
COMPACT REPRESENTATIVES OF DATABASES

AND

RESPONSIBLE DATA MANAGEMENT

by

SURAJ SHETIYA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2023

Copyright © by Suraj Shetiya 2023

All Rights Reserved

To my maternal grandmother Ratnaprabha R. Javali, and grand father figure (late)

Ganapathi Prabhu who guided me and nurtured me.

To my parents Chandrakala and Suresh Shetiya who have always supported me and my

brother Suhas who has been an inspiring role model.

ACKNOWLEDGEMENTS

I would like to express heartfelt appreciation to my supervising professor, Dr. Gau-

tam Das for his constant support and guidance. Numerous intellectual discussions with him

have been a constant part of my doctorate journey and were the biggest learning opportu-

nities for me. He has also guided me through the process of growing as a researcher. I am

also very grateful for the emphasis on quality of research process which has given me great

learning opportunities.

I would like to thank Dr. Abolfazl Asudeh who has mentored me through the years.

He has guided me during the various papers and helped me grasp the art of paper writing.

He has also been an inspiration and a role model for the way he approaches a problem. I

have also loved the various intellectual discussions with him during these years.

I would also like to express my gratitude to my esteemed committee members Dr.

Chengkai Li, Dr. Vassilis Athitsos, and Dr. Shirin Nilizadeh for taking their time to serve

on the dissertation committee and provide their invaluable feedback and guidance through

out my doctorate. I am very grateful to late Dr. Ramez Elmasri for his guidance and

invaluable feedback. Some of his narrated interactions with Don Knuth have been very

inspirational.

Through out my doctorate journey, I have been very fortunate to have found many

good friends and colleagues. First of all, I would like to express my gratitude to Azade

Nova, with whom I started on the first research project. Interactions with her have been very

inspiring and encouraging. I would like to thank Dr. Saravanan Thirumuruganathan for his

invaluable inputs during many of my interactions. I am grateful to Dr. Jees Augustine

for his interest in my research and invaluable advice in times of need. I wish to thank Dr.

iv

Sona Hassani for her support and encouragement during various occasions along my PhD

journey. I would like to thank Sadia Ahmed, Dr. Shohedul Hasan and Dr. Abhishek Santra

who have helped me during numerous occasions.

I am grateful to all the teachers who taught me during the years I spent in university,

first in India and finally in the United States. I would especially like to thank my teacher

and project guide Dr. Suneetha K R for encouraging and inspiring me to pursue graduate

studies. For arousing my interest in Computer Science, I would like to thank professor

LMR from Vijaya Junior College, Bangalore. I would like to thank my close friends from

BIT -Radhesh Anand, Manasa Vegulla, Suhas Shamasundara and Suhas T S and from

NetApp - Kapil Bagrecha, Pavan Karkun and Swapnil Srivastava for being there during

thick and thin.

On my personal front, I am very grateful to my maternal grandmother Ratnaprabha

R. Javli and my late uncle Ganapathi Puttu Prabhu for always being guiding figures during

the hard times of my life. I would like to thank my parents Chandrakala Shetiya and Suresh

Shetiya for their sacrifice, encouragement and patience. Without their encouragement and

endurance, this work would not have been possible. I would like to express my deep grati-

tude to my brother Suhas Shetiya who has encouraged and inspired me during the journey.

I would like to thank my wife Bhavana Prabhu for the fun times and for inspiring me to

keep going during the hard ones.

August 8, 2023

v

ABSTRACT

COMPACT REPRESENTATIVES OF DATABASES

AND

RESPONSIBLE DATA MANAGEMENT

Suraj Shetiya, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Gautam Das

With the advent of advanced computational models, we are being constantly judged

by AI systems, complex algorithmic systems based on data that has been collected about us.

These analysis are critical as they span many wide spread areas of our lives. For instance,

these systems have been shown to find effective ways to fight back and make informed

decisions during the COVID-19 pandemic.

The wide spread use of these models naturally give rise to a few questions regard-

ing explaining decisions that these systems have made, fairness questions in various parts

of these systems. In this dissertation, we present three important problems pertaining to

interpret-ability and explain-ability in interactive black-box systems.

User preference is often complex to express and quantify. In our first work in the

dissertation, we present the problem of finding a small set of items from a data-set. These

set of items minimize the user’s regret of missing out on the top item from the whole data-

set. Such a model also presents an opportunity for interactively understanding the user’s

vi

preference and providing the user with the top item in the data-set. Our work presents the

novel framework to deal with a class of regret measures.

Use of data which is riddled with representative biases leads to unfair outcomes. In

our second word, we present the problem of integrating fairness into range queries. More

importantly, our goal is to eliminate representative biases from the output data which often

is consumed by complex systems which can make critical decisions. In our work, we

present a innovative index structure to deal with the single predicate range queries and a

neighborhood based search to deal with multi-predicate queries.

In our third work in this dissertation, we present the problem of explain-ability in

black box matching systems. Our approach relies on Shapley values based methods for

explanations. To speed the slow nature of Shapley algorithm, we present a sampling based

approximate approach with theoretical guarantees. We present a few common problems

that arise in these bipartite black-box matching systems. For each of these problems, we

illustrate the design of the Shapley value function.

For each of these problems, we discuss our approach to the problem, analyze its

behavior and empirically evaluate our procedure. Our extensive experimental results show

the efficacy and efficiency of our techniques.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vi

LIST OF ILLUSTRATIONS . xii

LIST OF TABLES . xvi

Chapter Page

1. Introduction . 1

2. A Unified Optimisation Algorithm For Solving

“Regret-Minimising Representative” Problems 4

2.1 Introduction . 5

2.1.1 Technical Highlights . 6

2.1.2 Summary of Contributions . 8

2.2 Preliminaries . 9

2.2.1 Regret optimisation measures . 12

2.2.2 Problem Definition . 14

2.3 Unified Regret Minimisation . 14

2.3.1 Overview . 14

2.3.2 Details . 17

2.3.3 Proof of convergence for `p and `∞ norms 20

2.3.4 Running Example . 23

2.4 Max Regret Ratio ORACLE . 27

2.4.1 Graph Transformation . 28

2.4.2 Threshold-based Algorithm for Max Regret Ratio Oracle 31

viii

2.5 Average Regret Ratio ORACLE . 34

2.6 Experiments . 38

2.6.1 Experimental setup . 38

2.6.2 Summary of experimental results 41

2.6.3 Results for Max Regret-Ratio . 43

2.6.4 Results for Avg Regret-Ratio . 46

2.6.5 Results for skyline reducing algorithms 47

2.7 Related Work . 48

3. Fairness-Aware Range Queries for Selecting Unbiased Data 51

3.1 Introduction . 51

3.2 Preliminaries . 55

3.2.1 Database Model . 55

3.2.2 Fairness Model . 57

3.2.3 Problem definition . 59

3.3 Single-predicate Range Queries . 60

3.3.1 Jump pointers . 61

3.3.2 Query answering for unweighted fairness 64

3.3.3 Prepossessing . 72

3.3.4 Generalisation to weighted fairness 74

3.4 Multi-predicate range queries . 80

3.4.1 Best First Search algorithm . 80

3.4.2 Neighbouring range computation 83

3.4.3 Informed best first search . 85

3.4.4 Using MP algorithms for SP . 88

3.5 Experiments . 89

3.5.1 Experimental setup . 89

ix

3.5.2 Proof of Concept - TEXAS TRIBUNE 93

3.5.3 Performance of SPQA and weighted SPQA 94

3.5.4 Performance evaluation of MP algorithms 95

3.5.5 Comparison with coverage based algorithms 99

3.5.6 Summary of experimental results 100

3.6 Related work . 100

3.7 Discussion and future work . 102

3.8 Final remarks . 103

4. Shapley Values for Explanation in Two-sided Matching Applications 104

4.1 Introduction . 104

4.2 Preliminaries . 110

4.2.1 Problem definition . 111

4.3 Shapley value based solution . 114

4.3.1 Why Shapley? . 114

4.3.2 Mapping Shapley value to matching 117

4.3.3 Shapley value in matching . 118

4.3.4 Approximate sampling based approach 124

4.3.5 KernelSHAP . 125

4.4 Experiments . 126

4.4.1 Experiments setup . 126

4.4.2 Proof of Concept . 128

4.4.3 Performance Evaluation . 133

4.5 Related work . 134

4.6 Discussion . 137

4.7 Conclusion . 138

Appendix

x

REFERENCES . 139

BIOGRAPHICAL STATEMENT . 155

xi

LIST OF ILLUSTRATIONS

Figure Page

2.1 In Example 1, the tuples in a representative {t1, t5, t7, t9} partition the entire

function space into convex regions. In general, for a representative of size

k, each of the regions are formed as the intersection of (k − 1) half spaces.

Each tuple can be thought of as being in charge of its own region. 15

2.2 The tuples in the representative {t1, t5, t6, t9} partition the entire function

space into convex regions. We have obtained this updated representative

after completion of one iteration of the URM algorithm with {t1, t5, t7, t9}

as the initial set. This change in the representative reduces the max regret

ratio score to 0.0444. 24

2.3 The tuples in the representative {t2, t8, t9, t10} partition the entire function

space into convex regions. The maximum regret for the representative is

0.0989. 25

2.4 In the first iteration, the representative is updated to {t1, t8, t9, t10} with a

maximum regret of 0.0989. 25

2.5 In the second iteration, the representative is updated to {t7, t8, t9, t10} with a

maximum regret of 0.0989. 26

2.6 In the third iteration, the representative is updated to {t7, t8, t9, t6} with a

maximum regret of 0.0430. 26

2.7 In the final iteration, the algorithm converges with the local optimum repre-

sentative {t1, t8, t9, t6} with a maximum regret of 0.0378. 28

2.8 Graph transformation for max regret ratio oracle 29

xii

2.9 Illustration of table T . 32

2.10 Maximum regret ratio when URM uses the compact representative produced

by HD-RRMS as the initial set [4D, K=5]. 40

2.11 Maximum regret ratio when URM uses the compact representative produced

by HD-RRMS as the initial set [5D, K=5]. 40

2.12 Maximum regret ratio when URM uses the compact representative produced

by HD-RRMS as the initial set for NBA dataset. 40

2.13 2D Dataset Example . 40

2.14 Maximum regret ratio when both URM and HD-RRMS uses a fixed time bud-

get [4D, K=5]. 42

2.15 Maximum regret ratio when both URM and HD-RRMS uses a fixed time bud-

get [5D, K=5]. 42

2.16 Maximum regret ratio when both URM and HD-RRMS uses a fixed time bud-

get for NBA dataset. 43

2.17 Comparing skyline reducing alg. with URM for DOT dataset with 4 dimensions 43

2.18 Average regret ratio, we are comparing our results against the global best

representatives [9D]. 43

2.19 Comparing skyline reducing alg. with URM for DOT dataset with 5 dimensions 43

3.1 Problem Formulation . 59

3.2 Declarative Query Model . 59

3.3 Disparity computation for the range 6.2 ≤ A0 ≤ 10.9 in the sample database

of Table 7. 63

3.4 Right and left jump pointers for attribute A0 of the sample database of Table 7. 64

3.5 Jump pointers for a weighted fairness case 64

3.6 Step wise movement of the window over the course a run of the single pred-

icate algorithm . 65

xiii

3.7 Intuition behind jump pointer for a single jump 65

3.8 Intuition behind jump pointer for two jumps 65

3.9 Sample set of points . 83

3.10 Sample input range . 83

3.11 Expanding the rectangle downwards . 83

3.12 Expanding the rectangle towards left . 83

3.13 Neighbouring ranges in diagonal . 83

3.14 Skyline computation over a range query . 83

3.15 Demographic distributions in dataset, input query, and similar fair query. 89

3.16 Time taken by SPQA v.s. disparity - Texas Tribune with gender as SA 89

3.17 Amount of time taken by SPQA against disparity - Texas Tribune with race as SA . . 89

3.18 Amount of time taken by SPQA against disparity - COMPASS dataset 89

3.19 Amount of time taken by IBFSMP - Uniform dataset 3 range predicates 89

3.20 Average amount of time taken by IBFSMP algorithm for different bucket sizes -

UrbanGB dataset . 90

3.21 Average amount of time taken by IBFSMP algorithm for different bucket sizes -

Uniform dataset . 90

3.22 Rectangles explored by IBFSMP algorithm for different bucket sizes - Urban GB

dataset . 90

3.23 Rectangles explored by IBFSMP algorithm for different bucket sizes - Uniform dataset 90

4.1 Illustration of the matching in Example 3. 106

4.2 Error variations in sampling-based approach and KernelSHAP when varying

number of samples for Candidates dataset 129

4.3 Error variations in sampling-based approach and KernelSHAP when varying

number of samples for synthetic dataset with non-linear ranking functions . . 134

xiv

4.4 Error variations in sampling-based approach and KernelSHAP when varying

number of samples for synthetic dataset with linear ranking functions 134

xv

LIST OF TABLES

Table Page

2.1 Table containing the inequalities that define each region of the representative

{t1, t5, t7, t9}. 17

2.2 An iteration of the URM algorithm corresponding to the max regret ratio

problem for example 1. Regret ratio for each of the tuples in representative is

shown. The last row gives the max regret ratio score for the representatives. 27

2.3 An iteration of the URM algorithm corresponding to the max regret ratio

problem for running example Regret ratio for each of the tuples in repre-

sentative is shown. The last row gives the max regret ratio score for the

representatives. 27

3.1 A toy example database D with two attributes A0 and A1 and the sensitive

attribute colour. 56

3.2 Comparison of query run time (sec.) for various input range set sizes using

IBFSMP for UrbanGB dataset . 99

3.3 Comparison of query run time (sec.) for various input range set sizes using

IBFSMP for Uniform dataset . 99

4.1 The generated explanation for why Candidate t3 is not in the Top-K of HR t20 106

4.2 The generated explanation for why Candidate t3 is in the Top-K of HR t19 . . 107

4.3 The generated explanation for why Candidate t3’s Top-K looks the way it

does. 107

4.4 The generated explanation for why Candidate t3 appears in the Top-K it

appears in. 108

xvi

4.5 (Example 4) A sample dataset D with three attributes A1, A2 and A3, and 5

entities. 116

4.6 Details of the datasets . 126

4.7 Candidate values, HR rankings, and PQ-NOTMATCH Shapley values. 129

4.8 The success measure of four methods in computing the same top value as

Brute Force; APX=Approximate, WT=Weight, SCR=Attribute Score; and

the four queries, Q1-Q4. For Q4, WT could not be used. 131

xvii

CHAPTER 1

Introduction

Data mining is a field of computer science that deals with the extraction of knowledge

from data. Data mining algorithms are often used to solve a variety of problems. However,

one of the challenges with data mining is that it can be used to generate biased results. This

is because data mining algorithms are often trained on datasets that are not representative of

the population as a whole. As a result, the results of data mining algorithms can be biased

against certain groups of people.

In this dissertation, we present three works which deal with explain-ability and

interpret-ability domain. First, we cover an interesting problem of understanding and inter-

preting user preferences in a multi-criteria decision making systems. Second, we present

the work of integrating fairness constraints into database queries. Lastly, our work on ex-

plaining matching queries in black-box bipartite systems is presented.

Compact representatives of databases Given a database with numeric attributes, it is

often of interest to rank the tuples according to linear scoring functions. For a scoring

function and a subset of tuples, the regret of the subset is defined as the (relative) difference

in scores between the top-1 tuple of the subset and the top-1 tuple of the entire database.

Finding the regret ratio minimizing set (RRMS), i.e., the subset of a required size k that

minimizes the maximum regret-ratio across all possible ranking functions, has been a well-

studied problem in recent years. This problem is known to be NP-complete and there

are several approximation algorithms for it. Other NP-complete variants have also been

investigated, e.g., finding the set of size k that minimizes the average regret ratio over

all linear functions. Prior work [1, 2] has designed customized algorithms for different

1

variants of the problem, and are unlikely to easily generalize to other variants. In this work

we take a different path towards tackling these problems. In contrast to the prior works, we

propose a unified algorithm for solving different problem variants. Unification is done by

localizing the customization to the design of variant-specific subroutines or “oracles” that

are called by our algorithm. Our unified algorithm takes inspiration from the seemingly

unrelated problem of clustering from data mining, and the corresponding K −MEDOID

algorithm. We design our algorithm with innovations ranging from linear programming,

edge sampling in graphs, and volume estimation of multi-dimensional convex polytopes.

We provide rigorous theoretical analysis, as well as substantial experimental evaluations

over real and synthetic data sets to demonstrate the practical feasibility of our approach.

The details of our work on compact representatives of databases is presented in Chapter 2.

Responsible data management

This dissertation covers two published papers that fall under the umbrella of respon-

sible data management.

Fairness in range queries: We are being constantly judged by automated decision systems

that have been widely criticized for being discriminatory and unfair. Since an algorithm

is only as good as the data it works with, biases in the data can significantly amplify un-

fairness issues. In this paper, we take initial steps towards integrating fairness conditions

into database query processing and data management systems. Specifically, we focus on

selection bias in range queries. We formally define the problem of fairness-aware range

queries as obtaining a fair query which is most similar to the user’s query. We propose

a sub-linear time algorithm for single-predicate range queries and efficient algorithms for

multi-predicate range queries. Our empirical evaluation on real and synthetic data-sets con-

firms the effectiveness and efficiency of our proposal. Chapter 3 presents all the details of

our work on integrating fairness into range queries.

2

Shapley values based explanations to bipartite matching scenarios: In this work, we initi-

ate research in explaining matchings. In particular, we consider the large-scale two-sided

matching applications where preferences of the users are specified as (ranking) functions

over a set of attributes and matching recommendations are derived as top-k. We consider

multiple natural explanation questions, concerning the users of these systems. Observ-

ing the competitive nature of these environments, we propose multiple Shapley-based ap-

proaches for explanation. Besides exact algorithms, we propose a sampling-based approx-

imation algorithm with provable guarantees to overcome the combinatorial complexity of

the exact Shapley computation. Our extensive experiments on real-world and synthetic data

sets validate the usefulness of our proposal and confirm the efficiency and accuracy of our

algorithms. The details of this work is present in Chapter 4.

3

CHAPTER 2

A Unified Optimisation Algorithm For Solving

“Regret-Minimising Representative” Problems

Given a database with numeric attributes, it is often of interest to rank the tuples

according to linear scoring functions. For a scoring function and a subset of tuples, the

regret of the subset is defined as the (relative) difference in scores between the top-1 tuple

of the subset and the top-1 tuple of the entire database. Finding the regretratio minimizing

set (RRMS), i.e., the subset of a required size k that minimizes the maximum regret-ratio

across all possible ranking functions, has been a well-studied problem in recent years. This

problem is known to be NP-complete and there are several approximation algorithms for it.

Other NP-complete variants have also been investigated, e.g., finding the set of size k that

minimizes the average regret ratio over all linear functions. Prior work have designed cus-

tomized algorithms for different variants of the problem, and are unlikely to easily general-

ize to other variants. In this paper we take a different path towards tackling these problems.

In contrast to the prior, we propose a unified algorithm for solving different problem vari-

ants. Unification is done by localizing the customization to the design of variant-specific

subroutines or “oracles” that are called by our algorithm. Our unified algorithm takes inspi-

ration from the seemingly unrelated problem of clustering from data mining, and the cor-

responding K-MEDOID algorithm. We make several innovative contributions in designing

our algorithm, including various techniques such as linear programming, edge sampling in

graphs, volume estimation of multi-dimensional convex polytopes, and several others. We

provide rigorous theoretical analysis, as well as substantial experimental evaluations over

real and synthetic data sets to demonstrate the practical feasibility of our approach.

4

2.1 Introduction

Data-driven decision making is challenging when there are multiple criteria to be

considered. Consider a database of n tuples with d numeric attributes. In certain cases,

“experts” can come up with a (usually linear) function to combine the criteria into a “good-

ness score” that reflects their preference for the tuples. This function can then be used

for ranking and evaluating the tuples [3–6]. However, devising such a function is chal-

lenging [7, 8], hence not always a reasonable option, especially for ordinary non-expert

users [9]. For instance consider a user who wants to book a hotel in Miami, FL. She wants

to find a hotel that is affordable, is close to a beach, and has a good rating. It is not rea-

sonable to expect her to come up with a ranking function, even though she may roughly

know what she is looking for. Therefore, she will probably start exploring different options

and may end up spending several confusing and frustrating hours before she can finalize

her decision. Alternatively, one could remove the set of “dominated” tuples [10], returning

a Pareto-optimal [11] (a.k.a. skyline [9, 10]) set, which is the smallest set guaranteed to

contain the “best” choice of the user, assuming that her preference is monotonic [10]. In

the case where user preferences are further restricted to linear ranking functions, only the

convex hull of the dataset needs to be returned.

The problem with the skyline or convex hull is that they can be very large themselves,

sometimes being a significant portion of the data [12, 13], hence they lose their appeal as

a small representative set for facilitating decision making. Nanongkai et al. [12] came up

with the elegant idea of finding a small set that may not contain the absolute “best” for any

possible user (ranking function), but guarantees to contain a satisfactory choice for each

possible function. To do so, they defined the notion of “regret-ratio” of a representative

subset of the dataset for any given ranking function as follows: it is the relative score

difference between the best tuple in the database and the best tuple in the representative

set. Given k < n, the task is to find the regret-ratio minimising set (RRMS), i.e., a subset

5

of size k that minimises the maximum regret-ratio across all possible ranking functions.

This problem is shown to be NP-complete, even for a constant (larger than two) number of

criteria (attributes) [14]. Other researchers have also considered different versions of the

problem formulation. For instance Chester et. al. [1] generalise the notion of regret from

the comparison of the the actual top-1 of database to the top-k. More recently, in [2,15] the

goal was to compute the representative set that minimises the average regret-ratio across

all possible functions, instead of minimising the max regret-ratio. All these variants have

been shown to be NP-complete.

Given their intractable nature, there has been significant effort in designing efficient

heuristics and approximation algorithms for these problems. The RRMS problem has been

investigated in several papers [13,14,16], and several approximation algorithms have been

designed; the algorithms in [13,14] run in polynomial time and can approximate the max-

regret ratio within any user-specified accuracy threshold. The average regret-ratio problem

has been investigated in [15], and a different greedy approach has been proposed, which

achieves a constant (though not any user-specified) approximation factor with high proba-

bility.

2.1.1 Technical Highlights

In this chapter, we make the following observations about the previous works: (a) the

proposed algorithms are dependent on the specific problem formulation, and do not seem

to generalise to different variants, and (b) the focus has been on designing approximation

algorithms, and not on optimal algorithms. Consequently, we take a different route towards

solving these problems, and our work makes two important contributions:

Firstly, we develop a unified algorithm that works across different formulations of

the problem, including max [12] and average [15] regret minimising sets. The unified

algorithm makes calls to a subroutine (we refer to it as an “oracle”), and it is this subrou-

6

tine/oracle that needs to be customised for each problem variant. Thus the customisation is

localised to the design of the oracle.

Secondly, we make a connection between the various regret minimising problems

and the seemingly unrelated classical data mining problem of clustering and the well-

known K-MEDOID [17] algorithm. Most variants of clustering are NP-hard, yet the K-

MEDOID algorithm is extremely popular in practice and is based on a hill-climbing ap-

proach to find a local optima. One of the main technical highlights of our contributions is

to take inspiration from, and design our unified algorithm based on the K-MEDOID algo-

rithm, even though the regret minimization problems seemingly appear quite different from

clustering problems. One of the consequences of our approach is that the well-known ad-

vantages of the K-MEDOID algorithm transfer over to our unified algorithm. For example,

the K-MEDOID algorithm has the any-time property; given more time it can be repeatedly

restarted from different random starting configurations, which gives it the ability to im-

prove the local optima that it has discovered thus far. Our unified algorithm also has this

property, which can be useful in time-sensitive applications, including a query answering

system.

To achieve our two contributions, several novel and challenging technical problems

had to be solved. The K-MEDOID algorithm provided inspiration, but was not really easily

adaptable for our case. Instead, we had to carefully model our problem as that of optimally

partitioning the space of all ranking functions into k convex geometric regions, such that

for each region exactly one tuple from the database is the “representative”, i.e., it has the

highest (max, or average, depending on the problem variant being solved) score for any

function in that region. At a high level, our algorithm first chooses k tuples randomly as our

initial representative set. Then it only examines these k tuples, and partitions the function

space into k convex regions such that the tuple associated with each region outscores the

remaining k − 1 tuples for any ranking function within its region. Then, the database is

7

examined to update the best representative for each region, and the process iterates until a

local optima is reached.

The process of examining the database for updating the best representative for any

region required us to develop variant-specific subroutines/oracles. For the case of the max

regret-ratio, we propose different innovative strategies for designing an efficient oracle. For

large regions, we design a threshold-based algorithm based on function-space discretiza-

tion. For narrow regions, we model the problem as an instance of edge sampling from

a weighted graph where edge weights are determined by solving (constant-sized) linear

programs.

For the average regret-ratio case, designing an oracle was challenging. As another

of our innovative technical highlights, we show that it is reducible to the classical problem

of computing the volume of polytopes defined by the intersection of O(n) half-spaces.

Unfortunately, this approach has a time complexity of Ω(nd) [18]. Even if we assume that

the dimension of the database is fixed, this high complexity makes this approach only of

theoretical interest. Consequently, we propose an alternative approach based on Monte-

Carlo sampling of the function space.

We provide proof of convergence of our unified algorithm, as well as provide detailed

theoretical analyses of our oracles. We also conduct extensive empirical experiments on

both real and synthesis datasets that show the efficiency and effectiveness of our proposal.

2.1.2 Summary of Contributions

In summary, our contributions are as follows:

• We develop a unified algorithm for solving different variants of the regret-ratio rep-

resentative set problem. This is in contrast to prior works that developed custom

algorithms for each variant; our customisation is localised to the design of variant-

specific “oracles”.

8

• Our unified algorithm is inspired by the seemingly unrelated K-MEDOID clustering

algorithm. Thus it is designed to find locally optimal solutions, in contrast to prior

works that focused on approximation algorithms.

• Our unified algorithm is based on showing that the optimal representative set of k

tuples induces a partitioning of the function space into k convex regions, each iden-

tified by exactly (k − 1) hyperplanes (independent of the number of dimensions),

where within every region one of the tuples of the set is the “best” in terms of the

optimisation goal.

• We provide innovative approaches to designing custom oracles for the different prob-

lem variants, including graph transformation, a threshold-based algorithm, and Monte-

Carlo estimation.

• Our approaches are principled, supported by theoretical analysis and guarantees.

• We conduct extensive experiments on both real and synthesis datasets to demonstrate

the efficiency and effectiveness of our proposal.

The rest of this chapter is organised as follows. In section § 2.2, we introduce the

terms and formally define the problem. § 2.3 makes the connection between the URM

algorithm and the K-MEDOID algorithm, provides the proof of convergence, and ends with

a running example. In § 2.4 and § 2.5, we present the oracles for max and average regret-

ratio, respectively. Experiment results and related work are provided in § 2.6 and § 2.7,

respectively.

2.2 Preliminaries

Data Model: We consider a database D in the form of n tuples t1 to tn, defined over d nu-

meric attributes A1 to Ad. We use the notation ti[j] to show the value of ti on attribute Aj .

Without loss of generality, we assume that attribute values are normalised and standardised

9

as the non-negative real numbers, R+. The numeric attributes are used for scoring and rank-

ing the tuples. Additionally, the dataset may also include non-ordinal attributes that may be

used in filtering, but not in ranking. Finally, for each attribute Ai, we assume that the larger

attribute values are preferred. The values x of an attribute Ai with smaller-preferred nature

require a straight forward transformation such as (max(Ai)− x)/(max(Ai)−min(Ai)).

Example 1. As a running example in this chapter, consider a dataset of 10 tuples, defined

over the attributes A1 to A3, as shown below. The values of the attributes are normalised

in range [0,100] and for all attributes the higher values are preferred. In this example t4[3]

refers to the value of tuple t4 on attribute d3 which is equal to 75.

tuple A1 A2 A3

t1 60 80 77

t2 55 75 63

t3 75 60 59

t4 68 70 75

t5 80 75 73

t6 56 65 91

t7 61 78 80

t8 90 60 58

t9 86 68 74

t10 77 67 82

Ranking Model: The database tuples are ranked using the scores assigned by a ranking

function. For every tuple t ∈ D, a ranking function f : Rd → R+ assigns a non-negative

score to t. A tuple ti outranks tj based on f if its score is larger than the one of tj . Following

the literature in regret-minimising context [1,12–14], we consider the class of linear ranking

10

functions in this chapter1. The score of a tuple t based on a linear function f with a weight

vector ~w = {w1, w2, · · · , wd} is computed as:

f~w(t) =
d∑
i=1

wi · t[i] (2.1)

In the rest of chapter, we simplify f~w(t) to f(t) when ~w is clear in the context. As an

example, let us consider Example 1, while choosing ~w = 〈.25, .5, .25〉 for the ranking

function. Using this function, f(t1) = .25 × 60 + .5 × 80 + .25 × 77 = 74.25. Com-

puting the score of other tuples, the ordering of the tuples in D based this function is

{t5, t1, t7, t9, t10, t4, t6, t2, t8, t3}.

In a d-dimensional space that every tuple is presented as a point, every linear function

can be modelled as a origin-starting ray that passes through the point specified by its weight

vector. For example, the function f with the weight vector ~w = 〈.25, .5, .25〉 is modelled as

the ray that starts from the origin and passes through the point 〈.25, .5, .25〉. The ordering

of tuples based on f is specified by the ordering their projections on the ray of f (please

refer to [7] for further details). As a result, the universe of origin-starting ray in the first

quadrant of the d dimensional space shows the universe of linear functions. We call this the

function space.

A tuple ti of a database is said to dominate tuple tj if each of the attribute values

for ti is not smaller than that of tj’s while there exists an attribute Ak where ti[k] > tj[k].

For instance, in Example 1, t1 : 〈60, 80, 77〉 dominates t2 : 〈55, 75, 63〉. The set of tuples

from the database which are not dominated tuples in the database is known as the skyline

(or Pareto-optimal) [9–11].

A maxima representative, or simply a representative, is a subset S ⊆ D that is used

for finding the maximum of D for any arbitrary ranking function f . Skyline is the minimal

representative of D that guarantees the containment of the maximum of any function in the

1Note that a large class of non-linear functions can fit this model after a straight-forward linearization [19].

11

class of monotonic ranking functions. That is the reason it is popular for multi-criteria de-

cision making (in the absence of a ranking function). Similarly, convex-hull is the minimal

representative that contains the maximum for the class of linear ranking functions.

However, the skyline or convex-hull may contain a large portion of the database,

which diminishes their applicability as a small set for decision making [12, 13]. For in-

stance, the skyline of Example 1 is {t1, t4, t5, t6, t7, t8, t9, t10}, which includes 80% of the

tuples.

2.2.1 Regret optimisation measures

Regret ratio is a measure of dissatisfaction of a user when she sees results returned

from the subset instead of the entire database. Let f be a ranking function, then regret ratio

is defined as the ratio of the difference in ranking function scores between the top database

tuple and the top tuple from the representative set to the score of the top database tuple:

Definition 2.2.1 (Regret Ratio). Given a function f , let tuple t be argmax∀t∈Df(t). The

regret ratio of set S ⊆ D for a ranking function f can be computed as

rr(f, S) = min
t′∈S

f(t)− f(t′)

f(t)
(2.2)

For instance, in Example 1, consider the set S = {t2, t3, t4} and the function f with

the weight vector ~w = 〈.25, .5, .25〉. t5 is the max for this function (f(t5) = 75.75) while

t4 is the tuple with the max score (f(t4) = 70.75) in S. Therefore, rr(f, S) in this example

is (75.75− 70.75)/75.75 ' .066.

For a universe of ranking functions, an aggregate over the regret ratio of each ranking

function is considered as the regret ratio of the representative set for the universe.

In this chapter, we provide a unified model that can handle a wide variety of aggre-

gates (any `p norm):

12

Definition 2.2.2. `p norm regret measure : Given a database D, a representative S ⊆ D, a

real number p ≥ 1, and a set of ranking functions F , the `p norm aggregate measure Aggp

is defined as:

RRF (S) = Aggp∀f∈F rr(f, S)

While different aggregates can be used here, so far the literature has considered max-

imum and average regret ratio minimising sets. Without limiting our proposal to a specific

value of norm, we especially show the adaptation of our framework for the existing aggre-

gates, i.e., (i) `∞: maximum regret ratio and (ii) `1: average regret ratio. We will lay out

the formal definitions of these measures in the remainder of this section.

Definition 2.2.3. Maximum (`∞ norm) Regret Ratio: Given a database D and a set of

functions F , the maximum regret ratio [12] of a set S ⊆ D is the maximum value of regret

ratio for the set S over the set of all possible ranking functions F . That is,

RRF (S) = sup
f∈F

rr(f, S) (2.3)

While the maximum regret ratio looks at the worst case regret ratio for a set of func-

tions, a different measure for user dissatisfaction is the average regret ratio.

Definition 2.2.4. Average (`1 norm) Regret Ratio: Given a database D, a set of functions

F , and a probability distribution η(.) where η(f) is the probability of each function f ∈ F ,

the average regret ratio [15] of a set S ⊆ D is defined as

ARRF (S) =

∫
f∈F

η(f) rr(f, S) df (2.4)

Even though the regret ratio notions are defined for general classes of functions, the

majority of the existing work consider F as the class of linear ranking functions (Equa-

tion 2.1) [1, 12–15, 20]. Also, for average regret ratio, the uniform distribution is consid-

ered as the probability distribution of ranking functions η(.) [15]. We follow the literature
13

on these. In the rest of the chapter, we simplify the notations RRF (S) and ARRF (S) to

RR(S) and ARR(S) for the class of linear ranking functions (L).

2.2.2 Problem Definition

In this chapter, we consider the problem of finding a compact representative of size

k from a database such that the regret optimisation measure is minimised. Formally:

`p REGRET RATIO REPRESENTATIVE PROBLEM:

Given a dataset D, a set of ranking functionsF , and a value k, find the representa-

tive S of D for F such that |S| = k and `p norm regret measure (Definition 2.2.2)

of S is minimised.

Specifically, the problem for the max. (resp. avg.) regret ratio is to find a set S ⊆ D

of size k that minimises the max. (resp. avg.) regret ratio. For any constant number of

dimensions larger than 2, the problem for max. regret ratio is shown to NP-complete [14].

Similarly, the problem for average regret ratio is proven to be NP-complete [15].

The two problems we consider in this chapter are the max and average regret ratio

optimising set problems. In section 3, we describe the Regret Minimising Framework

algorithm, a general framework to solve the regret ratio class of problems, followed by

sections 4 and 5 which discuss the details of the oracles for the Maximum and Average

regret ratio problems respectively. We show empirical results for both these problems in

section 6.

2.3 Unified Regret Minimisation

2.3.1 Overview

In this section, we propose our Unified Regret Minimizer (URM) algorithm which is

inspired from the K-MEDOID algorithm.

14

x
y

z

t1

t5

t7

t9

Figure 2.1: In Example 1, the tuples in a representative {t1, t5, t7, t9} partition the entire
function space into convex regions. In general, for a representative of size k, each of the
regions are formed as the intersection of (k − 1) half spaces. Each tuple can be thought of
as being in charge of its own region.

Before providing the details of the algorithm, it is necessary to explain two central

ideas in this chapter: (i) representative and (ii) region of a tuple t, defined in definition 2.3.1

and definition 2.3.2 respectively.

Definition 2.3.1. Given a function f and a set of tuples S ⊆ D, a tuple t ∈ S is a repre-

sentative for f if it has the maximum score, based on f among elements of S. Formally:

ρ(f, S) = argmaxt∈Sf(t)

Definition 2.3.2 (Region of The Tuple t). Given a set S and a tuple t ∈ S, the region of t

is the set of functions for which t is the representative. That is,

Rt(S) = {f ∈ L | ρ(f, S) = t}

For example, Figure 2.1 shows the regions of the tuples {t1, t5, t7, t9} in Example 1.
15

Having the necessary definitions in place, we now provide a brief overview of the

K-MEDOID and then show the transformation of our problem to it. Recall that given a

database D, the output size k and a regret measure, the URM algorithm finds a set of k

representative tuples from D, such that the regret measure is minimised.

K-MEDOID algorithm: This is an iterative algorithm that partitions a set of n objects into

k clusters, such that the distance between objects belonging to a cluster and their cluster

centre are minimised. While many clustering algorithms (such as kNN [21]) have cluster

centres that may not belong to the set of n objects, the K-MEDOID algorithm sets itself apart

by choosing the cluster centres from the set of n objects. More details about the algorithm

is provided in [17].

Although the clustering problem and the K-MEDOID algorithm seems far removed

and disconnected from our regret minimisation problems, the notion of region of a tuple,

provided in Definition 2.3.2 is the key in the problem transformation. As we shall show

in the following, we see the problem as a partitioning of the function space into k convex

regions while the tuples are the centroids.

Before providing further technical details in § 2.3.2, we would like to highlight a

key difference between the nature of the problems: While the K-MEDOID algorithm deals

with countable set of objects n, the URM algorithm deals with an infinite set of objects

(functions). The K-MEDOID algorithm clusters n objects (n being a discrete and finite

number) into k clusters, each of which contains finite number of objects. In contrast, as we

shall elaborate next, the URM algorithm clusters the continuous space of ranking functions,

which contains an infinite number of functions into k convex regions of ranking functions.

The URM algorithm forms the basis for a unified framework to find compact repre-

sentatives for a variety of regret measures. It does this by abstracting the various notions of

regret measures into an oracle. At a high level, URM operates as follows. It is initialised

16

with a set of k tuples (tuples), which form the compact representatives for the first iteration

of the algorithm. These k tuples are used to partition the entire function space into k con-

vex regions, such that for each region the corresponding tuple is the representative. In each

iteration, we replace the k tuples with a potentially new set of k tuples that improves the

regret measure. This is done by choosing, for each convex region of functions, the tuple

from the database D that is the best representative for that region (this is accomplished by

making calls to the oracle). The function space is re-partitioned into k new convex regions,

and the iterations continue until we converge to a local optima (i.e., the k tuples do not

change).

Region Half-space 1 Half-space 2 Half-space 3

Region for t1 t1 − t5: −20A1 + 5A2 + 4A3 ≥ 0 t1 − t7: −A1 + 2A2 − 3A3 ≥ 0 t1 − t9: −26A1 + 12A2 + 3A3 ≥ 0
Region for t5 t5 − t1: 20A1 − 5A2 − 4A3 ≥ 0 t5 − t7:19A1 − 3A2 − 7A3 ≥ 0 t5 − t9: −6A1 + 7A2 −A3 ≥ 0
Region for t7 t7 − t1: A1 − 2A2 + 3A3 ≥ 0 t7 − t5: −19A1 + 3A2 + 7A3 ≥ 0 t7 − t9: −25A1 + 10A2 + 6A3 ≥ 0
Region for t9 t9 − t1 26A1 − 12A2 − 3A3 ≥ 0 t9 − t5: 6A1 − 7A2 +A3 ≥ 0 t9 − t7: 25A1 − 10A2 − 6A3 ≥ 0

Table 2.1: Table containing the inequalities that define each region of the representative
{t1, t5, t7, t9}.

2.3.2 Details

The key in the design of URM is that a set of k representative tuples partition the

function space into k convex regions, such that each of the tuples ti is the “representa-

tive” for all functions its region Ri. This enables adopting the K-MEDOID technique for

clustering the function space.

Theorem 2.3.1. Consider the set S : {t1, · · · , tk} as the compact representative of database

D and the region of functions that are represented by ti be Ri. Then the followings hold:

1. The regions R1, · · · , Rk partition the function space.

2. For each tuple ti, Ri is convex.

17

3. Each region Ri is the intersection of (k − 1) half-spaces.

Proof. Let us consider a ranking function f from the space of all ranking functions F .

From equation 2.2, the regret ratio r = rr(f, S) is the regret ratio of the set S for the

function f . The tuple from the set S which achieves this regret ratio is given by,

t = argmin ∀i≤k
f(t)− f(ti)

f(t)

This tuple t ∈ S is the representative for the function f . The region Ri consists of all the

functions that have ti as the representative. As the above property is applicable to the set of

all ranking functions, regions R1, · · · , Rk partition the function space into k regions. This

proves property 1.

The region of functions for which the tuple ti is ranked higher than tuple t1 is a

half-space denoted by H+
i1, which is defined by the inequality,

k∑
i=1

wi · (ti[i]− t1[i]) ≥ 0 (2.5)

The hyper-plane represented by the left-hand side of equation 2.5 is denoted as ordering

exchange hyper-plane as it divides the space into two regions, one in which tuple ti is better

than t1 and vice versa in the other. As equation 2.5 represents a half-space and half-spaces

are convex, H+
i1 is a convex region. Similarly, let H+

ij be the region of functions where ti

is better than tj . As Ri is the region of functions where ti is the representative, we need to

consider the function space where ti is better than all the other tuples, which is given by,

R1 = ∩kj=1 H
+
ij (2.6)

Region Ri is an intersection of (k − 1) half-spaces. This proves property 2.

We know that, the intersection of convex regions is convex. As half-spaces are con-

vex, region Ri, which is an intersection of (k − 1) half-spaces is convex. This proves

property 3.
18

An interesting observation from Theorem 2.3.1 is that each region is described as a

list of (k − 1) half-spaces (equations), which is independent of the number of dimensions.

As an example let us consider Figure2.1, which shows the regions for the tuples

{t1, t5, t7, t9} in Example 1. Table 2.1 shows the three half-spaces define each of the re-

gions. For instance, the region of t1 is described by the half-spaces between t1 and t5, t7,

and t9. Each of these regions are drawn in Figure 2.1. One can verify that these regions are

convex and partition the function space.

Theorem 2.3.1 shows that the regions of a set of tuples S : {t1, .., tk} partition the

function space into k non-overlapping convex clusters. Now we show how this enables

adopting the K-MEDOID algorithm. Consider a database D and an initial set S : {t1, .., tk}

of k representative tuples in the first iteration of the algorithm. Let the region of functions

Ri for tuple ti be represented as the intersection of (k − 1) half-spaces. Based on Def-

inition 2.3.2, ti is preferred over all tuples tj ∈ S\{ti} for any function f ∈ Ri. But it

does not necessarily mean that ti is preferred over all tuples tj ∈ D\{ti}. So, for each i,

there may be another tuple in the dataset that can introduce a smaller regret compared to

ti for Ri. This is a key observation in designing the subsequent iterations of the algorithm.

To do so, we rely on the existence of the “regret optimisation oracle”, that finds the best

representative tuple in the database for Ri. This oracle is dependent on the variant of the

regret measure we are seeking to optimise.

Regret optimisation oracle: The regret optimisation oracle is the variant-specific part of

our overall approach. It is used to find a representative tuple from the database which best

optimises a specific regret measure a convex region of ranking functions Ri (e.g., max

regret, average regret, more general `p-norm regret, etc). Formally, given a database D, a

particular variant of regret measure of interest, and a convex region of functions Ri defined

by the intersection of half-spaces, the regret optimisation oracle finds the tuple (and the

19

corresponding regret measure) from the database which minimises the regret measure over

all functions in Ri.

For now, we assume that such a variant-specific oracle exists, and we proceed with

describing how our unified algorithm URM can leverage such an oracle (details about the

design of the oracle for different problem variants are deferred to § 2.4 and § 2.5). At

every iteration of the algorithm, for every region of functions Ri, the regret optimisation

oracle is used to find the new representative for the region Ri. The set of k tuples obtained

from k calls to the regret optimization oracle form the new set of representatives for the

next iteration of the algorithm. The iterations continue until the representative set of tuples

ceases to change.

The pseudo code of the URM algorithm is given in Algorithm 1. Also, Algorithm 2

shows the pseudo code for finding the regionRi for a tuple ti, in the form of the intersection

of (k − 1) half-spaces.

Compared to the existing literature for regret ratio minimising problem, the URM

algorithm has some unique and important features. URM provides a unified framework for

the `p and `∞ classes of regret ratio measures. Our iterative algorithm has the any-time

property where the user may stop at any time/iteration and still find a set of compact repre-

sentatives. The any-time property can be very useful in case of real time query answering

systems and other time-sensitive applications.

2.3.3 Proof of convergence for `p and `∞ norms

A critical factor for iterative algorithms is the guarantee of convergence. In this

section, we prove that our algorithm converges to a local optima, for the `p and `∞ norm

class of regret ratio measures.

Theorem 2.3.2. In each successive iteration of the URM algorithm, the regret measure for

the set S : {t1, · · · , tk} improves for the `p norm regret measure.

20

Algorithm 1 URM Algorithm
Input: Database D, Regret Oracle Orc, Initial set of k tuples initial

Output: Representative S

1: S ← initial

2: repeat

3: S ′ ← new List

4: for tuple t in S do

5: Rt ← RegionOf(t, S \ {t})

6: t′ ← Orc(D, Rt) // the best tuple for Rt based on Orc

7: Add t′ to S ′

8: end for

9: S ← S ′

10: until Convergence

11: return S

Algorithm 2 RegionOf
Input: A set of k tuples S and a tuple t ∈ S

Output: Rt in the form of intersection of (k − 1) half spaces

1: Rt ← new set

2: for tuple tj in S \ {t} do

// Hj is defined as as
∑d

i=1Hj [i]× wi ≥ 0

3: Hj ← new list of size d

4: for i← 1 to d do Hj[i] = t[i]− tj[i]

5: Add Hj to Rt

6: end for

7: return Rt

21

Proof. Let us consider a set S : {t1, · · · , tk} as the compact representatives before the

iteration and let set S ′ : {t′1, · · · , t′k} be the compact representatives after the iteration. The

`p norm for the set S can be described by

RR = p

√∫
f∈F

(rr(f, S))p = p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, ti))p

During the iteration, for every region Ri the regret minimisation oracle finds a tuple from

the database D that minimises the `p norm regret measure. Hence, we know that,

k

∀
i=1

∫
f∈Ri

(rr(f, S))p ≥
∫
f∈R′i

(rr(f, t′i))
p (2.7)

As the equation for RR′ can be written as,

RR′ = p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, t′i))
p (2.8)

Using equation 2.7 in equation 2.8, we get

p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, ti))p ≥ p

√√√√ k∑
i=1

∫
f∈Ri

(rr(f, t′i))
p

As the region of ti differs from that of t′i, we can conclude

rr(f, t′i)) ≥ (rr(f, S ′) (2.9)

RR ≥ RR′

A similar proof for `∞ norm can be proved.

Theorem 2.3.3. In each successive iteration of the URM algorithm, the regret measure for

the set S : {t1, · · · , tk} improves for the `∞ norm regret measure(maximum regret ratio).

22

Proof. Let us consider a set S : {t1, · · · , tk} as the compact representatives before the

iteration and let set S ′ : {t′1, .., t′k} be the compact representatives after the iteration. The

`∞ norm regret measure for the set S can be described by

RR =
k

max
i=i

sup
f∈Ri

rr(f, ti)

During the iteration, for every region Ri the regret minimisation oracle finds a tuple from

the database D that minimises the `∞ norm regret measure. Hence, we know that

k

∀
i=1

sup
f∈Ri

rr(f, ti) ≥ sup
f∈Ri

rr(f, t′i) (2.10)

Using equations 2.10 and 2.9 we get,

k
max
i=i

sup
f∈Ri

rr(f, ti) ≥
k

max
i=i

sup
f∈Ri

rr(f, t′i) ≥ sup
f∈F

rr(f, S ′)

RR ≥ RR′

2.3.4 Running Example

To provide a better understanding of the algorithm, in this section we provide a run

of the algorithm over Example 1, while considering max as the target regret ratio measure.

Let the set S = {t1, t5, t7, t9} be the initial representative for the algorithm. The region

of each tuple is highlighted in Table 2.1. Based on Definition 2.3.2, each tuple ti is in

charge of its own region Ri, highlighted in Figure 2.1, i.e., ti is the best tuple in S for

all the ranking functions lying inside Ri. In the next iteration the URM algorithm goes

through each of these regions to find better representatives. To do this, it calls the oracle

MaxO. We shall provide the details of this oracle in § 2.4. For each region Ri, the oracle
23

x
y

z

t1
t5

t6

t9

Figure 2.2: The tuples in the representative {t1, t5, t6, t9} partition the entire function space
into convex regions. We have obtained this updated representative after completion of one
iteration of the URM algorithm with {t1, t5, t7, t9} as the initial set. This change in the
representative reduces the max regret ratio score to 0.0444.

finds the best tuple in the entire dataset that has the minimum value of max regret ratio

the functions in Ri. After the first iteration, the representative changes to {t1, t5, t6, t9}.

This new representative creates a different partitioning of the function space, shown in Fig.

2.2. We report the max regret ratio scores of this iteration in Table 2.2. As we can see, the

new representative has a lower score of max regret ratio, which is due to the convergence

property of the algorithm, discussed in § 2.3.3. The algorithm then calls the oracle MaxO

to find the best tuples in the dataset for the new regions and continues this process until

convergence.

Similar illustration for the initial representative {t2, t8, t9, t10} is shown below in

Table 2.3 and Figures 2.3, 2.4, 2.5, 2.6 and 2.7.

24

x
y

z

t2
t8

t9

t10

Figure 2.3: The tuples in the representative {t2, t8, t9, t10} partition the entire function
space into convex regions. The maximum regret for the representative is 0.0989.

x
y

z

t1

t8

t9

t10

Figure 2.4: In the first iteration, the representative is updated to {t1, t8, t9, t10} with a max-
imum regret of 0.0989.

25

x
y

z

t7

t8

t9

t10

Figure 2.5: In the second iteration, the representative is updated to {t7, t8, t9, t10} with a
maximum regret of 0.0989.

x
y

z

t7

t8

t9

t6

Figure 2.6: In the third iteration, the representative is updated to {t7, t8, t9, t6} with a max-
imum regret of 0.0430.

26

Initial Representative Representative after one Iteration

Tuple RR Tuple RR

t1 0.0 t1 0.0103
t5 0.0223 t5 0.0177
t7 0.1208 t6 0.0230
t9 0.0938 t9 0.0444

0.1208 0.0444

Table 2.2: An iteration of the URM algorithm corresponding to the max regret ratio problem
for example 1. Regret ratio for each of the tuples in representative is shown. The last row
gives the max regret ratio score for the representatives.

Initial Iteration 1 Iteration 2 Iteration 3 Iteration 4

Tuple RR Tuple RR Tuple RR Tuple RR Tuple RR

t2 0.0969 t1 0.0709 t7 0.0840 t7 0.0430 t1 0.0378
t8 0 t8 0 t8 0 t8 0 t8 0
t9 0.0869 t9 0.0378 t9 0.0430 t9 0.0430 t9 0.0378
t10 0.0989 t10 0.0989 t10 0.0989 t6 0.0231 t6 0.0231

0.0989 0.0989 0.0989 0.0430 0.0378

Table 2.3: An iteration of the URM algorithm corresponding to the max regret ratio problem
for running example Regret ratio for each of the tuples in representative is shown. The last
row gives the max regret ratio score for the representatives.

2.4 Max Regret Ratio ORACLE

So far in this chapter, we discussed the regret-minimising problem in general, as-

suming the existence of an oracle for computing the regret. In this section we focus on the

original (and dominant) measure of regret-ratio: max regret-ratio [12]. Given a database

D and a region of ranking functions R, the oracle MaxRROrc finds the tuple that has the

least maximum regret ratio score for all functions in R. The region of functions R is for-

mulated as the intersection of half spaces, R = {H1, .., Hk−1}. The objective is to design

an efficient oracle for this case.

27

x
y

z

t1

t8

t9

t6

Figure 2.7: In the final iteration, the algorithm converges with the local optimum represen-
tative {t1, t8, t9, t6} with a maximum regret of 0.0378.

We first model the problem into a weighted directed complete graph, and use it for

calculating the max regret ratio. Then, we propose three optimisation techniques to make

the oracle efficient and scalable.

2.4.1 Graph Transformation

In order to find the tuple with the least max regret ratio in a region R, we transform

the problem into a graph exploration instance. Consider a weighted directed complete

graph G, as illustrated in Figure 2.8, with n nodes and n(n− 1) edges such that:

• Every tuple t ∈ D translates to the node t in G.

• The weight wt→t′ of an edge t→ t′ (from node t to node t′) is equal to the max regret

ratio of replacing t′ with t in the region R.

In order to compute the weight of an edge t→ t′ we use the (fixed size – independent

of n) linear programming (LP) shown in Equation 2.11:

28

Figure 2.8: Graph transformation for max regret ratio oracle

max r (2.11)

s.t. r ≥ 0

d∑
j=1

wj × t′[j] = 1

d∑
j=1

wj × (t′[j]− t[j]) ≥ r

∀0 < ` < k :

d∑
j=1

H`[j]× wj ≥ 0

Having the graph G constructed, the max regret ratio of assigning a tuple t as the

representative (removing all other tuples t′ ∈ D\{t}) of the region R, is the maximum

weight of its outgoing edges. This is proved in Theorem 2.4.1.

Theorem 2.4.1. Given the graph G of a database D, a space of raking functions R the max

regret ratio of a tuple t ∈ D in R is:

RR(t,D, R) = max
∀t′∈D\{t}

wt→t′

29

Proof. Let f ′ ∈ R be the ranking function for which the tuple t has the maximum regret

ratio score. Let r′f ′ be the maximum regret ratio score and tuple tf ′ be tuple which has the

maximum score from the database D for the function f ′. By definition, the equation for

maximum regret ratio r′f ′ is

rf ′ =
f ′(tf ′)− f ′(t)

f ′(tf ′)

An important observation that we will use in this proof is that the equation for rf ′ is depen-

dent only on the tuple tf ′ from the database.

The computation of edge weight wt→t′ can be formulated as,

wt→t′ = sup
f∈R

f(t′)− f(t)

f(t′)

As we compute the edge weights between tuple t and all the other tuples from the database

D, the maximum value is computed when the comparison between tuples t and tf ′ . Hence,

RR(t,D, R) is equal to rf ′ .

The representative tuple for a region of functionsR is the node that has the minimum

max-weight over its outgoing edges. Therefore, after constructing the graph G, the oracle

can make a pass over the graph and find the representative node to assign to the region.

Given that the LPs have a constant size, the construction of the graph G and finding

the representative tuple for a region R based on it has the time complexity of O(n2).

Even though the construction of graph G enables a polynomial algorithm for the

max regret ratio oracle, it is still a quadratic algorithm which is not efficient and scalable in

practice. Therefore, in the rest of this section we propose different approaches for making

the oracle more efficient.

The idea is to find the representative tuple of the region without the complete con-

struction of G. For instance, following the convergence property of the URM algorithm,

we know that, at every iteration, the max regret ratio of the representative of a region R is

not more than the one for the representative from the previous iteration. We can exploit this
30

property by using the regret ratio value of the representative for the regionRi as a threshold

during the regret ratio value computation for the region Ri. That is, for any node in graph

G, we ignore computing the weights of its outgoing edges, as soon as we find a edge that

is not smaller than threshold for this region.

Following the idea of not computing the weights of all edges in G, next, we propose

a threshold-based algorithm for the max regret ratio oracle.

2.4.2 Threshold-based Algorithm for Max Regret Ratio Oracle

Threshold-based algorithms are proven to be effective in practice and are the de-

facto solution for many important problems such as top-k query processing [4, 22]. When

the objective value is minimisation, the idea is to sort the tuples based on a lower bound on

their objective values, ascending. Then starting from the top of the list, while maintaining a

threshold, we continue processing the tuples in the sorted order until the lower bound value

of the remaining tuples in the list is larger than the current threshold. The algorithm can

stop then, as the objective value of the remaining tuples cannot be less that the best known

threshold.

We apply a similar strategy here. But, first, we need to find the lower bounds on the

max regret ratio of the tuples in region R. We apply two strategies for finding the lower

bound: (i) function sampling and (ii) edge sampling, explained in § 2.4.2.1 and § 2.4.2.2,

respectively. The objective is to construct a sorted vector V based on the lower bound

values on the max regret ratio of the tuples.

2.4.2.1 Lower bound based on function sampling

The first strategy is to use function sampling for finding the lower bounds. We use

the existing work [7] for sampling unbiased functions from the region R. Using a set of

N IID function samples drawn from R, we construct a n by N table T that every row in

31

tid f1 · · · fj · · · fN
t1
...
ti rrfj (ti)
...
tn

Figure 2.9: Illustration of table T

it is a tuple and every column is one of the sampled functions. Every cell T [i, j] is the

regret ratio of the tuple ti on the sampled function fj (Figure 2.9). In order to identify the

cell values in T , we first make a pass over the matrix and fill every cell T [i, j] with the

value of fj(ti). Also, for every column j, we keep track of its maximum value maxj . After

finishing the first pass over the matrix, we do a second pass replacing each cell value T [i, j]

by (maxj − T [i, j])/maxj .

After the table T is constructed, the lower bound on the max regret ratio of each

tuple ti is the max value on row T [i]. That is,

lowerRR(ti, R) =
N

max
j=1
T [i, j] (2.12)

Algorithm 3 uses the above idea and returns a sorted vector of tuples based on the

lower bound estimation of their max regret ratio. Making two passes over T and then

sorting the vector V , Algorithm 3 is in O(n(N + log n)). Note that, considering a fixed

sampling budget, the algorithm is linearithmic.

2.4.2.2 Lower bound based on edge sampling

Function sampling works well for fat regions i.e. regions which have a large volume

where sampling from these regions is easy. But if the space of function space is a thin

region then function sampling from it would end up being costly. We propose weighted

sampling of edges of G for these cases.
32

Algorithm 3 SortedLBFS

Input: Database D, Set of Function Samples F

Output: Sorted vector of tuples based on the lower bound of their max regret ratio

1: for j ← 1 to |F | do

2: maxj ← 0

3: for i← 1 to n do

4: T [i, j]← F [j](ti)

5: if T [i, j] > maxj then maxj ← T [i, j]

6: end for

7: for i← 1 to n do

8: T [i, j]← maxj−T [i,j]
maxj

9: end for

10: end for

11: for i← 1 to n do

12: V [i]← (i,
N

max
j=1
T [i, j])

13: end for

14: Sort V on second column

15: return V

Recall that the max regret ratio of a tuple ti in a region R is the max of the weights of

its outgoing edges in G (c.f. Theorem 2.4.1). A loose lower bound on the max regret ratio

value can be obtained by uniformly sampling a few edges from the graph and computing

their weights. To make it more effective, we use a weighted sampling of the edges to obtain

reasonably tight lower bounds. In order to obtain the weights for the sampling process, we

start with a set of ranking functions, chosen within the region R. To obtain the functions,

a linear program is used to find the Chebyshev centre [23], which is the centre of largest

33

inscribed hyper sphere inside of R. Using a normal distribution, we sample a few functions

and transform these functions to lie on the surface of the hyper sphere described by the

Chebyshev centre. We use the summation of the scores of the tuples as a guidance for

the weighted sampling. The idea is that the tuples with the higher scores are more likely

of being representative of the region. Hence, we use the normalised vector of the score

aggregates for the tuples, as the probability distribution for edge sampling.

Weighted sampling is performed using these weights to obtain a few edges of the

graph. Computing the weights of these edges gives us a tighter lower bound value for max

regret ratio. These lower bound values are then used in a similar manner to the threshold

based algorithm § 2.4.2.1. Algorithm 4 shows the pseudo code for the weighted edge

sampling algorithm.

Having the sorted list of tuples V , we are now ready to design our threshold-based

algorithm (Algorithm 5). Starting from the first tuple in the list, the algorithm computed

the weights for the outgoing edges the current tuple in graph G (Equation 2.11). The max

regret ratio of the current tuple is the max of its outgoing edges. While making a pass over

V and computing the max regret ratio of the tuples, the algorithm keeps track of the best

known solution (the least value of max regret ratio) as the threshold, and stops as soon as

the lower bound values of the remaining tuples are higher than threshold.

2.5 Average Regret Ratio ORACLE

In this section, we shift our focus to a different measure of regret ratio, namely,

average regret-ratio (ARR). An exact solution for the ARR computation oracle requires to

partition the region R into the “maxima sub-regions” such that a specific tuple ti is the

maxima for each and every of the functions in each sub-region. Let TM ⊆ D be the set

of tuples that have the maximum score for at least one function in R. Also let n′ ≤ n be

34

Algorithm 4 SortedLBES

Input: Database D, Number of samples N , Number of edge samples Nedge, Convex

region of functions R

Output: Sorted vector of tuples based on the lower bound of their max regret ratio

1: center, radius← Compute Chebyshev Center for region R

2: F ← Sample(N) // draw N samples

3: for j ← 1 to |F | do

4: for i← 1 to n do

5: P [i]← P [i] + F [j](ti)

6: end for

7: total← total + P [i]

8: end for

9: for i← 1 to n do

10: P [i]← P[i]
total

// Normalize P

11: end for

12: for i← 1 to n do

// draw Nedge samples from distribution P

13: E ← Sample(P , Nedge)

14: for j ← 1 to Nedge do

15: w ← max(w, compute wi→E[j] based on Eq. 2.11)

16: end for

17: V [i]← (i, w)

18: end for

19: Sort V on second column

20: return V

35

Algorithm 5 MaxO
Input: Database D, Convex region of functionsR, Sampling budgetN , representative

t, threshold τ

Output: The representative tuple for R

1: F ← Sample(R,N) // draw N samples from R

2: if F is not empty then V ← SortedLBFS(D, F)

3: else V ← SortedLBES(D, R, N)

4: for i← 1 to n do

5: if V [i, 2] ≥ τ then break

6: rr ← 0

7: for j ← 1 to n where j 6= V [i, 1] do

8: w ← compute wV[i,1]→j based on Eq. 2.11

9: if w > rr then rr ← w

10: if rr ≥ τ then continue

11: end for

12: if rr < τ then

13: τ ← rr; t← V [i, 1]

14: end if

15: end for

16: return t

the size of TM . Similar to Definition 2.3.2, the set of functions that each tuple t ∈ TM is

the maxima is a convex region, defined as the intersection of n′ − 1 = O(n) half-spaces.

For every function f in Rt′ (the maxima sub-region of a tuple t′ ∈ TM), the regret ratio

of a tuple t ∈ D is (f(t′) − f(t))/f(t′). This, in the end, provides an exact solution for

computing the ARR of a tuple in a region R. However, requires to compute the volume

36

under the regret ratio curves across the sub-regions. Unfortunately, even though the total

number of sub-regions is in O(n) and each sub-region is defined as the intersection of

linear number of half spaces, the computation of ARR within each of the sub-regions is

not computationally feasible in higher dimensions. That is because, as proven by Dyer et

al. [18], the exact computation of the volume of a convex shape described as the intersection

of linear number of half-spaces is #P-hard.

Fortunately, although exact volume computation is usually costly, Monte-carlo meth-

ods [24] combined with tail inequalities [25] provide strong estimation methods for the

problem. Following this, Zeighami et. al [2] have shown that the ARR value can be ap-

proximated usingN samples of ranking functions with an error bound of ε and a confidence

of 1− σ, where the relation between N, ε, and σ is shown in the following equation.

ε =

√
3 ln 1

σ

N
(2.13)

Essentially, what [2] shows is that discretizing the continuous function space to a

set of N uniform function samples, and using the samples for finding the maxima rep-

resentatives guarantee an error ε, with the confidence interval of 1 − σ, as specified in

Equation 2.13. We follow this in the design of the ARR oracle. That is, to use the discrete

set of N uniform function samples for finding the representative tuples.

Consider a database D and a set of representative tuples S and their regions. For

each of the regions, we want to find the tuple t ∈ D for which the ARR score is the lowest.

For any region Ri, we select the functions which lie inside Ri. We use this set of ranking

functions to estimate the ARR score of each of the tuples in the database. Next, for each

region, the tuple with the lowest ARR score replaces the previous representative of that

region. The algorithm is given in 6.

37

Algorithm 6 AvgO
Input: Database D, Convex region of functions R, Function samples F in R

Output: The representative tuple for R

1: for j ← 1 to |F | do max[j]← 0 // max score for each function

2: for i← 1 to n do

3: for j ← 1 to |F | do

4: scores[i, j]← F [j](ti)

5: if max[j] < scores[i, j] then max[j]← scores[i, j]

6: end for

7: end for

8: min←∞

9: for i← 1 to n do

10: arr[i]←
|S|∑
j←1

max[j]−scores[i,j]
max[j]

11: if min > arr[i] then

12: min← arr[i]; t← i

13: end if

14: end for

15: return t

2.6 Experiments

2.6.1 Experimental setup

Datasets: For evaluating our algorithms, we have used the following datasets. We gener-

ated two synthetic datasets - Surface and Scaled along the lines of Sphere and SkyPoints in

[14].

• (Real dataset) Colors [26]: This is one of the commonly used datasets for the evaluation

of regret ratio and skyline problems [12, 14, 27]. In our experiments, we have used the

38

Color Histogram dataset. It contains 68,040 tuples, each being a color image. For every

image, it contains 32 attributes, where each attribute is the density of a color in the entire

image.

• (Synthetic) Surface: We generated the Surface dataset by uniformly sampling points on

the surface of a unit hypersphere. Therefore, by construction, all the points in the Surface

dataset belong to the skyline. The dataset contain 20,000 tuples, over 12 attribute, in

range [0, 1].

• (Synthetic) Scaled: For the Scaled dataset, we uniformly generated points inside a unit

hypersphere. Since, in a high dimensional space, a large portion of the total volume of

a hypersphere lies near the surface area, most of the points in the Scaled dataset is also

present in the skyline. The scaled dataset contains a set of 20,000 tuples, each defined

over 12 attributes in range [0, 1].

• (Real dataset) DOT [28]: The flight on-time dataset is published by the US Department

of Transportation(DOT). It records, for all flights conducted by the 14 US carriers in Jan-

uary 2015, attributes such as scheduled and actual departure time, taxiing time and other

detailed delay metrics. The dataset consists of 457,013 tuples and 7 ordinal attributes.

• (Real dataset) NBA [29]: NBA dataset contains the points for the combination of player,team,season

up to 2009. It contains 21,961 tuples and 17 ordinal attributes: gp, minutes, pts, oreb,

dreb, reb, asts, stl, blk, turnover, pf, fga, fgm, fta, ftm, tpa, tpm.

Hardware and Platform: All our experiments were performed on a Core-i7 machine

running Ubuntu 16.04 with 64 GB of RAM. The algorithms were implemented in Python.

Evaluations: In order to asses the performance of our algorithm, we focus on two main

criteria namely, efficiency and efficacy. Concretely, we evaluate based on the following

metrics - (i) the quality of the results produced, i.e. the regret ratio measure of the result

(ii) the amount of time taken by the algorithm.

39

0 500 1000 1500 2000
Time(sec)

0.15

0.2

0.25

0.3

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) Surface [4D]

0 500 1000 1500 2000
Time(sec)

0.18

0.2

0.22

0.24

0.26

0.28

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) Scaled [4D]

0 500 1000 1500 2000
Time(sec)

0.04

0.045

0.05

0.055

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) Colors [4D]

2000 3000 4000 5000
Time(sec)

0.015

0.02

0.025

0.03

0.035

0.04

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(d) DOT [4D]

Figure 2.10: Maximum regret ratio when URM uses the compact representative produced
by HD-RRMS as the initial set [4D, K=5].

0 500 1000 1500
Time(sec)

0.31

0.32

0.33

0.34

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) Surface [5D]

0 500 1000 1500 2000
Time(sec)

0.33

0.335

0.34

0.345

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) Scaled [5D]

7700 7800 7900 8000
Time(sec)

0.055

0.06

0.065

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) Colours [5D]

2.88 2.9 2.92
Time(sec) 104

0.015

0.02

0.025

0.03

0.035

0.04

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(d) DOT [5D]

Figure 2.11: Maximum regret ratio when URM uses the compact representative produced
by HD-RRMS as the initial set [5D, K=5].

0 500 1000 1500
Time(sec)

0.12

0.125

0.13

0.135

0.14

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) NBA [4D]

0 500 1000 1500
Time(sec)

0.23

0.24

0.25

0.26

0.27

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) NBA [5D]

0 1000 2000 3000 4000
Time(sec)

0.25

0.26

0.27

0.28

0.29

0.3

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) NBA [6D]

Figure 2.12: Maximum regret ratio when URM uses the compact
representative produced by HD-RRMS as the initial set for NBA
dataset.

0 10 20
0

5

10

15

20

Figure 2.13: 2D
Dataset Example

Algorithms Evaluated: For the max regret ratio representative problem, we have used

HD-RRMS as the baseline [13], one of the recent and advanced algorithms for finding the

max regret ratio representative that guarantees a tunable additive approximation. To do so,

it discretizes the ranking function space and models the problem as a discrete matrix min-

max problem. A combination of binary search technique and transforming the problem into

fixed-size set covers are applied for solving the problem. To make the problem practical,

40

the greedy approximation algorithm is used for the set cover instances. As we shall later

show in this section, the extra approximation induced by the greedy set cover in the HD-

RRMS algorithm shows up in our results and can be seen in the HD-RRMS curve when the

regret ratio does not reduce with time in some cases. For the average regret ratio case,

we have implemented the GREEDY-SHRINK algorithm [2]. This algorithm starts with the

entire database as its representative and iteratively removes the tuple for which the increase

in the average regret ratio is the least. This process is continued until k tuples are left. In

addition to GREEDY-SHRINK, we also compute the global minima, using N samples from

the function space, drawn based on Eq. 2.13 with ε = 0.01 and a confidence as 0.999.

We filtered the dataset to only the skyline points. Using the N samples, a table containing

the regret-ratio values for the filtered tuples is generated, similar to table 2.9. For every

combination of k tuples as a representative, we compute the average regret-ratio value. It is

important to note here that existing algorithms are all approximation algorithms and do not

exhibit the anytime property. As a result, URM is not directly comparable to the existing

work. In our experiments we focus on specific properties of our algorithm.

We also compare our algorithm with several skyline reducing algorithms (which are

discussed in more detail in § 2.7). We have implemented the KRSPGREEDY algorithm

from [30], EIQUE algorithm from [31], NAIVEGREEDY algorithm from [32], ε-ADR

greedy algorithm from [33] and SKYCOVER algorithm from [34].

2.6.2 Summary of experimental results

At a high level, the experiments verified the quality and efficiency of our proposal.

We consider regret ratio score as the measure of quality. For the max regret ratio representa-

tive problem, URM improves the quality of the representatives provided by HD-RRMS when

used as a starting point. When provided with a time budget URM qualitatively outperforms

HD-RRMS algorithm. In case of the average regret ratio representative problem, URM qual-

41

itatively outperforms GREEDY-SHRINK when provided with the same time budget. Our

experiments show that URM converges to the local minima very fast which increases the

chance of discovering the global optima. In addition, the experiments demonstrate some of

the useful properties of our approach, namely, (a) anytime property - even if the execution

of the algorithm is terminated at any point of time, the algorithm will still have a repre-

sentative (b) provision for getting better results - by restarting with a different set of initial

points, URM can achieve better representatives.

0 500 1000 1500 2000
Time(sec)

0.15

0.2

0.25

0.3

0.35

0.4

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) Surface [4D]

0 500 1000 1500
Time(sec)

0.15

0.2

0.25

0.3

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) Scaled [4D]

0 500 1000 1500 2000
Time(sec)

0.04

0.05

0.06

0.07

0.08

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) Colors [4D]

0 2000 4000
Time(sec)

0.015

0.02

0.025

0.03

0.035

0.04

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(d) DOT [4D]

Figure 2.14: Maximum regret ratio when both URM and HD-RRMS uses a fixed time budget
[4D, K=5].

0 500 1000 1500
Time(sec)

0.26

0.28

0.3

0.32

0.34

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) Surface [5D]

0 500 1000 1500
Time(sec)

0.25

0.3

0.35

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) Scaled [5D]

0 2000 4000 6000 8000
Time(sec)

0.05

0.1

0.15

0.2

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) Colors [5D]

0 1 2
Time(sec) 104

0.015

0.02

0.025

0.03

0.035

0.04

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(d) DOT [5D]

Figure 2.15: Maximum regret ratio when both URM and HD-RRMS uses a fixed time budget
[5D, K=5].

42

0 500 1000 1500
Time(sec)

0.12

0.14

0.16

0.18

0.2

0.22

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(a) NBA [4D]

0 500 1000 1500
Time(sec)

0.23

0.24

0.25

0.26

0.27

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(b) NBA [5D]

0 1000 2000 3000 4000
Time(sec)

0.25

0.3

0.35

0.4

0.45

0.5

R
eg

re
t

ra
ti

o

URM
HD-RRMS

(c) NBA [6D]

Figure 2.16: Maximum regret ratio when both URM and HD-RRMS

uses a fixed time budget for NBA dataset.

0.020.018
0.07

0.021

0.237

0.021

0.514

0.0210.040.0250.040.021

URM NG RSP EQ -ADR SC
0

0.2

0.4

0.6

R
eg

re
t

ra
ti

o

RR for output of the algorithm on X axis
RR for output of our algorithm using starting point

Figure 2.17: Compar-
ing skyline reducing
alg. with URM for
DOT dataset with 4 di-
mensions

0 10 20
Time(sec)

0.18

0.2

0.22

0.24

0.26

R
eg

re
t

ra
ti

o

URM
Global minima
GREEDY-SHRINK

(a) Colors, Set size = 4
[9D]

0 50 100 150
Time(sec)

0.12

0.125

0.13

0.135

0.14

0.145

R
eg

re
t

ra
ti

o

URM
Global minima
GREEDY-SHRINK

(b) Colors, Set size = 5
[9D]

0 20 40 60 80
Time(sec)

0.08

0.09

0.1

0.11

0.12

0.13

R
eg

re
t

ra
ti

o

URM
Global minima
GREEDY-SHRINK

(c) Colors, Set size = 6
[9D]

Figure 2.18: Average regret ratio, we are comparing our results
against the global best representatives [9D].

0.020.018
0.07

0.024

0.237

0.025

0.517

0.0250.040.0250.030.024

URM NG RSP EQ -ADR SC
0

0.2

0.4

0.6

R
eg

re
t

ra
ti

o

RR for output of the algorithm on X axis
RR for output of our algorithm using starting point

Figure 2.19: Compar-
ing skyline reducing
alg. with URM for
DOT dataset with 5 di-
mensions

2.6.3 Results for Max Regret-Ratio

Results when initial representative is given: Similar to other clustering-inspired algo-

rithms, the quality of the results produced by the URM algorithm depends on the initial

set of tuples. Often feeding the output of an existing approximation algorithm as the in-

put to these iterative algorithms yield good results. In this set of experiments, we have

used the compact representative returned by HD-RRMS as the initial set of tuples to the

URM algorithm. To be fair in the assessment, while creating the plots for URM, we have

taken the time to generate the initial points into consideration. Concretely, we have added

the running time of HD-RRMS to the running time of URM when creating the plots for the

URM algorithm. We run the experiments on the Surface, Colors, NBA, DOT,and the Scaled

43

datasets. For Surface, Colors, DOT and Scaled datasets we run URM for 4 and 5 dimen-

sions with 20k points each. We use the same configuration used in [13] for NBA and DOT

datasets. While we use 20k tuples with 4, 5 and 6 dimensions for NBA dataset, we use 400k

tuples with 4 and 5 dimensions for DOT dataset. Fig. 2.10 and 2.11 plot the obtained max

regret ratio to the time taken by each algorithm for Surface, Colors, Scaled and the DOT

datasets for dimensions 4 and 5, respectively. Fig. 2.12 compares the URM and HD-RRMS

algorithms for the NBA datasets.

To get different results from HD-RRMS, we used different values of γ for discretiza-

tion. Every red point shows the experimental result of one individual run of the HD-RRMS

algorithm. While HD-RRMS is expected to provide better results as γ increased, in several

settings, one can see an increase in the max regret ratio of the generated output. The rea-

son is that HD-RRMS uses the greedy approach for solving the (theoretically fixed-size) set

cover instances. This adds one more level of approximation to the algorithm which, in the

end, results in the non-decreasing behavior of it in some cases.

In the figures, each red point is connected to a blue point by a dotted line, which

represents feeding the HD-RRMS algorithm’s output to the URM algorithm. The string of

blue points connected by the solid blue line show the performance of the URM algorithm

over the subsequent iterations. First, our experiments show that URM quickly reaches the

local minima of regret ratio in this setting. Also, in most of the experiments, URM improves

the results of the HD-RRMS algorithm. The ones where URM could not improve the result

of HD-RRMS were the ones that HD-RRMS had, by chance, discovered a local optima. Apart

from the performance of the algorithm, it is interesting to see the existence of multiple local

optima and the impact of the starting point on the optima discovered. For instance in Fig.

2.10b, each setting discovered a different local optima. The fast convergence of URM

enables multiple runs of the algorithm with multiple starting points, which increases the

chance of discovering the global optima.

44

Results on a fixed time budget: While URM is an anytime algorithm, HD-RRMS is not.

That is, HD-RRMS returns a representative only after it is finished. Therefore, in order

to make a fair assessment, we run the HD-RRMS algorithm with different values of γ and

allocate the exact same amount of time taken by the HD-RRMS algorithm as the time budget

for our URM algorithm. We run our experiments with Surface, Colors, NBA, DOT,and the

Scaled datasets. This set of experiments demonstrate two important properties of the URM

algorithm. First, as we can see from Fig. 2.14, 2.15 and 2.16 the regret ratio scores

reduce monotonically. This is due to the convergence property of the algorithm, proved in

§ 2.3.3. In addition, the URM algorithm produces reasonably good regret ratio scores even

when the allocated time budget is small. This means that a user can still get a reasonably

good set of representatives even if she terminates the algorithm before it finishes. Another

important result is that URM actually allows the user to find a better representative. With a

fixed time budget, we restart the algorithm with a random set of starting points and repeat

this process until our time budget expires. Essentially, with subsequent repetition of the

URM algorithm, we find a different set of compact representatives with a better score of

max regret-ratio. Another important property that our algorithm exhibits is the any time

property. As URM is an iterative hill climbing algorithm, the best representative among the

ones it has already visited can be consumed by the user even before the end of the time

budget. This can be seen in Fig. 2.14 and Fig. 2.15 where if we were to stop the algorithm

at any point of time we would get a representative marked by the blue circles. First, looking

at the figures, one can see the monotonically decreasing behaviour of URM, compared to

HD-RRMS. Also, HD-RRMS needs to finish at least once or will not provide any output. For

instance, in Fig. 2.15(c), HD-RRMS did not provide any result for a time budget less than

8000 seconds. In contrast, having the anytime property, URM has an output to offer at any

point of time.

45

Proof of concept by an example: Using the NBA dataset, we highlight a concrete ex-

ample. The dataset contains performance records of different Basketball players across

different seasons. Consider the case where the decision criteria are Points, Rebounds, As-

sists and Steals. More than 60 tuples belonged to the skyline. Offering such a large set

to the user is overwhelming. Instead, using the URM algorithm while setting the output

size to 6 we find the set { Wilt Chamberlain - 1967, Don Buse -1975, Nate Archibald -

1972, Michael Jordan - 1987, Wilt Chamberlain - 1961, John Stockton - 1988} with max-

imum regret-ratio of 0.058. That is, the user can make selection between these 6 tuples,

yet be sure that the score (quality) of its selection is not more than 5.8% percent worse

than the optimal choice. For example, for the ranking function Assists+Steals, the optimal

tuple is John Stockton 1990 with the score of 1398. The tuple John Stockton - 1988 in the

representative set has the score of 1381 which shows how close to optimal it is.

2.6.4 Results for Avg Regret-Ratio

Comparison against the global minima: URM is an iterative algorithm where the re-

gret ratio score monotonically decreases over time. That is, it produces better results as

time passes. In contrast, the GREEDY-SHRINK algorithm generates results only at pro-

gram termination. For a fair comparison between the two algorithms, we run GREEDY-

SHRINK with different parameter values of ε and σ. We also demonstrate the ability of

our algorithm to find the global minima given sufficient time. Therefore, in addition to

the GREEDY-SHRINK algorithm we compare against the global minima, the computation

of which is described in § 2.6.1. Concretely, we let the URM algorithm finish multiple

iterations and recorded the regret ratio at the end of each iteration. Finally, we have com-

pared the progression of these scores against the global minima along with the results from

GREEDY-SHRINK. For this set of experiments, we have used 20,000 points from the Col-

ors dataset, in a 9 dimensional space. As discussed in § 2.5, instead of computing the exact

46

volumes, we approximate the average regret ratio score using N samples with an ε of 0.01

and a confidence of 0.999 as described in 2.13. We present the results of our experiments

in Fig. 2.18. The black dotted line indicates the global minima while the red triangles

show the output from the GREEDY-SHRINK algorithm. The URM algorithm outperforms

the GREEDY-SHRINK algorithm for different output sizes of k. In all cases URM finds a

representative with small value of average regret ratio in a small amount of time. In fact,

our experiments show that it is possible to reach the global minima of average regret ratio

in a short time.

2.6.5 Results for skyline reducing algorithms

To compare our algorithm with skyline reducing algorithms, we have implemented

the algorithms KRSPGREEDY [30], ε-ADR [33], EIQUE [31], NAIVEGREEDY [32], and

SKYCOVER [34]. NAIVEGREEDY takes the skyline and a starting tuple as input to output

a representative. To be fair in comparison, we passed every point from the skyline as

a starting point and chose the set with least regret ratio. ε-ADR and SKYCOVER take an

error parameter ε as the input and output the smallest set size satisfying ε-ADR optimisation

criteria. To find a set of size k or smaller, we find a large εwhich satisfies the set size criteria

and apply a binary search to get the smallest ε satisfying the size requirement. The results

for the DOT dataset with dimensions 4 and 5 are presented in Fig. 2.17 and Fig. 2.19. We

denote KRSPGREEDY as RSP, NAIVEGREEDY as NG, EIQUE as EQ, ε-ADR greedy

as ε-ADR and SKYCOVER as SC in the plots. The blue bar shows the regret ratio of

the output of the skyline reducing algorithms, with the name of the algorithm on the X

axis. The orange bars show the regret ratio of the output of our (URM) algorithm when

initialised with the corresponding algorithm’s output. As expected URM outperforms other

algorithms.

47

2.7 Related Work

Over the past few decades, a major amount of research has focused on the generation

of a representative of the dataset to assist users with multi-criteria decision making. Most of

these published works can be grouped into skyline discovery, skyline reduction and regret

based compact representative computations. In this section, in addition to discussing the

related works in these three categories we also provide a brief summary of the clustering

techniques that have inspired the URM algorithm.

Regret minimizing representatives: As an effective solution to the problem of finding

compact representatives, Nanongkai et al. [12] introduced regret-ratio minimising repre-

sentative. The notion of regret introduced in the paper deals with the amount of dissatis-

faction the user would express when she is shown the top item from the representative set

instead of the top item from the dataset when provided with the user preference. Many dif-

ferent variations of the original regret-minimising representative problem have been studied

since this paper [16, 35]. One specific variant, finding a representative set that minimises

the maximum regret ratio, has been extensively studied by several researchers. Agarwal

et al. [14] proved that this problem is NP-complete for dimensions larger than 2. Asudeh

et al. [13] introduce function space discretization and the transformation of the problem to

set-cover instances. [13,14] propose approximation algorithms with similar tunable approx-

imation guarantees for the problem. Another interesting variant of this problem is finding

the average regret ratio problem. It was introduced by Zeigami et al. [2, 15]. However, it is

important to note that while others have studied and proposed solutions for single variants

of the regret measures, we have proposed an unifying algorithm that can work with a class

of regret measures.

Skyline and convex hull: In the pursuit of efficiency, finding a small set of representatives

of the entire dataset has been of key interest in recent years. In the absence of user pref-

erences, skyline [10, 36, 37] and convex hull based algorithms obtain a part of the dataset

48

which behave like representatives. While convex hull is more compact than the skyline, the

computation of a convex hull is significantly more costly in large dimensions. Bentley et

al have studied approximation algorithms with tight approximation ratios for convex hulls

[38]. However, as we move to higher dimensions, most points in the dataset appear on the

skyline or convex hull. As a result, even though these skyline/convex hull based algorithms

are effective in lower dimensions, the large size of skyline and convex hull render them

ineffective as representatives.

Skyline reducing algorithms: Existing works have studied the problem of reducing the

size of the skyline in various scenarios [30–34, 39–41]. To the best of our knowledge,

none, except the regret-minimising literature, incorporate user customisable functions for

skyline reduction nor can be directly translated to the regret ratio problem. [30] and [39]

reduce the skyline size by choosing a subset of size k of it which maximises the number of

dominated tuples by this subset. [32] proposes distance-based skyline, a subset of size k that

minimises the sum of the distances between the points and their closest representative. [41]

and [31] find a subset of size k with maximum diversity. [42] propose the concept of skyline

ordering, which is skyline-based partitioning of a given data set such that an order exists

among the partitions. This ordering is then exploited to reduce the set size to k. We note that

all of the aforementioned have a different objective function than regret-ratio and cannot

provide any guarantee on how good it is for an arbitrary function.

Similarly, [33] and [34] propose a new measure, ε-ADR query, which chooses a

subset of the skyline such that the tuples of the skyline when scaled by (1+ ε), dominate

the rest of the skyline tuples. We illustrate the difference between the optimisation measure

of ε-ADR query and regret ratio with an example. Consider a dataset with n points (in

2D), out of which (n-2) are equi-angularly placed on the surface of a circle with radius

10 and the two other points are 〈20, 1〉 and 〈1, 20〉. Note that all the points belong to the

skyline. Figure 2.13 shows this example for n = 7. The optimal set for size 2 is (the convex

49

hull) {〈20, 1〉, 〈1, 20〉} with max regret ratio 0. On the other hand, ε-ADR query chooses

a subset of the skyline such that the tuples of the skyline when scaled by (1+ ε), dominate

the rest of the skyline tuples. As both 〈20, 1〉 and 〈1, 20〉 have one of their attributes set to

1, the scaling required for these tuples to dominate the other tuples is large making them

less attractive to the ε-ADR query. For the example of Figure 2.13, ε-ADR [33] returns

{〈8.66, 5.0〉, 〈5.0, 8.66〉}. Note that, instead of 〈20, 1〉 and 〈1, 20〉, we could add points

〈X, 1〉 and 〈1, Y 〉 with X and Y such that there exists a tuple 〈a, b〉 from the database

which has the property X
a
< b and Y

b
< a. For example, we can increase X and Y to 49 as

this dataset contains the point 〈7.07, 7.07〉 for which 49
7.07

= 6.93 < 7.07.

Clustering: Clustering have long been studied to partition data into similar groups. One

of the major variants in this field is the K-MEDOID algorithm [17]. Like many other clus-

tering algorithms, K-MEDOID is also an iterative algorithm that partitions the points into

clusters by minimizing the distance between the points from the cluster center. However,

the difference between the K-MEDOID algorithm and other clustering techniques is that

K-MEDOID always chooses the cluster centroids from the existing data points. In the liter-

ature, there have been several variations of K-MEDOID that have explored several avenues

of choosing the best centroid. Few of the most prominent are PAM, CLARA [43] and

CLARANS [44].

50

CHAPTER 3

Fairness-Aware Range Queries for Selecting Unbiased Data

We are being constantly judged by automated decision systems that have been widely

criticised for being discriminatory and unfair. Since an algorithm is only as good as the data

it works with, biases in the data can significantly amplify unfairness issues. In this paper,

we take initial steps towards integrating fairness conditions into database query processing

and data management systems. Specifically, we focus on selection bias in range queries.

We formally define the problem of fairness-aware range queries as obtaining a fair query

which is most similar to the user’s query. We propose a sub-linear time algorithm for single-

predicate range queries and efficient algorithms for multi-predicate range queries. Our

empirical evaluation on real and synthetic datasets confirms the effectiveness and efficiency

of our proposal.

3.1 Introduction

In the era of big data and advanced computation models, we are all constantly being

judged by the analysis, algorithmic outcomes, and AI models generated using data about

us. Such analysis are valuable as they assist decision makers take wise and just actions.

For example, the abundance of large amounts of data has enabled building extensive big

data systems to fight COVID-19, such as controlling the spread of the disease, or in finding

effective factors, decisions, and policies [45]. Similar examples can be found in almost all

corners of human life including resource allocation and city policies, policing, judiciary

system, college admission, credit scoring, breast cancer prediction, job interviewing, hir-

51

ing, and promotion, to name a few. In particular, let us consider the following as a running

example:

Example 2. (Part 1) Consider a company that would like to make a policy decision, tar-

geted at its “profitable” employees. Following our real experiment in § 3.5.2, suppose the

company has around 150K employees. Using salary as an indicator of how profitable an

employee is, the business management office of the company considers the query SELECT

* FROM EMP WHERE salary≥$65K, which includes around 18% of employees. Survey-

ing this group, the company wants to develop some mechanisms to motivate and retain

these employees.

Looking at these analyses through the lens of fairness, algorithmic decisions look

promising as they seem to eliminate human biases. However, “an algorithm is only as

good as the data it works with” [46]. In fact, the use of data in all aforementioned applica-

tions have been highly criticised for being discriminatory, racist, sexist, and unfair [47,48].

Probably the main reason is that real-life social data is almost always “biased” [46]. Using

biased data for algorithmic decisions create fairness dilemmas such as impossibility and

inherent trade-offs of fairness [49–51]. Besides historical biases and false stereotypes re-

flected in data, other sources such as selection bias can amplify unfairness issues [46]. To

highlight a real example, let us continue with Example 2:

EXAMPLE 1. (Part 2) As we shall later elaborate in § 3.5.2, it turns out the com-

pany has more female employees than male. Still, due to the known historical discrimi-

nation [52], the selected group of employees contain noticeably more males. As a result,

targeting this group for the analysis, the company will end up favouring the preferences

of the male employees, which is unfair to female employees and will, in a feedback loop,

result in losing more of the “profitable” female candidates.

Fortunately, recently different computer science communities, such as machine learn-

ing and, in particular, data management, have taken fairness issues seriously. In past three

52

years alone, there have been many publications in related topics such as fairness-aware

data repair, cleaning, and integration [53–56], data bias detection/resolution [57–63], and

data/model annotation [64, 65], systems [66–68], ranking [69–72], crowdsourcing [73], as

well as different keynotes [74, 75] and tutorials [47, 76, 77] dedicated to this topic in pre-

mier database conferences, that underscore this community’s role in properly addressing

this problem.

Despite extensive efforts within the database community, there is still a need to inte-

grate fairness requirements with database systems. Existing work is limited to query formu-

lation for achieving data coverage (minimum count on demographic (sub)groups) [78–80].

To our knowledge, this paper is the first to integrate fairness (parity on counts) with (selec-

tion) query answering. In particular, as our first attempt, we consider range queries and pay

attention to the facts: (i) the conditions in the range query may be selected intuitively by

the human user. For instance, in Example 2 the user could have chosen $65K as the query

bound because it was (roughly) a good choice that would make sense for them; (ii) consid-

ering the ethical obligations and consequences, the user might be interested in accepting a

“similar enough” query to their initial choice, if it returns a “fair” outcome.

In Example 2, we note that the company could, for instance, in a post-query pro-

cessing step, remove some male employees from the selected group, or it could add some

females to the selected pool, even though they do not belong to the query result. While

such fixes are technically easy, those are illegal in many jurisdictions [81], because those

amount to disparate-treatment discrimination: “when the decisions an individual user re-

ceives change with changes to her sensitive attribute information” [82], [46, 69]. For in-

stance, one cannot simply increase or decrease the grade of a student, because of their race

or gender. Instead, they should design a “fair rubric” that is not discriminatory. Therefore,

instead of practising disparate treatment, we propose to adjusting the range to find a range

(similar to finding a rubric for grading) with a fair output.

53

Following the above argument, our system allows the user to specify the fairness and

similarity constraints (in a declarative manner) along with the selection conditions, and we

return an output range that satisfies these conditions. To further clarify this, let us continue

with Example 2 in the following.

EXAMPLE 1. (Part 3) Being aware of the historical discrimination, ethical obliga-

tions, and the potential negative impacts on the company, besides knowing that the choice

of salary lower-bound has been fuzzy, the business management office would like to find a

query whose output is similar enough to the initial query and the number of male employ-

ees returned is at most 1000 (around 5%) more than the females. Using our system, they

can issue a SQL query to find such a set. As explained in § 3.5.2, our system found the

most similar fair range as SELECT * FROM EMP WHERE $60.5K≤salary≤$152K. Its

outcome is 75% similar to the initial range query, and satisfies the fairness requirement.

Observing the high Jaccard similarity between these two sets, the company now has the

option to use this for their analysis, to make sure they are not discriminating against their

female employees, hence not losing their valuable candidates.

Our system provides an alternative to the initial query provided by the user. This is

useful since often the choice of filtering ranges is ad-hoc, hence our system helps the user

responsibly tune their range. If the discovered range is not satisfactory to the user, they

can change the fairness and similarity requirements and explore different choices until they

select the final result in a responsible manner [69, 83].

Summary of contributions Initiating fairness-aware query answering, in this paper we

tackle non-trivial technical challenges and propose proper algorithms to address them. In

particular, we make the following contributions in this paper:

• We initiate research on integrating fairness conditions into database query processing and

data management systems. While the specific problem investigated in our paper focuses

54

on fairness in range queries, we hope this work will spur further research in this important

and emerging field.

• We study the problem of fairness-aware range queries. That is, finding the most similar

fair range to a user-provided range query for the database D. We propose using SQL for

declaring the fairness-aware queries.

• For single-predicate (SP) range queries, we propose the algorithm SPQA with sub-linear

query time. The algorithm uses an innovative linear-size index Jump pointers.

• We model the problem for multi-predicate (MP) range queries as the traversal over a

graph where nodes represent different queries and there is an edge between two nodes if

their outputs differ by one tuple. In particular, we propose Best First Search MP (BFSMP)

algorithm that, starting from the input range, efficiently explores neighbouring nodes to

find the most similar fair range.

• Inspired by the A* algorithm, we propose Informed BFSMP that improves BFSMP, using

an upper-bound on the Jaccard similarity for effective graph exploration.

• We conduct comprehensive experiments to evaluate our SP and MP algorithms. Our re-

sults demonstrate the efficiency and efficacy of SPQA for SP queries. Similarly, IBFSMP

performs well for MP queries.

3.2 Preliminaries

3.2.1 Database Model

Database We consider a relation D with n objects, t1 to tn. Each object in D, consists of

numeric attributes A1 to Ad. We refer to the value of attribute Aj ∈ R of object ti as ti[j].

While the numeric attributes of the database D can be used for range queries, objects may

also consist of categorical attributes. These categorical attributes are used for filtering the

objects based on the user’s criteria.

55

id A0 A1 colour id A0 A1 colour
t0 3.1 1.5 red t7 13 5.4 red
t1 0.7 2.3 red t8 11.3 2.6 blue
t2 8 0.65 blue t9 2.3 8.4 blue
t3 10.9 1.5 red t10 5.6 4.7 red
t4 4.4 8.7 blue t11 12.7 2.8 red
t5 1.2 4.1 red t12 7 0.3 blue
t6 6.2 6.3 blue t13 9.1 9.4 red

Table 3.1: A toy example database D with two attributes A0 and A1 and the sensitive
attribute colour.

A toy example of a database can be seen in Table 3.1 with 14 objects t0 to t13.

The attributes of this database are in the form of Ai, namely A0, A1. The database also

includes the non-ordinal attribute colour used in the fairness model. We use this database

for illustrating various techniques across the paper.

Range Query Given a database D, a range query is made up of conjunction of range

constraints placed on some/all of the attributes of D. A range constraint {start, end}

(aka a range predicate) on an attribute Ai filters the objects such that the attribute Ai lies

within the filter range(start ≤ Ai ≤ end). For instance, Query 1 is a query with one range

predicate on the toy example of Table 3.1 that returns the objects {t4, t6, t10, t12}:

QUERY 1: select id from D where 4 ≤ A0 ≤ 7

In this paper, we consider the conjunction of multiple range predicates using “and”

operation.

Similarity Measure The distance between two range queries is the dissimilarity of the two

queries. Without loss of generality, the distance measured between two range queries can

be normalised to lie in the range [0, 1]. The similarity between two range queries can be

computed as one minus dissimilarity. Various similarity models can be used to measure the

similarity between two range queries. Without loss of generality, we use Jaccard similarity

and leave other models for future work. Jaccard similarity between two range queries can

56

be computed by the ratio of intersection between the output of the two range queries to the

union of the output to the two range queries.

SIM(Q1, Q2) =
out(D, Q1) ∩ out(D, Q2)

out(D, Q1) ∪ out(D, Q2)

where out is the output of the range query on D.

QUERY 2: select id from D where 3 ≤ A0 ≤ 6.2

For instance, the similarity between the example queries Query 1 and Query 2 (out(D,Query2) =

{t0, t4, t6, t10}) is:

SIM(Query 1, Query 2) =
|{t4, t6, t10}|

|{t0, t4, t6, t10, t12}|
= 0.6

3.2.2 Fairness Model

Our definition of fairness is based on group fairness [84] and the notion of demo-

graphic parity, aka statistical parity and disparate impact [46, 47, 84–86].

Sensitive attribute Group fairness is defined as parity over different demographic groups

such as white and black. The demographic groups are identified by a non-ordinal at-

tribute, such as race or gender, known as sensitive attributes. In many of the existing

applications, sensitive attributes are binary, separating a minority group (e.g. female)

from the majorities (e.g. male). Therefore, in this paper, we follow the existing work such

as [87] and consider the sensitive attribute to be binary in nature. We leave the non-binary

sensitive attributes and more general cases for the future work.

As highlighted in our sample database in table 3.1, we use the attribute colour

(with two values red and blue) to abstract the sensitive attribute (and the demographic

groups).

57

Fairness constraint The fairness measure is defined as the parity over the demographic

groups, identified by the colours blue and red. The parity condition is identified using a

criteria that decides whether the output of a query is fair. Let Cr and Cb be the number of

red and blue objects in the output.

In some application, the parity can be defined as having equal number of objects from

the demographic groups in the output set. That is, Cr = Cb. In other words, the objects

in the selected set should have equal chance of belonging to each demographic group. For

instance, Query 1 in our toy example, returns three blue objects ({t4, t6, t12}) and one red

object ({t10}) and does not satisfy the parity condition Cr = Cb, while Query 2 returns two

blue ({t4, t6}) and two red object ({t0, t10}) – hence satisfies the parity condition.

Alternatively, some applications consider the underlying distributions and require

that the set of selected objects to represent the underlying demographic from which they

were chosen from. In other words, the objects from different demographic groups should

have equal chances of being selected in the output set. That is,

Cr/nr = Cb/nb

where nr and nb are the total number of red and blue objects in D. Similarly, different

applications may require different notions of parity based on societal norms. To support

all these cases under the same fairness model, we abstract the fairness constraint, using a

weight parameter W as following:

WrCr = WbCb

Specifically, we refer to the case where W1 = W2 as unweighted fairness and other cases

as weighted fairness model.

Achieving perfect demographic parity in form of equality is rarely practical in the

real-world, hence we use a threshold ε to identify an acceptable disparity [85]. Using this

threshold, the fairness constraint can be rewritten as
58

FAIR RANGE QUERY PROBLEM: Given a database D, a range query Q and
a disparity value ε, find a fair range that is most similar to Q with a disparity
value at most ε.

Figure 3.1: Problem Formulation

DECLARATIVE FAIRNESS-AWARE QUERY:
SELECT ... FROM DATABASE
WHERE

RANGE-PREDICATES
SUBJECT TO

|WrCr - Wb Cb| <= eps and SIM >= tau

Figure 3.2: Declarative Query Model

|WrCr −WbCb| ≤ ε (3.1)

3.2.3 Problem definition

Having formally defined the database and fairness notions, we are now ready to

provide our problem formulation. We consider the problem of finding the most similar fair

range to a user provided range query for the database D. Figure 3.1 provides the formal

formulation of the fair range query problem. This problem formulation helps the data

scientists to slightly change their query to find the data that is similar to their initial query

output and is also fair.

Declarative query model Our problem formulation follows a declarative fairness-aware

query model as specified in Figure 3.2. Using this declarative interface, we expect the user

to easily formulate the fairness-aware queries. In particular, we realise that the user might

not be interested to accept the queries that are far from their initial choices, hence might

require to identify a constraint on the minimum similarity they would find relevant. This,

along with the fairness constraint, is identified as part of the constraints, followed after the

59

“subject to” phrase. Note that there may be multiple queries equally near to the input range

query that satisfy the constraints. The problem of finding all fair range queries nearest to

the given query is an interesting direction for future work, discussed in section 3.7. For

example, knowing that Query 1 does not satisfy the demographic parity for unweighted

fairness, the user can reformulate the query in form of Query 3 to discover a similar query

(with at least 80% similarity) that has at most a disparity of 1. QUERY 3: select id

from D where 4 ≤ A0 ≤ 7

subject to |Cb − Cr| ≤ 1 and SIM ≥ 80%

Formulating Query 3 as fair range query problem, the optimal solution, by changing

the range predicate to 3.1 ≤ A0 ≤ 7, adds t0 to the output set, satisfying both the fairness

and similarity constraints specified by the user.

After providing the terms and discussing the problem formulation, we now turn at-

tention to designing efficient algorithms for our problem. In particular, we realise that a

large portion of the queries in practice have a single range predicate. Therefore, in § 3.3,

we focus on this case, designing a tailored solution for it. Then in § 3.4, we will devise

an algorithm for the queries with multiple range predicates. We show empirical results in

§ 3.5.

3.3 Single-predicate Range Queries

Next, we consider queries with a single range condition. We first provide definitions

and theorems that form the basis for our algorithms, in § 3.3.1. Then we design SPQA, our

algorithm for the unweighted case in § 3.3.2, discuss pre-processing details in § 3.3.3, and

present weighted SPQA in § 3.3.4.

60

3.3.1 Jump pointers

Query answering systems usually conduct offline pre-processing (indexing) that fa-

cilitates online query answering. One extreme approach for finding fair range queries,

that optimises for query time, is to precompute and store the answer to all possible range

queries during pre-processing. Such an approach, using proper data structures, enables

constant-time query answering. This, however, requires an extensive space of O(n2) to

store the answer to all possible single-predicate range queries, which might not be reason-

able, specifically for databases with millions of objects. The other extreme is to optimise

for the space and to delay the computation to online query answering time. This, however,

might require enumerating O(n2) possible ranges, which makes query answering ineffi-

cient –O(n2). Our proposal is between these two extremes, by building a linear-size index

(Jump pointers) that enables the sub-linear query answering time ofO(log n+ disparity),

where disparity is the unfairness of the input query.

The idea behind the Single Predicate Query Answering (SPQA) algorithm is to quickly

lookup fair ranges, each of which have a similarity of ε. Theorem 3.3.2 proves that for any

unfair unweighted query, the nearest fair query has a disparity value of exactly ε. Among

the fair ranges which have a disparity of ε, the ones which have a potential to be nearest

by Jaccard similarity to the input range are explored by SPQA to find the most similar fair

range.

Definition 3.3.1. (Jump pointers): Consider a database D and the attribute A for the

single-predicate range query model. A right (resp. left) blue jump pointer from location oi

points to the nearest/closest location br(resp. bl) such that the number of blues in the range

[oi + 1, br] (resp. [bl, oi− 1]) is equal to the number of reds plus one. Red jump pointers are

also defined in the same manner.

For the sample database of Table 3.1, Figure 3.4 depicts the right and left jump

pointers for attribute A0. The index is constructed on top of the sorted list of object ids

61

according to their values on A0. Therefore, since t1[0] = 0.7 is the minimum of A0, t1

is the first object in the list. For example, consider the object t12, where t12[0] = 7; the

range [8, 10.9] (8 ≤ A0 ≤ 10.9) consists of the smallest range starting from 8 that has one

additional red than the blues in the range. Hence, its right red jump pointer points to t3

(t3[0] = 10.9). Note that not all objects have jump pointers; for example there is no right

red jump pointer from t10 as no location ahead of t10 has one additional red that than the

number of blues in the same range. Even though there exists four jump pointers ({left or

right} and {blue or red}) for every object in the list, two of those pointers are trivial. For

example, the range [8, 8] (8 ≤ A0 ≤ 8) consists of t2 and is the smallest range after t12 that

consists of one additional blue. As this trivial information can be quickly determined in

O(1) time, this pointer need not maintained and can be looked up at query time. Left jump

pointer follows a similar pattern; for example the node t8 maintains a left blue pointer to t6

as the range [6.2, 10.9] (6.2 ≤ A0 ≤ 10.9) consist of one additional blue than reds.

We refer to travelling along the jump pointer from location oi as following a jump

pointer. Following a blue jump pointer k times from location oi gives us the closest location

oj from oi such that the range from oi to oj has k blues more than the range that would end

at oi. The algorithm to find jump pointers is described in § 3.3.3.

Lemma 3.3.1. Following the red colored jump pointer k times from oi lands at a location

where the range ending at it is has k more reds than the same range ending at oi.

Proof. We provide the proof by induction:

Base case: By the definition of jump pointer, a red colored jump pointer points to the near-

est location which has one additional red. This gives us the base case for k = 1.

Induction step: Assume that the lemma holds for k − 1 red jump pointers. Let the

k−1th jump pointer point at location ol and kth jump pointer point at location om. Suppose

62

there exists a om′ which is closer to oi than om while also satisfying the k additional reds

criteria. If om′ lies to the left of ol then we already have a contradiction as the k− 1th jump

pointer would lie to the left of om′ . On the other hand if om′ lies to the right of ol, then the

red jump pointer should point to om′ as the range ol to om′ consists of one additional red

than blue. As both cases are not possible, om′ is the same as om.

Jump pointers will be used for two operations (expansion and shrink) in single-

predicate range queries. An expansion operation expands a range to include more objects.

Excluding objects by shrinking the range is done using shrink operations.

Definition 3.3.2. (Cumulative sum): Consider an attributeA for the single-predicate range

query model. The cumulative sum ci at a location oi is the difference between the number

of reds and blues from the left most location along A to oi.

Figure 3.3: Disparity computation for the range 6.2 ≤ A0 ≤ 10.9 in the sample database
of Table 7.

As an illustration from the sample dataset, consider computing the cumulative sum

for the query range 6.2 ≤ A0 ≤ 10.9. We use figure 3.3 to illustrate the process. The

cumulative sum at t12 refers to the weighted sum of all elements to the left (including)

t12, marked by the green colored rectangle. Similarly, the cumulative sum at t0 refers to

the weighted sum of all elements to the left (including) t0, marked by the yellow colored

rectangle. As we need the cumulative sum for the query range 6.2 ≤ A0 ≤ 10.9 which is

marked by the black rectangle, the difference between the cumulative sum of the green and

63

yellow rectangles gives us the result. There is one blue and three reds until t0 from the left

most position t1. Hence, the cumulative sum for t0 is −2 (1− 3 = −2).

Given the two locations oi and oj ([oi, oj]), cumulative sums can be used to obtain

the disparity between the start and end location in O(1) time.

disparity = c[i]− c[j − 1] (3.2)

Fox example, consider the example query 3.2.1, with range 4 ≤ A0 ≤ 7. The objects

lying in the input range are {t4, t10, t6, t12}. With 3 blues and a red, the query has a disparity

of 2 which can be computed using cumulative sum by c[12]− c[0] = 2. Note that any two

locations with the same cumulative sum represent a range with perfect parity.

-1 -2 -1 -2 -1 -2 -1 -10 0 0 -2-11

Figure 3.4: Right and left jump pointers for attribute A0 of the sample database of Table 7.

-2 -4 -1 -3 0 -2 1 34 5 6 247

Figure 3.5: Jump pointers for a weighted fairness case

3.3.2 Query answering for unweighted fairness

A range predicate is made up of two points, start and end. If one were to fix one of

the two end points of the range query, to make the range query fair, the other end point can

be moved to shrink the range or to expand it. Consider Figure 3.7, which shows the red

jump pointer at t12. Following the jump pointer, would get us to the closest point which has
64

Disparity = 2

Fair range

Input Query

(a) Setting up the window by expanding the end point of the single predicate input query

Fair range starting at StackSR

Fair range starting at StackSL

Input Query

(b) Moving the window to the left from the initial position

Fair range starting at StackSL

Input Query

(c) Window reaches the position where the end of the input lies

Fair range starting at
StackSR

Fair range starting at StackSL

Input Query

(d) The right end point of the window shrunk within the input query

Fair range starting at StackSL , StackSR

Input Query

(e) Exploration for all windows is completed

Figure 3.6: Step wise movement of the window over the course a run of the single predicate
algorithm

Figure 3.7: Intuition behind jump pointer for a single jump

Figure 3.8: Intuition behind jump pointer for two jumps

65

one additional red. Similarly, Figure 3.8 shows the red jump pointer being followed twice

at t12, which points to closes point ahead of t12 which has 2 more reds than blues.

An expansion would require an addition of |disparity−ε| deficient coloured objects

to make it fair (proved later in theorem 3.3.2). For example, consider the input range query

to be [4.4, 7] (4.4 ≤ A0 ≤ 7) with ε = 0. Figure 3.6a shows the query range [4.4, 7] (4.4

≤ A0 ≤ 7) marked with an enclosing box. As there are two more blues in the range query,

we require two additional reds to expand the query range to make it fair. Expanding the

range by following two red jump pointers gives us a fair range. Figure 3.6a shows a fair

range when the start of the range, t4, is fixed and the other end point is allowed to expand to

incorporate two additional reds, thus obtaining the range [4.4, 13] (4.4≤ A0 ≤ 13), marked

by the dotted line. In general, one can follow the deficient pointer |disparity − ε| times.

Our goal is to find the most similar range that resolves the disparity of |disparity−ε|.

Such a disparity can be covered by moving either end points, that is |disparity− ε| should

equal to the sum of the changes on the right and left. For instance, figure 3.6b shows the

end of the input query expanded by one red pointer and start expanded (resp. shrunk) by

one red (resp. blue) pointer. Similarly, figures 3.6c, 3.6d and figure 3.6e shows the input

query expanding/shrinking to cover the disparity of 2. We design a window-sweeping

algorithm to find such a range.

Algorithm 7, SPQA, describes our approach, for finding the most similar fair range

to the input query. Algorithm 9, JP describes the algorithm used for moving along a jump

pointer.

Initially, the start end-point of the range is fixed and SPQA expands end end-point

until a fair query is found, as shown in Figure 3.6a. The window is shown in the figure with

the dotted lines indicating start and end of the fair range. The naming convention used for

the boundaries is, S for start of input range and E for end of input range; L for left and R

for right. Hence, SL (resp. SR) stands for start of input range expanded (resp. shrunk) to

66

the left (resp. right). When the window is swept to the left, the start end point can perform

a shrink or an expansion as shown in Figure 3.6b. The remaining steps of the exploration

by SPQA can be seen in Figures 3.6c, 3.6d and 3.6e. Among each of these, the output of

the fair range which is most similar to the input query is provided as output to the user.

Theorem 3.3.2. Given a database D, the disparity threshold ε, and the input query Q(Aj :

[start, end]), the optimal range has a disparity value of exactly ε.

Proof. Let d be the disparity of the given range query. Let the disparity of optimal range

be dopt. Knowing that both the left and right end points of the input range could have

moved, let the range for optimal range be [lopt, ropt]. Let us consider two new ranges,

[lopt, start − 1], [end + 1, ropt] and let their corresponding disparities be dlopt and dropt.

The total disparity dopt can be written as the sum of disparity of three different ranges, dlopt

for range [lopt, start− 1], dropt for range [end+ 1, ropt] and d for range [start, end].

d− dopt = dlopt − dropt

Suppose dopt 6= ε. Let us now construct a range [l′opt, r
′
opt] such that the disparity is

exactly ε. To construct the range we will modify lopt and ropt. If lopt lies on the left of start,

then there was an expansion operation that has been performed. Instead of expanding it to

cover a disparity of dlopt, one can only expand it to a smaller extend such that the over all

disparity is exactly ε. As the expansion was smaller the Jaccard similarity measure would

be larger. Applying a similar approach in case lopt was on the right of start would also

result in a larger Jaccard similarity measure as intersection between the two sets would

be larger. A similar approach can be applied to the ropt end point. The newly constructed

range [l′opt, r
′
opt] is more similar and has disparity of exactly ε.

67

Lemma 3.3.3. (Correctness) Given a database D, the disparity threshold ε, and the input

query Q(Aj : [start, end]), SPQA Algorithm 7 finds the optimal solution (the most similar

fair range to q).

Proof. To prove this theorem we use the property that the fair optimal range has a disparity

of exactly ε, which is proved in theorem 3.3.2.

SPQA uses a windowed approach to explore all ranges around the input range which

have a disparity value of ε. Let the disparity covered by moving the left the left end point

disparity([left, start − 1]) be dl and the disparity covered by the right end point, dr be

equal to disparity([end+ 1, right]). The sum of dl, dr and d is ε.

dl + dr = ε− d

SPQA explores 4× disparity number of windows, where every pair of dl, dr satisfies the

above equation. Thus the optimal result must lie in one of these pairs.

Time complexity: The total amount of time taken by SPQA to answer the unweighted

fairness queries with one range predicate is O(log(n) + disparity(input)), which can be

seen in theorem below.

Theorem 3.3.4. Given a database D with n tuples and an input range with disparity d the

total time taken by SPQA algorithm is O(log(n) + d).

Proof. Searching the jump pointer data structure to reach the end points takes O(log(n))

time. Once the end points are found in the data structure, SPQA algorithm uses a window

based approach to explore the fair ranges whose disparity is exactly equal to ε. There are a

total of O(4d) such ranges, each of which takes O(1) time to compute Jaccard similarity.

Thus, the total amount of time taken is O(log(n) + d).

68

Algorithm 7 SPQA Algorithm
Input : Database D, Input query Q(Aj : [start, end]), acceptable disparity ε

Output : Most similar fair range query fair

1: ts ← binary search(D, Aj , start)

2: te ← binary search(D, Aj , end)

3: disparity ← c[j, ts]− c[j, te]

4: dColor← disparity > 0 . deficient: true-red, false-blue

5: if disparity ≤ ε then . Input range is already fair

6: return [start, end]

7: end if

8: LEP ← ts . LEP stands for Left End Point

9: while disparity > ε do

10: Push JP (D , Aj , LEP, ”left”, deficient) to LEP , update disparity for [tLEP , te]

11: end while

12: fair ← {}; sim← 0

13: WindowSweep(tLEP , te, “shrink”) . Shift window by shrinking te

14: WindowSweep(tLEP , te,“expand”)

15: WindowSweep(ts, te,“shrink”) . Shift win. by shrinking te

16: WindowSweep(ts, te, “expand”)

17: return fair

69

Algorithm 8 WindowSweep algorithm
Input : Database D, Attribute: Aj , start end-point: ts, end end-point: te, operation, input query

Q(Aj : [start, end]), reference to fair, sim

Output : Update fair based on most fair range found

1: disparity ← c[j, te]− c[j, ts − 1]

2: dColor ← disparity > 0

3: if ts < start then ts ← Pop(LEP)

4: else ts ← JP (D , Aj , ts, ”right”, !dColor) . Shrink ts

5: while disparity > ε do . Adjust te pointer

6: disparity ← c[j, te]− c[j, ts − 1]

7: dColor ← disparity > 0

8: if operation == ”expand” then

9: te ← JP (D Aj , te, ”right”, dColor) . Expand

10: end if

11: else te ← JP (D Aj , te, ”left”, !dColor) . Shrink

12: end while

13: if Jaccard([ts, te], Q) > sim then

14: sim← Jaccard([ts, te], Q); fair ← [ts, te]

15: end if

16: WindowSweep(ts, te, operation)

General positioning assumption: The algorithm and the definitions in the current section

have been designed with the general positioning assumption. General positioning makes

the assumption that no two points are co-located for the given attribute. In practice, with

small modifications, our algorithms can handle the case when multiple points are present

at a single location. Combining the co-located points into a single point with the aggregate

weight would help us in creating a new dataset with no co-location. When the jump pointer

70

Algorithm 9 JP algorithm for left jump pointer
Input : Database D, Attribute: Aj , Database object oi, color c, direction dir

Output : Database object oj pointed by jump pointer

1: if dir == ”left” then

2: if Aj[oi − 1] is of color c then

3: return oi − 1

4: else

5: return LJP [oi] . LJP stands for Left Jump Pointer array

6: end if

7: else

8: if Aj[oi + 1] is of color c then

9: return oi + 1

10: else

11: return RJP [oi] . RJP stands for Left Jump Pointer array

12: end if

13: end if

encounters the new point with a variable weight, it needs to update the data structure with

the variable weight value. Note though that the similarity function needs to take the number

of points co-located into account while computing the similarity.

This algorithm holds unless there are too many of the same demographic data point

at the same location so as to move a range from unfair because of lack of a group to unfair

because of excess of that group. Note that this case is highly unlikely in practise. In such

extreme cases, where the unfairness suddenly switches from one group being disadvantaged

to the other, we choose two problems, one in which the aggregate point does not belong

71

thus limiting one side of the search space or the second in which we explore further by

looking for the inverse jump pointers past that point.

3.3.3 Prepossessing

For every attribute in D, a jump pointers index is created during the pre-processing.

For this, the objects in every list are sorted based on the corresponding attribute (Figure 3.4)

so that look ups can be performed quickly and then right and left pointers from each loca-

tion of the database is calculated.

Finding jump pointer: Jump pointers play a key role in SP queries. A right red jump

pointer points to the closest location to the right of the current location such that the number

of reds in the range exceed the number of blues by 1. At any given location oi, the range

[oi+1, oi+1] is a trivial range that satisfies this criteria. Hence, one of the 2 coloured jump

pointers will point to oi+1. The goal of the algorithm is to compute the other (non-trivial)

right jump pointer.

In order to obtain the non-trivial right jump pointer, we need to find the location that

differs by 1 (in the opposite sign than at location oi+1). For example, in Figure 3.4, the

cumulative sum at location t12 is 0 and as the colour at location t2 is blue, the cumulative

sum is 1. The non-trivial right jump pointer points the closest location with cumulative sum

of −1.

The algorithm to find the jump pointers is given in Algorithm 10. The algorithm to

find the jump pointers maintains a balanced binary search tree (BST) for the cumulative

sums, which are used as keys for the BST. The indices which will be resolved when the

specific cumulative sum is seen are stored as values within the BST. For example, when

resolving the non-trivial red right jump pointer for t12, closest location with a cumulative

sum of−1 needs to be found. Hence, −1 is used as a key within the BST with the index t12

as a value.

72

The total time taken in the pre-processing step is O(n log(n)), as proved in theorem

below.

Theorem 3.3.5. Given a database D with n tuples and an attribute Ai pre-processing step

takes O(n log(n)) time.

Proof. The sorting step of pre-processing takes O(n log(n)) time for the given attribute

Ai. Establishing the right and left jump pointers makes use of a balanced binary search

tree (BST). A total of n indexes need to be inserted/deleted into the BST, which consumes

O(n log(n)) time. Hence, the total time taken for building the jump pointer structure for

given attribute Ai is in O(n log(n)).

Note that, while the initial pre-processing takes O(n log (n)) time, query processing

is sub-linear: O(log(n) + d), where d is the disparity of input query.

Note on space complexity: During the pre-processing phase, SPQA algorithm creates a

linear space data structure to aid in query processing. The query processing stores a total

of disparity jump pointers to find the the most similar fair range which is small compared

to the linear space data structure. Thus the total space complexity is O(n).

73

Algorithm 10 (Preprocessing) Building left jump pointers
Input : Database D, attribute Aj

Output : jump pointers

1: Sort D along attribute Aj

2: BST ← {}

3: cumulative← 0

4: for i← 0 to n do

5: cumulative← cumulative + colour(oi)

6: c[j, i]← cumulative . Cumulative sum is contained in c

7: if cumulative present in BST then

8: for obj ∈ values of BST [cumulative] do

9: LJP [j, obj]← i . Left jump pointer

10: end for

11: end if

12: Insert i into BST [cumulative− 2 ∗ color(oi)]

13: end for

3.3.4 Generalisation to weighted fairness

So far, our attention has been on the unweighted fairness model. In this section,

we move to our general model of fairness: weighted fairness. As explained in § 3.2, the

fairness constraint for this model is in the form of |WrCr −WbCb| ≤ ε, where Wr and Wb

are the weights for the red and blue counts, respectively. That is, the difference between

the weighted sum of the number of objects from the two demographic groups should not

be bounded by the threshold ε. Note that any rational values for weights can be expressed

74

as integer weights by scaling these weights. For example, weights Wr = 1.1 and Wb = 1.2

are equivalent to Wr = 11 and Wb = 12.

The fair range query problem in the generalised case would refer to finding the most

similar fair range to the input fair range such that the disparity is within a value of ε.

Note that finding cases where the disparity is less than max(Wr,Wb)/2 would infer find-

ing ranges with a level of precision less than a single unit of disparity (less than a single

weighted coloured object). For the sake of simplicity and practicality, we omit such cases

and assume that the value of ε ≥ max(Wr,Wb)/2.

The algorithm that deals with the weighted case uses similar concepts like jump

pointer and cumulative sum. In the general case, a blue (resp. red) right jump pointer from

location oi points to the closest location right of oi, ji such that the range [oi+1, ji] contains

more blues than reds (resp. reds than blues) by weight. A similar definition for left jump

pointers can be defined. Jump pointers for the sample dataset presented in Table 3.1 is

presented in Figure 3.5 using weights of 3 for blue and 2 for red.

For the weighted case, the cumulative sum at a location oi indicates the weighted

difference of blues and reds.

Theorem 3.3.6. (Correctness) Given a database D, the disparity threshold ε, weights Wr

and Wb, and a query Q(A : [start, left]), algorithm 7 finds the the most similar fair range

to Q.

Proof. Let the input range be deficient in blue colour and would require blue objects to

make it fair. We know from the fairness criteria that ε ≥ max(Wr,Wb)/2. If an unfair

range range had a disparity of δ > ε, adding a single blue object can only fix a disparity of

max(Wr,Wb)/2. Hence, adding a single blue cannot make any unfair range that is deficient

in blues into a unfair range that is excess in blues. This property will be used for proving

this theorem. While expanding the range towards the end of the range, the right jump

75

pointer of the deficient colour is used to reduce the disparity. The objects that are visited by

this outward right jump pointer expansion until a fair range is reached are denoted as the

expansion jump path. Note that the expansion jump path is restricted to within a disparity

of |disparity(input)| + max(Wr,Wb)/2. The definition can be extended to shrink jump

path in a similar manner. We prove that exploring the objects that lie along the jump pointer

paths from the to end points is sufficient to get the optimum result.

Let us first describe an important property, that the objects that lie along the jump

paths exhibit. Suppose the input range is unfair as it consists of more blues than reds i.e.

in excess of ε. Let the object oj be the right blue (deficient in general case) pointer from

the end point oi. The objects that lie in between oi and oj can cover at most one more blue

worth of disparity in the jump. Hence, we can observe that each of these points that lie

along the expansion path cover monotonically more disparity that the previous object.

Let [lopt, ropt] be the optimal fair range and let the end points of the range not lie on

expansion/shrink jump paths. Let us assume that ropt was obtained because of an expansion

operation. As the endpoint at ropt is not on the expansion jump path, it would mean that the

range ending at ropt does not cover more disparity than the previous object (rprev) on the

expansion path. If the range [lopt, rprev] is fair we have a contradiction. On the other hand,

if the range is unfair, we can use the property that we explored before: adding a single

coloured point cannot change an unfair range in one colour to an unfair range in opposite

colour, leading to a contradiction.

Time complexity: The total time taken by SPQA algorithm is same as the unweighted

case, O(log(n) + d), where d is the disparity in the input range. The details of the time

complexity for the unweighted case which is mentioned in theorem 3.3.4 also applies to

the weighted case.

76

Note on space complexity: During the pre-processing phase, SPQA algorithm creates a

linear space data structure to aid in query processing. The query processing stores a total

of disparity jump pointers to find the the most similar fair range which is small compared

to the linear space data structure. Thus the total space complexity is O(n).

Pre-processing for the weighted fairness model In the weighted case, a blue pointer

points to a location that has more blues than reds. We use the same notation as that of the

unweighted case and denote the cumulative sum at location oi for the index of attribute Aj

as c[j, i]. If the location next to oi had a blue then the pointer would be trivial as it is pointing

to the immediate next location. Let us consider the case where the immediate next location

had a red instead. In such a case we need to find the nearest location whose cumulative sum

is larger that the c[j, i]. In the opposite case where the neighbour was a blue one would like

to find the closest location whose cumulative sum is smaller that the c[j, i]. Based on this

approach, two data structures can be maintained. One for the locations whose pointers can

be resolved if we found a cumulative sum with a smaller value than in the data structure.

And the other data structure whose pointers can be resolved if we found a cumulative sum

with a larger value. We use a balanced binary search tree for the two data structures.

The pseudo-code to find the jump pointers for the weighted single predicate range query

is in algorithm 11. The algorithm is an extension of the unweighted jump pointers. The

algorithm uses a sort over the database as a the first step before adding and removing n

items from a balanced BST in order to find the jump pointers, it takes O(n log n) time.

General positioning assumption: The algorithm and the definitions in the current section

have been designed with the general positioning assumption. General positioning makes

the assumption that no two points are co-located for the given attribute. In practice, with

small modifications, our algorithms can handle the case when multiple points are present

at a single location. Combining the co-located points into a single point with the aggregate

weight would help us in creating a new dataset with no co-location. When the jump pointer

77

encounters the new point with a variable weight, it needs to update the data structure with

the variable weight value. Note though that the similarity function needs to take the number

of points co-located into account while computing the similarity.

This algorithm holds until and unless we have too many of the same demographic

data point at the same location so as to move a range from unfair because of lack of reds to

unfair because of excess of reds. Note that this case is highly unlikely in practise. In such

extreme cases, where the unfairness suddenly switches from one the advantaged group to

the disadvantaged one, we choose two problems, one in which the aggregate point does

not belong thus limiting one side of the search space or the second in which we try further

exploration.

78

Algorithm 11 (Preprocessing) Left jump pointers for weighted case
Input : Database D, attribute Aj

Output : jump pointers

1: Sort D along attribute Aj

2: larger BST ← {}; smaller BST ← {}

3: cumulative← 0

4: for i← 0 to n do

5: if color(oi) == ’blue’ then . Blue always has a positive score

6: smaller BST [cumulative]← i

7: else

8: larger BST [cumulative]← i

9: end if

10: cumulative← cumulative + weight(color(oi))

11: iterator ←Find cumulative in larger BST

12: while iterator 6= ∅ do . Until end of larger BST

13: LJP [j, iterator]← i . Left jump pointer

14: Increment iterator

15: end while

16: iterator ← smaller BST.begin() . Start of smaller BST

17: while cumulative > iterator do

18: LJP [j, iterator]← i

19: Increment iterator

20: end while

21: end for

79

3.4 Multi-predicate range queries

Next, we study the queries that contain multiple range predicates. Unfortunately,

moving from single-predicate (SP) range queries to multi-predicate (MP) range queries

complicates the problem significantly and the idea of jump pointers does not carry over.

The reason is that in MP queries, there are different directions (along different angles)

which a single jump can occur, while in SP there is only one direction (along x-axis) to

make a jump. Moreover, while a SP query is identified by its two end-points, a MP query

with d range predicates forms a hyper-cube with 2d sides. Hence, instead of the two end

points of an SP range, one may need to move all sides of the hyper-cube to obtain the

closest fair range, even when the disparity is slightly above the allowed fairness threshold,

ε.

An observation that helps us with the MP cases is that the user may not be interested

in fair ranges that are far away from the input query. Hence, the fair range query should

be highly similar to the input range, otherwise it is not valuable for the user. We use this

observation to design a best-first search (BFS) fair range query algorithm for the MP query.

3.4.1 Best First Search algorithm

At a high level, the BFS algorithm can be viewed as a “smart” traversal over a graph

where every range is modeled as a node and there is an edge between two nodes if the

outputs of their corresponding queries vary only in one tuple. That is, a node Q2 is a

neighbour of Q1 if the output of query Q1 differs from the output of query Q2 by exactly 1

element. Mathematically, sets out(D, Q1) and out(D, Q1) have a symmetric difference of

size 1.

The unfair input range provided by the user serves as a starting point in the graph

traversal. This can be viewed as starting from the node with Jaccard similarity of 1 (Jaccard

distance of 0), discovering its neighbours, deciding which node to visit next, and pruning

80

the blanket of nodes in the graph that their corresponding ranges have similarity less than

the current best fair range discovered.

Starting from the node of the input query, the algorithm first needs to discover

its neighbouring nodes in the graph. For this, we rely on the existence of an oracle

neighbors(Q) that discovers the neighbours of a queryQ. It turns out, due to the frequency

of calling this oracle, it can significantly impact the performance of the BFS algorithm. We

shall provide a careful development of this oracle in § 3.4.2.

At any point of traversal, the algorithm selects the node that has the maximum Jac-

card similarity with the input query for being visited next. The Jaccard similarity can be

represented as the ratio of the intersection of two sets to their union, and the neighbouring

range to a given range can differ only by a single element. Accordingly the neighbouring

ranges are the ranges with the smallest Jaccard similarity.

Upon visiting a node, the algorithm checks if it satisfies the fairness requirements.

If so, the algorithm stops and returns this range as the most similar fair range with query

input. Otherwise, it calls the neighbor oracle to discover the unseen neighbours of this

node to be considered for traversal. The pseudo-code of the BFS algorithm is provided in

Algorithm 12. It uses a max-heap for efficient traversal of the graph. Using the heap data

structure, adding the new nodes to the list of discovered nodes and identifying the most

similar node to the input range is done in logarithmic time to the size of heap.

81

Algorithm 12 Best-First Search algorithm for MP : BFSMP
Input : Database D, attribute list A, input query Q

Output : most similar fair range

1: Heap← Q

2: while |Heap| 6= 0 do

3: top← Heap.pop()

4: if fair(top) then return top

5: for neighbor ∈ neighbors(top) do

6: Heap.push(neighbor)

7: end for

8: end while

9: return ∅

Lemma 3.4.1. (Correctness) Algorithm 12 finds the most similar fair range to the input

range.

Proof. The Jaccard similarity of the set being explored is I/U , and the sets being added

can have a reduced Jaccard similarity of (I − 1)/U or I/(U + 1). These are the smallest

possible decreases in Jaccard similarity possible by removing or adding points.

Starting from the input range, let us now consider the neighbourhood path from the

input range to the most similar fair range. As at every stage of the algorithm all the neigh-

bourhood ranges which account to the smallest possible decreases in Jaccard similarity

have been added to the heap, the fair output range that the algorithm produces is the most

similar one.

82

Figure 3.9:
Sample set of
points

Figure 3.10:
Sample input
range

Figure 3.11:
Expanding
the rectangle
downwards

Figure 3.12:
Expanding
the rectangle
towards left

Figure 3.13:
Neighbour-
ing ranges in
diagonal

Figure 3.14:
Skyline com-
putation over
a range query

3.4.2 Neighbouring range computation

Having explained the BFS algorithm, we now turn our attention to developing the

neighbors Oracle. Computing the neighbouring ranges is an important step of the BFS al-

gorithm. The challenge here is to make sure all neighbours of a range have been discovered

in an efficient manner.

To better explain the oracle, let us consider a sample dataset as shown in Figure 3.9.

Consider a sample range be as shown in Figure 3.10. Suppose we want to expand the range

outwards in order to add a new point. One simple approach of expansion that can be thought

of is to move a side while maintaining either the height or the width constant. Figure 3.11

shows the expanded rectangle while moving the lower bound while maintaining the width

constant. A similar approach can be performed on the left bound as seen in Figure 3.12.

Note that these are not the only possible expansions. These expanded ranges will later

be used to limit our search for finding the other neighbouring ranges along the diagonal

direction. For 2D, there are 4 such expansions. As a generalisation, one can obtain 2d such

expansions in d dimensions. Such points can be found out in O(logd n + k) using a range

tree [88].

One can think of adding an additional point by moving a corner point along the

diagonal direction. One such diagonal expansion can be seen in Figure 3.13. The bottom

left corner can be expanded to add one more point along the diagonal. As one may observe,

83

such expansions are limited by the expansion of the sides which border the corner. The

expanded boundary shown in Figures 3.11 shows the extent to which one may expand the

bottom boundary downwards until they find a point. If a point laid in the diagonal beyond

such a boundary, it would not account to a neighbourhood range as such an expansion

would contain two points instead of one.

Figure 3.14 shows the expanded vertical and horizontal ranges that add a single point

in solid green lines. The expanded boundaries form the limits of the region containing the

diagonal expansion end points. The problem of finding all possible diagonal expansion

points can be formulated as finding a skyline within the range shown by the dotted green

lines: Given a corner point po for diagonal expansion1 in a d-dimensional space, consider

the bounding box specified by the side expansion (e.g. the dashed rectangle in the bottom-

left of Figure 3.14). A point p1 inside the bounding box dominates another point p2 in

the bounding box if ∀0 < i ≤ d : |p1[i] − po[i]| < |p2[i] − po[i]|. The skyline of the

points in the bounding box is the set of points not dominated by any other point. Every

skyline point is a valid diagonal expansion. As a result, in order to find all neighbours of

a given range, it is enough to find (a) all neighbours by side expansion/shrinking and (b)

all diagonal expansion points in the skylines. A MP query with d range predicates contains

2d corners. Each corner can be expanded away from the centre of the MP query in order

to find queries that differ by a single point, i.e. a neighbouring range. There can be many

neighbouring ranges for each corner. A range skyline query can be constructed for each

corner using the intersection of the boundaries of the side expansion as one of the end

points of the range query and the corner point’s coordinates itself as the other end point.

One naive approach is to obtain the points that lie within the range using a R-tree and then

apply a skyline algorithm on the points obtained. This is not efficient. We use studies

that efficiently compute the skyline on range queries. In particular, we use the the Range-

1Shrinking a range is done similarly.

84

Skyline-Query algorithm by Janardan et. al. [89] for skyline discovery. This algorithm has

a complexity of O((k + 1) logd n), where k is size of skyline. Note that k should generally

be a small number. In particular, as the number of dimensions increase, and as the size of

the range grows, the expected number of points that occur within the corner ranges will

decrease. That is because with each dimension the number of ranges it must occur within

increases by one; and it will decrease with the size of the range, as more points that are

potentially the nearest point will equate to a decrease in the size of the corner.

3.4.3 Informed best first search

The BFS algorithm discussed so far searches for the fair range by exploring the node

with the maximum Jaccard similarity first. Branching out from a node to explore for a

fair range requires discovering it neighbours, adding them to the heap, and repeating the

same process for its neighbours in a recursive manner – which is time-consuming. On

the other hand, given the amount of disparity at a node, it may be clear that its neighbour

up to a certain number of hops cannot fill the disparity gap. That simply is because every

neighbouring node has a difference of exactly one element with the current node and, hence,

in the best case can drop the disparity by one unit. In other words, if the current disparity

is equal to δ and the fairness threshold is ε < δ, at least δ − ε hops are needed to fill the

disparity gap.

Every hop in the path from the current node reduces the similarity from the initial

query to a certain degree. As a result, combining the minimum number of hops to achieve

fairness with the similarity decay per hop, we can compute an upper-bound threshold on the

maximum similarity for a fair range (referred as U-threshold) that one can hope to achieve

by branching out from the current node.

The above observation enables to design a more efficient algorithm, Informed Best

Frist Search algorithm for Multi-Predicate (IBFSMP), with an early stop criteria, that de-

85

lays exploring the branches that their U-threshold is not the maximum. In other words,

instead of selecting the most similar node to be explored next, IBFS selects the node with

maximum U-threshold to be explored next. IBFSMP is inspired from the A* algorithm [90]

which utilises the lower-bound on the remaining distance to the destination to perform an

efficient search. However, IBFSMP differs from the A* in details and the way the bounds

are calculated. We still need to compute the U-threshold of a node, which is done in Theo-

rem 3.4.2.

Theorem 3.4.2. The U-threshold of a node Q is:

JU(Q) =



max
C′r≤d

δ−ε
Wr
e

I−dmax(δ−ε−Wr·C
′
r,0)

Wb
e

U+C′r
Wr > Wb; δ > ε

max
C′
b
≤d δ−ε

Wb
e

I−C′b
U+d

max(δ−ε−Wb·C
′
b
,0)

Wr
e
Wb > Wr; δ > ε

max
C′r≤d

δ−ε
Wr
e

I−C′r
U+dmax(−δ−ε−Wr·C

′
r,0)

Wb
e
Wr > Wb; δ < −ε

max
C′
b
≤d δ−ε

Wb
e

I−d
max(−δ−ε−Wb·C

′
b,0)

Wr
e

U+C′
b

Wb > Wr; δ < −ε

(3.3)

where δ = Wb · Cb −Wr · Cr.

Proof. Let the node Q have an intersection of I and union of U with the input range. Let

the disparity of the unfair range Q be δ = Wb · Cb −Wr · Cr. As the range Q is unfair,

|δ| > ε.

Let us consider the case that the range Q is unfair because of the presence of too

many blues in Q compared to the reds.

δ = Wb · Cb −Wr · Cr > ε

As we are trying to find the upper bound, we would like to maximise the Jaccard

similarity such that such a range can potentially exist. In order to obtain a fair range, either

blues can be removed, reds can be added or both can be done. Let B′ be the blues that are

removed and R′ be the reds that are added to Q to make it a fair range.

86

−ε ≤ Wb(Cb − C ′b)−Wr(Cr + C ′r) ≤ ε

−ε ≤ δ −Wb · C ′b −Wr · C ′r ≤ ε

Moving around the terms, we get

δ − ε ≤ Wb · C ′b +Wr · C ′r ≤ δ + ε (3.4)

In order to maximise the Jaccard similarity, various values of B′ and R′ need to be

checked which satisfy the equation 3.4. Note that for a given value of B′(resp. R′), using

the smallest R′(resp. B′) that satisfies the equation 3.4 would provide a larger Jaccard

similarity. Thus, given B′ the smallest value of red satisfying the equation would be,

C ′r = dδ − ε
Wr

e

The U-threshold thus can be expressed as a maximisation in terms of R′,

max
0≤C′r≤d δ−εWr

e

I − dmax(δ − ε−Wr · C ′r, 0)/Wbe
U + C ′r

(3.5)

Similarly, given R′ the U-threshold thus can be expressed as a maximisation in terms

of B′ as,

max
0≤C′b≤d

δ−ε
Wb
e

I − C ′b
U + dmax(δ − ε−Wb · C ′b, 0)/Wre

(3.6)

The amount of time taken to compute the U-threshold using the equation 3.5 is d δ−ε
Wr
e. The

amount of time taken to compute the U-threshold using the equation 3.6 is d δ−ε
Wb
e. In case

Wr is larger than Wb the complexity for exploring all the values for reds using equation 3.5

87

is better. Equation 3.6 can be used to explore all the values for blues whenWb is larger than

Wr. A similar approach can be applied when the range is unfair because of excessive reds

to obtain the final two cases in equation 3.3.

Replacing the selection criteria for traversing the graph with U-threshold, the only

component of Algorithm 12 that needs to change is the max-heap and the rest remains

unchanged, i.e., instead of structuring the heap according to similarity, IBFS builds the

heap according to U-threshold (Equation 3.3).

Note that the IBFS algorithm is agnostic to the heuristic and similarity measure satisfying

two important properties. (1) The similarity measure being used must be a set based simi-

larity measure based on the points in the output range. (2) As can be seen from U-threshold,

the heuristic must provide a upper-bound threshold on the maximum similarity for a fair

range.

Note on space complexity: BFSMP algorithm explores neighbouring ranges to reach the

fair range query that is nearest to the input query. Along the process a large number of

ranges are explored and stored in memory in a heap. The space consumed by the algorithm

depends on the number of neighbouring ranges explored. Thus the space complexity for

BFSMP algorithm is O(number of explored ranges).

3.4.4 Using MP algorithms for SP

Before concluding this section, we would like to note that MP algorithms also work

for SP. However, SPQA has a provably better time complexity than BFS, in all instances.

This is because SPQA takes advantage of pre-computed jump pointers which is only avail-

able when the possible changes in the bounds of the range are restricted to one degree of

freedom. As explained in § 3.3.2, SPQA has a worst-case time complexity of O(log(n) +

88

disparity). One can easily establish a best case complexity for BFS algorithms that is

at least as slow as this. First, in order to reach it’s destination, BFS can adjust its range

with each step by adding or removing a point. In the best case, it visits only points which

monotonically decrease the disparity, and stops after disparity more steps. Additionally,

BFS constructs a one dimensional range tree (which is equivalent to a balanced binary

search tree) as pre-processing to find the closest point. This requires an initial setup time

of n log(n). Therefore, the best case time-complexity of BFSs is Ω(n log(n) + disparity).

This demonstrates that the time-complexity of SPQA is comprehensively better, and ac-

cordingly, we favour it for SP queries.

3.5 Experiments

Overall Input query Fair query
Distributions

0

20

40

60

P
er

ce
n

ta
g

e
o

f
p

eo
p

le

Male Female

Figure 3.15: Demo-
graphic distributions
in dataset, input
query, and similar
fair query.

0 0.5 1 1.5 2
Disparity 104

0

2000

4000

6000

D
u

ra
ti

o
n

(
 s

ec
s)

Figure 3.16:
Time taken
by SPQA v.s.
disparity - Texas
Tribune with
gender as SA

0 2 4 6
Disparity 104

0

5000

10000

15000

D
u

ra
ti

o
n

(
 s

ec
s)

Figure 3.17:
Amount of time
taken by SPQA
against disparity
- Texas Tribune
with race as SA

0 500 1000 1500
Disparity

0

200

400

600

800

1000

D
u

ra
ti

o
n

 (
 s

ec
o

n
d

s)

Figure 3.18:
Amount of time
taken by SPQA
against disparity
- COMPASS
dataset

200-400 400-600 600-800
Buckets

0

200

400

600

800

T
im

e(
se

c)

Figure 3.19:
Amount of time
taken by IBFSMP -
Uniform dataset 3
range predicates

3.5.1 Experimental setup

Datasets: We used both real and synthetic datasets for our experiments. For the real world

datasets we use TexasTribune and UrbanGB datasets. Along with the real world datasets,

a synthetic dataset Uniform was generated for the experiments. Below we provide a brief

description of these datasets.

89

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

200

400

600

800

1000

1200
D

u
ra

ti
o

n
 (

se
co

n
d

s)

Figure 3.20: Average
amount of time taken
by IBFSMP algorithm
for different bucket
sizes - UrbanGB
dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

200

400

600

800

1000

1200

1400

D
u

ra
ti

o
n

 (
se

co
n

d
s)

Figure 3.21: Aver-
age amount of time
taken by IBFSMP al-
gorithm for different
bucket sizes - Uniform
dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

2

4

6

8

10

12

14

R
ec

ta
n

g
es

 e
xp

lo
re

d

106

Figure 3.22: Rectan-
gles explored by IBF-
SMP algorithm for dif-
ferent bucket sizes -
Urban GB dataset

200-400 400-600 600-800 800-1000 1000-1200 1200-1400

Buckets

0

2

4

6

8

10

12

14

16

18

R
ec

ta
n

g
es

 e
xp

lo
re

d

106

Figure 3.23: Rectan-
gles explored by IBF-
SMP algorithm for dif-
ferent bucket sizes -
Uniform dataset

Dataset name Items d Sens. attribute Weights
Texas Tribune [91] 149,481 21 gender,race gen. (1:1) race (4:5)
COMPASS [92] 60,842 12 race 2:1
UrbanGB [93] 1,600,00033 #vehicles in accident2:1
(Synthetic)Uniform10,000 4 Synthetic 1:1

• (Real dataset) TexasTribune2: Texas Tribune dataset consists of 149,481 records with the

salary/compensation information for Texas state employees. The dataset has 21 attributes

with gender and race being the main sensitive attributes and salary/compensation being

numeric.

• (Real dataset) COMPASS [92]: COMPASS dataset (unprocessed) consists of 60,842 data

points collected with 12 attributes with race as sensitive attribute and one real num-

bered attribute(raw score). The dataset has around 21K Caucasian (blue) and 39K non-

Caucasian (red) warranting a ratio of 2:1.

• (Real dataset) UrbanGB3: UrbanGB dataset consists of 1.6 million records of accidents

over a period 2000 and 2016. The dataset has 33 attributes, including latitude, longitude,

accident severity, number of vehicles involved in the accident, date and time of accident.

For the experiments, 10, 000 records from the UrbanGB dataset have been used. As

2https://salaries.texastribune.org/
3kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/

data

90

https://salaries.texastribune.org/
kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data
kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data

UrbanGB dataset does not have a sensitive attribute inherent to it, we use the number of

vehicles that were involved in the accident to create a sensitive attribute. There are 3,088

records where a single vehicle was involved in an accident and 6,912 records where more

than one vehicle was involved. Hence, we use a weight of 2 for the 3,088 records and 1

for the 6,912 records.

• (Synthetic dataset) Uniform: The dataset consists of 10,000 points sampled uniformly

from a cube which has a side of length 1,000 and a uniformly sampled binary sensitive

attribute. The dataset has 4,967 blues and 5,033 reds.

The Texas Tribune and COMPASS datasets consist of one numerical attribute, a few

other categorical attributes and sensitive attribute. Hence, the two datasets have been used

with SPQA. As Uniform and UrbanGB datasets consist of multiple numeric attributes it is

used for MPQA queries.

Our experiments were conducted on a Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

with 64GB of main memory using Linux operating system (Ubuntu 18.04.5 LTS).

Algorithms implemented: Along with SPQA, weighted SPQA and IBFSMP algorithms, to

evaluate multi-predicate range queries, we implemented a local search baseline algorithm.

• Baseline: The baseline approach for the multi-predicate range queries is based on lim-

iting the search space to obtain a bounding box within which to search for fair queries.

The maximum number of elements that can be added to the input range without violating

the Jaccard similarity criteria is first computed. The boundaries of the expanded box are

found by finding the smallest expansion along each of the directions/dimensions without

violating the similarity criteria. This expansion limits the search space while still provid-

ing a valid box to search for the most similar fair range. This expanded range is then

searched in a brute-force manner to obtain the closest fair range.

• Coverage based algorithm [79, 80]: We have used the code from [79, 80] to compare

against our methods for multi-predicate range queries. The different techniques in the

91

papers [79, 80] modify the input range to produce a range which covers at least a given

threshold number from each demographic group.

All the algorithms in the paper are implemented using C++. The implemented code can be

found at the github location4.

Experimental parameters: The value for ε plays an important role in simulating a real

scenario. Satisfying perfect parity may not always be possible in practice and may require

significant changes in the initial setting. In particular, in our problem setting, the ranges

that are not similar enough to the user input may not be valuable. In our experiments, we

allow a disparity of 5% between demographic groups. The corresponding value of ε is then

computed as:

ε =
0.05 (|B Wb|+ |RWr|)|out(Q)|

2(B +R)

whereB andR are the total number of blues and reds in the universe respectively. Wb (resp.

Wr) refer to the weight of each blue (resp. red). The entity (|B Wb| + |R Wr|)/(B + R)

gives us the expected magnitude of the weight each point carries. The scaled weight for

the given query Q with an allowed disparity of 5% thus turns out to be 0.05(|B Wb| +

|R Wr|)|out(Q)|/(B +R).

Choosing an appropriate value of ε: Our system enables responsible data selection

through exploration. While the choice of ε varies based on the application, an exploration

based approach helps the application owner to choose an appropriate value of ε. That is,

after the user specifies a range query and a value of ε, we return the most similar query,

satisfying it. The user then has the choice to accept our recommendation, or to adjust the

value of ε and/or the range and continue exploring until a satisfactory range is identified.

4https://github.com/surajshetiya/fairness-range-queries-icde-2022

92

https://github.com/surajshetiya/fairness-range-queries-icde-2022

3.5.2 Proof of Concept - TEXAS TRIBUNE

For a proof of concept, we use the Texas Tribune dataset. The dataset consists of

149,481 records of compensation for Texas state employees. We use gender as the sen-

sitive attribute. As the representation of males and females in the dataset is similar (64,153

men and 85,328 female), the weights for male and female in the query are considered to

be the same. The distribution of male and female employees in the overall dataset can be

seen in Figure 3.15. Following Example 2 on this dataset, we assume the business office

is interested in finding the employees who earn a salary of more than $65,000. There are

a total of 14,803 men and 12,182 women earning more than $65,000, with a difference of

2,621 (around 10%). Considering the ethical considerations, the business management of-

fice would like to find a query whose output is similar to the initial query and within which

there are at most 1000 (around 5%) males more than females.

Using SPQA, a fair query which is most similar to the input input query is deter-

mined. The output of the fair query (60562 ≤ salary ≤ 152000) consists of 32,064

employees with 16,532 male and 15,532 female. The Jaccard similarity of the fair query

with the input query is around 75% (76.23%). Figure 3.15 shows the distribution of male

and female employees in input query and the most similar fair query.

Extended PoC: A function F (x) which for which datapoints with the same x values but

from different demographic groups have different results will underperform on a given de-

mographic group if that demographic group is unfairly represented in designing the func-

tion. In the TexasTribune dataset, there is a function that meets this requirement where

F (x) predicts the salary and the parameters x are their level (or lack of level) of employ-

ment and the part of the state for which of they are employed. We trained an auto-sklearn

regressor on this task, using two datasets: the result of the original query in Example 2,

and the result of the modified fair query. We then analyzed the dataset using R2 scores over

male and female data points. We observed that with the initial dataset there was a fractional

93

difference of 0.088, while with the unbiased data, that fractional difference was reduced to

0.022, where a lower fractional difference represents a regressor predicting the salary for

men and women more consistently.

Systems Integration PoC: As an integration with a DBMS system, we create a thin web

based interface based on postgres. For this PoC, we use the TexasTribune dataset. The

postgres database is created with index on the numeric attribute - salary. For the PoC, we

compare the O(n2) naive algorithm with the jump pointer algorithm.

For the naive algorithm, the time is computed for processing the query. For the jump

pointer algorithm, there is a pre-processing phase where we calculate the cumulative sum

and jump pointers and populate a separate table with these details. We measure the time

taken for naive query, pre-processing to create jump pointers and SPQA query process-

ing. Average time taken by the pre-processing algorithm taken by SPQA 0.043 second.

We run around 500 randomly sampled queries and measured the time taken by each of

these queries. While average time taken by SPQA algorithm is 0.0054 seconds, average

time taken by naive algorithm is 6.938 seconds. This shows the efficienly of SPQA when

integrated with DBMS.

3.5.3 Performance of SPQA and weighted SPQA

The performance of SPQA depends on the disparity of the input query. For these

series of experiments, we measure the amount of time taken by the SPQA algorithm when

provided with an input query. The experiment were averaged over five runs of SPQA al-

gorithm for more reliable time measurements. For these experiments, theTexasTribune

dataset was used. As TexasTribune has 149,481 records with almost the same number

of male as female we use gender as the sensitive attribute for the unweighted case.

For the weighted case, we use race as the sensitive attribute while using white (major-

ity) and non-white (minority) as the demographic groups. There are a total of 67, 142

94

white records and 82, 339 non-white records. As the ratio of white to non-white

is very near to 4 : 5 (0.815), we use weights of 4 and 5 for the weighted SPQA. For the SP

queries, we use salary as the attribute for range predicates. A large part of the records of the

database (95.6%) have a salary less than 100, 000. Hence, to set the range query boundary,

we pick all points in multiples of 5, 000 between 5, 000 and 100, 000 as start and end points.

For every query, time taken by SPQA algorithm is measured along with the input query’s

disparity. For both the weighted and unweighted case, the ε value was set to 500 for this

set of experiments.

For the COMPASS dataset, the risk score varied between −4.79 − 51.0. Starting of

the input range was generated between−4.79 and 51.0 with multiples of 3.0. Ending of the

input range varied from the starting in multiples of 3.0. The COMPASS dataset has around

21K Caucasian (blue) and 39K non-Caucasian (red) warranting a ratio of 2:1.

Figures 3.16 and 3.17 show the scatter plot for amount of time for SPQA against the

input query’s disparity value for the Texas Tribune dataset and figure 3.18 shows the scatter

plot for the weighted SPQA queries run on the COMPASS dataset. As a baseline, we ran

IBFS for single range predicate (weighted and unweighted). On average, IBFS ran about

3 orders of magnitude slower than the jump pointer algorithm. The plots show a linear

scaling of time with the input query’s disparity. This empirically validates the running time

of both the unweighted and weighted SPQA algorithms.

3.5.4 Performance evaluation of MP algorithms

For the multi-predicate range query evaluation, we use UrbanGB and Uniform datasets.

For the experiments, 10, 000 records from the UrbanGB dataset have been used. There a

total of 3,088 blues and 6,912 reds. Hence, we use a weight of 2 for the blue records and

1 for the red records. Latitude and longitude attributes from the database were used to

form the range queries. The latitude values in the 10K records varied from −0.507015 to

95

0.297345 and the longitude values varied from 51.306584 to 51.660974. Uniform dataset

consists of 10K records uniformly sampled from within a square of length 1, 000. The sen-

sitive attribute is made of an almost equal number of blues and reds and hence we use a

weight of 1 for both these colors. For all sets of experiments, a disparity of 5% between

demographic groups is allowed which is indicated by the value of ε used. The baseline

algorithm restricts the search to a bounding box and performs a thorough search of all the

ranges in this rectangle. In this section we compare the run times of IBFSMP and baseline

algorithms.

3.5.4.1 Effect of input query size on the run time

Query size is an important measure as it impacts the performance of our algorithms.

It impacts the number of points that are being added or removed to find a fair range. While

there are many other factors which may impact the performance of the query, we choose

many queries in each bucket and repeat our experiments with each of these and aggregate

our results to reduce the impact of other factors. For our experiments, query sizes vary

from 200 to 1400 that are bucketized with intervals of 200. That is, if for example a query

result contains 558 points, it fall in the query size bucket of 400-600. Each bucket has 20

range queries sampled for the experiment using rejection sampling. The input queries are

chosen from different buckets using rejection sampling based on the points which satisfy

the query. In each bucket, we execute 30 queries each and aggregate the results for com-

parison. The average run-time is measured for both the algorithms under different bucket

sizes. For the queries in each bucket, the mean time taken during the run of the IBFSMP

algorithm for UrbanGB and Uniform datasets is shown in Figure 3.20 and Figure 3.21,

respectively. In case of the baseline algorithm which restricts the search space, experi-

mental results for the bucket 200-400 show a mean of 697.4 seconds and 557.1 seconds

for the UrbanGB and Uniform datasets respectively. The cases for the larger bucket sizes

96

did not complete even after 3 hours and thus are not tabulated. The aggregated values of

mean show that IBFSMP outperforms the baseline algorithm by orders of magnitude. For

each individual query, the IBFSMP outperforms the baseline algorithm. But, due to space

constraints, the details of each query executed is not included.

IBFSMP shows similar trend when run in higher dimensions. The experiments with

3 range predicates show that the time taken grows with input range size as seen in fig-

ure 3.19. One difference we observed was that the larger part of the computation was spent

in computing skylines than in lower dimensions. One can observe the increase in run times

between the two and dimension charts even for small input sizes.

3.5.4.2 Effect of input query size on the number of ranges explored

For the next set of experiments, we evaluate the effect of input query size on the

ranges explored. As the algorithm has a dependence on many factors, we choose input

query arbitrarily to analyse the impact of input query size, Jaccard similarity from the

input range on running time. The number of ranges explored by the IBFSMP algorithm

is measured as a parameter along with the time taken. The input queries are chosen with

different output sizes based on the number of points which satisfy the query. Query sizes

vary from 200 to 1400 that are bucketized with intervals of 200. That is, if for example a

query result contains 558 points, it fall in the query size bucket of 400-600. Each bucket

has 20 range queries sampled for the experiment using rejection sampling. We use the

same set of queries with different sizes, bucketized with intervals of 200, as in our previous

experiment.

Intervals of 200 are used to chose buckets starting from 200 up to 1600. We arbitrarily

choose multi-predicate queries with various input query sizes, and execute the IBFSMP

algorithm. The queries are placed into buckets based on input range size.

97

For the queries in each bucket, mean and standard deviation of the run time and

ranges explored during the run of the IBFSMP algorithm for UrbanGB and Uniform datasets

is measured and tabulated in Table 3.2 and Table 3.3 respectively. As indicated by the mean

values in Tables 3.2 and 3.3, the run-time increases with increase in query size. The num-

ber of ranges explored by IBFSMP for UrbanGB and Uniform datasets are shown in Fig-

ure 3.22 and Figure 3.23 respectively. As can be seen in the figures, the number of ranges

explored grows significantly with increase in query size. As the amount of time taken is

proportional to the number of ranges, the mean time taken grows with the number of ranges

explored as can be seen in the both the figures.

We did not include the performance of BFSMP in the table as IBFSMP significantly

outperformed it in all cases. For example, while IBFSMP on average required only 1.1

seconds for the 200-400 bucket in Uniform dataset, BFSMP on average took 11.1 seconds.

That is because, on average, it explored 145K ranges (SD=394K) while this number was

15K for IBFSMP. Similarly, for UrbanGB dataset, BFSMP on average took 15.3 seconds

while IBFSMP took 3.6 seconds for this experiment. The reason was that BFSMP on

average explored 199K ranges , while this number was 51K for IBFSMP. In all cases,

IBFSMP outperformed BFSMP for every query. In case of BFSMP algorithm, the amount

of time taken for the 200-400 bucket has a mean of 11.1 seconds and standard deviation

(SD) of 31.5 for the run-time for the Uniform dataset. a mean of 145314.9 and standard

deviation of 394289.7 with the sampled queries from Uniform dataset. With the sampled

queries from the UrbanGB dataset, BFSMP consumes 15.3 seconds of time on average with

a SD of 22. The average number of ranges explored for this dataset stand at 199K with a

SD of 275K. These results demonstrate the improvements that IBFSMP has over BFSMP.

98

Query size µ time σ time µ #Ranges σ #Ranges
200-400 3.6 10.3 51334.2 147597.0
400-600 9.5 18.9 138860.3 276703.1
600-800 121.4 288.7 1728136.6 4233843.5
800-1000 331.1 685.3 4254471.8 8698502.4
1000-1200 419.0 616.0 5460567.3 8111981.2
1200-1400 1060.2 1942.2 13468987.3 24934174.2

Table 3.2: Comparison of query run time (sec.) for various input range set sizes using
IBFSMP for UrbanGB dataset

Query size µ time σ time µ #Ranges σ #Ranges
200-400 1.1 2.8 15495.1 39389.3
400-600 37.1 101.3 499156.7 1343447.2
600-800 138.1 292.3 1806451.6 3807519.0
800-1000 525.3 902.6 6974328.9 11961045.4
1000-1200 940.4 1919.6 12298647.0 25016749.7
1200-1400 1279.9 3123.1 17208695.7 41803978.6

Table 3.3: Comparison of query run time (sec.) for various input range set sizes using
IBFSMP for Uniform dataset

3.5.5 Comparison with coverage based algorithms

Coverage based algorithms [79, 80] output a range query by modifying the given

query such that at least a given number of items from each sensitive group are present.

Note that coverage based CRBase makes use of a threshold value for each demographic

group. On the other hand demographic parity measure is based on the notion of weighted

difference between the demographic groups. As a range expands by addition of the minor-

ity group, items from the majority group are also added which may increase the disparity.

To find ranges which satisfy demographic parity measure, we make use of numerous val-

ues of threshold to find different ranges that satisfy demographic parity fairness measure.

Among these fair ranges, we record the ones which have the most similarity.

We have run these experiments with the uniform and Urban GB datasets. We measure

the fair ranges from CRBase algorithm and record the one which has the most similarity.

99

CRBase algorithm was run with 4, 8, 16 and 32 bins. CRBase algorithm produces a fair

range 33.9% of the time with the Uniform dataset. We measure the error by computing

1−CRSim/Optimal, where CRSim is the similarity of the CRBase algorithm where as

the Optimal is the similarity of the optimal range. For the ranges where CRBase algorithm

does not satisfy the fairness or similarity criteria we mark CRSim as 0. An average error

measure of 0 means that optimal range is always obtained, while an error of 1 means that

the range produced never satisfies the criteria. The error produced by CRBase is 0.682 on

average. For the UrbanGB dataset, we used a weighted fairness measure. CRBase was

able to produce a fair range for only 3 out of 120 sample ranges. The experiment shows

that the two optimization problems and hence, the solutions are different in nature.

3.5.6 Summary of experimental results

At a high level, the experiments verify the efficiency and efficacy of our methods.

Firstly, we empirically show the efficiency of the unweighted and weighted SPQA algo-

rithm. Secondly, for a wide spectrum of range queries, we show that BFS algorithms out-

perform the baseline algorithm by orders of magnitude. Moreover, IBFSMP outperformed

BFSMP since it explored far less number of ranges before it found the optimal solution.

Finally, we also show the effect of input range size on IBFSMP, the larger the set size the

more the time taken by IBFSMP to find the most similar fair range.

3.6 Related work

Query answering: Efficiency is critical requirement in query answering. A large amount

of research has focused on different aspects of query answering over the past few decades.

One of the popular methods that has been explored is the query answering using views [94–

97], where the goal is to efficiently answer a query using a set of previously materialised

views on the database. Srivastava et. al. [96] answer SQL queries with grouping and

100

aggregation in the presence of multi-set tables by detecting when the information existing

in a view is sufficient to answer a query. Chaudhuri et. al. [97] solve the problem of

optimising queries in the presence of materialised views. Approximately answering queries

has also been studied extensively in many works [98–102]. While there have been many

works in the area of query answering, none of these works can be modified to incorporate

fairness into them.

Fairness: Reducing racial disparities has recently been a key research [47, 55, 69, 103–

107]. Feldman et. al. [103] propose methods to make make data unbiased by modifying

the fields/attributes. Hajian et. al. [104] propose a data transformation that can consider

combination of attributes to perform data transformation. While [103, 104] perform data

modification, we do not modify any data point to remove bias from data instead we provide

the nearest fair data points to work with. While [105, 106] propose methods that learn to

produce fair machine learning models from the given data they do not eliminate bias from

the data itself.

Query reformulation: Salimi et. al. [108] created a system for detecting statistical de-

pendencies which impact the result of the original query. In their work, they reformu-

late queries by modifying the attributes queried to account for these statistical anomalies.

In other works [78–80], a system has been proposed which minimally relaxes a query to

provide coverage for sensitive groups. The objective of [79, 80] is to modify the original

query satisfying demographic coverage constraints (minimum number of items from a each

group). Coverage constraint satisfaction involves only relaxing the constraints, which may

not help in reducing disparity. Note that, trying to satisfy coverage can further increase the

disparity between the groups. Similar to these works [78–80], our algorithms also mod-

ify the original query. However, unlike existing work, our objective is to find queries (i)

similar to the initial query that (ii) satisfy a disparity (unfairness) threshold on counts from

different demographic groups.

101

3.7 Discussion and future work

Fairness model There are many fairness models which one can consider when the data

contains demographic sensitive attributes. In this paper, we have used the fairness model in

which objects from different demographic groups have equal chances of being selected in

the output set. There are other fairness models like the demographic parity based on ratio

which we consider for future work. Such a fairness model has the form, δ ≥ Cr/Cb ≥ δ−1.

Operators In our current work, we have considered a conjunctive operator to join different

predicates. Query models like SQL support operators like NOT and OR. Note that the

subset of operations (OR and AND) would allow the output queries to allow for union of

ranges. We consider the addition of these different operators to the query model as an

extension of the paper for future work.

All nearest fair ranges: The declarative query in 3.2 can have multiple range queries

which are equally near while satisfying fairness constraints. An interesting area of research

would be to enumerate all these nearest fair ranges.

Demographic group based extensions: Fairness problems based on binary demographic

groups have been well studied [109–112] for various applications like clustering, PCA and

other optimisation problems. We note that a significant portion of existing literature fairness

and its definitions consider binary cases, as there usually is an advantaged/majority v.s.

disadvantaged/minority group(e.g. COMPAS dataset(black vs non-black), adult and salary

dataset(female vs male)). While binary case for fairness is an important case, extensions

to these problems are valuable in many scenarios. We consider extending the fair range

queries to non-binary demographic groups and demographic parity constraints on multiple

sensitive attributes as future work.

102

3.8 Final remarks

In this paper, we initiated research on integrating fairness into data management

systems. As our first attempt, we focused on selection bias in range queries, and proposed

efficient algorithms. In particular, we proposed a sub-linear algorithm for single-predicate

range queries and two algorithms based modeling the problem as graph traversal for multi-

predicate range queries. Besides theoretical analysis, comprehensive experiments verified

efficiency and effectiveness of our proposal.

We consider the extensive research required for the full integration of fairness, in-

cluding a comprehensive database and query model with a broad coverage of bias, fairness

notions, and a broad range of SQL operators as well as designing more efficient algorithms,

for our future work.

103

CHAPTER 4

Shapley Values for Explanation in Two-sided Matching Applications

In this paper, we initiate research in explaining matchings. In particular, we con-

sider the large-scale two-sided matching applications where preferences of the users are

specified as (ranking) functions over a set of attributes and matching recommendations are

derived as top-k. We consider multiple natural explanation questions, concerning the users

of these systems. Observing the competitive nature of these environments, we propose

multiple Shapley-based approaches for explanation. Besides exact algorithms, we propose

a sampling-based approximation algorithm with provable guarantees to overcome the com-

binatorial complexity of the exact Shapley computation. Our extensive experiments on

real-world and synthetic data sets validate the usefulness of our proposal and confirm the

efficiency and accuracy of our algorithms.

4.1 Introduction

Beyond its traditional use [113–116], matching has been a core functionality of many

of the modern two-sided online platforms [117–119], including dating applications such as

Tinder, OkCupid, and Bumble1, employment-oriented platforms such as Linkedin,

Indeed, and Zip- Recruiter2, and many more. The two-sided matching platforms

provide matching recommendations between two types of stakeholders (users). To better

explain the matchings, let us consider Example 3 as a running example across the paper.

1tinder.com; okcupid.com; bumble.com
2linkedin.com; indeed.com; ziprecruiter.com

104

tinder.com
okcupid.com
bumble.com
linkedin.com
indeed.com
ziprecruiter.com

Example 3. (Part 1) Consider a two-sided employment-matching application with two

types of users, job candidates and human resource (HR) users. The application provides

matching recommendations to both job candidates and HR users. For example, an HR user

who looks potential candidates for interview (either directly or indirectly) specifies a set of

criteria and their preferences. Then the application returns a set of potential job candidates

to the HR. It similarly finds matching job opportunities for the candidates.

Matching in two-sided platforms can be modeled as a bipartite graph3 where users

on one side are matched to the users on the other side. For instance, Figure 4.1 models

Example 3 as a bipartite graph, where job candidates and HR users are specified as red

and blue nodes, respectively, while an edge ti → tj means that ti has been recommended

as a match for tj . The application usually identifies the list of potential matches for each

user (called match list in this paper) based on their “individual preferences”. While classic

matching problems assume the each party explicitly specifies their preference as a ranking

over the entire set on the other side, this assumption is not feasible for modern matching

applications, simply due to their numerous number of users, the short attention span of

users, and in some cases privacy considerations. As a result, the preferences are instead

implicitly specified. That is, every user is associated with a set of attributes (aka features),

and the preference of each user is defined as a function over the attributes of the other-side

parties. The preference functions are either learned or specified by the users. The matching

application uses the preference function to shortlist a limited list of candidates (the top-k)

based on a user’s preference function.

Lack of adequate explanations in these systems is a major issue where the users,

impacted by the decision, may be interested to know more insights about the matching and

3As we shall explain in § 4.5, matching has many different formulations, properties, and applications. In

this paper, our scope is limited only to bipartite many-many matching for two-sided online platforms.

105

Candidates

HRs

Figure 4.1: Illustration of the matching in Example 3.

Python R PHP JS
Candidate Attribute

Values 2 2 1 1

HR Attribute Values 2 2 0 3
HR Ranking Weights 0.11 0.11 0.67 0.11

Shapley Values 0 -0.16 0.83 0.33

Table 4.1: The generated explanation for why Candidate t3 is not in the Top-K of HR t20

why they (or others) do/do-not appear in certain match lists. To further elaborate this, let

us continue with Example 3.

EXAMPLE 3. (Part 2) Looking back at Example 3-Part 1, suppose four attributes are

considered for matching: Python, R, PHP, and Javascript. Each candidate has a skill level

for each of these attributes, as does each HR, describing the nature of the job. Additionally,

each Candidate and HR has an importance weight associated with each attribute, forming

their preference as a linear function, while k = 2. Suppose candidate t3 wants an expla-

nations based on their matchings , which were either disappointing or pleasing. Currently

the system provides no explanation for any of the four scenarios below, for which t3 may

be curious:

106

Python R PHP JS
Candidate Attribute

Values 2 2 1 1

HR Attribute Values 3 2 0 2
HR Ranking Weights 0.11 0.44 0.33 0.11

Shapley Values 0.25 0.91 -0.08 -0.08

Table 4.2: The generated explanation for why Candidate t3 is in the Top-K of HR t19

Python R PHP JS
Candidate Attribute Values 2 2 1 1
Candidate Ranking Weights 0.84 0.02 0.06 0.08

Shapley Values 0.61 0.28 0.0 0.11

Table 4.3: The generated explanation for why Candidate t3’s Top-K looks the way it does.

1. t3 was disappointed to not make it to the top-2 of HR t20. An explanation would provide

value to t3.

2. t3 was happy they made it into the top-2 of HR t19. t3 is eager to know as to what sets

them apart from the rest.

3. Top-2 of t3 consisted of {t19, t20}. An explanation for why these HRs are good recom-

mendations would be useful.

4. Candidate t3 made it into the top-2 of HRs t14, t19. t3 wants to know why they made it

into these specific top-2s.

The lack of answers for these questions prevents understanding for Candidate t3.

In this work, we create a framework to provide explanations to various queries which

are commonly encountered by the users of two-sided matching applications. To the best

of our knowledge, this is the first paper in explaining matchings. In particular, we observe

that top-k (ranking) problem is inherently competitive. As a result, the outcome (score)

of a preference function is not enough to realize if a user appears in a match list or not.

What matters in these settings is the relative position (rank) of a user with respect to other

users who “compete” for the top-k positions. Such competitive environments are naturally

107

Python R PHP JS
Candidate Attribute Values 2 2 1 1

Shapley Values 0.483̄ 0.233̄ 0.333̄ 0.15

Table 4.4: The generated explanation for why Candidate t3 appears in the Top-K it appears
in.

explainable by Shapley values [120] – a game theory concept that identifies the contribution

of each player (each attribute in our context) for deriving an outcome (e.g., a top-k match

list). Shapley values have been proven repeatedly to solve explainability problems across

different context [121–123].

Based on this observation, we consider Shapley values as the core of our system for

our explanations. We consider a set of possible explanation queries, and provide Shapely-

based approaches to answer them. Exact computation of Shapley values is a combinato-

rially hard problem, requiring algorithms that are exponential to the number of players.

On the other hand, users might find accurate approximation of the values appropriate for

explanation. Our system enables explanations as demonstrated in Example 3 (Part 3).

EXAMPLE 3. (Part 3) Using Shapley-based methods, we generate an explanation

for each of the previous queries. These explanations take the form of a value for each of

the skills and other features on which the matching is generated. A high value indicates

that the feature was largely responsible for each of the four cases. The individual can

then be provided with a general explanation as to what about them resulted in the various

outcomes. 4

1. (From Table 4.1) t3 is informed that they failed to be matched to HR t20 because they

were not a good match with their PHP skills. However, based on their R skills alone,

they would have been a good match for the job.

4Due to space constraints, the example dataset is provided in the appendix.

108

2. (From Table 4.2) t3 can be told that the reason they were in the top-2 of HR t19 is because

they were an excellent match on R skills. They can also be informed that their Python

skills were less but still beneficial towards the matching as well.

3. (From Table 4.3) Top-2 of t3 consisted of {t19, t20}. They are informed that this is

largely because of the Python requirements of the HRs, and less so because of the R

and JavaScript requirements.

4. (From Table 4.4) Candidate t3 is provided the information that they made it into the

Top-2 of HRs t14, t19 because of their Python skills first, then their PHP skills, then their

R skills, and finally their JavaScript skills, with each contributing slightly less than the

previous.

Summary of contributions. In summary, our contributions are a follows:

• In this paper, we initiate a study of a novel problem - that of providing explanations for

matching and top-k recommendation systems. To the best of our knowledge, this paper

is the first to study explanation for matching.

• We propose four explainability problems on the top-k matching model, which often arises

from user’s curiosity.

• Considering the competitive nature of our matching problem, we propose a Shapley-

based approach to explain the queries and provide run time analysis for each of the prob-

lems. We show the need for alternate methods, as the run time is bound exponentially by

the number of dimensions.

• We propose a sampling based approach to compute approximate Shapley values and

prove guarantees on the trade-offs between number of samples and error rate. We adapt

KernelSHAP as a practical heuristic to our problem.

• Extensive experimental analysis are provided for the various query settings and error

guarantees, and our methods are evaluated in the real world via a user study.

109

4.2 Preliminaries

Data model: We consider a dataset D with a Boolean attribute for matching (blue and red),

d numeric attributes A = {A1 · · ·Ad}. The dataset D consists of n entities t1 to tn, with

a sizeable number of blues and reds. We use the notation ti[j] to refer to the value of the

attribute Aj for the entity ti. Similarly, we use ti[m] to refer to the type of ti, i.e. the value

of the Boolean matching attribute on ti. The values in the dataset D represent the scores of

each entity for various attributes, which are used in the matching process.

Ranking functions: Each entity ti ∈ D is associated with a ranking (aka preference or

scoring) function that maps any given entity to a real valued score f : Rd → R+. The

ranking function is used to express the preference of an entity during the matching process.

As a hard criteria for matching, an entity with blue matching attribute only wants to match

with an entity with red matching attribute and vice-versa. For instance, job recruiters (blue)

and job seekers (red) are trying to match in a job matching scenario. The list of ranking

functions F consists of n ranking functions corresponding to each of the entities. An entity

ti’s ranking function is referred to as fi throughout the paper. Some widely used types of

ranking functions are linear, nearest-neighbor, and monotonic [124]. The techniques pro-

posed in this paper are agnostic to the choice of ranking function. In this paper, the time

taken to compute a score by the ranking function is referred to as C. An important require-

ment for the ranking functions we consider in this paper is the masking property. That is,

given a ranking function, one can tune the function not to consider masked attributes when

computing the scores. Masking is usually possible (including in linear, nearest-neighbor,

and monotonic functions) by setting the values of the masked attributes as zero or null

across all entities. That is, given an attribute Aj to mask, one can set ti[j] = 0, ∀ti ∈ D.

The set of attributes M which are set to 0s are known as masked attributes. The purpose of

the masking function is to generate the outcome of a subset of non-masked attributes. In

later sections, we explain the importance of the masking property for explanations.

110

Match list: As there are a large number of entities, any entity would like to see a small

relevant set of entities as a potential match. Ranking functions are used to rank all the

entities in the dataset belonging to the opposite matching attribute. In this work, top-k

entries are shown for each entity using the rank of the entities as potential match. That

is, given the ranking function fi for an entity ti, scores are assigned to all the entities

{tj ∈ D | tj[m] 6= ti[m]} using fi. Those entities are then ranked and the top-k are chosen

to be shown to ti.

These top-k entries, known as a match list, are used to express the recommendations

for matching. We denote a match list by li, such that each list consists of k entities. Given

an entity ti, let fki represent the score for the kth ranked entity using the scoring function

fi. Given an entity ti,the match list can be mathematically expressed as,

li = {tj | fi(tj) ≥ fki and tj[m] 6= ti[m]} s.t. |li| = k

When a mask M is applied to obtain the top-k, the match list is represented as li(M). Note

that the value of k depends on the application and is not restricted to a fixed value for any

individual. Without loss of generality, in this paper we assume a consistent k across all

entities’ ranking functions.

4.2.1 Problem definition

Our objective in this paper is to increase responsibility in matching systems by pro-

viding individuals with explanations about the matching and further information regarding

why the matches occurred the way they did. The matching model for which explanations

are being provided is called the “Top-k matching model”, which is formally defined as:

111

Definition 4.2.1 (Top-k matching model). Given a data-set of entities D, an integer k and

ranking function for each of the entities, determine the match lists of each of the entities

using the top-k from the ranked list.

When a match list li is provided for a problem instance, it is not always immediately

clear how the various attributes contributed to the outcome. In order to solve this problem,

an explanation is provided which identifies the role of different attributes in producing the

outcome.

Definition 4.2.2 (Explanation). Given an output of a function y = f(A1, A2, ...Ad), deter-

mine the impact on producing the overall value y of each attribute Ai when Ai is included

as a parameter.

We now transition into explainability problems that arise from the curiosity of entities

in the matching setting.

Point Queries: The first two types of explanations are when an entity queries about their

presence or absence from another entity’s match list. This type of explanation is simply

called a ”point query”.

In Example 3, Candidate t3 finds HR t20 in their match list, but t3 and t20 were not

a match due to t3 not being present in t20’s match list. In such a scenario, the curious and

disappointed Candidate, t3 would want an explanation for: why t3 is not present in t20’s

match list? Such a problem/scenario where Candidate t3 would like an explanation for

why they were not present in t20’s list, can be formally defined as follows:

PQ-NOTMATCH : Given a dataset of entities D and entities ti and tj determine

the contribution of attributes A1, A2, . . . , Ad in tj not appearing in the match list

of ti.

Conversely, again using Example 3, Candidate t1 may also be interested in what fac-

tors made them present in the match list of HR t19. In this scenario, the intrigued Candidate,

112

seeking to understand the scenario, might request for an explanation as to: why t1 is present

in t19’s match list? This problem is formally defined as:

PQ-MATCH : Given a data-set of entities D and entities ti and tj determine

the contribution of attributes A1, A2, . . . , Ad to tj appearing in the match list of

ti.

The next two queries deal with set based properties and hence, we term these as Set

queries.

Set queries: A different type of query that Candidate t3 from Example 3 might ask pertains

to the match list. The candidate t3 might also be curious, based on their ranking function

f3, why the match list l3 was generated some way, either because they are happy or disap-

pointed with the list that was provided to them. Formally, the query, why does an entity’s

match list look a certain way, can be formulated as,
SQ-SINGLE : Given a dataset of entities D and an entity ti with a match

list of li, determine the contribution of attributes A1, A2, . . . , Ad to ti’s match list

looking like li.

Finally, in addition to point queries and understanding their own ranking, Candidate

t3 from Example 3 may be concerned with the outcome of being ranked by others. Partic-

ularly, they may be interested in what attributes about them influence the set of match lists

in which they appear.

Such an explanation can help Candidate t3 understand the factors responsible for

their current matches, for both cases where they are either pleased or displeased with the

results. If Candidate t3 is overall displeased with the HRs who match with them, know-

ing what attributes are responsible for this outcome can be informative. Equally, if they

are consistently pleased with the HRs with whom they match, knowing the attributes that

contribute to this outcome can provide insight into what went right. Formally, the problem

113

to determine factors that influence an entity appearing in the match list of other entities is

defined as:
SQ-MULTIPLE : Given a dataset D of entities and an entity ti which is present

in the match list of a set of T entities, determine the contribution of attributes

A1, A2, . . . , Ad for ti appearing in the match lists of T entities.

4.3 Shapley value based solution

We start this section with discussing why Shapley values are suitable for explaining

top-k and bipartite matching problems, followed by an overview of Shapley technique.

Next, we show the transformation of our problem to Shapley, and discuss its scalability

issue for higher dimensions. Then, we propose a sampling-based approximation technique

with provable guarantees. We conclude the section by adapting KernelSHAP as a practical

heuristic to solve our problem.

4.3.1 Why Shapley?

Scoring and ranking functions have been well-studied topics, while a major focus has

been on explaining scoring functions. Even though there are similarities between scoring

and ranking, their underlying requirements bring out drastic differences [47]. The score of

an entity only depends on the (attributes) of the entity itself. On the other hand, the rank

of an entity depends not only on its attribute values, but also on the attribute values of the

other entities in the dataset. Consider an entity t in a dataset D. f(t) assigns a score to t.

However, to find out the rank of t, one first needs to compute f(t′) for every entity in D,

and then find the position of t in the sorted list of entities based on f .

Because our problem is based on ranking, methods for scoring are no longer appli-

cable for many queries. For example, in a (score-based) classification task, the attribute

with the highest weight in the scoring function would be the most impactful. However, in a

114

ranking problem, the score values are important only in comparison with the score of other

entities. As a result, it is not enough if the score of an entity is high; what matters is that it is

higher than other entities in the dataset. In this situation, an attribute Ai with a low weight

in the scoring function can become important if dataset entities have a high variance on it.

This is because the ranking is determined by competition between the entities, which is not

captured simply by the score on a single entity. Let us illustrate this with the following toy

example.

Example 4. (Part 1) Consider a sample dataset D with 3 attributes A = {A1, A2, A3}

and 5 entities, shown in Table 4.5. The entities belong to the same matching group. Let

the scoring function for an entity belonging to the opposite group be the linear function

f(ti) = 5ti[1] + 4ti[2] + ti[3]. For this example, let the value of k be equal to 2. The linear

ranking function scores the entities t1, t2, t3, t4 and t5 with scores 62 , 25.4, 81.8, 54.5, and

81.7, respectively. The entities ranked by their scores are t3, t5, t1, t4 and t2. Hence, the

match list looks like {t3, t5} after the ranking function is applied. By looking at the entities,

the entity whose ranking function is used for ranking might question why is t1 not in the

top-k?

An explanation model based on scoring functions would emphasize on weights of the

given query entity to obtain the contribution of the different attributes. The weights for

A1(5) is the highest, followed by A2(4) and A3(1). Looking at these weights, a scoring

based explanation approach would conclude that either of A1 or A2 might be responsible

for the query result. But upon masking attributes {A1}, {A2} or {A1, A2} and re-ranking

one can observe that t3 and t5 are always scored higher than t1. On the other hand upon

masking attribute {A3}, one can see that t1 enters the match list. This illustrates the com-

binatorial feature importance in explaining ranking.

115

t1 t2 t3 t4 t5 weights
A1 10 1.2 9 9.5 10.1 5
A2 1 1.1 1.2 1.5 1.8 4
A3 8 15 32 1 24 1
f(ti) 62 25.4 81.8 54.5 81.7

Table 4.5: (Example 4) A sample
dataset D with three attributes A1, A2

and A3, and 5 entities.

Since ranking is based on the competition between entities, it is natural to map our

problem using coalitional game theory. In a coalitional game, different players of a coali-

tion in a competitive game compete for utility. Accordingly, we utilize coalitional game

theory to capture the importance of different attributes.

Shapley value [120] is a concept in coalitional game theory which allows one to

compute the importance of each of the players in the game to the outcome. Each game

contains a set of n players and a utility function v : 2n → R, which determines the worth

of the subset of players. Note that the utility of an empty set of players is 0, v(∅) = 0 as

the value represents the worth of an empty set (∅) of players. The average contribution by

each of the players to the outcome of the coalitional game can be defined for each player i

as the Shapley value Shi. Shapley value for the game is given by,

Shi =
1

n!

∑
X∈Sym(N)

(v(PreXi ∪ i)− v(PreXi)) (4.1)

where Sym(N) represents the Symmetric group of set N, and PreXi represents the players

preceding i in permutation X . Equation 4.1 captures the marginal increase in contribution

of a player i to its predecessors in permutation X .

An alternate form of Equation 4.1 can be used to compute the Shapley values. For

a given subset set S of players, there exist |S|!(n − |S| − 1)! permutations each of which

116

have the same utility value whose re-computation is avoided when using the alternate form

given below,

Shi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

(n!)
(v(S ∪ {i})− v(S)) (4.2)

Even though the formula is helpful in reducing the complexity from n! to 2n, the compu-

tation is still exponential in nature. Accordingly, in practice, as the number of attributes

grows this process tends to become infeasible.

4.3.2 Mapping Shapley value to matching

In Example 4, we argued that ideas such as using attribute-weights in the scoring

function may not be effective for explaining top-k matchings. Alternatively, we propose to

map attributes {A1, A2, · · · , Ad} as players of a coalitional game, compute the contribu-

tion of each attribute using the concept of Shapley values, and use these values to explain

matchings. Indeed, an attribute’s contribution is query dependent. That is, for different

explainability queries, its contribution may vary from one query to the other. For instance,

in Example 3, the contribution of the attribute (skill) Java for the query “why is t3 in the

match list of t19” is different from “why is t3 not in the match list of t20”.

We propose a utility function v : 2d → R that maps a subset of attributes S ⊆ A to its

utility. In our design we require to compute top-k matchings for a subset of attributes. Ac-

cordingly, the masking property mentioned in Section 4.2 can effectively be used to remove

the impact of some of the attributes. Without the impact, it is equivalent to computing the

utility on a subset of attributes. If there are no attributes in the subset, then a top-k cannot

be computed. Accordingly, without the top-k, the utility value of all the four queries is 0

or in other words v(∅) = 0. We provide design details of the utility function for different

queries in Section 4.3.3.

117

4.3.3 Shapley value in matching

One of our contributions is to transform each of our explanation problems to Shapley

value computation problem and define a utility function over the set of attributes. This

section provides the details for the Shapley value based approach applied to the four types

of explainability queries defined in Section 4.2.1.

PQ-NOTMATCH: Consider the scenario when a dataset of entities D and two entities ti

and tj are provided for a query type of PQ-NOTMATCH. The attributes (players) responsi-

ble for tj not appearing in ti’s match list would be valued high.

To reflect this we define a value function that returns a 1 (0 resp.) based on if an the

entity tj’s absence (presence resp.) in ti’s match list li for a subset of attributes S. In this

case, the set of attributes has contributed to a failed match and hence a value (reward) of

1. On the flip side, the utility function returns 0 if tj is present in li for a given subset of

attributes S. To explain further with Example 3 (1), the utility function would return 1 if

t20 was not present in l∗3 and 0 otherwise. Assuming l∗i is the match list computed based on

strictly the attributes in set S, the utility function v can thus be defined as,

v(S) =


0, if S = ∅ or tj ∈ l∗i

1, if tj /∈ l∗i
(4.3)

For Example 3 question (1), and the query PQ-NOTMATCH, the results are shown

in Table 4.1. The exact algorithm generated the Shapley values 0, -0.16, 0.83, and 0.33

for the attributes Python, R, PHP, and JS respectively. As discussed earlier, this clearly

shows that PHP is the largest contributor to why Candidate t3 was not in HR t20’s match

list. Additionally, since Python has a negative value, the candidate’s Python skill would

cause the individual to appear in the match list.

118

PQ-MATCH: The next explainability query which can be calculated using Shapley value is

the second query PQ-MATCH. A similar approach that we have seen so far can be extended

to this scenario.

In the PQ-MATCH utility function, a value of 1 (reward) is returned if tj is present in

ti’s match list li for a given subset of attributes S. Alternatively, v returns 0 if tj is absent

from ti’s match list li for a subset of attributes S, as in this case S has not contributed to

a successful match. Again, l∗i is the match list computed based on strictly the attributes in

set S. To illustrate this with Example 3 (2), the utility function v would return 1 if t19 was

present in l∗3 and 0 otherwise. The utility function v for PQ-MATCH can thus be defined as,

v(S) =


0, if S = ∅ or tj /∈ l∗i

1, if tj ∈ l∗i
(4.4)

Continuing with Example 3 question (2), the results for PQ-MATCH can be seen in

Table 4.2. The exact algorithm generated the Shapley values 0.25, 0.91, -0.08, and -0.08

for the attributes Python, R, PHP, and JS respectively. By far the largest contributor to

Candidate t3 being in HR t19’s match list is the candidate’s R skills. Additionally, both

PHP and JS can be seen as having a negative value, negatively impacting Candidate t3

being in the match list.

SQ-SINGLE: Utility functions for queries based on match lists explain more complicated

problems than the previous two queries. This is due to these queries being calculated for

differences in the entire match list, instead of simply presence or absence from the match

list.

Consider the scenario where a dataset of entities D and an entity ti with a match list

of li are provided for the query type of SQ-SINGLE. The utility function must capture the

similarity of the computed top-k match list for the set of attributes S, l∗i , with match lists

for the full set of attributes A, li. As the explanation relies on the top-k items, li, and its
119

similarity with l∗i , we can use the Jaccard similarity between these two sets as the utility

function. The Jaccard similarity is a value between 0 and 1. The value 0 indicates that

the sets share no common elements and 1 indicates that the sets li and l∗i are identical. To

further explain with Example 3 (3), v is the Jaccard similarity of the match list of entity t3

(l3{t19, t20}) with l∗3. The utility function v can be expressed as,

v(S) =


0, if S = ∅

|li∩l∗i |
|li∪l∗i |

, otherwise

(4.5)

Again, with Example 3 question (3), the results for SQ-SINGLE are shown in Ta-

ble 4.3. The exact algorithm generated the Shapley values 0.61, 0.28, 0.0, and 0.11 for the

attributes Python, R, PHP, and JS respectively. The largest contributor to Candidate t3’s

match list being the way it was, is the Python requirement of the HRs, however to a lesser

degree the R requirements contributed, and even lesser, the JS requirements contributed.

SQ-MULTIPLE: A similar approach of using Jaccard similarity can be used to find the

contribution of each attribute for the SQ-MULTIPLE problem. Consider the scenario when

a dataset of entities D and an entity ti is provided. The entity ti is present in the match list

of T ⊆ O entities. For a subset S ⊆ A of attributes, let T ∗ be the set of entities in whose

match list ti is present for the attributes S. The utility function represents the similarity

between the set T ∗ and T .

A similarity of 0 indicates there are no shared elements between the two match lists,

where a similarity of 1 indicates that the sets are identical. A smaller value indicates a

smaller intersection or a higher union, and a larger value indicates a larger union or a

smaller intersection. From the running Example 3 (4), the set of entities whose match list

consist of t3 is T = {t14, t19}. Hence, the function v for this case would compute the

Jaccard similarity between {t14, t19} and T ∗ for a subset of attributes S ⊆ A. The value

function v can be expressed as,
120

v(S) =


0, if S = ∅

1, if S 6= ∅ & |T ∪ T ∗| = 0

|T∩T ∗|
|T∪T ∗| , otherwise

(4.6)

Finally, for Example 3 question (4), the results for SQ-MULTIPLE are shown in Ta-

ble 4.4. The exact algorithm generated the Shapley values 0.483̄, 0.233̄, 0.333̄, and 0.15 for

the attributes Python, R, PHP, and JS respectively. All of the candidates skills contributed

somewhat, but Python, PHP, R, and JS contributed in descending order of importance.

Having mapped Shapley values to the top-k matchings, we can now explain match-

ings using the attribute contributions, as shown in Example 4 (Part 2).

EXAMPLE 4. (Part 2) Looking at Table 4.5, the Shapley values of {A1, A2, A3}

for the query “why is t1 not in the top-k?” are computes as {−0.16, 0.33, 0.83}, using

Equation 4.5. The high Shapley value of attribute A3 indicates that A3 can explain the

query the most. The impact of attribute A3 is partially seen empirically when we remove

the attribute. Removal of A3’s impact on the linear ranking function is reflected in the

new scores the entities get, t1, t2, t3, t4 and t5 get a score of 54 , 10.4, 49.8, 53.5, 57.7

respectively. These scores show that the entity t1 is present in the match list when k = 2

when A3 is removed, thus confirming its relative contribution.

Time complexity analysis: Theorem 4.3.1 shows the time taken to compute the exact

Shapley value is exponential to the number of attributes for all the four queries, making

Exact Shapley value computation impractical when d is not small.

Theorem 4.3.1. Given a data-set of entities D with ranking functions F with the other pa-

rameters for the PQ-NOTMATCH, PQ-MATCH, SQ-SINGLE and SQ-MULTIPLE prob-

lems, computing the exact Shapley value takes exponential time to number of the players

(attributes).

121

Proof. Computation of exact Shapley values using Equation 4.2 relies on computing the

utility function efficiently over all subsets of A. We analyse the running time of each of

the value functions of the 4 problems and prove that the exponential nature arises solely

from Shapley value computation from Equation 4.2. As noted in Section 4.2, we denote

the amount of time taken by the ranking function as C.

PQ-NOTMATCH: Consider a dataset D and entities (ti and tj). The value function used

for PQ-NOTMATCH is given in Equation 4.3. Given a subset of attributes S ⊆ A, the

time taken to recompute the ranking function for an entity is C. As there are n entities, the

function v takes nC time to obtain the scores for all entities. Obtaining the top-k (match list

l∗i) can be efficiently performed using the selection algorithm which takes a total of O(n)

time. Checking if the entity tj is present in the match list takes k time. Hence, total time

taken by function v is O(nC) for a given subset S.

PQ-MATCH: Computation of the value function is similar to the computation of PQ-

NOTMATCHand hence consumes O(nC) time.

SQ-SINGLE: Consider a dataset D and entity ti with match list li when using all attributes

A. The Shapley value function for SQ-SINGLE is given in Equation 4.5. The set based

value function relies on Jaccard similarity between sets li and l∗i to obtain a value. Hence,

the first step is similar to PQ-NOTMATCH and PQ-MATCH problems, i.e. computation of

l∗i .

The Jaccard similarity computation can be efficiently performed by sorting the match

lists li and l∗i , followed by performing simultaneous linear scans on li and l∗i to obtain both

the intersection and union. This step consumes a total of O(k log (k)) time. Hence, the

total time consumed is O(nC + k log (k))

SQ-MULTIPLE: Consider a dataset D and entity ti which is present in the match list of

entities T when using all attributes A. The Shapley value function for SQ-SINGLE is given

122

in Equation 4.6. Given a subset of attributes S, T ∗ can be obtained by first computing

match list l∗j for all n entities and checking which ones contain ti.

The computation of l∗j and checking if ti is present in l∗j (ti ∈ l∗j) for a single entity

consumes O(nC) as seen above. As there are n entities, obtaining T ∗ consumes a total

of O(n2C) time. Additionally, to compute the Jaccard similarity, (i) need to sort both T

and T ∗, (ii) perform simultaneous scans on T and T ∗ to obtain both intersection and union,

and (iii) obtain the ratio. Steps (i) and (ii) consume O(n log (n)) time and (iii) consumes

O(n log (n)) time. Hence, the overall time consumed is O(n2C).

The Shapley value computation for each of the four cases relies on generating all

subsets of the set of attributes A. As there are d attributes, generating the sets consumes a

total of d 2d time. Hence, the Shapley computation for all the four queries is exponential in

d, the number of attributes A.

Note on limitations of Shapley based method: Kumar et al. [125] have shown certain

limitations of Shapley-based methods while explaining machine learning models. During

the masking process, these methods are shown to sample out-of-distribution data points

which can affect the Shapley explanation model and create undesirable output. Matching-

based applications are not subject to similar problems like machine learning models, as the

whole process of top-k and bipartite matching is based on competition. These processes

are less subject to changes in scores and instead rely on ranking between items. Neverthe-

less, we would like to note our dependence on the scoring functions to handle the NULL

values generated during the masking process. Additionally, we would like to note that ex-

planations generated from Shapley-based methods are not actionable and must be used as

a means to whitebox the black box function.

123

4.3.4 Approximate sampling based approach

The prohibitive nature of the exact Shapley value algorithm has spurred research into

approximate methods. Sampling based methods have been proposed to obtain approximate

Shapley values. In this paper, we use the sampling based on permutations of attributes.

Based on [126], the mean of the marginal contributions for each attribute Ai over the en-

tire symmetric group Sym(A) is equivalent to the corresponding Shapley value Shi. To

approximate the value Shi, instead of calculating all members of the symmetric group, q

members of the Sym(A) are sampled. The estimated Shapley value for attribute Ai re-

sulting from the samples is referred as Ŝhi throughout the paper. The expected value of a

random sample from the uniform distribution is equivalent to the mean of that distribution

such that Ex[Ŝhi] = Shi.

A randomized approximation algorithm based on the random sampling of permuta-

tions for computing the explanation queries is defined as follows. Initially, random sam-

pling is performed to select q permutations from Sym(A). With Ŝhi set to 0, Ŝhi is in-

creased by 1
q
× (v(PreXi ∪ Ai) − v(PreXi)) for each sampled permutation X . The value

Ŝhi, is the approximate Shapley value for attribute Ai.

Sample size, q: The randomised approximate algorithm can be demonstrated to show that

by varying q and specifying an approximation bound α, an error rate of ε can be given that

Pr(|Ŝhi − Shi| < α) > 1 − ε. We prove in Theorem 4.3.2 that a for a given value of

approximation bound α and error rate ε, there exists a fixed samples size q which satisfies

Pr(|Ŝhi − Shi| < α) > 1− ε for our queries.

Theorem 4.3.2. Given an approximation bound α and error rate ε, sampling q ≥ 2 log (2/ε)
α2

random permutation members of the symmetric group, ensures that the inequality Pr(|Ŝhi−

Shi| < α) > 1− ε is satisfied for all four problems.

124

Proof. We prove this theorem using Hoeffding’s inequality [127]. First, we prove for the

four queries that each random variable Zi varies within the range of Zi ∈ [−1, 1]. The

random variable Zi in each of the four problems refers to the Shapley value function for

the sampled permutation. We obtain the inequality by applying Hoeffding’s inequality.

For the queries PQ-NOTMATCH and PQ-MATCH, the random variable is the differ-

ence between the Shapley value function when attribute Ai is added to permutation X i.e.

Zi = (v(PreXi ∪Ai)− v(PreXi)). Hence, the random variable Zi can take values −1, 0 or

a 1 based on how the Shapley value function changed.

For the set similarity based problems SQ-SINGLE and SQ-MULTIPLE Zi is the dif-

ference between the Jaccard similarity for the random permutation v(PreXi ∪ Ai) and

v(PreXi). Hence, Zi for these two problems is a continuous variable between −1 and

1.

As we have seen, in all four problems the random variable Zi varies between−1 and

1. Applying Hoeffding’s inequality with b = 1 and a = −1 we get,

P
(
|Ŝhi − Shi| ≥ α

)
≤ 2e

−qα2
2

Restructuring the above equation and representing q in terms of α and ε we get q =

2 log (2/ε)
α2 . Hence, proved.

4.3.5 KernelSHAP

Another technique to approximate Shapley values is SHAP [123]. SHAP proposes

a linear model to explain black box machine learning model-prediction for a given input

data point. KernelSHAP is a generalised SHAP approximation technique proposed by

Lundeberg et. al. [123]. The technique is built on top of LIME [128] to approximate

Shapley values. KernelSHAP provides the parameters to be set in the optimisation function

of LIME such that the linear LIME model finds the Shapley values. To the best of our

125

knowledge, KernelSHAP does not inherently provide any theoretical guarantees on sample

size unlike the sampling approach, but empirically it performs better.

Dataset name Attributes Size
Synthetic 9 1000
Graduate admissions 6 500
Job candidates 22 390

Table 4.6: Details of the datasets

4.4 Experiments

We conduct extensive experiments on real-world and synthetic data to validate our

proposal and to evaluate the performance of our algorithms. In the following, after dis-

cussing the experiment set up, we provide proof of concept experiments that focus on vali-

dating our results. Finally, the empirical evaluation of the different techniques is presented.

4.4.1 Experiments setup

Datasets: Often, dataset owners tend to not upload datasets involving real world enti-

ties due to anonymization concerns. As a result, there are few, and hard to find, datasets

for matching. Hence, we have two real world datasets and 12 configurations of synthetic

datasets for the experiments.

• Job candidates dataset (real world dataset)5: 390 candidates were parsed from 22 columns,

including 18 numerical columns, 3 categorical columns, and 1 set based column. Values

for numerical columns were normalized to be a value between 0 and 1. To generate HR

entities, uniform random values were selected for each column from the set of possible

values for that column in the candidate dataset.
5https://www.kaggle.com/datasets/saikrishna20/candidates-list

126

https://www.kaggle.com/datasets/saikrishna20/candidates-list

• Graduate admissions dataset [129](real world dataset): The dataset consists of applica-

tion details of 500 students to the graduate program. There are a total of 6 numerical

features and a categorical feature. Each data point in the dataset also a dependant vari-

able, chance of admit, which is a score between 0 and 1.

• Synthetic dataset: There are many parameters that can be varied when generating the

datasets. We have used three main factors, probability distribution, correlation between

attribute, and number of dimensions. As our experimental study deals with assesing

our method across different settings, we generate multiple datasets for each setting and

aggregate results for each setting. For the probability distribution, we consider the Zipfian

distributions for our experiments. Linear and non-linear ranking functions; correlated,

anti-correlated, and independent attributes were used for the various experiments to have

a wide variety of data for each type of query. For each of these 12 settings, 10 datasets

were generated bringing the total to 120 datasets. Each dataset consists of 1000 items

each with 9 dimensions.

Hardware and Platform: All our experiments were performed on a work station with

a Core i9 Intel X-series 3.5 GHz machine running Linux Ubuntu with 128 GB of DDR4

RAM. The algorithms were implemented in Python 3.

Ranking function: As the ranking / preference functions were not available for the real

world dataset, we generated n linear ranking functions. The ranking functions are based

on proximity to the candidate’s skills/ HR’s requirements. In the user study, the ranking

function used for contrasting LIME and Shapley values explanations is learned to predict

the chance of admit based on the other features. For synthetic dataset, we have used both

linear and non-linear ranking functions. For non-linear ranking functions, weighted squares

of the attributes have been used to score and rank entities.

127

Algorithms Evaluated: We have implemented the brute force Shapley value algorithm and

the approximate Shapley value algorithms. We use the KernelSHAP library from github by

Lundberg 6.

As baselines to compare against, we use the weight based algorithm described in

Section 4.3.1 and an attribute based baseline. The attribute based baseline ranks each of

the attributes individually for a given query. More specifically, for a query we mask the

set of attributes such that only attribute is unmasked. We measure the effect of the individ-

ual attributes and then rank these attributes. For the PQ-NOTMATCH (PQ-MATCH resp.)

query, we use the highest (least resp.) rank achieved by the entity when only using a single

attribute as a measure to compare all attributes and rank them. As SQ-SINGLE and SQ-

MULTIPLE queries are set based queries, we use the Jaccard similarity measure instead to

rank the attributes. The comparison for these baselines is provided in Section 4.4.2.2.

4.4.2 Proof of Concept

As our first set of experiments, we provide results to validate our proposal for ex-

plaining match lists using Shapley values. In particular, we first present a case study, dis-

cussing the explanations for specific cases in detail. Then, we provide an experiment to

demonstrate the effectiveness of Shapley values for explanation.

4.4.2.1 Case Study

We begin our proof of concept experiments by a case study to illustrate the usefulness

of our explanations. Aligned with our running example (Example 3), we select a user

from our experiments on job-candidates dataset, and discuss the generated explanation

in detail. Approximate Shapley values produced using the sampling algorithm for PQ-

NOTMATCH are shown in Table 4.7.
6https://github.com/slundberg/shap

128

Candiate Values HR Function Shapley Values
Python 1.0 0.002 0.0
R 0.0 0.005 0.09
Deep Learning 0.333 0.005 0.025
PHP 0.667 0.007 0.05
MySQL 0.667 0.007 0.075
HTML 0.667 0.007 0.035
CSS 0.0 0.005 0.085
JavaScript 0.667 0.005 0.065
AJAX 0.0 0.005 0.06
Bootstrap 0.0 0.006 0.07
MongoDB 0.0 0.005 0.045
Node.js 0.0 0.003 0.045
Reactjs 0.0 0.005 0.09
Performance PG 0.791 0.06 -0.02
Performance UG 0.7 0.06 0.015
Performance 12 1.0 0.06 -0.05
Performance 10 1.0 0.120 -0.05

Other Skills
[’Algorithms’,
’Data Structures’, ...] 0.0769 0.065

Degree Master of Science 0.0769 0.21
Stream Computer Science 0.0769 0.05
Grad Year 2018 0.307 0.04
Current City Bangalore 0.0769 0.005

Table 4.7: Candidate values, HR rank-
ings, and PQ-NOTMATCH Shapley
values.

Samples

E
rr

or

PQ-Match

25

50

75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

0

0.02

0.04

0.06

PQ-NotMatch

25

50

75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

0

0.02

0.04

0.06

SQ-Single

25

50

75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

0

0.01

0.02

0.03

0.04

SQ-Multiple

25

50

75

10
0

12
5

15
0

17
5

20
0

22
5

25
0

0

0.005

0.01

Sampling approach KernelSHAP

Figure 4.2: Error variations in
sampling-based approach and Ker-
nelSHAP when varying number of
samples for Candidates dataset

129

Among their programming skills, the largest contributors to this result were R,

React.js and CSS with Shapley values of 0.09, 0.09, and 0.085. In each of these cases,

the candidate performed poorly on these skills while HR ranked these skills fairly highly

relative to other programming skills. The lowest Shapley among programming skills value

was Python, where the individual had the maximum score, but the weight was also the

lowest relative to all skills. Overall, the highest Shapley value was for the Candidate’s

Master of Science degree, indicating that this degree (as opposed to another one) was

the main reason the candidate was not placed on the match list. Finally, the overall lowest

weights were their performances in grade 12, 10, and post grad, with scores of -0.05, -0.05

and -0.02. The negative Shapley values indicate that that these skills worked against the

candidate not being in the match list, and can be seen as skills that if evaluated solely on,

the individual would appear in the match list. An explanation may appear as follows:

"You were not matched with this HR largely due to your degree

in Master of Science; the company was more interested in other

degrees. Among your programming skills, the company would like to

see more skill in R, CSS, and React.js specifically. The

company was overall pleased with your Grade 10 Performance,

Grade 12 Performance, and Post-grad Performance, but considering

all factors, they did not want to match with you at this time."

4.4.2.2 Effectiveness of Shapley values for explainability

For our first experiment, we empirically measure the effectiveness of the approxi-

mate algorithm in capturing the Shapley values. Given an explainability query, the brute

force algorithm produces the exact Shapley values. Since our goal is to capture the ex-

act Shapley values as accurately as possible, we compare these values with the results of

various methods. To do this, we considered the top ranked attribute for each algorithm.

130

Distribution Correlation Function APX - Q1 APX - Q2 APX - Q3 APX - Q4 WT - Q1 WT - Q2 WT - Q3 SCR - Q1 SCR - Q2 SCR - Q3 SCR - Q4
Uniform Correlated Linear 1.0 1.0 1.0 1.0 0.9 0.7 1.0 0.2 0.6 0.1 0.1
Uniform Correlated Non-Linear 1.0 1.0 1.0 1.0 1.0 0.5 0.9 0.5 .5 0.3 0.1
Uniform Anti-Correlated Linear 1.0 1.0 1.0 1.0 .8 0.7 1.0 0.5 0.7 0.1 0.2
Uniform Anti-Correlated Non-Linear 1.0 1.0 1.0 1.0 1.0 0.4 1.0 0.1 0.4 0.3 0.1
Uniform Independent Linear 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.4 0.7 0.3 0.4
Uniform Independent Non-Linear 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.2 0.5 0.5 0.2
Zipfian Correlated Linear 1.0 1.0 1.0 1.0 0.7 0.8 0.9 0.5 0.8 0.1 0.4
Zipfian Correlated Non-Linear 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.2 0.6 0.2 0.2
Zipfian Anti-Correlated Linear 1.0 1.0 1.0 1.0 0.6 0.9 0.8 0.3 0.5 0.8 0.3
Zipfian Anti-Correlated Non-Linear 1.0 1.0 1.0 1.0 0.9 0.5 0.7 0.8 0.2 0.0 0.8
Zipfian Independent Linear 1.0 1.0 1.0 0.9 0.8 0.8 0.9 0.2 0.8 0.1 0.1
Zipfian Independent Non-Linear 1.0 1.0 1.0 1.0 1.0 0.6 1.0 0.3 0.6 0.2 0.3

Table 4.8: The success measure of four methods in computing the same top value as Brute
Force; APX=Approximate, WT=Weight, SCR=Attribute Score; and the four queries, Q1-
Q4. For Q4, WT could not be used.

In this experiment, we measure the effectiveness of three methods in explaining the

query. These methods are the Shapley values by sampling, the attribute with the highest

weight (Section 4.3.1), and the attribute evaluated on the query function independently.

The datasets for this experiment consists of twelve settings on synthetic data. The

settings are each combination of distribution, feature correlation types and scoring function

type, i.e. {uniform, Zipfian distribution} × { independent, correlated or anti-correlated

features } × { linear, non-linear scoring functions}. For each of these settings, ten trials

were run with k = 5 and the results were recorded. For each experiment, highest rated

attribute was removed and the output compared for its impact on the query.

The results are tabulated in Table 4.8. The results show that approximate method

produced the same output as brute-force in 119 out of the 120 trials. The other methods

performed consistently at best equal but generally worse across all queries. Measuring by

weight performed almost always better than attribute based baseline. However, measuring

by weight still often failed. It had a particularly low accuracy for PQ-NOTMATCH. Addi-

tionally, since weight based approach is not possible for SQ-MULTIPLE, it was considered

to be an insufficient method for computing the highest Shapley value.

131

4.4.2.3 User study

In this experiment, we conduct a user study to validate our methods, using the grad-

uate admissions dataset and the example dataset from Table 4.5. We included a quality

control step to assess the participant’s familiarity with scoring functions. Any candidate

who scores at least 3 (out of 5) is considered for the study. 22 of the 26 participants qual-

ified. For the graduate admissions dataset, we create a black box ensemble model using

auto-sklearn package that can predict the chance of admit given a student’s admission data.

We use this model to score students, and based on these scores obtain the top-k students

who qualified during the admission process.

As a part of the first question, the participants were shown a scenario of a student who

failed to qualify to the university. The participants were provided with the mean scores

of the admitted students and the mean scores of all the students who applied. We showed

the participants two explanations, one from LIME [128] and other from our method. The

textual description for the explanations were created based on Molnar et al. [130]. The gen-

erated explanations were: ”The value of [FEATURE NAME] contributed [SHAP SCORE]

to [INDIVIDUAL NAME] not being in the top-k compared to the average prediction for the

dataset.” for Shapley values, and ”An increase of [FEATURE NAME] by one unit increases

[INDIVIDUAL NAME] towards not being in the top-k by [LIME SCORE] units when all

other feature values remain fixed.” for LIME. We asked the participants to choose among

the two explanations. Around 63% of the participants found the explanation provided by

our method more convincing.

Next, the participants were shown the scenario from Example 4. We provided the

scoring function used (5×A1 +4×A2 +1×A3) and asked the participants to explain, why

t5 was not selected during the process. As this is a subjective question, we compared the

explanation provided in each answer against that of (i) LIME, (ii) function weights used

132

in the scoring, and (iii) our explanation. We classified the provided explanation in each

answer into one of these three methods, based on its closeness to the explanation generated

by these methods. While 32% and 13% preferred LIME and function weights, respectively,

more than 54% of the participants preferred our explanation.

4.4.3 Performance Evaluation

Having discussed the experiments to validate our problem setting, we now present

our performance evaluation results, where we study the approximation error and runtime

of sampling based and KernelSHAP methods in comparison to exact Shapley values.

Impact of sampling size on error: The approximate sampling-based approach and Ker-

nelSHAP provide us with a trade-off between error and time consumed. As the number of

samples taken increases, the error in the Shapley value decreases, but time increases. We

want to measure the impact of sampling size on error and time consumed.

In this experiment, the number of samples that we use for the approximate Shapley

value algorithm and KernelSHAP are varied and the runtime and error are measured. Match

list size, k, is set to 5 for these experiments. Samples for the sampling based algorithm are

chosen uniformly, with the sample size varying from 25 to 250 in increments of 25. For

this experiment, we consider both, the synthetic datasets and the real world dataset. In each

experiment setting, we also run the brute force algorithm to obtain exact Shapley values to

measure against. For each of the configurations, we aggregate (average) the error across

the d attributes and compute the standard deviation of the errors.

The measured average error in Shapley values and standard deviation of the average

errors are plotted in Figure 4.2 for the Candidates dataset. As can be seen in the figure,

KernelSHAP outperformed the sampling-based approach with a similar number of samples.

The time consumed by KernelSHAP and sampling based approach are comparable and far

133

better than the brute force. Similar results can also be seen for the synthetic dataset with

linear (Figure 4.4) and non-linear functions (Figure 4.3).

Samples

E
rr

or

PQ-Match

50 100 150 200 250
0

0.01

0.02

0.03

0.04

PQ-NotMatch

50 100 150 200 250
0

0.02

0.04

0.06

0.08

SQ-Single

50 100 150 200 250
0

0.005

0.01

0.015

0.02
SQ-Multiple

50 100 150 200 250
0

0.01

0.02

0.03

0.04

AC Zipf Sampling
AC Zipf KernelSHAP

C Zipf Sampling
C Zipf KernelSHAP

I Zipf Sampling
I Zipf KernelSHAP

Figure 4.3: Error variations in
sampling-based approach and Ker-
nelSHAP when varying number of
samples for synthetic dataset with
non-linear ranking functions

Samples

E
rr

or

PQ-Match

50 100 150 200 250
0

0.02

0.04

0.06
PQ-NotMatch

50 100 150 200 250
0

0.02

0.04

0.06

SQ-Single

50 100 150 200 250
0

0.005

0.01

0.015

SQ-Multiple

50 100 150 200 250
0

0.02

0.04

0.06

AC Zipf Sampling
AC Zipf KernelSHAP

C Zipf Sampling
C Zipf KernelSHAP

I Zipf Sampling
I Zipf KernelSHAP

Figure 4.4: Error variations in
sampling-based approach and Ker-
nelSHAP when varying number of
samples for synthetic dataset with
linear ranking functions

4.5 Related work

Matching and applications: Matching plays a critical role in the allocation of resources

based on supply and demand like matching a region to medical needs [113], ecosystem

services are matched based on changing land use [114], public health needs are matched

by health insurance plans [115]. Matching systems rely on different mechanisms to capture

preferences of both the supply and demand parties. Traditionally, these preferences are

explicitly specified [131–134].

Explicitly specified matching relies on capturing preference lists from both the par-

ties and then create a stable matching under specific conditions. Based on game the-

ory, Gale and Shapley [135] designed a mathematical framework to attain stable match-

ing and applied it to stable marriage and college admission. Such matching where one

134

party is matched only to one other party is known as stable marriage [136–138]. Similarly,

many-to-one stable matching exists with applications such as: hospitals provide employ-

ment to many doctors [139] or student–project allocations [140] which was formalized

by Roth and Sotomayor [141]. Many-to-many stable matching relies on matching many

supply parties to many demand parties, which has applications in D2D-enabled cellular

networks [132, 142], collaborator recommendations [143]. While there has been extensive

work on explicit matching, to the best of our knowledge there has not been any explain-

ability work in these fields.

Often, specifying the complete preference list is prohibitive in big data applica-

tions [144]. In such cases, the preference can be obtained via different means. In case

of a search engine, users interact with the search engine to express their query until they

reach their desired result (web-page). Traditionally TF-IDF [145,146] and Latent Semantic

Analysis [147, 148] based approaches were proposed to solve this problem. Recently, vec-

tor representation based approaches [149,150] convert words into vector form and then use

this embedded space representation to process the query. Another type of application where

implicit preference is seen is user-item recommendation systems like Amazon7, Netflix8.

In user-item recommendation systems, items are recommended with prior interactions of

the user with their systems. Numerous techniques like collaborative filtering [151], ma-

trix factorisation [152], auto encoder based representations [153, 154] have been proposed

to solve the problem. While some of these works have explanations built within the sys-

tem [155, 156], to the best of our knowledge we are the first to work on explanations in

bipartite matching scenarios.

Explainability in ranking: Ranking functions are popular for solving multi-criteria op-

timization. While ranking functions have been studied for many years, study of explain-

7https://www.amazon.com/
8https://www.netflix.com/

135

ability in ranking has been a recent trend. Verma et al. [157] explain queries based on a

sampling approach in the neighbourhood of the query. Gale and Marian explore the topic of

explaining ranking in multiple papers. First, in their 2019 paper [158] they assign scores to

various attributes based on whether the items in the top-k for all methods are in the top-k for

a particular attribute. They also demonstrate that the explanation for a ranking can be used

to adjust a ranking function such that attributes are contributing to the amount required.

The main difference between their work and ours is that they use this as an explanation for

ranking. Top-k is similar but independent from ranking, and additionally our matching are

bipartite. The difference is further shown by the fact that these algorithms cannot be easily

modified to work for our queries. Next in 2020 [159], Gale and Marian expand upon their

initial observations by also considering the weight of different parameters, and consider-

ing multiple metrics for the type of ranking produced by the function, namely disparity

and diversity. Diversity and disparity in ranking has also been studied by works like [69].

Additionally, some work has been done on responsible ranking function design [69, 160],

where the objective is to minimally change the weights in a ranking function to make the

generated rankings (top-k) fair and stable.

Shapley values for explanations: Shapley values were introduced by Gale Shapley [120]

to determine the contribution of each player to the success of the overall coalition. Shapley

values have also been applied to the problem of explanations with a great degree of success.

Here, the contribution of the various features to the overall prediction are calculated as

Shapley values, and the Shapley values are used to explain the task [130]. Several notable

contributions have been made to this. Štrumbelj et al. [122] devise a Monte Carlo sampling

technique for explaining models, in order to avoid the exponential nature of exact Shapley

value computation. Lundberg et al. [123] mapped the notion of Shapley values to the

problem of model interpretability, introducing SHAP and specifically KernelSHAP which

allows for regression-based, model agnostic computation of SHAP values. Lundberg et al.

136

expand upon this notion in 2018 [161] with the TreeSHAP method, which is capable of

computing SHAP values for tree based models in polynomial time. While these methods

have been studied extensively in machine learning, the problem of explainability in bipartite

matching is novel and has not been studied.

Kumar et al. [125] have shown certain limitations of Shapley-based methods while

explaining machine learning models. The limitations highlighted during the process in-

clude (i) out-of-distribution points generated during the masking process, (ii) explanations

generated using Shapley are not actionable. We emphasise that bipartite matching is not

subject to similar problems due to competition. Nevertheless, we have added a note about

improper handling of NULL values during masking process. We would also like to point

out that an important aspect of our paper is to open the blackbox model and thereby create

trust towards the system.

4.6 Discussion

The concept of match list is modelled on real world matching websites and appli-

cations. Some more practical models may include more complex scenarios which can

extend to more data types like non-binary matching values, matching preferences that ex-

tend to multiple matching values, probabilistic modelling of preference functions. While

we present four different explainability queries that may be encountered in real life, there

may be many more of these queries which may be of interest. We consider both these

extensions important, and an avenue for future work.

While the model we propose is based on the real world, one might also want to con-

sider other theoretical models of matching, like a complete ranked list by each individual

instead of ranking functions. These lists could then be used in a stable marriage algorithm

to produce a matching. Such alternate models which may be of theoretical interest can

137

be considered as alternate models and present an opportunity for a thorough theoretical

analysis.

4.7 Conclusion

As the first attempt in explaining matchings, in this paper we considered the large-

scale two-sided matching applications in which the user preferences are specified as rank-

ing functions and matchings are derived as top-k. We considered four natural explanation

questions that would benefit the users of these systems, and observing the competitive na-

ture of rankings, proposed Shapley-based approaches for explanation. To overcome the

combinatorial complexity of exact Shapley computation, we proposed an approximation

algorithm with provable guarantees on run-time and accuracy. Furthermore, we conducted

comprehensive experiments on real-world and synthetic data sets demonstrate the useful-

ness of our explanations and to evaluate the performance of our algorithms.

138

REFERENCES

[1] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides, “Computing k-regret mini-

mizing sets,” VLDB, vol. 7, no. 5, 2014.

[2] S. Zeighami and R. C.-W. Wong, “Finding average regret ratio minimizing set in

database,” pp. 1722–1725, 2019.

[3] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query processing

techniques in relational database systems,” CSUR, vol. 40, no. 4, p. 11, 2008.

[4] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for middleware,”

Journal of Computer and System Sciences, vol. 66, no. 4, pp. 614–656, 2003.

[5] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “Answering top-k queries

using views,” in VLDB, 2006.

[6] A. Asudeh, N. Zhang, and G. Das, “Query reranking as a service,” PVLDB, vol. 9,

no. 11, 2016.

[7] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich, “On obtaining stable rank-

ings,” PVDLB, vol. 12, no. 3, pp. 237–250, 2018.

[8] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das, “Designing fair ranking

schemes,” in SIGMOD. ACM, 2019.

[9] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE, 2001.

[10] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das, “Discovering the skyline

of web databases,” PVLDB, vol. 9, no. 7, pp. 600–611, 2016.

[11] A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. V. Zaruba, “Crowdsourcing pareto-

optimal object finding by pairwise comparisons,” in CIKM, 2015.

139

[12] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu, “Regret-minimizing

representative databases,” VLDB, 2010.

[13] A. Asudeh, A. Nazi, N. Zhang, and G. Das, “Efficient computation of regret-ratio

minimizing set: A compact maxima representative,” in SIGMOD. ACM, 2017.

[14] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri, “Efficient algorithms for k-regret

minimizing sets,” LIPIcs, 2017.

[15] S. Zeighami and R. C.-W. Wong, “Minimizing average regret ratio in database,” in

SIGMOD. ACM, 2016.

[16] M. Xie, R. C.-W. Wong, J. Li, C. Long, and A. Lall, “Efficient k-regret query al-

gorithm with restriction-free bound for any dimensionality,” in SIGMOD. ACM,

2018.

[17] L. Kaufman and P. J. Rousseeuw, “Clustering by means of medoids, statistical data

analysis based on the l1 norm and related methods,” Y. Dodge, North-Holland, 1987.

[18] M. Dyer and A. Frieze, “On the complexity of computing the volume of a

polyhedron,” SIAM, vol. 17, no. 5, pp. 967–974, 1988. [Online]. Available:

https://doi.org/10.1137/0217060

[19] L. Kubáček, “On a linearization of regression models,” Applications of Mathematics,

vol. 40, no. 1, pp. 61–78, 1995.

[20] P. K. Agarwal and J. Pan, “Near-linear algorithms for geometric hitting sets and set

covers,” in SOCG. ACM, 2014.

[21] S. Thirumuruganathan, “A detailed introduction to k-nearest neighbor (knn) algo-

rithm,” Retrieved March, vol. 20, p. 2012, 2010.

[22] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” Journal on Discrete

Mathematics, 2003.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cam-

bridge University Press, 2004.

140

https://doi.org/10.1137/0217060

[24] J. Hammersley, Monte carlo methods. Springer Science & Business Media, 2013.

[25] R. Motwani and P. Raghavan, Randomized algorithms. Cambridge university press,

1995.

[26] “Color dataset,” https://archive.ics.uci.edu/ml/datasets/corel+image+features.

[27] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline evaluation,”

ACM Trans. Database Syst., vol. 33, no. 4, pp. 31:1–31:49, Dec. 2008. [Online].

Available: http://doi.acm.org/10.1145/1412331.1412343

[28] “US Department of Transportation’s dataset,” http://www.transtats.bts.gov/DL

SelectFields.asp?Table ID=236&DB Short Name=On-Time.

[29] “NBA dataset,” www.databasebasketball.com/.

[30] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars: The k most representative

skyline operator,” in ICDE. IEEE, 2007, pp. 86–95.

[31] Z. Huang, Y. Xiang, and Z. Lin, “l-skydiv query: Effectively improve the usefulness

of skylines,” Science China Information Sciences, vol. 53, no. 9, pp. 1785–1799,

2010.

[32] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-based representative skyline,” in ICDE.

IEEE, 2009, pp. 892–903.

[33] V. Koltun and C. H. Papadimitriou, “Approximately dominating representatives,” in

ICDT. Springer, 2005, pp. 204–214.

[34] S. Aggarwal, S. Mitra, and A. Bhattacharya, “Skycover: Finding range-constrained

approximate skylines with bounded quality guarantees.” in COMAD, 2016, pp. 1–12.

[35] D. Nanongkai, A. Lall, A. Das Sarma, and K. Makino, “Interactive regret

minimization,” in SIGMOD, ser. SIGMOD ’12. New York, NY, USA: ACM, 2012,

pp. 109–120. [Online]. Available: http://doi.acm.org/10.1145/2213836.2213850

[36] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in ICDE. IEEE,

2001, pp. 421–430.

141

https://archive.ics.uci.edu/ml/datasets/corel+image+features
http://doi.acm.org/10.1145/1412331.1412343
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
www.databasebasketball.com/
http://doi.acm.org/10.1145/2213836.2213850

[37] M. F. Rahman, A. Asudeh, N. Koudas, and G. Das, “Efficient computation of sub-

space skyline over categorical domains,” in CIKM. ACM, 2017, pp. 407–416.

[38] J. L. Bentley, F. P. Preparata, and M. G. Faust, “Approximation algorithms for

convex hulls,” Commun. ACM, vol. 25, no. 1, pp. 64–68, Jan. 1982. [Online].

Available: http://doi.acm.org/10.1145/358315.358392

[39] Y. Gao, Q. Liu, L. Chen, G. Chen, and Q. Li, “Efficient algorithms for finding the

most desirable skyline objects,” Knowledge-Based Systems, vol. 89, pp. 250–264,

2015.

[40] W. Jin, J. Han, and M. Ester, “Mining thick skylines over large databases,” in PKDD.

Springer, 2004, pp. 255–266.

[41] G. Valkanas, A. N. Papadopoulos, and D. Gunopulos, “Skydiver: a framework for

skyline diversification,” in EDBT. ACM, 2013, pp. 406–417.

[42] H. Lu, C. S. Jensen, and Z. Zhang, “Flexible and efficient resolution of skyline query

size constraints,” TKDE, vol. 23, no. 7, pp. 991–1005, 2010.

[43] L. Kaufman and P. Rousseeuw, “Finding groups in data: An introduction to cluster

analysis,” 1990.

[44] R. T. Ng and J. Han, “Clarans: a method for clustering objects for spatial data min-

ing,” TKDE, vol. 14, no. 5, pp. 1003–1016, Sep. 2002.

[45] S. Sen, “How data, analytics, and technology are helping us fight covid-19. min-

npost,” 2020.

[46] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” Calif. L. Rev., vol. 104,

p. 671, 2016.

[47] A. Asudeh and H. Jagadish, “Fairly evaluating and scoring items in a data set,”

Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 3445–3448, 2020.

[48] C. O’neil, Weapons of math destruction: How big data increases inequality and

threatens democracy. Broadway Books, 2016.

142

http://doi.acm.org/10.1145/358315.358392

[49] A. Chouldechova, “Fair prediction with disparate impact: A study of bias in recidi-

vism prediction instruments,” Big data, vol. 5, no. 2, pp. 153–163, 2017.

[50] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-offs in the fair

determination of risk scores,” arXiv preprint arXiv:1609.05807, 2016.

[51] S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian, “On the (im) possibility

of fairness,” arXiv preprint arXiv:1609.07236, 2016.

[52] F. D. Blau and L. M. Kahn, “The gender pay gap,” The Economists’ Voice, vol. 4,

no. 4, 2007.

[53] B. Salimi, L. Rodriguez, B. Howe, and D. Suciu, “Interventional fairness: Causal

database repair for algorithmic fairness,” in SIGMOD, 2019, pp. 793–810.

[54] B. Salimi, B. Howe, and D. Suciu, “Database repair meets algorithmic fairness,”

ACM SIGMOD Record, vol. 49, no. 1, pp. 34–41, 2020.

[55] F. Nargesian, A. Asudeh, and H. V. Jagadish, “Tailoring data source distributions for

fairness-aware data integration,” PVLDB, vol. 14, no. 11, pp. 2519–2532, 2021.

[56] A. Yan and B. Howe, “Equitensors: Learning fair integrations of heterogeneous

urban data,” in Proceedings of the 2021 International Conference on Management

of Data, 2021, pp. 2338–2347.

[57] Z. Jin, M. Xu, C. Sun, A. Asudeh, and H. Jagadish, “Mithracoverage: A system for

investigating population bias for intersectional fairness,” in SIGMOD, 2020.

[58] A. Asudeh, Z. Jin, and H. Jagadish, “Assessing and remedying coverage for a given

dataset,” in ICDE. IEEE, 2019, pp. 554–565.

[59] Y. Lin, Y. Guan, A. Asudeh, and H. Jagadish, “Identifying insufficient data coverage

in databases with multiple relations,” PVLDB, vol. 13, no. 12, pp. 2229–2242, 2020.

[60] A. Asudeh, N. Shahbazi, Z. Jin, and H. Jagadish, “Identifying insufficient data cov-

erage for ordinal continuous-valued attributes,” in Proceedings of the 2021 Interna-

tional Conference on Management of Data, 2021, pp. 129–141.

143

[61] K. H. Tae and S. E. Whang, “Slice tuner: A selective data acquisition framework for

accurate and fair machine learning models,” in Proceedings of the 2021 International

Conference on Management of Data, 2021, pp. 1771–1783.

[62] E. Pastor, L. de Alfaro, and E. Baralis, “Looking for trouble: Analyzing classifier be-

havior via pattern divergence,” in Proceedings of the 2021 International Conference

on Management of Data, 2021, pp. 1400–1412.

[63] Y. Moskovitch and H. Jagadish, “Countata: dataset labeling using pattern counts,”

Proceedings of the VLDB Endowment, vol. 13, no. 12, pp. 2829–2832, 2020.

[64] C. Sun, A. Asudeh, H. Jagadish, B. Howe, and J. Stoyanovich, “Mithralabel: Flexi-

ble dataset nutritional labels for responsible data science,” in CIKM, 2019, pp. 2893–

2896.

[65] K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish, and G. Miklau, “A

nutritional label for rankings,” in SIGMOD, 2018, pp. 1773–1776.

[66] H. Zhang, X. Chu, A. Asudeh, and S. B. Navathe, “Omnifair: A declarative system

for model-agnostic group fairness in machine learning,” in Proceedings of the 2021

International Conference on Management of Data, 2021, pp. 2076–2088.

[67] H. Zhang, N. Shahbazi, X. Chu, and A. Asudeh, “Fairrover: explorative model build-

ing for fair and responsible machine learning,” in Proceedings of the Fifth Workshop

on Data Management for End-To-End Machine Learning, 2021, pp. 1–10.

[68] A. Balayn, C. Lofi, and G.-J. Houben, “Managing bias and unfairness in data for

decision support: a survey of machine learning and data engineering approaches

to identify and mitigate bias and unfairness within data management and analytics

systems,” The VLDB Journal, pp. 1–30, 2021.

[69] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das, “Designing fair ranking

schemes,” in SIGMOD, 2019, pp. 1259–1276.

144

[70] C. Kuhlman and E. Rundensteiner, “Rank aggregation algorithms for fair consen-

sus,” PVLDB, vol. 13, no. 12, pp. 2706–2719, 2020.

[71] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich, “On obtaining stable rank-

ings,” PVLDB, vol. 12, no. 3, 2019.

[72] Y. Guan, A. Asudeh, P. Mayuram, H. Jagadish, J. Stoyanovich, G. Miklau, and

G. Das, “Mithraranking: A system for responsible ranking design,” in SIGMOD,

2019, pp. 1913–1916.

[73] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S. Jensen, “Fairness-

aware task assignment in spatial crowdsourcing: Game-theoretic approaches,” in

2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,

2021, pp. 265–276.

[74] L. Getoor, “Responsible data science,” in SIGMOD, 2019.

[75] J. Stoyanovich, B. Howe, and H. Jagadish, “Responsible data management,”

PVLDB, vol. 13, no. 12, pp. 3474–3488, 2020.

[76] N. B. Shah and Z. Lipton, “Sigmod 2020 tutorial on fairness and bias in peer review

and other sociotechnical intelligent systems,” in SIGMOD, 2020, pp. 2637–2640.

[77] S. Venkatasubramanian, “Algorithmic fairness: Measures, methods and representa-

tions,” in PODS, 2019, pp. 481–481.

[78] C. Accinelli, B. Catania, G. Guerrini, and S. Minisi, “covrew: a python toolkit for

pre-processing pipeline rewriting ensuring coverage constraint satisfaction demon-

stration paper,” 2021.

[79] ——, “The impact of rewriting on coverage constraint satisfaction.” in EDBT/ICDT

Workshops, 2021.

[80] C. Accinelli, S. Minisi, and B. Catania, “Coverage-based rewriting for data prepara-

tion.” in EDBT/ICDT Workshops, 2020.

145

[81] M. J. Zimmer, “Slicing & dicing of individual disparate treatment law,” La. L. Rev.,

vol. 61, p. 577, 2000.

[82] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi, “Fairness beyond

disparate treatment & disparate impact: Learning classification without disparate

mistreatment,” in Proceedings of the 26th international conference on world wide

web, 2017, pp. 1171–1180.

[83] A. Asudeh, “Enabling responsible data science in practice,” ACM SIGMOD Blog,

January 2021.

[84] A. Narayanan, “Translation tutorial: 21 fairness definitions and their politics,” in

FAT*, 2018.

[85] S. Barocas, M. Hardt, and A. Narayanan, “Fairness and machine learning: Limita-

tions and opportunities,” fairmlbook.org, 2019.

[86] I. Žliobaitė, “Measuring discrimination in algorithmic decision making,” DATA MIN

KNOWL DISC, vol. 31, no. 4, pp. 1060–1089, 2017.

[87] F. Kamiran and T. Calders, “Data preprocessing techniques for classification without

discrimination,” Knowledge and Information Systems, vol. 33, no. 1, pp. 1–33, 2012.

[88] J. L. Bentley, “Decomposable searching problems.” CARNEGIE-MELLON UNIV

PITTSBURGH PA DEPT OF COMPUTER SCIENCE, Tech. Rep., 1978.

[89] S. Rahul and R. Janardan, “Algorithms for range-skyline queries,” in Proceedings of

the 20th International Conference on Advances in Geographic Information Systems,

2012, pp. 526–529.

[90] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determi-

nation of minimum cost paths,” IEEE transactions on Systems Science and Cyber-

netics, vol. 4, no. 2, pp. 100–107, 1968.

[91] “Texas tribune dataset,” https://salaries.texastribune.org/, visited: 2021.

146

fairmlbook.org
https://salaries.texastribune.org/

[92] J. Monahan and J. L. Skeem, “Risk assessment in criminal sentencing,” Annual re-

view of clinical psychology, vol. 12, pp. 489–513, 2016.

[93] “Urbangb dataset,” kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/

data, visited: 2021.

[94] A. Y. Halevy, “Answering queries using views: A survey,” The VLDB Journal,

vol. 10, no. 4, pp. 270–294, 2001.

[95] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “Answering top-k queries

using views,” in Proceedings of the 32nd international conference on Very large data

bases, 2006, pp. 451–462.

[96] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy, “Answering queries with

aggregation using views,” in VLDB, vol. 96, no. September, 1996, pp. 318–329.

[97] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Optimizing queries

with materialized views,” in Proceedings of the Eleventh International Conference

on Data Engineering. IEEE, 1995, pp. 190–200.

[98] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified sampling for approx-

imate query processing,” ACM Transactions on Database Systems (TODS), vol. 32,

no. 2, pp. 9–es, 2007.

[99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “The aqua approximate

query answering system,” in Proceedings of the 1999 ACM SIGMOD international

conference on Management of data, 1999, pp. 574–576.

[100] S. Thirumuruganathan, S. Hasan, N. Koudas, and G. Das, “Approximate query pro-

cessing for data exploration using deep generative models,” in 2020 IEEE 36th In-

ternational Conference on Data Engineering (ICDE). IEEE, 2020, pp. 1309–1320.

[101] Q. Ma and P. Triantafillou, “Dbest: Revisiting approximate query processing engines

with machine learning models,” in Proceedings of the 2019 International Conference

on Management of Data, 2019, pp. 1553–1570.

147

kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data
kaggle.com/daveianhickey/2000-16-traffic-flow-england-scotland-wales/data

[102] S. Shetiya, S. Thirumuruganathan, N. Koudas, and G. Das, “Astrid: Accurate selec-

tivity estimation for string predicates using deep learning.”

[103] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubrama-

nian, “Certifying and removing disparate impact,” in proceedings of the 21th ACM

SIGKDD international conference on knowledge discovery and data mining, 2015,

pp. 259–268.

[104] S. Hajian, J. Domingo-Ferrer, and A. Martinez-Balleste, “Discrimination preven-

tion in data mining for intrusion and crime detection,” in 2011 IEEE Symposium on

Computational Intelligence in Cyber Security (CICS). IEEE, 2011, pp. 47–54.

[105] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,”

in Advances in neural information processing systems, 2016, pp. 3315–3323.

[106] S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, and A. Roth, “Fair learning in

markovian environments,” arXiv preprint arXiv:1611.03071, 2016.

[107] M. Joseph, M. Kearns, J. H. Morgenstern, and A. Roth, “Fairness in learning: Classic

and contextual bandits,” in Advances in Neural Information Processing Systems,

2016, pp. 325–333.

[108] B. Salimi, C. Cole, P. Li, J. Gehrke, and D. Suciu, “Hypdb: a demonstration of

detecting, explaining and resolving bias in olap queries,” Proceedings of the VLDB

Endowment, vol. 11, no. 12, pp. 2062–2065, 2018.

[109] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting recidivism,”

Science advances, vol. 4, no. 1, p. eaao5580, 2018.

[110] V. Zelaya, P. Missier, and D. Prangle, “Parametrised data sampling for fairness opti-

misation,” KDD XAI, 2019.

[111] A. Backurs, P. Indyk, K. Onak, B. Schieber, A. Vakilian, and T. Wagner, “Scalable

fair clustering,” in International Conference on Machine Learning. PMLR, 2019,

pp. 405–413.

148

[112] M. Olfat and A. Aswani, “Convex formulations for fair principal component analy-

sis,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,

2019, pp. 663–670.

[113] H. Shao, C. Jin, J. Xu, Y. Zhong, and B. Xu, “Supply-demand matching of med-

ical services at a city level under the background of hierarchical diagnosis and

treatment-based on didi chuxing data in haikou, china,” BMC Health Services Re-

search, vol. 22, no. 1, pp. 1–12, 2022.

[114] S. H. Brunner, R. Huber, and A. Grêt-Regamey, “A backcasting approach for match-

ing regional ecosystem services supply and demand,” Environmental Modelling &

Software, vol. 75, pp. 439–458, 2016.

[115] R. D. Lieberthal, Matching Supply and Demand. Cham: Springer International

Publishing, 2016, pp. 145–171. [Online]. Available: https://doi.org/10.1007/

978-3-319-43796-5 6

[116] K. Visscher, P. Stegmaier, A. Damm, R. Hamaker-Taylor, A. Harjanne, and R. Gior-

dano, “Matching supply and demand: A typology of climate services,” Climate Ser-

vices, vol. 17, p. 100136, 2020.

[117] A. Goswami, F. Hedayati, and P. Mohapatra, “Recommendation systems for markets

with two sided preferences,” in 2014 13th International Conference on Machine

Learning and Applications. IEEE, 2014, pp. 282–287.

[118] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty, “Fairrec:

Two-sided fairness for personalized recommendations in two-sided platforms,” in

Proceedings of the web conference 2020, 2020, pp. 1194–1204.

[119] L. Muzellec, S. Ronteau, and M. Lambkin, “Two-sided internet platforms: A busi-

ness model lifecycle perspective,” Industrial Marketing Management, vol. 45, pp.

139–150, 2015.

149

https://doi.org/10.1007/978-3-319-43796-5_6
https://doi.org/10.1007/978-3-319-43796-5_6

[120] L. S. Shapley, A value for n-person games. Cambridge University Press, 1988, p.

31–40.

[121] D. Janzing, L. Minorics, and P. Blöbaum, “Feature relevance quantification in ex-

plainable ai: A causal problem,” in International Conference on artificial intelli-

gence and statistics. PMLR, 2020, pp. 2907–2916.

[122] E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual pre-

dictions with feature contributions,” Knowledge and information systems, vol. 41,

no. 3, pp. 647–665, 2014.

[123] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predic-

tions,” Advances in neural information processing systems, vol. 30, 2017.

[124] A. Asudeh, N. Zhang, and G. Das, “Query reranking as a service,” Proceedings of

the VLDB Endowment, vol. 9, no. 11, pp. 888–899, 2016.

[125] I. E. Kumar, S. Venkatasubramanian, C. Scheidegger, and S. Friedler, “Problems

with shapley-value-based explanations as feature importance measures,” in Interna-

tional Conference on Machine Learning. PMLR, 2020, pp. 5491–5500.

[126] S. S. Fatima, M. Wooldridge, and N. R. Jennings, “A linear approximation method

for the shapley value,” Artificial Intelligence, vol. 172, no. 14, pp. 1673–1699, 2008.

[127] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” in

The collected works of Wassily Hoeffding. Springer, 1994, pp. 409–426.

[128] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?” explaining

the predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD interna-

tional conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[129] M. S. Acharya, A. Armaan, and A. S. Antony, “A comparison of regression models

for prediction of graduate admissions,” in 2019 international conference on compu-

tational intelligence in data science (ICCIDS). IEEE, 2019, pp. 1–5.

150

[130] C. Molnar, Interpretable Machine Learning. Lulu.com, 2020. [Online]. Available:

https://books.google.com/books?id=jBm3DwAAQBAJ

[131] Y.-K. Che, J. Kim, and F. Kojima, “Stable matching in large economies,” Economet-

rica, vol. 87, no. 1, pp. 65–110, 2019.

[132] T. Hößler, P. Schulz, E. A. Jorswieck, M. Simsek, and G. P. Fettweis, “Stable match-

ing for wireless urllc in multi-cellular, multi-user systems,” IEEE Transactions on

Communications, vol. 68, no. 8, pp. 5228–5241, 2020.

[133] A. Abdulkadiroglu and T. Sönmez, “Matching markets: Theory and practice,” Ad-

vances in Economics and Econometrics, vol. 1, pp. 3–47, 2013.

[134] R. Hakimov and D. Kübler, “Experiments on matching markets: A survey,” WZB

Discussion Paper, Tech. Rep., 2019.

[135] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The

American Mathematical Monthly, vol. 69, no. 1, pp. 9–15, 1962.

[136] A. E. Roth and M. Sotomayor, “Two-sided matching,” Handbook of game theory

with economic applications, vol. 1, pp. 485–541, 1992.

[137] G. S. Becker, “A theory of marriage: Part i,” Journal of Political economy, vol. 81,

no. 4, pp. 813–846, 1973.

[138] T. C. Bergstrom and M. Bagnoli, “Courtship as a waiting game,” Journal of political

economy, vol. 101, no. 1, pp. 185–202, 1993.

[139] N. Shimada, N. Yamazaki, and Y. Takano, “Multi-objective optimization models for

many-to-one matching problems,” Journal of Information Processing, vol. 28, pp.

406–412, 2020.

[140] D. J. Abraham, R. W. Irving, and D. F. Manlove, “Two algorithms for the student-

project allocation problem,” Journal of discrete algorithms, vol. 5, no. 1, pp. 73–90,

2007.

151

https://books.google.com/books?id=jBm3DwAAQBAJ

[141] A. E. Roth and M. Sotomayor, “The college admissions problem revisited,” Econo-

metrica: Journal of the Econometric Society, pp. 559–570, 1989.

[142] S. Qian, B. Wang, S. Li, Y. Sun, Y. Yu, and J. Wang, “Many-to-many matching

for social-aware minimized redundancy caching in d2d-enabled cellular networks,”

Computer Networks, vol. 175, p. 107249, 2020.

[143] X. Kong, L. Wen, J. Ren, M. Hou, M. Zhang, K. Liu, and F. Xia, “Many-to-many

collaborator recommendation based on matching markets theory,” in 2019 IEEE Intl

Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive In-

telligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on

Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech).

IEEE, 2019, pp. 109–114.

[144] J. Ren, F. Xia, X. Chen, J. Liu, M. Hou, A. Shehzad, N. Sultanova, and X. Kong,

“Matching algorithms: fundamentals, applications and challenges,” IEEE Transac-

tions on Emerging Topics in Computational Intelligence, vol. 5, no. 3, pp. 332–350,

2021.

[145] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,”

in Proceedings of the first instructional conference on machine learning, vol. 242,

no. 1. Citeseer, 2003, pp. 29–48.

[146] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”

Information processing & management, vol. 24, no. 5, pp. 513–523, 1988.

[147] S. T. Dumais et al., “Latent semantic analysis,” Annu. Rev. Inf. Sci. Technol., vol. 38,

no. 1, pp. 188–230, 2004.

[148] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of the 22nd

annual international ACM SIGIR conference on Research and development in infor-

mation retrieval, 1999, pp. 50–57.

152

[149] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning deep struc-

tured semantic models for web search using clickthrough data,” in Proceedings of

the 22nd ACM international conference on Information & Knowledge Management,

2013, pp. 2333–2338.

[150] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic model with

convolutional-pooling structure for information retrieval,” in Proceedings of the 23rd

ACM international conference on conference on information and knowledge man-

agement, 2014, pp. 101–110.

[151] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Ad-

vances in artificial intelligence, vol. 2009, 2009.

[152] T. Tran, K. Lee, Y. Liao, and D. Lee, “Regularizing matrix factorization with user

and item embeddings for recommendation,” in Proceedings of the 27th ACM inter-

national conference on information and knowledge management, 2018, pp. 687–

696.

[153] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders meet

collaborative filtering,” in Proceedings of the 24th international conference on World

Wide Web, 2015, pp. 111–112.

[154] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-

encoders for top-n recommender systems,” in Proceedings of the ninth ACM in-

ternational conference on web search and data mining, 2016, pp. 153–162.

[155] D. Alvarez Melis and T. Jaakkola, “Towards robust interpretability with self-

explaining neural networks,” Advances in neural information processing systems,

vol. 31, 2018.

[156] S. Teso, “Toward faithful explanatory active learning with self-explainable neural

nets,” in Proceedings of the Workshop on Interactive Adaptive Learning (IAL 2019).

CEUR Workshop Proceedings, 2019, pp. 4–16.

153

[157] M. Verma and D. Ganguly, “Lirme: locally interpretable ranking model explana-

tion,” in Proceedings of the 42nd International ACM SIGIR Conference on Research

and Development in Information Retrieval, 2019, pp. 1281–1284.

[158] A. Gale and A. Marian, “Metrics for explainable ranking functions,” in Proceed-

ings of the 2nd International Workshop on ExplainAble Recommendation and Search

(EARS 2019), 2019.

[159] ——, “Explaining monotonic ranking functions,” Proceedings of the VLDB Endow-

ment, vol. 14, no. 4, pp. 640–652, 2020.

[160] A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich, “On obtaining stable rank-

ings,” Proceedings of the VLDB Endowment, vol. 12, no. 3, 2018.

[161] S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized feature attri-

bution for tree ensembles,” arXiv preprint arXiv:1802.03888, 2018.

154

BIOGRAPHICAL STATEMENT

Suraj Shetiya received his Bachelor of Engi-

neering degree in Computer Science from Visves-

varaya Technological University, India, in 2010.

Following this, he worked on cutting edge storage

technologies like Snap-Mirror and SnapVault at Ne-

tApp, Bangalore. He started his Master’s in Com-

puter Science program at University of Texas at Ar-

lington right after and completed it in 2017. Post his

Master’s degree, he started pursuing doctoral research under the supervision of Dr. Gautam

Das. During the course of his doctorate, he has served as Graduate Teaching Assistant in

the Computer Science Department in various courses from 2018 to 2023. He is the recipient

of the STEM fellowship from 2017 to 2023. For his outstanding work as a PhD student,

he has received John S. Schuchman Outstanding Doctoral Student and Outstanding

Doctoral Dissertation from the Computer Science department. During his Ph.D., he has

been co-author of 6+ peer-reviewed top-tier conference papers (SIGMOD, VLDB, ICDE)

which have 35+ citations. His current research interests lie in responsible data manage-

ment, compact representatives of databases and metric space problems in databases.

155

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	A Unified Optimisation Algorithm For Solving ``Regret-Minimising Representative'' Problems
	Introduction
	Technical Highlights
	Summary of Contributions

	Preliminaries
	Regret optimisation measures
	Problem Definition

	Unified Regret Minimisation
	Overview
	Details
	Proof of convergence for and norms
	Running Example

	Max Regret Ratio ORACLE
	Graph Transformation
	Threshold-based Algorithm for Max Regret Ratio Oracle

	Average Regret Ratio ORACLE
	Experiments
	Experimental setup
	Summary of experimental results
	Results for Max Regret-Ratio
	Results for Avg Regret-Ratio
	Results for skyline reducing algorithms

	Related Work

	Fairness-Aware Range Queries for Selecting Unbiased Data
	Introduction
	Preliminaries
	Database Model
	Fairness Model
	Problem definition

	Single-predicate Range Queries
	Jump pointers
	Query answering for unweighted fairness
	Prepossessing
	Generalisation to weighted fairness

	Multi-predicate range queries
	Best First Search algorithm
	Neighbouring range computation
	Informed best first search
	Using MP algorithms for SP

	Experiments
	Experimental setup
	Proof of Concept - TEXAS TRIBUNE
	Performance of SPQA and weighted SPQA
	Performance evaluation of MP algorithms
	Comparison with coverage based algorithms
	Summary of experimental results

	Related work
	Discussion and future work
	Final remarks

	Shapley Values for Explanation in Two-sided Matching Applications
	Introduction
	Preliminaries
	Problem definition

	Shapley value based solution
	Why Shapley?
	Mapping Shapley value to matching
	Shapley value in matching
	Approximate sampling based approach
	KernelSHAP

	Experiments
	Experiments setup
	Proof of Concept
	Performance Evaluation

	Related work
	Discussion
	Conclusion

	REFERENCES
	BIOGRAPHICAL STATEMENT

