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ABSTRACT

NEUROADAPTIVE HUMAN-MACHINE INTERFACES

FOR COLLABORATIVE ROBOTS

Sven Cremer, Ph.D.

The University of Texas at Arlington, 2017

Supervising Professor: Dan O. Popa

With an increasing number of collaborative robots or “co-robots” entering hu-

man environments, there is a growing need for safe, intuitive, and efficient (physical)

Human-Machine Interfaces. Unlike industrial robots, co-robots operate in cluttered

and dynamic working spaces, where accidental collisions are more likely to occur. To

minimize interaction forces, co-robots are usually lightweight and compliant. How-

ever, this makes the robot dynamics highly nonlinear and therefore difficult to model

and control. In addition, the control loop must incorporate feedback from integrated

sensors. Future systems under development are covered with force-sensing robot skin

comprised of thousands of multi-modal sensors, creating the need for efficient robot

sensor calibration and processing.

During this thesis work, a neuroadaptive (NA) controller was developed and val-

idated for safe and stable physical interaction. In order to achieve intuitive physical

Human-Robot Interaction (pHRI), the robot error dynamics were modified to behave

equivalent to a simple admittance model by expanding the NA controller with pre-

scribed error dynamics (PED). Another new approach for modifying the robot error

vi



dynamics was an inner/outer-loop structure consisting of an admittance model in

the outer-loop, which generates a model trajectory that the inner-loop follows. This

admittance model was implemented with an autoregressive moving average (ARMA)

filter, which was tuned with recursive least squares and with the help of a prescribed

task model. Experiments conducted during this thesis showed that the developed

two-loop framework allows a high degree of generality and adaptability to different

human preferences, tasks, robots, and sensors. It is also offers a novel algorithm for

adaptive calibration of robot skins by directly tuning admittance models that map

sensor voltages into desired robot motion. Finally, it was suggested that the pHRI

can be made more efficient by reducing the human effort during a collaborative task.

The human force exerted on the robot to achieve a desired pose can be minimized

by predicting and then executing the desired human motion. Different human intent

estimators (HIEs) were proposed, including a neural network based estimator.
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CHAPTER 1

Introduction

1.1 Background and Motivation

There is a general sentiment that mankind is entering a new industrial age.

Across the globe, industrial nations are anticipating a paradigm shift to more flexi-

ble and intelligent autonomous manufacturing, and are making major investments to

remain competitive. In the past decade, Japan has launched several smart factory

initiatives [1] to connect real-word machines with virtual information and networked

sensors resulting in so-called “cyber-physical systems” (see Fig. 1.1). In 2011, the

White House announced the Advanced Manufacturing Partnership, which represents

a “national effort bringing together industry, universities, and the federal government

to invest in emerging technologies that will create high quality manufacturing jobs

and enhance our global competitiveness” [2]. In the late 2000s, Germany’s vision of

a new smart factory started to take shape and resulted in the Industry 4.0 platform.

It focuses on standardization and modularization, decentralized self-organization and

optimization, to make “production systems as much as 30 percent faster and 25

percent more efficient” [3]. Industry 4.0 research areas include individualized, mod-

ularized, and flexible production, which is autonomous, networked, and real-time

optimized, but still energy and resource efficient. In this fourth industrial revolution,

human-machine interaction plays a crucial role. The goal is to further reduce the need

for manual labor and instead allow workers to “adopt the role of strategic decision-

makers and flexible problem-solvers” [4]. During manufacturing and service tasks,

workers will be assisted by collaborative robots or “co-robots.” Through advance-
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Figure 1.1. Industrial revolutions leading up to Industry 4.0 [6].

ments in areas such as sensing, communication, and computing, robots are starting

to be deployed in close proximity to humans in industrial as well as daily living en-

vironments [5]. Hence, co-robots will not only play a crucial role in manufacturing,

but also heavily influence the service sector.

The growth of assistive and collaborative robotics has substantiated the need

for safe and reliable interaction between humans and robots. User-friendly Human-

Machine Interfaces (HMIs) are crucial for assistive technology deployed in manufac-

turing or service industries such as healthcare [5,7,8]. The interfaces must be intuitive

(i.e. easy-to-use) and reconfigurable, so that they can adapt to the user’s preferences

and needs, as well as different robot configurations. HMIs can range from a simple

device to a software application that allows operators to control a complex robotic

system with multiple degrees of freedom (DoF). The interface can also be physical in

nature. For example, co-robots could guide humans in co-manipulation tasks such as

welding [9], surgical procedures [10], or parts assembly [11]. The physical interface

can also be used during Programming by Demonstration (PbD), in which an oper-

ator teaches a robot new tasks by manually moving its limbs through the desired

motions [12,13]. Vice versa, a human can also be taught by the robot during physical
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Human-Robot Interaction (pHRI), for example to improve motor skills in surgical

procedures [10] and rehabilitation exercises [14].

Thus, current macro-scale developments in industry and the service sector

strongly motivate the need for pHRI. However, human-robot collaborative tasks

present difficult challenges related to safety, intuitiveness, and efficiency of the phys-

ical interaction.

1.2 Challenges imposed by Co-robots

Compared to non-collaborative robots, co-robots are specifically designed for

safe pHRI by being lightweight and compliant [15, 16]. Recent advancements in

hardware-based safety features include flexible and composite materials, gravity com-

pensation, joint torque limiting, and bio-inspired hybrid actuation [17]. These meth-

ods have reduced contact forces and the risk of high energy collisions, however they

make the robot dynamics highly nonlinear and difficult to model. In addition, the

dynamics of the robot changes during physical contact, for example when picking up

objects or interacting with a human. During such tasks, the robot controller has to

continuously compute the necessary motor inputs or torques to achieve the desired

motion. Typically, robot controllers are designed for trajectory control where the goal

is to track a desired reference trajectory with the robot manipulator or end-effector

over time. For better tracking, the systems are closed-loop and utilize feedback in

form of a tracking error, e.g. the Euclidian distance between the reference or de-

sired pose and the actual pose of the end-effector. However, most classical control

techniques are not suited for complex collaborative tasks.
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1.2.1 Robot Control for Nonlinear Systems

There are several groups or families of control schemes in robotics [18]. In-

verse dynamics control computes a torque that cancels the nonlinear robot dynamics,

hence it is also commonly known as computed-torque control. The nonlinearities are

fed back into the control loop, thereby linearizing the system which allows track-

ing a reference trajectory with a simple Proportional-Derivative (PD) control law.

However, this type of feedback linearization requires a fairly accurate model of the

robot dynamics. Model-based controllers work well for rigid (industrial) robots, but

are not adequate for flexible and compliant co-robots that have unknown dynamics.

Robust control methods have better performance in terms of stability and track-

ing error, but can only deal with parameter uncertainty or disturbances within a

certain range. Adaptive controllers estimate model parameters online and decrease

tracking errors over time using runtime data. However, they generally require linear-

in-the-parameters assumptions. Neural network (NN) control overcomes the linear

parameterization property by approximating the unmodeled dynamics with nonlinear

functions [19–24].

Feedback control with NNs was first proposed by Werbos [25] and Narendra et

al. [26] in 1989 and 1990, respectively. In control theory, stability is of great interest.

A system with finite inputs should not produce infinite outputs. For example, an

unstable controller could cause a robot to move in a dangerous way resulting in

physical damage. In 1995, Lewis et al. [27] provided initial proofs for internal stability,

bounded errors, guaranteed tracking performance, and robustness. Later, the work

was expanded for discrete-time control using multilayer NN [28]. Additional stability

proofs were provided by Ge et al. [29], Chen [30], Polycarpou [31], Rovithakis and

Christodoulou [32], Poznyak [33], Rovithakis [34] and others. Simulations of a 2-link

robot manipulator have verified the NN controller’s ability to successfully track a joint
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space trajectory [27]. However, due to the relative high computational complexity,

the implementation and testing of NN controllers on real-time systems with several

degrees of freedom (DoF) has been a major challenge. Therefore, these methods have

lacked real-world validation and it was uncertain whether NN control was feasible for

today’s complex co-robots, which often have 5 or 6 links. Also, the NN controller

with stability proof [27] had originally been developed for joint space and needed to

be extended to Cartesian space. Since co-robots also interact with humans, the NN

control approach also required extensions for pHRI.

1.2.2 Robot Control for pHRI

Another challenge arises when the robot physically interacts with its environ-

ment (or human operator). Control schemes used for tracking motion trajectories

are best suited for free-space motion and often result in jitter and high interaction

forces during contact. Thus, it is usually more important to control the interaction

forces applied by the robot during physical interaction [35]. Robot force control is

generally grouped into two categories: direct and indirect [36]. During direct force

control, the controller explicitly closes the force feedback loop using measurements

from Force/Torque sensors. In hybrid force/position control, the robot controls both

motion and force, which requires a defined model of the robot and its task [37]. If

the task details are unknown, parallel force/position control is more practical since

it emphasizes the force over motion action. It utilizes an inner/outer-loop structure,

where the outer force control loop closes around the inner motion control loop [36].

However, in general explicit force control methods can become unstable due to im-

perfect models and changes in the contact environment [18, 38, 39]. Indirect force

control methods are easier to implement and force constraints are only applied when

the robot deviates from a target position. The most popular form of indirect force
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control is impedance control, pioneered by Hogan [40]. It introduces a virtual mass-

spring-damper between the actual robot and target position. By controlling the force

applied to the environment, the interaction becomes stable and safe. A drawback with

impedance control is the need for identifying the robot model and the environmen-

tal contact dynamics [38, 41, 42]. The reciprocal of impedance control is admittance

control, which measures forces needed for realizing a desired position. It generates a

so-called model trajectory, which allows for compliant HRI (without following a refer-

ence trajectory). The duality principle between admittance and impedance control is

illustrated in Fig. 1.2. Since co-robots are deployed in many different environments

for a variety of tasks, it is impractical to pre-program every possible scenario and

limits the use of classical force control methods.

Duality Principle

Impedance

Admittance

Controller

Admittance

Impedance

Environment

Note: invertible iff linear

Input Input OutputOutput

Figure 1.2. The duality principle between admittance and impedance control. The
relationship between the input and output (X,F ) can be represented by a second
order transfer function (Z,A) with mass M , damping D, spring constant K, and
time constant T .
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Assuming that a model-free controller is able to track a desired motion and limit

the interaction forces, there is still the challenge of making the pHRI intuitive and

efficient. A co-robot should assist the user and minimize the operator’s effort needed

to complete a certain task. In addition, the interaction dynamics should behave in

a predictable, consistent manner that is suitable for the task at hand. This presents

several challenges. Firstly, since the human becomes part of the control loop during

pHRI, the robot must be able to adapt to different human dynamics. Ideally, the

robot should adapt to different operator characteristics and preferences without any

extensive training. Secondly, the robot must be able to adjust its own dynamics to

allow for task-specific behaviors. In summary, NN control of co-robots is promising,

but requires additional features and must be incorporated into a larger controller

framework to achieve safe, intuitive, and efficient pHRI.

1.2.3 Robot Sensors for Human Environments

During pHRI co-robots must be able to anticipate and sense interactions with

users. The force applied by a human can be measured with conventional end-effector

Force/Torque sensors, but this limits the contact area. Robot skin provides the

robot with the sense of touch and allows multiple contact points. The data from

tactile sensors or tactels, such as force location and magnitude during collisions and

interactions, can be used with reactive controllers for safe interaction. Feedback from

the tactile sensors can also be used for human intent prediction and execution of

behaviors such as robot guidance during a collaborative task. A challenge with robot

skin is the calibration required to achieve reliable measurements necessary for safe

pHRI. To this end, the traditional method of calibrating each sensor prior to its use is

a tedious task, especially with inexpensive, miniaturized hardware that can experience

material degradation with time. In addition, the advancement of robot skin requires
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addressing several design problems for whole-body tactile sensor arrays. Since it is

generally expensive and time consuming to develop and test new hardware, realistic

simulators are important tools for tackling and solving such issues in an efficient

manner. Hence, there is a need for scalable modeling approaches for simulating

pressure-sensitive skin patches under the consideration of sensing element geometry

and mechanical structure, signal quality, data processing, and force controller.

1.3 Objectives and Approach

The objectives of my graduate work were to address the challenges and problems

described in the previous section and to offer a contribution to their solution. Since

physical interaction is crucial for co-robots, the main research object was to develop

a controller framework for safe, intuitive, and efficient pHRI. The following design

principles were proposed:

• Principle 1: A pHRI controller must be safe, stable, and be able to adapt to

different types of users and tasks.

• Principle 2: A highly nonlinear machine becomes easier to operate when behav-

ing equivalent to a simple admittance model. This makes the interaction more

intuitive and requires less effort by the user.

• Principle 3: The pHRI can be improved if the robot assists the user by mini-

mizing the human force. This adds a safety factor in that the robot moves so

as to reduce human effort.

Because co-robots are highly nonlinear systems, the NN controller with stability proof

introduced by Lewis et al. [27] was used as a starting point. This method utilizes

NN function approximation techniques to learn unknown dynamics online, and can

be grouped under neuroadaptive (NA) control. In my thesis work, the NA controller

was expanded to solve current challenges related to physical HMIs for co-robots. In
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particular, it was employed in an inner/outer-loop control architecture. In control

theory, it is common to use multi-loop feedback control for complex systems [43].

If a process depends on multiple variables, the control can be simplified by treating

each separately with nested feedback loops around specific sub-systems. Thus, the

pHRI control problem was approached with a two-loop framework, comprised of a

robot-specific inner-loop and a task-specific outer-loop (first published in [44] and

then re-used by others in [45, 46]). In the controller inner-loop, the unknown robot

dynamics is identified online and linearized through dynamic compensation. The

outer-loop determines and adjusts an admittance based on task requirements and

user skill. Furthermore, the outer-loop can be used for identifying human intent

and generating a reference trajectory that the inner-loop follows, thereby proactively

helping the operator complete the task.

Human-Robot Interaction involves a broad range of research areas including

topics from robot mechanics to human modeling, requiring both theoretical and prac-

tical knowledge. To become familiar with robot hardware and software, a co-robot

(Baxter) was compared with an industrial robot and a robotic platform (youBot) was

sensorized to evaluate several HMIs. The PR2 robot was used for mobile manipulation

and developing real-time controllers for pHRI. As my graduate work progressed, my

focus shifted from more technical work to control theory and algorithm development.

Since validation of the different approaches was necessary, new software packages

and tools still had to be implemented and tested. Some programming statistics are

summarized in Table 1.1.

1.4 Research Contributions

The contributions of this thesis are associated with the following four topics:

(i) Investigation and evaluation of state-of-the-art co-robots and their interfaces, (ii)
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Table 1.1. Programming statistics for the main software repositories. A single commit
records several modifications made to the code base along with a message from the
user describing the changes. The code base includes C++, Python, and ROS files.

Software tool Commits

SkinSim

Version 2.0 259

SkinLearn

General robot functionality 567

Neuroadaptive controllers 596

validation and expansion of an online, model-free NN controller with stability proof,

(iii) improvements of pHRI utilizing a two-loop neuroadaptive control architecture,

and (iv) the development of new open-source software tools for HMIs and pHRI. My

research accomplishments include 12 peer-reviewed articles. In addition, 2 are ready

for submission and 1 in preparation. The research contributions and the correspond-

ing publications are summarized below:

I. Co-robots and their Interfaces

• A Programming by Demonstration framework for kinesthetic teaching was de-

veloped and tested on a PR2 robot [13].

• Physical and non-physical interfaces were compared in a co-manipulation task

with a PR2 robot [47].

• The Baxter co-robot was evaluated and compared to a traditional industrial

manipulator in several experiments [48].

• A youBot robotic platform was sensorized for additional HMIs and their per-

formance was investigated in a household environment [7, 8].
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• A survey was conducted of state-of-the-art co-robots and application require-

ments for robotic nursing assistants [5].

II. Neuroadapative Control

• To achieve safe and stable pHRI, a NN controller was improved and extended

beyond its original formulation (Lewis et al. [27]). A safety evaluation of neu-

roadaptive trajectory following and case study was published in [49].

• To achieve intuitive pHRI, the neuroadaptive controller was extended and tested

with prescribed error dynamics [50].

III. Inner/Outer-loop Control Structure

• A two-loop architecture was developed to improve pHRI with co-robots. Work

related to prescribed task model following and adaptive inverse filtering was

published in [44], including experimental validation on a PR2 robot.

• The outer-loop controller was enhanced with a NN human intent estimator.

Derived stability proofs and results from pHRI experiments will be published

in [50].

• A major contribution of this thesis is the formulation of sensor-invariant outer-

loop calibration of robot skin, which automatically tunes admittances of sensor

arrays already mounted on a robot [51].

IV. Developed Software Tools

• SkinSim: A simulation environment for prototyping and testing robot skin

originally conceptualized in [52]. I performed a major overhaul with new tac-

tile modeling techniques and a completely new architecture. This work and

a case study investigating the effect of pressure-sensitive skin array densities

will be published in [53]. My code is available at https://bitbucket.org/

nextgensystems/skinsim.
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• SkinLearn: A unifying ROS framework for HMI and pHRI that was developed

and tested on several robotic platforms (Baxter, youBot, and PR2). My code

is available at https://bitbucket.org/nextgensystems/skinlearn.

1.5 Thesis Outline

The thesis outline and the relation between the different chapters is illustrated

in Fig. 1.3. After the introduction, Part I provides background on co-robots and

HMIs, while demonstrating the importance of pHRI. Robots that were evaluated and

utilized in experiments include Baxter (Chapter 2), youBot (Chapter 3), and PR2

(Chapter 4). In Part II, the inner-loop neuroadaptive controller (NA) is presented.

Chapter 5 describes the basic NA controller for reference trajectory following, and

Chapter 6 its expansion with prescribed error dynamics. Part III highlights various

outer-loop control schemes: The prescribed task and adaptive admittance model in

Chapter 7, neural network human intent estimation in Chapter 8, and robot skin

calibration employing adaptive inverse filtering in Chapter 9. Software developed

during my thesis work is described in Part IV: SkinSim in Chapter 10 and SkinLearn

in Chapter 11. Finally, Chapter 12 provides a summary and future research directions.

1.6 List of Publications

1.6.1 Related Contributions

1. S. Cremer, M. Middleton, and D. O. Popa, “Implementation of advanced manipulation tasks

on humanoids through kinesthetic teaching,” in 7th International Conference on PErvasive
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2.1 Abstract

The rise of collaborative industrial robotics in the past few years is poised to

have a significant impact on manufacturing. Many have joined the movement toward

developing a more sustainable and affordable collaborative robotic workforce that can

safely work alongside humans; perhaps, none more so than Rethink Robotics. This

paper provides a performance assessment of Rethink’s Baxter research robot: its

kinematic precision was compared experimentally to that of a conventional industrial

arm utilizing a point-to-point motion test and writing task. In addition, the Denavit-

Hartenberg (DH) parameters were determined and verified in order to model the

kinematic chains of the robot arms. Finally, the yield of pick and place tasks consistent

with the 2015 IEEE Amazon’s Picking Challenge were assessed. Results show that

while Baxter’s precision is limited, its ability to handle common household-size items

in semi-structured environments is a great asset.

2.2 Introduction

In 2008, Heartland Robotics was co-founded by Rodney Brooks and Ann Whit-

taker with a clear view to develop a new class of robotic platforms that would keep

manufacturing jobs in America [58]. These robots were to have an intuitive user

interface as well as being “capable of autonomously sensing and adapting to their

environment”. The vision was to design a manufacturing robot that was easy to

train, and “much less expensive than traditional industrial robots” [58]. After nearly

5 years of development and renaming the company to Rethink Robotics, the Baxter

robot was the first realization of this vision [59].

With a 360-degree head sonar suite, two 7 degrees of freedom (DOF) arms

capable of using interchangeable end-effectors, and an intuitive more behavior-based
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user interface, Baxter was designed to work alongside factory workers [60]. Six months

after release of the Baxter industrial robot, in April 2013, a research version of the

robot was released to promote the evolution of Baxter with a Software Development

Kit (SDK) and interface developed around the open source Robot Operating System

(ROS) [61].

Early testing by the industrial community confirmed expectations [59], and

there seemed to be agreement that natural interaction and ease of programming

were some of Baxter’s biggest assets. A great deal of information about Baxter

has been published over the last two years as more researchers have used the robot

and shared their results [62]. In 2016, a single-arm counterpart called Sawyer was

released for smaller, high-precision tasks. Other companies have also joined the race

and built similar co-robots. Right around the time Baxter was released, the Swedish

based company ABB introduced a dual-arm concept robot named FRIDA (Friendly

Robot for Industrial Dual-Arm). The key properties of the robot were safe, accurate,

and agile movements, flexibility, and ease of deployment and reconfiguration. Unlike

Baxter though, the user interface relied on a programming controller and the robot

was physically smaller and portable [63].

Another competitor to Baxter called Nextage was developed by the Japanese

firm Kawada Industries [64]. The robot’s design included a head and two 6-DOF arms

attached to a torso mounted on a mobile base. Stereo vision was implemented and

torso LEDs were used to assure visibility of the robot’s status. Cameras were placed

on each end effector that could capture 3D information [65]. To ensure safety next to

factory workers, Nextage employed another feature: the robot’s axle structure, which

guaranteed that the elbows would never move beyond its working environment. The

robot’s “15 operational axes (6 per arm, 2 for the head, and 1 for the torso) use
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low-power motors of 80 watts to move”, which also prevent harmful forces to other

factory workers or fellow robots [66].

The Danish company Universal Robots entered the collaborative robotic market

with six-axis arms that allowed ample flexibility for a variety of tasks. Two variants

of the robot, the UR5 and UR10, were designed to handle different amounts of weight,

5 and 10 kg respectively [67]. Unlike Baxter (with an advertised position accuracy of

±5 mm) [60], the UR was very precise (±0.1 mm) [67]. To program a trajectory, the

operator had to move the arm and record points using a 12 inch touch-screen tablet.

To ensure safety in case of collision, the robot delivered a force of less than 150 N

(33.72 lbs). The robot could also be customized for the client’s needs [67].

Robotiq Corporation has developed a useful comparison of a select number of

collaborative robots now being used in industry, which compares Baxter’s specifi-

cations and performance to those of other competitors [66]. Interestingly, all have

features designed to better ensure collaboration with a human workforce.

The primary contribution of this paper is to provide an objective set of exper-

iments to evaluate Baxter’s performance in part handling tasks and more precision-

demanding operations. During this work, a kinematic model was validated and used

to emulate Baxter in simulation.

An experiment based upon an industry accepted test method [68] was carried

out to validate the repeatability of Baxter’s arm positioning while performing redun-

dant point-to-point movements. A similar point-to-point experiment using a Denso

industrial robot was conducted to compare results with Baxter. Baxter’s ability to

write a simple rectangle on a flat surface was also evaluated and compared to the

same Denso robot. Further testing was conducted while using the Baxter Research

Robot in the 2015 IEEE Amazon Picking Challenge, where pick-and-place operations

of common household items were performed.
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Figure 2.1. The Baxter robot being setup for a writing precision test.

In this work, one of the objectives was to determine whether replacing non-

collaborative industrial robots with closely priced co-robots, like Baxter, is feasible

for certain types of tasks. The results indicated that a strong case can be made

for using collaborative robotic platforms like Baxter in less precise pick-and-place

operations where position accuracy of a few millimeters is adequate.

This paper is organized as follows: in Section 2.3 the initial modeling of Baxter

is detailed, in Section 2.4 the repeatability experiments on Baxter are discussed, in

Section 2.5 the experimental setup and results of testing the Denso industrial robot

are outlined, and in Section 2.6 the work completed for participation in the Amazon

Picking Challenge is shared. Finally, the conclusions and suggested future work are

delineated in Section 2.7.

2.3 Modeling Baxter

A kinematic model for Baxter was developed and compared to real-time data

captured in several experiments. The approach was to create a Denavit-Hartenberg

(DH) parameter table for Baxter’s arms and to subsequently use Peter Corke’s open-

source robotic toolbox for MATLAB [69] to analyze the forward kinematics, inverse

kinematics, Jacobian, and singularities associated with Baxter’s arms. The param-
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eters were determined from Baxter’s XML-based Universal Robot Definition File

(URDF) [60] and physical measurements as shown in Fig. 2.2. The DH parameters

listed in Table 2.1 are similar for both arms since the joint variables have identical

signs for the same direction of motion.

In MATLAB, the DH parameters were used to create a 7-DOF model resembling

Baxter’s arm. To validate the kinematic model, the joint angles and associated end-

effector pose data were recorded in a 10-point pose experiment, described in Section

2.4. The positions saved were compared to those predicted by the model, which

were calculated using the robotic toolbox fkine function. It performs the forward

kinematics and computes the end-effector pose given a joint angle configuration.

The performance was evaluated by computing the 2-norm distance between the

calculated pose (xc, yc, zc) and the observed pose (xo, yo, zo) with

e =
√

(xc − xo)2 + (yc − yo)2 + (zc − zo)2 (2.1)

for several data points. The average error was within 1.5 mm as shown in Table 2.2.

Note that the pose orientations were not considered in the calculations. The results

provided confidence that Baxter’s kinematics could be modeled and animated with

a reasonable measure of fidelity. Related work [70] produced similar results when

modeling Baxter.

2.4 Baxter’s Repeatability Experiments

A set of experiments was carried out to determine how well Baxter repeatedly

follows instructions for a fine pick-and-place operation. A 10-point dual-plane task

was developed with respect to details provided in ISO standard 9283:1998 [68], as

depicted in Fig. 2.4. For the lower plane, a grid was drawn with a black pen on
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tablet. To ensure safety, in case of collision, the robot 
delivered less than 150N (33.72lbs.) and the robot could 
also be customized for the client’s needs [11]. 

Robotiq Corporation has developed a useful comparison 
of a select number of collaborative robots now being used 
in industry, which compares Baxter's specifications and 
performance to other competitors [10]. Interestingly, all 
have features designed to better ensure collaboration with a 
human workforce. 

The primary contribution of this paper is to provide an 
objective set of experiments to evaluate Baxter’s 
performance in part handling tasks and more precision-
demanding operations. During this work, a kinematic 
model was validated and used to emulate Baxter in 
simulation.  

An experiment based upon an industry accepted test 
method [12] was carried out to validate the repeatability of 
Baxter’s arm positioning while performing redundant 
point-to-point movements. A similar point-to-point 
experiment using a Denso industrial robot was conducted to 
compare results with Baxter. Baxter’s ability to write a 
simple rectangle on a flat surface was also evaluated and 
compared to the same Denso robot. Further testing was 
conducted while using the Baxter Research Robot in the 
2015 IEEE Amazon Picking Challenge, where pick-and-
place operations of common household items were 
performed. 

In this work, one of the objectives was to determine 
whether replacing non-collaborative industrial robots with 
closely priced co-robots, like Baxter, is feasible for certain 
types of tasks. The results indicated a strong case can be 
made for using collaborative robotic platforms like Baxter 
in less precise pick-and-place operations where position 
accuracy of a few millimeters is adequate. 

This paper is organized as follows: in Section II the 
initial modeling of Baxter is detailed, in Section III the 
repeatability experiments on Baxter are discussed, in 
Section IV the experimental setup and results of testing the 
Denso industrial robot are outlined, and in Section V the 
work completed for participation in the Amazon Picking 
Challenge is shared. Finally, the conclusions and suggested 
future work are delineated in Section VI. 

II. MODELING BAXTER 

A kinematic model for Baxter was developed and 
compared to real-time data captured in several experiments. 
Our approach was to create a Denavit-Hartenberg (DH) 
parameter table for Baxter’s arms and to subsequently use 
Peter Corke’s open-source robotic toolbox for MATLAB 
[13] to analyze the forward kinematics, inverse kinematics, 
Jacobian, and singularities associated with Baxter's arms. 
The parameters were determined from Baxter’s XML-
based Universal Robot Definition File (URDF) [3] and 
physical measurements as shown in Fig. 2. The DH 
parameters listed in Table I are similar for both arms since 
the joint variables have identical signs for the same 
direction of motion. 

In MATLAB, the DH parameters were used to create a 
7 degrees of freedom (DOF) model resembling Baxter’s 

arm. To validate the kinematic model, the joint angles and 
associated end-effector pose data was recorded in a 10-
point pose experiment, described in Section III. The saved 
positions were compared to those predicted by the model, 
which were calculated using the robotic toolbox fkine 
function. It performs the forward kinematics and computes 
the end-effector pose given a joint angle configuration. 

The performance was evaluated by computing the 2-
norm distance between the calculated pose !", $", %"  and 
the observed pose !&, $&, %&  with 

    ' = !" − !& * + 	 $" − $& * + 	 %" − %& *	       (1) 

for several data points. The average error was within 
1.5mm as shown in Table II. Note that the pose orientations 
were not considered in the calculations. The results 
provided confidence that Baxter’s kinematics could be 
modeled and animated with a reasonable measure of 
fidelity. Related work [14] produced similar results when 
modeling Baxter. 
 

TABLE I. 
DH PARAMETERS FOR THE BAXTER ROBOT ARM EXTRACTED FROM THE 

URDF AND PHYSICAL MEASUREMENTS 

LINK	 ai	 ai	 di	 qi	
1	(S0)	 0.069	 -1.571	 0.2703	 q1	
2	(S1)	 0.0	 1.571	 0.0	 q2	
3	(E0)	 0.069	 -1.571	 0.3644	 q3	
4	(E1)	 0.0	 1.571	 0	 q4	
5	(W0)	 0.01	 -1.571	 0.3743	 q5	
6	(W1)	 0.0	 1.571	 0	 q6	
7	(W2)	 0.0	 0	 0.2295	 q7	
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Figure 2.  Physical translation of Baxter’s joints. Figure 2.2. Physical translation of Baxter’s joints.

Table 2.1. DH parameters for the baxter robot arm extracted from the URDF and
physical measurements.

Link ai αi di θi

1 (S0) 0.069 -1.571 0.2703 θ1

2 (S1) 0 1.571 0 θ2

3 (E0) 0.069 -1.571 0.3644 θ3

4 (E1) 0 1.571 0 θ4

5 (W0) 0.01 -1.571 0.3743 θ5

6 (W1) 0 1.571 0 θ6

7 (W2) 0 0 0.2295 θ7
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Figure 2.3. The Python graphical user interface (GUI) for testing.
 

 
TABLE II 

CALCULATED TO OBSERVED POSITION DIFFERENCES (METERS) 

Point	 Left	arm	
error	(m)	

Right	arm	
error	(m)	

1	 0.0014	 0.0015	
3	 0.0008	 0.0014	
5	 0.0011	 0.0014	
7	 0.0012	 0.0011	
9	 0.0008	 0.0014	

 

III. BAXTER’S REPEATABILITY EXPERIMENTS 

We carried out a set of experiment to determine how 
well Baxter repeatedly follows instructions for a fine pick-
and-place operation. A 10-point dual-plane task was 
developed with respect to details provided in ISO standard 
9283:1998 [12], as depicted in Fig. 4. For the lower plane, 
a grid was drawn with a black pen on standard graph paper 
with 5mm by 5mm squares. A 100mm by 100mm square 
with corner points was used with a center point. The grid 
points were numbered 1,3,5,7, and 9 (clockwise). The 
graph paper was affixed to a leveled table in front of Baxter 
for the test (Fig. 1). The upper plane was created when 
Baxter was manually trained. For the upper plane, 
intermediate points above and between each odd point on 
the bottom grid were created approximately 6 inches above 
the bottom plane. The points were designated 2,4,6,8, and 
10, respectively (Fig. 4). The test sequence moved Baxter’s 
arm sequentially from point to point in numeric order, 
beginning with point one and ending on point one for each 
iteration.  

The Python developed graphical user interface (GUI) 
was used to collect data relevant to this experiment (Fig. 3). 
Test boxes displaying the current joint angles and pose data 
were included as well as provisions to save points. The 
interface was developed to include the ability to clear the 
saved points, to enter the number of loops the test sequence 

would perform before stopping, and to record the test 
sequence data to a CSV file. As Baxter’s arms were 
manually moved to each of the ten positions the points 
were saved. 

After all the points were saved, the number of iterations 
was entered in and the 'Record' button was depressed to 
ensure recording started prior to running the test sequence. 
Data was captured at a 10Hz rate. Recording was stopped 
after the test sequence was completed by simply depressing 
the 'Record' button again. 

In keeping with ISO 9283:1998 [12], a 30 iteration loop 
count was used for testing (thirty 10-point movements for 
both of Baxter’s arms was performed for each test trial). 
Multiple test trails were performed and compared. For 
testing, a worst case scenario was implemented with Baxter 
not having been calibrated for over a month and without the 
use of the arm’s cameras to aide in visual servoing. Baxter's 
precise joint sensors were used as the measuring stick for 
repeatability. The resolution of each of Baxter’s “joint 
sensors is 14 bits over 360 degrees,” equating to 360/(214) 
degrees per tick resolution (0.021972656 degrees/tick) [3]. 
Each joint has sinusoidal non-linearities which may 
contribute to the sensor's ability to output the correct 
position at a worse case accuracy of ±0.25 degrees (which 
will vary from joint to joint). An absolute zero-offset of up 
to 0.10 degrees may also be resident in the joint sensor 
readout which can be minimized through calibration [3]. 
The Baxter RSDK settings.py file JOINT_ANGLE 
_TOLERANCE parameter defines a threshold of 
0.00872664626 radians (0.5 degrees) by default. The value 
was not changed for the experiment. 

A ±5mm threshold window illustrated in Fig. 5 was 
used for the analysis of each approach to a saved point (SP) 
based upon the robot’s advertised position accuracy [3]. 
The total time spent within the threshold window for each 
pass was considered for a set of data (each of the 10 saved 
points had 30 values per test trial). 
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Figure 4.  Layout of the 10-point test 
Figure 3.  The Python graphical user interface (GUI) for testing 

Figure 2.4. Layout of the 10-point test

standard graph paper with 5 mm by 5 mm squares. A 100 mm by 100 mm square

with corner points was used with a center point. The grid points were numbered

1,3,5,7, and 9 (clockwise). The graph paper was affixed to a leveled table in front

of Baxter for the test (Fig. 2.1). The upper plane was created when Baxter was

manually trained. For the upper plane, intermediate points above and between each

odd point on the bottom grid were created approximately 6 inches above the bottom

plane. The points were designated 2,4,6,8, and 10, respectively (Fig. 2.4). The

test sequence moved Baxter’s arm sequentially from point to point in numeric order,

beginning with point one and ending on point one for each iteration.
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The Python developed graphical user interface (GUI) was used to collect data

relevant to this experiment (Fig. 2.3). Test boxes displaying the current joint angles

and pose data were included as well as provisions to save points. The interface was

developed to include the ability to clear the saved points, to enter the number of loops

the test sequence would perform before stopping, and to record the test sequence data

to a CSV file. As Baxter’s arms were manually moved to each of the ten positions

the points were saved.

After all the points were saved, the number of iterations was entered in and the

’Record’ button was depressed to ensure recording started prior to running the test

sequence. Data was captured at a 10 Hz rate. Recording was stopped after the test

sequence was completed by simply depressing the ’Record’ button again.

In keeping with ISO 9283:1998 [68], a 30 iteration loop count was used for

testing (thirty 10-point movements for both of Baxter’s arms was performed for each

test trial). Multiple test trails were performed and compared. For testing, a worst

case scenario was implemented with Baxter not having been calibrated for over a

month and without the use of the arm’s cameras to aide in visual servoing. Baxter’s

precise joint sensors were used as the measuring stick for repeatability. The resolution

of each of Baxter’s “joint sensors is 14 bits over 360 degrees,” equating to 360/(214)

degrees per tick resolution (0.021972656 degrees/tick) [60]. Each joint has sinusoidal

non-linearities which may contribute to the sensor’s ability to output the correct

position at a worse case accuracy of ±0.25 degrees (which will vary from joint to

joint). An absolute zero-offset of up to 0.10 degrees may also be resident in the

joint sensor readout which can be minimized through calibration [60]. The Baxter

RSDK settings.py file JOINT ANGLE TOLERANCE parameter defines a threshold

of 0.00872664626 radians (0.5 degrees) by default. The value was not changed for the

experiment.
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The minimum distance (dmin) between Baxter’s 
measured position and the original saved position (the 2-
norm distance) was then extracted from the 10 Hz samples 
in the set. The time it took Baxter to find the minimum 
position once the end-effector entered the threshold 
window (tfind) was also calculated to better observe the 
robot’s ability to finely resolve its position once it was 
close to the saved point. 

The total time the arm spent within the threshold window 
was also derived (ttotal). The time it took Baxter to travel 
between successive minimum positions (tf2f) for the same 
saved point was calculated to observe how repeatable 
Baxter traveled around the 10-point test grid. The same 
process was employed for both of Baxter’s arms. The dmin, 
tfind, tf2f, and ttotal values were finally averaged and a 
standard deviation was calculated for each of the values 
from each set (Table III). 
 

TABLE III. 
10-POINT TEST RESULTS MEAN AND STANDARD DEVIATION 

 
 

MEASURE 
TEST PARAMETER 

dmin 

(mm) 
tfind 

(sec) 
tf2f 

(sec) 
ttotal 

(sec) 
Mean 1.4 1.73 53.0 3.6 
Standard Deviation 0.6 0.54 0.7 2.8 

 

IV. COMPARISON WITH A STANDARD INDUSTRIAL ARM 

To compare Baxter’s performance with another non-
collaborative industrial robot, a 10-point test grid was set 
up for a Denso VS-6577GM industrial robot. The Denso 
robot has a 30µm advertised pose position accuracy [15]. A 
special fixture was 3D printed to hold a pen at the end 
effector to ensure the end-effector was lined up with the 
points as shown in Fig. 6. The test pattern was trained into 
the robot by means of a teaching pendant. Once the setup 
process was complete, the 10-point test was performed at 
half speed (the Denso is capable of moving up to 7m/s) 
[15]. The Denso was very accurate (less than 1 mm 
repeatable accuracy as measured on the graph paper) and 
notably faster than Baxter. 

Adequate space around the manipulator was roped off 
to ensure safety, since the Denso is not a collaborative 
robot (it will not stop if someone gets in the way of the arm 
while moving). Typical stop times to position the robot at 
each test point while throttled to half speed were observed 
to be less than one second. 

A rectangle write experiment was also performed using 
Denso and Baxter. The same Denso manipulator was used 
to write a rectangle on a piece of graph paper using a 
permanent marker and the same 3D printed pen fixture. 

For the rectangle write test, a special 3D printed pen 
fixture was designed and printed for Baxter. The fixture 
was specifically designed to allow Baxter’s grippers to 
more firmly hold the same permanent marker (Fig. 7). 

The Denso industrial robot was programed via a 
teaching pendant to draw a rectangle on a table placed in 
front of it. The same rectangle write operation was 
performed on Baxter using both Baxter’s demo mode 
Record and Playback feature and another specially 
developed C++ based interface which utilizes the MoveIt! 
[16] motion planner application. Both rectangles were 
drawn on graph paper taped to a level table placed in front 
of the robot. 
 

 
 

X 

Y 

Z 

dmin 
SP 

Figure 5.  Threshold region for measuring 3D position accuracy 
Figure 6.  Denso VS-6577GM robot performing a writing test 

Figure 7.  The 3D printed pen mount for the Baxter gripper 

Figure 2.5. Threshold region for measuring 3D position accuracy.

Table 2.2. Calculated to observed position differences (meters).

Point Left arm error (m) Right arm error (m)

1 0.0014 0.0015

3 0.0008 0.0014

5 0.0011 0.0014

7 0.0012 0.0011

9 0.0008 0.0014

A ±5 mm threshold window illustrated in Fig. 2.5 was used for the analysis

of each approach to a saved point (SP) based upon the robot’s advertised position

accuracy [60]. The total time spent within the threshold window for each pass was

considered for a set of data (each of the 10 saved points had 30 values per test trial).

The minimum distance (dmin) between Baxter’s measured position and the orig-

inal saved position (the 2-norm distance) was then extracted from the 10 Hz samples

in the set. The time it took Baxter to find the minimum position once the end-effector

entered the threshold window (tfind) was also calculated to better observe the robot’s

ability to finely resolve its position once it was close to the saved point. The total

time the arm spent within the threshold window was also derived (ttotal). The time it

took Baxter to travel between successive minimum positions (tf2f) for the same saved
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Table 2.3. 10-point test results mean and standard deviation.

MEASURE dmin (mm) tfind (sec) tf2f (sec) ttotal (sec)

Mean 1.4 1.73 53 3.6

Standard Deviation 0.6 0.54 0.7 2.8

Figure 2.6. Denso VS-6577GM robot performing a writing test.

point was calculated to observe how repeatable Baxter traveled around the 10-point

test grid. The same process was employed for both of Baxter’s arms. The dmin, tfind,

tf2f , and ttotal values were finally averaged and a standard deviation was calculated

for each of the values from each set (Table 2.3).

2.5 Comparison with a Standard Industrial Arm

To compare Baxter’s performance with another non-collaborative industrial

robot, a 10-point test grid was set up for a Denso VS-6577GM industrial robot. The

Denso robot has a 30 µm advertised pose position accuracy [71]. A special fixture

was 3D printed to hold a pen at the end effector to ensure the end-effector was lined

up with the points as shown in Fig. 2.6. The test pattern was trained into the robot

by means of a teaching pendant. Once the setup process was complete, the 10-point

test was performed at half speed (the Denso is capable of moving up to 7 m/s) [71].
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Figure 2.7. The 3D printed pen mount for the Baxter gripper.

The Denso was very accurate (less than 1 mm repeatable accuracy as measured on

the graph paper) and notably faster than Baxter.

Adequate space around the manipulator was roped off to ensure safety, since

the Denso is not a collaborative robot (it will not stop if someone gets in the way of

the arm while moving). Typical stop times to position the robot at each test point

while throttled to half speed were observed to be less than one second.

A rectangle write experiment was also performed using Denso and Baxter. The

same Denso manipulator was used to write a rectangle on a piece of graph paper

using a permanent marker and the same 3D printed pen fixture.

For the rectangle write test, a special 3D printed pen fixture was designed and

printed for Baxter. The fixture was specifically designed to allow Baxter’s grippers

to more firmly hold the same permanent marker (Fig. 2.7).

The Denso industrial robot was programed via a teaching pendant to draw a

rectangle on a table placed in front of it. The same rectangle write operation was

performed on Baxter using both Baxter’s demo mode Record and Playback feature

and another specially developed C++ based interface which utilizes the MoveIt! [72]
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(a) (b)

Figure 2.8. Write test results (Denso left and Baxter on the right).

motion planner application. Both rectangles were drawn on graph paper taped to a

level table placed in front of the robot.

The Denso drawn rectangle was very precise with no observable overshoot on

the corners (67 mm × 138 mm). The Baxter rectangles (100 mm × 150 mm) were

somewhat repeatable in iterative drawing attempts, but clearly could not match the

Denso results as shown in Fig. 2.8. Overshoot on the corners and deviations to follow

a straight line were observed. Using Baxter’s default control parameter settings, up

to 10-20 mm of overshoot consistently occurred as Baxter’s arm attempted to stop

and start at the rectangle corners. Baxter’s control parameters were not modified for

the test. The manual training mode produced similar results. It should be noted that

visual servoing was not utilized on either Denso or Baxter for the test.

Perhaps, the most important fact obtained from the comparison was the repeat-

able way Baxter drew the rectangle. Each pass was almost identical to the previous

one, down to the amount of overshoot and breaks in the lines where the pen was ver-

tically lifted off of the paper. Variations in Baxter’s end-effector z-position (vertical)
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either caused no writing on the paper (pen position too high) or an aberration to

the line drawn from excessive friction of the pen pressing too hard on the paper (pen

position too low). Repeated runs produced very similar deviations (nearly on top of

each other) with respect to these effects.

2.6 Amazon Picking Challenge

Several teams competed with the Baxter robot in the 2015 International Con-

ference in Robotics and Automation (ICRA) Amazon Picking Challenge (APC) [73].

In the competition, participants were tasked to build hardware and/or develop soft-

ware that autonomously picks a subset of items from a stationary shelf and places

them in an order bin. This required solving problems related to perception, planning,

manipulation, error detection, and error correction. At the event, companies such

as Rethink Robotics, Clearpath, Universal Robots, Yaskawa, and Fanuc provided

platforms for the contestants [74].

In 2012, Amazon acquired Kiva Systems, a mobile robotic company for material

handling [75]. Currently, their robots are used to move shelves from storage locations

to a human worker at a picking station. Typically, a shelf has several bins that are

tightly packed with up to 10 items. The worker has to identify and retrieve the

ordered item, scan it for verification, and then place it in an order bin. The goal is

to automate the process [74].

Retrofitting a warehouse with robots can be costly. Collaborative robots, such

as Baxter, can easily be deployed and are already designed for the human workspace

[59]. Since they can work side by side to humans, the robotic workforce can slowly be

expanded as funding permits. However, as stated previously, there is still a question as

to whether collaborative robots like Baxter are accurate and fast enough to compete

with more precise non-collaborative industrial robots in every situation. To further
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answer this question, Baxter’s performance within the APC environment, a simple

pick and place task scenario, was evaluated.

The APC designed picking station was a 2× 2 meter area containing the robot

and the order bin. The shelf was located in front of the robot and had 12 bins that

were packed with 1 or more items [73]. The items were placed such that they did

not occlude each other. The objects were chosen from a set of 25 common items

pre-selected and placed randomly in bins. During our first experiments, the item to

be picked was placed in the same location for each trial in order to remove errors

introduced by the perception pipeline. In our trials, the item was localized using

LINE-MOD [76], which is part of the Object Recognition Kitchen [77]. The algorithm

uses template matching and identifies the pose in real-time with the help of an object

database containing trained 3D models. The location was sent to the MoveIt! motion

planner application, which was also used in the rectangle write test [72]. A Cartesian

waypoint trajectory was computed from the starting location to the object, and from

the object to the order bin. This path was stored and then executed 10 times with

enough time in between to allow an operator to place back the removed item.

Performance measures for the experiment included the success rate and com-

pletion time. A trial was determined to be successful whenever the item was au-

tonomously transferred from the shelf to the order bin (Fig. 2.9). The time measured

included Baxter starting from a neutral position, moving the item, and then moving

back to neutral. A total of 4 different items were picked 10 times. The size of the

electric gripper was selected to accommodate the width of the object. The objects

were placed at the (x, y, z) locations (1.0, 0.0, 0.2) and moved to (0.4, 0.8, 0.0), viewed

from Baxter’s base frame and measured in meters.
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(a) (b)

Figure 2.9. Baxter picking household items from a shelf during APC test trials.

Table 2.4. Baxter pick and place testing within the APC environment.

Object Success Mean (sec) STD (sec)

Elmers Glue 10/10 26.963 1.667

Book 10/10 27.000 2.540

Crayons 9/10 26.766 1.406

Soda can 10/10 26.569 1.674

Total 39/40 =97.5% 26.825 1.806

It was observed that one out of the 40 trials was unsuccessful (Table 2.4); the

crayon box was dropped once because it slipped out of the grippers. An average time

of 26.8 seconds with a standard deviation of 1.8 seconds was noted.

Comparatively, Baxter performed slower than a human worker, who would typ-

ically take just a few seconds for the same task. However, to Baxter’s credit, a human

would require breaks and the robot does not. Consequently, since Baxter repeatedly

operated with enough accuracy when given the correct location of an item, it was

considered a viable option for this task set in a factory setting
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2.7 Conclusion

Based upon our experiments, we conclude that applications where higher po-

sition accuracy (< 1 mm) and speed are a factor, closely priced, non-collaborative

robots like Denso may still be the best choice, though considerations will have to be

made for a more complex setup and safety. Our results also demonstrated however,

that while Baxter’s position accuracy may be limited compared to other compara-

tively priced collaborative robots, its ability to safely handle common household-size

items in semi-structured environments is a great asset which would make it suitable

for many material handling operations native to factories and similar settings.

Further work includes comparing Baxter’s performance against other collabo-

rative robots and improving Baxter’s positioning capabilities, such as its dynamics

arm controller and trajectory planning.
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CHAPTER 3

Human-Machine Interfaces

3.1 Introductory comments

This chapter describes the sensorization of a youBot robotic platform and pro-

vides an overview of different HMIs, which was published in [8]. Section 3.5 describing

sensors for HMI has been supplemented with material from [5], which is now pre-

sented in 3.5.1 Navigation, 3.5.2 Manipulation, 3.5.3 Detection of Human Activity,

3.5.4 Human-Robot Communication, and 3.5.5 Robot Skin. To limit the scope of

this thesis, descriptions of hospital environments and nursing tasks have not been

included from [5].
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3.2 Abstract

Today, assistive robots are being introduced into human environments at an

increasing rate. Human environments are highly cluttered and dynamic, making

it difficult to foresee all necessary capabilities and pre-program all desirable future

skills of the robot. One approach to increase robot performance is semi-autonomous

operation, allowing users to intervene and guide the robot through difficult tasks.

To this end, robots need intuitive Human-Machine Interfaces (HMIs) that support

fine motion control without overwhelming the operator. In this study we evaluate

the performance of several interfaces that balance autonomy and teleoperation of a

mobile manipulator for accomplishing several household tasks.

Our proposed HMI framework includes teleoperation devices such as a tablet, as

well as physical interfaces in the form of piezoresistive pressure sensor arrays. Mobile

manipulation experiments were performed with a sensorized KUKA youBot, an om-

nidirectional platform with a 5 degrees of freedom (DOF) arm. The pick and place

tasks involved navigation and manipulation of objects in household environments.

Performance metrics included time for task completion and position accuracy.

3.3 Introduction

Robotics is currently in its 3rd phase of development (Fig. 3.1). The late 1970s

saw the rise of unintelligent, stationary industrial robots. During the 1990s, progress

was made in mobility, intelligence, and cooperation to develop “personal” robots in

areas such as research, education, and entertainment [78]. Today is the generation

of “ubiquitous” robots that will support humans in everyday life. Unlike industrial

robots, future co-robots will share their working space with humans and work in

household environments. These assistive devices do not necessarily have to be fully
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Fig. 8. Development  trends in robotics (Kim 2006) 

6.1. Industrial robots 

One of the development trends are robots for SME`s. SME`s need simple, 
flexible and cheap automation solutions with robots. Therefore standardized 
robot production cells for SME`s are in development. These cells should be 
available to a reasonable price according to the current international research 
headline “Cost Oriented Automation – COA“. One of the most important 
advantages of European SME`s, in contrast to Asian companies, is flexibility. 
Flexibility is closely related to the production of very small lot sizes – the 
theoretical goal is one part – in an economic way. 

 

This new family of SME suitable robots (robot work-cells) should have the 
following features (Haegele, Nilsson 2006). 

• Reducing the average costs of a robot production cell from 
approximately €150.000.--  to approximately € 75.000.— or less. 

• Reduction of the re-programming time of such cells to 20%. 

• Reduction of the installation time of a cell to 20% or three days. 

Figure 3.1. Development trends in robotics [78].

autonomous. It has been shown that a human-robot pair can outperform either a

human or robot working alone [79].

Therefore, intuitive human-robot interfaces will play a crucial role. Non-expert

users must be able to interact and communicate with the robot, which may involve

speech, gesture, haptic displays, etc. [80]. This interaction can also be physical. For

example, a robot can learn a new task from a novice operator via kinesthetic teaching,

where the user manually pushes and pulls the robot’s manipulator to complete a

task [13].

Since physical contact may occur, human-robot interfaces will also play a key

role in safety. Safety can be divided into a physical and behavior aspect [81]. When

physical contact occurs, the control architecture can limit joint torques and veloci-

ties, and take advantage of passive compliance. There are adaptive schemes that can

compensate for unknown parameters and disturbances while guaranteeing robust and

stable control [82]. In our recent work, we validated a novel neuroadaptive framework

that improved physical HRI [44, 83]. These methods use single F/T (Force/Torque)

sensors to estimate the force applied by a human on the robot end-effector. A promis-

37



ing technology is robot skin, which equips the robot with touch and allows precise

localization of multiple contact forces [16]. While whole-body, human-like skin has yet

to be realized, pressure sensitive piezoresistive “taxel” arrays encapsulated in flexible

silicone substrates already exist [84].

For behavior safety, the robot takes multi-modal cues such as facial expression

and body pose to determine human intent. This allows the robot to align its goals

with the operator, plan ahead, and adjust its behavior. For example, if a collision is

anticipated or a child interacts with the robot, the control scheme could increase its

compliance. Feedback from the operator could also allow the robot to behave more

human-like, making the interface simpler to understand and more intuitive for the

operator [15].

The intuitive and safe human-robot interfaces must be facilitated by multi-

modal sensor data. The robot can perceive and understand its environment through

camera images that are then processed by vision algorithms. For example, the

OpenCV library implements several real-time computer vision functionalities, includ-

ing people detection and face tracking [85]. Additional information can be gained

from depth: RGB-D cameras such as the Microsoft Kinect or Asus Xtion have be-

come the de-facto standard in robotics [86]. Laser scanners usually provide 2D depth

information and are commonly used for mobile navigation. Sonar or ultrasonic sen-

sors are less accurate but relatively inexpensive range-finders, and have been deployed

on co-robots such as Baxter to detect human in the workspace and surrounding ar-

eas [87]. Another alternative is thermal sensors, which can detect radiated heat or

far-infrared rays from nearby humans. In addition to low cost, processing infrared

data is fast compared to image processing for human detection.

In this chapter, a standard robot platform was modified to investigate the per-

formance of several HMIs in a household environment, continuing the work described
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in [7]. The KUKA youBot, which is commonly used in academia, was transitioned

from the “personal” to “ubiquitous” generation of robots by performing several hard-

ware upgrades. The platform was sensorized by installing an RGB-D camera for ob-

ject and human detection, a laser scanner for fully and semi-autonomous navigation

as well as collision detection, robot skin patches consisting of piezoresistive pressure

sensors for physical interaction, and thermal sensors to detect a human’s presence. A

National Instruments roboRIO was added to provide additional input/output ports

and software was developed to process incoming data. The network infrastructure

was improved to allow remote control via a tablet interface and assisted joystick tele-

operation. As such, the contribution of this chapter is how to sensorize a standard

robot platform (both hardware and software) for human-robot interfaces and their

expected performance in a household environment.

The following section (3.4), describes the robot platform and how it was up-

graded to meet the HMI requirements. In Section 3.5, we discuss the sensors used for

the multi-modal interfaces and the software architecture in Section 3.6. Section 3.7

describes the experimental setup for evaluating the HMIs performance in a household

environments and the results.

3.4 The youBot Hardware Platform

This section describes the robot platform and the necessary hardware sensors

and interfaces needed for teleoperation. The automation company KUKA specifically

developed the youBot as a research and application platform for mobile robotics [88].

It has a five degrees of freedoms (DoF) manipulator with a height of 655 mm and a

workspace of 0.513 m3. The arm can lift a payload up to 0.5 kg and has a position

repeatability of 0.1 mm. Grasping can be performed with a two-finger gripper that is

being powered by 2 independent stepper motors and has a range of 70 mm.
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The arm is mounted on an omnidirectional base of dimension 580 mm (length)

by 376 mm (width). The four Mecanum wheels allow movement in any direction

(x, y) at any orientation (θ). It can reach velocities up to 0.8 m/s and carry a payload

of 20 kg. The mobile base houses a rechargeable battery which allows a runtime of

approximately 90 minutes. An onboard mini PC (Intel Atom Dual Core CPU, 2GB

RAM) runs the Linux-based operating system Ubuntu. The platform components

rely on EtherCAT communication with a 1 ms real-time cycle.

A remote workstation can be connected to the robot via Ethernet cable. This

is suitable for running computationally demanding algorithms and heavy graphics

processing that would overload the onboard PC. To create an untethered setup, our

first upgrade consisted of mounting a wireless router (ASUS RT-N66U Dual-Band

Wireless-N900 Gigabit Router) on top of the base. This router is connected to the

onboard PC via Ethernet connection, and acts as a bridge to transmit data to a

remote workstation (Fig. 3.2). This allows an operator to run and troubleshoot

processes remotely, view and collect live data, and visualize the robot state in a

graphics program. In addition, the youBot WiFi network can be used to connect

interface devices such as tablets, phones, or laptops.

The additional sensors for the HMI require Input/Output (I/O) ports for signal

acquisition, conditioning, and networking. The National Instrument roboRIO is an

advanced robotics controller that features several built-in ports for “I2C, SPI, RS232,

USB, Ethernet, PWM, and relays” [89]. Released in 2015, it is part of the recon-

figurable I/O (RIO) family and use the Xilinx Zynq chipset. It has a reconfigurable

FPGA and is powered by a 667 MHz dual-core Real-Time processor.
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Figure 3.2. Communication diagram for sensor data acquisition and wireless setup
between youBot and remote workstation.

3.5 Sensors for HMI

Several sensors were mounted and integrated with the youBot platform to fa-

cilitate human-machine interaction (HMI), including a laser scanner, robot skin, and

thermal sensors. The goal was to solve problems related to navigation, perception,

and manipulation. Various sensors are necessary to support these functionalities and

several algorithms are necessary to process the sensor data.

3.5.1 Navigation

Human environments are inherently dynamic and may be cluttered, which may

present several challenges for robot navigation. Autonomous navigation with min-

imum guidance may relieve burden for people that may otherwise be required to

teleoperate and guide the robot. Safety is an important aspect, especially since the

robot shares the environment with humans and could injure people. It must avoid

collisions and move in a predictable manner. Simply limiting the velocity may not be

a solution, because a close to human walking speed is essential for completing tasks

in a timely fashion and assisting patients during walking exercises.
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In order to move autonomously, the robot must sense its surroundings. A

basic hardware requirement is a planar laser-scanner mounted at the robot’s base for

obstacle detection during 2D navigation. To this end, a laser scanning rangefinder

was installed at the front side of the youBot base to detect obstacles. The sensor

data can be used for autonomous navigation and assistive teleoperation. A Hokuyo

URG-04LX-UG-01 model was used, which has a 240° field of view and a measurement

distance of 4 m. A tilting laser-scanner or RGB-D camera mounted on the robot’s

body or head could be used for obstacle detection in 3D space. In addition, wheel

encoders are necessary for computing odometry data, which would help estimating

the robot’s location more accurately.

The ROS navigation stack provides utilities for mapping, localization, path

planning, and obstacle avoidance [90]. In order to use the navigation stack, the

robotic platform must be able to publish and receive ROS messages as detailed in the

configuration tutorial [91]. Additionally, there are several ROS packages for depth

cameras which publish the sensor data and perform the transformations between

the camera and the robot frames. The ROS simultaneous localization and mapping

(SLAM) package is a wrapper for OpenSLAM’s GMapping and builds a map while

the robot moves around the world [92]. During that process, the robot can either be

teleoperated or autonomously explore the environment with the help of an exploration

stack [92]. The results are published to a map server node, which can be saved to

file and re-used for autonomous navigation. If an unexpected obstacle is detected,

the robot plans a local path that avoids the obstacle. Once the obstacle is cleared,

the robot resumes its previously planned global path. Finally, ROS includes the

visualization tool RViz which provides a graphical user interface (GUI) for specifying

goal commands and viewing maps, sensor data, planned paths, and detected obstacles.
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3.5.2 Manipulation

In order to physically interact with its environment, a co-robot must be able to

identify objects and detect their poses. This could involve processing color images and

depth data from RGB-D cameras, training classifiers, building 3D models, creating

databases, etc. The ROS Object Recognition Kitchen (ORK) is a comprehensive tool

for solving computer vision and perception tasks [77]. It takes care of all non-vision

aspects such as robot integration and database management. There is a ROS wrapper

which provides infrastructure for storing and retrieving model and training data via

ROS messages.

The detection itself is built on Ecto, a C++/Python based framework that

organizes computations according to acyclic graphs with qualities such as synchronous

execution and efficient scheduling routines [93]. This enables simultaneous detection

of multiple objects at a high rate. In addition, several detection pipelines can run in

parallel. This is useful since each has strengths and weaknesses. For example, the

TableTop pipeline tries to match segmented object point clouds with object meshes

stored in a database [33]. Detection requires no training but fails if the orientation

of the mesh and actual item differ too much. The LineMod method is more robust

since it does not require the object to be on a planar surface and generally works

with any object orientation [76]. It utilizes template matching to identify an object

pose with the help of a database containing trained 3D models. However, this requires

pre-processing 3D models and is computationally intensive compared to the TableTop

method.

ORK is a powerful idea but from our experience it is not ready for real-world,

commercial applications. It can be difficult to setup and results can be mixed. Its

underlying framework (Ecto) may be difficult to understand, and it is not straightfor-

ward to modify functionality and adding new features. If the environment and task
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are known, it might be reasonable to implement a simple, tailored object recognition

framework using the Point Cloud Library (PCL) [94]. For example, the number of

objects can be limited and placed in locations with reduced clutter and occlusions.

The open source library has plenty of examples for processing 3D images, such as

geometric segmentation, object recognition, scene registration, etc., and can be easily

adapted into ROS.

The object detection can be simplified further by making the environment robot

friendly. The ar track alvar package is a ROS wrapper for ALVAR, an open source

library for marker based tracking [36]. It is a robust tool for accurately determining

the position and orientation of QR codes. The QR codes could be placed on objects

for fast and accurate detection, which would allow focusing on other aspects and

challenges in the described scenarios. Once the object has been correctly identified

and the robot knows its pose, the robot may try to grab the object. To do so, it

needs to utilize 3D depth data to generate collision free arm motions. MoveIt! is a

software package for motion planning and can be easily configured for different ROS

platforms [72]. To detect object contact and applied forces, the gripper could be

equipped with pressure sensitive finger tips.

3.5.3 Detection of Human Activity

To assist and interact with humans the co-robot must have some form of situa-

tional awareness, which requires the ability to detect humans as well as their current

activity. This type of detection is often performed by a skeletal- and/or face-tracking

algorithm utilizing a video feed from a regular or depth camera. However, visual ob-

servation might be hampered by different lighting conditions and occlusions. Future

movements of the patient could be predicted based on current and past activity, with

detailed information about pose and velocity of the face.
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3.3 Thermal sensors 

Human presence can be detected by using cameras and computer vision algorithms. A simpler and more cost effective 
approach involves thermal sensors, which detect radiated heat or far-infrared rays of an object. Hence, they are not 
affected by different lightning conditions like conventional cameras and simple thresholding can be used for detection. 

The Omron’s MEMS thermal sensor (D6T-44L) consists of a MEMS thermopile sensor chip covered with a silicon lens 
[18]. The chip measures an electromotive force and an embedded circuit converts the analog signals to digital 
temperature values. In contrast to conventional pyroelectric sensors, Omron’s sensor does not measure a change in signal 
and continually detects the far-infrared ray of an object. Hence, the sensor is able to catch a signal of a moving as well as 
stationary person. 

A custom box with three thermal sensors was mounted on the end-effector just below the two finger-gripper. The sensor 
itself outputs a 4 by 4 pixel array (Fig. 3a) and has a viewing angle of 45 ̊[18]. With three sensors, 4 by 12 pixels cover 
approximately 120̊ with some overlapping. The hardware including thermal sensors and wiring were encased in a 3D 
printed enclosure as shown in Fig. 3b and 3c. The measured values are transmitted through an I2C bus to the roboRIO. 

 

    
 (a) (b) (c) 

Figure 3. (a) The detection area of the Omron D6T-44L [18]. Three sensors were mounted in a 3D printed enclosure (b), 
including circuitry for robot skin and roboRIO interfacing shown from the top in (c). 

 

4. SOFTWARE ARCHITECTURE 
The previous sections describe the youBot hardware upgrades. A software architecture was developed to process the 
sensor data and enable robot control with the various interfaces, consisting of ROS, an Android tablet application, and 
LabVIEW. 

4.1 Robot Operation System 

The KUKA youBot runs the linux-based operating system Ubuntu 12.04. The platform is controlled by the open-source 
Robot Operating System (ROS), a software framework originally developed by Stanford Artificial Intelligence 
Laboratory in 2007 [19]. ROS has become a de-facto standard in robotics and there is a large collection of software 
packages developed by the community. Since ROS is both programming language and hardware agnostic, these 
packages can easily be re-used on different platforms. Programs are executed as independent ROS nodes and data is 
transmitted via ROS messages. This distributed architecture allows several components to run simultaneously, for 
example sensor data processing, navigation, and perception. 

In this spirit, we developed a multi-layered, ROS-based architecture to allow robot autonomy as well as user intervention 
via several HMIs such as tablet apps or pressure sensors (Fig. 4). Several stand-alone ROS packages were developed, 
with different functionalities for navigation and manipulation as described in Table 1. The program flow is determined 
by a cortex node which acts as layer between the interfaces and control modules. It contains a state machine which 
utilize ROS topics or services to call other ROS nodes that then execute the necessary code. If anything fails, the cortex 
node runs contingency plans and is able to restart faulty ROS nodes. This also simplifies data flow making it easier to 
debug and capture data. 
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Figure 3.3. (a) The detection area of the Omron D6T-44L [95]. Three sensors were
mounted in a 3D printed enclosure (b), including circuitry for robot skin and roboRIO
interfacing shown from the top in (c).

Using a mobile robot and actuating the camera could make it easier to track

a person’s head or body. In addition, a mobile robot with an actuated “neck” can

maintain “eye contact” during conversations. This may enhance the interaction be-

tween the robot and human and be used, for example, to get a human’s attention

during a greeting or introduction phase. Head nods and shakes could be detected

after a robot asks a verbal question to quickly estimate intent and confirm recognized

voice commands.

A simpler and more cost effective approach for detecting human presence in-

volves thermal sensors, which detect radiated heat or far-infrared rays of an object.

Hence, they are not affected by different lightning conditions like conventional cam-

eras and simple thresholding can be used for detection. The Omron’s MEMS thermal

sensor (D6T-44L) consists of a MEMS thermopile sensor chip covered with a silicon

lens [95]. The chip measures an electromotive force and an embedded circuit con-

verts the analog signals to digital temperature values. In contrast to conventional

pyroelectric sensors, Omron’s sensor does not measure a change in signal and contin-

ually detects the far-infrared ray of an object. Hence, the sensor is able to catch a

signal of a moving or stationary person. A custom box with three thermal sensors

was mounted at the end-effector just below the two finger-gripper. The sensor itself
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outputs a 4 by 4 pixel array (Fig. 3.3a) and has a viewing angle of 45° [95]. Utilizing

three sensors, 4 by 12 pixels cover approximately 120° including some overlap. The

hardware with thermal sensors and wiring were encased in a 3D printed enclosure as

shown in Fig. 3.3b and 3.3c. The values measured are transmitted through an I2C

bus to the roboRIO.

3.5.4 Human-Robot Communication

Commands and information can be exchanged verbally, via gestures, or through

computer as well as tablet interfaces. Since each HRI has its advantages and disad-

vantages, it could be beneficial to allow users to choose from several input methods.

Verbal communication requires the robot to be equipped with a speaker and

microphone. To talk to the user, the robot needs a text-to-speech program. There

are several free programs available with natural sounding voices, for example the

Festival Speech Synthesis System [96]. Speech recognition is more challenging and

requires sophisticated language processing software. An alternative could be cloud

services such as the Google voice API, however this would require uninterrupted

internet access and might introduce small delays. Pocketsphinx from CMU is an

offline, lightweight speech-to-text program and has been integrated with ROS [97].

The language processing is simplified by using a pre-determined list of words, which

could allow the robot to understand straightforward commands. Ideally, a dialog

system with advanced artificial intelligence would handle the interaction but this

would require significant software development. Instead, it could be advantageous to

keep the interaction simple and focus on reliability.

Correct speech recognition heavily depends on the sound quality and user pro-

nunciation. A user could wear and talk into a wireless microphone, however this

might not practical. Another possible mode of communication is gesture. To support
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gesture recognition, the ARNA robot would need to identify the user and capture

different poses. ROS includes a skeleton tracker that determines the human pose

from RGB-D camera images [98]. A classifier could then be used to detect various

gestures and commands. The challenge would be training the classifier such that it

is reliable with several different users.

A computer or tablet may perhaps be the most reliable interface. Tablets have

the advantage of being portable and can directly communicate with the robot using

Bluetooth or WiFi. Simple layouts can be tailored for a multitude of tasks such as

video monitoring, joystick teleoperation, or object fetching.

3.5.5 Robot Skin

To physically collaborate with humans and be safe to operate, co-robots need to

detect human contact and motion intent. Multiple human detection modalities can

be employed using sensors that can detect pressure, temperature, and proximity to

humans, thus leading to enhancements in safety and the ability to adapt to preferences

of users and improve performance. Robot skin is a key type of heteroceptive sensor

inspired by nature that could eventually enable co-robots to share their workspace

with humans.

The Electro-Hydro-Dynamic (EHD) printing process can be used to create

multi-modal pressure and temperature sensors on flexible substrates [84]. The key

advantages of EHD include its ability to accommodate a wide-range of materials and

substrates with different sizes, shapes, and topographies. EHD can be exploited for

sensor integration as it might allow both sensors and interconnects to be directly

printed into the silicone rubber skin and attached to robot surfaces or to prostheses

(Figure 3.4). Currently, 1 mm spatial resolutions, 50 N force ranges, and measurement

sensitivities in the order of 10 mN can be obtained using EHD printing methods.
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with advanced artificial intelligence would handle the interaction but this would require significant software 
development. Instead, it could be advantageous to keep the interaction simple and focus on reliability. 

Correct speech recognition heavily depends on the sound quality and user pronunciation. A user could wear and talk into 
a wireless microphone, however this might not practical. Another possible mode of communication is gesture. To 
support gesture recognition, the ARNA robot would need to identify the user and capture different poses. ROS includes 
a skeleton tracker that determines human pose from RGB-D camera images [32]. A classifier could then be used to 
detect various gestures and commands. The challenge would be training the classifier such that it is reliable with several 
different users. 

A computer or tablet may perhaps be the most reliable interface. Tablets have the advantage of being portable and can 
directly communicate with the robot using Bluetooth or WiFi. Simple layouts can be tailored for a multitude of tasks 
such as video monitoring, joystick teleoperation, or object fetching. 

4.5 Adaptive interfaces and robot skin for physical human-robot interaction  

In order to physically collaborate with humans and be safe to operate, nursing assistant robots need to detect human 
contact and motion intent. Multiple human detection modalities can be employed using sensors that can detect pressure, 
temperature and proximity to humans, leading to enhancements in safety and the ability to adapt to preferences of users 
and improve performance. Robot skin is a key type of heteroceptive sensor inspired by nature that could eventually 
enable co- robots to share their workspace with humans. 

The Electro-Hydro-Dynamic (EHD) printing process can be used to create multi-modal pressure and temperature sensors 
on flexible substrates [40]. The key advantages of EHD include its ability to accommodate a wide-range of materials and 
substrates with different sizes, shapes, and topographies. EHD can be exploited for sensor integration as it may allow 
both sensors and interconnects to be directly printed into the silicone rubber skin and attached to robot surfaces or to 
prostheses (Figure 3). Currently, 1mm spatial resolutions, 50N force ranges, and measurement sensitivities in the order 
of 10mN can be obtained using EHD printing methods. 

 

    
Figure 3. Robot Skin on PR2, realized using EHD printing technology of pressure sensors on flexible substrates 
encapsulated in silicone skins (left, center). Adaptive interface block diagram (right), applicable to a wide range of robotic 
devices, interfaces (skin or tablet) and user skills. 

 
To implement high performance and adaptive physical human-robot interaction, reinforcement learning and neuro-
adaptive control methods have been proposed to adjust the parameters of a control interface between users and the robot 
based on interaction results. The idea is to set the desired interface mapping parameters “by learning” utilizing online 
neuro-adaptive control algorithms with two Neural Networks (one for the “Actor” that generates the interface mapping, 
and one for the “Critic”, which approximates the cost function with the help of online rewards) [41-43]. Therefore, there 
is no need to solve optimal control equations, such as Hamilton-Jacobi-Bellman explicitly, which makes the 
implementation particularly efficient and implementable in real-time systems. This framework, SkinLearn, is being 
implemented in ROS for public release and has been demonstrated in tasks involving co-manipulation and kinesthetic 
teaching [44]. 
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Figure 3.4. Robot Skin on PR2 (left), realized using EHD printing technology of
pressure sensors on flexible substrates encapsulated in silicone skins (right).
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RS232, USB, Ethernet, PWM, and relays” [17]. Released in 2015, it is part of the reconfigurable I/O (RIO) family and 
use the Xilinx Zynq chipset. It has a reconfigurable FPGA and is powered by a 667 MHz dual-core Real-Time processor. 

 

 
Figure 1. Communication diagram for sensor data acquisition and wireless setup between youBot and remote workstation. 

 

3. SENSORS FOR HMI 
Several sensors were mounted and integrated with the youBot platform to facilitate human-machine interaction (HMI), 
including a laser scanner, robot skin, and thermal sensors. 

3.1 Laser scanner 

A laser scanning rangefinder was installed at the front side of the youBot base to detect obstacles. The sensor data can be 
used for autonomous navigation and assistive teleoperation. A Hokuyo URG-04LX-UG-01 model was used, which has a 
240° field of view and a measurement distance of 4m [18]. 

3.2 Robot Skin 

For physical interaction, the youBot end-effector link was outfitted with four skin patches consisting of pressure sensors 
embedded in P10 RTV silicone rubber as shown in Fig. 2. The Tekscan Flexiforce thin-film sensors are ideal for 
measuring force between two surfaces. They are cost effective and durable with good sensor characteristics: linearity 
error within 3%, hysteresis less than 4.5%, drift less than 5%, and low temperature sensitivity (0.36% per °C). The 
maximum response time is 5 μsec and they handle up to 100lbs (445N). The active sensing area is 9.53mm in diameter. 

The particular sensors used are piezoresistive in nature; as force increases the resistance decreases from infinity to 
approximately 300kΩ. A voltage divider circuit with an emitter buffer was designed to measure human applied forces up 
to 50lbs (222N). The circuit was implemented on a custom data acquisition board (or MicroBoard), which conditions the 
pressure data from several sensors (or taxels). The results are read by the roboRIO using its analog input ports. 

        

Figure 2. Robot skin patch placement on the KUKA youBot manipulator (left image modified from [16]). 

Robot skin patches 
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Figure 3.5. Robot skin patch placement on the KUKA youBot manipulator (left
image modified from [88]).

For physical interaction, the youBot end-effector link was outfitted with four

skin patches consisting of pressure sensors embedded in P10 RTV silicone rubber as

shown in Fig. 3.5. The Tekscan Flexiforce thin-film sensors are ideal for measuring

the force between two surfaces. They are cost effective and durable with good sensor

characteristics: linearity error within 3%, hysteresis less than 4.5%, drift less than

5%, and low temperature sensitivity (0.36% per ◦C). The maximum response time

is 5 µs and they handle up to 445 N (100 lbs). The active sensing area is 9.53 mm

in diameter. The particular sensors used are piezoresistive in nature: As the force

increases, the resistance decreases from infinity to approximately 300 kΩ. A voltage

divider circuit with an emitter buffer was designed to measure human applied forces

up to 222 N (50 lbs). The circuit was implemented on a custom data acquisition
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board (or MicroBoard), which conditions the pressure data from several sensors (or

taxels). The results are read by the roboRIO using its analog input ports.

3.6 Software Architecture

A modern co-robot has to solve problems related to navigation, perception,

and manipulation. Various sensors are necessary to support these functionalities and

several algorithms are necessary to process the sensor data. These capabilities could

run in parallel while a high level planner controls the task flow and handles error

detection and correction. Several robotics software solutions exist such as Microsoft

Robotics Developer Studio (MRDS) [99], Mobile Robot Programming Toolkit [100],

and Rock [101]. Perhaps a more popular and comprehensive ecosystem is the open-

source Robot Operating System (ROS) originally developed by Stanford Artificial

Intelligence Laboratory in 2007 [102]. ROS is a framework for robot software develop-

ment and includes a large collection of libraries (stacks) that facilitate implementation

of common robotic functionalities (packages). ROS provides an infrastructure where

these functionalities may run in separate nodes that communicate with each other via

messages. It is language independent (C++ and Python are most commonly used)

and runs on Unix systems such as Ubuntu. Recently, there has been increased support

for Microsoft Windows and Mac OS X. Most importantly, ROS is hardware agnostic

and focuses on code reusability. The same ROS packages could be used on different

robotic platforms with only minor modifications Hence, ROS appears well suited for

operating robots in complex environments such as hospitals. The following sections

will discuss sensor requirements and state-of-the-art ROS stacks and packages that

could provide some of the basic capabilities for the ARNA robot.

The previous sections describe the youBot hardware upgrades. This section

describes the software architecture that was developed to process the sensor data and
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Table 1. Overview of the developed ROS packages. 

ROS package Description 

youbot_cortex Contains a state machine node which acts as a layer between the data received from the tablet 
app and the robot controllers. It sends service requests to enable/disable different control modes, 
joints, and sensors. 

cortex_msgs Defines custom ROS messages and services. 

serial_io Reads data from roboRIO via a serial communication channel and publishes it into ROS topics. 

youbot_force_sensors Subscribes to force data and computes the command velocities for the base movement. KDL 
(Kinematics and Dynamics library) is used for 3D frame and vector transformations. 

youbot_ir_sensors Processes thermal sensor data (filtering and thresholding) to control the gripper. 

youbot_description Contains the youBot robot model. 

youbot_navigation Utilities for mapping, localization, and path planning. 

youbot_arm_controllers Sends position commands to the youBot motors using different control algorithms (individual 
and combined joint control). 

youbot_cartesian Cartesian arm controller using the motion planning software MoveIt! [20]. 

 

 

 

Figure 4. Software architecture showing the flow of data. The sensors are being read by the roboRIO, which then sends the 
data to ROS. The arm and gripper commands are then executed by the low-level hardware controllers in the youBot.  
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Figure 3.6. Software architecture showing the flow of data. The sensors are being read
by the roboRIO, which then sends the data to ROS. The arm and gripper commands
are then executed by the low-level hardware controllers in the youBot.

enable robot control with the various interfaces consisting of ROS, an Android tablet

application, and LabVIEW.

3.6.1 Robot Operation System

The KUKA youBot runs the linux-based operating system Ubuntu 12.04. The

platform is controlled by the open-source Robot Operating System (ROS), a software

framework originally developed by Stanford Artificial Intelligence Laboratory in 2007

[102]. ROS has become a de-facto standard in robotics and there is a large collection

of software packages developed by the community. Since ROS is both programming
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4.2 Tablet Interface 

A youBot tablet application was developed using ROSJava [21] to allow users to control the platform with an easy-to-
use graphical user interface (GUI). Figure 5. Tablet interface for controlling the youBot.The app is split up into 3 different 
classes: ViewController, NodePublisher and the VirtualDivet. The ViewController connects the GUI interface (buttons, 
toggle buttons, switches, text) to backend code. Using ROS messages, the NodePublisher communicates user intent to 
the cortex program which then initiates the robot movement. The VirtualDivet class implements the touch-screen 
joystick in the lower right hand corner. It allows the user to move around a divet inside a circular area, where the off-
center distance produces velocity commands between 0 and 100%. 

Figure 5 shows the layout on a Nexus 10 Android tablet. The top left corner displays the tablet orientation, i.e. the pitch 
and roll from the gyroscope and the yaw relative to earth from the magnetic compass. The active control mode can either 
be individual or combined joint control. Joint control mode allows the selection of individual joints which then can be 
moved by tilting the tablet. The joint velocity is proportional to the pitch of the tablet. In combined joint control, several 
joints are moved together to move the end-effector in an arc. Joint limits prevent the user from hitting the floor or robot. 
The Cartesian position of the end-effector can be controlled with buttons in the upper right corner. Vertical Cartesian 
control moves the end-effector along the y-axis of the base frame. Finally, there are switches for activating different 
interfaces such as the thermal and pressure sensors. The gripper switch opens or closes the two-finger pincher. The base 
joystick toggle enables the virtual joystick, which moves omnidirectional base of the robot platform. 

 

 
Figure 5. Tablet interface for controlling the youBot. 

 

4.3 RoboRIO Software 

The roboRIO was programmed using the National Instruments’ LabVIEW. The code is executed in a real-time loop, 
where pressure sensors are read every 1ms using the analog input ports. The infrared sensors generate data every 30ms 
and use the I2C bus interface. After being captured, the data is relayed via USB to the youBot using the RS232 
communication protocol. Collecting sensor information and communicating with ROS are parallel tasks, made possible 
by the multicore processors on the roboRIO. This way the ROS nodes can access the sensor data at approximately the 
same rate: 1000Hz for pressure sensor and 33Hz for thermal data. 

5. DESCRIPTION OF EXPERIMENTS 
Experiments were conducted to test the functionality of the implemented hardware and performance of the proposed 
HMI schemes. The tasks involved object pick-and-place using the tablet interface and pressure sensors, as well as 
autonomous navigation. The primary objective was to measure the difference in completion time and accuracy of path 
trajectory for expert and novice users. Novice or non-expert users were defined as those who had no prior experience 
with the tablet application, the robot, and its functionalities. Both type of users were given a brief overview of the system 
and the tasks to be completed. Measurements included completion time and trajectory error, which was determined by 
localizing the youBot with the help of odometry and laser scanner data. 
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Figure 3.7. Tablet interface for controlling the youBot.

language and hardware agnostic, these packages can easily be re-used on different

platforms. Programs are executed as independent ROS nodes and data is transmitted

via ROS messages. This distributed architecture allows several components to run

simultaneously, for example sensor data processing, navigation, and perception.

In this spirit, we developed a multi-layered, ROS-based architecture to allow

robot autonomy as well as user intervention via several HMIs such as tablet apps or

pressure sensors (Fig. 3.6). Several stand-alone ROS packages were developed, with

different functionalities for navigation and manipulation as described in Table 3.1.

The program flow is determined by a cortex node which acts as layer between the

interfaces and control modules. It contains a state machine which utilize ROS topics

or services to call other ROS nodes that then execute the necessary code. If anything

fails, the cortex node runs contingency plans and is able to restart faulty ROS nodes.

This also simplifies data flow making it easier to debug and capture data.
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Table 3.1. Overview of the developed ROS packages.

ROS package Description

youbot cortex Contains a state machine node which acts as a layer between the
data received from the tablet app and the robot controllers. It
sends service requests to enable/disable different control modes,
joints, and sensors.

cortex msgs Defines custom ROS messages and services.

serial io Reads data from roboRIO via a serial communication channel and
publishes it into ROS topics.

youbot force sensors Subscribes to force data and computes the command velocities for
the base movement. KDL (Kinematics and Dynamics library) is
used for 3D frame and vector transformations.

youbot ir sensors Processes thermal sensor data (filtering and thresholding) to con-
trol the gripper.

youbot description Contains the youBot robot model.

youbot navigation Utilities for mapping, localization, and path planning.

youbot arm controllers Sends position commands to the youBot motors using different
control algorithms (individual and combined joint control).

youbot cartesian Cartesian arm controller using the motion planning software
MoveIt! [72].

3.6.2 Tablet Interface

A youBot tablet application was developed using ROSJava [103] to allow users

to control the platform with an easy-to-use graphical user interface (GUI). The app is

split up into 3 different classes: ViewController, NodePublisher and the VirtualDivet.

The ViewController connects the GUI interface (buttons, toggle buttons, switches,

text) to backend code. Using ROS messages, the NodePublisher communicates user

intent to the cortex program which then initiates the robot movement. The Virtual-

Divet class implements the touch-screen joystick in the lower right hand corner. It

allows the user to move around a divet inside a circular area, where the off-center

distance produces velocity commands between 0 and 100%.
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Figure 3.7 shows the layout on a Nexus 10 Android tablet. The top left corner

displays the tablet orientation, i.e. the pitch and roll from the gyroscope and the

yaw relative to earth from the magnetic compass. The active control mode can either

be individual or combined joint control. Joint control mode allows the selection of

individual joints which then can be moved by tilting the tablet. The joint velocity

is proportional to the pitch of the tablet. In combined joint control, several joints

are moved together to move the end-effector in an arc. Joint limits prevent the user

from hitting the floor or robot. The Cartesian position of the end-effector can be

controlled with buttons in the upper right corner. Vertical Cartesian control moves

the end-effector along the y-axis of the base frame. Finally, there are switches for

activating different interfaces such as the thermal and pressure sensors. The gripper

switch opens or closes the two-finger pincher. The base joystick toggle enables the

virtual joystick, which moves omnidirectional base of the robot platform.

3.6.3 RoboRIO Software

The roboRIO was programmed using the National Instruments’ LabVIEW.

The code is executed in a real-time loop, where pressure sensors are read every 1 ms

using the analog input ports. The infrared sensors generate data every 30 ms and

use the I2C bus interface. After being captured, the data is relayed via USB to

the youBot using the RS232 communication protocol. Collecting sensor information

and communicating with ROS are parallel tasks, made possible by the multicore

processors on the roboRIO. This way the ROS nodes can access the sensor data at

approximately the same rate: 1000 Hz for pressure sensor and 33 Hz for thermal data.
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Figure 6. Pick and place experiment on the laboratory floor showing waypoints A through F. 

 
5.1 Pick and Place 

In the pick and place task, a user was asked to move several objects between waypoints with the youBot. To create a 
rigorous method of testing, the waypoints were marked on the floor as shown in Fig. 6. The path involved straight and 
diagonal movements of various lengths: 3.05m from point A to point B, 2.76m from B to C, 3.68m from C to D, 2.80m 
from D to E, and 3.07m from point E to point F. 

Different interfaces were tested to compare the accuracy and completion time of physical guidance and tablet 
teleoperation. Both expert and novice users were asked to pick up 5 objects in 6 trials. This was repeated for two types of 
interfaces: teleoperation via tablet (tablet mode) and direct physical interaction (mannequin mode) via the skin patches. 

In tablet mode, the user was required to accomplish the following tasks: 

1. Pick up object at current location 
2. Transport object to next waypoint using the virtual joystick 
3. Place object 2-3 inches within waypoint marker 
4. Repeat until final waypoint has been reached (point F) 
5. Place final item into a bin 

The base was operated using the virtual joystick and the robot arm was controlled in joint or Cartesian mode depending 
on user preference (see [15] for further details). The gripper was opened and closed by pressing the corresponding button 
inside the tablet interface. 

In mannequin mode the tasks were as follows: 

1. Pick up object at current location 
2. Guide robot to next waypoint using the robot skin 
3. Place object 2-3 inches within waypoint marker 
4. Repeat until final waypoint has been reached (point F) 
5. Place final item into the bin 

The user guided the youBot along the outlined path by pushing on the robot skin mounted on the manipulator. Once a 
waypoint was reached, the user moved the arm into position and operated the gripper with a simple hand-wave in front 
of the thermal sensors. 

 

5.2 Autonomous Navigation 

In addition to pick and place experiments, in which the user actively guided the robot, experiments were conducted to 
evaluate the youBot’s autonomous navigation and obstacle avoidance capabilities. To navigate, the youBot received goal 
positions via point-and-click mouse commands in the ROS Visualization (RViz) interface shown in Fig. 7. The software 

A 

B 
C 

D E 

F 
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Figure 3.8. Pick and place experiment on the laboratory floor showing waypoints A
through F.

3.7 Performance Evaluation of HMIs in Household Environments

Experiments were conducted to test the functionality of the implemented hard-

ware and performance of the proposed HMI schemes. The tasks involved object

pick-and-place using the tablet interface and pressure sensors, as well as autonomous

navigation. The primary objective was to measure the difference in completion time

and accuracy of path trajectory for expert and novice users. Novice or non-expert

users were defined as those who had no prior experience with the tablet application,

the robot, and its functionalities. Both type of users were given a brief overview of

the system and the tasks to be completed. Measurements included completion time

and trajectory error, which was determined by localizing the youBot with the help of

odometry and laser scanner data.

3.7.1 Pick and Place

In the pick and place task, a user was asked to move several objects between

waypoints with the youBot. To create a rigorous method of testing, the waypoints
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were marked on the floor as shown in Fig. 3.8. The path involved straight and

diagonal movements of various lengths: 3.05 m from point A to point B, 2.76 m from

B to C, 3.68 m from C to D, 2.80 m from D to E, and 3.07 m from point E to point

F. Different interfaces were tested to compare the accuracy and completion time

of physical guidance and tablet teleoperation. Both expert and novice users were

asked to pick up 5 objects in 6 trials. This was repeated for two types of interfaces:

teleoperation via tablet (tablet mode) and direct physical interaction (mannequin

mode) via the skin patches. In tablet mode, the user was required to accomplish the

following tasks:

1. Pick up object at current location

2. Transport object to next waypoint using the virtual joystick

3. Place object 2-3 inches within waypoint marker

4. Repeat until final waypoint has been reached (point F)

5. Place final item into a bin

The base was operated using the virtual joystick and the robot arm was controlled

in joint or Cartesian mode depending on user preference (see [7] for further details).

The gripper was opened and closed by pressing the corresponding button inside the

tablet interface. In mannequin mode the tasks were as follows:

1. Pick up object at current location

2. Guide robot to next waypoint using the robot skin

3. Place object 2-3 inches within waypoint marker

4. Repeat until final waypoint has been reached (point F)

5. Place final item into the bin

The user guided the youBot along the outlined path by pushing on the robot skin

mounted on the manipulator. Once a waypoint was reached, the user moved the

55



arm into position and operated the gripper with a simple hand-wave in front of the

thermal sensors.

The completion time for the pick and place experiments are listed in Table

3.2. Six trials were conducted with two expert and two novice users. The mean

completion time for an experienced user was approximately 2 minutes and 45 seconds.

As expected, the non-experts performed slower and needed more than double the time

to complete an identical task. However, the time difference between the two interfaces

for each user was minimal as shown in Fig. 3.9. This seems to indicate that both the

tablet and mannequin mode provided the same level of control. However, this was

not the case as shown further down by the position data. It should also be noted

that the physical interface required almost no training, while it took a few minutes

for the novice users to get used to the tablet interface. In addition, when the youBot

was facing the operator, there was some confusion since the left and right tablet

commands would be flipped from the operator’s point of view. The disparity in time

between the users may be attributed to different individual skill levels.

In addition to completion times, the youBot’s location in the map frame was

recorded during the experiments. The position was estimated from internal odometry

and laser scanner data. The two expert and two novice users were asked to follow

the path marked on the floor as closely as possible. Fig. 3.10 and 3.11 depict the

trajectories obtained via tablet and mannequin control, respectively. Due to slippage

of the Mecanum wheels on the hard floor, the odometry position estimate drifted over

time. Therefore, the position measurements were not accurate enough to quantita-

tively compare the trajectory errors. In future work, the youBot position estimate

could be recalibrated between trials or a motion capture system could localize the

robot more accurately. However, by general inspection of the graphs in Fig. 3.10

and 3.11, one can infer that the mannequin mode produced smoother and more ac-
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Table 3.2. Task completion time (in seconds) for expert and novice users for the
tablet and mannequin mode. The mean and standard deviation (STD) is computed
for 6 trials.

Mode Expert user 1 Expert user 2 Novice user 1 Novice user 2

Tablet 175 188 395 368

158 174 388 343

162 159 382 340

153 141 370 348

148 139 372 330

178 181 409 398

Mean 162 164 386 355

STD 12 20.7 14.7 24.7

Mannequin 169 176 401 382

171 159 402 389

173 170 393 381

166 162 399 395

159 160 383 346

171 169 401 389

Mean 168 166 397 380

STD 5.1 6.7 7.4 17.6

curate trajectories compared to the tablet mode. The mannequin trajectories in Fig.

3.11 show less spread and there are fewer path deviations. Hence, similar completion

times does not equate to identical performance. For both interfaces there was a clear

difference between expert and non-expert users. From a qualitative assessment, the

expert users produced smoother paths and performed fewer corrections.
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Table 2. Task completion time (in seconds) for expert and novice users for the tablet and mannequin mode. The mean and 
standard deviation (STD) is computed for 6 trials. 

Mode Expert user 1 Expert user 2 Novice user 1 Novice user 2 

Tablet 

175 188 395 368 
158 174 388 343 
162 159 382 340 
153 141 370 348 
148 139 372 330 
178 181 409 398 

Mean 162 164 386 355 
STD 12.0 20.7 14.7 24.7 

Mannequin 

169 176 401 382 
171 159 402 389 
173 170 393 381 
166 162 399 395 
159 160 383 346 
171 169 401 389 

Mean 168 166 397 380 
STD 5.1 6.7 7.4 17.6 
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Figure 8. Error plot showing mean completion times (in seconds) for two expert and two novice users. 

 
 
In addition to completion times, the youBot’s location in the map frame was recorded during the experiments. The 
position was estimated from internal odometry and laser scanner data. The two expert and two novice users were asked 
to follow the path marked on the floor as closely as possible. Fig. 9 and 10 depict the trajectories obtained via tablet and 
mannequin control, respectively. 

Due to slippage of the Mecanum wheels on the hard floor, the odometry position estimate drifted over time. Therefore, 
the position measurements were not accurate enough to quantitatively compare the trajectory errors. In future work, the 
youBot position estimate could be recalibrated between trials or a motion capture system could localize the robot more 
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Figure 3.9. Error plot showing mean completion times (in seconds) for two expert
and two novice users.
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accurately. However, by general inspection of the graphs in Fig. 9 and 10, one can infer that the mannequin mode 
produced smoother and more accurate trajectories compared to the tablet mode. The mannequin trajectories in Fig. 10 
show less spread and there are fewer path deviations. Hence, similar completion times does not equate to identical 
performance. For both interfaces there was a clear difference between expert and non-expert users. From a qualitative 
assessment, the expert users produced smoother paths and performed fewer corrections. 

6.2 Autonomous Navigation 

Two different setups were utilized to evaluate autonomous navigation using the RViz interface. First, the youBot had to 
avoid a circular obstacle to reach the same waypoint from three different initial positions. Moving right to left in Fig. 
11(a), the youBot successfully avoided any collisions and chose the shortest trajectory around the obstacle. 

In the second setup, the robot moved along two successive waypoints requiring a 90 degree turn. The results depicted in 
Fig. 11(b) show that the position accuracy decreased over time, which again was caused by slippage of the wheels. 
Qualitatively, the accuracy is similar to mannequin mode operation and better than tablet control. 

 
 

      
 (a) (b) 

      
 (c) (d) 

Figure 9. The youBot map coordinates in meters during tablet mode operation for 6 trials with (a), (c) expert and (b), (d) 
non-expert users. 
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Figure 3.10. The youBot map coordinates in meters during tablet mode operation
for 6 trials with (a), (c) expert and (b), (d) non-expert users.
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Figure 10. The youBot map coordinates in meters during mannequin mode operation for 6 trials with (a), (c) expert and (b), 
(d) non-expert users. 

 

 

      
 (a) (b) 

Figure 11. The youBot map coordinates in meters during autonomous navigation from right to left. The setup in (a) required 
avoiding a circular obstacle and (b) involved two waypoints resulting in a 90 degree turn. 
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Figure 3.11. The youBot map coordinates in meters during mannequin mode opera-
tion for 6 trials with (a), (c) expert and (b), (d) non-expert users.

3.7.2 Autonomous Navigation

In addition to pick and place experiments, in which the user actively guided the

robot, experiments were conducted to evaluate the youBot’s autonomous navigation

and obstacle avoidance capabilities. To navigate, the youBot received goal positions

via point-and-click mouse commands in the ROS Visualization (RViz) interface shown

in Fig. 3.12. The software provides a graphical user interface (GUI) showing a 3D

model of the robot located in a 2D map outline in light grey color. Potential obstacles

such as walls and furniture are marked in black and the real-time laser scan data is

represented by white pixels. The youBot navigation program utilizes robot odometry

and laser scan data to localize the robot. After a user provides a goal location in RViz,

the global planner generates a collision free path using algorithms such as A* search.

If an unexpected obstacle appears during motion, for example a human stepping in
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provides a graphical user interface (GUI) showing a 3D model of the robot located in a 2D map outline in light grey 
color. Potential obstacles such as walls and furniture are marked in black and the real-time laser scan data is represented 
by white pixels. The youBot navigation program utilizes robot odometry and laser scan data to localize the robot. After a 
user provides a goal location in RViz, the global planner generates a collision free path using algorithms such as A* 
search. If an unexpected obstacle appears during motion, for example a human stepping in front of the robot, the local 
planner takes over and creates a modified path around the obstacle. 

 

 
Figure 7. RViz interface showing a top-view of the youBot inside a mapped area (light grey region). The black pixels 
represent obstacles and white pixels the real-time laser scanner data. 

 

6. RESULTS 
6.1 Pick and place 

The completion time for the pick and place experiments are listed in Table 2. Six trials were conducted with two expert 
and two novice users. The mean completion time for an experienced user was approximately 2 minutes and 45 seconds. 
As expected, the non-experts performed slower and needed more than double the time to complete an identical task. 
However, the time difference between the two interfaces for each user was minimal as shown in Fig. 8. This seems to 
indicate that both the tablet and mannequin mode provided the same level of control. However, this was not the case as 
shown further down by the position data. It should also be noted that the physical interface required almost no training, 
while it took a few minutes for the novice users to get used to the tablet interface. In addition, when the youBot was 
facing the operator, there was some confusion since the left and right tablet commands would be flipped from the 
operator’s point of view. The disparity in time between the users may be attributed to different individual skill levels. 
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Figure 3.12. RViz interface showing a top-view of the youBot inside a mapped area
(light grey region). The black pixels represent obstacles and white pixels the real-time
laser scanner data.

front of the robot, the local planner takes over and creates a modified path around

the obstacle.

Two different setups were utilized to evaluate autonomous navigation using the

RViz interface. First, the youBot had to avoid a circular obstacle to reach the same

waypoint from three different initial positions. Moving right to left in Fig. 3.13(a), the

youBot successfully avoided any collisions and chose the shortest trajectory around

the obstacle. In the second setup, the robot moved along two successive waypoints

requiring a 90 degree turn. The results depicted in Fig. 3.13(b) show that the position

accuracy decreased over time, which again was caused by slippage of the wheels.

Qualitatively, the accuracy is similar to mannequin mode operation and better than

tablet control.
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Figure 10. The youBot map coordinates in meters during mannequin mode operation for 6 trials with (a), (c) expert and (b), 
(d) non-expert users. 

 

 

      
 (a) (b) 

Figure 11. The youBot map coordinates in meters during autonomous navigation from right to left. The setup in (a) required 
avoiding a circular obstacle and (b) involved two waypoints resulting in a 90 degree turn. 
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Figure 3.13. The youBot map coordinates in meters during autonomous navigation
from right to left. The setup in (a) required avoiding a circular obstacle and (b)
involved two waypoints resulting in a 90 degree turn.

3.8 Conclusion

In this paper the KUKA youBot mobile manipulator was sensorized for user

operation via a tablet, physical interaction, and simple hand gestures. Sensor up-

grades included a laser scanner, pressure sensitive robot skin, and thermal sensors.

System integration was accomplished through the addition of a roboRIO controller

and the software architecture was based on the Robot Operating System (ROS). Af-

ter the HMI and sensor upgrades, the robot can be guided by users via teleoperation

with a tablet, direct physical guidance, as well as through a point-and-click GUI.

We demonstrated basic capabilities and acquired data from a few users, which will

pave the way for experimental studies including a larger number of subjects in near

future. Several pick and place tasks were completed by two users familiar with the

system (experts), and two users not familiar with the system (non-experts). The

results indicate that: (i) Physical interaction (or mannequin) guidance results in the

most accurate robot trajectories for both expert and non-expert users. The interface

is intuitive and might require less training time. (ii) Tablet and mannequin control

result in similar task completion times. Expert users can complete pick and place
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manipulation and mobility tasks significantly faster than non-expert users. (iii) The

autonomous point-and-click interface resulted in shortest path for traversing free and

obstacle-filled environments, and had similar accuracy to mannequin guidance. There

is minimal effort for the user, however the robot requires a map of the environment.
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CHAPTER 4

A Robotic Waiter with Physical Co-manipulation Capabilities
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4.1 Abstract

In this paper, we compare the performance of physical and non-physical in-

terfaces for the behavior of a personal robot. The PR2 robot was programmed as

a waiter with co-manipulation capabilities and experimentally tested with respect

to a trajectory following task. For physical interaction (pushing/pulling), we imple-

mented a compliance controller for compliant, stable arm positioning and a velocity

based position controller for moving the robot base. Experiments were conducted

to assess the effectiveness and accuracy of single and dual arm control compared to

joystick teleoperation. Results indicate that the PR2 in physical collaboration with a

human performs better than in teleoperation mode, as measured by task completion

time while maintaining a comparable task accuracy. A result of our work is the open

source, robot operating system (ROS) package pr2 cartPull , which will be shared

with the robotics community.

4.2 Introduction

The introduction of robots into human environments has motivated a need for

safe and reliable physical interaction [104]. There are many challenges to moving

a robot and accomplishing tasks in environments that are inherently cluttered and

dynamic. Static obstacles such as furniture and dynamic obstacles such as humans

have to be detected and avoided. Dynamic situations require fast and real-time

reaction to avoid damage, variations in pose requires good situational awareness and

maneuvering skills [105].

Current research in robotics has focused on the extensive use of vision, planning,

and optimization to solve these problems [106]. Tasks are performed by systems that

are increasingly complex and depend on vision including 3D sensors [107]. Although
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these techniques are powerful, they are not mature enough to deploy in a home

environment where reliability and repeatability are important [108]. The challenge

with using vision is the time required to process and plan, occlusions, and unsuitable

lighting conditions. In this paper, we study the interaction between a human and

a robotic waiter operating in a dynamic environment with low, variable lighting, in

which reliability, repeatability, and speed are crucial. Therefore, we rely on physical

co-manipulation to allow a human to guide the robot through the environment. In

general, physical Human-Robot Interaction (pHRI) requires coordination and control

of the forces being applied by the human onto the robot. The problem consists of

two parts: 1) safe, stable contact with the human and 2) identifying the human

intent [105, 109]. During the physical interaction, the robot should not exert any

large forces on the human and have relative low joint velocities. The robot’s limbs

should move in a smooth, predictable manner and no oscillations should occur. In

this paper, the problem of safe and stable contact is addressed through compliance

control [110,111].

In a task the robot was required to follow along with a cart. The task definition

allowed us to restrict the problem space such that the human pulling force applied

through the cart was the input and the output was position regulation of the robot

base with respect to the cart. Such a configuration enabled a natural cart-following

behavior by the robot, and allowed the human operator to lead the robot to desired

locations. The research contribution of our work is in evaluating the performance of

the controller during a cart-following task with respect to its parameters. In addition,

we report on the performance of the co-manipulation interface with two arms of the

PR2 robot, and compare it with a one-hand interface, and a traditional joystick. Not

surprisingly, results clearly indicate that a two-handed natural interface of the robot

to the cart yields the best performance, as defined by the task completion time.
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Figure 4.1. Personal Robot 2 (PR2) manipulating a cart at the UTA Research Insti-
tute (UTARI) Living Laboratory.

The paper is organized as follows: we first describe the system used to follow

human commands using a cart and a PR2 robot shown in Fig. 4.1. In particular, the

compliance controller is described in Sec. 4.3.1 and the velocity based position con-

troller in Sec. 4.3.2. We discuss the experiments conducted to assess the effectiveness

of the proposed method in Sec. 4.4 and the results in Sec. 4.5. Finally, in Sec. 4.6

the conclusion and future work are presented.

4.3 Co-manipulation System

In this section, we describe the system used to follow human commands using

a cart and the PR2 robot, consisting of a mobile base, two robotic arms, and a pan

 ΔLg

 ΔLg ΔRg

 ΔRg

Δψ 

Left Turn Right TurnHome

Δψ 

Figure 4.2. PR2 grippers location, and frames of the cart in top view.
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and tilt head unit (Fig. 4.1). Each arm is gravity compensated and offers 7 degrees

of freedom (DOF). The arms extend up to 81 cm (32 inches) and the omnidirectional

base can reach velocities up to 1.0 m/s (3.3 ft/s).

We first describe the controller used for compliant, stable interaction with the

cart. Then, we describe the velocity based position controller that moves the robot

to the home condition seen in Fig. 4.2, which leads to the cart-following behavior. A

human will push/pull the cart or the robot, and the robot will initiate base and arm

movements to follow guidance from the human.

4.3.1 Compliance Controller for the PR2 Arms

In classical explicit force control the objective is to maintain a desired inter-

action force fd, using schemes such as proportional-integral-derivative controllers for

regulation. This does not work in all interaction scenarios, especially not in cases

where chattering occurs. It is well known that PID explicit force controllers can

become unstable due to changes in contact environment [38,39,110,112].

Impedance control was developed by Hogan to achieve stable environmental

contact [113]. It controls the dynamics of the physical interaction with the environ-

ment instead of achieving an explicit force objective. We use compliance control as a

simplified version of this scheme [110,111].

The general robot dynamic equation with actuator dynamics and external in-

teraction with the environment is

M(q)q̈ + V (q, q̇)q̇ + F (q̇) +G(q) + τd = τ + τe (4.1)

where q ∈ Rn are the joint positions (n is the DOF), M(q) is the inertia matrix,

V (q, q̇) is the Coriolis/centripetal vector, G(q) is the gravity vector, and F (q̇) is the
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friction term. We also add the disturbance torque τd ∈ Rn and the environmental

torque τe = JT (q)fe, where fe are interaction forces exerted on the robot in task

space, JT (q) is the Jacobian and τ ∈ Rn the control torque. Neglecting friction and

disturbance torques, the task space pose x = [pe, φe]
ᵀ ∈ R6, where pe ∈ R3 is the task

space position and φe ∈ R3 is the orientation. The dynamics in task space is

Mx(q)ẍ+ Vx(q, q̇)ẋ+Gx(q) = J−T (q)τ + fe (4.2)

where,

Mx(q) = J−T (q)M(q)J−1(q),

Vx(q, q̇) = J−T (q)V (q, q̇)J−1(q)−Mx(q)J̇(q)J−1(q),

Gx(q) = J−T (q)G(q).

The desired impedance model to balance the interaction force fe is chosen as

Mm(ẍ− ẍd) +Dm(ẋ− ẋd) +Km(x− xd) = fe (4.3)

where xd is the desired trajectory, Mm is the inertia, Dm is the damping, and Km

is the stiffness of the impedance model. For the PR2 robot, the mass matrix and

the Coriolis term are not readily available, while the gravity term can be neglected

because of the robot’s gravity compensated design. Therefore, replacing Mm = Mx(q)

in (4.3) and substituting into (4.2) the control torque leads to

τ =JT (q)(Mx(q)ẍd + Vx(q, q̇)ẋ+Gx(q)

+Dm(ẋd − ẋ) +Km(xd − x)).

(4.4)
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Assuming ẋd = 0 and for low joint velocities q̇ ≈ 0 we obtain the compliance controller

τ =JT (q)(Km(xd − x)−Dmẋ+Gx(q)). (4.5)

Since the PR2 arms are gravity compensated, the gravity compensation term Gx(q)

can be removed. Replacing ẋ with J(q)q̇, the final desired torque is:

τ = JT (q)(Km(xd − x)−DmJ(q)q̇). (4.6)

This does not require interaction force measurements and avoids the need for an

estimator to isolate the interaction forces from the PR2 gripper dynamics.

Because the controller in (4.6) only sets a desired gripper pose, a resorting

torque

τr = KP,rε+KD,r ε̇ (4.7)

was used to keep the arm joints close to their original home position qd. The joint

error ε is defined as the difference between the desired and current joint angles

ε = qd − q. (4.8)

We consider the following reference frames as seen in Fig. 4.3: {w} attached

to the world, {b} attached to the robot base, {t} attached to the robot torso, {gr}

attached to the right gripper, {gl} attached to the left gripper, and {m} attached to

the cart being used. The right and left gripper pose in task space is xr ∈ R6 and

70



{w}

{g}{m}

{b}

{t}

Figure 4.3. PR2 robot and cart transfer frames.

xl ∈ R6 in frame {t}. The pose of the robot base in frame {w} is xb ∈ R6. The

generalized forces at the grippers are fr ∈ R6 and fl ∈ R6 in frames {gr} and {gl}.

The cart, pulled by a human, will apply forces fr and fl on the grippers of

the PR2. These interaction forces will cause changes in the task space states of the

grippers xr = [rx, ry, rz, rφ, rθ, rψ], ẋr, ẍr, xl = [lx, ly, lz, lφ, lθ, lψ], ẋl and ẍl according

to the dynamics of the defined impedance model (4.3) . The desired task space

position of the compliance controller is set to some point in front of the PR2, wheras

the reference velocity and acceleration are set to zero. When the cart is grasped, the

grippers lose 3 DOF and the motion of the grippers will lie in the plane defined by the

constraints due to the cart. The remaining DOF are translation in x, y and rotation

about the z axis as seen in Fig. 4.2. The gains are set low in these directions for

smooth interaction.

4.3.2 Velocity Based Controller for the PR2 base

In this section, we describe a velocity based position controller to move the PR2

base. When the force applied by the cart on the robot exceeds the stiffness force of

the compliance controller, task space pose errors are observed in the grippers. These

errors are used by a velocity controller to generate a twist for the PR2 base when they
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exceed a certain threshold. This will reduce the errors in the gripper pose and drive

the grippers and base to their home pose with respect to the robot base as seen in

Fig. 4.2. Let the pose error be ep ∈ R6. The translation errors in the unconstrained

directions are given as ∆Rg and ∆Lg, and the orientation error about the z axis is

given as ∆ψ. We define the Cartesian space position error as

ep = xd − x (4.9)

where ep is [∆x,∆y, 0, 0, 0,∆ψ]. Now we can define the base velocity to be generated

as

ẋb = KP ep +KDėp. (4.10)

If the pose of the right gripper is used to drive the base, ∆x = ∆Rgx, ∆y = ∆Rgy,

and ∆ψ will be the angular pose error of the right gripper. If two grippers are used

∆x = 1
2

(∆Rgx + ∆Lgx)

∆y = 1
2

(∆Rgy + ∆Lgy)

∆ψ = − tan−1

(
rx − lx
ry − ly

)
.

(4.11)

The combined twist error ėp is found from

∆ẋ = 1
2

(
∆Ṙgx + ∆L̇gx

)
∆ẏ = 1

2

(
∆Ṙgy + ∆L̇gy

)
∆ψ̇ =

u̇

1 + u2
,

(4.12)
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rth$

rnoise$ Δx$

Δy$

(3)$

(2)$

(1)$

Figure 4.4. Threshold regions for the velocity controller. The velocity command ẋb
has components in y-direction (1), in x- and y-direction (2), or in x-direction (3).

where

u =
rx − lx
ry − ly

u̇ =
(ṙx − l̇x)(ry − ly)− (rx − lx)(ṙy − l̇y)

(ry − ly)2
.

(4.13)

The computed velocity ẋb will move the PR2 base to be aligned with the home position

as depicted in Fig. 4.2. A switching logic is used to activate the velocity controller

when the pose error is larger than a circular threshold radius in the xy-plane:

√
∆x2 + ∆y2 > rth (4.14)

Due to noise, ∆x or ∆y are non-zero even when moving purely in the y- or x-direction.

Therefore, a smaller, square threshold region was used to achieve stable lateral and

longitudinal movements. When (4.14) is valid but ∆x < rnoise the base is only moved
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Figure 4.5. Recorded base command velocities and errors during gain tuning of the
dual gripper velocity controller. The PR2 was pulled forward 1.5 m (4.9ft) in a
straight line for several Kp values.

in the y-direction and vice versa (Fig. 4.4). The base is rotated when the angular

pose error exceeds the threshold angle, i.e.

∆ψ > ψth. (4.15)

4.4 Experiments

In this section, we describe the experiments conducted to assess the effectiveness

of the proposed method, and compare results of interaction between robot (with and

without cart) and humans. The 7 DOF arms of the PR2 run under compliance control,

whereas the base runs under the velocity controller described in the previous section.

Both controllers were implemented using the real-time control manager framework of
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the PR2. The real-time loop on the PR2 runs at 1000 Hz and communicates with

the sensors and actuators on an EtherCAT network. ROS Groovy [114] was used for

all the experiments.

4.4.1 Parameter Tuning

The initial compliance and velocity gains for the single and dual controller were

set using the Ziegler-Nichols tuning method [115]. Additional tuning was conducted

as described below:

(i) The compliance controller gains were chosen such that the robot arms had

low stiffness and could follow the cart movements before reaching the pose error

thresholds. This lagging behavior resulted in smooth transitions between changes in

velocity and direction. In contrast, high stiffness resulted in abrupt and jerky base

movements. The linear gain in the z direction was set low since the arms were already

restricted to the xy-plane by holding onto the cart.

(ii) The velocity controller was tuned by moving the PR2 in longitudinal and

lateral directions while increasing KP with KD = 0 from (4.10). Fig. 4.5(a) and

4.5(b) show the resulting base velocity commands and computed pose errors while

moving the PR2 robot 1.5m (4.9ft) in the x-direction. The proportional gain was set

to 80% of the ultimate gain, at which the movements became unstable and oscillatory

as depicted in Fig. 4.5(d) and 4.5(e). The derivative gains proved to reduce rather

than increase the stability, and therefore KD was set to a small value. This was

caused by noisy velocity measurements of the error term ėp in (4.10) as shown in Fig.

4.5(c) and 4.5(f).

(iii) Small rth and ψth values resulted in a sensitive response to user movements

whereas large values led to a sluggish response. The values were set manually in

a region that was most comfortable for the user. A minor issue was encountered
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Table 4.1. Controller configurations for single and dual arm experiments. Each
compliance controller gain has a separate value for translation and rotation.

Compliance controller

trans. rot.

Km,x 100 100

Km,y 100 100

Km,z 10 10

Dm,x 1.0 1.0

Dm,y 1.0 1.0

Dm,z 0.1 0.1

Torque controller

KP,r 3.0

KD,r 0.1

Velocity controller

KP 3.4

KD 0.1

rth 0.05 [m]

ψth 0.10 [m]

when moving at slow velocities such that the pose error stayed close to the threshold

values. The switching logic in (4.14) and (4.15) resulted in oscillations and abrupt

movements.

(iv) The restoring gains in (4.7) were set such that the arm joints would slowly

drift to their initial home position when moved. As expected, the restoring torque

did not interfere with the velocity nor the compliance controller.

Once set, the parameters were left unchanged. See Table 4.1 for configurations

used during testing.

4.4.2 Experimental Environment

To test the performance of the system, we conducted experiments comparing

several methods of guiding the PR2 in a well-defined environment. The objective

was to follow a figure eight pattern consisting of two adjacent circles of 1.22m (4ft)

in radius. This simulated the turns and directional changes potentially needed for

avoiding obstacles in a human environment. A user was asked to guide the robot 3
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Figure 4.6. PR2 cart co-manipulation around a figure eight
.

times around the pattern as fast as possible without leaving the path. An inner and

outer line on the ground marked a corridor that had the same width as the base of

the PR2 (Fig. 4.6).

First, the operator followed the pattern using a joystick while walking in front

of the robot. Next, the PR2 was pulled from the grippers and physically led around

the figure eight by the user. Then a program was executed in which the PR2 would

grasp the cart and the operator used the joystick again to teleoperate. Finally, the

cart was pulled by a human operator to perform the same task. The pulling and cart

following was tested with both the single and dual arm controllers.

Besides timing each completed loop, Adaptive Monte Carlo localization (AMCL)

was used to track the pose of a robot against a known map [116]. The PR2 navi-

gation apps stack provided the necessary utilities for mapping and localization. The

pr2 2dnav slam package uses the OpenSLAM’s GMapping to build a map while the

robot moves in the environment, which then can be used by the pr2 2dnav package

for localization [117]. During the experiment, the PR2 torso was raised to a height of

0.3m. This provided enough clearance above the cart for the tilt laser to successfully

perform measurements. A baseline was established by slowly driving the PR2 around
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Table 4.2. Mean path deviation from baseline and standard deviation (STD) in
meters.

Interface No cart With cart

Mean STD Mean STD

Joystick 0.0433 0.0280 0.0413 0.0324

Single gripper 0.0442 0.0363 0.0562 0.0451

Dual gripper 0.0382 0.0302 0.0420 0.0314

Table 4.3. Mean completion time for guiding the PR2 around the figure eight pattern
after 3 trials.

Interface No cart With cart Percent. Difference

(sec) (sec) (%)

Joystick 32.6 51.0 56.4

Single gripper 31.2 35.4 13.5

Dual gripper 32.4 33.3 2.78

the figure eight pattern with the joystick. This was the only time the operator walked

behind the robot to avoid any interference with the laser scanner and perform the

most accurate measurements as possible.

4.5 Evaluation of Interface Performance

The objective of the experiments was to measure the performance of the human-

machine interface used for co-manipulating the cart. The inner and outer lines allowed

the user to consistently guide the PR2 along the same path, making the completion

time the main performance measure.
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A finer spaced baseline was made by using cubic spline interpolation on the

AMCL data points. For each interface position measurement k, a path deviation

error ek was computed by finding the minimum Euclidean distance between positions

pk and the baseline of n data points bi:

ek = min

(
n∑
i=1

√
(pk − bi)2

)
. (4.16)

The 3 trials for each interface produced approximately 200 data points (Fig. 4.7)

and corresponding path errors ek. The means and standard deviations are listed in

Table 4.2, which are less than 5 cm except for the single gripper. The paths taken are

similar and the performance is quantified by the completion time. When the interface

performed poorly, the operator had to adopt a slower pace to stay within the figure

eight boundaries. If the robot moved outside the lines, the user had to stop and

re-adjust the position, which resulted in a larger time penalty.

First, the user navigated the robot without a cart along the pattern. There

was no significant difference in the average completion time for the three different

interfaces without the cart (Table 4.3). Since the operator walked backwards in front

of the PR2, the joystick control was counterintuitive. The left and right directions

were inverted, which could cause problems for less experienced joystick users. While

turning with the single gripper controller, the PR2 would move sideways instead of

rotating. The user had to use on arm to hold the gripper in place and the other

to rotate or twist the gripper. Since the right gripper was used for velocity control,

counter-clockwise turns were easier when the gripper was on the outside of the circle.

Guiding the PR2 together with a cart increased the average completion time,

especially for joystick control (Table 4.3). The inertia of the cart made the joystick

less responsive and higher velocities resulted in overcorrections. The lag and jerky
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Figure 4.7. AMCL position measurements for guiding the PR2 around a figure eight
with different human-robot interfaces.

movements added additional confusion to the joystick being in the robot’s and not the

user’s reference frame, making the operation difficult even for an experienced user.

Similar to the previous results, the single gripper performed poorly when turning. To

follow the path the user had to focus on the angle of the gripper rather than the cart.

The dual arm interface performed best as reflected by a completion time similar to

the one without the cart. These results show that co-manipulating the cart rather

than indirectly moving it via joystick provides the most agile and intuitive interface.

4.6 Conclusions and Future work

A compliance and velocity controller was successfully implemented on a PR2

robot for compliant, stable arm positioning and base movement. They provide a

simple, intuitive way for operators to reliably guide the robot or the robot-cart system.

Co-manipulation through physical interaction proved to be better than the joystick

teleoperation, as measured through completion times. This is perhaps not surprising

in co-manipulation tasks where motions are relative to the robot rather than the user.
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Furthermore, the user had difficulties turning the robot instead of moving it sideways

with the single arm controller, whereas a dual arm controller had better performance.

This system was demonstrated at a live event called ”Sky Ball XI”, which is

an annual fundraising event for US military veterans [118]. Specifically, the PR2 was

used to serve wine to VIP guests seated at different tables. A cart with wine glasses

and bottles had to be moved from table to table in a crowded, dynamic environment.

The use of perception was limited due to uncontrolled lightning conditions that in-

cluded many sources of potential interference with the robot’s sensor. The proposed

compliance and velocity controller performed well. Together with a human waiter,

the PR2 successfully navigated through the crowded environment without any spills

or other incidents.

Future work will focus on automatic and adaptive tuning of the controller gains.

Improvements can be made by including force measurements into the system model.

For example, a force-torque sensor installed between the gripper and forearm can pro-

vide feedback for an impedance controller. A dynamic threshold instead of switching

logic can result in smoother transitions and filtering the noisy twist error can improve

the derivative portion of the controller. Future testing could be done using actual

obstacles in real environments that require more diverse paths.

APPENDIX

The source code for the ROS package pr2 cartPull is available at uta.edu/ee/

ngs/papers/2014case/. It consists of a real-time plugin and a manager for arm con-

troller switching, obtaining the controller status, as well as service calls for setting gain

and threshold values. The manager utilizes motion clients from our pr2 motion clients

package for initializing the torso, arm, and gripper positions. A keyboard interface is

provided for executing the different manager functionalities.
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5.1 Abstract

Safety is an important consideration during physical Human-Robot Interaction

(pHRI). Recently the community has tested numerous new safety features for robots,

including accurate joint torque sensing, gravity compensation, reduced robot mass,

and joint torque limits. Although these methods have reduced the risk of high energy

collisions, they rely on reduced speed or accuracy of robot manipulators. Indeed,

because lightweight robots are capable of higher velocities, knowledge of dynamical

models is required for precise control. However, feed-forward compensation is difficult

to implement on lightweight robots with flexible and nonlinear joints, links, cables,

and so on. Furthermore, unknown objects picked up by the robot will significantly al-

ter the dynamics, leading to deterioration in performance unless high controller gains

are used. This paper presents an online learning controller with convergence guar-

antees, that is able to learn the robot dynamics on the fly and provide feed-forward

compensation. The resulting joint torques are significantly lower than conventional

independent joint control efforts, thus improving the safety of the robot. Experiments

on a PR2 robot arm are conducted to validate the effectiveness of the neuroadaptive

controller to reduce control torques during high speed free-motion, lifting unknown

objects, and collisions with the environment.

5.2 Introduction

For robots to work in collaboration with humans good physical Human-Robot

Interaction (pHRI) is vital. According to De Santis et al. [15] safe and dependable

pHRI systems should be developed before introducing robots into human environ-

ments. Safety in an industrial context was explored by Haddadin et al. in several

studies which measured and characterized the results of robot collisions with hu-
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Figure 5.1. Model Reference Neuroadaptive Controller.

mans [104, 119–121]. In their work, novel hardware capable of accurate joint torque

sensing was developed to reduce impact forces.

Interest in safe pHRI has motivated hardware modifications including gravity

compensation using a counter balance such as the PR2 [122]. Recent developments

in hardware based safety features include accurate joint torque sensing, gravity com-

pensations, reduced robot weight, joint torque limiting, and bio-inspired hybrid ac-

tuation [17]. Although these methods have reduced the risk of high energy collisions,

they have also significantly reduced the speed and accuracy of robot manipulators.

In household robot applications the robots are generally compliant and safe with

changing often imprecise dynamic models. The tasks involved also change from pick

and place tasks requiring accurate trajectory tracking, to physical interaction with

humans. Model-based computed torque controllers can achieve good results but they

depend on known dynamic models. Even if a robot model is known, the presence of

a payload comparable with the mass of a lightweight robot will alter the performance

of such compensation schemes. Furthermore, nonlinearities due to the inherent flex-

ibility of lightweight transmission systems will also increase the uncertainty of such

models.
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Established techniques that overcome the need for precise models include: adap-

tive control, which estimates the model parameters, and robust control, which makes

the controller resistant to unknown parameters [110]. Several methods have been

proposed to avoid linear-in-the-parameters assumptions of adaptive controllers, in-

cluding neural networks, support vector machines, Gaussian mixture models, and

reinforcement learning. These are designed to learn the full nonlinear dynamics of

the robot [22, 29, 123, 124]. Thus, learning methods are a great asset to overcome

the need for modelling, and some of these methods offer stability and performance

guarantees.

The use of neural networks (NN) in feedback control systems was first proposed

by [25] and [26]. The properties of interest for trajectory tracking using NN based

controllers are the tracking error and NN estimation errors. Some of the first results

that included internal stability, weight bounds, tracking performance guarantees, and

controller robustness was provided in 1995 [125,126].

However there has also been a lack of rigorous testing and real world validation

of these controllers on complex robots and tasks until recently. Neuroadaptive con-

trollers were implemented on the Atlas humanoid robot [127] as part of the DARPA

Virtual Robotics Challenge, while adaptive admittance pHRI schemes have been ex-

perimentally validated [44].

In this paper the impact of such neuroadaptive controllers to the safety of robots

is studied. The neuroadaptive control method [22, 125] was applied to lifting tasks

on a PR2 robot [122], which comes with default factory-tuned PID control gains for

independent joint control. Experiments were conducted to comparatively test the

controllers under different manipulator loading conditions. Results demonstrate the

effectiveness of the neuroadaptive controllers in three types of tasks from a safety

perspective.
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This paper is organized as follows: Section 5.3 outlines the joint space controller

formulation. Results from experiments on a PR2 robot with trajectory tracking under

different loading conditions is presented in Section 5.4. Finally, Section 5.5 concludes

the paper.

5.3 Controller Formulation

In this section the neuroadaptive controller formulation developed by Lewis et.

al [22, 125] is briefly described (Fig. 5.1). The controller formulation used in this

paper is in joint space assuming desired joint space trajectories.

The general robot dynamic equation with actuator dynamics is [110]

M(q)q̈ + V (q, q̇)q̇ + F (q̇) +G(q) + τd = τ (5.1)

where n is the number of degrees of freedom (DOF) of the robot, q ∈ Rn are the joint

positions, M(q) is the inertia matrix, V (q, q̇) is the Coriolis/centripetal vector, G(q)

is the gravity vector, and F (q̇) is the friction term. The disturbance torque is τd ∈ Rn

and τ ∈ Rn is the control torque.

Given a desired reference trajectory qr, define the trajectory-following error as

e = qr − q (5.2)

and the sliding mode error is

r = ė+ Λe (5.3)

where Λ is a positive definite design parameter matrix.
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Using (9.1), (5.2) and (5.3) yields the robot error dynamics

M(q)ṙ = −V (q, q̇)r + f(x) + τd − τ (5.4)

where

f(x) = M(q)(q̈r + Λė) + V (q, q̇)(q̇r + Λe) + F (q̇) +G(q) (5.5)

is a nonlinear function of unmodeled robot parameters.

Let an approximation based controller be

τ = f̂(x) +Kvr − v(t) (5.6)

where f̂(x) is the approximation of the robot function f(x) in (5.5), Kvr is the gain

of the outer PD tracking loop, Kv = KT
v > 0 is a diagonal outer-loop gain matrix,

and v(t) is a robustifying signal that compensates for unmodelled and unstructured

disturbances.

Putting (5.6) in (5.4) and simplifying yields the closed loop error dynamics

M(q)ṙ = −V (q, q̇)r −Kvr + f̃(x) + τd + v(t) (5.7)

where f̃(x) = f(x)− f̂(x) is the function approximation error.

The learning loop performance and stability proof is based on prior works [22,

29,125].
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(a) No payload (b) With payload (c) Collision

Figure 5.2. Experimental setups for comparing NN and PID controllers.

The nonlinear function f(x) in (5.5) is unknown. This function can be approx-

imated by a neural network (NN)

f(x) = W Tσ(V Tx) + ε (5.8)

where W and V are ideal unknown weights and σ(.) is the activation function. Let

the neural network approximation property given by (7.10) hold for the function f(x),

specified by (5.5) with a given accuracy ‖ε‖ ≤ εN on a compact set [22, 29].

The ideal weights for the NN are unknown, therefore the weight tuning algo-

rithms of [22,29,125] are used to update the approximate NN weights Ŵ and V̂ . The

input to the NN is x =
[
eT ėT qTr q̇Tr q̈Tr

]T
. Then the control input is

τ = Ŵ Tσ(V̂ Tx) +Kvr − v (5.9)

The robustifying signal v(t) is

v(t) = −Kz(‖Ẑ‖F + ZB)r (5.10)

where Kz is the gain of the robustifying term
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Ẑ =

Ŵ 0

0 V̂


‖.‖F is the Frobenius norm, and ZB is a bound on the NN weights.

The following are the NN weight update equations

˙̂
W = Fσ̂rT − Fσ̂′V̂ TxrT − κF‖r‖Ŵ (5.11)

˙̂
V = Gx(σ̂′T Ŵ r)T − κG‖r‖V̂ (5.12)

σ̂′ = diag
{
σ(V̂ Tx)

}[
I − diag

{
σ(V̂ Tx)

}]
(5.13)

where F and G are positive definite matrices, and κ > 0 is a small design parameter.

(5.13) assumes that σ(.) is a sigmoid activation function.

Define

Sr ≡ {r | ‖r‖ <
bx − qB
c0 + c2

} (5.14)

where c0, c2 are computable positive constants. If r(0) ∈ Sr, then the approximation

property holds. Details on Uniform Ultimate Bounds (UUB) of both ‖r‖ and ‖Ẑ‖F

so that the approximation property holds throughout, can be found in [22,29].

5.4 Experimental Results

In this section, we present results from experiments on a PR2 robot equipped

with ATI Mini45 force/torque sensors. The neuroadaptive controller was implemented

in ROS Groovy [102] using the real-time controller manager framework of the PR2.

Both the neuroadpative and the standard PID controller were executed at 1000Hz

in hard real-time. The joint positions, joint torques, and end-effector force data was
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collected at the same rate. The 7 degrees of freedom (DOF) left arm was used to

conduct the experiments.

The controller parameters used were Kv = 5I7, Λ = 5I7, F = 100I7, G = 50I7,

κ = 0.07, Kz = 0.001, and Zb = 100, where I7 is the 7×7 identity matrix. A two-layer

Neural Network with 36 inputs including the bias input, 10 hidden layer neurons, and

7 outputs was used. The sigmoid function σ(x) was used for the activation functions.

The weights Ŵ and V̂ of the network were initialized to small random values.

Three different types of experiments were conducted to demonstrate the effec-

tiveness of the neuroadaptive controller as compared to the standard robot PID joint

controllers (Fig. 5.2). The experiments conducted were:

A. Free space motion without payload, in which the arm is following a desired joint

trajectory.

B. Free space motion with payload, in which the end-effector is carrying an object

of unknown mass.

C. Collision experiments, in which an unknown obstacle is encountered during robot

motion.

In all experiments a sinusoidal trajectory was applied to joint 3, i.e. the elbow joint

of the PR2 arm. In the first two experiments, the amplitude of the joint motion was

set to 0.5 radians. Joints 0 through 6 were positioned at q = [0, 0, 0, 1.0, 0, 0, 0]ᵀ,

corresponding to the shoulder pan, shoulder lift, upper arm roll, elbow flex, forearm

roll, wrist flex, and wrist roll joints. Five different rates or angular frequencies were

tested in experiment A. In experiment B, a soda can weighing 355 grams was used as

a payload. The highest rate was not tested because the motion became too distorted

due to torque saturation and the desired reference trajectory could no longer be

followed. In experiment C, the amplitude was changed to 0.75 radians and the arm

joints were set to q = [0, 0, 1.57, 0.75, 0, 0, 0]ᵀ. A 1 liter water bottle was placed in

93



the path of the gripper directly in front of the PR2 (Fig. 5.2c). Ten collision were

performed with each controller by executing the sinusoidal trajectory with a rate of

3 radians per second.

5.4.1 Free Space Motion

The experiments without a payload was carried out to compare the performance

of the controllers in free space. To quantify the joint tracking performance, the error

(5.2) at each time step ∆t = 0.001sec was computed over a period of 10 seconds. The

2-norm was computed for each joint and then summed:

∑6

i=0
‖qr − q‖2 (5.15)

where i is the joint number. Similarly, the norm of the torques was computed for

each joint and then combined into a torque performance value:

∑6

i=0
‖τ‖2 (5.16)

Figs. 5.3a and 5.3b show the executed trajectory q and desired reference trajectory

qr for joints 1, 3, and 5, which correspond to the shoulder lift, elbow flex, and wrist

flex joints. As expected, the shoulder pan and the roll joints displayed little to no

error and are therefore not depicted. At 5 radians per second both controllers have

degraded performance, with the PID controller performing worse. Fig. 5.7a shows

the the total error of the two controllers at five different rates. The tracking error

is initially lower for the PID controller, but increases more dramatically with the

joint velocities. The joint tracking is more consistent for the neuroadaptive controller

because it can compensate for changes in the robot dynamics. The standard PID
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Figure 5.3. Tracking performance of joints 1, 3, and 5 without a payload at 5 radians
per second.
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Figure 5.4. Tracking performance of joints 1, 3, and 5 with a 355gram payload at 4
radians per second.

controller can only be tuned for a limited range of joint velocities and fails when

those are exceeded.

The neuroadpative controller also performs better from a safety point of view

when considering the lower torque values clearly shown in Figs. 5.5a and 5.5b. In-

terestingly, joint 5 (wrist flex) has the largest control effort while the PID controller

generates the highest torques for joint 3 (elbow flex). The total joint torque is de-

picted in Fig. 5.8a. At 1 radians per second the performance is comparable. As the
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Figure 5.5. Control torque without payload at 5 radians per second.
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Figure 5.6. Control torque with a 355gram payload at 4 radians per second.
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Figure 5.7. Total joint tracking error for different movement frequencies (log scale).
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Figure 5.8. Total control torque for different movement frequencies (log scale).
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joint velocities increase, the PID control torque increases rapidly and diverges faster

than the neuroadaptive controller.

5.4.2 Free Space Motion with Payload

The added payload changes the manipulator dynamics by increasing the end-

effector inertia. In traditional computed torque or inverse dynamics controllers, this

change in manipulator dynamics has to be detected and explicitly added to the con-

troller. Since the weight of the object is unknown to the robot in this experiment,

the tracking performance is worse even at lower rates.

Similarly to the previous section, the joint tracking performance of the neuroad-

aptive controller outperforms the PID controller at the highest tested rate as shown in

Figs. 5.4a and 5.4b. In addition, the control torques generated by the PID controller

are much higher than those generated by the neuroadaptive controller (Figs. 5.6a

and 5.6b). However, at lower rates the difference is less profound as depicted in Figs.

5.7b and 5.8b.

The results for Sections 5.4.1 and 5.4.2 are summarized in Table 5.1.

5.4.3 Collision with Obstacle

In this section the contact forces experienced at the end effector of the robot

during collisions is presented. The force tangential to the circular motion of the elbow

flex joint (joint 3) was measured during a 2.5 second time interval. Typical results

for the neuroadaptive and PID controller are shown in Fig. 5.9.

The results of running ten trials are represented in Table 5.3. The maximum

force ‖F‖∞ and impulse ‖F‖1∆t was computed for each trial. The neuroadaptive

controller produces an average maximum contact force of 4.85N, which is lower than

the PID value of 6.99N. Furthermore, the average impulse is lower at 0.56Ns compared
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Table 5.1. Neuroadaptive (NA) and PID controller joint error and torque performance
results for experiment A and B.

Rate Payload
∑
‖e‖2

∑
‖τ‖2

(rad/s) (g) NA PID NA PID

1

0

0.17 0.08 236.62 252.54

2 0.20 0.17 270.49 327.73

3 0.27 0.28 345.46 457.11

4 0.40 0.49 474.83 730.07

5 0.60 4.31 693.16 5492.36

1

355

0.34 0.10 500.32 478.82

2 0.34 0.21 493.11 544.68

3 0.39 0.35 537.95 669.06

4 0.81 7.28 945.80 9119.96

to 0.89Ns. Hence, the neuroadaptive controller results in lower collision energies

and could therefore be considered a safer alternative to the standard PID controller.

This is especially important in human environments, which are highly dynamic and

unpredictable. In physical HRI interaction scenarios, the controller has to be accurate

and responsive, while minimizing the risk of human injury.

Table 5.2. Collision performance results for 10 trails.

Controller
‖F‖∞ (N) ‖F‖1∆t (N s)

Mean STD Mean STD

NA 4.8532 0.7982 0.5577 0.0456

PID 6.9937 0.5683 0.8867 0.0474
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Figure 5.9. Contact force versus time during the collision experiment.

5.5 Conclusions and Future Work

In this paper the performance of the neuroadaptive controller was compared

against independent joint control via experiments on a PR2 robot. Results demon-

strated the effectiveness of the neuroadaptive controllers in joint trajectory following

tasks, and during handling of objects with unknown mass. In particular, the neu-

roadaptive controller had superior tracking performance at high joint rates, and much

lower joint torques while lifting payloads. Tests were also conducted to demonstrate

the performance of the neuroadaptive controller compared to a PID controller during

impact. This test was conducted to demonstrate the inherent safety afforded by the

neuroadaptive controller by reducing the impact forces.

Future work will involve further testing the controllers with different weight

update laws, neural network size, and activation functions. The use of neuroadaptive

controllers in conjunction with impedance and admittance control will also be studied.
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Table 5.3. Collision performance results for 10 trails.

Controller
‖F‖∞ (N) ‖F‖1∆t (N s)

Mean STD Mean STD

NA 4.8532 0.7982 0.5577 0.0456

PID 6.9937 0.5683 0.8867 0.0474
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CHAPTER 6

Neuroadaptive Control with Prescribed Error Dynamics

The crossover aircraft pilot model developed by McRuer et al. [128] in 1974 was

one of the first mathematical models of the human operator and is experimentally

verified. It states that the combined human-machine dynamics remain unchanged for

a broad range of operating frequencies centered at wc. If Yp is the pilot and Yc the

aircraft transfer function, then the equivalent transfer function

YpYc =
wce

−τs

s
(6.1)

where wc is the crossover frequency and τ a time delay introduced by the neuromus-

cular system. When the dynamics of the controlled element Yc changes, the human

adjust their control characteristics Yp such that the total system remains unchanged.

The human intuitively learns to compensate for the new dynamics in Yc which might

require several trials and training exercises. Hence, a highly nonlinear machine be-

comes easier to operate if it behaves according to a fixed, linear admittance model.

This is also applicable for physical Human-Robot Interaction. For example Suzuki et

al. [129] utilized this principle to tune a virtual internal model of an interface system,

resulting in an improved manipulation performance.

Suppose a human operator tries to guide a robot end-effector with pose x. The

desired motion trajectory xd can be achieved by applying human forces fh as shown
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? H(s) R(s)

Figure 6.1. The human control loop with human transfer function H(s) and robot
dynamics R(s).

in Fig. 6.1. Given the human transfer model H(s) and robot transfer model R(s),

the combined task model

H(s)R(s) = D(s) (6.2)

is a fixed first order system with a time delay. Assume the desired or prescribed error

dynamics (PED) for R(s) is

ë +Ddė +Kde = fh (6.3)

where Dd, Kd can be fixed or adjusted according to some performance metric. Given

the tracking error

e = xr − x (6.4)

modify the neuroadapative (NA) controller described in Chapter 5 with a new novel

sliding mode error

r = ė + Λe− f l (6.5)

ṙ = ë + Λė + Λ̇e− ḟ l (6.6)
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where matrix Λ(t) is a function of time. The filtered force fl is determined from

fh =ḟ l + Γf l (6.7)

The following theorem is a formalization of the method in [130].

Theorem 1 Given the filtered force (6.7) and the sliding mode error (6.5), define

Dd = Λ + Γ (6.8)

Kd = Λ̇ + ΓΛ (6.9)

If r → 0, then the system behaves according to the error dynamics in (6.3).

Proof: Define an error signal

w = ë +Ddė +Kde− fh (6.10)

Substituting the definitions into the error signal gives

w = ë + (Λ + Γ)ė + (Λ̇ + ΓΛ)e− (ḟl + Γfl)

= ë+ Λė+ Λ̇e− ḟl + Γ(ė+ Λe− fl)

= ṙ + Γr (6.11)

If r → 0 then w → 0 and the system behaves according to (6.3).

Hence, introducing the auxiliary parameters f l, Γ, and Λ makes it is possible

for the NA controller to behave like a simple linear admittance model with gains Kd

and Dd. This simplifies the robot error dynamics and makes the interaction more

intuitive. Less effort is required by the user by not having to learn the robot model

and constantly adjust their own control dynamics. The modified control structure
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Figure 6.2. The neuroadaptive controller expanded with prescribed error dynamics
(PED) specified by the gains Kd and Dd.

is shown in Fig. 6.2. The NA with PED was implemented on a PR2 robot and is

experimentally validated in Chapter 8.
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CHAPTER 7

Intent Aware Adaptive Admittance Control for Physical Human-Robot Interaction
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7.1 Abstract

Effective physical Human-Robot Interaction (pHRI) needs to account for vari-

able human dynamics and also predict human intent. Recently, there has been a lot of

progress in adaptive impedance and admittance control for human-robot interaction.

Not as many contributions have been reported on online adaptation schemes that can

accommodate users with varying physical strength and skill level during interaction

with a robot. The goal of this paper is to present and evaluate a novel adaptive

admittance controller that can incorporate human intent, nominal task models, as

well as variations in the robot dynamics. An outer-loop controller is developed using

an ARMA model which is tuned using an adaptive inverse control technique. An

inner-loop neuroadaptive controller linearizes the robot dynamics. Working in con-

junction and online, this two-loop technique offers an elegant way to decouple the

pHRI problem. Experimental results are presented comparing the performance of

different types of admittance controllers. The results show that efficient online adap-

tation of the robot admittance model for different human subjects can be achieved.

Specifically, the adaptive admittance controller reduces jerk which results in a smooth

human-robot interaction.

7.2 Introduction

Physical interaction between humans and robots has become a viable option

with the development of multi degree of freedom (DOF) human scale robots, large

scale tactile sensors, and development of full body multi-contact force control the-

ory. In the application domain, human-robot interaction in industrial and household

settings have moved into the physical Human-Robot Interaction (pHRI) domain.
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The application of humans and robots working in collaboration has promising

results in terms of efficiency and collaborative performance. Work by ABB provides

evidence that a hybrid human-robot cell can improve efficiency as compared to either

a human or robot working alone [79]. Erden et al. present results on impedance

measurement in a collaborative human-robot welding task [131]. Recent developments

in wearable robotic limbs for manufacturing assistance involves close coordination

between human and robotic limbs [132].

Direct and indirect force control has been extensively studied in terms of per-

formance and stability [35]. Impedance control pioneered by Hogan [40] is the most

popular form of indirect force control. It allows stable contact by the end effector of

the robot and overcomes many instability issues associated with explicit force control.

However, impedance control requires identifying the robot model as well as the envi-

ronmental contact dynamics [38, 41, 42]. Admittance control, the dual of impedance

control, has also been applied in various robotic applications [133,134]. Recent work

by Ficuciello et al. [135] exploits redundancy to improve the Cartesian space inertia

decoupling of a 7 DOF robot arm.

Adaptive impedance control has been studied by numerous others [38,136,137].

Human intent has been used to adapt the impedance parameters of robot systems

[138, 139]. For instance, Dimeas et al. [140] implements a Fuzzy logic controller for

admittance model adaptation considering human intent. Their method involves offline

tuning of the parameters. Lecours et al. [141] reports on performance tuning of an

assist device based on separation of the position and velocity space of the robot.

The contribution of this paper is a new framework for online adaptive admit-

tance control that takes human intent into account. The proposed method does not

require offline model tuning prior to use, can apply to users of varying degrees of

skill and force capabilities, and is also robust to changes in the robot dynamics. The
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Figure 7.1. Inner-loop and outer-loop control system for physical HRI.

framework utilizes two loops: an inner neuroadaptive loop that feedback linearizes

the robot, and an outer model reference adaptive loop that tunes the admittance

model based on the intent of the human (Fig. 9.1). Past work has demonstrated that

the inner-loop neuroadaptive controller linearizes the robot dynamics. Therefore it is

an effective way to ensure consistent performance of the outer-loop across the entire

robot workspace. It can also compensate for varying mass and stiffness characteris-

tics of unknown humans in direct physical contact with the robot [22, 125]. Tuning

of the outer-loop is based on an autoregressive inverse model that can encapsulate

information about more specific human intent and task models. In this paper, the ef-

fectiveness of the outer-loop is illustrated against conventional admittance control in

conjunction with simple point-to-point guided motions and human intent estimators.

The advantage of our proposed control scheme is its generality, namely the ability to

incorporate poorly known robots, sensors, tasks, and human intent models.

This paper is organized as follows: Section 7.3 first provides an overview of the

control method proposed. Details of the outer-loop adaptive admittance controller

with human intent estimation and the inner-loop neuroadaptive controller are pro-
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vided next. In Section 7.4, the performed experiments are described and the results

are presented. Finally, Section 7.5 presents the conclusions and discusses future work.

7.3 Adaptive Physical HRI Scheme

The proposed controller structure can be seen in Fig. 7.1, and consists of: (a)

an inner-loop controller utilizing online learning with neural networks to estimate and

cancel the nonlinear robot dynamics; (b) an adaptive admittance model that can be

programmed to follow known robot Cartesian trajectories xi or estimated trajectories

x̂i resulting from a human intent estimator.

For the pHRI problem, the general dynamics equation in Cartesian space is

written as follows [142]

Λ(q)ẍ+ µ(q, q̇)ẋ+ J †TF (q̇) + gx(q) = fc + fh (7.1)

where q ∈ Rn are the joint positions, n is the DOF of the robot, x =
(pe
φe

)
∈ R6 is

the Cartesian space pose, where pe ∈ R3 is the task space position and φe ∈ R3 the

orientation. Λ(q) is the Cartesian space inertia matrix, µ(q, q̇) is the Cartesian space

Coriolis/centripetal vector, gx(q) is the Cartesian space gravity vector, and F (q̇) is

the joint space friction term. J is the Jacobian and J † = JT (JJT + k2I)−1 is the

damped least-squares pseudoinverse of the Jacobian with damping factor k. The force

applied by a human operator in Cartesian space is fh ∈ R6. The Cartesian space

control force fc ∈ R6 will be computed via a neuroadaptive scheme and can be used

to compute the joint control torque τ = JTfc.

Assume the following robot admittance model

Mmẍm +Dmẋm = fh (7.2)
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Figure 7.2. Human intent aware robot admittance model adaptation using adaptive
inverse filtering.

where xm is the admittance model output. The matrices Mm and Dm are the mass

and damping matrices respectively. In this chapter we assume zero stiffness Km = 0,

and no virtual trajectory. Therefore the admittance model is a simple mass-damper

system in Cartesian space.

In Section 7.3.1, an adaptive admittance controller with human intent is pro-

posed to generate desired trajectories for the robot to follow. This is shown in Fig.

7.2. If the ideal intent trajectory xi is known, as it is usually the case in rehabilitation

exercises, then it is sent to the human subject as an audiovisual cue and to a robot

task model D(s) which generates xd. An adaptive filter with human force fh as an

input and output xm will then be employed to minimize the error between xm and

xd.

If the intent trajectory is not known, a human intent estimator can estimate

it from interaction forces and/or other sensor measurements. In Figs. 7.1 and 7.2,

the estimated human intent trajectory is denoted by x̂i ≈ xi. The human model

can generally be defined as a transfer function H(s) assumed to be unknown, and

representing the dynamics of thinking and completing a trajectory tracking task by

physically guiding the robot.
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7.3.1 Outer-Loop: Adaptive Admittance with Human Intent

The outer-loop adaptive admittance controller is inspired by the adaptive in-

verse control approach pioneered by Widrow et al. [143]. The objective is to tune the

admittance model in (7.2), denoted here by the discrete transfer function M(z), such

that the overall human-robot transfer characteristics H(z)M(z) equals the task model

D(z). This outer-loop design uses sampled versions of fh and the desired model out-

put xd(t) with a sampling period of Ts, namely fh(k) = fh(kTs) and xd(k) = xd(kTs).

Let M(z) be given in ARMA form by

xm(k) = −a1xm(k − 1) ...− anθxm(k − nθ)

+ b0fh(k) + b1fh(k − 1) + ...+ bmθfh(k −mθ)

(7.3)

where nθ is the degree of the denominator of M(z) and mθ the degree of its numerator.

Then M(z) is implemented as

xm(k) ≡ hT (k)θ (7.4)

where the measured regression vector is

hT (k) = [− xm(k − 1), ... ,−xm(k − nθ),

fh(k),fh(k − 1), ... ,fh(k −mθ)]

(7.5)

and the ideal ARMA parameter vector is

θ = [a1, ... , anθ , b0, b1, ... , bmθ ] (7.6)
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The estimated ARMA parameter vector θ̂(k) can be updated based on newly

observed data xm(k + 1), fh(k + 1) by using a Recursive Least Squares (RLS) al-

gorithm. This effectively converges to the Wiener solution by driving the error,

ε(k) = xd(k) − xm(k), to zero which makes the combined human and prescribed

robot admittance model behave like the task model by solving H(z)M(z) = D(z).

The derivatives ẋm(t) and ẍm(t) are obtained by applying zero-order hold (ZOH) and

backward difference to xm(k).

The above controller formulation assumes that the ideal human intent trajectory

xi(t) is known by the robot. In reality this signal is not available a priori. If the human

intent is not taken into account by the outer-loop controller, the goal position is fixed

and communicated to the human. This makes it impossible for the human subject to

change the motion of the robot at will, and applications are restricted to rehabilitation

exercises, or following known trajectories. In this case, if the user changes the goal in

his/her mind, the controller will have no information about the new intent x̂i(t) and

will fight against the user’s movements.

Therefore, in a second formulation, we add a human intent estimator to generate

approximations of xi. In this chapter, a simple model was tested which converts the

user applied force on the robot to a desired future position propagated by some time

interval. The following admittance model output is propagated into the future and

it was assumed that this roughly approximates human intent xi(t)

Mi
¨̂xi = fh, x̂i(t) =

∫∫ t+∆t

t

¨̂xi(t)dt (7.7)

where Mi is a fixed mass matrix, and fh is the measured human force, and ∆t is the

propagation time. Thus, the human intent is obtained by double integration of the

estimated intent acceleration ¨̂xi(t). This simple model has been utilized for human
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walking path predictions in social situations by Luber et al. [144]. In this work, the

future motion paths of humans were predicted using environmental constraint forces

and intent forces towards a known goal.

7.3.2 Inner-Loop: Neuroadaptive Control

Given the model output xm(t) and robot state x(t), the model following error

will be e = xm−x. To drive e to zero, define a sliding mode error r = ė+ Γe where

Γ = ΓT > 0 is a positive definite matrix.

From (9.1), the robot model following error dynamics can be written as

Λ(q)ṙ = −µ(q, q̇)r + f(ϕ)− fc − fh (7.8)

where

f(ϕ) =Λ(q)(ẍm + Γė) + µ(q, q̇)(ẋm + Γe)

+ J †TF (q̇) + gx(q)

(7.9)

is a nonlinear function of unmodeled robot parameters and argument

ϕ =
[
eT ėT xTm ẋ

T
m ẍ

T
m q

T q̇T
]T

.

This function can be approximated by a neural network

f(ϕ) = W Tσ(V Tϕ) + ε (7.10)

where W and V are ideal unknown weights, σ(.) is an activation function, and ε is

the approximation error, as detailed in [22].
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The ideal weights W and V for the neural network (NN) are unknown. There-

fore the weight tuning algorithms of [22, 125] are used to update approximate NN

weights Ŵ and V̂ .

Take the control input as

fc = Ŵ Tσ(V̂ Tϕ) +Kvr − v(t)− fh (7.11)

where Kv = KT
v > 0 is a diagonal outer-loop gain matrix,

v(t) = −Kz(‖Ẑ‖F + ZB)r (7.12)

is the robustifying signal as detailed in [22], Kz is the gain of the robustifying term,

Ẑ =
[
Ŵ 0

0 V̂

]
, ‖.‖F is the Frobenius norm, and ZB is a scalar bound on the NN weights

such that ‖Ẑ‖F < ZB.

The NN weight update equations are

˙̂
W = Fσ(V̂ Tϕ)rT − Fσ′(V̂ Tϕ)V̂ TϕrT

−κF ‖r‖Ŵ
(7.13)

˙̂
V = Gϕ(σ′(V̂ Tϕ)TŴr)T − κG‖r‖V̂ (7.14)

where F and G are positive definite matrices, σ′(ξ) = dσ(ξ)
dξ

, and κ > 0 is a small

design parameter. It can be formally shown using a Lyapunov argument, that under

reasonable assumptions, the error signal e will converge to zero. Therefore this inner-

loop control scheme tracks Cartesian space trajectories xm generated by the human

and the outer-loop controller [22,125].
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Figure 7.3. Experimental setup with the PR2 at the UTARI Living Lab.

7.4 Experiments

Validation experiments were conducted on a PR2 robot which has an omnidi-

rectional mobile base, two 7-DOF gravity compensated arms with parallel grippers,

a pan tilt head, and several sensor modules. The controller was implemented using

the real-time controller manager framework of the PR2 available via the Robot Op-

erating System (ROS) [102]. The real-time loop on the PR2 runs at 1000 Hz and

is implemented using the linux-rt kernel. The communication with the sensors and

actuators is via an EtherCAT network. Interaction forces and torques are measured

using an ATI Mini40 Force/Torque (FT) sensor attached between the gripper and

forearm of the PR2.

7.4.1 Experimental Setup

The experiments performed involved a point-to-point motion task. This task

corresponds to a step function input to the system and enables clear analysis of the

system performance. The PR2 robot was setup as shown in Fig. 7.3, where the

subjects were asked to sit in front of the robot and grasp the right gripper with
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Figure 7.4. Error plot of Jα for controller Types 1 through 5.

their dominant hand. The start of the experiment was automatically indicated by

the system via a text-to-speech program. The reference point-to-point motion was

indicated by a “RED” or “BLUE” audiovisual cue to indicate the next movement

point. Human factors studies [145] suggest that the human brain learns a closed-loop

controller that behaves like a first order model with high bandwidth in closed-loop.

Motivated by this a first-order transfer function is used as the task model

D(s) =
ad

s+ bd
(7.15)

where the model parameters depend on the specific task.

Experiments were conducted with the following five different types of con-

trollers:

Type 1 Adaptive admittance controller with human intent estimation: In this

experiment the admittance model in (7.4) is utilized. The admittance model in (7.7)

is used to generate a time propagated signal corresponding to the human intent x̂i(t),
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where ∆t = 0.1s. The matrix Mi is the 6 × 6 identity matrix. The parameters of

D(s) in (7.15) are selected as ad = bd = 1.5.

Type 2 Adaptive admittance controller with fixed task reference trajectory : In

this experiment the admittance model in (7.4) is utilized with a fixed task reference

trajectory xi(t). The parameters of D(s) are the same as for Type 1.

Type 3 Admittance controller with fixed ARMA parameters : In this experiment

the ARMA parameter weights (7.6) were automatically tuned to a human subject and

fixed as

θ = [ −1.8775 1.2729 − 0.0578 − 0.3269

0.0018 0.0001 − 0.0013 0.0002 ]
(7.16)

Type 4 Fixed mass-damper admittance controller : In this experiment the fixed

mass-damper admittance model in (7.2) is used with the parameters tuned for Subject

1 as Mm = 20I6, and Dm = 50I6, where I6 is the 6× 6 identity matrix. This model

converts the user applied force fh to Cartesian positions xm(t) and velocities ẋm(t).

Type 5 Direct task model controller : In this experiment the output of the task

reference model is sent directly to the inner-loop controller. The user applied force

fh is converted to Cartesian positions xd(t) via the intent estimator.

Three experimental trials were conducted for each type of controller with two

male human subjects of ages 26 and 27. For all experiments, the inner-loop rate

was 1000 Hz and the outer-loop rate was 20 Hz. The performance tuned inner-loop

neuroadaptive controller parameters were Γ = 20I6, Kv = 5I6, Kz = 0.001, ZB =

100, F = 100I6, G = 200I6, and κ = 0.3, where I6 is the 6 × 6 identity matrix.

A two-layer NN with 44 inputs (including the bias input), 10 hidden layer neurons,

and 6 outputs was implemented. The sigmoid function was used as the activation
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function σ(ξ). The weights V̂ of the neural network were initialized to random values

and the weights Ŵ were initialized to zero.

7.4.2 Performance Measure

To compare the performance of the different controllers a performance measure

Jα is utilized. It is the dimensionless squared jerk of the gripper motion in Cartesian

space
...
x(t). The work by Flash and Hogan [146] provides experimental evidence for

a human motion model involving the minimization of jerk. Among the different jerk

based performance measures proposed, the dimensionless squared jerk has been shown

to be the most effective [146]. It is defined as

Jα =

∫ t2

t1

...
x(t)2dt

(t2 − t1)5

A2
(7.17)

where A is the maximum amplitude of x(t). Smaller values of Jα indicate better

human-robot interaction performance.
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(a) Type 1: Adaptive admittance controller with
human intent.
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(b) Type 2: Adaptive admittance controller with
fixed task reference.
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(c) Type 3: Admittance controller with fixed
ARMA parameters.
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(d) Type 4: Fixed mass-damper admittance
controller.
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(e) Type 5: Direct task model controller.

Figure 7.5. Postion in y (m) vs. time (s).
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(a) Type 1: Adaptive admittance controller with
human intent.
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(b) Type 2: Adaptive admittance controller with
fixed task reference.
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(c) Type 3: Admittance controller with fixed
ARMA parameters.
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(d) Type 4: Fixed mass-damper admittance con-
troller.
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(e) Type 5: Direct task model controller.

Figure 7.6. Force in y (N) vs. time (s).
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Table 7.1. Mean µ and standard deviation σ of Jα for controller types 1 through 5.
In units of 1021.

Subject 1 Subject 2

Mean µ σ Mean µ σ

T1 3.5791 0.4388 3.7717 0.2948

T2 4.6010 0.1999 4.8935 0.3570

T3 4.5680 0.3962 4.3461 0.1187

T4 4.1249 0.2351 4.4638 0.1117

T5 3.3580 0.1593 4.0056 0.2973

7.4.3 Results

The best performance in terms of trajectory smoothness is achieved by the

adaptive admittance controller with human intent estimation (Type 1) and the direct

task model controller (Type 5). This is shown by the dimensionless squared jerk

performance measure Jα in Fig. 7.4 and Table 7.1, and is consistent for both human

subjects. The outer-loop in the Type 1 controller successfully tunes the admittance

model based on the estimated human intent x̂i(t), resulting in admittance model

trajectories xm(t) that closely follow the task model trajectories xd(t). The inner-

loop controller enables accurate tracking of the admittance model trajectories. This

results in robot trajectories x(t) that closely follow the admittance model trajectories

xm(t) shown in Fig. 7.5a. The controller also exhibits minimal force jitter as seen

in Fig. 7.6a, resulting in a smooth force profile which indicates good interaction

performance. The direct task model controller (Type 5) controller does not include

an adaptive component, but due to the structure chosen for this system results in

smooth trajectories. The task model then generates the appropriate response.
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The controller of Type 2 with a fixed trajectory reference xi(t) does not perform

as well as the Type 1 and Type 5 controllers. This is indicated by higher values of Jα

for Type 2. The minimization of the error between the task model trajectory xi(t)

and the admittance model trajectory xm(t) tunes the outer-loop admittance model

M(z). This could result in a conflict between the robot trajectory and the human

intent since priority is given to task model following. Evidence of this conflict is

seen in the interaction force fh oscillations in Fig. 7.6b. Also, Fig. 7.5b shows poor

tracking performance of the task model xd(t), admittance model xm(t), and robot

trajectories x(t).

The controllers of Types 3 and 4 with fixed ARMA weights and mass-damper

do not include a desired model trajectory xd(t) that could result in the controller

competing with the human as in Type 2. These controllers perform marginally better

than the Type 2 controller indicated by lower values of Jα. Although these controllers

achieve relatively smooth position tracking as seen in Figs. 7.5c and 7.5d, the force

profiles in Figs. 7.6c and 7.6d exhibit considerable jitter and oscillations.

The Type 3 controller utilizes the fixed ARMA model (7.16) that was auto-

matically tuned to the human subject. The a priori tuning of the Type 3 controller

ARMA weights is more efficient and precise than manually tuning a mass-damper sys-

tem based on subjective human preferences. The manually tuned Type 4 controller

still exhibits oscillations at steady state as shown in Fig. 7.5d.

Overall, the results provide evidence of the viability of the Type 1 adaptive

admittance controller with human intent estimation in pHRI applications. The direct

model reference controller which included no adaptation (Type 5) performed similar

to the adaptive admittance controller (Type 1). The results for subject 2 showed

better performance with the Type 1 controller while the results for subject 1 favoured
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the Type 5 controller. This requires further study by performing tests with different

human subjects, intent estimators, and task reference models.

Both the Type 1 and Type 5 controllers resulted in minimized jerk in the coupled

human-robot motion as compared to the other controller types. In addition, they are

easier to deploy since parameter tuning is not needed. The Type 1 controller can

adapt online in real-time to changes in human dynamics and intent. It can further be

used to learn the optimal admittance using more complex intent estimator models.

These complex models can then be replaced by the learnt admittance model further

reducing final system complexity. The Type 2 controller can be utilized for automated

rehabilitation systems where the human intent, i.e. the desired rehabilitation motion,

is known. Here, the admittance model can be automatically tuned to the strength

and ability of the patient. The Type 3 controller is a static tuned admittance model,

such a controller can be used for instances where a one time admittance optimization

is required, such as calibrating the system to different human operators.

7.5 Conclusions and Future Work

In this paper a two-loop adaptive admittance controller framework is presented

that includes human intent estimation. An inner neuroadaptive loop feedback lin-

earizes the robot, and an outer model reference adaptive loop tunes the admittance

model based on the intent of the human. The inner-loop neuroadaptive controller

linearizes the robot dynamics and ensures consistent performance of the outer-loop

across the entire robot workspace.

Experiments were conducted with five different types of admittance controllers.

The results demonstrated the performance advantages of the adaptive admittance

controller with human intent estimation. The proposed method resulted in lower jerk
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in the combined human-robot motion, does not need any offline tuning, is robust to

changes in human dynamics, and also compensates for changing robot dynamics.

Future work will include testing with more human subjects, integrating different

task models, testing new intent models, and performing more complex Cartesian

tasks. Another extension of this work is the use of multi-sensory data from whole

body robot skin for adaptive admittance control.
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CHAPTER 8

Model-Free Online Neuroadaptive Control with Intent Estimation

for Physical Human-Robot Interaction
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8.1 Abstract

With the rise of collaborative robots, the need for safe, reliable, and efficient

physical Human-Robot Interaction (pHRI) has grown. High performance pHRI re-

quires robust and stable controllers suitable for multiple degrees of freedom (DoF)

and highly nonlinear robots. In this paper we describe an online, local cascade loop

pHRI controller which relies on human force and pose measurements and can adapt

to varying robot dynamics. It can also adapt to different user preferences and sim-

plifies the interaction by making the robot behave according to a prescribed dynamic

model. In our controller formulation, two neural networks in the “outer-loop” pre-

dicts human motion intent and estimates a reference trajectory for the robot that the

“inner-loop” controller follows. The inner-loop imposes a prescribed error dynamics

with the help of a model-free neuroadaptive controller, which uses a neural network

to feedback linearize the robot dynamics. Lyapunov stability analysis gives weight

tuning laws that guarantee that the error signals are bounded and the desired ref-

erence trajectory is achieved. Our control scheme was implemented on a PR2 robot

and experimentally validated. Results confirmed that the motion jerk and human

control effort was reduced similar to a tuned admittance controller, indicating that

the two-loop controller achieves efficient and intuitive human-robot collaboration.

8.2 Introduction

An increasing number of collaborative robots are being introduced into hu-

man environments. Some have started relying on physical Human-Robot Interaction

(pHRI) for assisting humans in cooperative tasks such as welding [9], parts assem-

bly [11], and surgical procedures [10]. Physical interaction is also crucial during

Learning from Demonstration (LfD), in which the user teaches the robot new tasks
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by manually moving its limbs through the motions [12]. On the other hand, a hu-

man can also be taught by the robot during pHRI, for example in skill improvement

for surgical procedures [10] and in rehabilitation exercises [14]. Compared to non-

collaborative robots, co-robots are inherently safer by being lightweight and compli-

ant [15, 16], however, they may also be highly nonlinear and more difficult to model.

In addition, torque joint sensors monitor and minimize interaction forces between the

robot and people or the environment.

There are several established strategies for controlling the interaction behavior

between humans, the environment, and a robot. Force, impedance, and admittance

control methods are generally suitable for stable and compliant interactions [147].

Adaptive methods have traditionally been proposed to overcome variations in the

robot dynamics [82]. More recently, researches have proposed combining the two

methods into pHRI schemes, such as those in [129, 148, 149], which aim to adjust

impedance parameters to achieve safe and stable contact with a human.

Human intent estimation has been utilized by several others to improve pHRI.

In [150], a Hidden Markov Model was used to predict impedance parameter values in

a hand-shaking task for realistic haptic human-robot interaction. Medina et al. [151]

utilize impedance-based Gaussian Processes (GP) and a neuromechanical model of

the human arm [152] to predict behavior during pHRI. Results demonstrate superior

performance compared to a naive GP model, however the approach was not scalable

due to computational complexity.

In [129], the human brain was modeled in the control loop as a simple PD

controller and the neuromuscular dynamics were approximated with a first-order lag.

The human model parameters were identified online and then used to tune a virtual

internal model of the interface system, resulting in an improved manipulation perfor-

mance. This work was inspired by the “crossover model,” which states that a human
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adjusts their control characteristics to the dynamics of the controlled element such

that the total system remains unchanged [129]. Thus, a highly nonlinear machine

becomes easier to operate when behaving like a simple linear admittance model.

In this paper, a controller framework is presented for safe, intuitive, and efficient

pHRI using a neuro-inspired two-loop structure in which both the robot dynamics

and the human intent during interaction are being estimated online. Our work is

based on neural network (NN) control methods that first appeared in the 1990’s and

can offer guaranteed tracking performance, stability, and robustness [?, ?, 27, 154].

These algorithms provided the foundation for our recent work [44, 49, 153], in which

a controller learns a combined human-robot model using a neuroadaptive “inner-

loop” and adaptive inverse filter in an “outer-loop”. Experiments showed that a

neuroadaptive controller combined with a simple human intent estimator reduces

motion jerk during interaction. In our previous work, the human intent model was

approximated by a simple double integrator of acceleration push from the human

operator, and could not capture the whole spectrum of complex physical interaction

cues.

Therefore, in this paper, we add a more sophisticated human intent estimator

(HIE) model into the outer-loop and a prescribed error dynamics (PED) component

into the inner-loop. The HIE allows online adjustment of trajectory commands for

the robot to follow during a nominal task based on input forces exerted on the robot

by a human operator. The PED turns the robot into a linear admittance achieving

the crossover model condition, and also reduces the number of controller parameters

that need to be tuned. Compared to many other methods, our framework is easy to

generalize and implement on robots with poorly known dynamics, and offers stability

and performance guarantees via Lyapunov analysis. No offline training is required
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and only a couple parameters have to be adjusted when optimizing performance, i.e.

the NN size and learning rates.

Our proposed method involves two control loops. In the inner control loop, the

unknown robot dynamics is identified online and feedback linearized through dynamic

compensation. A second outer-loop determines the human intent based on the control

effort by the user. A combined stability proof rigorously verifies the performance of

these two interacting loops. The contributions of this paper are as follows.

1. Inner-loop: A model-free online neuroadaptive controller is designed by a new

sliding mode method that guarantees a prescribed error dynamics.

2. Outer-loop: A new sliding mode approach is given to estimate human intent

and minimize the effort required by the user.

3. New techniques based on filtered errors and forces are given for estimating the

human intent and further ensuring that the robot follows this intent with a

prescribed error dynamics.

4. A combined Lyapunov stability analysis is provided for the two-loop controller

framework, leading to the NN tuning laws of the inner and outer-loop.

5. Controller validation was implemented on a PR2 robot in point-to-point mo-

tion experiments, producing low position errors, jerk, and human effort. This

indicates that our controller achieves efficient and intuitive pHRI.

The paper is organized as follows: Section 8.3 describes the outer-loop controller

capable of estimating human intent. The inner-loop controller for prescribed error

dynamics is described in Section 8.4. Stability analysis of the two-loop controller

is performed in Section 8.5. The approach is validated in Section 8.6 by providing

experiment results. Finally, Section 8.7 presents the conclusion and future work.
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Figure 8.1. The neuroadaptive control system with human intent estimation for pHRI.
The inner-loop simplifies the robot dynamics experience by the human controller H(s)
in the outer-loop.

8.3 Outer-loop HRI Control Structure

This paper develops a two-loop control structure for physical HRI shown in Fig.

8.1. In the outer-loop, the desired human motion trajectory xd is estimated based on

human force measurements fh and robot end-effector position x. The human intent

estimator (Fig. 8.2) provides x̂d as an input for an inner-loop, designed to make

the robot end-effector follow a desired reference trajectory xr = x̂d. In addition,

the inner-loop (shown in Fig. 8.3) imposes prescribed error dynamics, making the

robot behave like a second-order linear system from the perspective of the human

operator. In this section, we describe the human transfer function H(s). Based on

this impedance model, we develop a human intent estimator and derive the resulting

outer-loop error dynamics.

8.3.1 The Human Transfer Function

The human transfer function can be described by a simple proportional-derivative

(PD) controller with a first-order lag

H(s) =
Dhs+Kh

Ts+ 1
e−Ls (8.1)
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where Kh, Dh ∈ R6×6 are the gains of the controller in the cerebral cortex of the

human brain, T is the time constant of the neuromuscular system and L is a delay

factor [129]. The parameters will be different for different human operators, and here

they are not explicitly needed for the controller formulation, but will be used in the

controller stability proof. Both the proportional Kh and derivative Dh gain matrices

are assumed to be diagonal, i.e.

Kh = diag{k1, k2, . . . , k6} ≡ diag{~k}

Dh = diag{d1, d2, . . . , d6} ≡ diag{~d}

where ~k, ~d are vectors of coefficients with 3 degrees of freedom (DoF) in position and

3 DoF in rotation. Assuming the human attempts to reach a desired pose xd and

velocity ẋd, ignoring the time constant and delay, the human dynamics become

Dhėd +Khed = fh (8.2)

where

ed = xd − x

ėd = ẋd − ẋ

corresponding to the position, and velocity tracking errors in R6. Once the desired

pose has been reached, the human will no longer exert a force on the robot. The

human acts as an impedance controller, applying a force fh based on current motion

measurements x and ẋ. As ed, ėd → 0 the human control effort fh → 0.

The following principles are used subsequently in our controller design:
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Principle 1 (Effort minimization): pHRI can be improved if the robot assists

the user by minimizing the applied force onto the robot fh. This also adds a safety

factor in that the robot moves so as to reduce human effort.

Principle 2 (Crossover model): A highly nonlinear machine becomes easier to

operate when behaving like a simple admittance model. This makes the interaction

more intuitive and requires less effort by the user.

Principle 1 is used in the outer-loop controller in this section. Principle 2

is used in the inner-loop controller in Section 8.4. To summarize, a well performing

controller for pHRI is efficient and intuitive. Efficiency can be achieved by minimizing

the operator effort with the help of a human intent estimator. Intuitiveness can be

achieved by simplifying the robot dynamics with prescribed error dynamics that are

linear and low order. Of course the controller should also be inherently safe, which

requires guarantees of stability and robustness that we shall provide in Section 8.5.

8.3.2 Human Intent Estimator

The human transfer function (with its unknown PD gains) is part of an outer

control loop shown in Fig 8.1. During the human-robot interaction, the human applies

a force to move the robot end-effector according to some desired trajectory. This

trajectory xd(t) is unknown to the robot. The human intent estimator approximates

this reference trajectory, which then the inner-loop designed in Section 8.4 follows.
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It is assumed that the human desired reference trajectory is defined by some

nonlinear function, which can be approximated by a single layer neural network (NN)

xd
ẋd

 = h(x, ẋ, fh)

= V ᵀφ(ξ) + ε1 (8.3)

with an unknown weight matrix V ᵀ ∈ R12×18, activation functions φ(·), input vector

ξ = [fᵀ
h x

ᵀ ẋᵀ]ᵀ ∈ R18, and small residual error ε1 ∈ R12. The estimated human intent

can be expressed as

x̂d
˙̂xd

 = V̂ ᵀφ(ξ) (8.4)

where V̂ ᵀ is an estimated weight matrix. This results in the error estimates

êd
˙̂ed

 =

x̂d − x
˙̂xd − ẋ

 (8.5)

The difference between the actual and estimated error is defined as

¯̃ed =

ẽd
˙̃ed

 =

ed
ėd

−
êd

˙̂ed


=

xd
ẋd

−
x̂d

˙̂xd

 = Ṽ ᵀφ(ξ) + ε1 (8.6)

where Ṽ = V − V̂ is the weight deviation or weight estimation error.
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Figure 8.2. The human intent estimator producing trajectories x̂d, ˙̂xd and human
gains Kh, Dh using two neural networks (NN). The sliding mode error s and filtered
error ea are needed in the NN update equations.

Next, auxiliary parameters are introduced to modify the error dynamics such

that the Lyapunov proof in Section 8.5 can be used to determine the NN weight

update equation. Define the novel sliding mode error

s = êd − ea (8.7)

where the filtered error ea is determined from the approximated human dynamics

fh = D̂hėa + K̂hea (8.8)

= J(P̂ � ēa) (8.9)
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with operator � being the element-wise Hadamard product and J = [I6 I6], where

I6 ∈ R6×6 is the identity matrix. Vector P ∈ R12 contains the diagonal elements of

Kh, Dh and is multiplied element-wise with ēa ∈ R12, which are defined as

P =

~k
~d

 (8.10)

ēa =

ea
ėa

 (8.11)

The structure of the human intent estimator is provided by (8.7) is in Fig. 8.2.

Theorem 2 If the sliding mode error s→ 0 in (8.7), then the human intent estimate

approaches the actual value x̂d → xd.

Proof: From (8.7),

s = (x̂d − x)− ea

= (x̂d − xd + xd − x)− ea

= −ẽd + ed − ea (8.12)

As the human reaches the desired goal position, fh → 0 and ed → 0 since (8.2) is

stable with fh viewed as the input. Similarly, ea → 0 from (8.8). Hence, if s → 0,

then ẽd → 0. This implies that ẽd → 0 and therefore x̂d → xd.

8.3.3 Outer-loop Error Dynamics

Here, we determine the error dynamics of the outer-loop. The following devel-

opment is required in the proof of our main performance result in Theorem 4, Section

8.5.
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The human model in (8.2) can be modified to write

Dh( ˙̂ed + ˙̃ed) +Kh(êd + ẽd) = (Dh − D̃h)ėa + (Kh − K̃h)ea (8.13)

Dh( ˙̂ed − ėa) = −Kh(êd − ea)−Khẽd −Dh
˙̃ed − D̃hėa − K̃hea (8.14)

Using the definitions from (8.6), (8.7), (8.10), and (8.11)

Dhṡ = −Khs− J (P � ¯̃ed)− J(P̃ � ēa) (8.15)

The human gain matrix can be estimated with a second NN

P = Uᵀφ(ξ) + ε2 (8.16)

P̂ = Ûᵀφ(ξ) (8.17)

P̃ = Ũᵀφ(ξ) + ε2 (8.18)

where Uᵀ ∈ R12×18 and ε2 ∈ R12. The weight deviation or estimation error is Ũ =

U − Û . This yields the outer-loop error dynamics

Dhṡ =−Khs− J
(

(P̂ + Ũᵀφ(ξ) + ε2)� (Ṽ ᵀφ(ξ) + ε1)
)

− J
(

(Ũᵀφ(ξ) + ε2)� ēa
)

(8.19)

This is needed in the proof of Theorem 4 in Section 8.5.

8.4 Inner-loop Robot Controller with Prescribed Error Dynamics

In this section we develop an inner-loop neuroadaptive robot controller for track-

ing the reference trajectory xr = x̂d. A neural network is used to feedback linearize
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Figure 8.3. The inner-loop control system with prescribed error dynamics (PED).
The reference trajectory xr is provided by the outer-loop.

the controller by estimating the nonlinear robot dynamics. In addition, prescribed

error dynamics are imposed by utilizing time-dependent auxiliary parameters. The

inner-loop controller is shown in Fig. 8.3.

The robot dynamics equation in Cartesian or task space is given by

M(q)ẍ+ V (q, q̇)ẋ+ F (q̇) +G(q) = fc + fh (8.20)

where q, q̇ ∈ Rn are the joint positions and velocities, n is the degrees of freedom (DoF)

of the robot, and x ∈ R6 is the Cartesian pose of the end-effector. The operational-

space M(q) is the inertia matrix, V (q, q̇) contains the Coriolis/centrifugal forces, G(q)

is the gravity vector, and F (q̇) is the friction term. During pHRI, the operator applies

a Cartesian force fh ∈ R6. The neuroadaptive scheme now designed estimates the

control force fc ∈ R6, which is converted into joint control torques by multiplying

with the robot geometric Jacobian: τ = Jᵀfc.
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Property 1: Matrix M(q) is positive definite and symmetric. Matrix V (q, q̇) is

in the Christoffel form, implying that Ṁ(q)− 2V (q, q̇) is skew symmetric.

Assumption 1: During pHRI, the hand of the human is assumed to be in contact

with the robot end-effector, i.e. they share the same Cartesian position such that the

robot position and human position x in (8.2) are the same. The force measured by

the end-effector is equal and opposite to the force applied by the human.

8.4.1 Sliding Mode Formulation for Prescribed Robot Error Dynamics

According to Principle 2, the robot should perform like a simple admittance

model. Therefore, suppose the desired error dynamics is

ë+Ddė+Kde = fh (8.21)

where Dd, Kd can be fixed or adjusted according to some performance metric. Given

the tracking error

e = xr − x (8.22)

define a novel sliding mode error

r = ė+ Λe− fl (8.23)

ṙ = ë+ Λė+ Λ̇e− ḟl (8.24)

where matrix Λ(t) is a function of time. The filtered force fl is determined from

fh =ḟl + Γfl (8.25)
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The following theorem is a formalization of the method in [130].

Theorem 3 Given the filtered force (8.25) and the sliding mode error (8.23), define

Dd = Λ + Γ (8.26)

Kd = Λ̇ + ΓΛ (8.27)

If r → 0, then the system behaves according to the error dynamics in (8.21).

Proof: Define an error signal

w = ë+Ddė+Kde− fh (8.28)

Substituting the definitions into the error signal gives

w = ë+ (Λ + Γ)ė+ (Λ̇ + ΓΛ)e− (ḟl + Γfl)

= ë+ Λė+ Λ̇e− ḟl + Γ(ė+ Λe− fl)

= ṙ + Γr (8.29)

So if r → 0 then w → 0 and the system behaves according to (8.21).

8.4.2 Inner-loop Error Dynamics

Here, we determine the inner-loop error dynamics by combining the robot dy-

namics with the sliding mode formulation. The following development is required in

the proof of our main performance result in Theorem 4, Section 8.5. Rewriting (8.23)

as

ė = r − Λe+ fl (8.30)

141



and differentiating (8.22) yields

x = xr − e (8.31)

ẋ = ẋr − r + Λe− fl (8.32)

ẍ = ẍr − ṙ + Λė+ Λ̇e− ḟl (8.33)

Substituting the above into (8.20) produces the robot error dynamics

M(q)ṙ = −V (q, q̇)r + g(ψ)− fc − fh (8.34)

and the nonlinear robot dynamics are

g(ψ) = M(q)(ẍr + Λė+ Λ̇e− ḟl)

+ V (q, q̇)(ẋr + Λe− fl)

+ F (q̇) +G(q) + fd (8.35)

and ψ =
[
fl ḟl diag{Λ} diag{Λ̇} qᵀ q̇ᵀ eᵀ ėᵀ ẋᵀr ẍᵀr

]ᵀ
.

In (8.34), define the control input as

fc = ĝ(ψ) +Kvr − fh (8.36)

where Kv = Kᵀ
v > 0. The nonlinear terms are estimated with a single layer neural

network (NN) function approximation

ĝ(ψ) = Ŵ ᵀσ(ψ) + ε (8.37)
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as in [27]. Substituting (8.36) into (8.34) produces

M(q)ṙ = −V (q, q̇)r + g(ψ)− fh − ĝ(ψ)−Kvr + fh

= −(V (q, q̇) +Kv)r + g̃(ψ) (8.38)

where g̃(ψ) = g(ψ)− ĝ(ψ) is the function approximation error. The inner-loop error

dynamics are therefore

M(q)ṙ =− (V (q, q̇) +Kv)r + W̃ ᵀσ(ψ) + ε (8.39)

This equation is needed in the proof of Theorem 4 in following section.

8.5 Stability Analysis of Human-Robot System

In this section, the combined stability of the two-loop system is investigated.

Weight tuning laws for the NNs (8.4), (8.17), and (8.37) are derived from Lyapunov

stability analysis that guarantee overall stability and proper performance of the inner

and outer-loops. The following standard assumptions are made:

Assumption 2: The reference trajectory is bounded by a scalar, e.g. ‖x̄r‖ ≤

xB ∈ R.

Assumption 3: The ideal NN weights are bounded by a scalar, e.g. ‖U‖F ≤ UB

where || · ||F is the Frobenius norm.

Next, it is shown that, using these tuning algorithms, the sliding mode errors

(8.7) and (8.23) are uniformly ultimately bounded (UUB). A signal x(t) is UUB if

there exists a compact set S ∈ Rn such that for all x(t0) = x0 ∈ S there exists an

ε > 0 and a number T (ε, x0) such that ‖x(t)‖ < ε for all t ≥ t0 + T [27, 154].
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Theorem 4 Given the human dynamics (8.2) and robot dynamics (8.20), define a

control law (8.36) with a feedback linearization term estimated by the NN in (8.37).

Furthermore, let the desired trajectory xr = x̂d be generated by NN (8.4) and let the

gains of the human controller be estimated by NN (8.17). Let the NN weight tuning

laws be defined as

˙̂
W = Fσ(ψ)rᵀ (8.40)

˙̂
V = −Gφ(ξ)sᵀJdiag{P̂}+ κ ‖s‖GV̂ (8.41)

˙̂
U = −Hφ(ξ)sᵀJdiag{ēa}+ κ ‖s‖HÛ (8.42)

with the filtered errors (8.8) and (8.25), constant matrices F = F ᵀ > 0, G = Gᵀ > 0,

H = Hᵀ > 0, and scalar design parameter κ > 0. Then the sliding mode errors in

(8.7), (8.23) are UUB and the overall human-robot system is stable.

Proof: Define the Lyapunov function

L =1
2
rᵀMr + 1

2
tr{W̃ ᵀF−1W̃}

+ 1
2
sᵀDhs+ 1

2
tr{Ṽ ᵀG−1Ṽ }+ 1

2
tr{ŨᵀH−1Ũ} (8.43)

with the derivative

L̇ =rᵀMṙ + 1
2
rᵀṀr + tr{W̃ ᵀF−1 ˙̃W} (8.44a)

+ sᵀDhṡ+ tr{Ṽ ᵀG−1 ˙̃V }+ tr{ŨᵀH−1 ˙̃U} (8.44b)
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which is an equation of the form L̇ = L̇1 + L̇2. Substituting (8.39) with ε = 0 in

(8.44a) produces

L̇1 =− rᵀKvr + 1
2
rᵀ(Ṁ − 2V )r

+ tr{W̃ ᵀ(F−1 ˙̃W + σ(ψ)rᵀ)}

as detailed in [27]. Since

˙̃W = Ẇ − ˙̂
W = − ˙̂

W

we can subsitute the NN update law from (8.40) and together with Property 1,

L̇1 =− rᵀKvr

≤−Kvmin
‖r‖2 (8.45)
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and Kvmin
is the minimum singular value of Kv. The second part of the Lyapunov

derivative (8.44b) can be expanded with (8.19), assuming ε1, ε2 = 0, according to

L̇2 =− sᵀKhs− sᵀJ(P̂ � (Ṽ ᵀφ(ξ)))

− sᵀJ((Ũᵀφ(ξ))� ēa)− sᵀJ((Ũᵀφ(ξ))� (Ṽ ᵀφ(ξ)))

+ tr{Ṽ ᵀG−1 ˙̃V }+ tr{ŨᵀH−1 ˙̃U}

=− sᵀKhs− tr{sᵀJ((Ũᵀφ(ξ))� (Ṽ ᵀφ(ξ)))}

− tr{Ṽ ᵀφ(ξ)sᵀJdiag{P̂}} − tr{Ũᵀφ(ξ)sᵀJdiag{ēa}}

+ tr{Ṽ ᵀG−1 ˙̃V }+ tr{ŨᵀH−1 ˙̃U}

=− sᵀKhs− tr{sᵀJ((Ũᵀφ(ξ))� (Ṽ ᵀφ(ξ)))}

+ tr{Ṽ ᵀ(G−1 ˙̃V − φ(ξ)sᵀJdiag{P̂})}

+ tr{Ũᵀ(H−1 ˙̃U − φ(ξ)sᵀJdiag{ēa})} (8.46)

Using the fact that ˙̃V = − ˙̂
V and ˙̃U = − ˙̂

U and the NN update equations in (8.41),

(8.42)

L̇2 =− sᵀKhs− tr{sᵀJ((Ũᵀφ(ξ))� (Ṽ ᵀφ(ξ)))}

− κ ‖s‖ tr{Ṽ ᵀV̂ } − κ ‖s‖ tr{ŨᵀÛ} (8.47)

Since

tr{Ṽ ᵀV̂ } = tr{Ṽ ᵀ(V − Ṽ )} =< Ṽ , V > −||Ṽ ||2F

≤ ||Ṽ ||F ‖V ‖F − ||Ṽ ||
2
F (8.48)
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Figure 8.4. Setup for experimental validation testing.

where || · ||F is the Frobenius norm, we can write

L̇2 ≤−Khmin
‖s‖2 − ‖s‖φ2

B||Ṽ ᵀ||F ||Ũᵀ||F

− κ ‖s‖ · ||Ṽ ||F (VB − ||Ṽ ||F )

− κ ‖s‖ · ||Ũ ||F (UB − ||Ũ ||F )

=− ‖s‖Khmin
‖s‖ − ‖s‖ZᵀAZ − ‖s‖ZᵀB

=− ‖s‖ {Khmin
‖s‖+ ZᵀAZ + ZᵀB} (8.49)

where

Z =

||Ṽ ᵀ||F

||Ũᵀ||F

 , A =

−κ 1
2
φ2
B

1
2
φ2
B −κ

 , B = κ

VB
UB


andKhmin

is the minimum singular value ofKh and the bounds φB, VB, UB. Completing
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the square

ZᵀAZ + ZᵀB

= (Z + 1
2
A−1B)ᵀA(Z + 1

2
A−1B)− 1

4
BᵀA−1B (8.50)

Thus the term in the braces in (8.49) is guaranteed positive if and only if either

‖s‖ >
1
4
BᵀA−1B

Khmin

≡ bs (8.51)

or

Z > −1
2
A−1B +

√
1
4
BᵀA−1B ≡ bZ (8.52)

Combining the results from (8.45) and (8.49), L̇ is negative outside a compact

set for the NN weight update laws (8.40), (8.41), (8.42). Since L > 0 and L̇ < 0, the

sliding mode errors s, r and the NN weight errors Ṽ , Ũ , W̃ are bounded.

Note the UUB bound can be decreased by decreasing the learning rate κ in

(8.51), (8.53), and (8.54) which can be shown by expanding the terms

1
4
BᵀA−1B =

κ2(κU2
B + UBVBφ

2
B + κV 2

B)

φ4
B − 4κ2

(8.53)

1
2
A−1B =

κ

φ2
B − 4κ2

UBφ2
B + 2VBκ

VBφ
2
B + 2UBκ

 (8.54)

Since r, s are UUB, Theorem 2 show that the human intent is closely estimated,

while Theorem 3 shows that the desired error dynamics (8.21) are closely followed.
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Figure 8.5. Grid layout for visual guidance during trajectory following.

8.6 Experimental Validation

The two-loop controller was experimentally validated on the Personal Robot 2

(PR2) mobile manipulator shown in Fig. 8.4. It has two 7 degrees of freedom (DoF)

arms with two parallel grippers and Force/Torque (F/T) sensors in its wrists. A

hard real-time control loop is updated at 1 kHz. The robot runs the Robot Operating

System (ROS) [102] together with a real-time controller manager framework which

can load and unload controllers as plugins. There are ROS packages or libraries with

infrastructure to send control torques and access encoder data, as well as kinematic

models for computing Jacobians and forward/inverse kinematics. The neural net-

work controller and estimator were implemented with Eigen, a C++ library for linear

algebra [155], and subsequently incorporated in a new publicly available repository

SkinLearn1. Due to its computational complexity, the neuroadaptive controller and

estimator are updated every 3rd loop in a parallel thread, resulting in a torque up-

date rate of 333 Hz. This sampling rate is sufficient for pHRI according to known

requirements [156].

1https://bitbucket.org/nextgensystems/skinlearn
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8.6.1 Setup

The PR2 robot was positioned in front of a table with the left arm holding a

white cylinder, which was able to rotate freely around its vertical axis (Fig. 8.4).

Below the gripper, a narrow extension indicated the gripper location on a piece of

paper shown in Fig. 8.5. The paper depicted a 3× 3 grid with points labeled from A

through I, separated at a distance of 12.5 cm. A human operator was asked to sit at

the table and grab the cylinder above the gripper. During the experiment, the robot

verbally instructed the user to move to certain points. One trial involved moving the

gripper in a square and diamond pattern, both counter-clockwise and clockwise. The

following 19 points were traversed:

A,C, I,G,A,G, I, C,A,D,B, F,H,D,H, F,B,D,A

Each point took approximately 5.0 seconds to reach, for a total of 120 seconds per trial

including idle time. Data was automatically recorded at 50 Hz, including encoder,

sensor, controller, and timing data. The following controller configurations were

utilized to evaluate different components of the proposed control scheme,

• Prescribed Error Dynamics

(a) Disabled

(b) Enabled

• Reference trajectory xr set to

(i) xd (pose desired by human)

(ii) x̂d (estimated human intent from outer-loop)

(iii) xm (fixed admittance model from [44])

giving a total of 6 permutations. To disable the PED, the inner-loop gain matrix Λ is

fixed and the filtered force fl is set to zero in (8.23). As a result, there is no need to
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update equations (8.25), (8.26), (8.27) and the parameters Γ, Kd, Dd are irrelevant.

This allowed investigating the effect of having PED in the neuroadaptive inner-loop.

For (i), it is assumed that the robot knows the ideal reference trajectory, which

is communicated to the human subject with audiovisual and tactile cues. Both the

robot and human agree on the reference trajectory, which for example generally is the

case during rehabilitation exercises and assisted manufacturing tasks. In the second

setup (ii), only the human knows the reference trajectory while the robots tries to

assist by estimating the human intent using 8.4 from interaction force, position, and

velocity measurements.

For case (iii), the reference trajectory is provided by a fixed autoregressive

moving-average (ARMA) model described in [44]. The HIE is replaced by the admit-

tance M(z) of order mθ in the numerator and nθ in the denominator. It is imple-

mented as

xm[k] = hᵀ[k]θ (8.55)

with the measured regression vector

hᵀ[k] = [− xm[k − 1], ... ,−xm[k − nθ],

fh[k], fh[k − 1], ... , fh[k −mθ]] (8.56)

sampled at timestep t = kTs. The ideal ARMA parameter matrix

θ = [a1, ... , anθ , b0, b1, ... , bmθ ] (8.57)
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was estimated using recursive least squares (RLS). Compared with the proposed

outer-loop HIE, the ARMA model requires a training phase during which the de-

sired human trajectory xd is being provided.

In the following two sections, the controller settings and implementation details

are described.

8.6.1.1 Inner-loop

The performance tuned inner-loop neuroadaptive controller parameters are Λ =

diag{2, 2, 2, 1.2, 1.2, 1.2} and Kv = diag{5, 5, 5, 3, 3, 3}, for Kz = 0.01, ZB = 100,

F = 10I63, G = 10I19, and κ = 0.1, where In is the n×n identity matrix. A two-layer

NN with 63 inputs (including the bias input), 18 hidden layer neurons, and 6 outputs

was implemented. The RBF activation function for the hidden layer neuron i was

defined as

σi(ψ) = e−β(ψ−µi)ᵀ(ψ−µi) (8.58)

with βi = 1 and vector µi initialized randomly from the discrete set {−1, 1}. The

weights Ŵ of the neural network were initialized from the uniform random distribution

[−0.1, 0.1]. The prescribed task model gain matrices were set to Kd = 20I6, Dd = 10I6

and Γ was initialized to 10I6.

8.6.1.2 Outer-loop

Since the desired motion was constrained to a planar surface, only the x and

y positions were estimated. The outer-loop human intent estimator was initialized

with G = 1.0I2, H = 0.1I2, and κ = 0.01. Similar to the inner-loop controller,

it used RBF activation functions and the NN weights V̂ , Û were initialized with a

uniform random distribution between [−0.1, 0.1]. Since random weights could produce
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(b) PED enabled, HIE (kf = 0.4)

Figure 8.6. Cartesian trajectory tracking using two different controller setups. One
trial consisted of moving the gripper around the square and diamond shape, both
clockwise and counter-clockwise.

negative definite matrices for Kh and Dh, a lower limit of 0.01 was imposed on the

elements of output vector P̂ . The tuned ARMA parameter weight matrix θ in (8.57)

for the x and y-dimensions was

[
−0.7639 −0.0554 0.0017 −0.1824 −0.0698 0.2235 −0.2590 0.1051

−0.8250 −0.0920 −0.0065 −0.0776 −0.0001 0.0091 −0.0233 0.0141

]

after conducting two training trials, during which the human intent xd was provided.

8.6.2 Results

The control structure for physical HRI is designed to reduce the human effort

and simplify the robot’s dynamic behavior as discussed in Section 8.3.1. During the

interaction, the inner and outer-loop NN weights are continuously being updated

to more accurately follow the robot reference trajectory and to better predict the

human intent trajectory, respectively. This is confirmed in Fig. 8.7, depicting the

NN weight norm versus time for the entire duration of one trial. At the beginning,
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the weights were initialized randomly and the first movement occurred close to the

10 s mark. This resulted in a rapid change of the NN weights, especially in the

outer-loop human intent estimator. During the first half of the trial, several “spikes”

appeared at the start of the point-to-point motions, indicating this was where the

majority of the NN tuning took place. As the trial continued, the rate of change of

the outer-loop weights decreased implying that the NN approximation was relatively

accurate and needed less tuning. The inner-loop weight norm shows no discernible

patter, hence the NN weights have to be constantly adjusted for new joint angles and

Cartesian trajectories in order to learn the nonlinear dynamics utilized for feedback

linearization. Since several systems learned at the same time, i.e. the inner-loop

neuroadaptive controller, the outer-loop human intent estimator, and the operator,

it is important to consider several aspects of the interaction, such as the resulting

position error, smoothness of motion, and interaction forces.

Fig. 8.8 and 8.9 show the position and force value along the x and y-axis during

one trial, during which the operator first followed two square and then two diamond

patterns defined by the 19 points listed in Section 8.6.1. For this trial, the inner-

loop prescribed error dynamics (PED) were enabled and the matrices Λ,Γ converged

to 2.8I6 and 7.2I6 respectively within 1 s. For all three trajectory cases discussed

in Section 8.6.1, the end-effector and human hand position x was able to reach the

desired points within the 1 cm range. The estimated x̂d approximately followed xd,

indicating that the neural network was able to approximate the intent trajectory

within some error bound ε1 as defined in (8.4).

154



To quantify the tracking performance, the position error at each time step kT

was computed as the mean error distance over the entire trial,

‖e‖2 =
1

N

N∑
k=1

‖xdes(kT )− x(kT )‖2 (8.59)

where N is the number of data points and T = 0.02 seconds (the data was recorded

at 50 Hz). The error bar plot in Fig. 8.10a shows that the mean position error was

less than 9 mm. The high accuracy was expected, since the pattern below the gripper

provided the operator with instant visual feedback. The largest mean position error

occurred when xr = x̂d and the prescribed error dynamics were disabled. When the

PED are turned off and the robot no longer behaves like a simple admittance model,

the operator has to learn the machine dynamics and tune their own neuromuscular

controller. The HIE introduces further uncertainty in form of a neural network esti-

mation error, which made the robot harder to control. With the PED enabled, the

NN estimator performed similar to when the actual desired reference trajectory was

provided to the robot, indicating good performance. Further user studies with more

subjects are needed to determine the precise accuracy range of the different control

setups.

The smoothness of the physical interaction was measured in form of the dimen-

sionless squared jerk

Jα =

∫ tf

ts

...
p (t)2dt

(tf − ts)5

A2
(8.60)

where parameter A is the total length of path p(t) taken by the robot gripper and

human hand from start time ts to final time tf . Experimental evidence suggests

that human motion involves the minimization of jerk and is therefore an an effective

measurement of the quality of pHRI [146]. Fig. 8.10b shows that the dimensionless
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squared jerk was decreased with the PED enabled, indicating better HRI performance.

Compared with the ARMA reference trajectory xm, the NA controller benefited more

from enabling PED. This can be explained by the nature of the ARMA model − the

moving average acts as a lowpass filter on the robot motion. The smallest jerk was

produced when xr = xd, since the robot for the most part is guiding the user who

only performs minor corrections. Also, the PED impose a simple admittance model

on the robot dynamics making it easy for the human to learn and follow along. If the

robot receives the wrong desired human intent, the controller will fight against the

operator’s movements.

Fig. 8.10c shows the mean 2-norm of the robot control force fc and human

force fh, i.e.

‖f‖2 =
1

N

N∑
k=1

‖f(kT )‖2 (8.61)

With PED disabled, the user had to exert a larger force to follow the desired trajec-

tory. With PED enabled, less effort was required by the user implying that the robot

was assisting with the motion. As expected, the robot controller force had to com-

pensate and increased in magnitude, however the amount of increase was nonlinear.

The ARMA trajectory performed better than the NN estimation, since it is taking

previous measurements into account, which are stored in the parameter vector (8.56).

An estimator with a larger neural network (i.e. more hidden layers) could possibly

increase the accuracy of the HIE, however the NN update would require more compu-

tations and take longer too complete. One of the challenges was to run the framework

at a high update rate (e.g. faster than 100 Hz), which is essential during pHRI. The

PR2 real-time loop was pushed to its limits with the implemented two-loop structure

and three NNs, however it is still very capable considering it was introduced in 2009.
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Table 8.1. Performance measurements for different reference trajectories with PED
disabled and enabled.

PED Meas. Units
(i) xd (ii) x̂d (iii) xm

mean std. mean std. mean std.

(a
)

D
is

ab
le

d ||e||2 mm 3.979 0.433 7.479 0.738 5.750 0.156

Jα 107 6.586 1.132 8.168 1.175 6.035 1.042

||fh||2 N 3.854 0.140 7.461 1.011 3.637 0.226

||fc||2 N 3.510 0.087 7.527 0.661 5.371 0.148

(b
)

E
n
ab

le
d ||e||2 mm 4.580 0.243 3.566 0.704 5.121 0.399

Jα 107 4.128 1.456 5.066 0.917 4.512 0.955

||fh||2 N 1.833 0.056 5.425 0.058 2.276 0.072

||fc||2 N 6.122 0.182 8.268 0.059 6.372 0.360
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0

5
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15

Figure 8.7. NN weight norms during one trial with reference trajectory xr = x̂d being
provided by the outer-loop human intent estimator (PED is enabled).

Overall, the experiments show that the inner/outer-loop control scheme with

human intent estimation has comparable tracking performance when compared to the

ARMA admittance predictor. Our approach has the advantage of being online and

not require any training. Imposing a simple admittance model by utilizing PED in the

inner-loop, simplifies the interaction according to the crossover model and and results

in smooth pHRI. In addition, the PED allows tailoring the interaction to individual

pHRI preferences by adjusting the two gains Kd and Dd. The performance results

plotted in Fig. 8.10 are summarized in Table 8.1.
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Figure 8.8. Trajectories in x and y-directions during one trial using the desired
reference trajectory (xd) and human intent estimator (x̂d).
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Figure 8.9. Human force measurements and NA control force in x and y-directions
during one trial using the desired reference trajectory (xd) and human intent estimator
(x̂d).

(a) Mean position error (b) Squared jerk (c) Mean force magnitude

Figure 8.10. Performance measures for different reference trajectories with the inner-
loop prescribed error dynamics (PED) disabled (i.e. Λ̇ = 0) and enabled.
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8.7 Conclusions and Future Work

In this paper we describe a two-loop pHRI controller which relies on human

force and pose measurements and can adapt to varying robot dynamics. It can also

adapt to different user preferences and simplifies the interaction by making the robot

behave according to a prescribed error dynamics. In our controller formulation, two

neural networks in the “outer-loop” predicts human motion intent and estimate a

reference trajectory for the robot that the “inner-loop” controller follows. The inner-

loop imposes prescribed error dynamics with the help of a model-free neuroadaptive

controller, which feedback linearizes the robot dynamics with a third neural net-

work. Lyapunov stability analysis gives weight tuning laws that guarantee that the

error signals and NN weight errors converge and the desired reference trajectory is

achieved. Our control scheme was implemented on a PR2 robot and experimen-

tally validated. Results confirmed that the position error and motion jerk was re-

duced compared to a standard admittance controller, indicating that the two-loop

controller achieves efficient and intuitive human-robot collaboration. The inner and

outer control loops for the PR2 robot are available in the SkinLearn public repository

at https://bitbucket.org/nextgensystems/skinlearn.

Future work will involve testing the proposed control scheme with more human

subjects and different types of motions. Instead of simple point-to-point task motions,

we envision complex rehabilitation exercises and co-manipulation of objects. More

powerful robot real-time hardware would allow for larger neural networks and better

performance.
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APPENDIX

To compute a suitable Cartesian pose error [82], the actual and desired trajec-

tories were expressed in terms of 3D transformation matrices of the form

T =

n(t) o(t) a(t) p(t)

0 0 0 0

 (8.62)

The overall Cartesian error

e =

ep
eo

 (8.63)

is given by the linear position error

ep = pd − p (8.64)

and orientation error

eo = 1
2
(n× nd + o× od + a× ad) (8.65)
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Calibration of Tactile Sensors for Robot Skin

161



NEUROADAPTIVE CALIBRATION OF TACTILE

SENSORS FOR ROBOT SKIN

S. Cremer, I. Ranatunga, S. K. Das, I. B. Wijayasinghe, and D. O. Popa,

“Neuroadaptive Calibration of Tactile Sensors for Robot Skin,” in IEEE International

Conference on Automation Science and Engineering (CASE), 2016, pp. 1079–1085.



9.1 Abstract

In this paper we present a novel automated neuroadaptive approach that can

characterize pressure sensitive “skin” deployed on a robot. Both the safety and per-

formance of future co-robots can be greatly enhanced by such sensorized skin, by

measuring multiple contact forces with humans and the environment. A challenge

that arises with robot skin is the task of calibration to achieve reliable measurements

necessary for safe human-robot interaction. To this end, the traditional method of

calibrating each sensor prior to its use is a tedious task, especially with inexpensive,

miniaturized hardware that can experience material degradation with time. There-

fore, we propose an adaptive strategy that learns the sensor array characteristics

together with the unknown dynamics of both the robot and human during physical

interaction. Convincing experimental results with deployed pressure skin sensors on

a PR2 robot are presented to validate our approach.

9.2 Introduction

Physical Human-Robot Interaction (pHRI) is an essential ability of co-robots

of the future. For safe interaction, robots that work cooperatively with people must

detect and limit contact forces [15]. This feature can be facilitated by so-called robot

“skin”, which equips the robot with touch [16]. For the last three decades, there

have been numerous examples of robot skin that embed tactile sensors and electronic

interfaces into compliant or modular substrates. For instance, Dahiya [157] outlines

the need for stretchable electronic systems to realize multi-functional electronic skin

consisting of ultra-thin, flexible polyimide. Further work on ultra-thin substrates was

demonstrated in [158] where hybrid flexible tactile sensors based on low temperature

polycrystalline silicon thin film transistors were fabricated.
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CellulARSkin is a multi-modal, self-organizing electronic skin [159]. The mod-

ular units of the skin perform temperature, acceleration, proximity, and normal force

sensing. Each cell has the ability to explore connections and self-organize which,

when combined with the accelerometers, allow the units to determine topology and

their position on the robot. RoboSKIN is another advanced skin with the ability to

communicate between adjacent units. In [160], RoboSKIN is integrated with the iCub

robot and a method is proposed to compensate for temperature drift of the capacitive

tactile sensors.

Tactile information, such as force magnitude and location during interactions

and collisions, can be used in reactive controllers to enhance safety. Furthermore,

tactile feedback can be utilized to predict human intent and execute behaviors such

as guiding in a collaborative task. Grice et al. [161] show that a robotic care-giver

is considerably more useful if physical contact is allowed with the help of tactile

feedback.

Despite the need for robot skin, tactile sensing technology has made limited

progress and full-fledged, whole-body human-like skin is yet to be realized [162].

There are several technological difficulties, especially the issues related to scaling and

reliability.

Recent research has also described strategies for controlling the interaction be-

havior between humans, the environment, and a robot [81, 147]. Adaptive control

schemes such as [148, 149,163] adjust impedance parameters for safe and stable con-

tact. Our recent work [44, 83] has proposed a neuroadaptive control framework to

manage the pHRI problem. The approach involves two control loops that have guar-

anteed stability. In the controller “inner-loop”, the unknown robot dynamics is being

identified on-line and linearized through dynamic compensation. A second “outer-

loop” determines the user’s intent and adjusts an admittance based on task require-
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Figure 9.1. The inner and outer-loop control system for physical HRI with robot skin.
During calibration the switch is on and both the human and robot follow the same
reference trajectory.

ments and user skill. The effectiveness of the neuroadaptive controllers in pHRI tasks

are shown in [164, 165] where the controller learns a combined human-robot model

for trajectory following tasks. However, in our prior work, the force applied by the

human is measured with conventional end-effector force-torque sensors.

In this paper, tactile data from robot skin in the form of conditioned but uncal-

ibrated electronic signals is utilized instead. Recognizing that robot skin sensors may

be manufactured using inexpensive and degradable materials, our contribution is to

propose and validate an efficient sensor calibration scheme after sensors are deployed.

There has been considerable effort to calibrate tactile sensors to generate cor-

rect pressure or force values. Calibration procedures are usually time-consuming,

require accurate instruments, and have to be repeated regularly due to changes in

sensor response. The review papers [166, 167] discuss the importance of automatic

calibration techniques and algorithms to interpret the sensing data. In the case of

robot skin, any solution to the calibration problem should be scalable and automated
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due to the possibility of large number of sensors and their possible irregular spatial

distributions. Although some work [168, 169] has been done to address the problem

of sensor localization, these do not address the difficulty of having to calibrate each

sensor individually to produce typical output values. For example, in [170] an op-

erator has to manually apply different forces along each sensor axis in a controlled

environment in order to calibrate a single skin patch.

In contrast, the approach presented in this paper uses a neuroadaptive calibra-

tion framework and learns appropriate skin sensor admittance models for each sensor

“patch” using interaction cues from a human. Physically, such patches consist of

pressure sensitive piezo-resistive “taxels” printed onto flexible Kapton substrates and

encapsulated in compliant silicone substrates [84]. Consequently, such sensors expe-

rience “hard nonlinearities” such as hysteresis and drift, and can easily degrade with

prolonged use. Experimental results with taxels mounted onto PR2’s end-effector

demonstrate that our approach can account for unknown robot and human dynam-

ics, and, at the same time compensate for poorly known skin sensor characteristics.

The paper is structured as follows: Section 9.3 summarizes the neuroadap-

tive controller framework as proposed during sensor calibration. Then Section 9.4

describes the experimental setup and procedures. The results and discussion are pre-

sented in Section 9.5. Finally, Section 9.6 concludes the paper and proposes future

work.

9.3 Neuroadaptive Calibration Approach

The proposed control system for the calibration process is shown in Fig. 9.1. It is

composed of: (a) an inner-loop controller employing a neural network to continuously

estimate and cancel the nonlinear robot dynamics; (b) an adaptive admittance model

that learns to estimate desired Cartesian trajectories from sensor voltage values. In

166



this section we briefly summarize the neuroadaptive control formulation. For full

details, including stability proofs of the controller, the reader is directed to [44, 165].

In the later part of this section, our novel calibration procedure is introduced.

9.3.1 Inner-loop Controller

The general dynamics for a robot in contact with a human in Cartesian space

can be written as follows [142]

Λ(q)ẍ+ µ(q, q̇)ẋ+ J†TF (q̇) + gx(q) = fc + fh (9.1)

where q, q̇ ∈ Rn are the joint positions and velocities, n is the degrees of freedom

(DOF) of the robot, and x ∈ R6 is the Cartesian space pose of the end-effector. The

operational-space Λ(q) is the inertia matrix, µ(q, q̇) contains the Coriolis/centrifugal

forces, gx(q) is the gravity vector, and F (q̇) is the friction term. The robot geometric

Jacobian is J and the damped least-squares pseudoinverse is given by J† = Jᵀ(JJᵀ +

ζ2I)−1, where ζ is a damping factor. During pHRI, the operator applies a Cartesian

force fh ∈ R6. A neuroadaptive scheme estimates the control force fc ∈ R6, which is

converted into joint control torques with τ = Jᵀfc ∈ Rn.

The inner-loop neuroadaptive controller defines a sliding mode error r = ė+Γe,

where Γ = Γᵀ > 0 is a positive definite matrix and e = xm − x. Trajectory xm(t)

is the model trajectory generated by the outer-loop which the robot is supposed to

follow. Using (9.1), the dynamics of the robot model following error can be expressed

as

Λ(q)ṙ = −µ(q, q̇)r + f(ϕ)− fc − fh (9.2)
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Figure 9.2. Robot admittance model tuning using adaptive inverse filtering during
the sensor calibration process.

where

f(ϕ) =Λ(q)(ẍm + Γė) + µ(q, q̇)(ẋm + Γe)

+ J†TF (q̇) + gx(q)

(9.3)

is a nonlinear function of unknown robot parameters and ϕ = [ eᵀ ėᵀ xᵀm ẋᵀm ẍᵀm qᵀ q̇ᵀ ]ᵀ.

The idea of the inner-loop controller is to learn the nonlinear function (9.3) on-line

using a neural network, thereby eliminating the need to model the robot dynamics.

This approach has the advantage of decoupling the robot dynamics from the task

specific outer-loop. The neuroadaptive control signal is given by

fc = f̂(ϕ) +Kvr − v(t)− fh (9.4)

where f̂(ϕ) is the neural network approximation of f(ϕ), Kv = Kᵀ
v > 0 is a diagonal

gain matrix, and v(t) is a “robustifying” term as detailed in [164].
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9.3.2 Outer-loop Controller

During pHRI, the human exerts force fh on the robot manipulator in order to

follow a task reference trajectory xr. To enhance the performance of the human-robot

system, the objective of the outer-loop is to introduce a virtual admittance between

fh and the model trajectory xm, which the inner-loop controller tracks. For instance,

Mmẍm +Dmẋm = fh (9.5)

is a mass-damper system in Cartesian space with mass matrix Mm and damping ma-

trix Dm. This scheme is motivated by the so-called crossover model, which states

that a human adjusts their control characteristics to the dynamics of the controlled

element such that the total system remains unchanged [163]. Hence, a highly non-

linear machine becomes easier to operate when behaving like a simple admittance

model. In addition, as operators become more skilled, it has been established that

“the closed-loop transfer function of the whole human-machine system becomes a

first-order system at a wide frequency band” [163].

Therefore, in the absence of calibrated force information, the outer-loop con-

troller will adapt the admittance model to make the human-skin-robot system behave

according to a first-order task model

D(s) =
ad

s+ bd
(9.6)

where the parameters ad and bd are specific to the physical task to be completed.

In our past work [44] the admittance model was implemented with an Auto

Regression Moving Average (ARMA) filter whose weights were updated using a Re-

cursive Least Squares (RLS) algorithm [143]. Results showed that this scheme reduces
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Figure 9.3. Taxel (i, j) inside skin patch i attached to link l(i). The sensor measures
a voltage Vij related to the force applied opposite to the sensor normal n̂ij. The force
has been applied to move the gripper pose x along the reference trajectory xr.

the force and squared jerk during the combined human-robot interaction, when com-

pared to a fixed model.

In this paper, instead of a known interaction force vector fh, the robot skin

sensors measure uncalibrated voltages Vij, where i = 1 . . . N is the patch index and

j = 1 . . .M is the taxel index inside each patch. The taxel orientation is determined

by n̂ij, which is the outward normal as illustrated in Fig. 10.1. To simplify, let us

assume that the robot receives only one resultant measurement Vi along n̂i per patch,

for example Vi =
∑M

j=1 Vij. Then all skin patch measurements can be combined into

a vector V = [V1, V2, . . . , VN ]ᵀ.

As shown in Fig. 9.2, the voltage measurements generate the model trajectory

for the inner-loop controller. The outer-loop discretizes V and desired model output

xd(t) by sampling the signals with sampling period Ts. The error ε(k) = xm(k)−xd(k)

is utilized to update the discrete admittance model transfer functions Ai(z). They will

be tuned such that the overall human-skin-robot transfer characteristic H(z)R(z)A(z)

equals the sampled task model D(z).
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9.3.3 Calibration of Robot Skin

Since sensors are placed at different locations on the robot, they will exhibit

varying responses, which in this paper are linearly approximated about operating

points and denoted by R(s). Therefore multiple admittances Ai(z), one per sensor

patch, will be identified during calibration. The user is asked to grab the robot by

direct contact with individual skin sensor patch i and push it to follow a prescribed

reference trajectory xr. The outer-loop controller tunes an adaptive filter Ai(z) with

the raw sensor voltage Vi as an input and the model trajectory xim as an output.

Assuming a mapping between the force applied on the patch fi and the voltage

generated by the patch Vi, we can relate them by fi = gi(Vi). In general, this

mapping may be nonlinear, but here we assume that it can be linearized around the

physical interaction point.

If the magnitude of the force is in the direction opposite to n̂i, define the

resultant voltage average from each skin sensor patch i on link l(i) to be

V = −
∑
i

R0
l(i)(q)n̂iVi (9.7)

where the rotation matrixR0
l(i)(q) for link l(i) is with respect to the Cartesian reference

frame (see Fig. 9.3). Then (9.5) and (9.7) become

Mmẍm +Dmẋm = −
∑
i

R0
l(i)(q)n̂iVi (9.8)

For each sensor patch i this can be approximated by an ARMA model as follows

xim(k) = −
n1∑
p=1

apx
i
m(k − p) +

n2∑
q=1

bqVi(k − q + 1) (9.9)
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where n1 and n2 are the degrees of the denominator and the numerator of the admit-

tance model respectively. Then Ai(z) becomes

xim(k) = hᵀ(k)i θi (9.10)

with a measured regression vector given by

hᵀ(k)i = [ −xim(k − 1), . . . ,−xim(k − n1),

Vi(k), . . . , Vi(k − n2) ] (9.11)

and the ideal ARMA parameter vector

θi = [ a1, . . . , an1 ,

b1, . . . , bn2 ] (9.12)

In the RLS algorithm the estimated parameter vector θ̂(k) is being updated with

newly observed data xim(k + 1) and Vi(k + 1). As the error ε(k) = xm(k) − xd(k)

approaches zero, the algorithm converges to the optimal Wiener solution.

After the calibration process is complete, the model trajectory for the inner-

loop to follow, xm(k), is calculated by adding the combined effects of all sensor skin

patches in their respective normal directions as in

xm(k) =
∑
i

xim(k)R0
l(i)n̂i (9.13)

The velocity ẋm and acceleration ẍm is found by applying an zero-order hold (ZOH)

and computing the backward difference as indicated in Fig. 9.2.
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Figure 9.4. PR2 robot holding the tactile box for calibration experiments.

9.4 Experimental Setup

In this section we describe an experimental setup to validate the neuroadaptive

calibration scheme. The Personal Robot 2 (PR2) was equipped with a custom made

robot skin gripper attachment referred to as a tactile box (Fig. 9.4). The PR2 is

a human-sized mobile manipulator with two 7 degrees of freedom (DOF) arms and

two parallel grippers. It runs the Robot Operating System (ROS) [102] and executes

a real-time control loop at 1 kHz. The neural network and adaptive filters were im-

plemented with Eigen, a library for linear algebra [155]. Due to its computational

complexity, the neuroadaptive controller is updated every 3rd loop in a parallel thread,

essentially slowing down the control loop to 333 Hz. The selection of this sampling in-

terval is appropriate for pHRI according to known requirements [156]. In the following

section, the physical robot interface and the controller setup is described.

9.4.1 Robot Skin Interface

The neuroadaptive algorithm was used to calibrate unknown robot skin already

mounted on the tactile box. Once grabbed by the robot, the box can be incorporated

into the PR2 kinematic model. The four sides can each hold a single skin sensor or a
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Figure 9.5. Setup for calibration and performance testing.

denser sensor array. In addition, different materials of varying thicknesses have been

placed on top to form four skin patches. For electronic signal acquisition, conditioning,

and networking, we designed and manufactured a SkinCell circuit board which is

mounted on top of the tactile box. An Arduino Blend Micro sends the sensor data

to the PR2 via USB. The data is normalized and then published at approximately

850 Hz to be used by the real-time controller.

Throughout the experiments described in this chapter, the tactile box accom-

modated four low-cost, nonlinear piezoresitve Tekscan Flexiforce sensors [171]. Each

sensor was coated by an elastomeric material, including Frubber (a compliant life-like

skin made by Hanson Robotics) and P10 (a less compliant, silicone elastomer). The

thickness of the elastomers and the properties of the Flexiforce transducers were not

carefully characterized prior to this experiment, and therefore the sensor response

Ri(s) on each side of the box were unknown prior to calibration.
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9.4.2 Controller Setup

The performance tuned inner-loop neuroadaptive controller parameters are listed

in [44]. For each skin patch, the ARMA filter weights were initialized to zero and

then calibrated individually by following a fixed reference trajectory xr = −0.25n̂i

meters along the sensor axis. Training was stopped once gripper pose x was within

1 cm of the desired reference position. The task model ad = bd = 0.7 was adjusted

to get a fast motion response while limiting the maximum velocity below 0.2 m/s

(it takes approximately 4 seconds to move 25 cm). The point-to-point motion was

initiated by a human who grabs the tactile box and applies a force perpendicular to

the skin patch. Visual guidance was provided in the form of a printed square pattern

shown in Fig. 9.5. Two experimental calibration trials where performed, each con-

sisting of three completed loops around the square shape. Hence, each sensor model

Ai(z) was updated six times, where each subsequent training episode continued with

the previously learned weight vector. Once trained, the filter weights were fixed and

the user had to follow the same square outline and an additional diamond pattern.

The performance was compared to an “uncalibrated” setup where the average filter

weights were used for all sensor patches.

9.5 Results

In the calibration experiments, weights of the four ARMA filters (one for each

sensor patch) were adapted a total of six times. The largest updates occured in the

first two training episodes, as shown by the filter norms in Fig. 9.6. The models

for sensors 2 and 4 (along the y-axis of the gripper frame) changed less than 25%

in the remaining episodes. The norm for sensor 1 stabilized in the last calibration

step, while the update rate for sensor 3 slowed down. The weights are not expected
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to converge fully because of small variations in the human model H(s) and skin

model R(s). During interaction, the operator continuous to learn and the cheap

sensors experience temperature variations, drift, etc. The inner-loop controller also

learns and compensates the nonlinear robot dynamics. In fact, several systems in

this experiment learn at the same time: the human user, the outer-loop admittance

model, as well as the inner-loop feedback linearization compensator. Although it is

hard to discern their individual contributions, we can assess the overall performance

of our scheme by the resulting trajectories.

The trajectories of the first calibration loop around the square are depicted in

Fig. 9.7. The x and y Cartesian positions are shown in the robot torso frame, while

z was fixed at −0.1 m. Note that the inner-loop receives xm in this global reference

frame, while the ARMA filter computes a change in the gripper frame. As previously

mentioned, xr was 0.25 meters in the opposite direction of the sensor normal. The

reference trajectory was smoothed by task model D(s), making each episode last ap-

proximately 4 seconds when using the 1 cm threshold for gripper pose x. The filters

adapted quickly and model trajectory xm converged to the task trajectory xd. When

the tactile box was close to the goal position, the desired velocity was drastically

reduced since xd approaches xr asymptotically. Oscillations can be observed, caused

by the robot moving slower than the operator and fighting against the user’s move-

ments. Hence, the selection of task model is important and future work could involve

testing higher order models. Also, if the robot moves too fast, the operator could lose

contact with the sensor patch. This would prevent the ARMA filter from learning

the correct mapping between voltage input and model trajectory output.

As illustrated in Fig. 9.8, there were large variations in the signal magnitude

from one side of the box to another. For example, sensor 1 saturated at approximately

0.5 V, while sensor 4 was least responsive and produced values below 0.35 V. When
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Figure 9.6. ARMA filter weight norms during two calibration trials. The vertical
lines indicate the beginning of a training episode.

using a second order ARMA model, the noise from the voltage signals appeared in

xm and resulted in jitter. To improve the performance, the filter size was increased

to n1 = n2 = 4 in (9.9). This also reduced the aforementioned oscillations in xm.

The learned filter weights are listed in Table 9.1. Even though the sensors, electronic

transducers, and materials on each side of the box were different, after calibration,

they appeared to have a similar response when touched. Thus, each filter learned a

unique ARMA model that characterized the tuned admittance for each side of the

tactile box.

After two calibration trials, all sensor patch ARMA filters were fixed and the

user was asked to follow the square and diamond patterns. The robot no longer knew

the reference trajectory xr and was instead being guided by the human. Fig. 9.9

shows the tracking performance in trial 1 when using calibrated and uncalibrated filter

weights. In the latter case, the average ARMA model in Table 9.1 was applied to all
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Table 9.1. Learned ARMA filter weights after two trials. The mean value of all
weights was used in the uncalibrated setup.

a1 a2 a3 a4 b1 b2 b3 b4

θ̂1 -2.20 1.96 -0.85 0.11 0.34 -0.96 0.98 -0.35

θ̂2 -2.14 2.07 -1.13 0.22 0.33 -0.85 0.79 -0.26

θ̂3 -2.56 2.29 -0.68 -0.04 0.32 -0.91 0.85 -0.26

θ̂4 -1.97 1.64 -1.05 0.38 0.42 -0.98 0.84 -0.27

θ̄ -2.22 1.99 -0.93 0.17 0.35 -0.92 0.87 -0.29
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Figure 9.7. Trajectories in x and y-directions of the torso reference frame during one
calibration loop around the square pattern.
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Figure 9.8. Voltage measurements from sensors along the x and y-axis during one
calibration loop around the square pattern.
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four patches on the box. It is evident that the uncalibrated setup performed worse:

the operator often deviated from the desired path and overshot the end-positions.

Since each skin patch had a different material and/or thickness, some sensors became

too sensitive while others were less responsive.

To quantify the tracking performance, the error at each time step kT was com-

puted as a 2-norm distance and then summed over the entire trial:

etrial =
∑

k
‖xdes(kT )− x(kT )‖2 (9.14)

where k is the real-time loop count and T = 0.003 seconds. The performance results

are summarized in Table 9.2, including the completion time of each trial. A faster

time indicates that the user had more control and that the system performed better.

The calibrated sensors consistently produced faster times as well as lower error norms.

Interestingly, the error is reduced in subsequent trials (with one exception), since the

operator is able to learn and adjust his own model H(s). As expected, the square

shape was easier to follow than the diamond shape, which required activating two

sensors at the same time. However, the results confirm that adding the effects of each

side of the box according to (9.13) is valid.

Overall, the experiments show that the calibration scheme greatly improves

tracking performance. Our approach has several advantages including a relatively

quick calibration time and ease of implementation, i.e. the skin patches can already

be mounted on the robot. The behavior can also be tailored to individual pHRI

preferences: for example if a new user is not satisfied with performance, the scheme

can be re-calibrated according to their own preferences represented by the reference

trajectory xr and the task model D(s). On the other hand, it can also be seen that

the user had difficulty reproducing the desired trajectory with high fidelity. This is
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Figure 9.9. Cartesian trajectory tracking using calibrated and uncalibrated filter
weights. One trial consisted of moving the tactile box three loops around the square
and three loops around the diamond shape.

due to the fact that the sensor density in our experiment was low, represented by a

single taxel per skin patch.

9.6 Conclusions and Future Work

In this paper we proposed a novel algorithm for adaptive calibration of robot

skins by directly tuning admittance models that map voltages into desired robot mo-

tion. An inner-loop neuroadaptive controller then follows the generated model trajec-

tory. The advantages of our approach are the high degree of generality and adaptabil-

ity to different robots, human preferences, and sensors. The robot skin admittance

model of each skin patch Ai(s) are learned using an adaptive inverse algorithm imple-

mented as a linear least square regression in order to satisfy H(s)R(s)A(s) = D(s),

where H(s), R(s) are unknown human and sensor transfer functions, and D(s) is a

nominal task model.

Experimental results with the PR2 robot holding a sensorized tactile box show

that admittance filter weights converge relatively quickly. Once each sensor patch has
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Table 9.2. Tracking performance when following square and diamond shapes. Each
trial (consisting of three loops) was performed using calibrated (C) and uncalibrated
(U) filter weights.

Trial

Square Diamond

Error (m) Time (s) Error (m) Time (s)

C U C U C U C U

1 0.52 1.02 32.9 39.5 0.82 1.09 41.3 50.4

2 0.70 0.89 36.2 52.1 0.76 0.96 39.2 49.5

3 0.53 0.88 34.5 49.7 0.74 0.89 40.2 50.4

been calibrated, the nominal task model can be removed as there are no restrictions on

the motion that the human can impose. Results show that the tuned filters perform

better at tracking reference trajectories than the uncalibrated ones.

Future work includes validation of our approach with denser arrays of tactile

sensors embedded onto larger areas of the robot. More experimental results with non-

expert users and more general 3D trajectories will be undertaken. Finally, nonlinear

regressors will also be studied in place of a linear ARMA filter to account for nonlinear

skin responses.
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10.1 Abstract

The importance of tactile sensing for physical Human-Robot Interaction (pHRI)

and dextrous manipulation is well-known in robotics. SkinSim provides a simulation

environment for multimodal robot skin which can address design problems for whole-

body tactile sensor arrays. In this paper, scalable modeling approaches are presented

for simulating pressure-sensitive skin patches, with consideration of the sensing ele-

ment geometry and mechanical structure, signal quality, data processing, and force

controller. The novel open-source simulation architecture of SkinSim is compatible

with Gazebo and ROS environments and supports both robot skin dynamic models,

as well as tactile sensing element models. A force dispersion model was introduced

for the simulation of sensors embedded in a mechanical damping layer. Simulation

examples of robot skin with different tactile resolutions, signal noise, and time de-

lays are presented and design choice impact on simple pHRI controller performance

is evaluated. Performance measures include center of pressure estimation errors and

control signal rise and settling time, overshoot, and steady state error.

10.2 Introduction

With more and more robots being introduced into human environments, phys-

ical Human-Robot Interaction (pHRI) has become essential for high performance

collaborative tasks. Assistive and cooperative robots must be able to anticipate and

sense interactions with users. This can be enabled by robot skin, which provides

the robot with sense of touch [16]. Information from tactile sensors or tactels, such

as force location and magnitude during collisions and interactions, can be used with

reactive controllers for improvements in safety [172]. Feedback from the tactile sen-

sors can also be used for human intent prediction and execution of behaviors such

185



as robot guiding during a collaborative task. Besides safer and more efficient pHRI,

robot skin can help coping with human environments which are highly dynamic and

unstructured in nature [173]. For dexterous manipulation, the sensors can be used

to determine physical properties through interactions, such as surface roughness and

hardness, vibrations, temperature, and moisture [174]. This information can be used

in tactile-sensing-based algorithms that are able to deal with uncertainty in object

location and shape [175].

Despite the importance of robot skin, several technological challenges related

to scaling, calibration, networking, and integration still have to be overcome. Dahiya

et al. [176] provide a survey of current transduction methods and challenges in whole-

body sensing for robotics. They hypothesize development of tactile sensing has been

slow due to the absence of any tactile analog to the CMOS optical array. A system

on chip (SoC) or system in package (SiP) approach that would process and send

data at the same site could reduce the amount of wires. Since it is generally

expensive to develop and test new hardware, realistic simulators are important tools

for tackling and solving such issues in an efficient manner. Finite element (FE)

modeling has been used for designing robot skin that is suitable for natural human-

robot interaction [177]. However, FE methods are inadequate for evaluating the

performance of an entire human-skin-robot system, including control performance as

a function of sensor placement and tactile density.

Although many robot simulators are available, including Microsoft Robotic Stu-

dio [178], MORSE [179], V-REP [180], and Gazebo [181], the simulation of robot skin

in these environments is still in its infancy, and mostly interact through rigid contacts

and kinematics solvers since they are suitable for open kinematic chains. RobWork-

Sim [182] and OpenRAVE [183] both support tactile sensing and utilize ODE (Open

Dynamics Engine) to estimate point forces for grasp analysis and generation. ODE
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Figure 10.1. Robot skin with skin patches that process and send data. To model
tactels embedded in a solid polymer, the skin dynamics are simulated as a layer
of mass-spring-damper (MSD) systems while the sensed force is generated from a
separate tactile model.

is a popular open source physics engine for solving rigid body dynamics and collision

detection [184]. Object interactions are simulated with an impulse method and are

constraint-based. The collision detection system utilizes a multi-resolution hash ta-

ble, where the time complexity of intersection testing of n objects scales with O(n) as

opposed to O(n2). ODE can handle many collisions and is highly scalable. Ashley-

Rollman et al. [185] have demonstrated simulations with several million objects and

managed to run simulations 108x faster with a multithreaded version of ODE.

In 2014, SkinSim was introduced as an open-source simulation environment

for multimodal, compliant robot skin [52]. Its purpose is to study the impact of

sensor type, placement, noise, and networking on the performance of robots. The

idea of multimodality is combing multiple sensors, thereby providing the robot with

more information about the interaction. SkinSim is built on top of Gazebo and

ODE, which is one of several compatible physics engines [181]. It is also closely
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integrated with the Robot Operating System (ROS) [102]. First simulations suffered

from solver instabilities whenever the number of elements exceeded 100. Hollis et

al. experienced issues with “high-frequency oscillations in the contact force signals”

when using SkinSim 1.0 to validate their compressed sensing techniques for large-

scale tactile data acquisition [186]. The initial software release included features for

auto generating models and batch execution of experiments, however features such

as automated data collection and experiment testbed generation were missing.

Two years after its initial release, SkinSim 2.0, the simulator reported in this

paper, has seen a major overhaul and several enhancements to make it a truly robot

skin design tool with automated performance assessment. Tactile surfaces are mod-

eled in a manner reflecting deployed robot hardware that can be customized in layers

(Fig. 10.1a). The robot skin is discretized into skin elements modeled by mass-spring-

damper systems (Fig. 10.1b), which was motivated by experimental results from a

testbed for robot skin characterization [187]. As depicted in Fig. 10.2a, robot skin

was placed on a flat surface and vertical controlled forces were applied with a plunger.

This setup provides standardized conditions for force control tests performed on dif-

ferent skin materials and configurations. SkinSim 2.0 replicates the testing process

in software for the purpose of skin design prior to prototyping and experimentation.

In this paper, we describe the new SkinSim framework and discuss its improved

features such as force dispersion, signal noise, and time delays, as well as an experi-

mental testbed for automated data collection while testing different model and control

parameters. SkinSim 2.0 enables stable simulations with a larger number of skin el-

ements (more than 100) by introducing a hierarchal model structure with so-called

subplanes. Also, the user can prioritize between simulation accuracy and speed by

adjusting configurable parameters such as physics engine solver iterations and step

size. In total, the new version provides 39 model, 9 control, and 3 simulation param-
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(a) Real world

(b) Model

(c) Simulation

Figure 10.2. Characterization and modeling of tactile sensors embedded in a su-
perficial damping layer using (a) a controlled force plunger, and the equivalent (b)
dispersion model and (c) simulation in SkinSim.

eters that the user can adjust1. A case study is presented where the performance of

a closed-loop pHRI controller for robot skin is evaluated, considering the influence of

different skin parameters such as tactel size and separation.

The paper is organized as follows: Section 10.3 provides an overview of modeling

approaches for robot skin, as well as experimental model verification. The SkinSim

system architecture and several updates are described in Section 10.4. Sections 10.5

outlines simulation results for several sensor array configurations. Finally, Section

10.6 presents conclusions and future work.

1These are listed and described in the configuration files available at https://bitbucket.org/

nextgensystems/skinsim.
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10.3 Modeling of Robot Skin

The purpose of SkinSim is to realistically model robot skins, while being flexible

enough to handle several types of sensors and different types of interactions. Dynamic

simulations have to be scalable such that simulated robots can be covered in skin

patches. In this section we describe different modeling approaches and components of

SkinSim 2.0, including sensing elements, geometry and mechanical structures, signal

quality, and data processing.

In a survey of tactile human-robot interaction, Argall et al. [16] present several

multimodal devices for detecting human touch, e.g. they measure pressure, temper-

ature, or distance between humans and robots. As a simulator for multimodal skin,

in its final version, SkinSim will support different types of sensing, including con-

tact (location, area, duration), force magnitude and direction, pressure, temperature,

infrared (IR), and acceleration. The Gazebo robot simulator supports a multitude

of sensors via so-called plugins [181], which makes it ideal for SkinSim. Version 2.0

includes a major overhaul and improvements to the sensing systems by taking advan-

tage of the Gazebo plugin architecture. However, the primary focus is still on contact

sensing, in particular center of pressure, force magnitude, and direction.

In general, there are two approaches for covering a robot in sensorized skin. The

3D-curved surfaces can be divided into planar subsurfaces. This is the most common

approach, and includes rigid as well as bendable sensors [188]. Another option is

covering the entire surface with elastic, stretchable sensors forming a continuous sur-

face [189]. To be compatible with these different approaches, SkinSim discretizes the

skin into small, spherical skin elements, as depicted in Fig. 10.1b. This allows approx-

imation of continuous surfaces as well as planar subsurfaces. In addition, stretchable

skin can be modeled by including mass-spring-damper systems between the elements

in the 2D manifold (however this feature is not available in this simulator version).
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Using spherical skin elements reduces the amount of contact points and simplifies

collisions with the simulated environment.

10.3.0.1 Skin Elements

Modeling each skin element as a mass-spring-damper allows for simulation of

soft contact interaction without modeling the actual deformation of bodies. If a body

comes in contact with the skin array, then the force applied on element i results in

displacement xi(t) determined by the dynamic equation

fa(i) = kxi + bẋi +mẍi (10.1)

where k is the spring constant, b the damping coefficient, and m the mass. Since the

elements are relatively small, the term mẍi ≈ 0 and can generally be neglected. The

total force exerted on a skin array with Ne elements is simply the summation of the

individual forces:

Fa =
Ne∑
i=1

fa(i) (10.2)

By defining each skin element as a prismatic joint, the skin is able to “deform”

and the nominal skin boundary can be penetrated. In this way, rigid body solvers

such as ODE can still be used to accurately model the contact of skin. This approach

is computationally efficient, easily parallelized, and can be experimentally validated.

10.3.0.2 Tactile Elements

To emulate tactile sensors, subgroups of these spherical skin elements are se-

lected. For example, in Fig. 10.2c the tactile size is 3× 3 elements (marked red) and

the tactels are 3 skin elements apart. This provides flexibility to define a variety of
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sensor shapes and resolutions. Sensor readings are generated by combining element

forces into a sensed force determined by the skin model. The force sensed can be

some nonlinear function of the forces applied on the tactel due to force dispersion,

noise, etc. If I(j) is a list of element indices that are included in tactel j, then the

force sensed by the tactile sensor is

Fs(j) =
∑
i∈I(j)

fs(i) (10.3)

where fs(i) is determined by the tactile model.

10.3.0.3 Skin Layer

In addition to data acquisition, robot skin serves as a mechanical damping layer

that can absorb collisions. If the transduction layer is placed on top of the damping

layer, the response time is faster while the underlying layer still provides sufficient

damping [190]. However, this requires a robust sensor layer that tolerates impacts

and is generally more difficult to manufacture. Another possibility is to embed the

tactile sensors within the damping layer (Fig. 10.2b). This protects the sensors but

reduces the sensitivity and the spatial resolution. The sensitivity can be improved by

reducing the material density and introducing air gaps. This reduces the deformation

energy and can also serve as mechanical filtering. For example, geometrically defined

voids allow easier compression of the material and prevent the force from spreading

throughout the damping layer [190].

For the simulation results presented in this paper, the tactile sensors were as-

sumed to be embedded in a polymer. A dispersion model is proposed that describes

how forces spread from the point of force application to adjacent tactels. When a

force is applied, the material damping layer tends to spread laterally. As a result, the
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Figure 10.3. Modeling of force dispersion caused by the robot skin dampening layer.
Every skin element (blue dot) applies a Gaussian force distribution (top), which are
summed to obtain the total force profile (bottom).

sensors lose sensitivity and measure a force smaller than the one applied. At the same

time, tactile sensors adjacent to the object in contact are also activated (Fig. 10.2b).

The relationship between the tactile reading and the distance between plunger cen-

ter and tactile sensor follows a Gaussian distribution, which can be characterized for

different materials and thicknesses [187].

In SkinSim, this is modeled by multiplying the individual applied forces fa with

Gaussians, which can be summed to obtain the total force measurement as depicted

in Fig. 10.3. This is described by

fs(i) =
Ne∑
k=1

Kd α(Dik )fa(k) (10.4)

where Kd is a constant, matrix D ∈ ZNe×Ne stores the distance between each element

pair, and α(x) is a Gaussian distribution with mean µd and standard deviation σd,

α(x | µd, σ2
d) =

1

σd
√

2π
e
−(x−µd)

2/2σ2d (10.5)
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Figure 10.4. Comparison of actual and predicted sensed force through a spring-
damper model for 4mm Frubber skin [187].

10.3.1 Experimental Validation of Skin Models

Parameters and data fit confirming a mass-spring-damping model were ob-

tained from experiments with robot skins described in [187, 191]. These consisted

of piezoresistive Tekscan FlexiForce sensors embedded in Silicone elastomers or Frub-

ber, a spongy elastic polymer that mimics human skin. The skin samples were loaded

with a force controlled plunger that can apply a desired force. The sensors were

covered in 4 mm thick Frubber and persistently exciting force inputs Fa were applied

while recording the sensed force Fs. A second order model identification was carried

out using the MATLAB System Identification Toolbox and the model parameters

shown in Table 10.1 were extracted. In Fig. 10.4, the measured sensed force from

pseudo-random deformation input was compared to the spring-damper model out-

put. The mean-squared error between the measured and predicted sensed force was

0.520 N, or 15.5% [187]. The error is highest at low sensed forces, but is relatively

small at the peaks (above 4 N applied).
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Experiments for modeling the force spread were also conducted by applying the

plunger in varying locations on an embedded array of tactels with diameter 1 cm each,

placed 1.4 cm apart. Fig. 10.5 shows the response from a single tactel as the plunger

force and distance from the tactel center vary. Gaussian data fit matching the model

in (10.5) can be extracted from this data with R2 values above 0.96 [187].

10.3.2 Signal Quality

The performance of real tactile sensors is negatively impacted by noise. The

signal-to-noise ratio (SNR) is crucial for factors such as accuracy, resolution, and the

range of measurement. Noise can also have a negative effect on collision detection,

the control loop, etc. Therefore, incorporating noise into SkinSim is important to

model and to accurately predict robot behavior in a real environment.

In general, transducer noise is a function of material and sensor design (piezo-

electric, capacitive, etc.). It can be reduced through different filtering methods, but

also by changing structural design parameters such as sensor size, density, and skin

thickness. There are different types of noise such as thermal, shot or low frequency,

flicker or quantization, burst, and transit-time noise as well as coupled noise such as

crosstalk and interference [192]. In the simulation environment, these can be com-

bined into a single white Gaussian noise channel. Gaussian noise N was added to

each tactile sensor, scaled to be inversely proportional to
√
Ns, where Ns is the num-

Table 10.1. Model parameters for 4mm thick Frubber skin [187].

Coefficient Mean Std. Dev.

b1 [Ns/m] 242.6 3.03
k1 [N/m] 1523 82
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Figure 10.5. Tactel force sensed at varying distances (1 to 10 mm) from tactel cen-
ter in 4mm Frubber skin [187]. Each line represents a different deformation depth
proportional to the force applied.

ber of skin elements making up the sensor. If Zj denotes the noise for tactile sensor

j, then

Zj ∼ KnN (0, σ2
n)/
√
Ns (10.6)

where Kn is a constant, the mean is zero, and σn is the standard deviation of the noise.

This scaled noise model was inspired by [193] with the following assumptions: The

sensors are piezeoresistive, operate at a relatively low frequency, and the input voltage

is large with respect to the thermal voltage. Therefore, flicker noise will dominate

over thermal and Johnson noise. For this case, Bae et al. [193] demonstrated that

the SNR is proportional to the square root of the number of carriers, which in turn is

proportional to the side length l for a square sensor. In other words, Zj is inversely

proportional to l. For a constant skin resolution and square sensor, this length is

given by
√
Ns.

10.3.3 Data Processing

SkinSim aims to simulate large tactile sensor arrays that cover large surfaces

of robots. As a result, it needs to incorporate information such as sampling rate
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and time-delays from the skin patches to the robot controller. Ideally, an SoC/SiP

approach should be used where the individual tactile elements process and send data

at the same site (Fig. 10.1a). SkinSim can be used to simulate the throughput by

processing data at different levels and using serial or parallel transmission approaches.

The sampling speed depends on the sensor quantity and performance characteristics,

control circuitry, and the bus communication speed. In this paper, a serial approach

was simulated with the time for scanning a sensor array being proportional to the

number of sensors

Ts = KdataNt (10.7)

where Ts is the maximum controller update rate, Nt is the number of tactels, andKdata

depends on the number of bits used to represent tactile data and the bus speed [194].

Instead of transmitting raw data, a skin patch could pre-process the data by

computing the resultant force and Center of Pressure (COP). For a planar patch, the

force sensed in (10.3) is normal to and acting at the center of the tactel j. A force

weighted COP can be calculated using the sensed forces aggregated for all tactels

~COPs =

∑Nt
j=1 Fs(j)~cj∑Nt
j=1 Fs(j)

(10.8)

where ~cj is the vector to the center of tactel j and Fs(j) is the force sensed by tactel

j.

10.4 Description of Simulator

This section provides a brief architectural overview of the SkinSim 2.0 simulator,

including structural changes and new functionalities. The block diagram in Fig. 10.6

shows the design and testing process of new robot skin. The first step involves mesh
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manipulation and model generation to create the skin array SDF model files. These

are fully autogenerated, however sensor placement still requires external 3D CAD

design software tools such as Solidworks and Meshlab. Next, the SDF files are loaded

into a Gazebo/ROS environment for automated testing with different control schemes.

New user interfaces (UIs) display the data in RVIZ, a 3D visualization tool part of

ROS. All these functionalities are part of the following software components:

• Model, Control Specs: New parameters specifying the array size, tactile density

and model structure, tactile data communication design, experiment setup, etc.

• Model Builder: Generates SDF skin and world models from a configuration

file. The Gazebo world includes an experiment testbed with a force controlled

plunger.

• Gazebo plugins: New plunger controllers for testing closed-loop pHRI. Pseu-

docode for the new robot skin model is shown in Algorithm 1.

• Auto Generator: Generates test cases for different combinations of model and

control parameters.

• Auto Calibrator: Computes calibration constant for the sensed force at steady-

state.

• Auto Experimenter: Runs the generated test cases.

• SkinSim ROS: For 3D visualization and data collection.

10.4.1 Stability and Scalability

The robot skin model is defined in a Gazebo plugin. In version 1.0, there were

two separate plugins for skin and tactile elements that were modeled in two separate

layers. Since the tactile sensors are usually much stiffer than the mechanical damping

layer, the tactile layer was removed and the dynamics were integrated into the skin
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Figure 10.6. The updated data flow diagram for SkinSim 2.0 based on [52].

layer. The new tactile elements only function as sensors and do not require any

dynamic modeling, thereby reducing the amount of computations during contact.

The new auto generator creates skin models with a hierarchal model structure.

Previously, each skin array model consisted of a single plane (parent) connected to all

spheres (children) via prismatic joints. If a parent had too many children, numerical

errors in the dynamic solver would introduce instabilities. This is related to how ODE

reduces computational complexity by grouping models into “spaces” [195]. In version

2.0, we limit the number of children per parent by introducing so-called subplanes that

have no mass and collisions. To make the simulations more stable and numerically

robust, the generator also sets parameter such as Constraint Force Mixing (CFM)

and Error Reduction Parameter (ERP), described in [195]. In the configuration file,

the user can also adjust the physics engine step size and solver iterations to prioritize

between accuracy and simulation speed.

The scalability of SkinSim relies on the ODE physics engine. Under the as-

sumption that the number of skin elements in contact with the environment (Nc)
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Algorithm 1 Iteration update for Skin plugin
1: while simulation is running do
2: . ODE computes dynamics, contacts
3: . Reset variables
4: for each skin element i do
5: Get xi, ẋi from ODE joints
6: fa(i) = kxi + bẋi +mẍi

7: for each skin element i do
8: if i is in collision then
9: for each k with Dik < threshold do

10: fdist = Kd α(Dik) fa(k)
11: fs(i) = fs(i) + fdist

12: for each tactile element j do
13: for each i in I(j) do
14: Fs(j) = Fs(j) + fs(i)

15: Fs(j) = Fs(j) +KnN (0, σ2
n)/
√
Ns

16: . Publish Fs

is constant, the time complexity of the simulation is O(Ne), where Ne is the total

number of skin elements. This is because both the hash table method used for colli-

sion detection [195] and the first order Euler integrator are O(Ne). The collision and

friction model is based on linear complementarity problem, which is of polynomial

time complexity. However, the collision and friction model is only applied on the skin

elements in contact with the environment and not on the total number of skin ele-

ments. Hence this simulation method is scalable in linear time provided Nc remains

the same.

10.4.2 Setup for pHRI Testing

Skin performance testing was conducted for different tactile densities with

closed-loop force control. To test influence of different robot skin properties, the

performance is evaluated by measuring the response after applying a force with the

plunger. The plunger emulates human contact with the robot. Since the skin is at-
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tached to a fixed test bed, the feedback from the skin patch is used to control the

plunger. This simulates moving the robot limb in response to a human force measured

by the skin patch.

Prior to running the experiments, the tactile sensor patches need to be cali-

brated. To achieve this, a known force Fa is applied to the center of the skin sensor

grid using the plunger and a linear calibration constant Kc for the total sensed force

can be calculated across all patch tactels according to

Kc =
Fa,ss∑Nt

j=1 Fs,ss(j)
(10.9)

in which the subscript ss represents the steady state measurement. After calibration,

an estimated applied force F̂a is calculated from

F̂a = Kc

Nt∑
j=1

Fs(j) (10.10)

and used in the closed-loop force controller.

SkinSim 2.0 includes different types of closed-loop controllers for pHRI: an

impedance [52] and two explicit force controllers (force-based and position-based) [39].

To simulate the influence of measurement time delays, a digital implementation using

a zero-order hold was applied to the control signal in-between updates from the sensor

patch. In this paper, we describe results based on a digital PI force controller. The

plunger control input is given by

Fc[k] = 2Fc[k − 1]− Fc[k − 2] + (Kp +KiTs)Fe[k]

− (2Kp +KiTs)Fe[k − 1] +KpFe[k − 2] (10.11)
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Figure 10.7. Force response from a 24 × 24 skin patch with an element diameter of
1 mm. Both the tactile size and separation is 3 elements wide.

where Kp is the proportional and Ki the integral gain [39]. The error signal is Fe =

Fd − F̂a, given a desired force value Fd. Sampling time Ts is adjusted as in (10.7).

10.5 Simulation Case Study

This section describes simulation results quantifying robot skin performance

as a function of sensor resolution. To investigate the influence of scaling, the auto

generator was used to perform tests with different tactile sizes and densities. The

simulated square skin patches were 5.76 cm2 in size, with square tactile element sizes

between 1 and 4 mm. The skin elements were set to 1 mm diameter size, organized

in an array of 24× 24 elements. The cylindrical plunger diameter of 1 cm resulted in

approximately Nc = 93 contact points during testing. The reduced-order dispersion

model parameters in Table 10.1 were normalized with respect to the number of skin

elements in contact with the plunger,

k =
k1

Nc

, b =
b1

Nc

(10.12)
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(e) COPerr due to a plunger
offset
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(f) Steady-state error due to a
plunger offset

Figure 10.8. Experiment results for different tactile sizes and separations.

producing a stiffness of 16.37 N/m and damping coefficient of 2.61 N s/m. However,

to obtain longer settling times and clearly observe the effects from the parameter

variations, the damping coefficient was decreased by a factor of 20 to 0.13 N s/m.

The element mass was set to 1 g. A force dispersion scaling factor Kd = 0.159,

µd = 0, and σd = 0.01m were used in (10.5).

The plunger mass was set to 1 kg with gravity influence turned off and the

desired force Fd was set to 2 N. The PI controller gains were fixed at Kp = 2 and Ki =

20, with a controller update rate given by (10.7) and Kdata = 0.0001, corresponding

to a sampling frequency of 100 Hz for 100 tactels. For high accuracy and stability,

the simulation step size was set to 0.1 ms and the physics engine solver iterations

between 500 and 1000. Due to the computational complexity, the simulations were

not performed in real-time, but at a slower rate of approximately 1:200 (a high-end

desktop computer with an Intel Core i7-4790K processor was used). A one-second
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simulation for the model with 576 skin elements took approximately 220 s depending

on the solver iterations.

Both tactile size and separation were varied from 1 to 4 mm (e.g. 1 to 4 skin

elements) while keeping the controller settings fixed. The results are summarized in

Table 10.2, while a typical force response is shown in Fig. 10.7. The control signal

results in the actual force Fa, however the tactile sensors measure Fs multiplied with

the calibration constant Kc.

First the auto calibrator was executed, which simulates the experimental testbed

and computes Kc according to (10.9). As shown in Fig. 10.8a, the calibration con-

stant increased with tactile separation and decreased with tactile size. Larger Kc

values indicate that a smaller tactel area was in contact with the plunger and hence

the sensed force was smaller. The consequence of a larger force calibration value is

more noise being fed into the controller since the noise is being multiplied with Kc

according to (10.10). More importantly, as the tactile size becomes larger, the SNR

of each sensor increases due to the scaling by the factor
√
Ns as explained in Section

10.3.2. This effect can also be seen in the SNR of F̂a, as depicted in Fig. 10.8b, which

increases with tactel size. Hence the noise per sensor decreases with increasing tactel

size according to both the model in (10.6) and the simulation results. The tactile sep-

aration has only a small, indirect effect where large separations increased Kc which

in turn influenced the SNR. This behavior can also be seen in Fig. 10.8b. Hence, to

minimize measurement noise, the tactel size should be large and the tactel separation

plays only a minor role.

The effect of larger numbers of sensors on the controller performance was mod-

eled by increasing the controller sampling time according to (10.7). As the number

of tactels increase, and therefore, Ts increases, the controller signal responds slower

to changes in the measured force. This results in larger magnitudes of the control
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signal. Hence, a robot would have to exert larger control efforts to compensate for

slow feedback from the skin. If too large, a robot manipulator could start oscillating

during pHRI. Hence, larger overshoots are undesirable for force control applications

that arise in pHRI. The overshoot values in Fig. 10.8d confirm that as the num-

ber of tactels increase, the controller performance degrades. The worst performance

(104% overshoot, 17.6ms rise time) occured with tactile size 1 and separation 1, cor-

responding to 144 tactels. Therefore, if force controller metrics are important design

requirements, a better performance is achieved with coarse skin resolutions. It was

also observed that more sensors resulted in longer settling times, although the differ-

ence was less than 2ms for Ns ≤ 36 with two exceptions. The configurations with

144 and 64 tactels did not reach the ±0.5% settling threshold within the 1 s simula-

tion time (see Table 10.2). Also, for these two configurations the controller became

unstable when adding white Gaussian noise. Hence, no sensor noise was injected into

the measurements when evaluating the performance of the controller.

A COP estimation error can be calculated with respect to the applied plunger

force

COPerr = mean(|| ~COPs − ~COPa||2) (10.13)

where err, s, a stand for error, sensed, and actual. The maximum COP position

error, which was calculated with plunger offsets in x-direction with a size of half the

separation, tends to increase with an increase in tactile size or separation, as shown

in Fig. 10.8e. Therefore, if COP and resultant force direction is an important design

parameter for the robot, the finest resolution skin would yield best COP estimation.

From Fig. 10.8f, we can conclude that the steady-state error increases with increasing

separation, but there is no identifiable relation to tactel size.
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Table 10.2. Experimental results for different skin arrays.∗

Sz Sp Ns Ts Kc RT ST OS SS COPerr SNR
(ms) (ms) (ms) (%) (%) (mm) (dB)

1 1 144 14.4 4.01 17.6 - 104 0.33 0.31 21.0
1 2 64 6.4 8.85 19.6 - 30 0.46 0.83 19.8
1 3 36 3.6 18.3 21.0 70.7 20 0.28 0.43 16.2
1 4 25 2.5 25.3 21.1 70.9 18 0.12 1.50 15.0

2 1 64 6.4 2.25 19.6 69.7 26 0.13 0.52 37.0
2 2 36 3.6 4.27 21.0 70.9 20 0.18 0.99 33.8
2 3 25 2.5 6.84 21.7 71.3 18 0.46 1.89 32.0
2 4 16 1.6 6.74 21.9 71.3 17 0.85 2.64 34.1

3 1 36 3.6 1.84 20.8 70.7 20 0.15 0.34 44.6
3 2 25 2.5 2.88 21.4 71.0 18 0.15 1.61 43.2
3 3 16 1.6 3.34 22.2 - 15 1.37 2.30 43.4
3 4 16 1.6 4.27 21.6 71.1 18 0.12 3.70 41.3

4 1 25 2.5 1.61 21.4 - 22 0.08 0.77 40.7
4 2 16 1.6 1.94 21.8 71.3 17 0.54 3.07 50.9
4 3 9 0.9 4.04 22.5 71.6 16 0.49 3.61 46.6
4 4 9 0.9 5.14 22.7 71.7 15 0.01 3.85 44.4

* Sz (size), Sp (separation), Ns (number of tactile sensors), Ts
(controller update rate), Kc (calibration constant), RT (rise
time), ST (settling time), OS (overshoot) SS (steady-state
error) COPerr (center of pressure position error), and SNR
(signal-to-noise ratio).

10.6 Conclusions and Future Work

This paper describes SkinSim 2.0, an open-source simulation environment for

multimodal robot skin available at http://bitbucket.org/nextgensystems/skinsim.

It is a useful tool for designing large tactile sensor arrays, which are necessary for

safe pHRI. State-of-the-art robot skin (hardware and software) still face several chal-

lenges and development has been slow. New system approaches and a tactile analog

to the CMOS optical array could be the breakthrough that robot skin needs. SkinSim
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is aimed at addressing the design questions in a simulation environment, with con-

siderations of geometric, mechanical, data acquisition, calibration and force control

parameters that minimizes time and cost involved with prototyping.

Our approach has the advantage of being able to simulate robot skin in a multi-

robot environment as opposed to some other methods such as finite element analysis.

Detailed discussion about sensing elements, geometry and mechanical structures, sig-

nal quality, and data processing clarify certain requirements for the simulator. Skin-

Sim 2.0 has the flexibility to handle several types of sensors and different types of

interactions while maintaining computational efficiency and accuracy. Several up-

dates to the system architecture are presented, in particular the robot skin dynamics

and the tactile sensing modeling. The users are also given more control over the

model and simulation parameters.

A case study is presented in the paper to demonstrate the usage of SkinSim,

which addresses the effects of the skin parameters on the pHRI performance. From

these preliminary numerical experiments, we can conclude that on planar surfaces, the

highest performance skins from a force control perspective are the coarsest. When the

measured center of pressure (COP) and direction of applied force are important, the

highest performance skins require the finest resolution, with force control performance

tradeoffs.

Future simulator development plans involve integrating new sensor models such

as accelerometers, infrared, and thermal sensors. Higher order solver for ODE to im-

prove stability and simulation speed will also be explored. The simulator will provide

the modeled noise signal so that noise from the model and numerical errors can be

clearly distinguished. Although SkinSim exclusively uses ODE physical engine for the

moment, use of other physics engines is a possibility. However, this requires modifica-

tions that will be included in a future version of SkinSim. Additional improvements
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will include generalizing features such as the calculation of COP to non-planar skin

patches. Finally, we will deploy whole-body skin patches on simulated 3D robots such

as the PR2.
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CHAPTER 11

SkinLearn

The SkinLearn software library was created by Ranatunga for “multi-modal

skin based Human-Robot Interaction learning, estimation, and control”1. Its pur-

pose is to provide base and pHRI functionality as C++ classes that can be used by

other applications. My contribution include several ROS based packages for general

robot functionality, originally developed in connection with the 2015 Amazon Picking

Challenge (APC) [73]. The overall system architecture is shown in Fig. 11.1 and the

following are some of the initial software packages:

• apc cortex : Contains state machine nodes for advanced behaviors.

• apc msgs: Defines custom ROS messages and services.

• apc robot : Classes with ROS API for moving the head, base, torso, grippers, and

arms.

• apc json: Reads json files and makes the data available via ROS API.

• apc marker : Detects and publishes the pose of QR markers.

• apc object detection: Interacts and handles data from the Object Recognition Kitchen

(ORK).

• apc pcl : Manipulates and filters raw point cloud data.

• apc shelf : Tools for detecting and localizing a shelf and individual bins.

• apc vacuum: Controls vacuum suction cups and reads pressure data via a serial com-

munications channel.

• apc simulator : Launches Gazebo simulation environments for testing.

• apc workspace: Scripts and configuration files for setting up the APC workspace.

1https://bitbucket.org/nextgensystems/skinlearn
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Figure 11.1. The APC architecture for general robot functionalities, which now is
part of the SkinLearn library.

Over time, the APC code has evolved naturally into more generalized packages

and support several robotic platforms such as Baxter, youBot, and PR2. There is

also support for several HMIs, such as tablet teleoperation and physical guidance.

The simulation launch files are useful for safe and easy testing of algorithms inside

virtual environments.

Another important contribution are the Intelligent Control and Estimation Li-

brary (ICE) packages, which contain the controllers and human intent estimators

presented in previous chapters. They also include programs for reading tactile sensor

data and robot skin calibration. Most of the code was developed for the PR2 real-time

controller, but header files, for example containing the neuroadaptive controller, can
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be imported and used by new applications. The following are some of the packages I

have created:

• ice robot controllers: Contains the neuroadaptive controller as well as inner/outer

loop control structures.

• ice msgs: Defines custom ROS messages and services, for example for data collection.

• ice experimenter : Provides a keyboard interface for tuning controllers and conducting

pHRI experiments. Communicates with the robot controllers for automatic data

collection.

• ice sensors: Tools for reading and visualizing tactile sensor data.

The SkinLearn library also includes my MATLAB scripts for processing ROS topics

and bags. To record experiment data from the PR2 real-time loop, it first has to be

saved in a memory buffer, then published to a ROS topic, and finally saved to a BAG

or CSV file.

SkinLearn will always be in a development stage and continue to evolve over

time as NGS members and other researchers add their contributions.

Figure 11.2. The SkinLearn logo.
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Part V

Conclusion and Future work
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CHAPTER 12

Summary

The research contributions of this thesis encompass the following four topics:

(i) Investigation and evaluation of state-of-the-art co-robots and their interfaces, (ii)

validation and expansion of an online, model-free NN controller with stability proof,

(iii) improvements of pHRI utilizing a two-loop neuroadaptive control architecture,

and (iv) the development of new open-source software tools for HMIs and pHRI. In

the first part, different co-robots and interfaces were tested and the importance of

pHRI was demonstrated. Three controller design principles for pHRI led to the main

research contributions presented in Parts II and III:

1. Safe and stable interaction with neuroadaptive (NA) control.

2. Intuitive error dynamics that behave like a simple admittance model using:

(a) Prescribed Error Dynamics (PED) in the NA controller.

(b) An inner/outer-loop structure with a prescribed task and admittance model.

3. Efficient pHRI by reducing the human effort with a human intent estimator

(HIE).

The inner/outer-loop control structure designed in this thesis work allows a high de-

gree of generality and adaptability to different robots, sensors, human preferences,

and tasks. In addition, the architecture offers a novel algorithm for adaptive cali-

bration of robot skins by directly tuning admittance models that map voltages into

desired robot motion. Several software tools were developed for both simulation and

implementation of different HMIs and pHRI, as well as data processing (as described
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in Part IV). The following sections highlight results and conclusions that emerged

from this work, as well as future research directions.

12.1 Co-robots and their Interfaces

In Chapter 2, a Baxter co-robot was compared to a closely priced Denso in-

dustrial arm. Their position accuracy and completion times were measured in three

different experiments: A point-to-point, writing, and pick-and-place task. Results

showed that Baxter is well suited for less precise pick-and-place operations where low

position accuracy (> 2.8 mm) within 1.73 s is adequate. It can safely handle common

household-sized items in semi-structured environments. For higher precision, one still

needs industrial robots, but there are tradeoffs. Denso was better suited for applica-

tions that require higher position accuracy (< 1 mm) and velocity (> 0.3 m/s), but

require more complex setup (> 2.5 h) and safety restrictions. Since co-robots are

designed for pHRI, they can simply be programmed by demonstration using physical

or kinesthetic teaching.

A youBot was sensorized for increased autonomy and additional HMIs in Chap-

ter 3. A pick-and-place task was used to compare teleoperation and physical interfaces

for both expert and novice users. In summary, the physical interaction (mannequin)

guidance had similar task completion times as tablet teleoperation, resulted in the

most accurate trajectories for both expert and novice users, and was more intuitive

(i.e. required less training). The autonomous point-and-click interface had the fastest

completion times, but was less accurate and less reliable than user guidance. For fu-

ture work, testing could be performed with larger user groups and include training

time measurements.

It is difficult to make autonomous behavior fully reliable and therefore it is

reasonable to include a human operator in the control loop. The motivation for the
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work presented in Chapter 4 was a task that required a robot pushing a cart through

a crowded environment. A co-manipulation system was developed that allows the

human to guide the robot and leverages the human’s awareness and maneuvering

skills. The controller framework consisted of an admittance controller for compliant,

stable arm positioning and a velocity controller for smooth base movements. Joystick

and physical guidance was compared by asking a user to move a cart together with a

PR2 robot in a figure eight pattern. Results showed that physical guidance produced

smaller position errors and faster completion times than joystick teleoperation. To

summarize, physical HMIs provide a simple, intuitive way for operators to reliably

guide a robot. However, the controller gains had to be tuned manually based on user

preferences. This demonstrated the need for automatic tuning or adaptive controllers

for co-robots, which interact with different types of users in a multitude of tasks.

12.2 Neuroadaptive Control and Inner/Outer-loop Control Structure

Chapter 5 introduces the neuroadaptive (NA) controller and describes its imple-

mentation on a PR2 robot, a mobile co-robot with two 6 degrees of freedom and grav-

ity compensated robot arms. NA control was compared against default factory-tuned

PID control at different loading conditions and operating speeds, while measuring

mean joint tracking errors and control torques, as well as maximum force and impact

during collisions. Measurements confirmed that NA control is more accurate at high

joint velocities and when lifting objects of unknown mass. These are situations where

the robot dynamics becomes highly nonlinear and difficult to model. In addition,

the NA controller produced lower control torques and resulted in lower impact forces

during collision. Thus, the NA controller is inherently safer for pHRI and applicable

to co-robots.
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To facilitate intuitive pHRI, the NA controller was augmented with prescribed

error dynamics (PED) as presented in Chapter 6. New error terms and time-varying

auxiliary matrices were introduced and it was proven that the PED makes the robot

behave like a linear, fixed admittance model. This was motivated by the human

crossover model: A human adjusts their control characteristics to the dynamics of

the controlled element such that the total system remains unchanged. Thus, a highly

nonlinear machine like a co-robot becomes easier to interact with, if the dynamic

model is simple and constant.

In Chapter 7, intuitive pHRI was achieved utilizing an inner/outer loop con-

trol architecture. The robot-specific inner-loop contains the NA controller, which

linearizes the robot dynamics. The task-specific outer-loop alters the behavior of

the robotic system by modifying the reference trajectory with an admittance model.

This model was implemented with an autoregressive moving average (ARMA) filter,

which was tuned with recursive least squares based on a prescribed task model and

human intent. The approach was validated in several experiments comparing differ-

ent controller setups. A dimensionless squared jerk measure was used to evaluate the

performance and smoothness of the pHRI. The results confirmed that the adaptive

admittance controller with human intent estimation reduced jerk in the combined

human-robot motion. In addition, the controller framework had the advantage of

not needing any offline tuning and being robust to changes in both human and robot

dynamics.

The two-loop pHRI controller was further improved with a more advanced hu-

man intent estimator (HIE), as presented in Chapter 8. In the previous chapter, the

desired human trajectory was estimated using a simple integrator, which does not

fully capture human intent. The new approach utilized two NNs in the outer-loop to

predict human motion and estimate a reference trajectory that the inner-loop con-
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troller follows. The weight tuning laws were derived using Lyapunov stability analysis

and it was proven that the error signals and NN weight errors converge. The new

controller was implemented on a PR2 robot and its pHRI performance was evaluated

by measuring the dimensionless squared jerk, mean tracking error, and mean human

and robot effort in terms of force. Three different types of reference trajectories were

compared: The actual desired by the human, the estimated from the HIE, and a

model trajectory from the ARMA filter presented in Chapter 7. In addition, the

inner-loop NA controller was tested with and without prescribed error dynamics. Re-

sults confirmed that the novel NA controller combined with the HIE resulted in low

motion jerk and was able to reduce the human effort, thereby achieving efficient and

intuitive human-robot collaboration, making the controller well suited for co-robots.

In Chapter 9, a novel two-loop architecture was presented for efficient robot

skin calibration. The outer-loop contains tuned admittance models that map voltages

directly into desired robot motion, which the inner-loop neuroadaptive controller then

follows. Despite unknown human and sensor transfer functions, the robot behaves like

a linear admittance model and simplifies the pHRI according to the crossover model

described in Chapter 6. The methodology was experimentally validated with a PR2

robot holding a sensorized tactile box. Measurements revealed that the admittance

filter weights converged relatively quickly and that the overall tracking performance

was improved despite the use of cheap, noisy, nonlinear force-sensors.

Future research includes validation with denser arrays of tactile sensors embed-

ded onto larger areas of the robot. My work on tactile skin calibration with second

generation robot skin arrays (Fig. 12.1) will be continued by members of the Next

Generation Systems (NGS) research group headed by Professor Dan O. Popa. As of

this writing, a new Adaptive Robotic Nursing Assistant (ARNA) platform is being

developed with more powerful real-time hardware compared to the PR2. This would
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(a) The PR2 robot hold-
ing the new tactile box.

(b) Real-time tactile data visualized in
RVIZ.

Figure 12.1. Second generation robot skin mounted on a tactile box. There are 8 skin
patches, each consisting of 4× 4 individual sensors, which relay force measurements
to the robot real-time controller at approximately 150 Hz.

allow pHRI with faster controller update rates and larger neural networks in the inner

and outer-loops. The parameters of the NA controller and NN intent estimator could

be investigated in more detail, for example by using different weight update laws,

number of hidden layers, and activation functions. Future testing could involve more

complex tasks (compared to simple point-to-point motions) and include larger human

subject groups.

12.3 Developed Software Tools

The robot skin calibrated in Chapter 9 was an early prototype of whole-body

sensor arrays that might cover future co-robots. To facilitate the development and

characterization of such skins, SkinSim was created as a tool to address the design

questions in a simulation environment. It allows adjustments and testing of geomet-

ric, mechanical, data acquisition, calibration, and force control parameters, thereby

minimizing the time and cost involved with prototyping. Chapter 10 describes a

major overhaul of SkinSim, including new modeling approaches and a new simulator
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architecture. New tactile sensing modeling and tuning of the physics engine has im-

proved stability, allowing simulations of larger skin arrays. The usage of SkinSim was

demonstrated in a case study addressing the effects of sensor density (i.e. sensor size

and separation) on robot controller performance. Preliminary results show that the

highest performance skins from a force control perspective are also the coarsest. If

the center of pressure and point of contact are more important, then a finer resolution

is needed, but this comes with force control performance tradeoffs.

SkinLearn, briefly described in Chapter 11, implements general robot func-

tionality and advanced controllers for pHRI. The APC packages provide utilities for

several HMIs and ROS supported robot platforms. The Intelligent Control and Es-

timation (ICE) repository includes the NA controller, two-loop control frameworks,

and HIE presented in this thesis.

Git version control with public web-based hosting allows for easy sharing of

code and coordinated development among multiple people. Therefore, my software

has been published in two open-source repositories SkinSim and SkinLearn:

https://bitbucket.org/nextgensystems/skinsim

https://bitbucket.org/nextgensystems/skinlearn

Development will be continued by members of the NGS research group and potentially

by researchers who are interested in the algorithms. The SkinSim simulator roadmap

includes new sensor models, higher order solvers for the physics engine to improve

stability and simulation speed, and non-planar skin patches. Eventually, whole-body

skin patches will be deployed on simulated 3D robots such as the PR2. The NA

controller will be continued to be improved and deployed on the Adaptive Robotic

Nursing Assistant (ARNA) platform.
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