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ABSTRACT

DEEP LEARNING FOR MOLECULAR PROPERTY PREDICTION

Hehuan Ma, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Junzhou Huang

Drug discovery has always been a crucial task for society, and molecular property

prediction is one of the fundamental problem. It is responsible for identifying the

target properties or severe side-effects, so that certain molecules can be selected as

the candidates of drugs. Traditional methods usually conduct a series of biochemical

experiments to test the molecular properties, which may take up to decades. Nowadays,

this process can be facilitated due to the rapid growth of deep learning methods.

I present my work toward solving this critical problem by utilizing deep learning

techniques. My research study can be summarized in three directions: 1) designing

informative and powerful molecular representation learning models; 2) exploring the

imbalanced data distribution and developing corresponding techniques to further

improve the prediction performance, and 3) taking advantage of the unlabeled data to

address the limited labeled data problem in molecular property prediction.

How to accurately and properly represent the molecule is a dominant perspective

to target molecular property prediction. Precisely depicting molecules is a crucial

factor that significantly impacts property predictions. To tackle this challenge, I

propose a cross-dependent graph neural network to learn and generate informative
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molecular representation by exploring the molecular graph structure, which takes both

atom-oriented graph structure and edge-oriented graph into consideration. Moreover,

the molecular data could be imbalanced since some molecules may be easily predicted

while some others are not. Therefore, I explore the data distribution and propose

an attentive loss function to allow the network to learn the sample importance with

respect to different molecules, which further improves the model performance. Lastly,

acquiring accurate molecular property information remains a demanding task due to

the labor and resource-intensive nature of labeling. To address this issue, effectively

utilizing unlabeled data stands out as a potential solution. I propose a robust self-

training strategy to include unlabeled data to promote molecular property prediction.

Furthermore, I propose a data-augmentation strategy using graph neural network by

incorporating these two methods to solve a realistic problem, drug-induced liver injury

(DILI) prediction, and have obtained significant improvement on this extremely small

dataset, which only contains hundreds of molecules. Moreover, I a sequence-based

multi-label learning method to improve the performance of the property prediction

with limited data in a semi-supervised manner.
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CHAPTER 1

INTRODUCTION

Molecular property prediction is a fundamental but crucial task of drug discovery

since it helps to determine the function of new drugs. The traditional way to identify

molecular property is to conduct professional experiments based on the domain

knowledge of chemical experts [3, 4]. It typically starts with target identification,

which requires applying data mining techniques to identify and select the function of a

potential biochemical target when it is relevant to a disease condition [5, 6]. Probably

hundreds of thousands of drug candidates need to go through a precise functional

screening process to constitute their interactions with the drug target, which is

extremely time-consuming and computationally costly. Once a drug candidate appears

capable, as well as the target is identified retrospectively, a corresponding library of

similar compounds is then synthesized and screened to find a drug that binds to the

target with the desired effect. Thus, the discovery of an FDA-approved drug could

take money and up to 12 years [3,7]. How to promote the process is the key challenge.

Nowadays, deep learning techniques are widely known for their capability of

taking advantage of huge amounts of data, which has achieved substantial success

in many domains, such as computer vision [8–14], medical image processing [15–17],

nature language processing [18, 19], health care [20–23], bioinformatics [24–31], etc.

Meanwhile, in recent years, the amount of available compounds and biological activity

data increased exponentially due to experimental techniques such as High-throughput

screening (HTS) and parallel synthesis [32, 33]. Thus, deploying deep learning models

to address molecular property prediction problem is promising. Although many studies
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have been done by utilizing various deep learning models [34–36, 36–39] over this

problem, there still remain several obstacles: 1) an informative molecular representation

is needed to accurately represent the molecule for further property prediction; 2) the

underlying data distribution is rarely explored, which might be imbalanced; and 3)

labeled property data is difficult to obtain since it requires a series of biochemical

experiments or lots of computational resources to test the target property.

In this thesis, I tackle these obstacles by proposing 1) a novel GNN-based

framework for generating informative molecular representation by sufficiently learning

the molecular graph structure as well as the chemical features; 2) an attentive loss

function to explore the data distribution and learn associated importance for each

data sample; 3) a robust self-training paradigm that utilize both labeled and unlabeled

data to promote the prediction performance; 4) a data augmentation strategy which

takes GNN-based models as the backbone to boost the prediction of an extremely

small but important molecular property, drug-induced liver injury (DILI), and 5) a

sequence-based deep multi-label learning over limited data, which takes advantages

of both labeled data and unlabeled in a semi-supervised manner, and improves the

prediction performance for those properties with limited data. These works have been

published [40–44] in several conferences and journals. In this thesis, I will present how

each of them solves molecular property prediction problem as follows:

Chapter introduces a novel GNN based method for generating informative

molecular representation by employing multi-view modeling with a cross-dependent

message passing scheme to improve information sharing across diverse perspectives.

This framework significantly outperforms existing models on challenging benchmarks,

demonstrating enhanced accuracy and interpretability.

In order to explore the underlying data distribution, Chapter 2.6 proposes a

self-attention mechanism that assigns learnable weights to each data sample based on
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its gradient norm, acknowledging that samples should not be treated equally during

the network training due to the easy/hard sample imbalanced problem. Specifically,

an attentive loss function is designed to learn the associated weights for each data

sample automatically.

Semi-supervised learning is a widely used paradigm to assist supervised learning

problem. In Chapter 3.5, a robust self-training strategy is developed to involve more

unlabeled data to promote the molecular property prediction tasks. A teacher-student

paradigm is employed, and robust loss function is explored to handle the label noise.

Moreover, Chapter 4.4 addresses a real-world challenging DILI (Drug-Induced Liver

Injury) prediction task, which is crucial for drug discovery due to its potential toxicity

to humans. DILI is considered an extremely small dataset with only a few hundred

labeled molecules. We propose a property augmentation strategy to integrate extensive

training data with additional property information. Empirical tests showcase our

method’s superiority over existing baselines. Last, Chapter 5.5 presents a multi-label

learning method that improves the prediction performance for limited data by utilizing

a sequence-based model as the backbone model, which demonstrates that multi-label

learning is an effective approach to improve the performance for limited data.

Chapter 6.5 briefly summarizes these research studies, and discusses several

future works that towards my goal for the next step.
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CHAPTER 2

CROSS-DEPENDENT GRAPH NEURAL NETWORKS FOR

MOLECULAR PROPERTY PREDICTION

As mentioned before, the crux of molecular property prediction is to generate

meaningful representations of the molecules. One promising route is to exploit the

molecular graph structure through Graph Neural Networks (GNNs). Both atoms

and bonds significantly affect the chemical properties of a molecule, so an expressive

model ought to exploit both node (atom) and edge (bond) information simultaneously.

Inspired by this observation, we explore multi-view modeling with graph neural network

(MVGNN) to enable more accurate predictions of molecular properties. To further

enhance the expressive power of MVGNN, we propose a cross-dependent message-

passing scheme to enhance information communication of different views. The overall

framework is termed CD-MVGNN. Lastly, we theoretically justify the expressiveness

of the proposed model in terms of distinguishing non-isomorphism graphs. Extensive

experiments demonstrate that CD-MVGNN achieves remarkably superior performance

over state-of-the-art models on a variety of challenging benchmarks. Meanwhile,

visualization results of the node importance are consistent with prior knowledge, which

confirms the interpretability power of CD-MVGNN.

2.1 Introduction

Molecular property prediction is a fundamental but challenging task in drug

discovery, and attracts increasing attention in the last decades. For example, designing

molecular fingerprints based on the radial group of the molecular structure for property

prediction [36]. However, traditional molecular property prediction methods usually i)
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require chemical experts to conduct professional experiments to validate the property

label, ii) desire high R&D cost and massive amount of time, and iii) ask for specialized

models for different properties, which lacks generalization capacity [3, 45].

To date, Graph Neural Networks (GNNs) have gained more popularity due

to its capability of modeling graph structured data. Successes have been achieved

in various domains, such as social network [46, 47], knowledge-graphs [48, 49], and

recommendation systems [50,51]. Molecular property prediction is also a promising

application of GNNs since a molecule could be represented as a topological graph

by treating atoms as nodes, and chemical bonds as edges. Compared with other

representations for molecules, such as SMILES [52], which represents molecules as

sequences but loses structural information, graph representation of the molecules can

naturally capture the information from the molecular structure, including both the

nodes (atoms) and edges (bonds). In this sense, a molecular property prediction task

is equivalent to a supervised graph classification problem (see, for example, toxicity

prediction [53] and protein interface prediction [54]).

Figure 2.1: The upper two molecules share the same bond structures, but contain
different atoms. The lower two molecules share the same atoms, but equip with
different bonds.
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Despite the fruitful results obtained by GNNs, there remains three limitations:

1) Most of the GNN models focus either on the embedding of nodes or edges. However,

in many practical scenarios, nodes and edges play equally important roles. Specifically,

molecules with different atoms (nodes) but same bonds (edges) are distinct compounds

with different properties, and so as to different bonds (edges) but same atoms (nodes).

As shown in Figure 2.1(upper), equipped with the same bonds, only one-atom difference

make the two molecules distinct Octanol/Water Partition Coefficients. Caffine is more

hydrophilic while 6-Thiocaffeine is more lipophilic [55]. Similarly, in Figure 2.1(lower),

the molecular formulas of Acetone and Propen-2-ol are exactly the same, but the

bond difference makes Acetone behave mild irritation to human eyes, nose, skin,

etc [33]. Accordingly, both nodes and edges are fairly essential for molecular property

prediction. Therefore, how to properly integrate both node and edge information in

a unified manner is the first challenge. 2) As proved in [56], the GNN model with

message passing scheme is at most as strong as the WL graph isomorphism test [57],

which limits the expressive power of GNNs and harms the performance of down-steam

tasks. 3) Existing GNNs usually lack interpretability power, which is actually crucial

for drug discovery tasks. Take molecular property prediction as an example, being

aware of how the model validate the property will help practitioners figure out the

key components that determine certain properties [58].

In pursuit of tackling the above challenges, we explore the idea of multi-view

learning [59] and a new form of GNN: MVGNN, which contains two sub-modules

that generate the graph embeddings from node and edge, respectively. Therefore, it

investigates the molecular graph from two views simultaneously. Furthermore, we

design a cross-dependent message passing scheme to break the expressive power barrier

ofMVGNN and propose CD-MVGNN. We theoretically justify that the expressiveness of

CD-MVGNN is strictly more powerful than Graph Isomorphisom Network [56] in terms

6



of distinguishing non-isomorphism graphs. Lastly, we employ a shared self-attentive

aggregation module to produce the graph-level embeddings and interpretability results,

as well as a disagreement loss to stabilize the training process of the multi-view

pipeline. Comprehensive experiments on 11 benchmarks demonstrate the superiority

of proposed CD-MVGNN model. Namely, the overall performance of CD-MVGNN and

MVGNN achieve up to 3.62% improvement on classification benchmarks and 23.55%

improvement on regression benchmarks compared with SOTA methods. Moreover,

case studies on toxicity prediction demonstrate the interpretability power of proposed

model.

2.2 Related Work

The most crucial part of addressing molecular property prediction problem is

to get an accurate vector representation of the molecules. Relevant studies can be

categorized into three aspects: hand-crafted molecular fingerprints based methods,

SMILES sequence based techniques, and graph structure based techniques.

Hand-crafted molecular fingerprints based methods. The traditional

feature extraction method enlists experts to design molecular fingerprints manually,

based on biological experiments and chemical knowledge [60], such as the property of

molecular sub-structures. These types of fingerprint methods generally work well for

particular tasks but lack universality. One representative approach is called circular

fingerprints [36]. Circular fingerprints employ a fixed hash function to extract each

layer’s features of a molecule based on the concatenated features of the neighborhood in

the previous layer. Extended-Connectivity Fingerprint (ECFP) [61] is one of the most

famous examples of hash-based fingerprints. The generated fingerprint representations

usually go through machine learning models to perform further predictions, such

as Logistic Regression [62], Random Forest [63], and Influence Relevance Voting
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(IRV) [64]. Nonetheless, this type of hand-crafted fingerprint has a notable problem:

since the characteristic of the hash function is non-invertible, it might not be able to

catch enough information when being converted.

SMILES sequence based techniques. SMILES sequence based models,

such as Seq2seq Fingerprint [38], spot the potentially useful information of the

molecular SMILES sequence data by adequately training them using Recurrent Neural

Networks (RNNs), in order to obtain the vector representation of the molecule. These

vectors then go through other supervised models to perform property prediction, e.g.,

GradientBoost [65]. The SMILES-based models are inspired by the sequence learning

in Natural Language Processing [18], which takes an unlabeled dataset as the input

to convert a SMILES to a fingerprint, then recovers the fingerprint back to a sequence

representation for better learning.

Graph structure based techniques. A molecule could be represented as

a graph based on its chemical structure, e.g., consider the atoms as the nodes, and

the chemical bonds between the atoms as the edges. Thus, many graph theoretic

algorithms could be applied to represent a molecule by embedding the graph features

into a continuous vector [35,66]. A noted study proposed the idea of neural fingerprints,

which applies convolutional neural networks on graphs directly [34]. The difference

between neural fingerprints and circular fingerprints is the replacement of the hash

function. Neural fingerprints apply a non-linear activated densely connected layer to

generate the fingerprints. These kind of deep Graph Convolutional Neural Networks are

established by learning a function on the graph node features and the graph structure

matrix representation [35,54]. Other graph-based models such as the Weave model

have also been proposed [67]. The Weave model is another graph-based convolutional

model. The key difference between the Weave model and neural fingerprints [34] is the

updating procedure of the atom features. It combines all the atoms in a molecule with
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their matching pairs instead of the neighbors of the atoms. More relevant research

that focus on exploiting the molecular graphs with graph convolutional network have

been studied recently, e.g., [68, 69] have involved the 3D information of the molecules

to help exploit the molecular graph structure. Other attempts such as [70, 71] turn to

develop aggregation weights learning schemes based on the prior knowledge of Graph

Attention Network [46], while [72] propose to learn different weights for different types

of edges. Moreover, [73] proposes a framework to implement message passing process

between each atom to form a molecular representation. Inspired by this work, [1, 74]

convert the message passing process to bond-wise instead of atom-wise, and [75]

explores more information by considering both atom messages and the corresponding

incoming bond messages. [76] introduces multilevel graph structures based on the

interactions between atom-pairs.

2.3 Preliminaries on Molecular Representations and Generalized GNNs

We abstract a molecule c as a topological graph Gc = (V , E), where |V| = p

refers to the set of p nodes (atoms) and |E| = q refers to a set of q edges (bonds). Nv

denotes the neighborhood set of node v. We denote the feature of node v as xv ∈ Rdn

and the feature of edge (v, k) as evk ∈ Rde1. dn and de refer to the feature dimensions

of nodes and edges, respectively. Exemplar node and edge features are the chemical

relevant features such as atomic mass and bond type. Please refer to Section 2.4.2 for

detailed feature extraction process. Properties of a molecule y constitute the targets

of the predictive task. Given a molecule c and its associated graph representation

Gc, molecular property prediction aims to predict the properties yc according to the

embedding ξc of Gc. The values of y are either categorical values (e.g., toxicity and

1With a bit abuse of notations, evk can represent either the edge (v, k) or the edge features.
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permeability [77,78]) for classification tasks or real values (e.g., atomization energy

and the electronic spectra [79]) for regression tasks.

Generalized GNNs. Most of the GNN models are built upon the message passing

process, which aggregates and passes the feature information of corresponding neigh-

boring nodes to produce new hidden states of the nodes. After the message passing

process, all hidden states of the nodes are fed into a readout component, to produce

the final graph-level embedding. Here we present a generalized version of the message

passing scheme. Suppose there are L iterations/layers, and iteration l contains Kl

hops. In iteration l, the k-th hop of message passing can be formulated as,

m(l,k)
v = AGG(l)({h(l,k−1)

v ,h(l,k−1)
u , euv | u ∈ Nv}), (2.1)

h(l,k)
v = MLP(l)(m(l,k)

v ),

where we make the convention that h
(l,0)
v := h

(l−1,Kl−1)
v . AGG(l) denotes the aggregation

function, m
(l,k)
v is the aggregated message, and MLP(l) is a multi-layer perceptron2.

There are several popular choices for the aggregation function AGG(l), such as mean,

max pooling and the graph attention mechanism [46]. Note that for one iteration of

message passing, there are a layer of trainable parameters (parameters inside AGG(l)

and MLP(l)). These parameters are shared across the Kl hops within iteration l. After

L iterations of message passing, the hidden states of the last hop in the last iteration

are used as the embeddings of the nodes, i.e., h
(L,KL)
v , v ∈ V. Lastly, a READOUT

operation is applied to generate the graph level representation,

hG = READOUT({h(0,K0)
v , ...,h(L,KL)

v | v ∈ V}). (2.2)

If choosing the sum aggregation with a learnable parameter ϵ(l), i.e.,

AGG(l)({h(l,k−1)
v ,h

(l,k−1)
u , euv|u ∈ Nv}) = ((1+ϵ(l))h

(l,k−1)
v +

∑
u∈Nv

h
(l,k−1)
u )||(

∑
u∈Nv

euv)

2For instance, it could be a one layer neural net, then the state update becomes h
(l,k)
v =

σ(W(l)m
(l,k)
v + b(l)), where σ stands for the activation function.

10



(|| is the concatenation operation), then generalized GNN recovers graph isomorphism

network (GIN) architecture [56], which provably generalizes the WL graph isomorphism

test [57].

2.4 Cross-Dependent Multi-View GNN (CD-MVGNN)

In this section, we will first introduce the high-level framework of CD-MVGNN

model, then illustrate each components in detail. Lastly we theoretically verify the

expressive power of CD-MVGNN and the basic MVGNN architecture.

Figure 2.2: Overview of CD-MVGNN model. CD-MVGNN model passes the graph
through two encoders to generate two sets of node embeddings. A cross-dependent
message passing scheme is applied between two encoders to ensure the information
flow circulation. A shared self-attention readout learns the node importance and
produce two graph embeddings accordingly. The embeddings are then fed into two
MLPs to make predictions. The final prediction is the ensemble of the two predictions.
Furthermore, by visualizing the learned attentions over nodes, one can identify the
atoms/functional groups that are responsible for the predictions. For example, CD-
MVGNN finds out that the cyano groups contribute to the toxicity significantly.

2.4.1 Overview of CD-MVGNN

CD-MVGNN is implemented in a multi-view fashion, namely, it equally considers

both atom features and bond features for constituting a molecular representation. As
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shown in Figure 2.2, the proposed architecture contains two concurrent sub-modules,

Node-central encoder and Edge-central encoder. A cross-dependent message passing

scheme is applied between the two encoders to enable messages circulate and update

during the training process. Next, CD-MVGNN adopts an aggregation function to

produce the graph embedding vector from the node/edge encoder. The process for

each module can be categorized into three phases: neighbor aggregation, attached

features collection, and message update. As shown in Figure 2.3(a), for the Node-GNN

module, taking node v3 as an example: 1) neighbor nodes aggregation: aggregating the

node features of its neighbor nodes v2, v4 and v5; 2) getting the initial edge features

as the attached features from the connected edge e23, e34, and e35; 3) updating the

state of v3 using (2.3). Figure 2.3(b) demonstrates the edge message construction in

the Edge-GNN module. Take edge e35 as an example. 1) neighbor edges aggregation:

aggregating the edge features of its neighbor edges, edge e23, edge e43; 2) getting the

initial node information as the attached features from the endpoint node v2 of edge

e23, node v4 of e43 ; 3) updating the message of e35 using (2.5).

1
2

3

4

0

5

(a) Node-GNN message passing (b) Edge-GNN message passing

Figure 2.3: Examples of the message passing phase in Node-GNN (2.3(a)) and Edge-
GNN (2.3(b)).

Other than the mean-pooling mechanism, we propose to use the self-attentive

aggregation to learn different weights of the node/edge embeddings to produce the
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final graph embedding. Furthermore, the self-attentive aggregation layer is shared

between the node-central and edge-central encoders, to reinforce the learning of the

node features and the edge features, respectively. After the self-attentive aggregation,

CD-MVGNN feeds the corresponding graph embeddings to two MLPs to fit the loss

function. To stabilize the training process of this multi-view architecture, we employ

the disagreement loss to enforce the outputs of the two MLPs to be close with each

other.

2.4.2 The Node/Edge Feature Extraction of the Molecules

The node/edge feature extraction contains two parts: 1) node/edge messages,

which are constructed by aggregating neighboring nodes/edges features iteratively; 2)

molecule-level features, which are the additional molecule-level features generated

by RDKit to capture the global molecular information. It consists of 200 features for

each molecule [80]. Since we focus on the model architecture part, we follow the exact

same protocol of [1] for the initial node (atom) and edge (bond) features selection, as

well as the 200 RDKit features generation procedure. The atom features description

and size are listed in 5.1, and the bond features are documented in 5.2. The RDKit

features are concatenated with the node/edge embedding, to go through the final

MLP to make the predictions.

2.4.3 Node-central and Edge-central Encoders

To ease the exposition, in the sequel when using one singe superscript we mean

the hop index k while ignoring the layer/iteration index l.
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Table 2.1: Atom features [1].

features size description

atom type 100 type of atom (e.g., C, N, O), by atomic number
formal charge 5 integer electronic charge assigned to atom

number of bonds 6 number of bonds the atom is involved in
chirality 4 Unspecified, tetrahedral CW/CCW, or other.

number of H 5 number of bonded hydrogen atoms
atomic mass 1 mass of the atom, divided by 100
aromaticity 1 whether this atom is part of an aromatic system
hybridization 5 sp, sp2, sp3, sp3d, or sp3d2

Table 2.2: Bond features [1].

features size description

bond type 4 single, double, triple, or aromatic
stereo 6 none, any, E/Z or cis/trans
in ring 1 whether the bond is part of a ring

conjugated 1 whether the bond is conjugated

Node-central Encoder. Node-GNN is built upon the generalized message passing in

Equation (2.1). Additionally, we add input and output layers, to enhance its expressive

power. Specifically,

m(k)
v = AGGnode({h(k−1)

v ,h(k−1)
u , euv | u ∈ Nv}), (2.3)

h(k)
v = MLPnode({m(k)

v ,h(0)
v }),

where h
(0)
v = σ(Wninxv) is the input state of Node-GNN, Wnin ∈ Rdhid×dn is the input

weight matrix. The input layer can also be viewed as a residual connection. After L

iterations of message passing, we utilize an additional message passing step with a

new weight matrix Wnout ∈ Rdout×(dn+dhid) to produce the final node embeddings:

mo
v = AGGnode({h(L,KL)

v ,h(L,KL)
u ,xu|u ∈ Nv}), (2.4)

ho
v = σ(Wnoutm

o
v).
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We denote Hn = [ho
1, · · · ,ho

p] ∈ Rdout×p as the output embeddings of Node-GNN, where

dout is the dimension of the output embeddings. Figure 2.3(a) in ?? illustrates the

process of message passing process in Node-GNN.

Edge-central Encoder. In classical graph theory, the line graph L(G) of a graph

G is the graph that encodes the adjacencies between edges of G [81]. L(G) provides

a fresh perspective to understand the original graph, i.e., the nodes are viewed as

the connections while edges are viewed as entities. Therefore, it enables to perform

message passing operation through edges to imitate Node-GNN on L(G) [1]. Namely,

given an edge (v, w), we can formulate the Edge-based GNN (Edge-GNN) as:

m(k)
vw = AGGedge({h(k−1)

vw ,h(k−1)
uv ,xu|u ∈ Nv \ w}), (2.5)

h(k)
vw = MLPedge({m(k−1)

vw ,h(0)
vw}),

where h
(0)
vw = σ(Weinevw) is the input state of Edge-GNN, Wein ∈ Rdhid×de is the input

weight matrix. In Equation (2.5), the state vector is defined on edge evw and the

neighboring edge set of evw is defined as all edges connected to the start node v

except the node w. Figure 2.3(b) shows an example of the message passing process in

Edge-GNN.

After recurring L steps of message passing, the output of Edge-GNN is the state

vectors for edges. In order to incorporate the shared-attentive readout to generate

the graph embedding, one more round of message passing on nodes is employed to

transform edge-wise embeddings to node-wise embeddings, and generate the second set

of node embeddings. Specifically, the Edge-Node transform is established by following,

mo
v = AGGedge({h(L,KL)

vw ,h(L,KL)
uv ,xu|u ∈ Nv}), (2.6)

ho
v = σ(Weoutm

o
v),
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where Weout ∈ Rdout×(dn+dhid) specifies the weight matrix. Therefore, the final output

of Edge-GNN provides a new set of node embeddings from the edge message passing

process. This set of node embeddings are denoted as He = [ho
1, · · · ,ho

p] ∈ Rdout×p.

2.4.4 Cross-Dependent Message Passing Scheme

After constructing the MVGNN framework, we notice that the information flow

is not sufficiently efficient, even though the MVGNN model has been proved to have

superior performance for many molecular property prediction tasks (as verified in the

experiments). Suppose all the information needed to predict the property resides in

the molecule itself. For MVGNN, the information flows through two distinct paths

in parallel: one path is the node-central encoder, the other one is the edge-central

encoder. The information from the two paths finally joins at the disagreement loss.

Figure 2.4: Illustration of the cross-dependent message passing scheme. Node message
passing utilizes the newest hidden states of neighboring edges, while edge message
passing uses the newest hidden states of neighboring nodes. This scheme enables more
efficient communication between the two views.
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However, the two flows of information could meet earlier, to enable more efficient

information communication. In pursuit of this point, we propose the cross-dependent

message passing scheme. On a high level, it makes the message passing operations of

the node and edge cross-dependent with each other. Specifically, we change the message

passing operations of the node and edge encoders (in (2.3) and (2.5), respectively) to

be:

m(k)
v = AGGnode({h(k−1)

v ,h(k−1)
u ,h(k−1)

vu , evu|u ∈ Nv}),

h(k)
v = MLPnode({m(k)

v ,h(0)
v }),

m(k)
vw = AGGedge({h(k−1)

vw ,h(k−1)
uv ,h(k−1)

u ,xu|u ∈ Nv \ w}),

h(k)
vw = MLPedge({m(k)

vw ,h
(0)
vw}). (2.7)

The first row indicates new node message passing, while the second row shows edge

message passing. One can see that when applying aggregation in node message passing,

we use the newest hidden states of edges (blue colored). While conducting aggregation

in edge message passing, it requires the newest hidden states of nodes. In this manner,

the two paths of information flow become cross-dependent with each other. Figure

2.4 gives an illustration of this scheme, take the node-view therein for example, the

attached edge features h
(k−1)
vu used in the current aggregation phase are obtained from

the previous step of message passing in the Edge-GNN. Similar approach is performed

for the edge-central encoder. Such circulation between the two encoders during every

message passing step ensures the information flow stays updated, which empowers

CD-MVGNN to be more efficient. We will empirically show that the cross-dependent

message passing scheme enables more expressive power compared to the basic MVGNN

architecture.
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2.4.5 Interpretable Readout

To obtain a fixed length graph representation, a readout component is usually

employed on the node embeddings. In this work, we considered two readout transfor-

mations to obtain the molecular representation. The first is the simple mean-pooling

readout, the molecular representation is given by ξn = 1
p

∑
ho
i∈Hn

ho
i .

However, the average operation tends to produce smooth outputs. Therefore,

it diminishes the expressive power. To overcome the drawbacks of mean-pooling,

we develop the interpretable shared self-attentive readout component based on the

attention mechanism [46, 82]. Specifically, given an output of node-central encoder

Hn ∈ Rdout×p, the self-attention S over nodes is:

S = softmax (W2 tanh (W1Hn)) , (2.8)

where W1 ∈ Rdattn×dout and W2 ∈ Rr×dattn are learnable matrices. In Equation (5.2),

W1 linearly transforms the node embeddings from dout-dimensional space to a hattn-

dimensional space. W2 provides r different insights of node importance, then followed

by a softmax function to normalize the importance. To enable the feature information

extracted from node and edge encoders communicating during the multi-view training

process, we share the parameters W1 and W2 between the two sub-models. Given S,

we can obtain the graph-level embedding by ξn = Flatten(SH⊤
n ). The self-attention

S implies the importance of the nodes when generating graph embedding, hence

indicating contributions of the nodes for downstream tasks, which equips CD-MVGNN

with interpretability power.

2.4.6 Disagreement Loss

Suppose the dataset contains graphs G = {Gi}Ki=1 and corresponding labels

Y = {yi}Ki=1. Given one graph Gi, due to the nature of the multi-view architecture,
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we obtain two graph embeddings ξn and ξe, from the node message passing and edge

message passing, respectively. Feeding them into the MLPs results in two predictions

γn,i and γe,i for the same target yi.

Naturally, the losses should get the supervised prediction loss involved, i.e.,

Lpred =
∑

Gi∈G(LNode-GNN(yi,γn,i) + LEdge-GNN(yi,γe,i)). The specific loss function

LNode-GNN and LEdge-GNN should depend on the task types, say, cross-entropy for

classification and mean squared error for regression.

However, with only the Lpred loss, we observed unstable behaviors of the training

process, which is caused by the loose constraint of the node and edge message passings.

To resolve this problem, we propose the disagreement loss, which is responsible for

restraining the two predictions from node-central and edge-central encoders. Specif-

ically, we employ the mean squared error Ldis =
∑

Gi∈G |γn,i − γe,i|2. Overall, the

shared self-attentive readout and the disagreement loss alleviate the node variant

dependency, and reinforce the restriction during the training process to promise the

model converge to a stationary status. Finally, the overall loss function contains two

parts: L = Lpred + λLdis, where λ is a tradeoff hyper-parameter.

2.4.7 Expressive Power of CD-MVGNN

In this section, we theoretically justify the expressive power of CD-MVGNN

under the framework of [56], which relates the expressive power of a model to its

ability of distinguishing non-isomorphic graphs. By comparing the expressive power

with the well justified architecture GIN [56], we reach the following conclusions.

Proposition 1. In terms of distinguishing non-isomorphic graphs under the framework

of [56], the following conclusions hold:
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1. The basic MVGNN model is at least as powerful as the Graph Isomorphism

Network (GIN of [56]), which provably generalizes the WL graph isomorphism

test.

2. The CD-MVGNN model is strictly more powerful than the Graph Isomorphism

Network.
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Figure 2.5: Example of the two subgraph structures.

Proof of Proposition 1. Firstly we show that MVGNN is at least as powerful as the

Graph Isomorphism Network (GIN of [56]). MVGNN involves both node message

passing and edge message passing processes, which constitutes the two-view information

flows. Suppose that one blocks the information flowing in the edge passing, say, by

setting the initial hidden states of all edges to be 0. At this moment, if one takes the

the sum aggregation in [56] as the specific realization of the aggregation operation,

then MVGNN recovers the GIN architecture. So we can conclude that MVGNN has at

least the same expressive power as GIN.

Then we prove that CD-MVGNN is strictly more powerful than GIN. In order to

illustrate this, we construct specific graph examples such that one iteration of mes-

sage passing in GIN cannot distinguish the nodes with different subgraph structures.
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However, CD-MVGNN with the cross-dependent message passing scheme is able to

discriminate the two nodes. To enable fair comparison, we assume that both GIN and

CD-MVGNN use the same aggregation function as in the GIN paper [56]. That is, we

use the sum aggregation with a parameter ϵ(l), i.e., AGG(l)({h(l,k−1)
v ,h

(l,k−1)
u , euv|u ∈

Nv}) = ((1 + ϵ(l))h
(l,k−1)
v +

∑
u∈Nv

h
(l,k−1)
u )||(

∑
u∈Nv

euv) (|| is the concatenation oper-

ation).

Assume there are two graphs G,G′ as shown in 2.5. The two nodes therein, v

and v′ have different local subgraph structures. For simplicity, let all the initial node

features, edge features and hidden states have dimensionality as 1. Specifically, for

node features and hidden states, we have hv = xv = 1, hv′ = xv′ = 1, h1 = x1 =
1
3
,

h2 = x2 = 2
3
, h3 = h4 = h5 = x3 = x4 = x5 = 1

3
. For edge features and hidden

states, one has hv1 = h1v = ev1 = 1
2
, hv2 = h2v = ev2 = 1

2
, hv′3 = h3v′ = ev′3 = 1

3
,

hv′4 = h4v′ = ev′4 =
1
3
, hv′5 = h5v′ = ev′5 =

1
3
.

Under this setup, we can run one iteration of message passing by hand. Specifi-

cally,

— For GIN, suppose its generalized version considers also the initial features.

Then the message of node v is mv = (2 + ϵ, 1), where the first dimension indicates

aggregated node hidden states, the second dimension indicates aggregated edge initial

features. The message of node v′ is mv′ = (2 + ϵ, 1) as well. Since the state update

function is injective, after the state update, the hidden states of node v and v′ will

become the same, thus indistinguishable.

— For CD-MVGNN, one complete iteration of message passing contains one edge

message passing and one node message passing. Without loss of generality, let us take

it as edge message passing followed by a node message passing.
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Consider edge message passing firstly. The edge messages for graph G are:

mv2 = (

node states sum︷︸︸︷
1/3 ,

edge states sum︷ ︸︸ ︷
1 + ϵ/2 ,

node features sum︷︸︸︷
1/3 ),

mv1 = (

node states sum︷︸︸︷
2/3 ,

edge states sum︷ ︸︸ ︷
1 + ϵ/2 ,

node features sum︷︸︸︷
2/3 ).

The two messages are different, the injective state update function will map them into

different new states, suppose w.l.o.g. the new states are hv2 = 1,hv2 = 2.

The edge messages for graph G′ are: mv′3 = mv′4 = mv′5 =

(

node states sum︷︸︸︷
2/3 ,

edge states sum︷ ︸︸ ︷
1 + ϵ/3 ,

node features sum︷︸︸︷
2/3 ). They will be mapped to the same new states,

assume they are hv′3 = hv′4 = hv′5 = 2/3.

Then consider node message passing with the newest edge hidden states.

mv = (

node states sum︷ ︸︸ ︷
2 + ϵ ,

edge states sum︷︸︸︷
3 ,

edge features sum︷︸︸︷
1 ),

mv′ = (

node states sum︷ ︸︸ ︷
2 + ϵ ,

edge states sum︷︸︸︷
2 ,

edge features sum︷︸︸︷
1 ).

Now we have different messages for nodes v and v′, so it will be mapped to

different new hidden states by the injective multi-layer perceptron (MLP). Thus the

two nodes become distinguishable under the cross-dependent message passing scheme

of CD-MVGNN.

Proposition 1 shows that CD-MVGNN model has sufficient model capacity in

terms of distinguishing graphs compared to the GIN architecture and the WL graph

isomorphism test. This observation also explains why it reaches superior performance

on various baseline tasks, which will be further verified in the experiments.

2.5 Experiments

We conduct performance evaluations of MVGNN and CD-MVGNN with various

SOTA baselines on molecular property classification and regression tasks. We also

preform ablation studies on different components of our models. Lastly, we conduct
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case studies to demonstrate the interpretability power of the proposed models. Source

code will be released soon.

2.5.1 Experimental Setup

2.5.1.1 Description of Dataset

We experimented with 11 popular benchmark datasets, among which six are

classification tasks and the others are regression tasks. Table 5.3 summaries the dataset

statistics [66], including the property category, number of tasks and evaluation metrics

of all datasets. Six datasets are used for classification, and five datasets for regression.

Noted, ToxCast contains 617 tasks, which makes it extremely time consuming to apply

N-Gram model, since N-Gram requires task-based preprocess.

Table 2.3: Datasets statstics.

Category Dataset Task # Tasks # Molecules Metric

Biophysics BACE Classification 1 1513 AUC-ROC

Physiology

BBBP Classification 1 2039 AUC-ROC
Tox21 Classification 12 7831 AUC-ROC
ToxCast Classification 617 8576 AUC-ROC
SIDER Classification 27 1427 AUC-ROC
ClinTox Classification 2 1478 AUC-ROC

Quantum
Mechanics

QM7 Regression 1 6830 MAE
QM8 Regression 12 21786 MAE

Physical
Chemistry

ESOL Regression 1 1128 RMSE
Lipophilicity Regression 1 4200 RMSE
FreeSolv Regression 1 642 RMSE

Molecular Classification Datasets. BACE dataset is collected for recording

compounds which could act as the inhibitors of human β-secretase 1 (BACE-1) in the

past few years [83]. The Blood-brain barrier penetration (BBBP) dataset contains the
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records of whether a compound carries the permeability property of penetrating the

blood-brain barrier [78]. Tox21 and ToxCast [77] datasets include multiple toxicity

labels over thousands of compounds by running high-throughput screening test on

thousands of chemicals . SIDER documents marketed drug along with its adverse

drug reactions, also known as the Side Effect Resource [84]. ClinTox dataset compares

drugs approved through FDA and drugs eliminated due to the toxicity during clinical

trials [85].

Molecular Regression Datasets. QM7 dataset is a subset of GDB-13, which

records the computed atomization energies of stable and synthetically accessible

organic molecules, such as HOMO/LUMO, atomization energy, etc. It contains

various molecular structures such as triple bonds, cycles, amide, epoxy, etc [86]. QM8

dataset contains computer-generated quantum mechanical properties, e.g., electronic

spectra and excited state energy of small molecules [79]. Both QM7 and QM8 contain

3D coordinates of the molecules along with the molecular SMILES. ESOL documents

the solubility of compounds [87]. Lipophilicity dataset is selected from ChEMBL

database, which is an important property that affects the molecular membrane

permeability and solubility. The data is obtained via octanol/water distribution

coefficient experiments [88]. FreeSolv dataset is selected from the Free Solvation

Database, which contains the hydration free energy of small molecules in water from

both experiments and alchemical free energy calculations [89].

2.5.1.2 Dataset Splitting and Experimental Setting.

We apply the scaffold splitting for all tasks on all datasets, which is more practical

and challenging than random splitting. Random splitting is a common process to

split the dataset into train, validation and test set randomly. However, it does not

simulate the real-world scenarios for evaluating molecule-related machine learning
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methods [90]. Scaffold splitting splits the molecules with distinct two-dimensional

structural frameworks into different subsets [90], e.g. molecules with benzene ring

would be split into one subset, which could be the train/validation/test set. This

means that the validation/test dataset might contain molecules with unseen structures

from the training dataset, which makes the learning much more difficult. Yet, it is

more difficult for the learning algorithm to accomplish satisfactory performance, but

from the chemistry perspective, it is more meaningful and consequential for molecular

property prediction. To alleviate the effects of randomness and over-fitting, as well

as to boost the robustness of the experiments, we apply cross-validation on all the

experiments. All of our experiments run 10 randomly-seeded 8:1:1 data splits, which

follows the same protocols of [1].

2.5.1.3 Baselines

We thoroughly evaluate the performance of our methods against popular baselines

from both machine learning and chemistry communities. Among them,

- Influence Relevance Voting (IRV) is a K-Nearest Neighbor classifier, which

assumes similar sub-structures reveal similar functionality [64].

- LogReg [91] predicts the binary label by learning the coefficient combination of

a logistic function based on the input features.

- GraphConv [34] is the vanilla graph convolutional model implementation by

updating the atom features with its neighbor atoms’ features. Compared with

GraphConv, Weave [67] model updates the atom features by constructing atom-

pair with all other atoms, then combining the atom-pair features.

- SchNet [69] and MGCN [76] explore the molecular structure by utilizing the

physical information, the 3D coordinates of each atom.
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- N-Gram [92] proposes an unsupervised method to enhance the molecular repre-

sentation learning by exploiting special attribute structure.

- AttentiveFP [71] exploits graph attention mechanism to learn molecular repre-

sentations.

- CMPNN utilizes the information from both atoms and the corresponding incom-

ing bonds.

- GIN [56] is the implementation of Graph Isomorphism Network.

- MPNN [73] and DMPNN [1] perform the message passing scheme on atoms and

bonds, respectively.

For SchNet, MGCN and AttentiveFP, we use DGL [93] implementations; for N-

Gram, CMPNN, GIN and DMPNN, we use open source codes provided by the authors;

for MPNN, we use the implementation by [1]; for others, we use the MoleculeNet

[66] implementations. IRV and LogReg are available for classification tasks only on

MoleculeNet [66].

2.5.1.4 Evaluation Metrics

All classification tasks are evaluated by AUC-ROC. For the regression tasks, we

apply MAE and RMSE to evaluate the performance on different datasets.

2.5.1.5 Two Naive Schemes Setup

To demonstrate the effectiveness of the shared self-attentive readout and the

disagreement loss in the multi-view architecture, we also implement two naive schemes.

Concat+Mean concatenates the mean-pooling outputs of the two sub-modules, and

Concat+ Attn concatenates the self-attentive outputs 3of the two sub-modules.

3We do not share the attention here.
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2.5.1.6 Hyper-parameters

We adopt Adam optimizer for model training. We use the Noam learning rate

scheduler with two linear increase warm-up epochs and exponential decay afterwards

[94].

For proposed models on each dataset, we try different hyper-parameter combina-

tions via random search, and take the hyper-parameter set with the best test score. To

remove randomness, we conduct experiments 10 times with different seeds, along with

the best-parameter set, to get the final result. The details of the hyper-parameters of

the implementation of our models are introduced in Table 2.4.

Table 2.4: Hyper-parameter Description.

Hyper-parameter Description Range

init lr initial learning rate of Adam optimizer and Noam learning rate scheduler 0.0001˜0.0004
max lr maximum learning rate of Noam learning rate scheduler 0.001˜0.004
final lr final learning rate of Noam learning rate scheduler 0.0001˜0.0004
depth number of the message passing hops (K) 2˜6

hidden size number of the hidden dimensionality of the message passing network in two encoders (dhid) 7˜19
dropout dropout rate 0.5

weight decay weight decay percentage for Adam optimizer 0.00000001˜0.000001
ffn num layers number of the MLPs 2˜4
ffn hidden size number of the hidden dimensionality in the MLP 7˜19

bond drop rate [95] random remove certain percent of edges 0˜0.6
attn hidden number of hidden dimensionality in the self-attentive readout (dattn) 32˜256
attn out number of output dimensionality in the self-attentive readout (r) 1˜8
dist coff the coefficient of the disagreement loss (λ) 0.01˜0.2

2.5.2 Performance on Classification Tasks

Table 2.5 summarizes the results of the classification tasks. To evaluate the

robustness of our method, we report the mean and standard deviation of 10 times runs

with different random seeds for MVGNN, CD-MVGNN and the other models. Table

2.5 indicates the following: (1) our MVGNN and CD-MVGNN models gain significant

4Result not presented since N-Gram requires task-based preprocessing, which cannot be finished

in reasonable days.
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Table 2.5: Performance of classification tasks on AUC-ROC (higher is better) with
the scaffold split. Best score is marked as bold, and the best baseline is marked in
gray. Green cells indicate the results of our methods.

Method BACE BBBP Tox21 ToxCast SIDER ClinTox

IRV 0.838±0.055 0.877±0.051 0.699±0.055 0.604±0.037 0.595±0.022 0.741±0.069

LogReg 0.844±0.040 0.835±0.067 0.702±0.028 0.613±0.033 0.583±0.034 0.733±0.084

GraphConv 0.854±0.011 0.877±0.036 0.772±0.041 0.650±0.025 0.593±0.035 0.845±0.051

Weave 0.791±0.008 0.837±0.065 0.741±0.044 0.678±0.024 0.543±0.034 0.823±0.023

SchNet 0.750±0.033 0.847±0.024 0.767±0.025 0.679±0.021 0.545±0.038 0.717±0.042

MGCN 0.734±0.030 0.850±0.064 0.707±0.016 0.663±0.009 0.552±0.018 0.634±0.042

N-Gram 0.876±0.035 0.912±0.013 0.769±0.027 −4 0.632±0.005 0.855±0.037

AttentiveFP 0.863±0.015 0.908±0.050 0.807±0.020 0.579±0.001 0.605±0.060 0.933±0.020

CMPNN 0.869±0.023 0.929±0.025 0.810±0.022 0.709±0.006 0.617±0.016 0.922±0.017

GIN 0.845±0.040 0.894±0.011 0.811±0.028 0.703±0.006 0.591±0.039 0.869±0.076

MPNN 0.815±0.044 0.913±0.041 0.808±0.024 0.691±0.013 0.595±0.030 0.879±0.054

DMPNN 0.852±0.053 0.919±0.030 0.826±0.023 0.718±0.011 0.632±0.023 0.897±0.040

Concat+Mean 0.842±0.004 0.930±0.002 0.816±0.003 0.721±0.001 0.621±0.007 0.882±0.008

Concat+ Attn 0.832±0.007 0.931±0.006 0.819±0.003 0.728±0.002 0.632±0.008 0.913±0.009

MVGNN 0.863±0.002 0.938±0.003 0.833±0.001 0.729±0.006 0.644±0.003 0.930±0.003

CD-MVGNN 0.892±0.011 0.933±0.006 0.836±0.006 0.744±0.005 0.639±0.012 0.945±0.017

enhancement against SOTAs on all datasets consistently, CD-MVGNN performs slightly

better than MVGNN with a 1.80% average AUC boost compared with the SOTAs on

each dataset, which is regarded as the remarkable boost, considering the challenges

on these classification benchmarks with scaffold splitting method. (2) Compared

with the SOTAs, MVGNN and CD-MVGNN has much smaller standard deviation,

which implies that our models are more robust than the baselines. (3) Compared

with the two simple variants, MVGNN and CD-MVGNN demonstrate the superiority

both on performance and robustness. It validates the effectiveness of the multi-view

architecture with self-attentive readout and disagreement loss constraints. Moreover,

Figure 2.7(a) demonstrates the improvement between our models and the best SOTA

model on the classification tasks, according to Table2.5. As observed, proposed models

are able to achieve up to 3.62% on the ToxCast dataset.
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Table 2.6: The performance comparison of regression task
on scaffold split (smaller is better). The evaluation metric
of QM7/QM8 is MAE and that of ESOL/Lipo/FreeSolv is
RMSE.

Method QM7 QM8 ESOL Lipo FreeSolv

GraphConv 118.875 ±20.219 0.021 ±0.001 1.068 ±0.050 0.712 ±0.049 2.900 ±0.135

Weave 94.688 ±2.705 0.022 ±0.001 1.158 ±0.055 0.813 ±0.042 2.398 ±0.250

SchNet 74.204±4.983 0.020±0.002 1.045±0.064 0.909±0.098 3.215±0.755

MGCN 77.623±4.734 0.022±0.002 1.266±0.147 1.113±0.041 3.349±0.097

N-Gram 125.630±1.480 0.032±0.003 1.100±0.160 0.876±0.033 2.512±0.190

AttentiveFP 126.690±4.020 0.028±0.001 0.853±0.060 0.650±0.030 2.030±0.420

CMPNN 75.875±12.360 0.015±0.002 0.838±0.14 0.625±0.027 2.060±0.505

GIN 74.388±4.543 0.430±0.001 1.009±0.065 0.690±0.074 2.620±0.840

MPNN 112.960 ±17.211 0.015 ±0.002 1.167 ±0.430 0.672 ±0.051 2.185 ±0.952

DMPNN 105.775 ±13.202 0.0143 ±0.002 0.980 ±0.258 0.653 ±0.046 2.177 ±0.914

Concat+Mean 72.532 ±2.657 0.0129 ±0.0005 0.806±0.040 0.610±0.024 2.003±0.317

Concat+ Attn 73.132±3.845 0.0128±0.0005 0.809±0.043 0.601±0.015 2.026 ±0.227

MVGNN 71.325 ±2.843 0.0127 ±0.0005 0.8049 ±0.036 0.599 ±0.016 1.840 ±0.194

CD-MVGNN 70.358 ±5.962 0.0124 ±0.001 0.779±0.026 0.553 ±0.013 1.552 ±0.123

Figure 2.6: Model param-
eters comparison.

2.5.3 Performance on Regression Tasks

Table 2.6 reports the results of MVGNN and CD-MVGNN on regression tasks over

5 benchmark datasets and 9 baseline models. As we can see, our models achieve the best

performance on the regression tasks too. 2.7(b) illustrates the relative improvement

from our model with other SOTAs. Recent graph studies on molecules generally focus

on certain areas which lack universality. For example, SchNet and MGCN perform

good on quantum mechanics datasets (QM7 and QM8) since they utilizes the distances

between atoms using the 3D coordinate information, but cannot capture sufficient

molecule-level information to generate informative molecular representations. On the

other hand, proposed models consistently achieve remarkable performance over all

datasets. Specifically, CD-MVGNN relatively improves 23.55% over other models on

the FreeSolv dataset, yet again, reveals the superiority and robustness of the multi-view

architecture. The results of Concat+Mean and Concat+ Attn on regression datasets

also prove the effectiveness of MVGNN.
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(a) Classification tasks. (b) Regression tasks.

Figure 2.7: Improvement visualization between best proposed models with the best
SOTA model on classification tasks (2.7(a)) and regression tasks (2.7(b)).

2.5.4 Ablation Studies on Key Design Choices

This section focuses on the impacts of key components in our proposed models.

2.5.4.1 Cross-dependent message passing.

Table 2.7 compares the parameter size of MVGNN and CD-MVGNN for each

dataset. As observed, CD-MVGNN demands significantly less parameters. We plot the

average number of parameters in the MVGNN and CD-MVGNN models in Figure 5.7,

these are the models with the best performance in each hyerparameter search. It

clearly indicates that CD-MVGNN, while enjoying competitive performance, needs

much less amount of parameters than MVGNN. Specifically, the average number of

parameters of MVGNN is 15.26 times of that of CD-MVGNN. This confirms that

the cross-dependent message passing scheme can significantly improve the expressive

power of the model, by enabling a more efficient information communication scheme

in the multi-view architecture.
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Table 2.7: Number of model parameters.

Dataset MVGNN CD-MVGNN

BACE 47,979,250 1,655,602

BBBP 35,727,858 1,736,002
Tox21 31,057,826 2,757,024
ToxCast 47,877,458 2,358,034
SIDER 28,710,226 2,262,054
ClinTox 12,106,114 1,812,804

QM7 17,628,514 1,029,602
QM8 5,493,314 2,418,424

ESOL 12,106,114 2,248,802
Lipophilicity 29,069,026 826,402
FreeSolv 18,266,626 2,457,602

2.5.4.2 Self-attentive readout and disagreement loss.

We report the results of three datasets with fixed train/valid/test sets to evaluate

the impacts in Table 2.8, which demonstrates the proposed multi-view models overall

performs the best on all three datasets. Moreover, we find that both attention

and disagreement loss can boost the performance compared with “No All” method.

Particularly, when the self-attention mechanism is employed, the performance has a

significant boost, which proves that the molecular property is affected by the various

atoms differently. Hence, the weights of atoms should not be considered equivalently.

Thus, the proposed MVGNN and CD-MVGNN models that adopt both disagreement

loss and self-attention outperforms the other variants, indicating that the combination

of them would significantly facilitate the model training.

2.5.5 Visualization of Interpretability Results

To illustrate the interpretability power of proposed models, we visualize certain

molecules with the learned attention weights of CD-MVGNN associated with each atom
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ToxCast SIDER ClinTox

No All 0.718 0.644 0.852
Only Attention 0.728 0.646 0.901

Only Disagreement Loss 0.722 0.648 0.863

MVGNN 0.731 0.652 0.907

CD-MVGNN 0.744 0.657 0.923

Table 2.8: Ablation study on the variants of CD-MVGNN.

within one molecule from the Clintox dataset, with toxicity as the labels. Figure 2.8

instantiates the graph structures of the molecules along with the corresponding atom

attentions. The attention values lower than 0.01 are omitted. We observe that different

atoms indeed react distinctively: 1) Most carbon (C) atoms that are responsible for

constructing the molecule topology have got zero attention value. It is because these

kinds of sub-structures usually do not affect the toxicity of a compound. 2) Beyond

that, CD-MVGNN promotes the learning of the functional groups with impression

on molecular toxicity, e.g., toxic functional group trifluoromethyl and cyanide are

known responsible for the toxicity [96], which reveal extremely high attention value

in Figure 2.8. These high attention values can be used to explain the toxicity of

the molecules. Compared with the previous models, CD-MVGNN is able to provide

reasonable interpretability results for the predictions, which is crucial for the real drug

discovery.

Furthermore, we provide a comprehensive statistics of the attention values over

the entire ClinTox dataset. Figure 2.9 demonstrates the average attention values and

the total occurrences of each element. It is notable that, 1) atoms with high frequency

do not receive high attention. For example, atom C is an essential element to maintain

the molecular topology, yet it does not have significant impact on the toxicity. 2)

atoms with low frequency but high attention values are generally heavy elements. For

32



0.03
NH

O0.01

0.01
0.01

O

0.01

Cl
0.9

F

F
F

0.03

N
N

S

O

O

NH2
0.95

F
F

F

0.01O

NH

0.46

F

F F

0.47

F

F F

O

0.01

0.02

0.49

N N

N

0.49
0.38

0.09

0.38

N

N

N

0.97

N

N

N

O

0.01 N

Figure 2.8: Visualization of attention values on ClinTox data. Attention value smaller
than 0.01 is omitted. Different color indicates different elements: black: C, blue: N,
red: O, green: Cl, yellow: S, sky-blue: F. First row: the molecules with trifluoromethyl.
Second row: the molecules with cyanide.

example, Hg (Mercury) is widely known by its toxicity. The accompanied attention

value of Hg is relevantly high because it usually affects the toxic property greatly.

Overall, the case study shows that the proposed CD-MVGNN model is able to provide

reasonable interpretability for the prediction results.
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Figure 2.9: Statistics of attentions in ClinTox. Left axis: the average attention value
of the element. Right axis: the count of the element.
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2.6 Conclusions

We propose a novel cross-dependent graph neural network (CD-MVGNN) for

molecular property prediction, which is deployed via a multi-view architecture (MVGNN).

Unlike previous attempts focusing exclusively on either atom-oriented graph structures

or bond-oriented graph structures, our method, inspired by multi-view learning, takes

both atom and bond information into consideration. Most importantly, we develop

a cross-dependent message passing scheme to allow concurrent circulation between

the two views during the training in CD-MVGNN. Such approach ensures the informa-

tion flow stay updated for each GNN aggregation step, which boost the efficiency of

generalized GNN, as well as increase the expressive power of CD-MVGNN. Extensive

experiments against SOTA models demonstrate that proposed models outperform all

baselines significantly, as well as equip with strong robustness.
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CHAPTER 3

GRADIENT-NORM BASED ATTENTIVE LOSS FOR MOLECULAR

PROPERTY PREDICTION

Many studies have addressed molecular property prediction by designing deep

learning algorithms, e.g., sequence-based models and graph-based models. However,

the underlying data distribution is rarely explored. We discover that there exist easy

samples and hard samples in the molecule datasets, and the overall distribution is

usually imbalanced. Current research mainly treats them equally during the model

training, while we believe that they shall not share the same weights since neural

network training is dominated by the majority class. Therefore, we propose to utilize a

self-attention mechanism to generate a learnable weight for each data sample according

to the associated gradient norm. The learned attention value is then embedded into

the prediction models to construct an attentive loss for network updating and back-

propagation. It is empirically demonstrated that our proposed method can consistently

boost the prediction performance for both classification and regression tasks.

3.1 Introduction

Molecular property prediction is crucial to drug discovery since it helps determine

the functions of new drugs. To date, machine learning techniques, especially deep

learning methods, have been widely and successfully used in many fields, e.g., computer

vision (CV) [8, 9, 11, 13, 97], natural language processing (NLP) [18, 37, 98], and

bioinformatics [24, 29, 43, 44]. It is natural to apply deep learning on molecular

property prediction too. Many studies have attempted to address molecular property
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prediction problem by utilizing and designing deep learning algorithms [27,73,99]. A

molecule can be represented as either a sequence string (SMILES representation), or

a graph structure. Therefore, sequence-based models used in NLP can be employed to

predict the molecular property [100,101], while graph-based models can be utilized on

the molecular graph structure [1, 35, 102,103].

The molecules naturally contain some characteristics according to their biological

structures, which leads to an inconsistency during the training of deep learning models.

In specific, the properties of some molecules are easier to predict since they may have

simpler structures or typical functional groups, while some molecules are difficult to

predict since they may contain identical sub-structures but express opposite properties.

The hard cases usually result in a bad prediction performance. Most of the commonly

used datasets for molecular property prediction generally include more easy samples

than hard samples, which brings in an imbalance problem for model training. Neural

networks cannot harmonize such easy and hard cases perfectly since most of them

adopt a batch learning method, which will be dominant by the majority class. In

order to pursue better overall performance, neural networks are trained to minimize

the comprehensive loss, which may leads to a result that easy samples are learned

better but hard samples are barely learned. Besides, the gradient updates for those

easy samples are quite little which cannot contribute much to the model training.

Similar problems have been studied in the image detection area since the target

objects are usually difficult to detect due to the majority of background contexts.

Several researches have addressed such problems by designing algorithms to balance

the loss between easy samples and hard samples [104–107]. However, the molecular

property prediction problem is more complicated. Unlike image detection where the

target objects can be easily observed by human beings, hard samples in molecule data

are impractical to recognize. Moreover, it is possible that a molecule is an easy sample
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for some properties but a hard sample for other properties, such a scenario may varies

for different models too. Therefore, we propose an attentive loss function to enable the

neural network to learn a weight for each sample according to the prediction difficulty

level.

The intuition of our method is that easy samples and hard samples should be

treated differently. Rather than simply assigning larger weights for hard samples and

smaller weights for easy samples, a feasible algorithm should be designed. The reason

is that it is not always good to enforce the network to learn hard samples, sometimes

those may be outliers or extremely complicated molecules. Thus, we first calculate the

relative gradient norm for each data sample to represent the prediction difficulty level,

then employ a self-attention mechanism to allow the network to learn a proper weight

for each sample. The learned attention values are then embedded with the prediction

loss for model updating and back-propagation. The contribution of the proposed

method can be summarized as: 1) to the best of our knowledge, we are the first to

propose a learnable weighted loss to tackle the easy-hard sample imbalance problem; 2)

extensive experiments on molecular property prediction tasks demonstrate that models

with proposed attentive loss promote the prediction performance consistently; 3) our

method is not limited to the prediction tasks or the format of input data. It can be

easily embedded into any supervised models with any input data, e.g., sequence-based

protein structure prediction, image-based medical image classification.

3.2 Related Work

3.2.1 Molecule Encoder Models for Property Prediction

One crucial part of addressing the molecular property prediction problem is

to get an accurate vector representation of the molecule. Since the molecules can
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Figure 3.1: Overview of the model framework. The molecules are fed into the graph-
based encoder module to generate vector representations. The vector representations
are then used in the prediction module to predict the property labels. Next, the
gradient norms are calculated by the predictions and the ground truth property labels,
and then go through a self-attention mechanism to generate the attention values for
the molecules. Last, the attentions are embedded into the prediction loss for model
updating and back-propagation.

be represented as SMILES sequences or graphs, the encoder models can be either

sequence-based models or graph-based models. Sequence-based models spot the

potentially useful information of the molecular SMILES sequence data by adequately

training them using Recurrent Neural Networks (RNNs), in order to obtain the vector

representation of the molecule [39,100,101]. Graph-based techniques are used to utilize

the graph structure of a molecule, and Graph Neural Networks (GNNs) are employed

to generate the molecular representation by embedding the graph features into a

continuous vector [1,56,73,102,103,108]. Graph Isomorphism Network (GIN) [56] and

Graph Attention Network (GAT) [108] are two representative work. In this paper, we

take the graph-based models as the backbone models to verify the effectiveness of our

method.
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3.2.2 Loss Function Regarding Class Imbalance

Several studies have attempted to harmonize the imbalanced data distribution

problem. Focal loss discovers the positive-negative sample imbalance problem in the

image detection area [104]. The background negative samples are much more than

the positive target samples, thus the regular dense sampling method overwhelms the

model training. They propose to reshape the standard cross-entropy loss to assign

smaller weights for those well-classified samples. Later, [106] points out the easy-hard

sample imbalance problem for detection. They summarize the disharmonies with

regards to the distribution of the gradient norm and design a gradient harmonizing

mechanism (GHM) to modify the gradients by reformulating the loss function.

3.3 Methodology

The implementation of our proposed method is introduced in this section. The

overview of the entire model framework is illustrated in Fig. 3.1.

3.3.1 Molecular Property Prediction Model

3.3.1.1 Problem Definition

The molecular property prediction problem is a prediction task that includes

classification and regression problem. Given a molecule M, it contains property y,

where y ∈ {0, 1} for classification problem and y ∈ R for regression problem. The

commonly used representation of molecule M refers to either a sequence or a graph.

For sequence-based input, M is represented by SMILES, and language models are

applied to convert the SMILES string to For graph-based input, the graph structure

of M is usually extracted by RDKit [80]. Then GNN-based models are employed

to learn the vector representation hg ∈ Rdg according to the graph features, where
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dg is the dimension of graph-based features. In our experiments, we take the graph

structure of M as the input and take GIN [56] and GAT [108] as the backbone models

to conduct extensive experiments.

3.3.1.2 Graph-based Encoder Module

Molecule M can be naturally represented as a graph G = (V , E), where |V| = p

refers to the set of p atoms and |E| = q refers to a set of q bonds within the molecule.

The features of atom v is referred as av ∈ Rda , and the features of bond (v, u) is

referred as bvu ∈ Rdb , where Rda and Rdb represent the feature dimension of atom and

bond respectively. N (v) denotes the neighbor atoms of atom v, which is identified by

the bonds between atoms.

Most of the commonly used GNN-based models follow a procedure of message

passing and state update. In specific, the state of the target node v at layer/iteration

l (l = 0, 1, . . . , L) is updated by aggregating the information of its neighborhood hu

(u ∈ N (v)), then combined with the state of itself hv. After L layer/iteration, the

states of all the nodes are captured to generate a vector representation hG through a

readout mechanism. The process can be formulated as:

h
(l)
N (v) = AGGREGATE l

({
h(l−1)
u , ∀u ∈ N (v)

})
, (3.1)

h(l)
v = σ

(
W (l) · CONCAT

(
h(l−1)
v ,h

(l)
N (v)

))
, (3.2)

hG = READOUT({h(L)
v | v ∈ V}), (3.3)

where W (l) is the weight matrix, and σ is the activation function. The readout

mechanism can be operations like summation or mean.

In this paper, we use two commonly used variants of graph-based models, GIN

and GAT, as the backbone models to confirm the effectiveness of proposed method.
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GIN is theoretically proved as one of the most powerful GNN models. It utilizes

multi-layer perceptron (MLP) for state update, as well as employ a concatenate

operation over all layers/iterations during the readout phase. The updated rule in

Equation 3.2 and 3.3 can be summarized as:

h(l)
v = MLP(l)

(
1 + ϵ(l)

)
· h(l−1)

v +
∑

u∈N (v)

h(l−1)
u

 , (3.4)

hG = CONCAT
(
READOUT

({
h(l)
v | v ∈ V

}))
, (3.5)

where l = 0, 1, . . . , L, and ϵ is a fixed scalar or a learnable parameter.

GAT employs an attention mechanism over the neighbors of target node, thus

each neighbor node gets an associated weight, e.g., more important nodes receive

higher weight values. Rather than treating every neighborhood equally, GAT considers

the learned attention avu along with every neighborhood during the aggregation part.

Therefore, Equation 3.2 can be updated with

h(l)
v = σ

 ∑
u∈N(v)

avuW
(l−1)h(l−1)

u

 , (3.6)

avu = exp

 σ
(
αT [Whv∥Whu]

))∑
k∈N(v) α

T [Whv∥Whk]
) , (3.7)

where α is a weight vector parameter for the attention mechanism, and (·)T denotes

the transposition and ∥ represents the concatenation operation.

3.3.1.3 Prediction Module

After going through the graph encoder module, a graph representation hG is

obtained and fed into the following inference module for property prediction. The
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prediction module can be simply one or several fully connected (FC) layers or MLP.

Here we follow the same protocol used in [102], which is one FC layer:

ŷ = FC(hG). (3.8)

ŷ is the output of the prediction module, which refers to the predicted probability for

the classification tasks and the actual predicted property value for the regression tasks.

Furthermore, we defined the supervised loss L(y, ŷ) as Lcls and Lreg for classification

and regression tasks respectively. In this paper, we used Binary Cross Entropy (BCE)

loss to update the network for classification tasks:

Lcls = −W [y · log ŷ + (1− y) · log (1− ŷ)] , (3.9)

where W is the weight matrix. And Mean Squared Error (MSE) loss is applied for

regression tasks:

Lreg = (ŷ − y)2 (3.10)

3.3.2 Gradient Norm

The gradient norm g we used here is not calculated strictly following the common

definition of the gradient norm during the network update. It is a relative norm of the

input sample’s gradient, which reflects if the sample is easy or hard to predict. The

term of gradient norm g is used for convenience. Specifically, we measure the distance

between the prediction and the ground truth label, and scale the value to (0,1). A

similar protocol is also established in [106]. The gradient norm for classification tasks

is defined as:

gc = |ŷ − y| =

 1− ŷ if y = 1,

ŷ if y = 0.
(3.11)
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Since ŷ in Equation 3.11 represents the predicted probability which is obtained by

performing a sigmoid operation on the direct logits output from the prediction network,

gc is capable of indicating how well the sample is predicted. Moreover, we simplified

the gradient norm for regression tasks as shown in Equation 3.12, and the value is

scaled to (0,1) for better visualization.

gr = (sigmoid |ŷ − y| − 0.5)× 2. (3.12)

3.3.3 Attentive Loss

The gradient-norm based attentive loss (LGNBA) is calculated based on the

gradient value g. Specifically, a self-attention mechanism is applied on the calculated

g during training [82], thus the attention value is learned and updated during the

model training by:

attn = softmax (W2 tanh (W1g)) , (3.13)

where g defers to gc for classification and gr for regression, W1 ∈ Rdattn×1 and W2 ∈

R1×dattn are learnable matrices, dattn is the hidden dimension in the self-attention

mechanism. W1 linearly transforms the gradient norm g to a hattn-dimensional space,

while W2 provides the insights of sample importance, then a softmax function is

followed to normalize the importance. Thus, LGNBA is designed by embedding the

attention value attn into the prediction loss for each sample. Suppose the dataset

contains molecules M = {Mi}Ki=1,

LGNBA =


∑

Mi∈M Lcls · attn if classification,∑
Mi∈M Lreg · attn if regression.

(3.14)
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3.4 Experiments and Results

In this section, we describe the implementation of extensive experiments in

detail.

Table 3.1: The experiment results on classification and regression datasets respectively.
The better score for each method pair is marked as bold. Bbbp and bace are
used for classification tasks, and the evaluation score is ROC-AUC, higher is better.
Lipophilicity and esol are used for regression tasks, and the evaluation score is RMSE,
lower is better.

Classification Regression

Method

Dataset
Bbbp Bace Lipophilicity Esol

GIN 0.920 ±0.011 0.898 ±0.003 0.669 ±0.010 1.074 ±0.112

GIN + attn 0.937 ±0.002 0.911 ±0.001 0.591 ±0.010 0.956 ±0.027

GAT 0.928 ±0.001 0.905 ±0.003 0.558 ±0.043 0.958 ±0.017

GAT + attn 0.938 ±0.003 0.912 ±0.0003 0.527 ±0.005 0.891 ±0.014

3.4.1 Experimental Settings

3.4.1.1 Implementation

Our method is implemented on top of the code from [102], which includes the

construction of backbone models GIN and GAT. Our experiments are conducted in a

pair-wise manner. In specific, we first conduct experiments utilizing GIN and GAT on

various datasets, and then we add proposed attentive loss to each model to compare

the performance difference.

3.4.1.2 Dataset Split

The dataset is split randomly into train/validation/test with a ratio of 8:1:1,

and we ensure the data splits are exactly the same for each pair-wise experiment. All

the experiments are run 3 times to alleviate the randomness as well as demonstrate
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the robustness. We take the average and standard deviation of the evaluation scores

as the final results.

3.4.2 Dataset Description and Evaluation

We have conducted extensive experiments for both classification tasks and

regression tasks. Bbbp and bace are classification datasets, while lipophilicity and

esol are regression datasets.

3.4.2.1 Datasets

bbbp is the Blood-brain barrier penetration dataset [78]. The bace dataset is a

documentation that records the compounds which may act as the inhibitors of human

β-secretase 1 (BACE-1) [83]. The lipophilicity dataset is selected from ChEMBL

database, which is an important property that influences the molecular membrane

permeability and solubility [88]. Esol stands for Estimated Solubility, it includes the

aqueous solubility information of compounds [87].

3.4.2.2 Evaluation Metrics

In this paper, we use area under the receiver operating characteristic curve

(ROC-AUC) as the evaluation criteria for all classification tasks, and root mean square

error (RMSE) for all regression tasks.

3.4.2.3 Baselines

The experiments are conducted in a pair-wise manner to verify the effectiveness

of the proposed method. Specifically, the baseline model is considered as running with

GIN or GAT directly, and our method is implemented by adding the attentive loss to

the baseline models. Consequently, as shown in Table 3.1, GIN and GAT denote
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the baseline models, while GIN + attn and GAT + attn represent the proposed

method. All the models are run on the four datasets accordingly. Moreover, we keep

all the hyper-parameters exactly the same to prove the effectiveness of our method,

except for the self-attention mechanism.

Figure 3.2: An illustration of relative gradient norm distribution between GIN and
GIN equipped with attentive loss on bbbp dataset. x-axis represents the values of the
gradient norm, and y-axis represents the fraction of the data samples.

3.4.3 Experimental Results

3.4.3.1 Visualization of Gradient Norm Distribution

Based on our assumption, the gradient norm distribution of input dataset should

be changed after applying proposed attentive loss. Thus, we first plot the histogram

of the data according to the gradient norm after training. Fig. 3.2 demonstrates

the distribution of the gradient norm on bbbp dataset. The figure on the left shows

the distribution of employing GIN only, while the figure on the right denotes GIN

equipped with the self-attention mechanism. As observed, the distribution has changed
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as expected. For the baseline method, there exists many easy samples with quite small

gradients, thus the model training benefits little from them. In the mean time, we

observed from our method that the distribution indeed trends to balance the samples

by increasing the gradient for those easy samples, which promotes the model to train

better.

3.4.3.2 Comparison Results

Extensive experiments are conducted on both classification and regression

datasets using GIN and GAT as the backbone models. The results are shown in

Table 3.1 in a pair-wise manner. We can see that models with proposed attentive loss

outperform all the baseline models. The improvement can be up to 1.89% for the

classification tasks, and 11.78% for regression tasks. Since our proposed method can

be considered as an add-on unit for any prediction model, the influence, in theory,

should not be that significant. The self-attention mechanism is able to improve the

prediction performance by introducing different weights for each sample according to

the prediction difficulty level, while at the same time, not changing the underlying

neural network algorithms.

3.4.3.3 Attention Values Visualization

In order to further verify our hypothesis that the network is able to learn the

attentions according to the prediction difficulty and may varies from different datasets,

we plot the learned attentions along with the gradient norm to check the overall trend

between them. Fig. 3.3 demonstrates the gradient norms and the attention values

for each dataset, which is generated on the training dataset from the training epoch

with the best validation score, with the backbone model of GIN. Since the attention is

learned per batch during model training, the value is relatively small compared with
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the gradient norm. We have applied max-min normalization to scale the attention

value to (0,1) for better visualization. The figure is plot by sorting the gradient norms

in an ascending order along with the corresponding attention values. As observed,

there empirically exists certain relations between the gradient norm and the learned

attention. Moreover, it varies for different datasets as expected. For dataset bace,

with the increase of gradient norm, the attention is decreased; while for other datasets,

both of them follow the same trend. Such observations confirm that the weights

associated with each sample shall not be simply defined, it will be related to the data

distribution, as well as the prediction difficulty level. For some datasets, paying more

attention on the hard samples may help increase the overall prediction performance.

However, for some other datasets, those extremely hard samples may be outliers so

learning more from them may result in a worse performance for other samples. In

consequence, a learnable weight should be adjusted for training. Our proposed method

pushes the network to learn how to deal with these samples, and assign an attention

value to indicate the importance of each sample. It is empirically demonstrated that

our method can boost the training of any backbone models.

3.5 Conclusion

We propose a gradient-norm based attentive loss for molecular property pre-

diction, which is deployed via a self-attention mechanism. Rather than developing

training algorithms to improve the prediction performance, we dive into the data level

to explore the relationship between each data sample, which brings in a novel per-

spective to address molecular property prediction in the field. Extensive experiments

have confirmed the effectiveness of proposed method. Our attentive loss can also be

embedded into any supervised learning models since it only depends on the relative

gradient norm. Moreover, the attentive loss is fully data-driven, which means all you

48



need is to equip it with your existing models and the network will do the rest. Our

proposed method is the first step towards a data-driven weight learning mechanism

to address easy-hard sample imbalance problem in molecular property prediction.

Notwithstanding, there still remains unexplored perspectives in such direction, which

are our future work. For example, we may perform a case-by-case analysis on the

test dataset to see how the predictions change with the learnable weights, or conduct

experiments on more datasets to get a comprehensive study across different molecular

properties.
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(a) Bbbp.

(b) Bace.

(c) Lipophilicity.

(d) Esol.

Figure 3.3: Visualization of the gradient norms and the scaled attention values for each
training dataset with GIN as the backbone model. x-axis denotes each training sample,
and y-axis denotes the value of the sample’s relative gradient norm and attention.
The data is sorted in an ascending order based on the values of relative gradient norm,
and the attention values are plotted accordingly.
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CHAPTER 4

ROBUST SELF-TRAINING STRATEGY FOR VARIOUS MOLECULAR

BIOLOGY PREDICTION TASKS

As discussed before, molecular biology prediction tasks suffer the limited labeled

data problem since it normally demands a series of professional experiments to label

the target molecule. Self-training is one of the semi-supervised learning paradigms

that utilizes both labeled and unlabeled data. It trains a teacher model on labeled

data, and uses it to generate pseudo labels for unlabeled data. The labeled and

pseudo-labeled data are then combined to train a student model. However, the pseudo

labels generated from the teacher model are not sufficiently accurate. Thus, we

propose a robust self-training strategy by exploring robust loss function to handle

such noisy labels, which is model and task agnostic, and can be easily embedded

with any prediction tasks. We have conducted molecular biology prediction tasks

to gradually evaluate the performance of the proposed robust self-training strategy.

The results demonstrate that the proposed method consistently boosts the prediction

performance.

4.1 Introduction

Molecular biology prediction is one crucial and fundamental task for bioinformat-

ics areas such as drug discovery [3,45,109]. It includes various molecule-relevant tasks,

such as molecular property prediction and protein secondary or tertiary structure

prediction. With the development of deep learning techniques, more and more research

tackle these tasks with various deep learning models [1, 24, 27, 40, 56, 66, 101, 110]. The
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prediction task is well-known as a supervised problem, which takes the labeled data as

input and employs computational models to predict the corresponding labels. Many

existing studies target at such problems in this manner [34,41,44,73,111]. However,

one of the ongoing problems in molecular biology is that labeled data is limited and

also difficult to obtain. It usually requires a series of professional experiments, which

is time-consuming and costly. Therefore, more paradigms have been developed to

utilize unlabeled data to help promote supervised learning, such as semi-supervised

learning [99, 102,112]. Within this field, a simple yet effective paradigm that exploits

both unlabeled and labeled data, called self-training, is rarely explored for molecular

biology prediction tasks.

In general, self-training is established in four steps: 1) a teacher model is trained

on labeled data; 2) the trained teacher model is employed to generate pseudo labels for

unlabeled data; 3) the labeled data and the pseudo-labeled data are combined to train

a student model; 4) the student model then becomes the teacher model to repeat steps

2-3 until the training is converged. In this fashion, more data is included in the training

process, and the student model is able to inherit from the teacher. This paradigm is

easy to implement and powerful to boost the training process. Self-training has been

widely used in other areas and obtained promising performance, e.g., Computer Vision

(CV) [113–115], and Nature Language Processing (NLP) [116–118]. One primary

reason is that not only the unlabeled data is enormous, the size of labeled data is also

quite large, so are the training models. Thus, the teacher model can sufficiently learn

from the labeled data, and achieve favorable performance. Then the student is able to

learn better. However, for most molecular biology prediction tasks, the size of the

labeled dataset is only a few thousands, and the corresponding prediction performance

is not as high as image classification whose accuracy may achieve 95%. Such scenarios

lead to a problem: the generated pseudo labels may not be accurate. Such noisy labels
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may further bias student learning. Therefore, how to handle the label noise is the

major concern when establishing self-training strategy in molecular biology area.

One straightforward way to encourage the model to learn from the noisy labels,

is to design a loss with regularization to leverage the neural network learning. Mean

absolute error (MAE) and cross-entropy (CE) loss are two commonly used loss functions

in prediction tasks, where the former is utilized in regression tasks and the latter is

used for classification. MAE has been theoretically proved to be robust to label noise

during the training, while the CE is not [119]. Recently, robust loss functions have

been studied to tackle the noisy label problem in classification tasks by generalizing

MAE and CE, and have achieved impressive performance when solving the image

classification problem [119–122].

In this paper, we propose to integrate robust loss function and self-training to

form a robust self-training framework for molecular biology prediction tasks. Extensive

experiments have been conducted over molecular regression and classification tasks

to gradually evaluate the effectiveness of proposed robust self-training strategy. Our

contributions can be summarized as 1) we are the first to propose a robust self-training

paradigm that utilizes robust loss to constrain the student training; 2) the proposed

framework is straightforward, and easy to fit into any prediction tasks, which is a

simple yet practical strategy to promote the molecular biology prediction tasks; 3)

extensive experiments on molecular biology prediction tasks demonstrate that self-

training can improve the prediction performance by involving more unlabeled data,

and the robust loss can further boost the performance by leveraging the label noise.
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Figure 4.1: A overview illustration of the robust self-training architecture. More
details are described in Section 5.2.

4.2 Methods

4.2.1 Problem Definition

Molecular biology prediction problems can be further referred to as regression

problems or classification problems. Given a molecule M, the label needs to be pre-

dicted is denoted as y, where y ∈ R for a regression problem, and y ∈ {0, 1, . . ., K − 1}

for a K-class classification problem. The input molecule M, can be any format

according to the task specifics, e.g., protein sequence for protein secondary structure

prediction, or molecular graph structure for molecular property prediction. In this

study, we conduct two types of experiments to gradually demonstrate the effectiveness

of proposed robust self-training strategy: molecular property regression, and molecular

property classification.

4.2.2 Robust Self-training Overview

Our proposed robust self-training strategy is implemented on top of the self-

training framework. Figure 4.1 illustrates the overall architecture, which can be viewed

as two parts, train teacher and train student. First of all, a teacher model is trained
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on the labeled dataset Dl, and a trained teacher model T is obtained. After that, the

student training process begins. It starts with generating the pseudo labels for the

unlabeled dataset Du to construct a pseudo-labeled dataset Dp. Then the student

model is initialized with the teacher model, and trained on shuffled Dl + Dp. After

training for several epochs, we consider that as one iteration, the best model during

i-th iteration is selected as the best student model Si, then regard it as the new teacher

model to repeat the previous steps. This process is repeated for i iterations until the

student model is converged.

4.2.3 Molecular Biology Prediction Tasks

Molecular biology prediction task can be considered as two parts in the view of

deep learning, which are molecular encoder model and prediction model. Molecular

encoder model generates a vector that represents the input molecule, and the prediction

model takes the vector to make a prediction. The input molecule can be represented as

any format, e.g., sequence or graph structure. We take molecular property regression

and classification tasks as examples to evaluate the performance of our proposed

strategy. It is noteworthy that any prediction tasks can be adapted with proposed

robust self-training since our method generates pseudo labels by training teacher model

from the labeled data, such as protein secondary and tertiary structure prediction

[27,123].

In our experiments, we utilize the molecular graph structure and employ two

representative graph-based models, EGNN [124] and GIN [56], as the backbone models

to predict molecular regression and classification properties. We give a universal

definition here for the graph-based encoder and the prediction model.

Molecule M can be naturally represented as a graph G = (V , E), where |V| = p

refers to the set of p atoms and |E| = q refers to a set of q bonds in the molecule. The
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features of atom v is referred as av ∈ Rda , and the features of bond (v, u) is referred

as bvu ∈ Rdb , where Rda and Rdb represent the feature dimension of atom and bond

respectively. N (v) represents the neighbor atoms of atom v, which is identified by the

connected bonds. GNN-based models generally perform a message passing and state

update protocol for updating atom/bond features. Then, the states of all the atoms

are captured to generate a vector representation hG through a readout mechanism.

After going through the graph encoder model, the graph representation hG is

then fed into the prediction model to make a prediction of the property. The prediction

model is generally a simple neural network such as multi-layer perceptron (MLP):

ŷ = MLP (hG), where ŷ is the output of the prediction model, which refers to the

predicted probability for the classification tasks or the actual predicted property value

for the regression tasks.

Next, each backbone model is introduced along with the employed robust loss

respectively.

4.2.3.1 Regression task

As we have mentioned earlier, MAE has been proved to be robust for label noise.

Therefore, we first conduct experiments on molecular regression tasks with MAE as

the loss function. EGNN [124] is one most recent work to address such problems.

Other than the commonly used message passing process based on the graph structure

and features, EGNN further explores the geometric information by considering the

atom coordinates xd =
{
xd
0, . . . ,x

d
p−1

}
. The message update for layer d is defined as:

md
vu = ϕe

(
hd
v,h

d
u,
∥∥xd

v − xd
u

∥∥2
, evu

)
, (4.1)

xd+1
v = xd

v + C
∑
u̸=v

(
xd
v − xd

u

)
ϕx

(
md

vu

)
, (4.2)
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Table 4.1: Mean Absolute Error (MAE) for each molecular property regression
benchmark on QM9 dataset. Lower is better, best score is marked in bold, and green
color indicates our proposed method. The last two rows illustrate the improvement
percentage by our method compared with others. Avg demonstrates the average score
over the row, which denotes the MAE average for all 12 tasks for the first three rows,
and the average improvement for the last two rows. Details about each property can
be found in [2].

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE Avg

Unit bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

EGNN-labeled 0.118 0.070 0.044 0.041 0.057 0.044 0.020 0.021 0.151 0.020 0.019 2.111 0.226
EGNN-self-training (Ours) 0.067 0.048 0.028 0.025 0.028 0.031 0.010 0.010 0.083 0.011 0.010 1.521 0.156
EGNN-all 0.071 0.048 0.029 0.025 0.029 0.031 0.012 0.012 0.106 0.012 0.011 1.55 0.161

Ours v.s. EGNN-labeled ↑ +43.2% +31.6% +36.1% +38.4% +50.6% +30.0% +50.7% +52.8% +45.2% +43.6% +49.2% +28.0% +41.5%
Ours v.s. EGNN-all ↑ +5.6% 0.00% +3.5% +0.00% +3.5% +0.00% +16.7% +16.7% +21.7% +8.3% +9.1% +1.9% +7.2%

hd+1
N (v) = AGGREGATE

({
md

vu,∀u ∈ N (v)
})

, (4.3)

where xd
v and xd

u are the coordinates of atom v and its neighbor atom u at d-th step,

vu represents the bond between them, evu denotes the bond features, ϕe and ϕx are

two output operations, and C equals 1/(p− 1).

MAE is used as the robust loss function to constrain the network training with

regards to noisy labels, which is defined as:

LMAE =
1

M

M∑
i=1

|yi − ŷi| , (4.4)

where M is the size of the dataset.

4.2.3.2 Classification task

Classification tasks are dominating for molecular biology prediction problems

as well. We then conduct experiments over molecular property classification tasks

to evaluate the effectiveness of the self-training paradigm. However, the commonly

used cross-entropy (CE) loss is not robust, so we employ the generalized cross-entropy

(GCE) loss [120] to boost the self-training. The backbone model utilized for this task

is GIN [56]. GIN is theoretically proved as one of the most powerful GNN models. It
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utilizes multi-layer perceptron (MLP) for state update, and employs a concatenate

operation over all passing steps during the readout phase. The updated rule can be

summarized as:

hd+1
v = MLPd+1

(
1 + ϵd+1

)
· hd

v +
∑

u∈N (v)

hd
u

 , (4.5)

hG = CONCAT
(
READOUT

({
hd+1
v | v ∈ V

}))
, (4.6)

where ϵ is a fixed scalar or a learnable parameter.

GCE loss is a generalized version of CE and MAE. The CE loss is defined by:

LCE = −
K∑
k=1

yk log ŷk, (4.7)

for a K-class classification problem (K=2 for binary classification), where yk is the

one-hot encoding label, and ŷk denotes the probability output from the prediction

network. Allow fk(x) = ŷk, GCE loss is designed by:

LGCE =
(1− fk(x)

q)

q
, where q ∈ (0, 1]. (4.8)

GCE loss is reduced to CE loss and MAE loss when q → 0 and q = 1, respectively.

Detailed proofs can be found in [120].

4.3 Experiments

Extensive experiments are conducted gradually to evaluate the performance

of proposed robust self-training strategy. Since MAE is theoretically proved to be

robust to label noise, we first implement self-training on molecular regression task,

and utilize MAE loss as the robust loss function to demonstrate the superiority of

proposed method. Then we explore GCE loss on the molecular classification task to

further confirm the effectiveness of integrating robust loss function with self-training.
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4.3.1 Datasets Description and Setup

QM9 [2] is a standard benchmark for molecular property regression problem.

It is a subset of GDB-17 database [125], which contains 134k molecules. It com-

prehensively provides 12 quantum chemical properties for each molecule, including

geometric, energetic, electronic, thermodynamic, etc. HIV is introduced by the Drug

Therapeutics Program (DTP) AIDS Antiviral Screen. It contains the test result of

41,127 molecule compounds with the ability for inhibiting HIV replication. The widely

used version provided by MoleculeNet contains inactive labels and activa labels, which

makes it a binary classification task [66].

For all tasks, we randomly select 50% of the data as the unlabeled dataset,

and the rest is used as the the labeled dataset with a 3:1:1 training/validation/test

ratio. We do not use an external unlabeled dataset here since most molecules may

not express target property at all, which may lead to a biased comparison.

4.3.2 Experimental Details

4.3.2.1 Baselines

For all the experiments, we consider training solely on the labeled datasets as

the fundamental baselines, which is denoted as ”-labeled”. Then, we establish our

vanilla implementation by running experiments with self-training paradigm on both

labeled dataset and unlabeled dataset, denoted as ”-self-training”. Last, we integrate

robust loss with our vanilla self-training benchmark to demonstrate the superiority of

our robust self-training, denoted as ”-robust”. Since the unlabeled dataset is formed

by randomly selecting 50% from the original labeled dataset, we also compare the

performance when using the original backbone model without self-training on all the

data with labels, denoted as ”-all”.
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4.3.2.2 Configurations

We follow the original implementation and settings of the backbone models,

and implement robust self-training on top of them. All the hyper-parameters of the

backbone models remain the same to ensure a fair comparison. For the settings of

robust self-training, we perform three iterations for the student training, and tune

the hyper-parameter q when employing GCE loss. For molecular classification task,

we run the experiments three times to alleviate the randomness since HIV dataset

is much smaller than other datasets, leading to relatively unstable performance. We

take the average and standard deviation of the evaluation scores as the final results.

For molecular regression task, we follow the original configurations and evaluations to

run the experiments one time. The results do not vary much since the training data

is sufficiently large and the converged stage is stable.

4.3.2.3 Training strategy

We follow the same procedure for all three tasks. First, we train a teacher model

on the labeled data, and use it to generate pseudo labels for the unlabeled dataset.

Next, for the vanilla self-training, we train the student model which takes the teacher

model as the initialization on the combined labeled and pseudo-labeled dataset. Note

that the pseudo-labeled dataset is only merged into the training dataset along with

the labeled training dataset. The validation and test datasets remain the same from

the teacher model training. Furthermore, we choose the best student model in the

current iteration as the new teacher model to generate a new pseudo-labeled dataset

and initialize the student model for the next iteration. We run the student training

for three iterations, and take the best validation model to evaluate the test dataset
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performance. For robust self-training, the procedure is the same as vanilla self-training,

except robust loss function is employed.

4.3.3 Experimental Results

Our first experiment is to employ the self-training paradigm directly on molecular

regression tasks, since MAE is theoretically robust to noisy labels. The comparison

results for each property are shown in Table 4.1. As we can observe, the performance

of the self-training strategy outperforms EGNN-label consistently by a 41.5% average

improvement. Moreover, the performance is competitive against the supervised training

on the all-labeled dataset. Our implementation achieves the best performance on

9/12 tasks compared with the original EGNN-all on all 134k labeled data, which

gains the average MAE boost by 7.2%. The experiments on regression tasks with

MAE sufficiently demonstrate that robust loss function is a perfect fit for self-training

strategy by dealing with the generated pseudo labels.

Table 4.2: ROC-AUC score for molecular property classification benchmark on HIV
dataset. Higher is better, best score is marked in bold, and green color indicates our
proposed method.

GIN-labeled GIN-self-training GIN-robust GIN-all

HIV 0.786±0.008 0.798±0.005 0.822±0.005 0.820±0.015

We then conduct experiments on the HIV dataset to evaluate how robust self-

training performs on classification task. As shown in Table 4.2, the improvement of

directly implementing self-training is limited, which is reasonable since CE loss is

not theoretically robust [119]. Therefore, we explore robust loss function GCE and

integrate it with self-training to form the robust self-training paradigm, which further

boosting the ROC-AUC to 0.822. Moreover, our method is competitive with the
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original GIN implementation on the all-labeled dataset with a 0.002 improvement.

Note that in our self-training experiments, 50% of the dataset is treated as unlabeled,

while GIN-all is trained on 100% labeled dataset.

Extensive experiments empirically demonstrate that our proposed robust self-

training strategy is capable of efficiently exploring both labeled and unlabeled data as

well as handling the noisy pseudo labels. Moreover, we roughly conduct experiments

on protein secondary structure prediction task by adopting GCE loss, and has achieved

promising results, which further proves the effectiveness of our proposed strategy. Next,

we will explore more details regarding the robust loss type with different prediction

tasks.

4.4 Conclusion

In this study, we propose a robust self-training paradigm for various molecular

biology prediction tasks by exploring robust loss function to constrain the self-training

process. We first train a teacher model on labeled dataset, then use the teacher model

to generate pseudo labels for the unlabeled dataset. Next, the student model is trained

on the combination of the labeled dataset and the pseudo-labeled dataset. This process

is iterated by regarding the student as the new teacher and re-generating the pseudo-

labeled dataset until the training is eventually converged. Since the pseudo labels

are not the ground-truth labels which means noises exist, we then utilize robust loss

function to restrain the student training. Extensive experiments have demonstrated

that self-training accompanied with robust loss can boost the prediction performance

by taking advantage of both labeled and unlabeled data. Moreover, our proposed

robust self-training is model and task agnostic, which can be easily inserted into any

molecular biology prediction tasks, and benefits the general computational molecular

biology society.
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CHAPTER 5

DEEP GRAPH LEARNING WITH PROPERTY AUGMENTATION

FOR PREDICTING DRUG-INDUCED LIVER INJURY

This chapter addresses one real-world limited data application, Drug-induced

liver injury (DILI) prediction. DILI prediction is one of the most challenging and

critical tasks in drug discovery since DILI is toxic for human beings. DILI is a crucial

factor in determining the qualification of potential drugs. However, the DILI property

is excessively difficult to obtain due to the complex testing process. Consequently,

an in silico screening in the early stage of drug discovery would help to reduce the

total development cost by filtering those drug candidates with high risk to cause DILI.

To serve the screening goal, we apply several computational techniques to predict

DILI property, including traditional machine learning methods and graph-based deep

learning techniques. While deep learning models require large training data to tune

huge model parameters, the DILI dataset only contains a few hundreds of annotated

molecules. To alleviate the data scarcity problem, we propose a property augmentation

strategy to include massive training data with other property information. Extensive

experiments demonstrate that our proposed method significantly outperforms all

existing baselines on DILI dataset by obtaining a 81.4% accuracy using cross-validation

with random splitting, 78.7% using leave-one-out cross-validation, and 76.5% using

cross-validation with scaffold splitting.
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5.1 Introduction

Drug discovery has been a critical research area for years. The development

process of new drugs is extremely time consuming and resource costly since it usually

requires a series of complicated in vitro and in vivo experiments [3, 126, 127]. One

major challenge is to identify the safety of the potential drug candidates, e.g. filtering

the drugs that may cause human toxicity. Drug-induced liver injury (DILI) is one

of the most fundamental toxicity concerns that are undesirable and unpredictable.

Several research indicate that traditional hepatotoxicity testings on animal models

may have distinct outcomes from humans [128–130]. Since animal or human model

testings are usually conducted in the late stage of drug development, the withdrawal

or termination of such disqualified drug candidates would sacrifice lots of previous

efforts. Therefore, a precise and accurate model to better predict DILI in the early

stage would be a promising approach to facilitate the development progress.

Human toxicity data is extremely hard to collect, since in vivo and in vitro

toxicological studies cannot provide adequate assessment when the drug candidates are

applied on human [128–131]. Several labeling schemes [132–135] have been developed

to annotate DILI label for certain drugs to provide predictive models with labeled

data. [135] is based on physician desk reference, while others [132–134] are coming

from case reports and literature. Although labeled DILI datasets are available in

public, such datasets only contain one or two hundreds of drugs, and what is worse,

the labeling standards are inconsistent. To tackle this problem, FDA develops an

annotation scheme to label DILI risk of 1036 FDA-approved drugs, and announces

the DILIrank [136] dataset in 2016. The previous version of DILIrank annotates the

drugs with Most-DILI concern, Less-DILI concern, and No-DILI concern, based on

the regulatory professionals assessment [137]. The new scheme establishes a more

detailed verification process dividing the drugs into four categories: Most-DILI concern,
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Less-DILI concer, No-DILI concern, and Ambiguous DILI concern [136]. DILIrank is

the most widely used dataset to develop predictive models of DILI, and has been used

in various studies [138–141]. Lately, FDA further augments DILIrank to DILIst [128]

with other four literature datasets by applying concordance analysis across these

five datsets. Until now, DILIst is the largest dataset with DILI classification, which

contains 1279 drugs. These efforts [128,136] provide invaluable resource for predicting

DILI risk.

DILI prediction can be considered as the application of molecular property

prediction, which is one of the oldest cheminformatics tasks. Many in silico methods

have been applied to solve molecular property prediction problem [34, 60, 61, 142].

These approaches generally convert the molecule into a vector representation via

different procedures, and then go through different machine learning models to predict

the label information. The vector representation of a molecule is called fingerprints.

Traditionally, fingerprints are either manually constructed by experts (hand-crafted

biologist-guided fingerprints), or calculated by a fixed hash function (hash-based

fingerprints). The former one is designed by specialists based on biological experiments

and chemical knowledge. Specific sub-structures of the compounds are considered as

functional groups, and their corresponding local features are determined based on their

properties revealed during experiments or different states [60, 142]. E.g., CC(OH)CC

appears to have solubility relevant characteristic; thus it has been isolated as local

features to produce fingerprints on solubility related tasks. Hash-based fingerprints

such as circular fingerprints employ a fixed hash function to extract each layer’s

feature of a molecule based on the concatenated features of the neighborhood in the

previous layer [61]. This type of the fingerprints is non-invertible, so there is no

way to check back and modify the quality of the fingerprints if the hash function

cannot capture enough information, which might lead to poor performance in further

65



predictive tasks. To tackle this problem, [143] recently proposes a reverse-engineering

method to reconstruct the molecular structure from hash-based fingerprints such as

ECFP [61].

With the rapid increase of deep learning techniques, recent studies trend to

address molecular property prediction with such novel models. One promising research

interest is considering a molecule as a graph, since the atoms of the molecules can be

referred as the vertexes, and the bonds between atoms as the edges. Neural fingerprints

[34] are the first attempt to learn molecular vector representation based on its graph

structure. The difference between neural fingerprints and hash-based fingerprints is

the replacement of the hash function. Neural fingerprints apply a non-linear activated

densely connected layer to generate the fingerprints. Many other graph-based deep

learning models can also be applied to represent a molecule by embedding the graph

features to a continuous vector [35, 66]. Within them, the Message Passing Neural

Networks (MPNN) [1,73] have achieved notable prediction performance. MPNNmodels

recursively update the atom or bond features by aggregating message/information

from its adjacent atoms or bonds, then employ a readout function to pool all updated

features of atoms to deliver the global representation of the molecule. However, these

methods only focus on one single view of the graph topology, either atom-central or

bond-central. Taking Figure 5.1 as an example, the left graph is the atom-oriented

structure of caffeine, and the right one is its bond-oriented representation. It is observed

that both atom and bond features should be taken into account when embedding a

molecule graph, e.g., the double bond within the benzene N = C is distinct from bond

C = O, atom N and C are notably different. Inspired by this insight, we propose a

fresh perspective of viewing the graph from two aspects in our recent work MV − GNN

cross [144], which involves both atom messages and bond messages. MV − GNN cross

model takes the molecular SMILES as input, and use RDKit [80] to extract the graph
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Figure 5.1: Atom-oriented graph v.s. Bond-oriented graph.

structure and the local features associated with each atom and bond. A graph encoder

network then learns and converts such information into a vector representation of the

input molecular SMILES. After that, the vector representation is fed into a prediction

network to predict the property label. Our method outperforms all previous SOTAs

on 11 commonly used molecular property prediction tasks. Therefore, we employ our

graph-based deep learning model on DILIrank dataset to classify the DILI label, and

have achieved superior prediction performance compared with other models including

both graph-based deep learning models and traditional fingerprints-based models.

Other than that, available labeled DILI drugs are still quite limited for data-

hungry deep learning models. In order to get better and more stable prediction

performance, several research have been done from different aspects. [128] develops

a new annotation scheme to augment the drug list with DILI risk. [138] employs

different machine learning models on different human toxicity dataset to investigate

the corresponding prediction performance. [141] and [140] propose to obtain better

prediction results with ensemble computational models and various molecular descrip-

tors. These attempts have earned certain achievement, but may still be restricted by

the available labeled DILI data. To tackle this bottleneck and reinforce the expressive

power of deep learning model, we propose a property augmentation strategy to utilize

MV − GNN cross models along with more data by taking advantage of other property

information. In particular, we create a larger training dataset by combining more

drugs with other toxic properties, such as PLD [145] which measures the organism-level
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toxicity of compounds. Since graph neural network is able to learn molecular vector

representation only based on its graph structure and the underlying atom/bond level

features, more input data shall help generate more accurate molecular representation.

Moreover, for those properties with more available data, deep learning techniques are

more likely to obtain better performance. Thus, the correct prediction would help

promote the entire training including those properties with only few samples, such

as DILI. In this fashion, we are able to increase the accuracy of DILI to 81.4% using

cross-validation with random splitting, 78.7% using leave-one-out cross-validation, and

76.5% using cross-validation with scaffold splitting, which is regarded as the remarkable

boost considering the challenges on DILI risk prediction. Detailed methodologies and

experimental procedures are described in later sections.

5.2 Methodologies

We take our recent work MV − GNN cross model as the backbone to implement

proposed property augmentation method, since MV − GNN cross outperforms other

baseline models on DILI dataset in extensive experiments. As shown in Figure

5.2, MV − GNN cross contains two principal parts, the Encoder Network and the

Prediction Network. The Encoder Network transforms the input molecular SMILES

into a vector representation based on its graph structure, and the Prediction Network

is responsible for classifying the binary label of certain properties, such as DILI.

Beyond that, we employ deep multi-label learning to establish proposed method while

involving more properties information along with DILI.

5.2.1 Molecular Graph Preliminaries

A molecule can be naturally represented as a graph based on its chemical

structure, in particular, by taking the atoms as the nodes, and the bonds between
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Figure 5.2: Overview of MV − GNN cross models.

atoms as the edges. Thus, the molecular graph is denoted as Gm = (A,B), where A

is a set of the atoms, and B is a set of the bonds. Based on such graph structure, the

initial features of atoms and bonds are extracted as the learning information, and

referred as xa and yb. Figure 5.4 takes ethionamide as an example to illustrate how a

molecule converts to its corresponding computational graph.

Figure 5.3: Graph definition of ethionamide. Gm represents the entire graph structure,
xa and yb refer to the atom and bond features that associates with each atom and
bond, respectively.

The initial features for each atom and bond is selected follow the same protocol

of [1], as shown in Table 5.1 and Table 5.2. All the features are one-hot encodings

except the atomic mass, and are extracted using RDKit [80].
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Table 5.1: Atom features selection [1].

Features Size Descriptions

atom type 100 type of atom (e.g., C, N, O), in the order of atomic number

formal charge 5 integer electronic charge assigned to atom

number of bonds 6 number of bonds the atom is connected

chirality 4 Unspecified, tetrahedral CW/CCW, or other.

number of Hs 5 number of bonded hydrogen atoms

atomic mass 1 mass of the atom, divided by 100

aromaticity 1 whether this atom is part of an aromatic system

hybridization 5 sp, sp2, sp3, sp3d, or sp3d2

Table 5.2: Bond features selection [1].

Features Size Descriptions

bond type 4 single, double, triple, or aromatic

stereo 6 E/Z, cis/trans, any, or none

in ring 1 whether the bond is part of a ring

conjugated 1 whether the bond is conjugated

5.2.2 Encoder Network

Molecules can be observed from two perspectives, one is that taking the atoms as

the centers and bonds as the connections [73], while the other one is to consider bonds

as the centers and atoms as connections [1]. Inspired by multi-view learning [146],

MV − GNN cross takes advantage of the two perspectives, and design a multi-view

framework to generate more informative molecular representation. In specific, the

encoder network is constructed by two streams, atom-oriented and bond-oriented,

where each contains one Graph Neural Network (GNN). Next, a self-attentive readout

mechanism is employed to convert the learned molecular feature matrix to a vector

representation.
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Figure 5.4: Message passing aggregation phase. Taking atom 4 as an example, atom 3
and atom 5 are its neighbors. In the passing process, the message of atom 3 and atom 5
from previous passing step will be aggregated to atom 4. For the message construction,
we take atom 3 as an example. The message md

3 of atom 3 is concatenated by the
initial atom features hd

3 of atom 3, as well as the initial bond features µ34 of the
connected bond 34.

5.2.2.1 Atom-oriented GNN and Bond-oriented GNN

The Atom-oriented GNN learns the molecular representation by aggregating

neighbor atoms recursively for several steps, while Bond-oriented GNN establishes

similar procedure via a bond-central fashion. The generalized GNN can be defined as:

md+1
o =

∑
η∈N (o)

Ad

(
hd
η, µattached

)
hd+1
o = Ud

(
hd
o,m

d+1
o

)
. (5.1)

In (5.1), Ad and Ud represent the neighbor aggregation function and state update

function respectively. md+1
o and hd+1

o are the aggregated message and states vector for

entity o at d+ 1 step respectively. Entity o can be either atoms or bonds. N (o) is

the neighborhood entity set of entity o. µattached is the attached features of entity o

during aggregation. In Atom-oriented GNN, entity o represents the atoms, µattached

denotes the features for the connected bonds. The Bond-oriented GNN is formed

with a similar implementation by considering the bonds as passing centers, and atom

features as attached. Specially, entity o represents the bonds, and the corresponding
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bond messages md+1
o are constructed by bond states vector hd+1

o and attached atom

features µattached.

5.2.2.2 Self-Attentive Readout

The outputs of the two GNN models are the learned feature matrices by regarding

molecular graph as atom-oriented and bond-oriented. As demonstrated in Figure

5.2, in order to obtain the fixed length of molecular vector representation, a readout

transformation is need to eliminate the obstacle of size variance and permutation

variance. Other than commonly used mean-pooling or max-pooling, a self-attentive

readout is employed here to generate molecular representation associated with different

attention weights [46,82]. Formally, take a output of Atom-oriented GNN Hn as an

example, the self-attention over atoms is defined as:

S = softmax (W2 tanh (W1Hn)) , ξn = Flatten(SH⊤
n ), (5.2)

where n is the number of atoms in the molecule. W1 and W2 are learnable matrices,

which are shared between the two streams to enable message circulation during the

multi-view training process. Thus, two molecular vectors are generated in a multi-view

manner.

5.2.3 Prediction Network

In MV − GNN cross, we have generated two vectors from the two sub-modules:

atom-oriented GNN and bond-oriented GNN. These two vectors are fed into two

prediction networks to make the predictions. Since the two vectors generated via

atom-oriented GNN and bond-oriented GNN are coming from the same input SMILES,

so the predictions should be the same. Thus, we employ MSE loss to restrain the

72



training, called disagreement loss. Formally, we formulate this molecular property

prediction loss as follows:

Lfinal = Lpred + λLdis, (5.3)

where Lpred is the supervised loss for each prediction and Ldis is the disagreement loss

between two classifiers.

5.2.4 Property Augmentation Learning

DILI dataset only contains a few hundreds of drugs, which is extremely small

for deep learning. In order to take advantage of the expressive power of deep graph

learning models such as MV − GNN cross, we demand more information to boost the

training. Since DILI is a property of human toxicity, we compare it with other four

available human toxicity datasets: herg [147, 148], PLD [145], ames [149, 150], and

mmp [151,152]. We notice there are overlapping molecules between DILI and these

four toxicity datasets. We assume that such correlation may help the training of DILI.

Hence, we propose to utilize these additional toxicity information to promote the

prediction performance of DILI.

5.2.4.1 Multi-label Training

As shown in Figure 5.5, original DILI dataset contains only 479 SMILES. We

take it with other four toxicity properties (herg, PLD, ames, and mmp) which are

provided by NIH, to form a larger dataset. Specifically, we combine these five datasets

based on the SMILES representation of the drugs. Thus, a large matrix contains

15,669 data samples is generated, where each row stands for one SMILES, and the five

columns are the corresponding property labels. Each SMILES could have one or more

property labels, and those properties which are not observed for each SMILES are

73



Figure 5.5: Property augmentation procedure. Original DILI dataset is augmented
to Tox-DILI dataset. Tox-DILI is then fed into MV − GNN cross model for prediction.
During the training period of the prediction network, a mask scheme is applied to
handle the back-propagate of missing labels, and an average loss across all properties
is used to restrain the entire training.

marked as missing values, and are represented as NaN. The constructed Tox-DILI then

goes through MV − GNN cross model to classify the labels. We employ a multi-label

training approach to establish the property augmentation learning process. During the

training process, all property predictions share the same encoder network, and make

prediction for each property label individually. Then, the average of all the prediction

loss is used to update the neural network parameters. We treat each property equally

important, and ignore the prediction for those NaN properties to avoid deviation.

5.2.4.2 Missing Labels Handling

In order to eliminate the effects of the missing labels during the training period,

we need to identify such labels for each SMILES, and ignore them during the back-

propagation. In our experiments, a mask scheme is implemented as the filter. The

mask is a matrix with exact same size of the input, which is applied in the prediction
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network. While the prediction is made by the prediction network, and the loss is

calculated for each data sample, the mask is then multiplied with the loss values. The

mask matrix is filled by 0s and 1s, as the corresponding positions with missing labels

are recorded as 0, others as 1. Thus, any weights associated with those missing labels

would have no influence on the further computation.

Since each SMILES may have multiple binary property labels at the same time,

such task could be regarded as multiple binary classification problem. Hence, we

employ the Binary Cross Entropy (BCE) loss as the prediction loss function, and

compute the average loss across each property. Suppose the dataset contains molecules

M = {Mi}Ki=1, formally, we formulate the final loss processed by the mask as follows:

Lpred =
1

N ∗K

N∑
n=1

∑
Mi∈M

(La(yi, γa,Mi
) ∗mask + Lb(yi, γb,Mi

∗) ∗mask), (5.4)

where γa,Mi
and γb,Mi

are the output predictions produced by the two prediction

networks, La and Lb are the corresponding computed loss. yi is the ground truth

label, and N is the total number of properties, which is 5 in our experiments here.

5.2.5 Evaluation Criteria

Since our task is to predict the binary label of DILI by considering Most-DILI-

Concern as the positive label and No-DILI-Concern as the negative label, we thoroughly

evaluate the performance of each method by calculating the accuracy, sensitivity,

specificity, F1-score, Matthews correlation coefficient and ROC-AUC. The accuracy

score is the total percentage of the correct predictions of DILI label. Sensitivity is

also called true positive rate, which measures the percentage that drugs with positive

DILI labels are truly predicted as positive. Specificity is the true negative rate, which

represents the rate that drugs without DILI risks are correctly predicted as negative
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labels. F1-score is the weighted average of precision and recall, where precision is

the ratio of the correct positive predictions to all positive predictions, and recall

is the ratio of the correct positive predictions to all ground truth positive labels.

Matthews correlation coefficient (MCC) leverage the performance of all of the four

confusion matrix categories (true positives, false negatives, true negatives, and false

positives). ROC-AUC measures the separability of the model to correctly predict

positive labels as positive, and negative labels of negative. In addition, we evaluate

statistical significance using one-sided Wilcoxon signed-rank test.

5.3 Experiments

We have conducted extensive experiments using Circular-fp [61], Neural-fp [34],

MPNN [73], DMPNN [1], andMV − GNN cross [144] on DILI to validate the performance.

Beyond that, we take MV − GNN crossas backbone, and employ our proposed property

augmentation approach to involve more data, in order to further boost the prediction

performance of DILI. Moreover, we conduct additional experiments using MPNN and

DMPNN on augmented Tox-DILI dataset to proof the effectiveness of our method.

5.3.1 Dataset Description

Two datasets are used during the experiments, DILI and Tox-DILI1. DILI is

the DILI dataset provided by NIH, which contains 479 molecules with DILI label.

The original DILI dataset is coming from DILIrank [136] dataset, which contains

197 molecules with Most-DILI-Concern, 282 molecules with No-DILI-concern,

and 464 molecules with Less-DILI-Concern. We consider Most-DILI-Concern as

label 1, and No-DILI-concern as label 0 to solve the classification problem. Thus, 479

molecules in total are selected to constitute DILI dataset. The Tox-DILI is formed

1Refer to supporting information.
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by DILI and other four datasets with toxicity relevant properties: herg [147, 148],

PLD [145], ames [149,150], and mmp [151,152]. The description of each property is

stated in Table 5.3, and the label distribution is shown in Table 5.4.

Table 5.3: Description of four toxicity properties used for augmentation.

Category Property Description

Toxicity

herg [147,148] measures cardiotoxic effects of compounds.

PLD [145] stands for phospholipidosis, which measures organism-level toxicity of compounds.

ames [149,150] measures mutagenicity, one of the most important end points of toxicity.

mmp [151,152]
The mitochondrial membrane potential (MMP) is a key parameter for evaluating
mitochondrial function.

Table 5.4: Datasets statstics.

Dataset Dataset Size Property # Molecules # Label 0 # Label 1

DILI 479 DILI 479 282 197

Tox-DILI 15,669

herg 3,024 2,541 483
PLD 4,159 3,777 382
ames 7,940 4,534 3,406
mmp 5,970 5,070 900
DILI 479 282 197

5.3.2 Comparison Experiments

5.3.2.0.1 Circular-fp. Circular fingerprints (Circular-fp) is one of the traditional

ways to generate a so-called fingerprints to represent the molecule. It is a vector

representation that generated by a hand-crafted hash-based algorithm to define the

local features. Circular-fp employs a fixed hash function to extract each layer’s features

of a molecule and concatenate them together. The generated vector representations

usually go through machine learning models to perform further predictions, we apply

GradientBoost [65] model here in the experiments.
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5.3.2.0.2 Neural-fp. Neural fingerprints (Neural-fp) is constructed on a super-

vised deep graph convolutional neural network [34]. It applies convolutional neural

networks on graphs directly. The difference between Neural-fp and Circular-fp is the

replacement of the hash function. Neural-fp applies a non-linear activated densely

connected layer to generate the fingerprints.

5.3.2.0.3 MPNN. Another promising graph-based deep learning techniques is

the Message Passing Neural Network [73] (MPNN). It recursively updates the atom

features by aggregating the feature information from its neighbors and adjacent bonds,

then pools all updated features of the atoms to deliver the global representation of

each molecule via a readout function. The generated representation is then fed into

the downstream molecular property prediction network.

5.3.2.0.4 DMPNN. Inspired by MPNN [73], DMPNN [1] converts the passing

process to bond-wise instead of atom-wise. Instead of aggregating the neighbor atoms’

messages, DMPNN proposes a directed message passing scheme to avoid unnecessary

loop. It aggregates the information of neighbor bonds with same direction, and takes

the starter atom features as attached features to implement message passing. The

following network is used to predict the property label as well.

5.3.2.0.5 MV − GNN cross. MV − GNN cross model extracts the atom messages and

bond messages simultaneously. It considers atom message passing and bond message

passing as two parallel streams, and allows the atom/bond messages to communicate

during the passing phase. A self-attention readout mechanism and a disagreement

loss are employed to restrain the model training.
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5.3.2.0.6 MV − GNN cross with property augmentation. The results of differ-

ent models on DILI dataset empirically demonstrate MV − GNN cross has achieved the

highest prediction accuracy. Considering the extremely limited availability of DILI

data, we propose to involve more data in a property augmentation fashion to facilitate

training the molecular representation. In this regard, we combine DILI with four more

datasets with other toxicity labels to form Tox-DILI dataset, and apply MV − GNN

cross model on it.

5.3.2.0.7 Additional experiments with property augmentation. In order to

further proof the effectiveness of proposed method, we conduct additional experiments

on Tox-DILI dataset to compare the performance improvement from using DILI only.

Since MPNN and DMPNN outperform circular-fp and neural-fp on DILI dataset, and

both of them are graph-based message passing models, we then utilize them to assess

the prediction performance of proposed property augmentation strategy.

5.3.3 Experimental Procedure

In order to thoroughly verify the superiority of proposed method and eliminate

the randomness, we have conducted extensive experiments using three evaluation

methods: 5-fold cross-validation with random splitting, 10-fold leave-one-out cross-

validation, and 5-fold cross-validation with scaffold splitting. To make a fair com-

parison, we use the same dataset splits over DILI and Tox-DILI for all the models,

repectively. For each cross-validation (CV) method, we first run all the models on DILI

dataset, then apply property augmentation using MV − GNN cross on the Tox-DILI

dataset to further boost the performance. Moreover, we take MPNN and DMPNN

as backbones to implement property augmentation to confirm the effectiveness of
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our method. The pair-wise comparison between experiments w/o and w/ property

augmentation are visualized with a p-value calculated through the Wilcoxon test.

5.3.3.1 Cross-validation with Random Splitting

We first apply 5-fold cross-validation with random seeds to evaluate the per-

formance of each model. In each fold, the input dataset is randomly split into 8:1:1,

while 80% is used for training, 10% is used for validation, and the last 10% is used

for testing. For Tox-DILI, we ensure each data split contains balanced data for each

property. We calculate the mean and standard deviation of the results from all folds

as the final results.

5.3.3.2 Leave-one-out Cross-validation

Considering the randomness of dataset splits in the first evaluation method,

we then apply the 10-fold leave-one-out cross-validation to evaluate the performance

again. The input dataset is split into 10 folds equally, each fold has been used as

the testing dataset in sequence. Within the remaining 9 folds, one fold is used as

the validation dataset, and the rest are used for training. We take the average of the

results from all folds as the final results too.

5.3.3.3 Cross-validation with Scaffold Splitting

Other than the two commonly used evaluation methods, we also conduct experi-

ments with scaffold splitting, which is more practical and challenging than random

splitting. Scaffold splitting splits the molecules with distinct two-dimensional struc-

tural frameworks into different subsets [90], which can be considered as a clustering

process based on the molecular structure prior to the training process. We follow
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the process introduced in [1]. The molecules in the dataset are categorized into bins

based on their Murcko scaffold, which are calculated by RDKit [80]. The bins are then

randomly put into train, validation and test dataset. We apply a 5 fold cross-validation

here with 8:1:1 train/validation/test split too, and calculate the mean and standard

deviation as the final results.

5.4 Results and Discussion

Other than the prediction accuracy, we also analysis the predicted labels with

the ground truth labels in detail by computing the sensitivity, specificity, F-1 score,

Matthews correlation coefficient (MCC) and ROC-AUC. All these evaluation criteria

are important since we expect to find a model that can filter the drugs with potential

DILI concern, as well as pick out the drugs without DILI risks, thus further experiments

can be conducted on these approved drug candidates.

Table 5.5: The performance of DILI models using cross-validation with random
splitting (higher is better). Best score is marked as bold.

Circular-fp Neural-fp MPNN DMPNN MV − GNN cross Property Augmentation
with Tox-DILI

Accuracy 0.688±0.051 0.704 ±0.091 0.738±0.094 0.750±0.098 0.788±0.077 0.814±0.047

Sensitivity 0.364±0.125 0.647 ±0.091 0.727±0.133 0.728±0.135 0.762±0.105 0.768±0.100

Specificity 0.879±0.086 0.740 ±0.087 0.752±0.129 0.764±0.172 0.809±0.092 0.849±0.097

F1-score 0.485±0.091 0.615 ±0.106 0.666±0.124 0.681±0.095 0.721±0.105 0.753±0.063

MCC 0.289±0.130 0.381 ±0.191 0.473±0.202 0.499±0.179 0.562±0.178 0.621±0.114

ROC-AUC 0.738±0.056 0.753 ±0.093 0.833±0.075 0.832±0.068 0.866±0.055 0.882±0.031
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Figure 5.6: Performance comparison on accuracy of different methods using cross-
validation with random splitting (higher is better). Light green color indicates our
proposed method. P indicates the p-value calculated from the Wilcoxon test between
our proposed method and other baselines.
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Figure 5.7: Cross-validation with random splitting. Visualization from Table 5.6. DILI
indicates baseline, and Tox-DILI demonstrates the performance of utilizing property
augmentation. P-value is calculated between the two prediction results for each model.

5.4.0.1 Cross-validation with Random Splitting

The prediction performance of cross-validation with random splitting are shown

in Table 5.5, and visualized in Figure 5.6. As observed, graph-based message passing

models generally perform better than other baselines on DILI dataset. Meanwhile,

MV − GNN cross model outperforms other message passing methods, as well as equips

with smaller various. The augmentation strategy that combines more data with other

properties precisely improve the performance of DILI to 81.4%, which empirically

proves that involving more property data to co-train the model indeed brings more
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information. In this fashion, MV − GNN cross model gains the accuracy boost by

2.6% compared with the vanilla MV − GNN cross. The p-values obtained from the

Wilcoxon test may not be sufficiently small for some baselines considering the difficulty

and challenge for DILI prediction problem, yet we believe our proposed method has

accomplished remarkable improvement.

As our goal is to identify drugs that might cause DILI and sort out drugs without

DILI, a model with high scores of all the evaluation metric, as well as a balanced

sensitivity/specificity would be more helpful. As shown in Table 5.5, Circular-fp has

a very high specificity but extremely low sensitivity, so it is more likely to identify

drugs without DILI as positive. The lowest MCC verifies that it cannot achieve

a balanced prediction over positive and negative labels. All the criteria values of

Neural-fp are not significant. MPNN and DMPNN has almost equal sensitivity and

specificity scores, but the overall accuracy, F1-score and MCC are not notably high.

The accuracy, sensitivity, F1-score, and MCC of MV − GNN cross are higher than other

baselines on DILI dataset. The specificity score is slightly lower than Circular-fp,

but is still competitive. MV − GNN cross utilizing property augmentation strategy has

obtained the highest accuracy score which is 81.4%. The specificity score is fairly

high as 0.849, and a sensitivity score of 0.768 is also the highest compared with other

baselines. The comparisons of F1-score and MCC confirm that our MV − GNN cross

Table 5.6: The performance comparison between w/o Property Augmentation (DILI)
and w/ Property Augmentation (Tox-DILI) using cross-validation with random split-
ting. Higher score within each pair-wise comparison is marked as bold.

MPNN (DILI) MPNN (Tox-DILI) DMPNN (DILI) DMPNN (Tox-DILI) MV − GNN cross(DILI) MV − GNN cross(Tox-DILI)

Accuracy 0.738±0.094 0.788 ±0.044 0.750±0.098 0.785±0.024 0.788±0.077 0.814±0.047

Sensitivity 0.727±0.133 0.761 ±0.072 0.728±0.135 0.748±0.091 0.762±0.105 0.768±0.100

Specificity 0.752±0.129 0.807 ±0.070 0.764±0.172 0.812±0.045 0.809±0.092 0.849±0.097

F1-score 0.666±0.124 0.728 ±0.045 0.764±0.172 0.718±0.045 0.721±0.105 0.753±0.063

MCC 0.473±0.202 0.562 ±0.082 0.499±0.179 0.553±0.060 0.562±0.178 0.621±0.114
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model with property augmentation significantly perform better than other models on

DILI prediction task.

We also conduct additional experiments with our method utilizing MPNN and

DMPNN, where the performance is compared in Table 5.6 in a pair-wise manner

(DILI vs. Tox-DILI). The accuracy improvement is visualized in Figure 5.6, and the

ROC-AUC is plot in Figure 5.10. We can observe that models with proposed property

augmentation almost outperform the other one over all evaluation criteria.

We can observe the performance comparison between each model based on

Figure 5.10. Figure 5.10 visualizes the ROC-AUC for each model. As we know, the

larger area under the curve (AUC) represents better model performance. When the

inflection point is close to the left top corner, the AUC is approximate to 1. Figure ??

illustrates that MV − GNN cross on Tox-DILI outperforms other models.

Table 5.7: The performance of DILI models (higher is better) using leave-one-out
cross-validation. Best score is marked as bold.

Circular-fp Neural-fp MPNN DMPNN MV − GNN cross Property Augmentation
with Tox-DILI

Accuracy 0.668±0.085 0.683 ±0.063 0.706±0.057 0.715±0.059 0.728±0.047 0.787±0.070

Sensitivity 0.351±0.171 0.595 ±0.089 0.590±0.141 0.617±0.140 0.651±0.121 0.721±0.106

Specificity 0.899±0.063 0.757 ±0.081 0.798±0.115 0.803±0.107 0.791±0.087 0.837±0.062

F1-score 0.447±0.175 0.604 ±0.064 0.614±0.078 0.631±0.086 0.655±0.076 0.731±0.076

MCC 0.294±0.120 0.353 ±0.118 0.406±0.114 0.432±0.113 0.448±0.099 0.558±0.131

ROC-AUC 0.775±0.069 0.734 ±0.035 0.789±0.072 0.792±0.051 0.797±0.039 0.840±0.064

5.4.0.2 Leave-one-out Cross-validation

To eliminate the randomness of splitting method, we use 10-fold leave-one-out

cross-validation to re-run all the experiments. The performance is shown in Table 5.7

and Table 5.8. The results follow the similar trend as obtained using cross-validation
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with random splitting. MV − GNN cross with property augmentation learning performs

best over all evaluation criteria except the specificity, where Circular-fp obtains highest

value. However, the other performance results such as sensitivity, MCC and F1-score

indicate that the prediction results of Circular-fp is extremely unbalanced. The

accuracy and ROC-AUC visualization between w/o and w/ property augmentation

on MPNN, DMPNN and MV − GNN cross, which are shown in Figure 5.8 and Figure

5.11, further proof the superiority of proposed method. As shown in Figure 5.8, the

p-value calculated from MV − GNN cross w/o and w/ property augmentation is less

than 0.01, which can be considered as statistical significant. The prediction results

with leave-one-out cross-validation confirm that our method is capable for improving

the prediction performance of DILI.

5.4.0.3 Cross-validation with Scaffold Splitting

Last, we challenge the most difficult but practical scenario by conducting

experiments using scaffold splitting. The results are recorded in Table 5.9 and Table

5.10, while the accuracy and ROC-AUC are visualized in Figure 5.9 and Figure 5.12.

The accuracy scores have dropped compared with random splitting, which is reasonable

considering the strict splitting. However, other criteria such as F1-score and MCC do

not vary much, and the general trending is still similar with the performance obtained

Table 5.8: The performance comparison between w/o Property Augmentation (DILI)
and w/ Property Augmentation (Tox-DILI) using leave-one-out cross-validation.
Higher score within each pair-wise comparison is marked as bold.

MPNN (DILI) MPNN (Tox-DILI) DMPNN (DILI) DMPNN (Tox-DILI) MV − GNN cross(DILI) MV − GNN cross(Tox-DILI)

Accuracy 0.706±0.057 0.736 ±0.074 0.715±0.059 0.748±0.064 0.728±0.047 0.787±0.070

Sensitivity 0.590±0.141 0.625 ±0.104 0.617±0.140 0.632±0.099 0.651±0.121 0.721±0.106

Specificity 0.798±0.115 0.820 ±0.117 0.803±0.107 0.817±0.079 0.791±0.087 0.837±0.062

F1-score 0.614±0.078 0.655 ±0.090 0.631±0.086 0.657±0.095 0.655±0.076 0.731±0.076

MCC 0.406±0.114 0.456 ±0.148 0.432±0.113 0.454±0.135 0.448±0.099 0.558±0.131

ROC-AUC 0.789±0.072 0.813 ±0.070 0.792±0.051 0.806±0.067 0.797±0.039 0.840±0.064
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from the other two evaluation methods. MV − GNN cross with property augmentation

learning outperforms all other methods, including MPNN and DMPNN with property

augmentation, which effectively illustrates the superiority of proposed method.

Table 5.9: The performance of DILI models (higher is better) using cross-validation
with scaffold splitting. Best score is marked as bold.

Circular-fp Neural-fp MPNN DMPNN MV − GNN cross Property Augmentation
with Tox-DILI

Accuracy 0.657±0.037 0.665 ±0.048 0.706±0.010 0.714±0.043 0.735±0.045 0.765±0.047

Sensitivity 0.485±0.074 0.642 ±0.066 0.695±0.098 0.693±0.082 0.684±0.094 0.765±0.090

Specificity 0.784±0.073 0.688 ±0.082 0.708±0.066 0.724±0.062 0.765±0.099 0.774±0.046

F1-score 0.533±0.049 0.609 ±0.062 0.653±0.052 0.660±0.070 0.674±0.060 0.740±0.036

MCC 0.284±0.086 0.328 ±0.103 0.402±0.027 0.415±0.090 0.458±0.087 0.534±0.089

ROC-AUC 0.719±0.028 0.744 ±0.051 0.758±0.025 0.782±0.040 0.774±0.042 0.834±0.022

In addition to extensive experiments, several studies have investigated different

methods to tackle DILI prediction problem in years. Recent two work, [141] and

[138] also seek for appropriate approaches to enhance the prediction performance of

DILIrank. [138] utilizes Bayesian model to obtain an ROC-AUC of 0.814, a sensitivity
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Figure 5.8: Leave-one-out cross-
validation. Visualization from Table 5.8.
DILI indicates baseline, and Tox-DILI
demonstrates the performance of utilizing
property augmentation. P-value is
calculated between the two prediction
results for each model.
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Figure 5.9: Cross-validation with scaffold
splitting. Visualization from Table 5.10.
DILI indicates baseline, and Tox-DILI
demonstrates the performance of utilizing
property augmentation. P-value is calcu-
lated between the two prediction results
for each model.
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Table 5.10: The performance comparison between w/o Property Augmentation (DILI)
and w/ Property Augmentation (Tox-DILI) using cross-validation with scaffold split-
ting. Higher score within each pair-wise comparison is marked as bold.

MPNN (DILI) MPNN (Tox-DILI) DMPNN (DILI) DMPNN (Tox-DILI) MV − GNN cross(DILI) MV − GNN cross(Tox-DILI)

Accuracy 0.706±0.010 0.727 ±0.030 0.714±0.043 0.741±0.040 0.735±0.045 0.765±0.047

Sensitivity 0.695±0.098 0.727 ±0.102 0.693±0.082 0.801±0.073 0.684±0.094 0.765±0.090

Specificity 0.708±0.066 0.716 ±0.108 0.724±0.062 0.669±0.110 0.765±0.099 0.774±0.046

F1-score 0.653±0.052 0.717 ±0.049 0.660±0.070 0.748±0.052 0.674±0.060 0.740±0.036

MCC 0.402±0.027 0.452 ±0.064 0.415±0.090 0.482±0.082 0.458±0.087 0.534±0.089

ROC-AUC 0.758±0.025 0.796 ±0.052 0.782±0.040 0.814±0.072 0.774±0.042 0.834±0.022

of 0.741, a specificity of 0.755, and an accuracy of 0.746. The sensitivity/specificity

is nearly perfectly balanced which denotes the model holds stabilized expressive

power, but the ROC-AUC and accuracy are not remarkable compared with deep

graph-based models. [141] explores different features selection and various machine

learning algorithms to build meta-models. Some models have achieved up to 95%

sensitivity but low specificity around 50%, some models have reletively balanced

sensitivity/specificity (e.g., 76%/73.2%), yet the accuracy is less than 0.75%. Ergo, it

is empirically demonstrated the superior of our deep graph-based model along with

property augmentation strategy.

5.5 Conclusions

Enhancing the prediction performance of DILI is crucial for drug development.

Current studies generally focus on either bringing in more features, or stacking

multiple models, or enlarging the dataset. These attempts have attained impressive

achievements. In spite of that, we notice that certain properties of the drugs might

contain hidden correlation between each other. Hence, we propose to establish a

property augmentation approach to include more information to boost the training.

Extensive experiments on Tox-DILI confirm the superior of our method by improving

the accuracy to 81.4% using cross-validation with random splitting, 78.7% using
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leave-one-out cross-validation, and 76.5% with cross-validation with scaffold splitting.

Proposed method not only brings in more input data for the encoder network to

learn better molecular vector representation, but also utilizes the correlations between

different property labels during the prediction network. We believe it to be a promising

perspective to improve the prediction performance of DILI as well as other properties

with limited available data.
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Figure 5.10: Cross-validation with random splitting. ROC Curve comparison (larger
AUC is better) between w/o Property Augmentation (DILI) and w/ Property Aug-
mentation (Tox-DILI). The lighter lines demonstrate the performance of each fold,
and the blue line represents the mean AUC for each method.
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Figure 5.11: Leave-one-out cross-validation. ROC Curve comparison (larger AUC is
better) between w/o Property Augmentation (DILI) and w/ Property Augmentation
(Tox-DILI). The lighter lines demonstrate the performance of each fold, and the blue
line represents the mean AUC for each method.
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Figure 5.12: Cross-validation with scaffold splitting. ROC Curve comparison (larger
AUC is better) between w/o Property Augmentation (DILI) and w/ Property Aug-
mentation (Tox-DILI). The lighter lines demonstrate the performance of each fold,
and the blue line represents the mean AUC for each method.
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CHAPTER 6

IMPROVING MOLECULAR PROPERTY PREDICTION ON LIMITED

DATA WITH DEEP MULTI-LABEL LEARNING

This chapter presents a multi-label learning method based on molecular SMILES

sequence, which is also a method to improve the prediction performance of those

properties with limited data. We propose an RNN-based multi-label molecular property

prediction method to alleviate the data scarcity issue in two stages: 1) utilize the

abundant unlabeled SMILES data to pre-train a seq2seq model whose encoder learns

to generate molecular fingerprint based on the given SMILES; and 2) finetune the

pre-trained model on the labeled molecular property data. Since labeled data is limited,

we train those properties with limited sample size jointly with other properties which

contain relatively sufficient samples. This approach brings in the idea of multi-label

training, which is able to pre-train and fine-tune the encoder network, as well as train

the prediction network with a data augmentation strategy. Extensive experiments on

molecular property prediction demonstrate that our proposed method has achieved

superior performance compared with the state-of-the-art approaches on properties

with limited sample size.

6.1 Introduction

Molecular property prediction has been a significant task in drug discovery area.

Recently, the amount of available compounds and biological activity data increased

exponentially due to the experimental techniques such as High-throughput screening

(HTS) and parallel synthesis [32,33]. Effectively utilizing these large-scale chemical

data would be a fruitful strategy to tackle property prediction problem. Deep learning
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has been widely known for its capability of taking advantage of massive amount of

data [153], which leads to another surge in drug discovery domain. It would significantly

save the R&D costs for drug research procedure while decreasing the failure rate in

potential drug screening trials, as well as speed up the overall drug discovery process

by exploiting the large-scale chemical data [45]. Lots of researches have been working

on property prediction from various aspects, such as analyzing the structure of the

molecule [34, 35, 109], or extracting the local features by looking into the chemical

features like bounds relatives [36]. These methods generally perform prediction task by

running the target property individually, and achieve good performance with sufficient

labeled data. However, the prediction performance is usually unsatisfied when the

labeled data is limited.

To address such problem, some previous work turns the attention to explore how

to take advantage of the enormous unlabeled data. Certain attempts have successfully

improved the prediction performance by adding unlabeled data as part of the training

process, e.g., seq2seq and seq3seq [38, 39, 154, 155]. Nevertheless, there is another way

to address this issue from a different perspective, which is to explore the potential

information of limited labeled data effectively. Specifically, we propose to jointly

co-train multiple properties of data, by taking those properties into the pool filled

with several other properties and train them together. This multi-label idea would

perform as a data augmentation for the limit-sample properties.

In this paper, we propose a data-driven Multi-label Recurrent Neural Networks

based molecular property prediction technique to maximize the utilization of available

data, not only unlabeled data but also the labeled data. Specifically, it can be divided

into two fundamental parts, unsupervised task and supervised task. First, we applied

sequence-to-sequence (seq2seq) learning on the massive unlabeled data, which is an

enormous collection of molecule SMILES. It is inspired by semi-supervised learning in
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Nature Language Processing (NLP) [156–158]. The SMILES sequence is input into the

recurrent neural network, and converted to a vector representation called molecular

fingerprint. The fingerprint then is reconstructed back to SMILES to update the

network. By fully training the unlabeled data, we are able to get a pre-trained network

for translating SMILES to vector with high efficiency. The intermediate fingerprint can

be used for further investigation, in our case, which would be the property prediction

task. The second part is to overcome the difficulty of acquiring sufficient labeled data

by establishing a multi-label supervised model on a combined dataset with missing

labels. As we mentioned before, training each property prediction task is ineffective

and costly. In our proposed method, the input to prediction network is a data matrix

with multiple property label information, which can be an original dataset collected

from specialized experiments [32,33], or formed manually by various single property.

This data matrix is then fed into a prediction network to perform either classification

tasks, regression task or both.

The innovation of our proposed method mainly contribute to four points: 1) It

effectively utilizes the enormous unlabeled molecule data information, as well as the

limit labeled molecular property data. 2) By feeding and training multiple properties

data jointly into a neural network, the prediction results on the properties with limited

samples are significantly improved by learning from those properties with relatively

more data points. 3) The overall results on all properties perform better than training

each property individually. 4) Regression and classification can be employed at the

same time during our supervised training process, which assures the variety of different

input labels.
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6.2 Related Work

6.2.0.1 Hand-crafted Biologist-guided Hash-based Fingerprints

One conventional used traditional feature extraction method is to design the

molecule fingerprint manually by experts based on biological experiments and chemical

knowledge, e.g., [36, 60, 142]. This type of fingerprint methods generally work well for

particular tasks but lacks universality. Hash-based methods have then been developed

to address the issue of biologist-guided local-feature fingerprints. It aims to generate

unique fingerprint based on different molecular features [36, 60, 159]. One critical

approach is called circular fingerprint [61]. Nonetheless, it has a very notable problem,

since the characteristic of the hash function is non-invertible, it might not be able to

catch enough information when converting.

6.2.0.2 Sequence-based Models

SMILES sequence is a breakthrough for studying molecular property prediction

by deep learning methodologies, e.g., seq2seq fingerprint [38], and seq3seq fingerprint

[39]. These models spot at the potentially useful information of almost infinite

molecule SMILES sequence data by adequately training them to obtain strong vector

representation of the molecule. These vectors then go through other supervised

models to perform property prediction, e.g., GradientBoost [65], RandomForest [160],

SVM [161]. The Seq3seq fingerprint is an end-to-end semi-supervised learning method,

which combines the training unlabeled data part and further prediction part together

in one framework. It directly takes the generated fingerprint from the unsupervised

learning network to predict the property labels.
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Figure 6.1: Network structure. The upper part is the unsupervised network part, and
a fine-tuned encoder network from this stage is used in the lower part (the prediction
network) to perform the supervised tasks.

6.3 Methodologies

Our proposed deep multi-label learning prediction contains two principal parts,

unsupervised task and supervised task. The unsupervised task exploits the enormous

unlabeled data, and the supervised task overcomes the dilemma of limited labeled

data.

6.3.1 Network structure

The framework of our proposed method is shown in Fig. 6.1. The upper part is

the unsupervised task, which is responsible for training a proper pre-trained model.

SMILES data goes through the encoder network to generate a fingerprint, then enters

the decoder network to recover back to SMILES sequence. The unsupervised loss is
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calculated and used to update the network. The encoder and decoder network share

similar fundamental parts, which can be various recurrent neural network models,

here in our experiment, LSTM network is implemented [162]. The pre-trained model

then is employed in the following supervised prediction task, along with both SMILES

and the labels as the input. A mask function is performed in the prediction network

to eliminate the influence of missing labels.

6.3.2 LSTM Unit

The Long Short-Term Memory (LSTM) [162] is the most widely used recurrent

neural network. LSTM has three gates: input gate, forgot gate, and output gate. A

LSTM network computes a sequence of network outputs (y′1, . . . , y
′
T ) from the input

sequence (x1, . . . , xT ) by iterating

ft = σg(WfXt + Ufht−1 + bf ) (6.1)

it = σg(Wixt + Uiy
′
t−1 + bi) (6.2)

ot = σg(Woxt + Uoy
′
t−1 + bo) (6.3)

ct = ft ◦ ct−1 + it ◦ σc(Wc + Ucht−1 + bc) (6.4)

ht = ot ◦ σh(ct). (6.5)

The LSTM cell has a “forgot” gate ft which is to block some of the previous

states to pass through the entire sequence. it and ot are the input and output gates

for the LSTM cell at time step t. ct and ht are the LSTM cell state and hidden state.

σ represents the activation function. In our experiments, σg is the sigmoid function,

and σc and σh are the hyperbolic tangent functions.
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6.3.3 Unsupervised Pre-train Model Training

The unsupervised encoder network takes the SMILES sequence representations

as the input, then outputs the corresponding vector fingerprints. The generated

fingerprints then go through a decoder network to transfer the vector back to a

sequence. The output sequence is compared with the input SMILES to calculate the

loss, which is back-propagated to update the encoder network weights.

6.3.4 Supervised Multi-label Prediction

The pre-trained model is applied in the following supervised prediction task. Our

proposed method merges multiple property datasets into a matrix with the property

labels as the columns, and all observed SMILES as row index. Since different property

datasets contain different number of samples, each SMILES in the matrix might only

have one or some of the properties information. During the training process, when the

label of the SMILES is missing, we set the associated loss as 0. By training multiple

properties together, the performance is improved significantly on the properties with

limited data. In addition, the prediction network is able to perform regression and

classification at the same time by specifying the classification property index. The

detail results are presented and discussed in the next section.

6.3.5 Loss Function

6.3.5.1 Unsupervised task

We apply the cross-entropy loss for the unsupervised task. The token vocabulary

{v1, v2, . . . , vN} of SMILES sequence is unique and limited. Set zt ∈ RN as the output

token distribution from the LSTM cell outputs, and lt ∈ RN as the one-hot vector of
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the given original SMILES sequence token at time step t. Thus the unsupervised loss

Lunsup is given by:

Lunsup =
T∑
t=1

lTt log(zt). (6.6)

6.3.5.2 Supervised task

For the supervised task, we use the softmax loss. It calculates the probabilities

of each target class over all possible target classes. The calculated probabilities are

then used to determine the target class for the given inputs.

Lsup =
ezj∑
i e

zi
. (6.7)

The total supervised loss is the sum of each property. Property weight λ can be

assigned accordingly to each property before training.

Lsup all =
∑
n

Lsup. (6.8)

6.3.6 Missing Labels Handling

In our experiment, a mask function is applied to eliminate the effects of the

missing labels. After calculating the loss for each data point, the loss values are then

multiplied by a matrix with the same size of the input data matrix. The mask matrix

is formed by 0s and 1s, as the corresponding positions with missing labels are recorded

as 0 since wij ∗ 0 = 0, others are marked as 1. Thus, any weights connecting with the

missing labels would have no influence on the further computation.
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6.4 Experiments

6.4.1 Experiment Setup

6.4.1.1 Dataset Description

As we mentioned before, two types of datasets are used in our experiment, the

unlabeled and labeled dataset are explored in the pre-training, while the labeled

dataset is used in the supervised property prediction tasks. One large unlabeled

dataset is used to train the encoder network, which is the ZINC Dataset [163]. It is

an open-source chemical dataset which is released to the public in late 2015. ZINC

contains over 35 million commercially available molecular compounds with multiple

biologically relevant information, such as structure and properties. Here we pick the

drug-like dataset, which contains 18,691,354 molecular in SMILES representation.

Two labeled datasets are used to perform property prediction tasks, NIH-17p

and NCI. Within them, NIH-17p is used for both classification tasks and regression

tasks, while NCI is only used in the regression tasks based on the label characteristic.

- NIH-17p is provided by the National Center for Advancing Translational Sciences

(NCATS) at National Institutes of Health (NIH). It consists of 17 individual

properties associated with molecular SMILES representations. The sample size

of each property is different (shown under the ”Sample-Numbers” in Table 6.1

and Table 6.2); some of them have very limited data. For instance, property

pgb has only 186 samples, heptox has 440 objects, and vd has 668 data

points. On the other hand, some properties have up to almost 100 times data

compared with them, e.g., the sample size of 2d6 is 15428, and 1a2 is 14226.

NIH-17p contains both continuous labels (3/17) and binary labels (14/17). The

classification tasks are established on the 14 properties, and the regression tasks
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are conducted on the remaining three properties. We randomly split the dataset

into training, validation, and testing by the ratio of 80%, 10%, and 10%.

- NCI dataset is download from Deepchem [164]. It contains 11,738 unique

molecule SMILES with eight cancer-related property labels, which are CCRE,

HL-60, K-526, RPMI, A549, COLO, HCC, MALME. Since no missing labels

are observed in NCI dataset, we manually generate a new dataset from the

original NCI dataset with missing labels. The detailed approach is selecting

two properties, says CCRE and HL-60, and randomly set 95% and 90% of

the labels as missing, other properties remain unchanged. Next, the multi-

label prediction is applied on this dataset to evaluate our proposed assumption,

which is properties with more data would help improve the performance of

the properties with limited data. The dataset is split by 80% training, 10%

validating, and 10% testing as well. We repeat this approach 4 times (each time

sets two different properties as the properties with ”limited data”) to eliminate

the contingency.

Table 6.1: The regression results of NIH-17p (RMSE, lower is better).

Property Sample-Numbers Circular-FP Neural-FP Seq2seq-FP Seq3seq-FP Ours
Logp 10851 1.3437 0.7085 1.4065 0.5864 0.4534

pampar 4071 0.7609 0.6517 0.7343 0.6959 0.5578
vd 668 0.5870 0.5789 0.6321 0.6183 0.5015

6.4.2 Hyper-parameters Settings

For the unsupervised task, the encoder network is a 3 layers LSTM network

with the input embedding dimension as 128, and the hidden size as 256. The decoder

network is assigned with the same hyper-parameters with the encoder network, with
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Table 6.2: The classification results on NIH-17p data (accuracy, higher is better).

Property Sample-Numbers Circular-FP Neural-FP Graph-Representation Seq2seq-FP Seq3seq-FP Ours
pgb 186 72.22% 66.67% 61.11% 72.22% 66.67% 72.22%
solub 6694 82.33% 80.17% 81.38% 62.64% 77.87% 83.05%
2c9 13064 78.05% 80.70% 81.65% 67.27% 79.38% 80.55%
2d6 15428 87.88% 88.08% 77.58% 86.38% 88.79% 89.25%
2c19 11833 76.15% 80.43% 83.02% 66.24% 77.44% 81.45%
rlm 10626 78.82% 73.03% 77.91% 62.58% 75.14% 80.17%
mmp 5970 88.40% 89.22% 86.79% 86.93% 87.91% 90.36%
ames 8224 79.95% 78.91% 78.59% 63.39% 74.97% 79.18%
pldc 4161 90.50% 93.75% 81.21% 91.75% 93.00% 92.75%

heptox 440 75.93% 62.96% 79.63% 62.96% 62.96% 81.48%
3a4 13433 78.57% 78.50% 78.29% 69.60% 75.30% 79.64%

pampac 4698 77.28% 76.88% 77.87% 68.56% 73.23% 83.98%
herg 3024 90.81% 91.17% 85.96% 85.16% 90.11% 91.52%
1a2 14226 83.38% 82.61% 83.88% 70.97% 84.78% 85.06%

the output dimension as 128. The optimizer used is Adam, and the dropout rate is

0.5. The supervised model is one layer fully connected neural network.

6.4.3 Evaluation Metric

Exact match accuracy and the cross-entropy loss are used to back-propagate

and update the unsupervised neural network. The exact match accuracy is a measure

of the portion of accurately recovered sequence within the entire samples. For the

followed supervised tasks, the root mean squared error (RMSE) is used to measure

the performance of the regression task, and the accuracy is used for validating the

classification results.

6.4.4 Comparison Experiments

6.4.4.1 Regression task: NIH-17p.

The comparison experiments on regression task is conducted on both NIH-17p

dataset and NCI dataset with four baseline methods, circular fingerprint (circular-

FP) [61], neural fingerprint (neural-FP) [34], seq2seq fingerprint (seq2seq) [38], and

seq3seq fingerprint (seq3seq) [39] . The circular-FP is generated by a hand-crafted
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hash-based algorithm to define the local features. The neural-FP is constructed by a

supervised deep graph convolutional neural network. Seq2seq fingerprint and seq3seq

fingerprint are RNN based models.

6.4.4.2 Regression task: NCI with missings.

Regression tasks are running on NCI dataset with missings too. We picked two

properties in the proper order to conduct four experiments, each contains one property

with 95% manually assigned missings, and one property with 90% missings, others

remain still. The details about the data sample numbers can be found in Table 6.3

- Table 6.6. Three comparison methods are applied on these datasets: circular-FP,

neural-FP, and seq3seq fingerprint. Due to the limited position in the paper, we take

out seq2seq since seq3seq fingerprint generally performs better.

6.4.4.3 Classification task.

One recently published method, molecular properties prediction utilizing graph-

level representation (Graph-Representation) [165], has been added to perform classi-

fication task. This method proposed an idea of presenting molecular properties by

learning graph-level features instead of node-level. Since it can only predict positive

and negative labels, it is not included in the regression tasks. The dataset used for

the classification experiments is formed by the 14 properties from NIH-17p dataset,

which carry binary labels. Logp, pampar, and vd are excluded in the classification

tasks, and used to conduct the regression tasks.

6.4.5 Experiment Results

The results of all the comparison methods and our proposed model are shown

in the following tables. Table 6.1 is the RMSE results of running different models on
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Table 6.3: The RMSE results of the regression tasks on the NCI dataset: CCRE &
HL-60. Properties with limited data are marked as grey (lower is better).

Prop (sample#) Circular Neural Seq2seq Seq3seq Ours
CCRE (576) 0.8104 0.8591 0.8108 0.8218 0.7914
HL-60 (1134) 0.7464 0.6538 0.6704 0.6569 0.6335
K-526 (11738) 1.0530 1.0778 1.0694 1.0685 1.0587
RPMI (11738) 1.1251 1.0231 1.0371 1.0353 1.0203
A549 (11738) 0.7543 0.7571 0.7673 0.7563 0.7549
COLO (11738) 0.7554 0.7787 0.7546 0.7634 0.7605
HCC (11738) 0.7074 0.7115 0.7125 0.7048 0.7035
MALME (11738) 0.7673 0.7653 0.7683 0.7710 0.7582

Table 6.4: The RMSE results of the regression tasks on the NCI dataset: K-256 &
RPMI. Properties with limited data are marked as grey (lower is better).

Prop (sample#) Circular Neural Seq2seq Seq3seq Ours
CCRE (11738) 0.9838 0.9896 0.9975 0.9921 0.9828
HL-60 (11738) 0.8068 0.8085 0.8077 0.8099 0.8051
K-526 (579) 0.9059 1.2606 0.9160 0.8759 0.8548
RPMI (1180) 1.1251 1.1329 1.0814 1.0778 1.0654
A549 (11738) 0.7543 0.7571 0.7673 0.7563 0.7549
COLO (11738) 0.7554 0.7787 0.7546 0.7634 0.7605
HCC (11738) 0.7074 0.7115 0.7125 0.7048 0.7035
MALME (11738) 0.7673 0.7653 0.7683 0.7710 0.7582

Table 6.5: The RMSE results of the regression tasks on the NCI dataset: A549 &
COLO. Properties with limited data are marked as grey (lower is better).

Prop (sample#) Circular Neural Seq2seq Seq3seq Ours
CCRE (11738) 0.9838 0.9872 0.9975 0.9961 0.9838
HL-60 (11738) 0.8063 0.8085 0.8077 0.8123 0.8043
K-526 (11738) 1.0530 1.0860 1.0694 1.0689 1.0605
RPMI (11738) 1.1251 1.0276 1.0371 1.0292 1.0217
A549 (617) 0.8559 0.8840 0.8974 0.8531 0.8475
COLO (1191) 0.8244 0.8243 0.8130 0.8109 0.8056
HCC (11738) 0.7074 0.7115 0.7125 0.7083 0.7024
MALME (11738) 0.7673 0.7680 0.7683 0.7719 0.7600

NIH-17p dataset, Table 6.2 is the accuracy results of the 14 properties from NIH-17p

dataset. Table 6.3 - 6.6 shows the results of the extensive experiments on NCI dataset

with randomly assigning missings, the evaluation criterion is RMSE since all labels in

the NCI dataset are continuous.
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Table 6.6: The RMSE results of the regression tasks on the NCI dataset: HCC &
MALME. Properties with limited data are marked as grey (lower is better).

Prop (sample#) Circular Neural Seq2seq Seq3seq Ours

CCRE (11738) 0.9838 0.9896 0.9975 0.9903 0.9813

HL-60 (11738) 0.8063 0.8025 0.8077 0.8104 0.8073

K-526 (11738) 1.0530 1.0778 1.0694 1.0682 1.0602

RPMI (11738) 1.1251 1.0231 1.0371 1.0299 1.0218

A549 (11738) 0.7543 0.7571 0.7673 0.7636 0.7524

COLO (11738) 0.7554 0.7787 0.7546 0.7674 0.7611

HCC (603) 0.7769 0.7364 0.6841 0.6813 0.6604

MALME (1128) 0.9930 1.0233 0.9861 0.9940 0.9707

As observed, Table 6.1 and table 6.2 clearly show that properties with limited

data have achieved up to 13.4% improvement, which are vd (668 samples), heptox

(440 samples), and pgb (186 samples). For other properties, the overall results are

also better than the baseline methods. Those properties with more data samples
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Figure 6.2: Results Comparison of the NCI dataset. The figure shows the RMSE
difference between our proposed method and the best baseline method in the four
NCI experiments.

105



rarely improve since overall deep learning methods are able to obtain good results by

training sufficient data adequately. We argue that the performance of pgb is same as

the other two baselines probably due to the extremely small sample size (only 186).

The sample size of the other two properties appear to be appropriate for multi-label

training (approximately hundreds of samples).

The comparison experiments on the revised NCI dataset fully prove the effective-

ness of our proposed method. By randomly assigning large proportion of missing labels

to certain properties, which manually forms a dataset contains properties with limited

data and properties with sufficient data, has confirmed that proposed multi-label

learning is able to extract more information than training each property individually,

especially boost the performance of the properties with limited data. The four runs

with different ”limited data” properties demonstrate the robustness of our method.

Overall, training multiple properties together indeed improve the overall performance

compared with training individual property.

6.5 Conclusion

In this paper, we propose an innovative idea of combining and training multiple

labeled datasets together to perform deep multi-label learning for molecular property

prediction. Our method takes advantages of both labeled data and unlabeled data in

a multi-label learning fashion, which enables effectively improve the prediction perfor-

mance from two perspectives, 1) we draw abundant information from vast unlabeled

SMILES data to obtain a good encoder model for generating accurate fingerprints,

and 2) we exploit labeled data by coordinately training multiple properties to pro-

mote the performance of small-sized properties. The results of extensive experiments

demonstrate the effectiveness and robustness of our method, which can significantly

improve the performance of properties with limited data.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Molecular property prediction problem has been studied for many years. The

problem itself is not complicated, given a molecule, researchers conduct experiments

or computers run models to test whether it contains certain properties. In terms of

solving it with deep learning techniques, the progress can be summarized as data

preparation, molecular representation learning, and property prediction. During my

Ph.D. studies, I made efforts to research each step and discovered several perspectives

that can be improved to promote prediction performance: 1) design powerful molecular

representation learning models; 2) consider the effects of data distribution; and 3)

explore unlabeled data to assist the supervised prediction tasks. My studies have

demonstrated that deep learning techniques are a proper way to tackle the molecular

property prediction problem. In specific, the following methods have been developed,

and the extensive experiment results have validated the effectiveness.

Cross-dependent graph neural networks for molecular property pre-

diction presents a novel cross-dependent graph neural network with the multi-view

architecture. Unlike previous methods, our approach integrates atom and bond infor-

mation through a multi-view perspective and incorporates a cross-dependent message

passing mechanism, ensuring updated information flow and enhancing both efficiency

and expressive power.

Gradient-norm based attentive loss for molecular property prediction

propose to utilize a self-attention mechanism to generate a learnable weight for each

data sample according to the associated gradient norm. The learned attention value is
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then embedded into the prediction models to construct an attentive loss for network

updating and back-propagation.

Robust self-training strategy for various molecular biology prediction

tasks utilizes self-training paradigm to explore the large amount unlabeled molecules

information, and further equips with robust loss to handle the label-noise problem

during the training.

Deep graph learning with property augmentation for predicting drug-

induced liver injury tackles a practical problem in drug discovery, which is DILI

prediction. With the help of our proposed property augmentation strategy with

toxicity property data, additional information is involved to enhance network training.

This approach not only enhances the learning of molecular representation through

increased input data but also exploits correlations between property labels, holding

potential to enhance not only DILI prediction but also other properties with limited

data.

Improving molecular property prediction on limited data with deep

multi-label learning is implemented with sequence-based models along with multi-

label learning, which further demonstrates the effectiveness of multi-label learning

in enhancing prediction performance from two angles: firstly, by extracting valuable

information from extensive unlabeled SMILES data to establish an accurate encoder

model for representation learning, and secondly, by jointly training multiple properties

using labeled data to enhance the performance of smaller properties. Extensive exper-

imental results substantiate the effectiveness of our approach, showcasing significant

improvements for properties with limited available data.

For my next step, I will extend my knowledge and keep working in this area.

With more types of information available, i.e., molecular image information and 3D
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structure, how to effectively utilize and integrate various types of data is a potential

direction to develop more advanced molecular representation learning models.

Moreover, with the rapid development of large language models (LLMs), it is

an emerging field that has shown remarkable capabilities in understanding complex

biological and chemical contexts. However, how to adapt it to molecular property

prediction is still a challenge. I am enthusiastic about exploring these cutting-edge

techniques and integrating them into my research topic.
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