate five independent models via the melt-quench procedure (total 65 

models). All structures obtained after the melt-quench procedure are finally optimized (positions 

and cell parameters) by converging forces to 5 meV/Å and stresses below 1 kBar. 
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Figure 1: Time-temperature profile for (left) the aiMD melt-quench procedure and (right) for aiMD 
simulated annealing.  

Simulated annealing starts after optimization of melt-quench models. For every composition, we 

choose the melt-quench model with lowest energy and simulate this at 800 K for 2 ps (total 13 

models). Then we sequentially heat the model to 1200, 1800, 2200, 2600, 3000, and 3400 K 

using a heating rate of 2.5 x1014 Ks-1, while keeping the temperature constant for 5 to 20 ps once 

the desired temperature has been achieved. A graph with the temperature profile during 

simulated annealing is shown in Figure 1 (right). During the annealing procedure, we take a 

snapshot of the model every 2 ps and optimize the structure, while the annealing simulation 

continues. The optimized configurations track the underlying potential energy surface, above 

which the structure evolves at elevated temperatures. Moreover, since the annealing procedure 

effectively “heals” structural defects, we receive a sequence of models of which some have 

energies lower than the initial configurations. After a first complete annealing simulation, we 

choose the lowest energy model once again and repeat the annealing procedure all over. This is 

illustrated in Figure 2 for the model of Zr27Si15B22C8N28. The figure on the left illustrates the first 

annealing process. The red dot shows the energy of the initial structure of this model of 

Zr27Si15B22C8N28 as received after optimization of the melt quench model. Some healing of 

structural imperfections occurs during annealing at 1800 K, and a new “lowest energy structure” 

for the model is found. Further annealing during this run does not produce a lower energy 

structure, so the model is taken and, once again, subjected to a second annealing procedure. 
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During the second annealing procedure, for which longer “holding” times have been chosen (see 

Fig. 2 (right)), another drop in energy is observed. A third annealing process (not shown here) 

did not produce a model with even lower energy. In general, we consider a model being 

“converged” with respect to energy gains, if the maximum gain within annealing was less than 1 

eV for 100 atoms (0.01 eV/atom).  

  

Figure 2: Energy landscapes for the model Zr27Si15B22C8N28 computed in two simulated annealing 
processes. Both plots show on their left Y-axis the energy (in eV) and on their right Y-axis the 
temperature (in K) of the annealing process. Black dots correspond to energies of the optimized 
snapshots taken every 2 ps. The dashed blue line shows the temperature during the annealing, from which 
the snapshot was taken. (Left): First annealing. The red dot marks the initial energy of the model as 
obtained after aiMQ and optimization. Optimized snapshots taken during the annealing provide a 
sequence of models, some with lower energy than the initial state. The red circle and the black arrow 
mark the lowest energy model obtained during first annealing. (Right) Second annealing with longer 
holding times at each temperature. The red dot shows the energy of the starting configuration, as obtained 
from the first annealing. The red circle and the black arrow mark the lowest energy model obtained 
during second annealing. The energies converge initially and the structure is “stable”. Overall, the second 
annealing process is slightly shorter in time to reduce computational costs.  

We compute elastic constants cij via the strain-stress relationship given by Hooke’s Law for all 

models, those received after the melt-quench procedure (5 for each composition) and for models 

with lowest energy obtained from the annealing procedure (1 for each composition). We estimate 

Bulk modulus (B), Young’s modulus (E), and shear modulus (G) as well as Poisson’s ratio for 
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each structure within the approximations of Voigt, Reuss and Hill. [38-40] We evaluate Vickers 

Hardness, HV, using its empirical relation to B and G as proposed by Chen et al..[41]  

Results: 

a) Composition Diagram 

We investigate ZrSiBCN structures with composition located in the quaternary ZrB2-ZrN-ZrC-

Si3N4 phase diagram. Every model comprises of 100 atoms. We compute mole coefficient and 

mole fraction (mol%) directly from composition, e.g. Zr25Si18B16C8N33 == 8·ZrC + 9·ZrN + 

8·ZrB2 + 6·Si3N4 == 25.8 mol% ZrC + 29.0 mol% ZrN + 25.8 mol% ZrB2 + 19.4 mol% Si3N4. 

We fix the amount of ZrC in all models (8 formula units of ZrC) and represent the composition 

of the remaining ZrB2-ZrN-Si3N4 content in a ternary diagram (Figure 3). We acknowledge that 

this is not a perfect slice of the quaternary phase diagram, since the mol% of ZrC in the 

ZrSiBCN structures varies depending on the content of the other constituents. The small amount 

of ZrC is very helpful for structure simulations, because C may substitute for both N (in ZrN-like 

arrangements) and B (in ZrB2-like fragments).  

Starting from the “parent” composition of Zr42B30C8N18 (Zr42B32C8N18 == 8·ZrC + 18·ZrN + 

16·ZrB2), which is close to the experimentally realized composition of Zr41B30C8N19 – we adopt 

four different pathways (1) - (4) to incorporate Si3N4. These paths are indicated in the ternary 

composition diagram shown in Figure 3. Along each pathway we add units of Si3N4 to the model, 

while balancing the total number of atoms in a model (100) by changing the amount of ZrB2 and 

ZrN. The net change along the four pathways is (1) + Si3N4 – ZrB2 – 2 ZrN, (2) + 6 Si3N4 – 8 

ZrB2 – 9 ZrN, (3) + 2 Si3N4 – 4 ZrB2 – ZrN, and (4) + Si3N4 – 3 ZrB2 + ZrN. Path (1) is almost 

parallel to the ZrN-Si3N4 tie-line, while path (3) is approximately parallel to the ZrB2-Si3N4 tie-

line.  
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Figure 3: Ternary composition diagram for Zr-Si-B-C-N compounds (with constant ZrC amount). Lines 
originate from “parent” composition Zr42B30C8N18 and indicate pathways of incorporating Si3N4. Black 
dots represent compositions investigated in this study. 

We generate five independent models for each composition via the melt-quench procedure, and 

subject the lowest-energy model of each composition to the simulated annealing procedure. 

From the annealing procedure we receive one more model for each composition. Hence, in total 

we analyze six models for each of the 13 compositions. For reference, we compute crystalline 

structures of ZrB2, ZrC and ZrN (both NaCl-type), β-Si3N4, h-BN and c-BN.  

b) Structure and Ordering: 

Figure 4 shows four representative structures from each of the four pathways as obtained after 

two cycles of simulated annealing. It is difficult to provide simple quantitative measures for 

bonding in these mixed systems. However, we find average bond distances comparable with 

those computed for crystal structures. For instance, Zr-B (2.42 Å in the model; 2.54 Å in 

hexagonal ZrB2), Zr-C (2.34 Å; 2.34 Å in c-ZrC), Zr-N (2.37 Å; 2.31 Å in c-ZrN), Si-N (1.77 Å; 

1.75 Å in β-Si3N4), Si-C (1.81 Å; 1.86 Å in β-SiC), B-B (1.72 Å; 1.83 Å in hexagonal ZrB2), and 

B-N (1.47 Å; 1.45 Å in h-BN). C-C, C-N, and N-N bonds do not appear in these models. We 

also find occasionally some Zr-Si bonds (2.79 Å; 2.72 Å in ZrSi2).  
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Figure 4: Representative models of amorphous ZrSiBCN structures obtained after two cycles of repeated 
annealing. From left to right the compositions are: Zr39Si3B30C8N20 (3 mol% Si3N4), Zr36Si6B28C8N22 (5 
mol% of Si3N4), Zr33Si9B26C8N24 (8 mol% Si3N4) and Zr25Si18B16C8N33 (19 mol% of Si3N4). Large (orange) 
spheres represent Zr, small (green) N, small (blue) Si, small (brown) B, and small (black) C.  

Simulated site-site distance pair correlation functions g(r) of two models – Zr39Si3B30C8N20 

(pathway (1) at 3 mol% Si3N4) and Zr25Si18B16C8N33 (pathway (2) at 19 mol% Si3N4) shown in 

Figure 5 support our observations. In particular, partial g(r)’s show that both systems exhibit no 

C-C, C-N, or N-N bonding. Zr···Zr correlations at 3.2-3.3 Å are comparable to distances between 

Zr layers in hexagonal ZrB2 (3.17 Å), c-ZrN (3.27 Å) and c-ZrC (3.30 Å). 
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Figure 5: Simulated site-site distance pair correlation functions g(r) of Zr39Si3B30C8N20 (pathway 1, 
composition 1, 3 mol% Si3N4) and Zr25Si18B16C8N33 (pathway 2, composition 1, 19 mol% Si3N4).  

We can characterize – qualitatively – the structural order that occurs in these Zr-Si-B-C-N 

models. Zr tends to arrange in layers, each layer resembling closest packing (cp) in a plane. 

Interstitials spaces between the layers are filled with N, C and B in such a way that Zr is, ideally, 

six-fold coordinated. These Zr-centered octahedra fuse together and form small nuclei of ZrN(C) 

(Figure 6, left). B atoms tend to aggregate in B-B networks forming rings like in the honeycomb 

B-substructure of ZrB2, with Zr located above and below the rings (Figure 6, right). The ZrB2 

nuclei do not appear as frequent as ZrN(C) nuclei. These fragments and nuclei appear in melt-

quench models and annealed models alike, with more pronounced order in the latter. 
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Figure 6: (left) ZrN(C) nucleus in Zr39Si3B30C8N18 (pathway (1), 3 mol% Si3N4) (Right) Fused B6-rings 
between Zr layers (right). Note that in both nuclei one C is substituting for N and B, respectively. Large 
(orange) spheres represent Zr, small (green) N, small (brown) B, and small (black) C.  

The impact of increasing Si3N4 content is a decreasing tendency to form nuclei of any kind. For 

example, models with two and more units of Si3N4 are free of B6-rings. Moreover, the number of 

Zr-centered octahedra fused together (size of ZrN(C) nuclei) decreases significantly as the Si3N4 

content increases. Overall, structures containing Si3N4 are less ordered and exhibit a larger 

variety of local environments for all atoms. 

c) Thermochemistry: 

In Table 1 we show the computed enthalpy of formation of ZrSiBCN models. For each 

composition we only consider the model with the lowest energy. The enthalpy of formation is 

defined with reference to the crystal structures ZrN, ZrC, ZrB2, and β-Si3N4, according to: ΔHf = 

E(a-ZrSiBCN) − [m·E(c – ZrB2) + n·E(c – ZrN) + p·E(c – ZrC) + r·E(β –Si3N4)/natoms where m, n, 

p and r stand for formula units(f.u.) of c-ZrB2, c-ZrN, c-ZrC and β-Si3N4 respectively. Reference 

energies for the crystalline structures are: 

c-ZrB2 = -24.74 eV/f.u.; c-ZrC = -19.33 eV/f.u; c-ZrN = -20.23 eV/f.u.; β-Si3N4=-58.69 eV/f.u. 

Overall, ΔHf of these models is about 0.4-0.5 eV/atom with the exception of the parent 

model, Zr42B32C8N18, for which the enthalpy of formation is only half as high, 0.24 eV/atom. For 

amorphous Si3N4 itself, we find consistently a value of 0.2 – 0.3 eV/atom for the enthalpy of 
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formation, which parallels earlier investigations. [44, 45] Hence, the addition of Si3N4 to a phase 

assemblage of ZrB2, ZrC, and ZrN significantly increases ΔHf. This increase of ΔHf parallels the 

observed decrease to form ordered nuclei with addition of Si3N4.  

Pathway Composition 
Energy 

(eV/atom) 
m n p r 

ΔHf 

(eV/atom) 

Parent Zr42B32C8N18 -9.81 16 18 8 0 0.24 

Pathway (1) 

Zr39Si3B30C8N20 -8.67 15 16 8 1 0.41 

Zr36Si6B28C8N22 -8.57 14 14 8 2 0.45 

Zr33Si9B26C8N24 -8.49 13 12 8 3 0.46 

Zr30Si12B24C8N26 -8.40 12 10 8 4 0.48 

Zr27Si15B22C8N28 -8.31 11 8 8 5 0.51 

Pathway (2) Zr25Si18B16C8N33 -8.35 8 9 8 6 0.52 

Pathway (3) 

Zr37Si6B24C8N25 -8.68 12 17 8 2 0.45 

Zr32Si12B16C8N32 -8.63 8 16 8 4 0.48 

Zr27Si18B8C8N39 -8.64 4 15 8 6 0.45 

Pathway (4) 

Zr40Si3B26C8N23 -8.77 13 19 8 1 0.43 

Zr38Si6B20C8N28 -8.86 10 20 8 2 0.38 

Zr36Si9B14C8N33 -8.87 7 21 8 3 0.42 
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Table 1: Enthalpy of formation (ΔHf) of a-ZrSiBCN with respect to crystalline phases (ZrB2, ZrN, ZrC 
and β-Si3N4). For each composition only the model with lowest energy was considered.  

c) Elastic Moduli and Vickers hardness: 

Elastic constants cij (there are 21 independent elements of cij for each model, since the structures 

do not possess any symmetry) are computed for all ZrSiBCN models, six for each composition. 

The stiffness matrix (cij) of an isotropic model comprises three independent values only, since c11 

= c22 = c33, c44 = c55 = c66, c12 = c23 = c13, and all remaining elements vanish. [46] This is not 

fulfilled for individual models we constructed, most likely because their size is not large enough 

to be “isotropic”. However, averaging cij for models of the same composition yields isotropic 

behavior within the margin of error. A representative average stiffness matrix, for composition 

Zr39Si3B30C8N20, is shown in Table 2:  

cij 1 2 3 4 5 6 

1 266 ± 14 137 ± 9 118 ± 5 -20 ± 17 13 ± 13 5 ± 6 

2 137 ± 9 258 ± 7 114 ± 9 10 ± 11 -17 ± 7 -7 ± 5 

3 118 ± 5 114 ± 9 265 ± 15 -11 ± 9 12 ± 9 6 ± 3 

4 -20 ± 17 10 ± 11 -11 ± 9 61 ± 16 19 ± 14 4 ± 5 

5 13 ± 13 -17 ± 7 12 ± 9 19 ± 14 58 ± 10 0 ± 6 

6 5 ± 6 -7 ± 5 6 ± 3 4 ± 5 0 ± 6 82 ± 4 

Zr34Si12B8C8N38 -8.91 4 22 8 4 0.43 
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Table 2: Stiffness matrix [6x6] of Zr39Si3B30C8N20 averaged over 5 independent melt-quench models. For 
each entry of cij we list the value together with the standard error. The minimum and maximum standard 
errors are 3 and 16 GPa, respectively, with an average of 9 GPa. 

Using the stiffness (cij) and compliance (sij ) matrices, we compute the elastic moduli B, G and E 

using the Voigt, Reuss and Hill (V-R-H) approach. [38-40] Voigt’s method yields an upper 

boundary for an elastic modulus: bulk modulus BV = (1/ 9)[(c11 + c22 + c33) + 2(c12 + c13 + c23)] 

and shear modulus GV = (1/ 15)[(c11 + c22 + c33) − (c12 + c13 + c23) + 3(c44 + c55 + c66). Reuss’s 

method provides a lower bound of an elastic modulus: BR = [(s11 +s22 +s33)+2(s12 +s13 +s23)]−1 and 

GR = 15 [4(s11 +s22 +s33)−(s12 +s13 +s23)+3(s44 +s55 +s66)]-1. The Hill method gives an average of the 

upper and lower bounds as BH = (1/2) [BV+BR] and GH =(1/2)[GV+GR]. The Young’s modulus (E) 

is related to the bulk (B) and shear (G) moduli as E = 9BG/(3B + G), and our estimate of E is 

based on the aggregate Hill values of B and G. For a given composition the moduli can be 

determined either by first averaging the cij and computing moduli from the averaged stiffness 

matrix or alternatively by first computing moduli for each model and then averaging the moduli 

for each composition. We choose the latter approach, since it provides us a simple error estimate 

of each modulus based on its average and its variation (in comparison to the requirement to do a 

full error propagation from stiffness coefficients). Vickers hardness (HV) is estimated using the 

empirical relation between hardness and elastic moduli as proposed by Chen: HV = 2 (G3/B2)0.585 

– 3. [41].  

In Table 3, we summarize results of elastic moduli and hardness (HV) for crystalline 

structures, the parent composition Zr42B30C8N18 and for ZrSiBCN models. There is reasonable 

agreement between our computed data with references in literature. For example, experimental 

data for the independent elastic constants of hexagonal ZrB2 (space group: P6/mmm) are c11=581 

GPa, c12=55 GPa, c13=121 GPa, c33=445 GPa, and c44=240 GPa. [47] This yields B, G, E of 244 

GPa, 233 GPa, and 530 GPa, respectively, within the V-R-H approximation. Our computed 

moduli for ZrB2 are 247 GPa, 214 GPa, and 499 GPa, for B, G, and E, respectively, with a 

deviation of less than 10% from the experimental data. For crystalline ZrC, we compute moduli 
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B and G to 236 GPa and 146 GPa, respectively, which provides an estimate of 18 GPa for HV. 

This is in close agreement with recent computational data (B = 234 GPa, G = 164 GPa, Hv = 23 

GPa, [48]), and differences arise only from the use of different pseudopotentials and cut-offs 

(Ecut-off = 350 eV against 560 eV in reference [48]). Experimental values of B for ZrC, which 

depend on the measurement technique and sample microstructure, range between 207 and 223 

GPa. [49, 50] Our computed elastic moduli of ZrN are B = 268 GPa, G = 195 GPa, and E = 470 

GPa, somewhat larger than recent computational data (B = 245 GPa, G = 150 GPa, E = 375 GPa) 

[51]. From nano-indentation measurements, the elastic constants for β-Si3N4 are determined to 

be: c11 = 343 GPa, c12 = 136 GPa, c13 = 120 GPa, c33 = 600 GPa and c44 = 124 GPa. [52] 

Accordingly, the elastic moduli from V-R-H approximations are B = 227 GPa, G = 120 GPa, E = 

307 GPa and HV = 13 GPa. Computational data in reference [53] for β-Si3N4 yields values of B = 

225 GPa and G = 120 GPa. [53] Comparison of these values with our computed values listed in 

Table 3 for β-Si3N4 (B = 236 GPa, G = 126 GPa, E = 313 GPa) shows good agreement. [53] For 

the parent composition a-Zr42B30C8N18, we compute B, G, E, and HV of 171, 79, 206, and 8 GPa, 

respectively.  

In Figure 7 we plot bulk modulus B, shear modulus G, Young’s modulus E and Vickers 

hardness HV as a function of Si3N4 content (mol-% of Si3N4) along the selected pathways of the 

composition diagram (see Fig. 3). 
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Figure 7: Average elastic moduli – bulk moduli B (top), shear moduli G (top-middle) E (bottom-middle) 
and Vickers hardness HV (bottom) – of ZrSiBCN plotted as a function of mol-% Si3N4 along pathway (1), 
(3) and (4) of the composition diagram shown in Fig. 3. The lines in each diagram are linear fits to the 
data. Error bars in each figure depict computed standard error. The standard errors computed for Vickers 
hardness of some ZrSiBCN compositions are small and hence not visible in the scale of the graph. 

Linear fits to the data in Figure 7 show a decrease of elastic moduli and hardness with increasing 

Si3N4-content. For instance, addition of 1 mol-% of Si3N4 to compositions along pathway (1), 
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decreases the bulk modulus by 1.8 GPa. For pathway (3) and (4) the decrease in B is 1.0 GPa and 

2.0 GPa per mol % Si3N4 added, respectively. For shear modulus (G) the decrease per mol-% 

Si3N4 is 1.2 GPa for pathway (1), 0.6 GPa for pathway (3) and 1.5 GPa for pathway (4). The 

decrease in Young’s modulus (E) is ~ 3.0, 1.6 and 4.0 GPa along pathway (1), (3) and (4) 

respectively. However, Vickers hardness (HV) drops only slightly (by ~ 0.2 GPa per mol-% 

Si3N4) along each pathway, since the estimate by Chen strongly correlates HV to the ratio of B 

and G. Overall, starting from the initial composition Zr42B30C8N18, an increase of Si3N4 content in 

the ZrSiBCN models results in a decrease of elastic moduli B and G and, ultimately, of Vickers 

hardness. A decrease in G, E, and HV (but not in B) can be expected from a simple mixture 

model applied to the addition of Si3N4 to a phase assemblage of ZrB2, ZrC, and ZrN. However, 

we show in next paragraph that effect is larger than expected and that the moduli are impacted 

additionally by the reduced structural order (as discussed in the previous section).  

Along pathway (1) a simple mixture model of Zr42B30C8N18 based on mole fractions of crystalline 

ZrN, ZrC, ZrB2 and Si3N4 and moduli of crystalline structures given in Table 3 predicts moduli 

of 254 GPa, 193 GPa, and 461 GPa, for B, G, and E, respectively. Computed values are 171, 79, 

and 208 GPa, for B, G, and E, respectively. For the model with largest Si3N4 content, 

Zr27Si15B22C8N28, a mixture model yields 198, 102, and 343 GPa, and the computation gives 143, 

60, and 159 GPa, for B, G, and E, respectively. Thus, computed models have significantly lower 

moduli than expected by a mixture model. If data of amorphous a-Si3N4 (either from computed 

models, or using reported experimental data of B = 196 GPa [44] and E = 289 GPa [53]) is used 

to predict the “ideal” moduli for these compositions, the discrepancy is still significant. More 

importantly, the deviation from an ideal mixture model increases with Si3N4 content along all 

pathways. We note that along pathway (1), (2) and (3) addition of Si3N4 happens at the expense 

of ZrN, while the ZrB2 content remains almost constant. On the other hand, along pathway (4) 

Si3N4 is added at the expense of ZrB2, and the ZrN content increases slightly. Along both paths 

we observe significant decrease of local order with increase of Si3N4 content. Therefore, for these 
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ZrSiBCN models a decrease of elastic moduli correlates with a decrease in structural order, 

which in turn goes along with an increase of Si3N4 content. 
 

 Composition	 Bulk 
Modulus 

(GPa) 

Shear 
Modulus 

(GPa) 

Young’s 
Modulus 

(GPa) 

Vickers 
Hardness 

(GPa) 

Crystalline 
phases 

c-ZrB2 247 214 499 36 

c-ZrN 268 195 470  27 

c-ZrC 236 146 364 18 

β−Si3N4 236 126 313 13 

Parent Zr42B30C8N18 171 ± 8 79 ± 5 206 ± 13 8 ± 4 

Pathway 
(1)	

Zr39Si3B30C8N20 190 ± 22 86 ± 4 225 ± 11 8 ± 1 

Zr36Si6B28C8N22 158 ± 4 67 ± 4 177 ± 9 6 ± 1 

Zr33Si9B26C8N24 153 ± 5 71 ± 2 184 ± 5 7 ± 0 

Zr30Si12B24C8N26 152 ± 3 68 ± 1 178 ± 3 6 ± 0 

Zr27Si15B22C8N28 143 ± 3 60 ± 2 159 ± 5 5 ± 0 

Pathway 
(2) 

Zr25Si18B16C8N33 144 ± 4 59 ± 3 157 ± 8 5 ± 1 

Pathway 
(3) 

Zr37Si6B24C8N25 162 ± 1 73 ± 1 192 ± 3 7 ± 0 

Zr32Si12B16C8N32 157 ± 2 66 ± 3 174 ± 7 5 ± 1 

Zr27Si18B8C8N39 151 ± 3 69 ± 1 179 ± 3 6 ± 0 

Pathway Zr40Si3B26C8N23 168 ± 2 76 ± 4 198 ± 9 6 ± 1 



	 60	

(4) 
Zr38Si6B20C8N28 164 ± 1 70 ± 2 184 ± 4 6 ± 0 

Zr36Si9B14C8N33 153 ± 8 59 ± 6 156 ± 15 4 ± 1 

Zr34Si12B8C8N38 151 ± 5 67 ± 2 175 ± 4 6 ± 0 

Table 3: Computed B, G, and E and Vickers Hardness of crystalline ZrB2, ZrC, ZrN, and Si3N4 and of 
amorphous ZrSiBCN models. For amorphous models the error given refers to the standard error obtained 
from averaging moduli of individual models. 

Conclusion 

In this work, we model amorphous ZrSiBCN ceramics, which are candidates for high 

temperature coating materials. Using melt-quench and simulated annealing techniques together 

with ab-initio molecular dynamic simulations, we generate mixtures of ZrB2, ZrN, ZrC and Si3N4 

each model comprising 100 atoms. Starting from the parent composition Zr42B30C8N18 we follow 

four different pathways along which Si3N4 can be included. Models we receive exhibit Zr layers 

as well as ZrB2 and ZrN(C) nuclei. We observe, qualitatively, that structural order depends on 

the amount of Si3N4 content in the system: the more Si3N4 the lower the order. Thermochemical 

calculations yield an enthalpy of formation (ΔHf) of = 0.4 −	0.5 eV/atom for the ZrSiBCN 

models. We compute independent elastic constants and from those elastic moduli (B, G and E) 

within the V-R-H approximations. Along each pathway, we observe decrease of B, G, E and HV 

with increasing Si3N4 content. Values for B, G, E and HV are lower than expectations from a 

simple mixture model, indicating additional impact of reduced structural order upon Si3N4 

addition.  

Consequently, while addition of Si3N4 to amorphous ZrBCN coating materials may improve 

the materials’ oxidation resistance, the computations show that Si3N4 also impacts mechanic 

performance of the coatings. Most notably, we show that a significant effect arises via reduction 

in structural order. While sputtered ZrBCN coatings show nano-domain structure with 

substantial proportion of nano-grains, we expect that addition of Si3N4 impedes the formation of 
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nuclei and nano-grains and increases disorder in the films. Thus, the engineers’ choice will be a 

balance between desired oxidation resistance and target mechanical properties. 
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Appendix 2: 

In this section I include some more computations – done with the ZrSiBCN models. These 

computations were initially planned to bea part of the published manuscript. However, due to 

length issues with the journal, they were omitted. The language is in plural – to include 

contributions of other authors to the work.  

A2.1) Thermal conductivity: 

Lattice thermal conductivities of ZrSiBCN are computed using Clarke’s model that computes the 

minimum thermal conductivity of materials above their Debye temperature. According to this 

model: 

 

where: E is Young’s modulus, M is the mass, m is the number of atoms in the system, kB is the 

Boltzmann constant and NA is the Avogadro’s number. The minimum phonon mean free path is 

assumed to be the cube root of the volume of the system and the mean phonon velocity includes 

only the acoustic modes. [1] Results are included in Table 3 along with thermal conductivity for 

the crystalline phases. The Clarke’s model clearly has its limitation, as can be seen by comparing 

estimated κmin with other computational data or experimental results. For example, Lawson et al. 

report thermal conductivity (κ) of 18 Wm-1K-1 at 1000 K for ZrB2 from atomistic Green Kubo 

simulations. [2] For β-Si3N4, an experimental value of κ = 28 Wm-1K-1 at 1400 K has been 

reported. [3] Nevertheless, within these limitations we compute κmin of Zr42B30C8N18 to 4.1 Wm-

1K-1, which is close to the measured value of 7.3 W/mK at 394 K for Zr41B30C8N19. [4] We then 

find that adding Si3N4 has no significant impact on κmin, as we consistently estimate κmin ~ 4.0 

Wm-1K-1. From the Clarke’s formula it is expected that a decrease in Young’s modulus and 

density lead to decrease in κmin while a decrease in mean atomic mass (M/m) increase κmin. In our 

ZrSiBCN models, the Young’s modulus decreases along the selected pathways (see Figure 7) 

κmin = 0.87kBN A

2
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and so does the mean atomic mass (M/m) due to intermixing atoms of different atomic mass. 

Thus, upon increasing Si3N4 content a decrease in Young’s modulus is compensated by a 

decrease in mean atomic mass (M/m) resulting in a constant value of κmin. 

 

 Composition	 Young’s 
Modulus 

(GPa) 

Thermal Conductivity κmin 
(Wm-1K-1) 

Crystalline 
phases 

c-ZrB2 499 2.30 

c-ZrN 470  2.59 

c-ZrC 364 1.61 

β−Si3N4 313 2.48 

Parent Zr42B30C8N18 206 ± 13 4.06 ± 0.02 

Pathway 
(1)	

Zr39Si3B30C8N20 225 ± 11 4.4 ± 0.1 

Zr36Si6B28C8N22 177 ± 9 4.10 ± 0.04 

Zr33Si9B26C8N24 184 ± 5 4.17 ± 0.06 

Zr30Si12B24C8N26 178 ± 3 4.21 ± 0.04 

Zr27Si15B22C8N28 159 ± 5 4.07 ± 0.06 

Pathway 
(2) 

Zr25Si18B16C8N33 157 ± 8 4.09 ± 0.08 

Pathway 
(3) 

Zr37Si6B24C8N25 192 ± 3 4.12 ± 0.03 

Zr32Si12B16C8N32 174 ± 7 4.06 ± 0.09 

Zr27Si18B8C8N39 179 ± 3 4.26 ± 0.03 
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Pathway 
(4) 

Zr40Si3B26C8N23 198 ± 9 4.09 ± 0.09 

Zr38Si6B20C8N28 184 ± 4 3.98 ± 0.05 

Zr36Si9B14C8N33 156 ± 15 3.7 ± 0.2 

Zr34Si12B8C8N38 175 ± 4 3.97 ± 0.05 

Table A2.1: Computed Young’s modulus (E) and κmin of crystalline ZrB2, ZrC, ZrN, and β-Si3N4 and of 
amorphous ZrSiBCN models. For amorphous models the error given refers to the standard error obtained 
from averaging moduli of individual models. 

A2.2) IR spectra: 

In Fig. A2.1 we show the computed IR spectra of crystalline ZrB2, ZrC, ZrN and β-Si3N4. ZrB2 

has two IR active modes at 454 cm-1 and 479 cm-1. Experimental data shows evidence of a peak 

at ~500 cm-1. [5] ZrC and ZrN exhibit peaks at 225 cm-1 and 512 cm-1, respectively. For ZrC, the 

peak at 225 cm-1 is in good agreement with phonon modes of ZrC crystals obtained from a 

normal mode analysis [6] or by ab initio lattice dynamics calculations. [7] Experimentally, ZrN 

based ceramics derived from for organometallic precursors show Zr-N vibrations at 469 cm-1. [8] 

First principles calculations of the phonon density of states for ZrN shows Zr-N vibrations at 

~500 cm-1. [9] The IR spectra of β-Si3N4 are more complicated and show 6 IR-active modes. The 

low frequency modes at 360 cm-1, 420 cm-1 and 556 cm-1 are in agreement with experimental IR 

spectra (380 cm-1, 447 cm-1 and 580 cm-1) by Wada et al. [10] and computational data (378 cm-1, 

424 cm-1 and 562 cm-1) by Cai et al.. [11] The high frequency IR modes at 816 and 873 cm-1 

differ significantly from the experimental modes at 910 and 985 cm-1. However, our data is 

consistent with computed IR of β-Si3N4 – 848 and 886 cm-1. [12] The sixth peak at 1021 cm-1 

agrees well to both experiment (1040 cm-1) and computation (1010 cm-1) in literature. [10], [11] 

Thus our computed IR modes for the crystalline phases are in reasonable agreement to published 

literature. 
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Computed IR spectra of ZrSiBCN models (Figure 9) exhibit three major regions. A first 

below 200 cm-1, a second (main peak) from 200 to 600 cm-1, and the high frequency tail above 

600 cm-1. Inspection of eigenmodes shows that the range below 200 cm-1 is attributed to 

vibrations of Zr atoms without contribution from C, N, Si or B atoms. The range between 200-

600 cm-1 is related to localized Zr-C, Zr-N, and Zr-B vibrations while above 600 cm-1 we observe 

modes with localized Si-N, B-N and B-B vibrations. Both hexagonal and cubic boron nitride 

shows characteristic peaks between 780 and 1300 cm-1. [12-15]. The spectra shown in Fig. 9 

show significant fluctuations and by visual inspection, no trend can be extracted. However, the 

increasing Si3N4-content correlates with an increase of vibrational modes with wave numbers 

larger than 600 cm-1 (see Fig. 10).  

    

Figure A2.1: (Left) IR spectra for crystalline ZrB2, ZrC, ZrN, c-BN and h-BN. (Right) IR spectra for β-
Si3N4. In these spectra, each line has been broadened using Gaussian functions of 3 cm-1 width. 

  

Figure A2.2: IR spectra of (left) five compositions along pathway (1), (middle) three compositions along 
pathway (3) and (right) 4 compositions along pathway (4). Each IR spectra is an average of 6 models; 
lines have been broadened using Gaussian functions of 50 cm-1 width. 
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Figure A2.3: IR spectra of three models with different Si3N4 –content, 0, 3 and 25 mol%, to illustrate 
trends in relative intensities. Each IR spectra is an average of 6 models; lines have been broadened using 
Gaussian functions of 50 cm-1 width. 

A3.3) Structure of the parent composition – Zr42B30C8N18 

In this section, is a representative model of Zr42B30C8N18 – the parent composition. The model 

shows seggregation of B atoms, in the form of B6 rings fused between the Zr layer. This models 

is also generated in the same strategy as in the a-ZrSiBCN model: melt and quench followed by 

repeated annealing.  

  

Figure A2.4: (Left) Representative model of amorphous Zr42B30C8N18 structure obtained after three cycles 
of repeated annealing. (Middle & right) ZrN(C) nucleus and fused B6-rings between Zr layers. Note that 
on the nuclei in middle one C is substituting for N. This model has a hardness of 11 GPa and kmin of 4.1 
Wm-1K-1Large (orange) spheres represent Zr, small (green) N, small (blue) Si, small (brown) B, and small 
(black) C. Models are courtesy of Dr. P. Kroll.  
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Summary: 

Amorphous ZrSiBCN ceramics have an applications as a high performance coating material at 

elevated temperatures. This work is a significant contribution to the Materials Genome Project. 

The key points of this study are summarized as below: 

1. Si3N4 is added to the parent composition of Zr42B30C8N18 along 4 proposed pathways. 

The amount of Si3N4 added varies between 3 – 19 mol %. 

2. Nucleation is observed in these models (100 atoms), even within small time-scales of 

simulations.  

3. The addition of Si3N4 to the parent material lowers the tendency of crystalline 

aggregate formation – nuclei of ZrN(C) or fused honey-comb like B6 rings in between 

Zr layers.  

4. Computed mechanical properties of the parent material are also compromised as 

Si3N4 is added to it. Decrease in bulk, shear and Young’s modulus are observed which 

also leads to a decrease in the Vicker’s Hardness (HV). While absolute values 

computed cannot be compared to experimental data available (due to differences in 

methodology), this study still proposes a clear trend.  

5. The parent composition has a HV of (8 ± 4) GPa. Adding small amounts of Si3N4 (3 

mol %, Zr39Si3B30C8N20) does not affect the hardness (8 ± 1 GPa). If this composition 

is experimentally synthesized it will be a useful addition to oxidation resistant 

coatings. The low quantity of Si3N4 is expected to prevent the oxidation of ZrBCN 

composition by forming protective layer of borosilicate glass.  

Open threads in ZrSiBCN modeling comprise of building large-scale models of ZrSiBCN 

compositions that enable us to further study the effects of crystalline aggregates on material 

properties. Two important questions arise: 1) Is there a Hall-Petch effect that could connect the 

size of the crystalline nuclei to the strength in these materials ? [1-5] 
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2) What is the critical size of these nuclei if they were not restricted within periodicity of the 

small models? [6] 
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CHAPTER 3 

MODELING AMORPHOUS SILICON NITRIDE: A COMPARATIVE STUDY OF 

EMPIRICAL POTENTIALS3 
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Scope and Motivation 

Amorphous silicon nitride (a-Si3N4) ceramics is the leading contender for engine parts – turbo 

charger rotors, valve springs, etc.. Si3N4 also has applications in microelectronics and is used to 

mask oxidation in silicon integrated circuits. Moreover, Si3N4 is resistant to water and alkali salts 

and is used as protective coatings for silvered glass mirrors. Si3N4 is biocompatible and used in 

bearings that improve endurance of prosthetic hip and knee joints. The study of Si3N4 

microstructure is important. [1-3] 

Various models of a-Si3N4 have been proposed, the first being a “ball-and-stick model” by 

Ohdomari et al. using the ideas of a continuous random network (CRN). More recently, the use 

of empirical potentials is a popular method to model a-Si3N4. Several empirical potentials were 

implemented to describe amorphous Si3N4 however, a comparative study between these 

empirical potentials is lacking. In this chapter, I include results of a study that involves modeling 

a-Si3N4 using 9 different flavors of empirical potential. These models are optimized using DFT 

and investigated for their thermochemistry and local coordination defects.  

Interestingly, I conclude that the Tersoff potential, one of the most cited empirical potentials 

when modeling a-Si3N4, produces unrealistic models with numerous dangling bonds. This work 

also brings the Marian-Gastreich two body potential (MG2) and the Garofalini potential (SG) to 

the forefront as my results indicate these are the best potentials to model a-Si3N4. A major reason 

for the neglect in usage of the MG2 potential is inaccessibility. The MG2 potential is not 

available in any popular molecular dynamics simulation package. However, as a part of this 

project, I have implemented the MG2 potential in LAMMPS, and will make it available to the 

community upon request.  

This chapter first includes the journal article followed by the appendix where I include details 

of implementation of MG2 potential in LAMMPS and some more useful supplementary 

information. 
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Modeling amorphous Silicon Nitride: A comparative study of empirical potentials 

Atreyi Dasmahapatra1 and Peter Kroll1* 
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Abstract: 

We perform a comparative study of empirical potentials for atomistic simulations of amorphous 

silicon nitride (a-Si3N4). We choose 5 different parameterizations of the Tersoff potential, the 

Marian-Gastreich two-body (MG2) and three-body (MG3) potential, the Vashishta (V) potential, 

and the Garofalini (SG) potential. Amorphous models of Si3N4, comprising of 448 atoms, are 

generated by each empirical potential using a melt-and-quench procedure. Subsequently, models 

are optimized using Density Functional Theory calculations, and structures resulting from these 

DFT optimizations are compared. We emphasize local coordination of atoms and the enthalpies 

of formation (ΔHf) relative to crystalline β-Si3N4. The SG and MG2 potentials prove to be best 

options for modeling of a-Si3N4. Models generated with these potentials are close to their DFT 

local minimum, exhibit the smallest number of defects, and have realistic enthalpies of 

formation.  
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Introduction 

Silicon nitride is a ceramic material with diverse applications owing to its good mechanical and 

electrical properties. [1] Dense sintered Si3N4 components exhibit high thermal strength and 

fracture toughness and are used in many engineering applications. [2,3] Thin films of amorphous 

silicon nitride, have a high dielectric constant and are applied in microelectronics. [4-7] Thick 

films of Si3N4 are promising materials for non-linear optical applications. [8,9] Moreover, Si3N4 

is an environmental barrier coating material due to its oxidation resistance up to 1500 °C. [10] 

Silicon nitride also exhibits great biocompatibility and is used as bearings for total hip and knee 

joint replacement in orthopedics. [11]  

There is extensive work in computational modeling of amorphous silicon nitride (a-Si3N4). 

The first study was reported by Ohdomari et. al. who constructed a continuous random network 

ball-and-stick model. [12] A Keating type potential was applied to relax these models and radial 

distribution functions characterized the local environment of atoms. Umesaki et al. used a 

Busing-type pair potential to model a-Si3N4 by molecular dynamic (MD) simulations. [13] Their 

models consisted of SiN4 tetrahedral units with few structural defects, and the radial distribution 

function (RDF) as well as the structure factor agreed well with experimental data. 

Development of a Tersoff potential to model a-Si3N4 was first pursued by Kroll. [14] Seven 

different parameterizations for the N atom were proposed and used together with the original Si 

parameters by Tersoff. [15,16]. Adopting one of these parameter sets, Matsunaga studied a 

variety of silicon nitride ceramics including amorphous SiCN, SiBN and Si3N4 ceramics. [17,18] 

Brito-Mota et al. proposed an alternative parameter set for N and studied local geometry and 

bonding in a-SiNx (0 < x < 1.6) materials. [19,20] The parameterization of Brito-Mota was later 

augmented to study hydrogen interactions in a-SiNx:H systems. [21] Vashishta et. al. developed a 

Si-N interaction potential including charges, polarizabilities, and bond angle terms. This 

potential was used to model multi-million atom models of a-Si3N4 and study nano-indentation, 

crack propagation, and various mechanical properties of a-Si3N4. [22-26] As part of their efforts 
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to model SiBN ceramics, Marian et. al. proposed a two-body potential for interactions involving 

Si, B and N. [27] This potential reproduced structure, vibrational and elastic properties of 

crystalline Si3N4 and BN, and was used to model mixtures of these two systems, particularly 

Si3B3N7. The same authors also suggested a more elaborate three-body potential for modeling 

SiBN materials. [28] Completing this brief survey, Garofalini et. al. developed an interaction 

potential for modeling inter-granular films in Si3N4 ceramics. [29,30] 

Given several empirical potentials available for modeling Si3N4, an obvious question is: 

which is the best? Since all the potential models outlined have been fitted to properties of α- and 

β-Si3N4, they describe these crystalline structures quite well. However, these potentials are also 

used to model amorphous silicon nitride, and while transferability is commonly assumed, it is, by 

no means, guaranteed to work. Therefore, our goal is to compare these different empirical 

potentials with respect to their ability to provide sound models of amorphous silicon nitride. Our 

comparison is facilitated through Density Functional Theory (DFT) calculations, which provide a 

rigorous assessment of every structure generated by each empirical potential within one common 

method.  

The next section will provide a brief description of the individual empirical potentials. We 

then describe the computational approach that we use for structure generation and DFT 

calculations. In the result section we emphasize local atomic arrangements and structural 

changes happening during DFT optimizations as well as the enthalpy of formation. 

Interatomic Potentials 

In this section we briefly describe the analytical form of each empirical potential and their 

parameters. 

1. Tersoff Potential 

The Tersoff potential is based on the concept that the strength of a bond between two atoms 

depends on their local environment. [15,16] The potential is short-ranged, with only the first 
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coordination shell included, and consists of two-body and three-body terms. It was originally 

developed to model single element semi-conductors such as Si, Ge, and C, but soon was applied 

to binary systems such as SiC. [31] The key-idea of the Tersoff potential is its “transferability”; 

eleven (11) parameters are developed for each element, only once. Parameters for interaction in 

compound systems are then governed by simple rules of mixture. This approach, ideally, 

eliminates the work to find new parameter sets for every new combination of elements. 

Practically, the potential still uses two unique parameters for each binary combination of 

elements, χij and ωij, which can be used to tailor hetero-atomic interaction. The explicit 

functional form of the potential is given in the appendix. 

Tersoff-parameters for modeling of Si3N4 have been developed by Kroll and by Brito-Mota et 

al. [14,20]. Kroll followed the original idea of Tersoff and fitted potential parameters for N using 

structure and elastic data for hypothetical phases of nitrogen only. Unique parameters for C-N 

and Si-N interaction were subsequently fitted using experimental and computed data of C3N4 and 

Si3N4 crystalline structures. A variety of parameter sets were proposed and analyzed. [14] Three 

suitable sets are shown in Table 1 (labels 001-1, 001-2, 002-1). Brito-Mota et al., on the other 

hand, optimized their parameter set for N-N and for Si-N interaction simultaneously using 

experimental and computed data available for β-Si3N4, the N2 molecule and trisilylamine 

molecule, Si3NH9. The parameters (label BM) are included in Table 1. The parameter set used by 

Matsunaga et al. is identical with set 001-1 of Kroll; with the exception that one of the unique 

binary parameters (ωij) was set to 1. [18] It is listed as an independent set (label mat) in Table 1. 

For all Tersoff potential parameterizations, the attractive part of homo-atomic interactions Si-Si 

and N-N is set to zero for modeling of Si3N4. Hence, Si-Si and N-N interactions are repulsive up 

to the defined cutoff distance.  

 

Parameters 001-1 001-2 002-1 mat BM 
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A [eV]  11000 11000 8860.0 11000 6368.14 

B [eV] 219.45 219.45 197.09 219.45 511.760 

λ [Å-1] 5.7708 5.7708 5.5237 5.7708 5.43673 

µ [Å-1] 2.5115 2.5115 2.3704 2.5115 2.70 

b [10-2] 10.562 10.562 5.8175 10.562 0.529380 

n 12.4498 12.4498 8.2773 12.4498 1.33041 

c 79934 79934 79126 79934 20312.0 

d 134.32 134.32 112 134.32 25.5103 

cos q (h) -0.99734 -0.99734 -0.99995 -0.99734 -0.562390 

χSi-N  0.91736 0.88779 0.85758 0.91736 0.65 

ωSi-N 1.0993 0.98426 0.66175 1* 1.00 

R (pm) 180 

S (pm) 210 

Table 1: Tersoff potential parameter sets for N: 001-1, 001-2, 002-1 by Kroll, BM by Brito-Mota et al. 
and mat by Matsunaga. [14,17,20] The sets 001-1 and 001-2 differ only in choice of the unique binary 
parameters χSi-N and ωSi-N. The parameter set mat is identical to 001-1 except for ωSi-N (set to 1 in mat). 

2. Marian-Gastreich two-body potential (MG2) [27] 
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The MG2 potential was originally developed for modeling of SiBN ceramics. [27] For our study, 

we use its portion relating to SiN systems only. The potential consists of two-body terms only: 

attractive Morse-type for Si-N, screened Coulomb repulsion for Si-Si and N-N, and an additional 

dispersion term for N-N interactions. A taper function provides a cutoff at a distance of 5.8 Å. 

The explicit form of the potential together with parameters is given in the appendix. The absence 

of a three-body term in covalently bonded systems makes the MG2 potential unique in 

comparison to all other empirical potentials considered in this study. 

3) The Marian-Gastreich three-body Potential (MG3) [28] 

Soon after the MG2 potential, the same authors developed a three-body potential for modeling of 

SiBN ceramics. [28] The MG3 potential includes charges, attractive Coulomb interactions and a 

Stillinger-Weber-type angular term. [32] A smooth cutoff of the potential limits its range to 8 Å. 

Si-Si and N-N interactions are repulsive up to the cutoff. We use only the portion relating to SiN 

systems in this work. The analytical form of the potential together with parameters is given in the 

appendix.  

4) The Vashishta Potential (V) [22] 

The Vashishta potential is another approach involving two-body and three-body terms. It 

includes steric repulsion, screened Coulomb interaction, and screened charge-dipole interactions. 

A three-body Stillinger-Weber-type angular term accounts for bond bending effects. [32] The 

two-body part of the potential has a cutoff distance of 5.5 Å, while the three-body part is short-

ranged with a cutoff of 2.6 Å. Homo-atomic interactions of Si-Si and N-N are defined repulsive. 

The analytical form of the potential along with its parameters is included in the appendix. 

4) The Garofalini Potential (SG) [29] 

The Garofalini potential, originally developed to study inter-granular films in Si3N4 ceramics, 

consists of both two and three body terms. The two-body term is a modified Born-Meyer 

Huggins potential that defines the homo-atomic interactions as repulsive. [33-35] The three-body 
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part adopts the functional form of the Stillinger-Weber potential. [32] The analytical form and 

the parameters for this potential are given in the appendix.  

Computational Method: 

The empirical potentials have been implemented into the LAMMPS-code (Large-scale 

Atomic/Molecular Massively Parallel Simulator), with the exception of the MG3 potential, for 

which we rely exclusively on the GULP (General Utility Lattice Program) package. [36,37] 

Generating models of amorphous Si3N4 is achieved through molecular-dynamic (MD) 

simulations following a standard melt-and-quench (MQ) procedure: first producing a “melt-like” 

state at very high temperatures and thereafter cooling the system down to low temperature and 

minimizing its energy. All MD and energy minimizations using empirical potentials are carried 

out at constant volume. Each model comprises 448 atoms (192 Si, 256 N), which is a 

compromise between size (simulation box parameter ~16 Å) and computational demand, since 

all models are further computed using Density Functional Theory (DFT) calculations. 

In LAMMPS, we heat the system from 0 to 5000 K in 3 ps (rate = 1.5 x 1015 K•s-1). At 5000 

K a “melt” has formed, confirmed by rapid exchange of neighbors for all atoms. We keep the 

system at 5000 K for 0.75 ps, and then “quench” the system to 3000 K in 75 ps (2.6 x 1013 Ks-1), 

at which temperature we keep it for 0.75 ps. Next we cool the system to 2000 K in 75 ps (1.3 x 

1013 Ks-1) and from there, finally, to 300 K in another 75 ps (2.3 x 1013 Ks-1). The total simulation 

time for this melt-quench procedure is 229.5 ps. We use a time step of 0.15 fs throughout these 

MD simulations. After the MD-MQ procedure, we perform a final energy minimization of the 

structure. In GULP, we use a slightly different temperature profile due to scaling issues of the 

code. MG3 models have been produced by first heating the system from 0 to 5000 K in 10 ps 

(rate = 4.7 x 1014 K•s-1) after which we cool it to 300 K in 105 ps (4.5 x 1013 K•s-1). Thus, models 

generated in GULP have been quenched at more than twice the rate in comparison to models 

generated with LAMMPS. Since this could be a potential source of concern, we analyzed results 

for models generated with the MG2, for which we used both codes and temperature schedules. 
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However, we compared energies and radial distribution functions and found no discernable 

differences between the two cohorts of models generated either way.  

Since we work at constant volume, we set the volume of the simulation box to match 

densities from 2.6 - 3.4 g•cm-3 (in steps of 0.1 g•cm-3). For every density we produce 10 models, 

hence a total of 90 models for each potential.  

We compared the CPU usage for the individual potentials for a system of 3584 atoms for 

35000 MD steps. While the total time spent will depend on the particular platform, a comparison 

of relative computational effort needed may be a decisive factor when choosing a particular 

potential. With the exception of the MG3 potential, we achieved all computations within 

LAMMPS on the Stampede supercomputer at Texas Advanced Computing Center (TACC). As 

expected, the two-body MG2 potential turned out to be the fastest method, with 3.9 µs/atom/step. 

Tersoff potentials needed approximately 5, the Vashishta potential 7.1, and the SG potential 10 

µs/atom/step. 

After structure generation by the melt-quench method, we switch to Density Functional 

Theory (DFT) calculations employing the VASP code (Vienna Ab-Initio Simulation Package). 

[38-40] We use the Generalized Gradient Approximation (GGA) for electron exchange and 

correlation combined with the Projector Augmented Wave (PAW) method. [41] The Brillouin 

zone is sampled at the Γ−point. At the start of DFT calculations, we compute the energy of all 

(approximately 1,000) models using soft pseudopotential and cut-off energy (Ecut) of 300 eV for 

the expansion of the wave function into a plane wave basis set. These “static” calculations yield 

DFT energies, which we use to select models for further optimization. Of the 90 models 

computed for every empirical potential, we select the 10 models with lowest energy and proceed 

to further optimizations within DFT. We always add models with low density to the cohort to 

study their development in the quantum-chemical approach. 

Optimization within DFT is first done at constant volume continuing with soft pseudopotential 

and Ecut = 300 eV. After 60 optimization steps, we switch to hard pseudopotentials, Ecut of 500 

eV, and optimize lattice parameters and positions simultaneously. In the end, forces are 
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converged to lower than 0.1 eV/Å and stresses smaller than 5 kBar. We compute the reference 

energy of crystalline β-Si3N4 to 8.170 eV/atom and 8.182 eV/atom, within the two approaches, 

respectively. 

Site-site pair-correlation functions (PCFs) of a-Si3N4 are generated collecting individual 

entries of the ten (10) models with lowest energy selected for “full” DFT optimization. We 

broaden the data with Gaussians of FWHM = 2 pm. Each PCF is drawn to scale and is 

normalized so that it approaches the value 10 at infinite distance. The difference between two 

ticks on the ordinate is 30.  

Results and Discussion: 

Structure 

Representative models of a-Si3N4, consisting of 448 atoms with a density comparable to that of 

crystalline β-Si3N4 (3.1 g·cm-3) are shown in Figure 1. These models have been generated by the 

empirical MG2 and Vashishta potentials and subsequently optimized in DFT.  

 

Figure 1: Representative models of a-Si3N4 generated with the MG2 (left) and Vashishta (right) potential 
and subsequently optimized in DFT. Blue spheres are Si. Green spheres are N. Density of each model is 
3.1 g•cm-3. The simulation boxes have dimensions between 16 and 17 Å and angles 88°< α, β, γ < 92°. 
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Characterizing the structure of amorphous a-Si3N4 models, we first turn to the coordination of 

individual atoms. The crystal structures of α- and β-Si3N4 display Si 4-fold coordinated by N and 

N 3-fold coordinated by Si. Bonding in amorphous silicon nitride (which may still contain small 

proportions of hydrogen) resembles the local environments of β-Si3N4, with only minute amounts 

of defects. [42,43] In contrast, the high-pressure modification of γ-Si3N4, which adopts a spinel-

type structure, exhibits both 4-fold and 6-fold coordinated Si together with 4-fold coordinated N. 

The 3-fold coordinated Si (silyl-cation) is a known species in chemistry, but it is highly reactive 

and can only stabilized by very bulky ligands under particular conditions. [44]  

The models produced using different flavors of empirical potentials exhibit significant 

amounts of “under-coordinated”(UC) Si (3 or fewer neighbors) and N (2 or fewer neighbors) as 

well as “over-coordinated”(OC) Si (5 or more) and N (4 or more). Though it is often difficult to 

make a clear distinction between a “very long” Si-N bond, which may occur for a strongly 

pyramidal Si displaying a fourth Si-N distance of up to 2.40 Å, and a “true” 3-fold connected 

Si[3], we set the first nearest neighbor cut-off distance to 2.20 Å for convenience. This is about 

30% larger than the Si-N bond length of 1.72 Å in β-Si3N4. [42,43] The fractions of “under-” and 

“over-coordinated” atoms in lowest energy models – as achieved from empirical potential 

simulation prior to DFT and after DFT calculations – are given in Table 2 together with the 

average coordination number, CN, before and after DFT.  

Overall, models generated with the Tersoff potential – parameter sets 001-1, 001-2, 002-1, 

mat and BM – exhibit 10 - 20% under-coordinated Si after model generation and before DFT 

optimization. The amount reduces significantly during DFT optimization, due to the high 

reactivity of Si[3]. However, the fraction of Si[3] present after DFT optimization still exceeds 4% 

in all Tersoff-models. The percentage of over-coordinated Si is up to 10%, and changes only 

marginally during DFT optimization. Considering the coordination environment of N atoms, we 

find that all Tersoff models exhibit 3 - 10% under-coordinated N before DFT optimization, 

changing slightly to 3 - 7 % after DFT optimization. The percentage of over-coordinated N is 

about 6 - 8% for all Tersoff parameters sets. Overall, the Tersoff potentials provide the highest 
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fraction of Si and N atoms deviating from their “ideal” coordination number of 4 and 3, 

respectively. 

In contrast to Tersoff potentials, the MG2, MG3, Vashishta and SG empirical potentials 

generate significantly less under- and over-coordinated atoms. In particular, these potentials 

provide smaller fractions of under-coordinated Si in comparison to Tersoff models. This impacts 

structural changes during subsequent DFT optimizations. Among the peculiarities we observe is 

the inclination of the MG3 potential to generate models with many over-coordinates atoms. Even 

after DFT optimization, these models retain an average Si coordination number of 4.1. In 

contrast, the Vashishta and SG potentials strongly avoid over-coordination of Si.  

Taking a look at models with low-density (ρ < 2.7 g·cm-3), we find that, with the exception of 

the MG2 potential, all empirical potentials produce significantly higher fractions of under-

coordinated atoms. Tersoff models exhibit 20-30 % under-coordinated Si and 10-20 % under-

coordinated N before DFT optimizations. This number drops by half, 10-15 % for Si and 5-10 % 

for N, after “full” DFT optimization. The Vashishta and SG potential models also produce higher 

amounts of under-coordinated Si (15 % for both V and SG) and N (10 % for V and 12 % for SG) 

at low density. These values reduce to less than 5 % for both Si and N after DFT optimization. 

The MG3 potential yields 16% of under-coordinated Si and 12% of under-coordinated N before 

DFT, which is reduced to 10% for Si and 8% for N after DFT optimizations. Only for the MG2 

potential the fraction of under-coordinated Si and N is below 10 %. After DFT optimization, the 

fraction of under-coordinated Si and N, change only minimally. 

As noted earlier, all potential approaches applied here implement repulsive N-N and Si-Si 

interactions and, therefore, explicitly prevent formation of close N...N or Si…Si contacts during 

structure simulation. The Tersoff approach, in principle, can include N-N bond formation and a 

detailed assessment and discussion is given in Ref. [14]. Despite forced avoidance, Tersoff-

models always contain 2-4 N-N bonds after DFT optimization.  (see Table 2) Hence, with 256 N 

atoms in each model, 2-3 % of N atoms are involved in homo-atomic N-N bonds. In contrast, no 

such bonds appear in models generated by the MG2, MG3, V, or SG potentials after DFT 
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optimization. These potentials are apparently more effective in avoiding N-N bonds due to their 

longer cutoff distance. 

 

  Before DFT After DFT 

Pot 
Name 

Atom 
center % UC % OC CN % UC % OC CN Number  of 

N-N bonds 

001-1 

Si 17 4 3.9 5 8 4.0 

3.6 

N 10 0 2.9 6 9 3.0 

001-2 

Si 16 6 3.9 5 8 4.0 

2.8 

N 7 0 2.9 4 6 3.0 

002-1 

Si 16 15 4.0 9 8 4.0 

3.2 

N 1 2 3.0 7 7 3.0 

mat 

Si 15 6 3.9 7 9 4.0 

2.4 

N 7 0 2.9 5 6 3.0 

BM Si 13 9 4.0 4 9 4.0 2.2 
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N 3 0 3.0 3 7 3.0 

MG2 Si 2 6 4.0 2 5 4.0 

0.0 

 N 6 8 3.0 1 5 3.0 

MG3 Si 4 12 4.1 3 9 4.1 

0.0 

 N 0 7 3.1 1 5 3.0 

V 

Si 2 0 4.0 1 1 4.0 

0.0 

N 7 4 3.0 4 4 3.0 

SG 

Si 6 0 3.9 1 4 4.0 

0.0 

N 5 1 3.0 2 4 3.0 

Table 2: Statistics for Under-coordinated (UC) and Over-coordinated (OC) atoms as well as average 
coordination numbers for Si and N in a-Si3N4 models. “Before DFT” refers to models obtained after 
empirical potential simulations, while “After DFT” refers to models optimized completely in DFT. The 
average number of N-N bonds, found only in Tersoff models after DFT optimization, is listed as well. 

Despite all imperfections in local bonding, the average Coordination Number (CN) is between 

3.9 and 4.1 for Si and 2.9 and 3.1 for N –– in all models, unrelated to density and independent of 

the particular potential applied. Hence, all potentials generate – on average – an “ideal” 
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coordination number of 4 and 3 for Si and N, respectively. This trend is, of course, reminiscent 

of the parameter fitting, and has been stated for these potentials before. [18-20,27-29] 

In course of our modeling we encountered a peculiarity of the Vashishta potential (V). It 

generates highly ordered structures including macro- and nano-crystalline models. Figure 1, right 

side, already shows ordering of Si and N atoms in planes together with 6-membered rings that 

are typical for sphalerite and wurtzite structures. In Figure 2 we emphasize a polyhedral 

representation of that model: tetrahedral center of Si are connected by N, which indeed arrange 

in closest packed planes stacked on top of each other. Essentially, Si atoms fill tetrahedral 

interstitials, and small nuclei of a (hypothetical) defective sphalerite Si3N4 emerge. In small 

models with 448 atoms and 16 – 17 Å box length the driving force towards such structures is so 

strong that some simulations result in a single-crystal. Large-scale models still show this trend by 

forming nano-crystalline structures, see Fig. 2 right. 

 

Figure 2: Model of Si3N4 generated using Vashishta potential. (Left) Small model of 448 atoms shows a 
regular arrangement of N atoms (represented by spheres). (Right) Large-scale model comprising of 
12,096 atoms also shows N atoms ordered along lattice planes. The box length is 48.3 Å. Green spheres 
are N, while blue spheres are Si atoms. 

Pair Correlation Function 



	 92	

In Figure 3 we show site-site distance pair correlation functions (PCF) or total g(r) of a-Si3N4 

models generated by each empirical potential and computed before and after DFT optimizations.  

                  

Figure 3: Site-site distance pair correlation function (PCF) or total g(r) of a-Si3N4. Red lines refer to 
models before and blue lines to models after DFT optimization. (Left): PCFs for 5 different 
parameterizations of the Tersoff potential (right): PCFs for MG2, MG3, SG and Vashishta (V) potential 
models of a-Si3N4.  

Pair correlation functions of the various Tersoff potentials (Fig. 3, left) resemble each other 

closely. Si-N bonds are found in the first major peak around 1.7 Å, with only small variations. 

Common to all structures generated by Tersoff potentials is a small peak at 2.1 Å. This distance 

reflects the cut-off for N-N repulsion in the Tersoff potential (parameters R and S; see 

Appendix). Thus, for every N any “neighboring” N is pushed outside this cut-off radius, and 

N…N contacts with distances smaller 2.1 Å are penalized. Similarly, Si…Si contacts are “allowed” 

only beyond 2.8 Å, and this distance is marked by a small kink. Consequently, the pronounced 

peak at 3.0 Å is due to Si…Si correlations.  

DFT optimization of Tersoff models smoothens out the peak at 1.7 Å and the kink at 2.8 Å. 

As noted before, some N-N bonds develop and become visible at 1.4 Å. Interestingly, the range 

from 2.1 to 2.4 Å is depleted after DFT optimizations. The pronounced Si…Si peak at 3.0 Å is 
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broadened and shifted to slightly shorter distances, where it now overlaps with the N…N next-

nearest neighbor shell forming a wide hump centered at 2.9 Å.  

While PCFs generated from Tersoff models before and after DFT optimization show 

noticeable differences, PCFs of SG, MG3, and – in particular – MG2 models remain remarkably 

consistent and almost unaffected by DFT optimizations. Si-N bonds appear at 1.7 Å, and N…N as 

well as Si…Si next-nearest neighbor correlations form the broad hump at 2.9 Å. Using the SG 

potential, Vedula et. al. reported very similar PCF peaks. [45] Amorphous Si3N4 models 

generated via MD simulations using the Car-Parrinello method and optimized in DFT (using 

LDA pseudopotentials) exhibit comparable PCFs. [46] Similarly, network models optimized 

using DFT calculations also corroborate the PCF peaks. [47]  

Significant changes are also observed in PCFs of Vashishta models. Before DFT 

optimization the Si-N bond peak is centered at 1.8 Å. Persistent in all models is a small hump at 

2.3 Å. It relates to Si…N contacts and involves all Si[3] and many Si[4]. While the first peak 

“optimizes” to a typical Si-N bond distance of 1.7 Å upon DFT optimization, the hump develops 

into a “shoulder” at 2.0 Å. It is now due to “long” Si-N bonds for 4 and 5-coordinated Si atoms. 

The second coordination sphere of Si…N contacts appears at 3.4 Å and shifts slightly to 3.3 Å 

after DFT optimizations. While the PCF shown here is a collection of 10 independent models, 

strong ordering and formation of small nuclei is visible by a localized hump at 4.4 Å, which 

develops after DFT optimizations.  

To highlight the pronounced order in some Vashishta models, we show in Fig. 4 the PCF 

(without DFT optimization) of one specific model up to 8 Å. For comparison, we add the PCF of 

a crystalline Si3N4 model with defective sphalerite structure (dsph-Si3N4). We also add the PCF 

of a model with dsph-Si3N4 structure subjected to MD simulations using the Vashishta potential 

for 10000 MD steps at 300 K. The similarities of the PCFs between the “amorphous” model and 

the MD-simulation of dsph-Si3N4 are striking. On the right side of Fig. 4 we show the PCF of the 

large-scale (12096 atoms) model shown previously in Fig. 2. Strong order is visible for up to 5 Å 

indicating the formation of nuclei with dsph-Si3N4 structure.  
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Figure 4: (Left) Total PCFs of a-Si3N4 structures. At the bottom the g(r) of one specific 448-atom model 
of “amorphous”-Si3N4 generated with the Vashishta (V) potential (Label: V_amorph); in the middle the 
PCF of crystalline dsph-Si3N4 obtained after MD simulations for 10000 steps at 300 K (snapshot) (Label: 
V_dsph); at the top the PCF of a 448 atom mode of crystalline dsph-Si3N4 (Space group P-43m; a=16.508 
Å) (Label: cryst-dsph). (Right) Total PCF of a large-scale (12096 atoms) Vashishta potential model of a-
Si3N4; the model is also shown in Fig. 2. 

Enthalpy of formation 

In Table 3, we list the energies of crystalline Si3N4 structures, α, β, γ, and dsph, with respect to 

the energy of β−Si3N4, computed by each potential.  

 

Potential β-Si3N4 α-Si3N4 γ-Si3N4 dsph-Si3N4 

001-1 -5.57 0.03 0.84 0.47 

001-2 -5.48 0.02 0.75 0.44 

002-1 -5.76 0.01 0.29 0.28 

BM -5.24 0.01 0.58 0.19 
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mat -5.85 0.03 0.86 0.43 

MG2 -5.02 0.01 -0.08 0.06 

MG3 -6.94 0.03 -0.01 0.19 

V -3.68 0.01 0.91 0.07 

SG -68.50 0.01 1.02 0.78 

DFT -8.182 0.001 0.15 0.25 

Table 3: Energies (in eV/atom) of crystalline polymorphs of Si3N4. Energies are given relative to β-Si3N4, 
for which we state the value computed with the respective potential.  

All potentials correctly predict that the β-phase is lower in energy than the α-phase in Si3N4. 

MG2 and MG3 yield the high-pressure γ-phase as the lowest energy configuration, a deficiency 

that has been noted before. [27,28] The stability of the high-pressure phase γ-phase correlates to 

the observed trend of over-cordination of atoms in MG2/MG3 models of a-Si3N4. 

The data of Table 3 helps to analyze the enthalpy of formation, ΔHf, of amorphous Si3N4 

models that we show in Fig. 5. ΔHf is a measure of energy compounded in local distortions, 

structural defects, and other deviation from a perfect crystal structure. This energy will (ideally) 

be released upon crystallization. The enthalpy of formation, ΔHf, here defined per atom is given 

with respect to crystalline β-Si3N4 as the reference phase. The only experimental data of ΔHf of 

Si3N4 available in the literature has been proposed by Tomaszkiewicz. [48] His value of 67.8 ± 

13 kJ/mol or 0.10 ± 0.01 eV/atom is based on fluorine combustion calorimetric measurements of 

a polymer-derived SiNx compound, which included C, O, and H in significant (> 1% by atom) 

quantities.  



	 96	

Our goal here is not only to provide a value for ΔHf of a-Si3N4, but more to quantify the 

“proximity” of empirical model to DFT optimization. In Fig. 5 we compare ΔHf computed before 

and after DFT optimization. As noted before, we computed ten independent (10) models for each 

potential. The change in ΔHf upon DFT optimizations can be used as a measure for how “close” 

an empirical model is to the DFT local minimum. 

  

Figure 5: Enthalpies of formation ΔHf in eV/atom of amorphous models with respect to crystalline β-
Si3N4 compared before (red dots) and after (green dots) DFT optimization. 

Tersoff models have the highest initial ΔHf before DFT optimization, ranging from 0.65 to 0.85 

eV/atom. They gain considerably in energy during DFT optimization and settle between 0.39 and 

0.43 eV/atom – remarkably consistent for all the various parameterizations. The energy gain of 

0.25 eV/atom, however, is significant, since it corresponds to a temperature equivalent of 2900 

K. Thus, the models do not behave better than a hypothetical melt suddenly quenched from 

temperatures above the melting point of Si3N4 (2173 K, [49]). In contrast, MG2 and MG3 models 

start with ΔHf of 0.41 and 0.48 eV/atom, respectively, and optimize to 0.32 and 0.35 eV/atom, 

respectively. Here the temperature equivalents of the energy gains are below the melting point. 
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Surprisingly, the two-body MG2 potential provides models with lower enthalpy of formation 

than the MG3 potential, although the latter was designed to “improve” the covalent character of 

the potential by including angular interactions. The SG potential generates models with an initial 

ΔHf of 0.36 eV/atom, which is already lower than ΔHf of best “optimized” Tersoff models. 

Optimizing the SG models then yields ΔHf of 0.28 eV/atom, and the enthalpy gain during 

optimization corresponds to only 900 K. Models generated by the Vashishta potential start with a 

ΔHf of 0.42 eV/atom and optimize to 0.20 to 0.30 eV/atom, depending on the degree of order 

observed in the model. 

None of our models, however, exhibits a ΔHf that comes close to the experimental value of 

0.10 eV/atom. Excluding the nano-crystalline models generated by the Vashishta potential, the 

lowest ΔHf values we find are 0.28 eV/atom and 0.32 eV/atom for models generated with the SG 

and MG2 potential, respectively. Previous DFT calculations using network models found ΔHf of 

0.27 eV/atom.[50] Using similar network models together with extensive ab-initio molecular 

dynamic simulations at elevated temperatures we achieve a ΔHf as low as 0.25 eV/atom in a-

Si3N4 models with 224 atoms. Since a typical uncertainty of similar DFT calculations is only 

0.02 eV/atom, [51] the discrepancy between experimental and computed value either points to an 

inability to model amorphous silicon nitride using the methods described here or indicate flaws 

in the experimental data analysis. 

Summary and Conclusion 

We model a-Si3N4 using a combination of empirical potentials and density functional theory 

calculations. Empirical potentials chosen are - five parameterizations of the Tersoff potential for 

N (001-1, 001-2, 002-1, mat and BM), the Marian-Gastreich two-body (MG2) and three body 

(MG3) potential, the Vashishta (V) potential and the Garofalini (SG) potential. Models with 

target densities ρ = 2.6 - 3.4 g•cm-3 are generated with empirical potentials using melt-and-

quench techniques and subsequently optimized within density functional theory. We compare the 
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“quality” of these models in terms of structural features, coordination of atoms, pair correlation 

functions (PCFs) and enthalpies of formation (ΔHf) –– as obtained from DFT calculations. 

Our results indicate that both Garofalini (SG) and Marian-Gastreich two-body (MG2) 

potentials are excellent choices for empirical potential modeling of a-Si3N4. These potentials 

yield models that are relatively defect free with < 5% of under-coordinated Si or N, even before 

DFT optimization. Compared to this, the Tersoff models produce an excessive amount of under-

coordinated Si, even after rigorous DFT optimization. Such under-coordination of atoms is 

unrealistic as this relates to highly reactive dangling bonds in the system. The MG3 potential has 

a tendency to over-coordinate atoms. Models generated using the Vashishta potential have a 

small fraction of under-coordination of atoms. However, melt-quench simulations with this 

potential yield models with nuclei of a hypothetical defect sphalerite-type of Si3N4, showing a 

strong tendency of this potential to create crystalline structures. 

Analysis of pair correlation functions highlight the impact of short cut-offs for Tersoff 

models. Noticeable peaks build up at cut-off distances using the empirical potential, and vanish 

during DFT optimization. In contrast, MG2 and SG models show barely any change in their 

PCF. Models produced using the Vashishta potential exhibit a series of pronounced distance 

correlations up to 8 Å, corresponding to signature peaks of crystalline dsph-Si3N4.  

Best estimates for the enthalpy of formation (ΔHf) of amorphous silicon nitride, a-Si3N4, are 

0.25 to 0.29 eV/atom, based on models generated using the SG and MG2 potentials combined 

with subsequent DFT optimizations. The enthalpy of formation of some Vashishta models is 

even lower, but due to pronounced order and formation of a hypothetical crystalline structure. 

Tersoff models not only exhibit the highest formation enthalpy, but also show substantial energy 

gain and structural changes during DFT optimizations.  

In conclusion, the MG2 potential is computationally efficient, yields models with moderately 

low coordination defects and reasonable values for the enthalpy of formation. The SG potential 

is at least equally good, but requires more than twice as much CPU time to generate models. 

Both potentials produce structures close to the DFT ground state. Thus, we recommend that the 
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MG2 and SG potentials be used for future work in modeling of amorphous Si3N4, whenever a 

reasonable description of the atomistic structure is important. 

Appendix: 

Functional form of inter-atomic potentials 

1) Tersoff Potential 

The total energy of the system is given by the sum of the site-energy Ei of n atoms.  

 

  

Vij is a generalized Morse potential with a single cutoff. Thus:  

 where 

 and  

 

The total energy, E, is the difference between attractive (fA) and repulsive (fR) components, 

which are both functions of the interatomic separation rij. The term fC is a cut-off function that 

limits the range of the potential to nearest-neighbors. The attractive term (fA) is modified by the 

bond-order term, bij, which impacts the “bond strength” based on the environment and accounts 

for three-body interaction between atoms. It is defined as: 

E = Ei
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The term ζij defines the effective coordination number of atom i, that is, the number of nearest 

neighbors, taken into account the relative distance of two neighbors, rij - rik, and the bond-

angle, θ. There are 13 parameters to be fitted: A, B, λ, µ, R. S, β, n, c, d, h, χ and ω.  The 

parameters χij and ωij address bond polarity in hetero-atomic bonds. For hetero-atomic systems 

the following mixing rules are used: 

 

For Si we use the parameters originally designed by Tersoff in 1989 (Table 1).  For N, we use 5 

different parameter sets – 001-1, 001-2, 002-1, mat and BM (included in Table 1 in section 

Interatomic Potentials).  

 

Parameters Si 

A [eV]  1830.8 

bij = χ ij 1+ζ ij
ni( )

1
2ni

ζ ij
ni = fC

k≠i, j
∑ (rik )ωikβig(θijk )

g(θikj ) =1+
ci
2

di
2 −

ci
2

di
2 + (hi − cosθikj )

2

λij =
1
2
(λi +λ j )

µij =
1
2
(µi +µ j )

Aij = (AiAj )
1/2

Bij = χ ij (BiBj )
1/2

Rij = (RiRj )
1/2

Sij = (SiSj )
1/2
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B [eV] 471.11 

λ [Å-1] 2.4799 

µ [Å-1] 1.7322 

β [10-2] 1.1x10-6 

n 0.78734 

c 10039 

d 16.217 

cos q (h) -0.59825 

R (pm) 250 

S (pm) 280 

Table 1: Tersoff potential parameter sets for Silicon atom. [15] 

2. Marian-Gastreich two-body potential (MG2) [27] 

In the MG2 potential, the total energy of the system, ESi-N, is given as a summation of 3 two-body 

interactions: . The Morse potential describes both attractive and 

repulsive interactions between Si and N atoms. Atoms are considered non-charged and columbic 

repulsions between like atoms, i.e, N-N and Si-Si are reproduced by short-ranged exponentially 

damped 1/r-type potentials. This columbic-like potential is named as “General Potential”.  

 

ESi−N = EN−Si +ESi−Si +EN−N

EN−Si =Morse = De{(1− e
−a(r−r0 ) )2 −1}

EN−N /Si−Si =General =
A
r
e−r/ρ
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Finally, attractive damped dispersion forces of Tang-Toennis model are introduced to define 

N-N van der Waals forces in a layered system. [52] 

 

At large interatomic distances all two-body potentials are tapered to zero between an inner (xi) 

and an outer (xo) cutoff radius by multiplying the two-body potential energies by a fifth-order 

polynomial, P5. Therefore the energy and its first and second derivatives with respect to the inter-

nuclear coordinate remain continuous. The functional form of P5 is:  
P5 = xi − x0( )×{−6 ⋅ r5 +15(xi + x0 )r4 −10(xi2 + 4xix0 + x02 )r3 +30(xi2x0 + xix02 )r2 −30xi2x02r +10xi2x03 + x05 − 5xix04}

 

The various parameters of the Marian-Gastreich 2 body potential are given in Table 2. 

 

 Potential Parameters (units) Values 

N-Si Morse 

De (eV) 3.88461 

a (Å-1) 2.32660 

r0 (Å) 1.62136 

Si-Si General 
A (eV Å) 177.510 

ρ ( Å) 0.63685 

N-N General 
A (eV Å) 2499.01 

ρ ( Å) 0.36029 

EN−N = −
C6
r6
1− e−b6r (b6r)

k

k!k=0

6
∑

⎛

⎝
⎜

⎞

⎠
⎟
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N-N Damped dispersion 

C6 (eV Å6) 16691.4 

b6 (Å-1) 0.50328 

P5 Tapering function 
xi ( Å) 4.3 

x0 ( Å) 5.8 

Table 2: Parameters of SiN system as defined by the Marian Gastreich two-body (MG2) potential 

3) The Marian-Gastreich three-body Potential (MG3) [28] 

The Marian Gastreich three-body potential, MG3, is a summation of two-body repulsive 

Columbic, repulsive Buckingham and attractive damped dispersion potential with the addition of 

the three-body Stillinger Weber (SW) potential.  The SW term applies only to N-Si-N 

configurations only. All two-body forces are tapered to zero using fifth-order polynomial 

smoothing functions, thus ensuring their continuity. Unlike MG2, this potential is charged.  

For SiN systems, the potential is defined as ESi-N = EN-Si + ESi-Si + EN-N. The analytical forms 

for each of these two and three body potentials along with the parameters are summarized in 

Table 3.  

 

 Potential Parameters (units) Values 

N-Si 
Buckingham 

 

A (eV) 1319.23 

ρ (Å)  0.266735 

N-Si Coulomb Taper C (eV) -20.4023 
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r0 (Å) 2.6 

N-N 
Buckingham 

 

A (eV) 1168.10 

ρ (Å) 0.344070 

N-N 

Damped dispersion 

 

C6 (eV Å6) 460.00 

b6 (Å-1) 2.86875 

Si-Si 
Buckingham 

E = Ae−r/ρ  

A (eV) 105.19 

ρ (Å) 0.591214 

N-Si-N E = A cosθ − cosθ0( )2 exp ρ
r12 − rmax12

+
ρ

r13 − rmax13

⎡

⎣
⎢

⎤

⎦
⎥
 

A (eV) 10.44 

ρ (Å) 1.0 

rmax12/13 (Å) 3.0 

θ0 (deg) 109.47 

N 
Coulomb terms 

qN (a.u.) -0.7875 

Si qSi (a.u.) 1.05 

P5 Tapering function xi ( Å) 6.00 
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Table 3: Analytical expressions and parameters of SiN system as described by the MG3 potential along 
with units. 

4) The Vashishta Potential (V) [22]  

The Vashishta potential contains both two-body and three-body terms. Unlike the Tersoff and 

MG2 potential, the atoms carry effective charges. The two-body terms in the potential is a sum 

of 3 terms – 1) steric repulsion between ions, 2) long-range screened Coulomb repulsions to 

account for charge-transfer effects between ions, and 3) screened charge-dipole interactions due 

to electronic polarizability of negatively charged ions. The three-body terms in the potential 

include the effects of bond bending and stretching. The analytical form of the potential is given 

below: 

V = V 2
ij

i< j
∑ + V 3

jik
i< j<k
∑

 

Vij
2 =

Hij

rij
ηij
+
ZiZi
rij

e
−rij

r1s −

1
2
(αiZ

2
j +α jZ

2
i )

rij
4 e

−rij
r4 s ;Hij = Aij σ i +σ j( )

ηij

 

V jik
3 = Bjik

rik •rij
rikrij

− cosθ jik

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

exp γ
rij − rc3

+
γ

rik − rc3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 

Hij and ηij are the strength and exponents of the steric repulsion. Zi and Zj are the effective ionic 

charge of particle i and j and αi and αj are their corresponding electronic polarizability. The 

terms r1s and r4s denote screening lengths for Coulomb and charge-dipole interactions. Bjik is the 

strength of the bond stretching interaction while is a constant that incorporates bond bending. 

 is the angle formed by by rji and rki at the vertex i. The term γ is set to 1 Å. The three-body 

θ jik

θ jik

x0 ( Å) 8.00 



	 106	

interaction ranges ≤ rc3, which is the cutoff distance, chosen to 2.6 Å. The various parameters of 

the Vashishta potential and their units are tabulated in Table 4.  

 

 Zi (e) αi (Å3) σi (Å) 

Si 1.472 0 0.47 

N -1.104 3 1.30 

 ηij 

Si-Si 11 

Si-N 9 

N-N 7 

 Bjik (eV)  

Si-N-Si 12.484 120 

N-Si-N 6.242 109.47 

Aij (eV) γ (Å) r1s (Å) r4s (Å) rc (Å) rc3 (Å) 

1.248 1.0 2.5 2.5 5.5 2.6 

Table 4: SiN parameters of the Vashishta Potential 

5) The Garofalini Potential (SG): 

θ jik
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The Garofalini potential was developed to study the calcium silicate inter-granular films in Si3N4 

ceramics. The potential consists of two- and three- body terms. The two-body term consists of a 

short-range repulsive term and a modified Columbic term: 

  

The Columbic term is modified by the complimentary error function, ξ, which tapers the 

Columbic interaction to zero. The other parameters for this two body term are A, B and ρ. 

Charges are denoted by qi = qSi = +4.0 and qj = qN = -3.0.  

The three-body term is:   

Vjik
(3) = λ jik cosθ jik − cosθ

0
jik( )

2
exp

γ ij
rij − rij

0 +
γ ik

rik − rik
0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

It acts like a penalty function that raises the energy of the system when the angles between 

involved species deviate from their ideal value. The parameters of the SG potential are listed in 

Table 6.  

 

Two-body term 

Atom pair Aij (eV) βij (Å) ρij (Å) 

Si–Si 1171.531 2.290 0.290 

Si–N 4868.377 2.413 0.2589 

N–N 451.948 2.610 0.290 

V (2)
ij = Aexp

−rij
ρij

"

#
$$

%

&
''+

qiqj
rij

⋅ξ
rij
βij

"

#
$$
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''
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#
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&
''=

2
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e−r
2

rij
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∞
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Three-body term 

Atoms involved λij (eV) γij (Å) Rij (Å) θ0
ij  

Si–N–Si 218.453 2.60 2.80 120 

N–Si–N 149.796 2.80 3.00 109.5 

Table 5: SiN parameters of the SG Potential 
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Appendix 3: 

One of the major acheivements in this project is the successful implementation of the MG2 

potential in LAMMPS. [1, 2] Thus far, the MG2 potential has been available exclusively as a 

part of the GULP and TREMOLO-X packages. [3] [4] TREMOL-X is a single-user licenced 

product. The GULP package, while free, is computationally expensive for simulations involving 

more than 100 atoms. In the next section, I document the steps involved to include the MG2 

potential in LAMMPS. The description consists of some “coding-jargon” intended for its target 

audience.  

A3.1) Implementing Marian-Gastreich Potential in Lammps:  

As discussed before, the Marian-Gastreich potential is a sum of two-body interactions in the 

form: Epot Si/N = EN-Si + ESi-Si + EN-N ; where E is the two-body potential energy. 

While Morse and Columbic forces depict Si-N and Si-Si interactions, N-N interactions are 

defined as repulsive only and described by exponentially damped 1/r potentials of the form E = 

(A/r)exp-r/ρ. This kind of interaction resembles Columbic type and is named as “General 

potential” by the authors of the paper. Damped dispersion forces of the Tang-Toennies model 

describe N-N interactions. [5] This interaction has been added to ensure that the correct layer 

structures of crystalline hexagonal and rhombohedral BN is provided. Furthermore, in the MG2 

potential, all two-body potentials are tapered to zero by multiplying energy and forces by a fifth-

order polynomial, P5, for 4.3 Å < r < 5.8 Å, where r is the interatomic distance.  

In Lammps, the Morse Potential is readily available. To implement the General and Damped 

Dispersion potential, I “modify” the Born-Meyer-Huggins and the Buckingham Potentials. [6] 

[7] [8] [9] 

The Born-Mayer-Huggins potential has the form: 
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Where: r is the pairwise interatomic distance r! − r! ; A describes the components of the 

repulsive interaction; C & D are dipole-dipole and dipole-quadrupole interaction constants; σ is a 

value at which E(r = σ) = 0; ρ depends on the size and “softness” of ions. 

This potential can also be written as: 

 

with σ, C and D = 0.  

I modify the computation of the energy and forces of the BMH potential in LAMMPS by 

multiplying with variable rinv (1/r) in the lammps module pair_born.cpp. Moreover, a 

conditional if-block loop is added to include the tapering cutoffs. The if-block is as follows: 

x0 = 5.8, xi = 4.3; 

if (r > xi & r < x0) 

        { 

…         

eborn = eborn * p5  

fborn = forceborn * p5 

       … 

        } 

Recall that at large interatomic separations all two-body potentials are smoothly tapered to zero 

by multiplying by a fifth-order polynomial, P5 as: 

 

Similarly, the Buckingham Potential is of the form:  

E = Aexp σ − r
ρ
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where A, ρ and C are parameters to be fitted. If C = 0, this potential becomes a Born-Mayer type.  

The analytical form can be written to match the damped dispersion forces in the MG2 

potential: 

 

with A = -C6/r6, 1/ρ = b6 and C = C6 

Incorporating this potential form in LAMMPS is done by modifying the pair_buck.cpp module. 

A code snippet is included here: 

Variable description: ebuck = Energy E(r); i/j-type = particle identifier; r6inv = 1/r6; rhoinv = 

(1/ρ); rexp = e!!∗
!
!  ; pow is a pre-defined function in C++ that returns the value of a number 

raised to the power exponent: numberexponent  

… 

ebuck = -c[itype][jtype]*r6inv * (1 - rexp*(pow(rhoinv[itype][jtype]*r, 0)/1 + 

pow(rhoinv[itype][jtype]*r, 1)/1 + pow(rhoinv[itype][jtype]*r, 2)/2 + 

pow(rhoinv[itype][jtype]*r, 3)/6 + pow(rhoinv[itype][jtype]*r, 4)/24 + 

pow(rhoinv[itype][jtype]*r, 5)/120 + pow(rhoinv[itype][jtype]*r, 6)/720)); 

… 

Once again, the interatomic distances are tapered to zero by multiplying with P5.  

After the modules are altered, it is important to compile LAMMPS. Finally the simulation is set 

up with the description of the inter-atomic potential as: 

… 

#Defining the potential 

pair_style hybrid/overlay morse 6.0 born 6.0 buck 6.0 

pair_coeff  1 2 morse 3.88461 2.32660 1.62136 

E = Ae−r/ρ − C
r6

E = −C6
r6
1− e−b6r (b6r)

k

k!k=0

6
∑

#

$
%

&

'
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pair_coeff  2 2  buck 0.0 1.986965506 16691.4 

pair_coeff  2 2   born 2499.01 0.36029 0.0 0.0 0.0 

pair_coeff  1 1  born 177.510 0.63685 0.0 0.0 0.0 

… 

A3.2) Comparison between MG2 potential as implemented in LAMMPS and GULP: A case 

study with a-Si3N4  

In this section I compare two 448 atom models of a-Si3N4 – 1) generated in LAMMPS  using my 

implementation of MG2 potential; 2) generated using GULP with the built-in MG2 potential.  

Both models are generated using a melt-and-quench scheme. Atoms are placed randomly in a 

box and heated to 5000 K for 10 ps (heating rate = 4.7 x 1014 K�s-1) and then quenched/cooled to 

300 K in 105 ps (cooling rate = 4.5 x 1013 K�s-1). Density is chosen to be 3.2 g�cm-3. For each 

structure, I compare coordination defects present in the model: namely, the number of 2, 4 and 5 

coordinated N atoms and the 5 and 6-coordinated Si. The differences between both methods are 

negligible. Moreover, if 100 models such models are considered and their coordination defects 

compared, the differences between results from LAMMPS and GULP vanish. 

As expected, the biggest difference between both platforms was the computation time. 

LAMMPS is computationally less expensive compared to GULP. LAMMPS computes models 

hundredfold faster than GULP (30 µs/atom/step in GULP compared to 0.3 µs/atom/step in 

LAMMPS). Computations are done on a local cluster with 12 cores.   

 

Atom [Coordination] LAMMPS GULP 

N [2] 10 9 

N [4] 42 47 

N [5] 1 0 

Si [5] 32 34 
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Si [6] 1 1 

Bond length, Si-N (Å) 1.77 1.78 

 

Table A3.2: Comparison of coordination defects between a-Si3N4 model consisting of 448 atoms, 
generated by LAMMPS and GULP using a melt-and-quench scheme.   
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Summary: 

Amorphous Si3N4 has many industrial and technological applications. While this material is 

experimentally synthesized, numerous computational studies aim to study the micro-structure of 

the material. Most prevalent methods to model a-Si3N4 use an empirical potential to describe the 

inter-atomic interaction. However, the results of each study vary and often purely depend on the 

flavor of empirical potential used. The graph below shows that the Tersoff potential is the most-

cited potential with none of the other potentials coming close.  

 

	
Figure 1: Plot of empirical potentials against the number of times they have been cited in 

literature. Abbreviations: 001-1, 001-2 and 002-1, mat and BM - Tersoff potential training sets 

from [1-4]. The mat parameters are similar to 001-1 except for ωSi-N. V stands for Vashista 

Potential, [5] MG2 is for 2 –body Marian Gastriech potential, [6] MG3 is the 3 body Marian 

Gastriech potential [7] and SG is Garofalinin potential. [8] 

*Data is from Web of Science and doesnot include self citations by authors. The number of 

citations of 001-1 potential may be wrong and is to be re-used with caution.  
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This study aims to project the Garofalini and the Marian Gastreich two-body potential as ideal 

potentials to model amorphous Si3N4. Moreover, due to the successful implementation of the 

MG2 potential in LAMMPS, multi-million atom models can be constructed within realistic time 

frames.  
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CHAPTER 4 

COMPOSITIONAL AND STRUCTURAL ATOMISTIC STUDY OF THE AMORPHOUS 
SI-B-N NETWORKS OF INTEREST FOR HIGH-PERFORMANCE COATINGS4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

																																																								
4 This chapter has been published in Journal of Physical Chemistry C and is being used with the 

permission of the publisher, 2016. My contribution to this article is the computation of thermal 

conductivity using Green Kubo method, more details are included in the Appendix. 
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Scope and Motivation 

Thermal conductivity of solids is a critical property in several technological applications. [1] 

Fourier’s law defines thermal conductivity as the diffusion of heat in a 

temperature gradient. The temperature gradient (∇T) is related to the heat flux (J) through κ, the 

thermal conductivity tensor: J = -κ(∇T). In solids, electrons and phonons transport heat. For 

insulators, the contribution of electrons to thermal conductivity is negligible due to the lack of 

free electrons. In crystalline solids, the thermal conductivity increases initially with a T3 

dependency, passes through a maximum and decreases with increasing temperature due to strong 

phonon-phonon scattering. Hence, a dome-shaped curve as shown in Fig. 1. [2] In amorphous 

solids thermal conductivity increases with increasing temperature. The mechanism of heat 

transfer is primarily by localized lattice vibrations rather than extended phonons due to the lack 

of long-range order.  

 

	

Figure I4.1: Temperature dependence of the thermal conductivity of a crystal (solid line) and a glass 
(dotted line).  

Through computational methods, one can model advanced materials with tailored thermal 

conductivity for use in microelectronics, thermal insulators and thermal coatings. [1] Several 

methods exist to compute the κ in amorphous materials – phenomenological models, equilibrium 

molecular dynamic (MD) simulations and Müller-Plathe non-equilibrium MD simulations. [3-5] 
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In this chapter, I investigate the thermal conductivity of amorphous silicon boron nitride (a-

SiBN) material using the molecular dynamics method.  

Amorphous mixtures of silicon nitride (Si3N4) and boron nitride (BN) are refractory ceramics 

that are stable up to 2000 °C. This material is also resistant to oxidation up to 1400 °C. Industrial 

applications of these ceramics exist as coatings and fibres. The work in this chapter is in 

collaboration with University of Minnesota. Small network models of a-SiBN, with varying 

amount of BN (0 - 90 mol %), are composed with 100 - 200 atoms. These models are then 

subjected to the empirical Tersoff potential and their κ at 300 K investigated. The goal is to 

assess how the addition of BN impacts thermal conductivity in these materials.  The chapter is 

organized as follows: first the peer-review journal article is included. After the article the 

appendix is where I include temperature dependent thermal conductivity data a-SiBN models 

that were independently done by me.  
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Abstract: 

	

We explore by computational modeling the effects of Boron (B)-Nitrogen (N) composition on 

the thermal and mechanical properties of amorphous Silicon-Boron-Nitride (Si-B-N), a synthetic 

ceramic material with superior thermal protection, mechanical and oxidation resistance at high 

temperatures attributes. Network-derived Si-B-N models optimized with ab initio molecular 

dynamics, serve as input structures for classical molecular dynamics simulations. Atomistic 

Green-Kubo simulations on relaxed super-cells and structural relaxations on strained cells are 

used to screen the thermal and mechanical properties of a collection of network structures with 

low enthalpies. We find that when the material is composed of well-mixed parts rather 

homogeneously spread within the material, the thermal conductivity and elastic constants are 

isotropic and exhibit a weak dependence on composition and network structure. In contrast, 

when separation into BN-rich layers occurs, the material exhibits anisotropic behavior, with an 

increase in thermal conductivity along the layer direction and decrease in elas-tic constant in the 

cross-layer direction. The insights provided into the composition-structure-property relationships 

can be useful for the rational design of amorphous Si-B-N materials targeting high-performance 

coating applications. 
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1. Introduction 
	

Ultra-high temperature ceramics are a class of synthetic materials with superior thermal, 

mechanical, and oxidation resistance properties. They have various industrial applications 

including space shuttle thermal protection system materials [1, 2] and high temperature resistant 

coatings. [3,4] One focus of protective coating research has been amorphous (a) Si3N4 containing 

(a-Si-B-N), in particular a-Si3B3N7 [5] — a ternary material synthesized via the sol-gel route. [6] 

Especially because of the experimental difficulties associated with the structural characterization 

of amorphous materials, computer simulations are playing an important role in understanding the 

structure-properties relationship. Important experimental results have been already reproduced 

by atomistic calculations carried out on computer-generated networks. For example, molecular 

dynamics (MD) simulations found that the a-Si3B3N7 networks exhibit a very high resistance 

against crystallization, up to 1,900 K. [7,8] In good agreement with experimentation, [9] MD 

simulations also predicted that the a-Si3B3N7 bulk modulus ranges between 50–250 GPa, 

depending on its density. [10] In recent years, atomistic simulations are assuming a guiding role 

in the effort of optimizing the properties of advanced coating materials. [11–15] In a-Si-B-N, 

understanding the role played by composition is of great importance for the future design of this 

new material. 

So far, a-Si-B-N structures have been explored to understand the impact of the BN:Si3N4 

ratio onto mechanical properties. [9,10,16,17] Using classical MD simulations, Griebel et al. [16] 

derived strain-stress curves of selected a-Si3BN5, a-Si3B2N6 and a-Si3B3N7 models and found that 

increasing the B content increases the Young’s modulus. In this work we extend the scope of the 

previous studies by revealing how composition and structure might influence a combination of 

properties desirable for coating applications. Using a combination of atomistic numerical 

methods, we screen a library of low-enthalpy a-Si-B-N networks — a-Si3BN5, a-Si3B3N7, and a-

Si3B9N13 — to predict from extensive atomistic simulations the thermal conductivity and 
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mechanical stiffness at different BN content. This paper is organized as following: Section II 

describes the numerical methods of investigations, Sections III and IV presents our simulation 

results, and Section V gives the conclusions. 
	
2. Methods 
	

One of the most difficult tasks of the present work is to compose realistic structural models 

for a-Si-B-N structures. Instead of attempting to simulate the formation process of a-Si-B-N, we 

adopted an energy minimization protocol described next. We start by constructing chemically-

ordered random networks generated using a modified Wooten-Winer-Weaire al-gorithm. [18] 

After the network generation, which uses classical empirical potentials, we turn to Density 

Functional Theory (DFT) calculations as implemented in the Vienna Ab-Initio Simulation 

package (VASP). [19–21] We first optimize structures (positions and cell parameters) using a 

cut-off of 500 eV, while converging forces to smaller than 10 meV/Å and stresses below 0.1 

GPa. We use the Projector Augmented Wave [22,23] method together with the Generalized 

Gradient Approximation of electron exchange and correlation. The Brillouin zone was sampled 

using the Γ-point only. Subsequently, we start an annealing procedure using ab initio molecular 

dynamics (aiMD). We use a time-step of 2 fs for integrating the equations of motion and adjust 

temperature via velocity rescaling. To save computational costs, we reduce the cutoff energy to 

205 eV. Starting at 300 K, the temperature of the system is ramped to 3400 K with 400 K 

increments. The holding time at each temperature varies between 6 ps and 40 ps, with shorter 

periods spent at lower temperatures and longer periods at higher temperatures. Every 2 ps of a 

simulation we copy the current positions of atoms and optimize this geometry separately, while 

the annealing continues. This way we receive a sequence of structures, some of which have 

lower energy than the initial configuration. After completion of an annealing run, we repeat the 

annealing procedure using the lowest energy model found as the initial configuration of a new 

run. 
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Due to the large computational costs associated with ab initio calculations, we will explore 

the properties of the aiMD generated networks with inter-atomic potential energy models. The 

lower computational cost for the classical Hamiltonian enables a more accurate spatial 

representation of the disordered networks and a more efficient screening of the structure-

composition-property relationship. The classical MD calculations were performed with the code 

LAMMPS. [24] We treat the Si-N and B-N interactions with the bond-order Tersoff potential 

and parameters given in Ref. [25]. For Si-Si, N-N, B-B and Si-B, only repulsion is modeled 

because these bonds are not present in the aiMD-derived structures and are unlikely to appear in 

experiment. [26] Additionally, it is known that the homo-elemental N-N bonds are energetically 

unfavorable. [27] The thermal and mechanical properties of the structures treated with the 

Tersoff potential were extracted as it is described next. 

Because a-Si-B-N are insulators electronically, phonons are the main thermal energy carriers. 

We have computed their thermal conductivity (κ) in the classical limit from long equilibrium 

MD runs. In preparation for measurements, the supercells constructed based on the aiMD 

annealed structures were first evolved in the isothermal-isobaric ensemble at the desired 

temperature and a pressure of 0 bar for 400 ps, then in the canonical ensemble for 200 ps, and 

finally in the microcanonical ensemble for another 200 ps in order to achieve good equilibration. 

We compute the instantaneous microscopic heat current on the MD-generated micro states, as 

𝐣 =  !
!

!
!!,!,!!!!! r!" 𝐅𝐢𝐣𝐯𝐢 + !

!
!
!!,!,!!!!! (r!" + r!") 𝐅𝐢𝐣𝐤𝐯𝐢      (1) 

 
Then κ was extracted with the Green-Kubo formula. [28] 
	

κ!" =
!

!!!!
j!(τ)j!(0)

!!
! dτ										(2)	

In these expressions, indexes i, j and k run over the number of atoms. rij is the interatomic 

distance vector, v is the atomic velocity, and F the interatomic force. T is the average 

temperature. κ!" is a component of the lattice thermal conductivity tensor ( α and β = x, y, z). kB 

is the Boltzmann constant and V the system volume. The angular brackets denote the ensemble 
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average, and is the autocorrelation time. In practice, κ was calculated by discretizing the right-

hand side of eq. (2) in MD time steps, each of 0.15 fs.  

To gain insight into the mechanical behavior, we have examined the response to applied 

strains of a-Si-B-N structures described with the same Tersoff potential. Since the analysis is 

focused on the linear regime, we simulated cells with ~1 nm side lengths placed under periodic 

boundary conditions. External strain was applied by elongating the simulation box size in one 

direction by 0.02 Å at each iteration, followed by conjugate gradient energy minimization. The 

specimens were allowed to shrink or expand in the other two directions to ensure that the system 

is under uniaxial loading. The corresponding potential energies were then recorded for each step 

of strain. The stress and Young modulus (Y ) along a specific direction were calculated from the 

first and second derivative of the total potential energy with respect to the strain, normalized by 

the cross-sectional area. For each considered structure, external strain was applied in all three 

cartesian directions. 

 

 

Figure 1. Unit cells of (a) a-Si3BN5 (χ = 0.5) and (b) a-Si3B3N7 (χ = 0.75) models. Models 1−3 are nearly 
homogeneous. Color scheme: Si (yellow), B (red), N (blue).  
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Figure 2. Unit cells of a-Si3B9N13 (χ = 0.9) models. Models 1−3 (top row) are nearly homogeneous. 
Models 4−6 (bottom row) present h-BN segregation. Color scheme: Si (yellow), B (red), N (blue). 

3. Structures and energetics of a-Si-B-N networks 

3.1. Ab-initio Molecular Dynamics Models 

Figs. 1 and 2 presents the collection of structures that will be considered in this study. It can be 

seen that the search for local minima process generates nearly cubic unit cells containing about 

hundred atoms. The lattice parameters, densities of selected structures at each of the considered 

stoichiometry and the number of under-coordinated atoms are presented in Table 1. According to 

our definition, Si, B, and N atoms are under-coordinated if they have less than 4, 3, and 3 first 

neighbors, respectively, within the cut-off distances set as 20% larger than the experimental 

values of Si-N and B-N bond lengths of 1.72 Å and 1.43 Å, respectively. [5] We see that for all , 

the employed aiMD generation procedure gives models with very few or no under-coordinated 

atoms. 
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The network generation process produces nearly-homogeneous a-Si-B-N structures. Only 

when looking at the second-nearest neighbor statistics, these structures present a slight trend for 

B-N-B preference. [18] But for the high BN content structure Si3B9N13 we also find segregation 

of h-BN layers. Fig. 2 shows examples of model structures without (models 1-3) and with 

(models 4-6) h-BN layers containing Si atoms. It can be observed that the h-BN layers are 

connected by covalent Si-N and B-N bonds. Similar BN phase segregation was found previously 

in B-doped Si3N4/SiC ceramics. [30] 

Because of the h-BN segregation effect, we have also included in our study BN rich 

structures that were not fully relaxed. Specifically, we have considered an a-BN system taken 

from the very first annealing cycle after relaxing the model obtained after 7 ps in an aiMD at 

2,200 K. This “intermediate" model, listed in the last column of Table 1, serves the purpose of 

having a balance between 3- and 4-fold coordinated B. 

The DFT energies E(a-Si-B-N) of the computed networks cannot be used directly to compare 

the stability of structures with identical compositions. The relative stability of structures with 

different compositions depends on the way the structural parts BN and Si3N4 mix to form the 

network. Therefore, we follow here the approach of binary phase thermodynamics and define for 

the quasi-binary composition (BN)χ(Si3N4)1- χ a per-atom enthalpy of formation, ΔHf , as: 

 

Δ𝐻! =
!!!!"#$ ! !!! !!! !!!!"!!!!!"!"

!!
			(3) 

 

Here np is the number of BN and Si3N4 parts in the structures. For example, a-Si3B3N7 

comprises three parts BN and one part Si3N4.  Thus, np = 4 and 𝜒 = 0:75.  We propose 

to measure ΔHf with respect to the crystalline β-Si3N4  and h-BN phases. Thus, we take 

Eβ-Si3N4 = 58.69 eV and Eh-BN = 17.89 eV, which are the energies computed with DFT. 

na is the number of atoms in one a-Si-B-N unit. 
	



	 131	

	
	

 

	

Figure 3: Per-atom enthalpy of formation of (BN)χ(Si3N4)1- χ structures plotted as a function of χ, which is 
the BN molar fraction. Circles ( , ) represent the Tersoff data while squares ( , ) are the DFT data. 
Open symbols ( , ) refer to the nearly-homogeneous structures. Filled symbols ( , ) refer to the 
structures presenting h-BN layer segregation. 

Fig. 3 plots the calculated ΔHf for selected network structures with lowest DFT energies 

at each considered. Our data doesn’t reveal significant distinctions in the thermochemical 

stability of the structures with various. The 𝜒 = 0:9 structures emerge as only slightly more stable 

than the 𝜒 = 0:75 ones. The different models with same 𝜒 are close in energy. As it can be noted 

from Fig. 2(b), models 2 and 3 with 𝜒 = 0.75 present rather large voids in their network structure. 

This structural aspect does not reflect in the ΔHf values, which were both calculated as 0.33 

eV/atom.  A similar observation about the role of structure can be made at 𝜒 = 0:9, where we 

identified significant segregation of the h-BN layers: In Table 2 we compare 𝜒 = 0:9 structures 

with and without h-BN layer segregation. It can be seen that both structure types present similar 

densities and ΔHf values.
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Table 1: Comparison of Selected a-Si-B-N cells with different 𝜒 Values, Described with DFT 
and Tersoff models. 
 

𝜒 0.00 0.50* 0.75* 0.90* 1.00 
No. of atoms 112 108 104 100 256 

Lattice lengths (Å)  
a 12.05 10.49 12.32 10.19 13.06 
b 10.12 10.27 9.35 9.99 12.52 
c 9.75 10.22 9.24 9.31 12.77 

Lattice angles  
α (deg) 85.62 88.78 95.85 83.54 88.05 
β (deg) 88.61 91.78 70.97 91.31 93.17 
γ (deg) 95.62 87.44 98.27 88.75 88.69 

Density (g/cm3) 3.16 2.99 2.87 2.57 2.53 
DFT model with van der Waals correction      

ΔHf (eV/atom) 0.21 0.24 0.32 0.26 - 
no. of under-coordinated atoms 3 0 0 0 0 

Tersoff model      
Hf (eV/atom) 0.31 0.24 0.14 0.08 0.26 

no. of under-coordinated atoms 2 0 0 0 1 
      

aModel 1 in Figs. 7 and 8(b). bwith van der Waals correction cUC = undercoordinated atoms 

Table 2: Comparison of 𝜒 = 0:9. Cells Described with DFT and Tersoff models. 

Model: 1 2 3 4 5 6 
no. of atoms 100 100 100 100 100 100 

Lattice lengths (Å)       
a 10.19 9.43 9.70 10.25 9.26 9.88 
b 9.99 9.84 9.90 9.36 10.47 9.06 
c 9.31 9.76 9.82 9.37 9.17 9.97 

Lattice angles  
α (deg) 83.54 85.44 89.15 87.82 91.47 88.94 
β (deg) 91.31 86.84 88.21 94.66 89.61 93.46 
γ (deg) 88.75 90.64 91.52 95.59 86.94 89.42 

Density (g/cm3) 2.57 2.68 2.56 2.71 2.72 2.71 
DFT modelb  
Hf (eV/atom) 0.26 0.24 0.25 0.24 0.25 0.21 

No. of UC atomsc 0 0 0 1 1 0 
Tersoff model  
Hf (eV/atom) 0.08 0.10 0.09 0.08 0.04 0.04 

No. of UC atomsc 0 0 0 7 1 0 
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aModels 1-3 are nearly-homogeneous. Models 4-6 present h-BN segregation. All these models were 
considered in Figs. 7 and 8(b). The unit cells for these models are shown in Fig. 2. bwith van der Waals 
correction cUC = undercoordinated atoms 

3.2. Tersoff Models 

We have next investigated these network structures with the Tersoff potential description. The 

atomic positions were further allowed to relax [29] via energy minimization to the new 

equilibrium positions. From Tables 1 and 2, it can be seen that the relaxed structures present very 

few under-coordinated atoms, a feature that is in agreement with the original DFT network 

structures. The energies of the relaxed structures were used to compute ΔHf. For consistency, we 

have used as references E(Si3N4) = 38.46 eV and E(h-BN) = 15.13 eV, which are the per-unit 

energies computed with Tersoff potential. As it can bee seen from Fig. 3 and Tables 1 and 2, the 

Hf values computed with the Tersoff potential are generally in good agreement with the DFT 

ones. There is a trend of the Tersoff model to underestimate (overestimate) Hf at large (small). 
	
	
	
	
	
	
	
	
	
	
Figure 4: Radial distribution function for a set of a-Si-B-N structures with different 𝜒: (a) a-
Si3N4, (b) a-Si3BN5, (c) a-Si3B3N7, (d) a-Si3B9N13, (e) a-BN. 
	

We have also probed the structural description of the a-Si-B-N networks in the MD context. We 

have evolved at 300 K for 100 ps our set of a-Si-B-N structures with a velocity Verlet algorithm 

and a 0.15 fs time step, and characterized the atomistic structure of the homogeneous a-Si-B-N 

networks by computing the radial distribution function (RDF). RDF describes the likelyhood of 

finding a neighboring atom in the spherical shell of a central atom. The interatomic potential cut-
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off radii in our simulations are 2.62 Å and 1.79 Å for Si-N and B-N interactions, respectively. As 

shown in Fig. 4, only Si-N and B-N bonds are located within the potential cut-off radius. We 

note also that for the = 0:75 structure, the RDF peaks at 1.75 Å for Si-N and 1.47 Å for B-N are 

very close to the experimental values of 1.72 Å and 1.43 Å, respectively.5 This agreement 

indicates that the short-range order is well described by our classical MD approach. 

 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 5: (a) Normalized phonon density of states of a-Si-B-N structures identified in the legend 
by their 𝜒 values (b) Partial phonon density of states of B and (c) portion of B modes with 
respect to all the phonon modes as a function of the dashed line connecting the values of the end 
phases is shown for a comparison. Partial phonon density of states of (d) N and (e) Si. In (d) the 
down arrow points to the B-N stretching model. 
	

The analysis of the MD velocity data for the same set of model structures indicated that the 

added BN bonds should be thermally active as they show distinct vibrational features in the 

phonon density of states (DOS) and partial phonon density of states (PDOS). Fig. 5(a) shows that 

the phonon modes of a-Si3N4 are mainly distributed below 35 THz, while the a-BN phonon 

modes have a broader frequency range (0 - 60 THz) with a distinct peak at 
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45 THz. With increasing this peak forms and its intensity increases. The PDOS data shown in 

Figs. 5(b) further reveals that this peak originates in the vibrations of B atoms. 

We have compared the area under the un-normalized DOS and PDOS spectra to obtain the 

proportion of phonon modes in the structure due to the vibrations of different atom types. As 

shown in Fig. 5(c), we find that the portion of B modes increases monotonically with the BN 

fraction. Recalling that B forms bonds only with N atoms, it follows that this bond proportion 

effect concerns the B-N bonds. This interpretation is in agreement with the data presented in Fig. 

5(d) and (e), where the 45 THz peak can be identified only in the PDOS of N atoms. Note that a 

previous MD study,5 also reported the vibrational frequency of B-N stretching mode to be at 45 

THz. 

4. Properties of a-Si-B-N networks 

Having probed the suitability of the Tersoff treatment for simulating a-Si-B-N films via 

comparison with our DFT and the available experimental and MD data, we now turn our 

attention to utilizing this description for predicting how the atomistic structure and composition 

influences thermal and mechanical properties. 

4. 1. Thermal conductivity 

In our calculations for we have considered only the collection of representative network 

structures with low enthalpies summarized in Fig. 3. This is because even with the efficient 

Tersoff Hamiltonian, the evaluation of eq. (3) is still a difficult task. For example, because 

j! τ j! 0  exhibits non-ergodic long-time oscillations, averaging over multiple MD runs is 

required.31 Here, each reported value for a given model represents the average thermal 

conductivity measured from twenty MD measurement runs, each lasting 100 ps. The error bars 

represent the standard error based on twenty individual measurements. 

We first considered one nearly-homogeneous network model for each and performed MD 

simulations at room temperature. Supercells with different side lengths were studied by 
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periodically repeating the optimized cell obtained from aiMD. Fig. 6(a) shows an example of the 

averaged integral of heat flux autocorrelation function for a-Si3BN5 with ∼4 nm side length. 

There is good convergence after τ = 5 ps. 

As demonstrated in Fig. 6(b), the accounting for the finite-size effects is important for 

predicting κ.  The simulation cell size dictates the maximum phonon wavelength present in the 

simulation. For all 𝜒, κ increases with the supercell size as additional long-wavelength phonons 

become available for heat transport. The crossover behavior observed at ~3 nm suggests that the 

long wavelength phonons bring a more significant contribution to κ for a-Si3B9N13 than for a-

Si3B9N13. When κ converges, at side lengths larger than 4 nm, the κ of a-Si3BN5, a-Si3B3N7, and 

a-Si3B9N13 are calculated as 2.3	± 0.1 W/mK, 3.0	± 0.1 W/mK, and 3.1± 0.5 W/mK, 

respectively. (Each κvalue reported here is the average value of κxx, κyy and κzz). 

Fig. 6(c) suggests that the BN addition to a-Si3N4 leads to a monotonic increase in  . The 

increase is weak such that a linear interpolation between the values of the binary compounds 

overestimates the MD computed κ. This observed trend may be a signature of the fact that 

h-BN has a larger longitudinal speed of sound than β-Si3N4, i.e., 16 km/s [32] vs. 9.9 km/s. [33] 

Although a reduction of these values is expected in the amorphous phases, the speed of sound 

will still depend on the local order and nature of the bonds. [34] [To clarify the connection 

between κ and the speed of sound, recall that the kinetic theory defines as (1/3)CvvgΛ ,where Cv 

and Λ denote the specific heat and phonon mean-free path, respectively. The phonon group 

velocity vg for the heat-conducting long wavelength phonons is approximately the speed of 

sound. The above relation predicts the minimum thermal conductivity of a material at high 

temperatures, in which case Cv is close to a -independent constant and approaches the inter-

atomic spacing limit. [35,36] 

Our further investigations focused on the network-model dependence of κ. Fig. 7 shows that 

the computed κ values for our collection of nearly-homogeneous models (models 1-3 for each 𝜒) 

are all contained in the 2.0–3.5 W/mK range. Overall, this plot shows that while κ has a weak 

dependence on the network model representation, the variation of κ from different models 
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is larger than or on the same order like the standard error resulted from the computation by 

the Green-Kubo method. Thus, to gain an ensemble representation, further averaging of the 

individual values for the models with the same 𝜒 was performed. The obtained values, listed in 

the first line of Table 3, maintain the already noted trend of a weak increase of κ with 𝜒.  

In contrast with the nearly-homogeneous models, the h-BN segregation in 𝜒 = 0.9 models has 

a significant impact on thermal transport. In Fig. 7, it can be seen that the individual values for 

models 4-6 are above the values obtained for models 1-3. This increase is associated with a 

significant increase in the anisotropy, which can be seen in Fig. 7. Model 4 provides a good 

example for observing the anisotropy since the h-BN layers are oriented along x. On one hand, in 

the y and z directions we obtained κyy=5.9 ±	0.3 W/mK and κzz=5.8 0.4 W/mK. These values 

are significantly larger than the of a-BN due to the crystallinity of the formed h-BN layers. On 

the other hand, in the x direction we obtained κxx=1.0±0.1 W/mK, a value that falls well below 

κyy anf κzz, and that is comparable with the thermal conductivity across layers in h-BN. [37] For a 

comparison, the diagonal elements calculated for model 1 with 𝜒 = 0:9 are κxx= 3.6±0.3 W/mK, 

κyy =2.7±0.3 W/mK, and κzz =3.0±0.2 W/mK. 
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Figure 6:  (a) Cumulative integral (blue) of the heat flux autocorrelation function averaged over 
twenty ensembles (gray) for ~ 4 nm-sized a-Si3BN5 (= 0:5); (b) Dependence of on the supercell 
size; (c) Dependence of on 𝜒. The dashed line connecting the values of the end phases is shown 
for a comparison. The continuous line connecting the data point is to guide the eye. T ≈ 300 K. 

 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 7:  Structure dependence of the thermal conductivity a-Si3BN5 (𝜒 = 0.5), a-Si3B3N7 
(𝜒 = 0.75), and a-Si3B9N13 (𝜒 = 0.9).  The horizontal axis refers to the network model 
number. Lines connect points with same 𝜒. For models 4-6 with 𝜒 = 0.9 we have also plotted the 
values of the diagonal elements of the thermal conductivity matrix. 

4. 2. Elasticity 

 

 



	 139	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure 8: (a) Selected stress-strain curves, and (b) structure dependence of the Young’s moduli 
of a-Si3BN5 (𝜒 = 0:5), a-Si3B3N7 (𝜒 = 0:75), and a-Si3B9N13 (𝜒 = 0:9). In (b) the horizontal axis 
refers to the network model number. Lines connect data points with same 𝜒. For models 4-6 with 
𝜒 = 0:9 we have also plotted the values of the diagonal elements of the matrix. 
	

We have screened the elastic properties for the same collection of structures. Fig. 8(a) presents 

the computed stress-strain curves for selected nearly-homogeneous networks with different 𝜒. 

While different slopes are associated with the different structures, we see that the network 

elasticity is not increasing monotonically with the concentration of the added stiff B-N bonds. 

This is likely a signature of the specific structural environment seen by the atoms, a situation 

causing non-affinity in deformation. As it can be noted from Fig. 8(b), the model-specific Y 

values fluctuate in the 170–270 GPa interval. The elastic behavior of models 1-3 is isotropic. 

This transpires from the error bars, which represent the standard error based on the 

measurements performed in the three Cartesian directions. For a more realistic representation of 

Y as a function of 𝜒, we have performed averaging of the values given by the different models. 

The Y values, listed in the second line of Table 3, suggest a weak increase of Y with 𝜒. We also 

note that the obtained Young modulus for a-Si3B3N7 is in very good agreement with the ab initio 

prediction (~ 200 GPa) given in Ref. [26]. 

In Fig. 8(b), it can be seen that the h-BN segregation in the 𝜒 =0.9 model has a strong effect on Y 

. For models 4-6, it can be seen that the diagonal components of Y present very different values. 
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For example, for model 4 in the y and z directions we obtained Yyy=623 GPa and Yzz=628 GPa. 

Such large large values can be expected along the h-BN layers. On the other hand, in the x 

direction we obtained Yxx=57 GPa, a value that falls significantly below the Y values computed 

for the nearly-homogeneous networks. Moreover, we observed that this structure exhibits failure 

at elongation strains of only 3%, when the covalent bonds connecting the layers break. 
	

Table 3: Model-averaged thermal conductivity and Young’s modulus as a function of 𝜒!. For each 
models 1-3 have been considered in the averaging. 

 χ = 0.50 χ = 0.75 χ = 0.90 
κ (W/mK) 2.3 ± 0.2 2.5 ± 0.4 2.8 ± 0.2 
Y (GPa) 209 ± 30 203 ± 32 239 ± 25 

aFor each value of χ, models 1−3 have been considered in the averaging.  

Conclusions 

In summary, a-Si-B-N ceramics with different BN content a-Si3BN5, a-Si3B3N7, and a-Si3B9N13 

were modeled as chemically-ordered random covalent networks with a computational protocol 

that involved aiMD simulations. The a-Si-B-N networks obtained this way exhibit very few or 

no under-coordinated atoms and a weak variation in thermochemical stability. Further, atomistic 

simulations based on Tersoff potentials were performed to evaluate and the Young’s moduli of 

the network models obtained by the aiMD simulations. For each composition it was necessary to 

average and Y over different network models. The main finding of this investigation is that 

thermal and mechanical properties depend weakly on the BN content, as long as the network 

structure lacks segregation into h-BN layers.  

Understanding the relationship between composition and the thermal and mechanical 

properties is of great importance for developing a-Si-B-N coatings able to provide protection 

against thermal impact and mechanical loads. The principal conclusion of the presented 

investigation is that it unworthy to pursue compositions as high as 𝜒 = 0.9 (a-Si3B9N13). This is 

because large promotes BN layer segregation, an effect that severely weakens the structure in the 
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cross-layer direction and increases thermal conductivity along the layer direction. Instead, our 

study identifies 𝜒 = 0.5 (a-Si3BN5) and 𝜒 = 0.75 (a-Si3B3N7) as the compositions least prone to 

segregation into h-BN layers. These compositions exhibit a combination of low thermal 

conductivity and large mechanical stiffness suitable for coating applications. The methods of 

investigation used here show promise for studying the composition–structure–properties 

relationship in more complex quaternary amorphous ceramics. [8] [38–40] Further, the results 

can be applied in multi-scale simulation frameworks [41, 42] to enable system-scale predictions 

for the mechanical behavior. 
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Appendix 4:  

Introduction: 

The previous section includes the published manuscript for the computation of thermal 

conductivity in a-SiBN models. However, the publication lacks some key points:  

• Amorphous SiBN material is targeted towards high temperature applications. However, 

the paper only discussed thermal conductivity at 300 K.  

• The previous publication mostly considers one model for a particular composition of a-

SiBN. Therefore computations are mostly dependent on the model chosen (even if that is 

the lowest energy model). An average over many “low-energy” models will, statistically 

be closer to the true value.  

• The thermal conductivity of a-BN cannot be compared to a-SiBN models as the model 

has been generated using different means.  

In this appendix, I address the aforementioned deficiencies through my individual computations. 

The Tersoff potential parameters for Si, B, and N are in agreement with published work. [1] 

A4.1) Thermal conductivity using Green-Kubo Method: 

Each model of a-SiBN optimized within DFT is subjected to the empirical Tersoff Potential in 

LAMMPS. [2] Energies of these models are then computed by adjusting atom coordinates, 

keeping the box volume intact. Each structure is equilibrated – first 200 ps in NPT ensemble, 

next 100 ps in NVT ensemble and then in NVE for another 100 ps. Then the flux is generated 

under NVE ensemble for 100 ps. The flux-flux auto-correlation is computed using a MATLAB 

code as a part of the post-processing work. All results are averaged over 20 independent 

simulations with different initial conditions. For finite-size effects, the box is expanded 4 times 

in x, y and z directions with box length ~ 4 nm and 6400 – 7168 atoms. In addition, for each 

composition, I include three independednt models and average the results.  

Thermal conductivity (κ) is related to the ensemble average of the flux-flux auto-correlation 

according to the following equation: [3] 
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κ =
1

Vk!T!
J(t)⨂J(0) dt

!

!

 

This infinite integral in the above equation is replaced by summation according to Schelling’s 

approach. [4] 

 

where Δt = 0.15 fs; N = total length of the simulations, 100 ps; M is the correlation length 

depending on the convergence criterion; T = Temperature in K and kB is the Boltzmann constant. 

For all computations, κ is averaged over 20 independent runs (different initial velocities for 

atoms) and flux-flux auto-correlation time (τ) is chosen to be 10 ps.  

The thermal conductivity is a second rank tensor with 9 matrix elements. The thermal 

conductivity matrix for an isotropic model comprises of three independent values only, since κ11 

= κ22 = κ33, and all remaining elements vanish. The value of thermal conductivity reported is an 

average of the diagonal elements or the trace, κtrace. 

Example of thermal conductivity matrix for a-Si3N4 is as follows: 

T = 302.9 ±	0.4 K 

𝜅 =
2.2± 0.3 0.1± 0.2 −0.3± 0.4
−0.1± 0.4 2.3± 0.3 −0.1± 0.4
−0.4± 0.3 −1.2± 0.3 2.4± 0.3

 

Trace = 2.3 ±	0.2 Wm-1K-1 

In Figure A4.1, I plot the integrated heat current auto-correlation function (HCACF) recorded for 

20 individual MD runs for 4x4x4 super cell of a-Si3N4 at 300 K. The flux-flux auto-correlation 

time (τ) is 16.7 ps. Ideally the HCACF is expected to converge to zero over time. However, it is 

obvious from Fig. A4.1 that depending on individual runs, or the chosen length of auto-

correlation time, thermal conductivity of the sytem varies. For instance, κtrace varies between 7.1 

Wm-1K-1 and 0.5 Wm-1K-1  for τ = 16.7 ps between 20 runs. For a particular run: at τ = 5, κtrace = 

κ =
Δt

VkBT
2

1
(N −m)

J
n=1

N−m

∑
m=1

M

∑ (m+ n)J(n)
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4.1 Wm-1K-1; at τ = 10 ps, κtrace = 0.5 Wm-1K-1; while at at τ = 15 ps, κtrace = 2.0 Wm-1K-1. 

Nevertheless, over 20 runs, at  τ = 5, 10 and 15 ps is fairly convergent – with the average κtrace = 

2.6, 2.3 and 3.1 Wm-1K-1 respectively. Therefore the choice of 20 runs to achieve an average 

value and τ = 10 ps is justified.  

 

Figure A4.1: Integral of Heat current auto-correlation function (HCACF) for 4x4x4 super cell of a-
Si3BN4 at 300K using Tersoff potential for 20 independent runs (in grey). The black line represents the 
average of these 20 runs.  

For a-SiBN models we study thermal conductivity, firstly as a function of temperature of the 

system and secondly as a function of BN content at 300 K. Results are discussed as below: 

A4.2) Function of Temperature: 

The temperature dependence of the thermal conductivity, precisely κtrace, between 300 and 2100 

K is plotted in figure 2. At 300 K, the thermal conductivity is significantly different for different 

mol% of BN.  As the temperature increases from 300 – 2100 K, κ of a-SiBN models exhibit 

overlapping values within limits of standard error. Moreover at 2100 K, we see a convergence of 

κtrace at ~ 2.0 Wm-1K-1 for all compositions.  

However, for the model of layered-Si3B9N13 κ = 3.4 ± 0.6 Wm-1K-1 at 300 K. With increase in 

temperature, κ for this composition decreases and reaches a minimum at 1200 K. Beyond 1220 

K, it again increases and converges to 3.3 ± 1.1 Wm-1K-1 at 2100 K. In addition, if standard error 
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for each composition is taken into account, the thermal conductivity is rather constant over the 

temperature range. Thus, within the Tersoff potential trends in thermal conductivity of a-SiBN 

models with temperature is inconclusive.  
 

 

Figure A4.2: Trends in thermal conductivity with temperature for a-SiBN models. Thermal conductivity 
is distinct for different compositions at 300 K but soon converge to ~ 2 Wm-1K-1 at higher temperatures.  

A4.3) Function of mol % BN at 300 K: 

Figure A4.3 plots the thermal conductivity of our material as a function of the mol % BN present 

in our models. Adding BN to Si3N4 results in an initial drop of κ (for a-Si3BN5) and then 

increases with as mol % BN = 75 and 90 for a-Si3B3N7 and a-Si3B9N13 The structure of a-Si3BN5 

has small isolated units of BN that act as scattering centers and reduce the phonon mean free 

path (kinetic theory). This leads to a decrease in thermal conductivity. Even for models with 90 

% BN, a-Si3B9N13 with scattered BN units, has low κ comparable to a-Si3BN5. Alternatively, a-

Si3B3N7 and “layered” a-Si3B9N13 has long channels of BN units that facilitate the flow of heat, 

resulting in higher thermal conductivity of the material. The model for a-BN is not included in 

this discussion as it has been generated from a different approach.  
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Figure A3.3: Composition dependence of thermal conductivity. The thermal conductivity increases with 
increasing mol % BN in the material. All computations are done with box lengths of ~ 40 Å and at 300 
K.  

Conclusions: 

The main conclusions from this work are: 

• The Tersoff potential provides indecisive trends for temperature and composition effects 

of thermal condctivity for a-SiBN models. 

• Depending on the length of flux-flux auto-correlation, thermal conductivity of the 

material can vary widely.  

Thus the Tersoff potential is not a wise choice of potential to study thermal conductivity of 

amorphous SiBN material. The next chapter describes my efforts to use a different potential 

tostudy thermal conductivity of a-SiBN material.  
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Summary: 

Amorphous silicon boron nitride (a-SiBN) materials are studied for their potential application as 

a non-oxide high performance coating material. While the earliest studies on this material date 

back to 1993, interest in this material is still widespread. [1] In this collaborative project, an 

effort is made to predict the thermal conductivity and Young's modulus of a-SiBN. The empirical 

potential of choice is the Tersoff potential. While the parameters for Si are a part of Tersoff's 

initial proposition, B and N parameters are respectively from Matsunaga and Kroll. Small 

models are built using the network algorithm approach with increasing mol % of BN in Si3N4. 

The results of the study are straightforward - thermal conductivity and Young's modulus only 

depend marginally on the BN content of the material. Unless the BN exists in the form of long 

extended layers as in the crystal structure of hexagonal BN, thermal conductivity of these 

potential coating materials is low.  

However, in an individual effort, I study how well the Tersoff potential performs when 

applied to the SiBN system. The first concern is coordination defects. Amorphous SiBN models 

generated for are first optimized within DFT. Afterwards, models are subjected to the Tersoff 

potential. Care is taken to ensure that the local geometry is not significantly altered when 

applying the Tersoff potential. 

 However for computing the thermal conductivity the heat-current auto-correlation curve is 

not smooth and does not decay to zero for long time scales. As a result, the value of thermal 

conductivity strongly depends on the correlation time. Moreover, the method proves 

computationally expensive as well, because of the tedious averages required to cancel out 

fluctuations in the κ value. 

Reference: 

[1] H.P. Baldus, M. Jansen, O. Wagner, - 89-91 (1993) - 80. 
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CHAPTER 5 

THERMAL CONDUCTIVITY OF AMORPHOUS SILICON BORON NITRIDE: 

STUDYING IMPACT OF COMPOSITION, DENSITY, AND TEMPERATURE USING 

DENSITY FUNCTIONAL THEORY CALCULATIONS AND EMPIRICAL POTENTIAL 

MOLECULAR DYNAMIC SIMULATION5

																																																								
5	This work is submitted to Journal of American Ceramic Society and is currently under revision.	
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Scope and Motivation 

In this chapter we continue the investigation of thermal conductivity for amorphous silicon boron 

nitride (a-SiBN) ceramics. As discussed before, these materials find use as applications as 

oxidation resistant protective coatings and as ceramic fibers. Experimentally bulk synthesis for a-

SiBN involves polymeric intermediates, with TADB (tri-chlorosilylaminochloroborane) being 

most extensively used. Thin films of this material are derived from deposition techniques.  

The motivation for this work is consequent from the conclusions of chapters 3 and 4. Chapter 

3 establishes that the Marian-Gastreich 2 body (MG2) potential is suited to study systems 

consisting of Si and N. In the chapter 4 appendix, I establish that the deficiencies the Tersoff 

potential has modeling SiN systems is also applicable to Si-B-N systems. Models have 

coordination defects and high enthalpies of formation, indicating unrealistic structures. The 

Tersoff potential predicts ambiguous trends while studying temperature dependency of κ in these 

materials. The structure library of a-SiBN was expanded with realistic large-scale models and 

hypothetical crystalline models of SiBN for comparison. The effects of temperature, density and 

composition on the thermal conductivity of the material are systematically investigated.  

The chapter next includes the submitted manuscript for this project and some additional 

information in the Appendix.  
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Thermal Conductivity of Amorphous Silicon Boron Nitride: Studying Impact of 

Composition, Density, and Temperature using Density Functional Theory Calculations and 

Empirical Potential Molecular Dynamic Simulations  

Atreyi Dasmahapatra1 and Peter Kroll1* 
1 Department of Chemistry and Biochemistry, The University of Texas at Arlington, 

700 Planetarium Place, Arlington, Texas 76019, United States. 

Abstract 

We study thermal conductivity (κ) of amorphous silicon boron nitride (a-SiBN) for different 

compositions and densities as a function of temperature using density functional theory (DFT) 

calculations and equilibrium molecular dynamic (MD) simulations. Our library of amorphous 

structures consists of network models comprising 100 – 200 atoms and large-scale models with 

up to 57000 atoms generated using the empirical Marian-Gastreich two-body (MG2) potential. 

Crystalline structures within the Si3N4-BN system are considered as well. We use two distinct 

approaches to compute thermal conductivity of a-SiBN. To estimate κ in the high temperature 

limit we feed Clarke’s phenomenological model with elasticity data obtained by DFT 

calculations. We further perform equilibrium MD simulations and apply the Green Kubo 

method. This approach shows decrease of κ with increasing temperature and provides results at 

high temperatures that agree with results derived within Clarke’s model. We find that κ of a-

SiBN depends on composition and increases as the BN content in the structure increases. The 

effect is pronounced at low temperature but almost vanishes at high temperature. Furthermore, 

thermal conductivity depends on density and porosity, with a linear relation between κ and 

density. 
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Introduction 

Amorphous silicon boron nitride (a-SiBN) materials are high performance non-oxide refractory 

ceramics with a degradation temperature of 1800 °C and oxidation resistance up to 1600 °C. 1, 2, 3 

Potential applications of a-SiBN include ceramic parts and fibers as well as protective coatings. 4 

Recently, Eu2+ and Ce3+ doped amorphous Si3B3N7 ceramics have been proposed as luminescent 

materials in white LEDs. 5 Synthesis of SiBN ceramic fibers follow the polymer-to-ceramic 

route. 1, 2, 6 Protective SiBN thin films have been synthesized by plasma enhanced chemical vapor 

deposition techniques. 7  

Several experimental and computational studies addressed structure and mechanical 

properties of a-SiBN. 8, 9, 10, 11 Thermal conductivity data, on the other hand, is sparse and usually 

refers to a material that includes additional carbon, hence SiBNC. Values of 1.1 ± 0.1 Wm-1K-1 at 

300 K, 3 Wm-1K-1 at 1473 K and 0.40 Wm-1K-1 at 1773 K were reported for some amorphous 

SiBNC ceramic fibers (“Siboramic”). 1, 2, 12 In a more systematic study, Göbel et al. reported 

values of 0.490 Wm-1K-1 and 0.76 Wm-1K-1 at 300 K and 773 K, respectively. 13 Kousaalya et al. 

investigated thermal properties of amorphous SiBNC foams at high temperatures. They reported 

an increase of thermal conductivity from 0.4 to 1.8 Wm-1K-1 upon increasing temperature from 

300 to 1200 °C. 14 Previous computational studies addressed Si3B3N7. Schön and Hannemann 

performed non-equilibrium MD simulations using the empirical MG2 potential and computed a 

thermal conductivity of 4 Wm-1K-1 between 300 – 500 K. 15, 16, 17 Recently, we reported 

equilibrium MD simulations of SiBN at 300 K using the Tersoff potential and highlighted the 

impact of BN content in SiBN on thermal conductivity. 18  

In the present study, we explore thermal conductivity of SiBN using both quantum chemical 

and empirical methods. First we investigate small a-SiBN models as described in Ref. 18 within 

DFT, and then expand the structure library with large-scale models (~50000 atoms) generated 

using the empirical Marian-Gastreich two-body (MG2) potential. 17 We also incorporate 

hypothetical crystalline models of Si3B3N7 and Si3BN5. 19 For calculation of thermal conductivity 
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we employ the phenomenological model of Clarke and the Green Kubo method. 20, 21 We achieve 

an agreement between the two distinct methods and establish relations between thermal 

conductivity κ and temperature, density and composition of the material.  

Computational Methods 

Structure Generation 

We generate models of amorphous SiBN with compositions Si3N4, Si3BN5, Si3B3N7 and Si3B9N13. 

In the quasi-binary system, Si3N4-BN, this corresponds to molar content of BN as 0, 50, 75, 90, 

and 100% respectively. We follow two different approaches for structure generation, referred to 

as Set 1 and Set 2. SiBN models of the first set are generated using a combination of network 

modeling and Density Functional Theory calculations, with details given in Ref 18. 22, 23, 24, 25 

Augmenting this work, we included at least one model for each composition with twice as many 

atoms (up to 224 atoms). Models of Set 1 have densities between 2.7 - 3.0 g·cm-3. 

Models of Set 2 have been generated via Molecular Dynamic (MD) simulations through a 

standard melt-and-quench (MQ) procedure. For MD simulations we apply the 2-body empirical 

Marian-Gastreich potential (MG2) (details further below), which we implemented in the 

LAMMPS code. 17 26 Taking advantage of the faster empirical simulation technique, we place 

51200 to 57344 atoms randomly in a simulation box of length ~ 9 nm. The exact number of 

atoms and cell volume depend on composition and density of a model, respectively. First we heat 

the system within 20 ps to 5000 K (heating rate of 2.35 · 1014 K·s-1) to obtain a “melt-like” state. 

At 5000 K we “hold” the system briefly for 5 ps. In this “melt-like” form of the structure, we 

monitor the diffusion of atoms as well as the coordinating neighbors to confirm that no memory 

of the original configuration is retained. The “quenching” procedure starts by cooling the system 

within 50 ps to 3000 K (quenching rate of 4.0 · 1014 K·s-1), followed by a hold at 3000 K for 5 ps. 

Cooling continues to 2000 K in 50 ps (2.0 · 1014 K·s-1), and thereafter to 300 K in 500 ps (3.4 · 

1012 K·s-1). The total simulation time for the melt-quench procedure is 630 ps. Our heating and 
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cooling rates are comparable to Hannemann et al.. 27 At all times during the simulations, we keep 

the volume constant and use a time step of 0.1 fs for the integration of the equations of motion. 

Structures obtained after melt-and-quench are subjected to final energy minimization in 

LAMMPS by optimizing atom positions. We choose two densities, 2.1 and 3.2 g·cm-3, for every 

composition of our models in Set 2. The only exception to this is a-Si3B3N7 for which we 

generate models with densities ranging from 1.6 g·cm-3 to 3.2 g·cm-3, in steps of 0.2 g·cm-3. For 

all our models in Set 2, we generate three (3) models per density but choose the lowest energy 

model for further work. 

Therefore, our structure library consists of small models (100 – 224 atoms) – referred to as 

“Set 1” and large-scale models (51200 – 57344 atoms) – belonging to “Set 2”.   

Furthermore, with β-Si3N4, h-BN and the mixed phases α-3-Si3BN5 and β-1-Si3B3N7 we 

consider crystalline structures including hypothetical ternary SiBN phases. 19 Thus, our complete 

structure library consists of small network models of Set 1, large-scale models of Set 2 generated 

via melt-quench simulations, and crystalline SiBN models. For crystalline SiBN structures we 

compute DFT energies of β-Si3N4 and h-BN as -58.69 eV/f.u. and -17.89 eV/f.u., respectively. 

Enthalpies of formation (ΔHf) for the mixed crystals are 0.085 eV/atom for α-3-Si3BN5 and 

0.118 eV/atom for and β-1-Si3B3N7. The latter value is in agreement with previous results. 19 

Using the MG2 potential we obtain, 35.76 eV/f.u. and -11.57 eV/f.u. for β-Si3N4 and h-BN, 

respectively and ΔHf of 2.03 eV/atom for α-3-Si3BN5, and 0.22 eV/atom for β-1-Si3B3N7. 17 

Calculation of Thermal Conductivity, κ: 

a. Applying Clarke’s phenomenological model using DFT computed data 

For all network models of Set 1 that are generated using the empirical/quantum-chemical 

approach we calculate elastic constants cij via the strain-stress relationship given by Hooke’s 

Law. We determine bulk modulus (B), Young’s modulus (E), and shear modulus (G) for each 

structure within the approximations of Voigt, Reuss and Hill. 28, 29, 30 Lattice thermal conductivity 

at high temperatures is estimated using Clarke’s model: 20 
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where E is the Young’s modulus, M is the total mass of the system, m is the number of atoms in 

the system, kB the Boltzmann constant, and NA Avogadro’s number. Clarke’s model is valid only 

in the high temperature limit, when heat capacity reduces to the Dulong-Petit value. 

b. Applying the Green-Kubo method using equilibrium MD simulations  

For SiBN network models of Set 1 we build 3x3x3 (for 200 - 224 atoms in the unit cell) and 

4x4x4 (for 100 - 112 atoms in the unit cell) super-cells to achieve simulation boxes with cell 

parameters larger than 40 Å in each direction. We compute thermal conductivity (κ) of models 

via equilibrium MD simulations using the Green-Kubo method. 21 Thermal conductivity (κ) is 

given by the integral over the flux-flux auto-correlation function:  

κ =
1

VkBT
2 J(t)J(0)
0

∞

∫  

where J(0) is the initial heat flux at time t = 0 and J(t) is the heat flux at time t. V is the volume 

of the system, T is the temperature in Kelvin and kB is the Boltzmann constant.  To evaluate the 

integral we follow the approach by Schelling. 31 For models of Set 1, we perform MD 

simulations: first in an isobaric-isothermal ensemble (NPT) for 400 ps, followed by equilibration 

for 200 ps in canonical ensemble (NVT), and finally in a micro-canonical ensemble (NVE) for 

200 ps. Time integration is performed with Nose-Hoover style non-Hamiltonian equations of 

motion that generate positions and velocities sampled from the NPT, NVT and NVE ensembles. 

Our time step for the integration of the equations of motion is 0.1 fs. After this equilibration, we 

stay in the NVE ensemble for another 100 ps and compute the heat flux J. This data is used to 

compute thermal conductivity (κ). The total time for each simulation, including equilibration and 

recording of heat flux, is 900 ps. The procedure agrees with Ref. 18 except for the different 

empirical potential. Applying the Green-Kubo method to compute thermal conductivity yields 

the full second-rank tensor κ via auto-correlation of heat flux, with matrix elements κij ~ 



	 161	

Ji(t)Jj(0). For each model we calculate an average tensor κij from five (5) independent simulations 

with different initial velocities for atoms. The error margin refers to the standard error of the 

data. In practice, we find that off-diagonal elements of κ are consistently smaller than the margin 

of error. For an isotropic system, the only independent quantity is the trace of κ.  Anisotropy 

among the diagonal elements is present in crystalline phases and in “layered” structures of 

Si3B9N13 (Set 1). 

Models of Set 2 comprise of five to eight times more atoms than the supercells of Set 1. 

Hence, cell parameters are large enough (70 - 90 Å) to prevent finite size effects while 

computing thermal conductivity. Initially, we followed the same MD procedure as described 

above. However, in course of our study we noticed a much faster equilibration of the system 

when using the MG2 potential in comparison to using the Tersoff approach of Ref. 18. Taking 

advantage of this, we use shorter simulation times: 20 ps in NPT, 20 ps in NVT and 20 ps in 

NVE to equilibrate the system. The heat flux is recorded for 90 ps within the NVE ensemble. 

The total simulation time is reduced to 150 ps, which is a significant cost saving for amorphous 

models. Crystalline models, on the other hand required significantly longer simulation times 

while recording the heat-flux under NVE conditions. For example, for β-Si3N4, the flux-flux 

auto-correlation at 300 K decays significantly slower compared to any amorphous system. For all 

crystalline models, simulations have been repeated ten (10) times and the data is averaged. 

Marian-Gastreich empirical two-body potential (MG2) 17 

The Marian-Gastreich potential (MG2) is a two-body potential with Morse-type Si-N and B-N 

interactions; repulsive terms for N-N, B-B, B-Si and Si-Si interaction; and additional dispersion 

terms for N-N interactions. The latter stabilize the layered structures of crystalline hexagonal and 

rhombohedral BN. Details for the potential can be found in Ref. 17. Hitherto, the MG2 potential 

was only available as a part of the GULP or the TREMOLO-X packages. 32, 33, 34 In this work, we 

implemented the MG2 potential into the LAMMPS package and performed all computations 

within LAMMPS. 26 
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In a recent comparative study on empirical potential simulations of amorphous Si3N4, we 

indicate that models obtained using the MG2 potential contain only few coordination defects. By 

contrast, several different parameterizations of the Tersoff potential produce far higher 

proportions of over- and under-coordinated atoms, especially 3-coordinated Si atoms. 35 We gain 

similar experience while modeling amorphous SiBN, for which we previously used a Tersoff 

potential. 9, 18 The MG2 potential produces “low defect” models that are close to a DFT local 

energy minimum, while Tersoff models contain many coordination defects and require 

substantial additional optimization. Moreover, the MG2 potential has a performance advantage 

due to its nature of a two-body potential, despite the longer cut-off. The CPU time needed using 

MG2 potential is only 60% of that of the Tersoff potential during MD simulations. Overall, we 

find that the MG2 potential is better suited for modeling amorphous SiBN than the Tersoff 

potential. 

Results and Discussions 

1) Structure and Enthalpy of formation 

SiBN network models of Set 1 have been characterized previously. 18 In brief, network 

models optimized in DFT exhibit SiN4-tetahedra, BN3-triangels, and mixed NSinB3-n triangular 

environments. Only few defects are present, and on average less than 1% of Si atoms appear 

under-coordinated. In models with high BN content (e.g.: Si3B9N13) we observe either 

predominantly “layered” structures, in which BN sheets are bridged by Si atoms, or “dispersed” 

structures without apparent layers.  

Taking SiBN models of Set 1 that are optimized within DFT and subjecting them to local 

optimizations using the MG2 potential, requires only few optimization steps to converge forces 

and stresses. Reversely, the adopted MG2 local ground state structure requires only few 

optimization steps in DFT to converge back to the initial configuration. This behavior indicates 

close proximity of the local ground states of empirical MG2 potential with DFT ground state. By 
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contrast, DFT-optimizations of SiBN models, which have been generated using the Tersoff 

potential first, yield significant structural distortions including bond ruptures. 18 Figures of small 

network models of Set 1 are included with Ref 18. In Figure 1, we present large models from Set 

1 and models from Set 2.  

 

 

Figure 1: (Top) Representative models of amorphous SiBN (Set 1). From left to right: a-Si3N4 (Si3N4: BN 
= 1:0, 224 atoms); a-Si3BN5 (Si3N4: BN = 1:1, 216 atoms); Si3B3N7 (Si3N4: BN = 1:3, 208 atoms) and 
Si3B9N13 (Si3N4: BN = 1:9, 200 atoms). (Bottom): Representative models of a-Si3B3N7 (53248 atoms) 
from Set 2. These models are generated from the MG2 potential using a melt-and-quench scheme. (Left): 
Model with density = 1.6 g·cm-3 shows formation of large “voids”. Color-coding: Si – Blue 
tetrahedra/sphere, B – pink triangle/sphere and N – green spheres (Right): a-Si3B3N7 (density = 1.8 g·cm-

3) showing population of Si-N (green) and B-N bonds (pink) 

The enthalpy of formation, ΔHf, of models of Set 1 is computed relative to crystalline β-Si3N4 

and h-BN. For the lowest energy model of each composition we obtain (DFT value stated; MG2 

result in parentheses) ΔHf = 0.21 (0.17) eV/atom for a-Si3N4, 0.25 (-0.02) eV/atom for a-Si3BN5, 

0.33 (-0.04) eV/atom for a-Si3B3N7, and two values for a-Si3B9N13, 0.25 (-0.04) eV/atom and 0.17 

(-0.06) eV/atom, depending on whether the model is “dispersed” or “layered”. Obviously, the 
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MG2 potential favors a mixing of Si3N4 and BN in the amorphous state, thus preferring mixed a-

SiBN models to models comprising regions of segregated a-Si3N4 and a-BN. We find the same 

bias towards mixed a-SiBN in large-scale models produced by the melt-quench method. 

Experimentally, however, quite the opposite is observed with a-SiBN segregating into SiB-rich 

and BN-rich regions. 36 Previous computational work does not address this deficiency of the 

MG2 potential. Since this bias in structure simulations may have significant implications for 

simulations of thermal conductivity, we propose a simple modification to the MG2 potential. 

Increasing the repulsion between Si and B slightly (e.g. by increasing the parameters A and ρ by 

6 %) produces models of a-SiBN with modest but visible segregation (see Fig.1, bottom right). 

The modification does not change elastic constants or vibrational frequencies computed of Si3N4 

or BN structures, which were part of the original training set of the potential. 17 This increased 

repulsion only affects the modeling of amorphous SiBN structures. 

2) Thermal conductivity using Clarke’s phenomenological model 

Once the elastic constants of SiBN models of Set 1 are computed within DFT, it is 

straightforward to calculate the lattice thermal conductivity in the high temperature limit, κmin, 

according to Clarke’s model. 20 For each composition we compute κmin for 2−5 independent 

models, and show averages together with standard errors in Table 1. κmin shows only a slight 

increase with increasing BN content. However, the trend is barely exceeding the margin of error. 

 

Composition Mol % BN κmin(Wm-1K-1) 

Si3N4 0 2.3 ± 0.1 

Si3BN5 50 2.4 ± 0.2 

Si3B3N7 75 2.5 ± 0.1 
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“dispersed” Si3B9N13 90 2.6 ± 0.2 

“layered” Si3B9N13 90 2.7 ± 0.1 

Table 1: Lattice thermal conductivity (κmin) of Si-B-N models computed with Clarke’s Model. 
Uncertainties in the values arise from multiple amorphous models considered for the same composition.  

ii) Thermal conductivity applying the Green-Kubo method using equilibrium MD simulations 

In Figure 2 we plot the heat current (z-component, Jz) auto-correlation function (HCACF) for a-

Si3BN5 (55296 atoms) averaged over five independent MD simulations at 300 K for a correlation 

time of 100 ps. The HCACF is “smooth” and converges to zero after approximately 5 ps (inset in 

Fig. 2). By contrast, using the Tersoff potential required 20 ps of simulation time to achieve 

similar convergence. 18  

 

Figure 2: Heat current auto-correlation function (HCACF) at 300 K for a-Si3BN5 averaged over five 
independent MD simulations using different starting conditions (initial velocities of atoms). This model 
from Set 2 comprises of 55296 atoms. (Inset) A magnified portion of the same auto-correlation function 
plotted to 5 ps.  
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Crystalline structures  

Table 2 lists the diagonal components of the thermal conductivity tensor for crystalline SiBN 

compounds at room temperature and 2100 K. We also include the data obtained by Clarke’s 

phenomenological model using elastic contacts computed by DFT.  

 300 K 2100 K Clarke’s 
Models 

Composition κxx κyy κzz κxx κyy κzz κmin 

β-Si3N4 21.8 ± 1.4 24.3 ± 1.9 55.6± 2.9 3.3 ± 0.2 4.1 ± 0.3 5.3 ± 1.0 2.5 

α-3-Si3BN5 9.8 ± 0.6 8.9 ± 0.8 17.7 ± 0.9 2.4 ± 0.2 2.4 ± 0.1 3.8 ± 0.3 2.7 

β-1-Si3B3N7 10.3 ± 0.5 8.8 ± 0.4 29.0 ± 2.1 2.0 ± 0.2 1.8 ± 0.1 2.8 ± 0.2 2.3 

h-BN 374.5 ± 21.3 387.5 ± 19.2 1.3 ± 0.4 24.2 ± 0.6 27.5± 0.1 0.5± 0.0 2.4 

Table 2: Thermal conductivity of crystalline phases of SiBN compositions (β-Si3N4, α-3-Si3BN5, β-1-
Si3B3N7 and h-BN). Standard errors are obtained from 5 independent simulations for each model. All 
values are in units of Wm-1K-1. 

Crystalline models show a pronounced anisotropy with κxx = κyy ≠ κzz, reminiscent of the 

procedure to generate them from Si3N4 polymorphs. 19 However, the computed thermal 

conductivity of β-Si3N4 is lower than experimental data. For example, at 300 K single-crystal β-

Si3N4 has a thermal conductivity of 69 and 180 Wm-1K-1 along a- and c-direction, respectively. 37 

At 1400 K, sintered polycrystalline β-Si3N4 still exhibits κ ~ 28 Wm-1K-1. 37 On the other hand, 

our data for h-BN at room and high temperature is in excellent agreement with reference data. 

Room temperature measurements for bulk h-BN shows its basal plane thermal conductivity (κxx 

and κyy in our case) to be ~ 400 Wm-1K-1. 38 At 1273 K, κ is measured between 24 – 28 Wm-1K-1 

for hot pressed h-BN. 39 Data from Clarke’s model clearly has its limitation, apparent when 
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comparing κmin with our simulations or with experimental data. Nonetheless, at 2100 K, MD 

results for α-3-Si3BN5 and β-1-Si3B3N7 are within 10% of their Clarke’s model values, exhibiting 

convergence in empirical simulations and DFT methods.   

Thermal Conductivity of network models (Set 1) by equilibrium MD simulations 

The temperature dependence of κtrace of network models (Set 1) is plotted in Fig. 3 for each 

composition. At 300 K, κ of a- Si3N4 is 2.3 ± 0.1 Wm-1K-1, while for 90 % BN-rich Si3B9N13 κ is 

4.7 ± 0.1 Wm-1K-1 and 6.9 ± 0.2 Wm-1K-1, depending on whether the model is “dispersed” or 

“layered”. Thus, at room temperature thermal conductivity depends significantly on composition 

and increases with increasing mol % of BN. At elevated temperatures, however, the impact of 

composition on κ is lower. At 2100 K we find κ between 1.9 ± 0.1 Wm-1K-1 for Si3N4 and 2.4 ± 

0.1 Wm-1K-1, for “layered” Si3B9N13. These high temperature values match those listed in Tab. 1, 

which were computed using first-principles elastic constant calculations together with Clarke’s 

formula. The excellent agreement between empirical potential simulations and DFT results in the 

high temperature limit also provides confidence in the computational approach. In the 

intermediate temperature range, κ of each composition decays almost exponentially. One may 

speculate that a major reduction of κ happens between 300 K and 1200 K, while the composition 

dependence remains pronounced. Above 1200 K, however, only marginal composition 

dependence is visible and a temperature variation of κ occurs only for BN-rich Si3B9N13. 

Experimentally, a value of about	2 W m−1K−1 at 300 K was suggested for thin films of a-

Si3N4, independent of film thickness. 40, 41, 42 This agrees with our calculations (see Fig 3 and Tab. 

1). Computational studies by Schön et al. for a-Si3B3N7 using the MG2 potential together with 

non-equilibrium MD simulations suggested a thermal conductivity κ of 4.0 ± 1.0 Wm-1K-1 at 300 

K and 4.0 ± 0.1 at 500 K for models with a density of 2.7 to 2.8 gcm-3. 43 Our data is very close to 

these values, as we compute 3.7 ± 0.1 Wm-1K-1 at 300 K and 2.9 ± 0.1 Wm-1K-1 at 600 K.  
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Figure 3: Thermal conductivity as a function of temperature in MD simulations for small a-SiBN models 
of Set 1. Thermal conductivity is distinct for different compositions at 300 K but soon converge to 2.1–
2.7 Wm-1K-1 at higher temperatures.  

A decrease in thermal conductivity of amorphous SiBN materials at elevated temperatures, as 

shown in Fig. 3, has not been reported before. Göbel et al. reports the thermal conductivity of 

amorphous SiBN3C, a material that contains additional carbon, ceramic to be 0.490 ± 0.042 Wm-

1K-1 at 300 K increasing to 0.726 ± 0.063 Wm-1K-1 at 773 K. Generally, an increase of κ above 

~30 K is characteristic for most amorphous solids, e.g. a-Si, a-Ge, and silica glasses. This 

phenomenon is often explained by an increase in the population of vibrational modes that can 

transport heat current. 44, 45 On the other side, modeling studies of a-Si by Lee et al. show a 

decrease of thermal conductivity  between 400 − 800 K due to an increasing number of 

coordination defects. 46 A similar effect does not apply for a-SiBN models, as we observe only 

minor coordination changes (< 1%) during simulations, even after 100 ps at 2100 K. Possible 

future work may involve modal contributions to thermal conductivity to analyze the temperature 

dependence of κ in more detail. 47  
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Thermal conductivity of large-scale SiBN models  

The previous section established a strong agreement between first-principles calculations and 

empirical potential simulations using the MG2 potential. Encouraged by this, we seek a more 

systematic analysis of thermal conductivity of SiBN materials. We explore an impact of 

composition and one of density, which relates to porosity of a structure. The network models 

exhibit densities between 2.8 and 3.0 g·cm-3. A typical experimental density of polymer-derived 

a-Si3B3N7 is 1.9 g·cm-3. 48 In previous simulations of a-SiBN a density of 2.5 g·cm-3 was adopted. 
49 While this is lower than a weighted average of β-Si3N4 (ρ = 3.20 g·cm-3) and h-BN (ρ = 2.34 

g·cm-3), it is still larger than the experimental density. 50, 51 Since we can easily set a target density 

for large-scale SiBN models, we investigated densities of 2.1 and 3.2 g cm-3 for every 

composition. For the composition a-Si3B3N7 we consider a range of models with densities 

between 1.6 g·cm-3 and 3.2 g·cm-3.  

The dependence of κ on composition is depicted in Fig. 4 (left) at low (300 K) and high 

temperature (2100 K). The data shows clearly that κ increases with increasing BN content. The 

effect is stronger at room temperature than at high temperatures. Moreover, for dense models, the 

effect of composition is more pronounced than for models with low density. Figure 4 (Left) 

repeats the results of low thermal conductivity of a-SiBN materials in the high-temperature limit. 

At 2100 K, κtrace varies between 2.0 (a-Si3N4) and 2.9 (a-Si3B9N13) Wm-1K-1 for density = 3.2 

g·cm-3 and between 1.1 (a-Si3N4) and 2.0 (a-Si3B9N13) Wm-1K-1 in models with density = 2.1 

g·cm-3.  

The impact of density on thermal conductivity is shown more systematically for large models 

of a-Si3B3N7 in Fig. 4 (Right). Comparing 300 K and 2100 K, κ varies by more than a factor of 2 

for densities between 1.6 and 3.2 g•cm-3. A linear fit to the data according to κ = α[T]·ρ yields a 

temperature-dependent constant, α [T]. We find values for α[T] of 1.4 Wm-1K-1g-1cm3 and 0.7 

Wm-1K-1g-1cm3  at 300 K and 2100 K, respectively. It is generally observed that in ceramics the 

fraction of “open voids and pores” determines thermal conductivity. 52, 53 Voids and surfaces act 
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as scattering centers, effectively reducing the phonon mean free path and constraining thermal 

transport. Our data aligns with this observation: a dense structure of a-Si3B3N7 with low 

“porosity” has higher κ in comparison to the open structure. We can use the fit and our data and 

estimate the value of thermal conductivity of polymer-derived a-Si3B3N7 with density of 1.9 

g·cm-3 and receive 2.7 Wm-1K-1 at 300 K and 1.4 Wm-1K-1 at 2100 K.  

 

Figure 4: (Left) Thermal conductivity, κ, as a function of composition of large-scale a-SiBN models of 
Set 2. Graphs are for densities 2.1 g·cm-3 (red line for 300 K and blue line for 2100 K) and 3.2 g·cm-3 
(pink line for 300 K and purple line for 2100 K). The dotted lines are a guide to the eye only. (Right) 
Thermal conductivity (κtrace) of a-Si3B3N7 models of Set 2 plotted as a function of density for 300 K and 
2100 K. The straight line is a linear fit (κ = α[T]·ρ) to the data. 

Summary and Conclusions 

We characterize thermal conductivity of amorphous SiBN ceramics and its dependency on 

composition, density, and temperature. We apply both Density Functional Theory (DFT) 

calculations as well as molecular dynamic (MD) simulations using the empirical two-body 

Marian-Gastreich potential (MG2). We consider the compositions Si3N4:BN = 1:0 (Si3N4), 1:1 

(Si3BN5), 1:3 (Si3B3N7), and 1:9 (Si3B9N13). Different types of a-SiBN models are investigated: 

small models (100 – 224 atoms) created via a network approach as well as large-scale models 

(51200 – 57344 atoms) generated using standard melt-quench simulations. For comparison and 
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reference, we include crystal structures of Si3N4 and BN, and hypothetical crystalline models of 

Si3BN5 and Si3B3N7. 

At high temperatures, the thermal conductivity of SiBN models is 2.3 – 2.7 Wm-1K-1 and 

depends only slightly on composition. Investigating small a-SiBN models, we find close 

agreement between first-principles calculations, which uses the Clarke’s model to estimate 

thermal conductivity in the high-temperature limit through calculations of elastic constants, and 

equilibrium MD simulations, which compute thermal conductivity using the Green-Kubo 

approach. MD simulations show that the thermal conductivity decays almost exponentially when 

temperature is increased from 300 K to 2100 K. While a definitive cause for this decrease is 

beyond the scope of this paper, it serves as potential topic for future research.  

A systematic investigation of large-scale amorphous SiBN models shows that thermal 

conductivity increases with increasing BN content. The impact of composition is stronger at low 

temperatures compared to high temperatures and more pronounced in dense models than in open 

models. Studying a-Si3B3N7 in more detail, we find a linear relation between thermal 

conductivity and density, with a slope dependent on temperature.  

Based on this investigation of thermal conductivity of SiBN ceramics, we can make a 

hypothesis about thermal conductivity of SiBNC fiber materials, which display additional carbon 

in the structure. Solid-state NMR of SiBNC shows that after annealing at 1673 K the material 

comprises segregated graphite-like carbon embedded within an amorphous SiBN matrix. 54, 55 We 

expect that thermal conductivity of this composite will depend on the amount and extent of each 

constituent, as well as on their structural relation.  
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Appendix 5: 

In this section, I include supplementary information on investigation of thermal conductivity of 

a-SiBN models using the MG2 potential. [1] 

A5.1) Coding the Flux-flux auto-correlation using MATLAB: Thermal conductivity using 

Green-Kubo Method: 

A code is written in MATLAB to calculate thermal conductivity. As is shown in the article, the 

Green-Kubo (G-K) formalism for thermal conductivity is as follows: [2] 

1
𝑉𝑘!𝑇!

𝐽 0 𝐽(𝑡)  𝑑𝑡
!

!

 

where t, T, V and J are respectively time, temperature, volume and heat current. The G-K 

method relates the thermal conductivity to the integral of heat current auto-correlation function 

(HCACF). A majority of the G-K formula is straightforward however more detail is necessary to 

define the ensemble average of the HCACF.  

Autocorrelation is a measure of similarity between a time dependent function and itself at a 

different time. It shows how similar a function is to itself at a different/later time. To plot the 

HCACF, J(t) must be compared to J(0) and time lag between them be progressively increased. In 

this code, I use the signal processing definition of autocorrelation: 

HCACF(τ) = J 0 J(0+ τ)
!

 

The above formula can be simply defined as the dot product of two matrices. MATLAB is a 

matrix oriented calculation program. Snippets of the code is as follows: 

Variable definition: k = time-lag of auto-correlation; corr_length = length of correlation time; 

a1x is a variable for J(0) and a2x is J(t); corrax is the auto-correlation product. 
… 
for k=0:corr_length 
    a1x = Jx(k+1:nab); 
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    a2x = Jx(1:nab-k); 
… 
corrax(k+1) = a1x * a2x'; 
… 

The more correlated the heat current is the longer it will take to decay to zero (it must decay 

eventually as no material has an infinite thermal conductivity). Given the longer decay time the 

value of the integral will be increased thus yielding a greater thermal conductivity 

Auto-correlation curves computed within the MG2 potential appear “smoother” and decay 

rapidly (within 5 ps) to zero as compared to that of Tersoff potential (see Fig. A5.1). Moreover, 

only 5 averages are necessary to achieve convergence in κ values as compared to 20 for the 

Tersoff potential. It should be noted that negative autocorrelation is a possibility. Autocorrelation 

is an indication of how the function will behave compared to an original function. Negative 

autocorrelation indicates that the function is behaving in the opposite manner. In terms of 

thermal conductivity, negative autocorrelation indicates that heat flow reversing direction.  
	

 

Figure A5.1: Integral of Heat current autocorrelation function (HCACF) for 4x4x4 super cell of a-Si3BN5 
at 300K using Tersoff potential (blue) and MG2 potential (in red). The number of independent 
simulations considered is 20 for Tersoff while for MG2 potential it is only 5. 

A5.2) Modeling a-Si3B3N7 with repulsion: 
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Increasing the repulsion between Si and B by increasing the parameters A and ρ by 6 % 

produces a-Si3B3N7 models segregation. The choice of 6 % comes by trial and error. In Figure 

A5.2 I show three a-Si3B3N7 models with 832 atoms that have 3 and 10 % increase in A and ρ. 

While the model with 3 % increase doesn’t show ant segregated BN regions, 10 % increase in 

potential parameters leads to two separated phases – Si3N4 interspersed between BN.  

 

Figure A5.2: Models of a-Si3B3N7 consisting of 832 atoms with (left) 3 % increase and (right) 10 % in Si-
B repulsion. Both models have density 1.8 g�cm-3 and show the presence of pores and voids.  

Although regions of clustered BN are formed as a result of modifying the parameters, thermal 

conductivity of these “modified potential” models compared to “original potential” models do 

not change with varying density. (See Fig. A5.3). Therefore, it can be inferred that “long 

extended BN units” are necessary for increased thermal conductivity in a-SiBN systems.  
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Figure A5.3: Thermal conductivity of a-Si3B3N7 models (with 53248 atoms, Set 2) plotted as a function 
of their density. The plot consists of models with (red) original parameters and (blue) modified 
parameters. The dotted line is a guide to the eye and connects data points for the models generated with 
identical potential parameters. Standard errors arise from 3 models of the same density.  

A5.2) Porosity and thermal conductivity: At 300 K 

A popular concept in amorphous systems is to define thermal conductivity as a function of the 

porosity of the models. [3, 4] Porosity is defined as:  

𝜙 =
Volume of voids
Total volume = 1−

ρ of the amorphous SiBN model
ρ of crystalline Si!B!N!

 

Density of crystalline β-2-Si3B3N7 = 2.65 g/cm3. [5] It is assumed that the crystalline model is 

100 % dense. However, in this approach, models for which calculated density exceeds the 

crystalline model are excluded, as that leads to negative porosity, which is unrealistic. 

Alternatively, it can also be assumed that the amorphous model with density = 3.2 g/cm3 is 100 

% dense. In Table A5.1, I include porosity (φ) data from both approaches against the density. 

Density of a-SiBN is calculated as an average from 5 independent models. Linear fits to both 

approaches show that κ increases as porosity of the model decreases as a function of the 

equation: κ = (3.6 ± 0.1)[1-φ] for porosity calculated from assumption 1 and κ = (4.4 
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± 0.1) [1−φ] for porosity caluclated from assumption 2. Thus if φ is 0, i.e. for the most dense, 

least porous model, the κ is obtained. Thus from the slope of the linear fit, κ of β-2-Si3B3N7 is 

3.6 Wm-1K-1 and for a-Si3B3N7 (ρ = 3.2 g�cm-3) is 4.4 Wm-1K-1.  
	

Density 
(g�cm-3) 

1− φ (from  
crystalline model) 

1− φ (from dense 
amorphous model) 

κ ± standard error 

1.649 0.62 0.53 2.2 ± 0.0 
1.85 0.70 0.60 2.3 ± 0.1 
2.06 0.78 0.66 2.7 ± 0.1 
2.27 0.85 0.73 3.1 ± 0.1 
2.49 0.94 0.80 3.3± 0.1 
2.67 1.00 0.86 3.9 ± 0.1 
2.81 - 0.91 4.3 ± 0.0 
2.96 - 0.95 4.22± 0.1 
3.20 - 1.00 4.60± 0.1 

Table A5.1: Porosity (φ) v/s thermal conductivity (κ) of a-Si3B3N7 models. The porosity is computed 
from two approaches – 1) assuming the crystalline Si3B3N7 is the most dense phase and 2) assuming that 
a-Si3B3N7 with ρ = 3.2 g�cm-3 is the most dense. In both cases the thermal conductivity increases linearly 
with the density of the model.  

 

Figure A5.4: (Left) Porosity v/s thermal conductivity (κ) assuming crystalline β-2-Si3B3N7 is the 

least porous system. (Right) Porosity v/s κ if amorphous Si3B3N7 with density 3.2 g�cm-3 is 

considered to be least porous and most dense.  
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Summary: 

This chapter continues the investigation of thermal conductivity of amorphous silicon boron 

nitride material. I use an "improved" potential and arrive at major conclusions: 

1. The thermal conductivity of a-SiBN is strongly dependent on the density and composition 

of the material at 300 K.  

2. Temperature dependence of thermal conductivity suggests an increasing trend that is 

contrary to popular belief regarding amorphous systems.  

3. With increasing temperature, thermal conductivity trends toward constant value, which 

strongly agrees with the predicted Clarke's value. Thus, an agreement is achieved between 

quantum and classical mechanics methods.  

4. The Marian-Gastriech two-body potential enables the generation of large-scale realistic 

models of a-SiBN which echo the κ of smaller models.  

5. The first investigation of κ for crystalline structures of SiBN.   

6. The MG2 potential wrongly predicts a mixture of Si3N4 and BN to be more stable than the 

crystalline analogues. This work takes a step to correct this deficiency by proposing a slight 

modification to the potential.  

Thus, using the MG2, thermal conductivity of a-SiBN is correctly studied. Future research is to 

investigate model contributions to thermal conductivity to investigate why it decreases with 

increasing temperature. 
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CONCLUSIONS 
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Conclusions: 

Amorphous materials have manifold applications in today’s world. Computational modeling of 

amorphous materials and glasses are key to understanding the microstructure which is reflected 

in the macroscopic properties of the material. The work in this thesis aims to highlight the 

modeling of both oxide and non-oxide ceramics using density functional theory (DFT) as well as 

classical molecular dynamics (MD). Models are constructed using the melt-and-quench method 

in the domain of ab-initio MD or classical MD. Thereafter models are annealed for significant a 

time to remove any structural defects. This procedure of structure generation is a mimic of 

experimental techniques. After the structures are optimized for their atom positions, various 

physical and chemical properties are computed. Some of these properties are: 

1) Local geometry od atoms 

2) Site-site distance pair correlation function or g(r) – Information about the bonding 

statistics is obtained from this property computation. The first peak in a g(r) plot 

usually gives information about the most prevalent bond in the material. For instance 

in a-Si3N4, the first peak occurs at 1.7 A, which is the length of the Si-N bond.  

3) Vibrational Spectra – Force constants are computed that in turn provide information 

about the phonon density of states and Infrared spectra.  

4) Mechanical properties – The bulk, shear and Young’s modulus gives information 

about the mechanical strength of the material.  

5) Thermal conductivity – Thermal conductivity for the amorphous systems are 

computed using phenomenological models as well as the equilibrium Green Kubo 

method.  

Using the abovementioned structure generation and property computation techniques, I studied a 

variety of systems. The first chapter highlighted the modeling of hafnia-silica (HfO2-SiO2) glass. 

These glasses are generated by insertion of 1-4 HfO2 units in a network of SiO2 glass. Although 
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small in size (box length ~ 11 Å), these models showed that at even at low concentrations (10 

mol %) of HfO2 dissolved in SiO2 clustering of HfOx units occurred.  

In chapter 2, Zr-Si-B-C-N amorphous composites are investigated. Modeling techniques 

involved a melt and quench (MQ) technique followed by simulated annealing. The total 

simulation time for MQ was ~100 ps. Two or three cycles of annealing (each cycle is ~200 ps) 

revealed nucleation of ZrC(N) units inside the amorphous models. However, with increasing mol 

% of Si3N4 in the models, the amorphous phase becomes prevalent leading to loss in mechanical 

hardness of the material. 

The third chapter is in the region of empirical potentials. Si3N4 is commonly modeled using 

the Tersoff potential or Vashishta potential. However, my research in the comparative study of 

modeling amorphous Si3N4 using 9 different empirical potential showed that the MG2 and the 

SG potential are reliable. While the Vashishta potential produced “semi-crystalline” 448 atom 

models, the Tersoff models had high enthalpy of formation and coordination defects. The 

Marian-Gastreich 3 body potential produced over-coordinated Si atoms. As a part of this project, 

the MG2 potential was implemented in to LAMMPS MD code, for the first time. 

The fourth and fifth chapter, both dealt with the thermal conductivity of amorphous SiBN 

models. In amorphous SiBN material, thermal conductivity was found to weakly depend on the 

BN content if Tersoff potential is used as the choice of empirical potential. However, as 

emphasized in the chapter appendix, the Tersoff potential proved to be a poor choice. Long, 

computationally expensive simulations were necessary for convergence of κ values. A better 

empirical potential (the MG2 potential) produces reliable data. In addition, due to the availability 

of MG2 potential in LAMMPS simulations of large-scale models with 50000 atoms can be 

genarated that highlighted that k in these materials was a function of their density, composition 

and the temperature of the study.  

Thus, this work proposes realistic modeling of amorphous systems and glasses with 

convincing property calculations. Major acheivements include establishment of a recipe for 

genration of amorphous models that enables one to examine nucleation phenomenon in these 
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models, if any. Moreover, the MG2 potential is successfully implemented in LAMMPS. In 

addition, for computation of thermal conductivity of any system using Green-Kubo method, 

comprising of Si, B and N the choice of MG2 empirical is a must. 
 
	


