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ABSTRACT

TOWARDS NUCLEI SEGMENTATION WITH LIMITED ANNOTATIONS

Mohammad Minhazul Haq, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Dr. Junzhou Huang

Nuclei segmentation is a fundamental but challenging task in histopathology

image analysis. For semantic segmentation of nuclei, Convolutional Neural Network

(CNN), and Vision Transformer (VT) models give very promising results. However, to

successfully train fully-supervised CNN and VT models we need significant amount of

annotated data which is highly rare in biomedical domain. Also, collecting an unan-

notated histopathology dataset first, and then manually doing pixel-level labeling is

expensive, time-consuming and tedious process. Therefore, we require to discover a

way for training nuclei segmentation models with unlabeled datasets. In this thesis, I

present my work towards solving this critical problem by utilizing Adversarial Learn-

ing, Self-Supervised Learning (SSL), and Diffusion Models. Thus, my approaches

can be summarized into three directions: 1) employing adversarial learning based

unsupervised and semi-supervised domain adaptation techniques to solve nuclei seg-

mentation problem for unannotated datasets; 2) proposing SSL based approaches for

pre-training VT models with unannotated image dataset; 3) introducing Denoising

Diffusion Probabilistic Model (DDPM) based approach for pre-training nuclei seg-

mentation model with large-scale histology image dataset. In the first approach, I
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apply Unsupervised Domain Adaptation (UDA) and Semi-Supervised Domain Adap-

tation (SSDA) with the help of another labeled dataset that may come from another

organs or sources. Later, I extend the model by utilizing an adversarial learning

incorporated reconstruction network to translate the source-domain images to the

target domain for further training. Then, in my second approach, I introduce a novel

region-level SSL based framework for pre-training semantic nuclei segmentation model

with a large-scale unannotated histopathology image dataset extracted from Whole

Slide Images (WSI). Additionally, I propose hierarchical, scale, and transformation

equivariance loss to reduce the disagreements among predictions. Finally, in the third

approach, I utilize DDPM for extracting discriminative and powerful features. Then,

I combine a generation module, a discriminator, and scale loss with DDPM for effec-

tive label-efficient SSL based pre-training. Extensive and comprehensive experiments

demonstrate the superiority of the proposed methods over the baseline models.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Nuclei Segmentation

Nuclei are the fundamental organizational unit of life [71]. The accurate segmen-

tation of nuclei is crucial for cancer diagnosis and further clinical treatments. Because

of that, nuclei segmentation is considered as an essential task of digital histopathology

image analysis [99, 29]. However, accurate nuclei segmentation is quite challenging

due to the significant variations in the shape and appearance of nuclei, clustered and

overlapped nuclei, blurred nuclei boundaries, inconsistent staining methods, scanning

artifacts, etc. Also, histopathology of different organs or cancer types may exhibit

different textures, color distributions, morphology and scales [95, 56].

1.2 Challenges and Proposed approaches

In semantic segmentation of nuclei, we want to segment the nuclei from its

background (see Figure 1.1). For semantic nuclei segmentation, Convolutional Neu-

ral Network (CNN) based approaches give very promising results [54, 66, 107, 28].

Alternatively, Vision Transformers (VT) have the potentiality to outperform CNN

based models due to their ability to model long-range dependencies (i.e., global con-

text) [104]. However, to successfully train fully-supervised CNN models, we need at

least a few amount of annotated data (i.e., images with their corresponding pixel-

level ground-truth labels) [46, 101]. Furthermore, VT needs lot of data for training,

usually more than what is necessary to standard CNNs [52]. Unfortunately, such well-

annotated datasets, even if very small-sized, are highly rare in biomedical domain.

1



Figure 1.1. The output of semantic nuclei segmentation.

Also, collecting an unannotated dataset first, and then doing the manual labeling

with the help of experts is also an expensive, time-consuming and tedious process

[94, 13, 99]. For example, annotating even a small nuclei segmentation dataset con-

sisting of 50 image paches takes 120-130 hours of an expert pathologist’s time [34].

Therefore, we require to discover a way for training the nuclei segmentation network

with unlabeled dataset.

To solve the aforementioned problem, we may think of applying conventional

solutions like Transfer Learning, Pre-training with generic image dataset, etc. How-

ever, simply applying Transfer Learning (i.e., models trained with one organ or cancer

type, and then evaluated with different organ or cancer types) unfortunately leads to

poor performance due to the domain shift problem [71]. This domain shift problem

happens due to different scanners, scanning protocols, tissue types, etc. [71]. As an

alternative solution, CNN and VT models can be pre-trained with large-scale natural

image dataset (i.e., ImageNet [19]) in fully-supervised manner, and then fine-tuned to

downstream tasks [23]. However, pre-training nuclei segmentation models with Ima-

geNet is not much helpful because of morphological and textural differences between

natural image domain and medical image domain. Also, ImageNet-like large-scale

annotated histology dataset rarely exists in medical image domain.
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In this thesis, I tackle these obstacle by proposing: 1) adversarial learning based

Unsupervised Domain Adaptation (UDA) and Semi-Supervised Domain Adaptation

(SSDA) approaches to solve nuclei segmentation problem for unannotated datasets;

2) reconstruction network incorporated feature-space and output-space domain adap-

tation model so that the source domain images can be translated to the target domain

for further training of the nuclei segmentation network; 3) Self-Supervised Learning

(SSL) based region-level triplet learning for pre-training VT models with unannotated

histology image dataset; 4) disagreement loss (i.e., hierarchical, scale, and transfor-

mation equivariance loss) incorporated SSL based pre-training framework for nuclei

segmentation; and 5) Denoising Diffusion Probabilistic Model (DDPM) based ap-

proach for pre-training nuclei segmentation model with large-scale histology image

dataset.

1.3 Dataset

In this thesis, I use a large-scale unannotated dataset for pre-training purposes,

and four annotated datasets for fine-tuning the model. We discuss the details of these

pre-training and fine-tuning datasets in the following.

1.3.1 Pre-training dataset

MoNuSegWSI MoNuSeg [45, 47] training dataset contains thirty 1000 × 1000 an-

notated image patches extracted from thirty Whole Slide Images (WSI) of different

patients collected from The Cancer Genomic Atlas (TCGA). Similar to train-split

of AttnSSL [68], we select 19 patients, and download corresponding 19 H&E stained

WSIs from which we extract patches of size 512 × 512 at 40x magnification. Fol-

lowing AttnSSL [68], we perform a simple thresholding in HSV color space for each

extracted patch to determine whether the patch contains tissue or not. Patches with
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less than 70% tissue cover are not used. Thus, a total of 178217 patches are selected

for pre-training. In our experiments, we denote this unannotated pre-training dataset

as MoNuSegWSI.

1.3.2 Fine-tuning datasets

Dataset-1 (TNBC) The images of TNBC dataset [58] are collected at 40x magni-

fication. This dataset consists of 50 H&E stained histology images of size 512× 512.

Labeling of this dataset is performed by expert pathologist and research fellows. In

our experiments, we randomly split TNBC into 80% for training, 10% for validation,

and 10% for testing.

Dataset-2 (MoNuSeg) We split thirty 1000× 1000 annotated images of MoNuSeg

[45, 47] training data into 80% for training, and 20% for validation. MoNuSeg-test

consists of 14 images of MoNuSeg testing data. We refer this dataset as MoNuSeg in

our experiments.

Dataset-3 (KIRC) The images of this dataset are extracted at 40x magnification

from Whole Slide Images (WSI) of Kidney Renal Clear cell carcinoma (KIRC). We

take this dataset from [37]. This dataset, referred as KIRC, has of 486 H&E stained

histology images of 400 × 400 pixel size. The ground-truth labels are annotated by

expert pathologists and research fellows. We follow the same data splitting as TNBC

for this dataset.

1.4 Dissertation Structure

In this thesis, I will present how each of the proposed approaches solve nuclei

segmentation problem with limited annotations as follows:

Chapter 2 presents a network named CellSegUDA for nuclei segmentation on

the unlabelled dataset (target domain). High unavailability of annotated nuclei seg-
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mentation dataset, and tedious labeling process enforce us to discover a way (i.e.,

CellSegUDA) for training with unlabeled dataset. In CellSegUDA, we apply Un-

supervised Domain Adaptation (UDA) technique with the help of another labeled

dataset (source domain) that may come from other organs or sources. Then, con-

sidering the scenario when we have a small number of annotations available from

the target domain, we extend our work to CellSegSSDA, a Semi-Supervised Domain

Adaptation (SSDA) based approach. Extensive and comprehensive experiments on

two public nuclei segmentation datasets demonstrate the superiority of our proposed

CellSegUDA and CellSegSSDA models.

Chapter 3 introduces another nuclei segmentation model, NuSegUDA, in which

we apply UDA technique at both of feature space and output space. We additionally

utilize a reconstruction network and incorporate adversarial learning into it so that the

source-domain images can be accurately translated to the target-domain for further

training of the segmentation network. Then, assuming we have a few annotation

available from target domain, we extend our work to SSDA. We validate our proposed

UDA and SSDA frameworks on two public nuclei segmentation datasets, and obtain

significant improvement as compared with the baseline models.

Chapter 4 presents a novel region-level Self-Supervised Learning (SSL) approach

and corresponding triplet loss for pre-training semantic nuclei segmentation model

using a large-scale unannotated histology image dataset extracted from Whole Slide

Images (WSI). Due to this triplet loss, our pre-trained SSL model learns to separate

nuclei features from the background features in the embedding space. Additionally,

our SSL approach involves the image-level sub-task of predicting the scale of image,

which enables the segmentation network to implicitly acquire further knowledge of

nuclei size and shape. In the end we empirically demonstrate the superiority of

5



our proposed SSL incorporated Vision Transformer (VT) model, TransNuSS, on two

public nuclei segmentation datasets.

Chapter 5 introduces region-level, image-level and clustering-based SSL ap-

proach for pre-training semantic nuclei segmentation model with unannotated histol-

ogy images extracted from WSIs. Unfortunately, due to the lack of annotations, SSL

alone can not guarantee the consistency of the model while pre-training. To reduce

disagreements among the predictions, we propose hierarchical, scale and transfor-

mation equivariance consistency losses. Thus, we introduce a simple yet effective

combination of SSL approaches and consistency losses for pre-training semantic nu-

clei segmentation model. We empirically demonstrate the superiority of our proposed

consistency-preserving SSL incorporated VT model on two public nuclei segmentation

datasets.

Chapter 6 presents Denoising Diffusion Probabilistic Model (DDPM) based

SSL approach for pre-training semantic nuclei segmentation model with unannotated

histology images extracted from WSIs. We feed-forward the DDPM outputs (i.e.,

estimated noise) to a generation module for predicting the segmentation mask. Since

DDPM are capable of extracting powerful and discriminative features via generative

pre-training for dense prediction tasks, we combine SSL with DDPM. To pre-train

the model for generating realistic segmentation masks and acquiring knowledge of

nuclei, we employ a discriminator and scale loss, respectively. Thus, we introduce

a simple yet effective combination of DDPM, generation module, discriminator, and

scale loss for label-efficient pre-training of semantic nuclei segmentation model. We

empirically demonstrate the superiority of our proposed VT incorporated DDPM

based SSL approach on two public nuclei segmentation datasets.

Finally, Chapter 7 provides a summary of this research, and concludes the

dissertation.
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CHAPTER 2

ADVERSARIAL DOMAIN ADAPTATION FOR CELL SEGMENTATION

To successfully train a cell segmentation network in fully-supervised manner for

a particular type of organ or cancer, we need the dataset with ground-truth anno-

tations. However, high unavailability of such annotated dataset and tedious labeling

process enforce us to discover a way for training with unlabeled dataset. In this

chapter, we introduce a network named CellSegUDA for cell/nuclei segmentation on

the unlabeled dataset (target domain). It is achieved by applying Unsupervised Do-

main Adaptation (UDA) technique with the help of another labeled dataset (source

domain) that may come from other organs or sources. We validate our proposed

CellSegUDA on two public cell segmentation datasets and obtain significant improve-

ment as compared with the baseline methods. Finally, considering the scenario when

we have a small number of annotations available from the target domain, we extend

our work to CellSegSSDA, a Semi-Supervised Domain Adaptation (SSDA) based ap-

proach. Our SSDA model also gives excellent results which are quite close to the

fully-supervised upper bound in target domain.

2.1 Introduction

Convolutional Neural Network (CNN) based approaches like Fully Convolu-

tional Network (FCN) [53], U-Net [67], UNet++ [106] give very promising results in

biomedical image segmentation tasks as well as in cell/nuclei segmentation problems

[73]. However, to successfully train these fully-supervised methods, we need at least

a few amount of annotated data (i.e., images with their corresponding pixel-level

7



Figure 2.1. Images from different domains look dissimilar while their pixel-level seg-
mentation outputs are similar. In this figure, source domain and target domain
images come from Kidney Renal Clear cell carcinoma (KIRC) and Triple Negative
Breast Cancer (TNBC) respectively.

ground-truth labels) [46, 101]. Unfortunately, such well-annotated datasets, even if

very small-sized, are highly rare in biomedical domain. Also, collecting an unan-

notated dataset first, and then doing the manual labeling with the help of experts

is also an expensive, time-consuming and tedious process [94, 13]. How if we could

train a deep CNN model for nuclei segmentation without any further needs for the

annotations? Domain Adaptation, a subclass of Transfer Learning, provides solution

in such scenarios.

Here, we consider the unannotated dataset (i.e., for which we want to predict

the labels) as target domain. Then, with the help of another related but different

annotated dataset, referred as source domain, we apply adversarial learning [25] based

domain adaptation technique for nuclei segmentation problem. Thus, our proposed

framework, learns from labeled source domain and adapts to the unlabeled target

domain. We very carefully observed that, images from different nuclei datasets, even

if collected from different organs or cancer types, exhibit dissimilarity although their

corresponding segmentation ground-truth labels are quite similar (see Figure 2.1). In

summary, ground-truth labels for nuclei segmentation are domain-invariant.
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In this work, we first propose a unsupervised domain adaptation model for

nuclei segmentation. Because of our aforementioned observation, we apply our domain

adaptation in the output space rather than in the feature space. With the help of

adversarial learning, we train a robust biomedical image segmentation network to

generate source-domain look-alike outputs for target images. Additionally, we use

a decoder network to make target images and target predictions correlated to each

other as much as possible. Finally, we extend our Unsupervised Domain Adaptation

(UDA) technique to Semi-Supervised Domain Adaptation (SSDA) considering that

we have some annotations available from the target domain.

Conducting extensive experiments on two nuclei segmentation datasets we con-

clude that, our proposed UDA method, CellSegUDA, outperforms both of a fully-

supervised model [67] trained on source domain and evaluated on target domain, and

a baseline UDA model [22]. Experimental result (see Section 2.4) also shows that, ac-

curacy of our SSDA strategy appears very close to the upper bound of fully-supervised

model trained in target domain.

Thus, the main contributions of this paper are: 1) We propose an adversar-

ial learning based Unsupervised Domain Adaptation (UDA) approach to solve nuclei

segmentation problem for unannotated datasets. 2) Our proposed method is simple

as it does not depend on any data synthesization or data augmentation. 3) Our

proposed UDA framework can be easily extended to Semi-Supervised Domain Adap-

tation (SSDA) in the scenario where a small portion of the target domain is labeled.

4) Extensive and comprehensive experiments on two datasets have demonstrated the

superiority of the proposed methods.
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2.2 Related Work

A multi-level adversarial network based domain adaptation approach for se-

mantic segmentation was proposed by Tsai et al. [79]. Hoffman et al. [33] proposed

an unsupervised domain adaptation model utilizing both of pixel-level and feature-

level adaptation. Isola et al. [38] applied conditional GAN [57] for image-to-image

translation problems. Chen et al. [17] proposed a cross-domain consistency loss based

pixel-wise adversarial domain adaptation algorithm. Zhang et al. [103] proposed a

fully convolutional adaptation network for semantic segmentation.

For different types of biomedical image segmentation, several adversarial net-

work based approaches also have been proposed. A multi-connected domain discrim-

inator based UDA model for brain lesion segmentation was proposed by Kamnitsas

et al. [41]. Dong et al. [22] introduced another UDA framework for cardiothoracic

ratio estimation through chest organ segmentation. Mahmood et al. [55] proposed

a cell segmentation approach in which a large dataset is generated using synthesiza-

tion. Hou et al. [34] also synthesized annotated training data for histopathology image

segmentation. Huo et al. [36] proposed an end-to-end CycleGAN [108] based whole

abdomen MRI to CT image synthesis and CT splegonmegaly segmentation network.

2.3 Methodology

Formally, in our nuclei segmentation problem, we have nuclei histology patches

as input X of size H×W×3. Then, we want to predict the segmentation output Ŷ of

size H×W ×1. Depending on the domain, we may also have pixel-wise ground-truth

label Y of size H ×W × 1 which is basically a binary mask.

Then, in unsupervised domain adaptation problem, we have a source domain

with Ns annotated images {(Xs, Ys)}, and a target domain which has Nt unannotated
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Figure 2.2. Complete architecture of CellSegUDA. Segmentation network generates
segmentation outputs, from which decoder reconstructs input images. Discriminator
distinguishes between source domain outputs and target domain outputs.

images {(Xt)}. In the case of semi-supervised domain adaptation problem, we assume

that our target domain consists of N l
t images with annotations {(X l

t , Yt)}, and Nu
t

unannotated images {(Xu
t )}. Our ultimate goal is to learn a nuclei segmentation

model that accurately produces the segmentation output in the target domain.

2.3.1 CellSegUDA

We refer our nuclei segmentation Unsupervised Domain Adaptation (UDA)

model as CellSegUDA which is shown in Figure 2.2. CellSegUDA consists of three

modules: Segmentation network (S), Decoder (R), and Discriminator (D).

Segmentation network (S) Our segmentation network S takes images X as input

and produces the segmentation prediction Ŷ of the same size as input, hence Ŷ =
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S(X). This segmentation network can be thought as the generator module of a

GAN [25] framework.

We train S to generate the segmentation predictions Ŷs similar to the ground-

truth labels Ys in source domain. We can not compute any pixel-level loss for target

predictions since ground-truth labels are not available for target images in UDA. In

practice, we found dice-coefficient loss to be more effective than binary cross-entropy

loss for nuclei segmentation tasks. Therefore, we choose dice-coefficient loss as our

segmentation loss:

Lseg(Xs) = 1− 2.Y ′s .Ŷ
′
s

Y ′s + Ŷ ′s
(2.1)

where Y ′s and Ŷ ′s are flatten Ys and Ŷs respectively.

Training S with only the annotated source data teaches S to make accurate

predictions for source images. However, this segmentation network will generate

incorrect outputs for target images as there are visual discrepancies between source

images and target images. Because of our observation that cell segmentation outputs

are domain-invariant, we require S to produce target domain predictions as much

as close to the source domain predictions. In other words, we want to make the

distribution of target predictions Ŷt closer to source predictions Ŷs. Thus, we define

adversarial loss as:

Ladv(Xt) = − 1

H ′ ×W ′

∑
h′,w′

log (D(Ŷt)) (2.2)

where Ŷt = S(Xt), and H ′ and W ′ are height and width of discriminator output

D(Ŷt). This adverserial loss helps S to fool the discriminator so that it considers Ŷt

as source domain segmentation outputs.

Segmentation loss and adversarial loss altogether guides S to generate target do-

main predictions Ŷt which look similar to source domain ground-truths. However, it is

highly probable that these target predictions are not well-correlated with correspond-
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ing target input images. The ability of reconstructing images from the predictions

with similar visual appearance as input images will ensure that there is a correlation

between the input image and segmentation output.

Decoder (R) To ensure that our target domain predictions spatially correspond to

the target domain images, we use a decoder network R in CellSegUDA. In a similar

way to [89], we consider our segmentation network S as an encoder. Then, decoder

R reconstructs target images from the corresponding predictions. Thus, S and R

altogether works as an autoencoder.

Using our decoder network R, we first reconstruct target input images Xt from

Ŷt. Then, we calculate the reconstruction loss as:

Lrecons(Xt) =
1

H ×W × C
∑
h,w,c

(Xt −R(Ŷt))
2

(2.3)

where, R(Ŷt)) is the output of decoder for Ŷt, and C is the number of channels of

input image X.

Thus, we minimize the following total loss while training our segmentation

network:

Ls(Xs, Xt) = Lseg(Xs) + λadvLadv(Xt) + λreconsLrecons(Xt) (2.4)

where, λadv and λrecons are the weights to balance corresponding losses.

Discriminator (D) Since we want to generate similar predictions for both of source

images and target images, we incorporate a discriminator D in CellSegUDA. This

discriminator takes source domain prediction or target domain prediction as input,

13



and then distinguishes whether the input, i.e. prediction, comes from source domain

or target domain. To train D, we use following cross-entropy loss:

Ldis(Ŷ ) = − 1

H ′ ×W ′

∑
h′,w′

z. log (D(Ŷ )) + (1− z). log (1−D(Ŷ )) (2.5)

where z=0 when D takes target domain prediction as its input, and z=1 when input

comes from source domain prediction.

2.3.2 CellSegSSDA

In Semi-Supervised Domain Adaptation (SSDA) problem, we must make sure

the best usages of available target domain annotations Yt while training our seg-

mentation network S. In such scenarios, we extend our CellSegUDA framework to

CellSegSSDA, a cell segmentation semi-supervised domain adaptation model.

In CellSegSSDA, for unannotated target images we do the same as CellSegUDA.

However, when we encounter an annotated target data (X l
t , Yt) while training, we ad-

ditionally compute the segmentation loss Lseg(X
l
t) in the similar manner to Eq. (2.1).

Then, while computing the total loss we incorporate Lseg(X
l
t) so that the segmentation

network learns to generate the predictions closer to target ground-truths. Therefore,

Eq. (2.4) is now modified as below:

Ls(Xs, X
l
t) = Lseg(Xs) + Lseg(X

l
t) + λadvLadv(X

l
t) + λreconsLrecons(X

l
t) (2.6)

2.3.3 Implementations

In our work, we use U-Net [67] as both of our segmentation network and de-

coder. We choose U-Net so that our proposed segmentation framework can be directly

applied in other biomedical domains. We preferred U-Net over UNet++ [106] because

of the less number of parameters. Following DCGAN [64], we designed our discrimi-

nator consisting of five convolutional layers. To train CellSegUDA and CellSegSSDA,
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we followed the training strategy from GAN [25]. Adam optimizer [44] with learn-

ing rate 0.0001, 0.001 and 0.001 are used in segmentation network, discriminator

and decoder respectively. We empirically choose 0.001 and 0.01 as λadv and λrecons

respectively. We do not use any data augmentation in our experiments.

2.4 Experiments

2.4.1 Dataset

In this paper, we use two datasets: 1) KIRC, and 2) TNBC. Although both

datasets consist of H&E stained histopathology images, they are collected from two

different organs and different institutions. KIRC images are collected from TCGA

portal (image acquiring tools are unknown to us), whereas TNBC images were ac-

quired at Curie Institute using Philips Ultra Fast Scanner 1.6RA. Organ difference,

institutional difference, and using different imaging tools and protocols cause the vi-

sual difference among the images from these two datasets. See Figure 2.1, where

TNBC image looks dimmer than KIRC image.

2.4.2 Experimental results

Experiment-1 (KIRC → TNBC) In our first experiment, we choose KIRC as

source domain and TNBC as target domain, denoted by KIRC → TNBC. We start

with our unsupervised domain adaptation (UDA) model CellSegUDA which gives

much better accuracies than a UDA baseline DA-ADV [22]. We also choose a fully-

supervised model U-Net [67] to get an idea how it performs when directly applying

transfer learning (i.e., training with only KIRC and then test it on TNBC without

any modifications) which is also considered as the lower-bound of experimental per-

formance. This poor performance of transfer learning (see the first row of Table 2.1)

happens because of the visual domain gap between source training images and target
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Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Method IoU% Dice score IoU% Dice score
U-Net (source-trained) [67] 52.66 0.6875 54.82 0.7056
DA-ADV [22] 54.93 0.7079 55.43 0.7107
CellSegUDA w/o recons 56.56 0.72 56.91 0.7224
CellSegUDA 59.02 0.7394 57.09 0.7242
U-Net (source 100% + target 10%) 60.74 0.7534 56.89 0.7194
CellSegSSDA (source 100% + target 10%) 60.96 0.7557 58.81 0.7377
U-Net (source 100% + target 25%) 61.67 0.7607 59.32 0.7405
CellSegSSDA (source 100% + target 25%) 62.94 0.771 59.73 0.7443
U-Net (source 100% + target 50%) 56.73 0.7208 59.95 0.7464
CellSegSSDA (source 100% + target 50%) 63.59 0.7748 60.32 0.7494
U-Net (source 100% + target 75%) 59.06 0.7394 61.63 0.7592
CellSegSSDA (source 100% + target 75%) 64.96 0.7862 61.01 0.7541
U-Net (target-trained) 66.57 0.7985 62.04 0.7621

Table 2.1. Segmentation results for Experiment-1 and Experiment-2. IoU denotes
intersection over union. Here, unsupervised domain adaptation (UDA) baseline is
denoted as DA-ADV. CellSegUDA w/o recons, CellSegUDA and CellSegSSDA refer
to our proposed UDA model without reconstruction loss, proposed UDA with recon-
struction loss, and proposed semi-supervised domain adaptation method respectively.
CellSegSSDA(source 100% + target n%) denotes n% annotations available in TNBC-
train and KIRC-train for experiment-1 and experiment-2 respectively. Results are
from testing on TNBC-test and KIRC-test for experiment-1 and experiment-2 re-
spectively.

test images, also known as domain shift problem. Figure 2.3(c) shows the visualization

result of applying transfer learning in which many of the nuclei are missed out when

comparing to the ground-truth. Then, training U-Net with TNBC-train and testing

it on TNBC-test gives us the upper-bound (last row of Table 2.1). Table 2.1 shows

that, CellSegUDA gives 6.36 higher IoU% than source-trained U-Net model. We see

that, CellSegUDA also has 4.09 higher IoU% than UDA baseline DA-ADV. We check

the effect of our decoder network R by training CellSegUDA without reconstruction

loss, denoted as CellSegUDA w/o recons in Table 2.1. We find that, reconstruction
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Figure 2.3. Visualization of segmentation for KIRC→TNBC. (g) shows that recon-
structed target image (output from decoder) is quite similar to the input image which
proves the efficacy of our proposed network. In (e)-(f) and (h)-(i), blue arrows indicate
some missing nuclei of previous method. In (h) and (i), yellow arrows indicates false
positives which are removed by following CellSegSSDA(50%) and CellSegSSDA(75%)
respectively. Figure shows that, CellSegSSDA can identify more nuclei as the per-
centage of available annotations increases. This average-dense nuclei histopathology
image in (a) is chosen so that the reader can easily find out the visual differences
without further zooming-in.

loss really makes our segmentation network more accurate (see Figure 2.3(e)-(f) for

visualization). Figure 2.3(g) also shows that we can reconstruct input images using

our decoder from corresponding segmentation prediction, thus we believe that our

prediction is well-correlated with its input.

Then, we assess our semi-supervised domain adaptation method CellSegSSDA

for KIRC → TNBC. Source dataset, KIRC, is the same as UDA experiments. How-

ever, now we treat TNBC as partially labeled. We train CellSegSSDA considering

10%, 25%, 50% and 75% images from TNBC-train dataset has annotations avail-

able. Then, testing on TNBC-test gives us increasing IoUs and dice scores. This

happens because more true positive nuclei can be identified and some false positive
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Figure 2.4. Visualization of segmentation for TNBC→KIRC. In (f) and (j), blue
arrows indicate missing nuclei of previous method. In (f) and (h)-(i), yellow arrows
indicate a false positive which is removed by following method. Similar to Figure 2.3,
we chose this average-dense nuclei histopathology image for readability purposes.

cells can be removed by CellSegSSDA as we train it with more target annotations

(see Figure 2.3(h)-(j)). We observe that, the accuracy of CellSegSSDA approaches to

the upper-bound (only lower by 1.61 IoU%) as we train with more annotations from

target domain. We also compare CellSegSSDA with fully-supervised model U-Net

to demonstrate the superiority of our SSDA model. This time, to train U-Net, we

combine full KIRC dataset with the same 10%, 25%, 50% and 75% of TNBC-train

we chose to train CellSegSSDA. As domain adaptation helps to reduce the domain

shift problem, we see that CellSegSSDA outperforms fully-supervised model in all of

the cases.

Experiment-2 (TNBC → KIRC) We conduct another experiment in the simi-

lar way to Experiment-1 by selecting TNBC as source and KIRC as target domain.

This experiment also reflects the excellence of CellSegUDA and CellSegSSDA com-
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pared to other approaches in terms of segmentation accuracies (see last two columns

of Table 2.1). Similar to experiment-1, we also see that segmentation accuracies of

CellSegSSDA increase as more target images are annotated. Segmentation visualiza-

tion from this experiment is shown in Figure 2.4. From this experiment, we once

again observe that CellSegUDA performs better than CellSegUDA w/o recons which

proves the validity of our decoder and the effectiveness of reconstruction loss (see

reconstructed image in Figure 2.4(g)).

2.5 Conclusion

In this work, utilizing adversarial learning we propose a novel Unsupervised

Domain Adaptation (UDA) framework for segmenting nuclei in unannotated datasets.

Prominent experimental results validate the effectiveness of our UDA model. Finally,

assuming we have a few annotations available, we extend our work to semi-supervised

domain adaptation (SSDA). We expect our proposed UDA and SSDA approach to

be very useful in other biomedical image segmentation tasks.
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CHAPTER 3

NuSegDA: DOMAIN ADAPTATION FOR NUCLEI SEGMENTATION

The accurate segmentation of nuclei is crucial for cancer diagnosis and fur-

ther clinical treatments. To successfully train a nuclei segmentation network in a

fully-supervised manner for a particular type of organ or cancer, we need the dataset

with ground-truth annotations. However, such well-annotated nuclei segmentation

datasets are highly rare, and manually labeling an unannotated dataset is an expen-

sive, time-consuming and tedious process. Consequently, we require to discover a way

for training the nuclei segmentation network with unlabeled dataset. In this chap-

ter, we propose a model named NuSegUDA for nuclei segmentation on the unlabeled

dataset (target domain). It is achieved by applying Unsupervised Domain Adapta-

tion (UDA) technique with the help of another labeled dataset (source domain) that

may come from different type of organ, cancer or source. We apply UDA technique

at both of feature space and output space. We additionally utilize a reconstruction

network and incorporate adversarial learning into it so that the source-domain im-

ages can be accurately translated to the target-domain for further training of the

segmentation network. We validate our proposed NuSegUDA on two public nuclei

segmentation datasets, and obtain significant improvement as compared with the

baseline methods. Extensive experiments also verify the contribution of newly pro-

posed image reconstruction adversarial loss, and target-translated source supervised

loss to the performance boost of NuSegUDA. Finally, considering the scenario when

we have a small number of annotations available from the target domain, we extend
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Figure 3.1. The semantic segmentation of nuclei. In this figure, the input image
comes from Triple Negative Breast Cancer (TNBC).

our work and propose NuSegSSDA, a Semi-Supervised Domain Adaptation (SSDA)

based approach.

3.1 Introduction

Nuclei are the fundamental organizational unit of life [71]. Nuclei segmentation,

a subclass of biomedical image segmentation, is considered as an essential task of

digital histopathology image analysis [99, 29]. However, accurate nuclei segmentation

is quite challenging due to the significant variations in the shape and appearance

of nuclei, clustered and overlapped nuclei, blurred nuclei boundaries, inconsistent

staining methods, scanning artifacts, etc. (see Figure 3.1). Also, histopathology of

different organs or cancer types may exhibit different textures, color distributions,

morphology and scales [95, 56].

Nuclei segmentation problem can be seen as a semantic segmentation problem

in which we want to segment the nuclei from it’s background. Figure 3.1 shows the

input image, and corresponding output of semantic segmentation of nuclei. Convo-

lutional Neural Network (CNN) based approaches like Fully Convolutional Network

(FCN) [53], U-Net [67], UNet++ [106], etc. give very promising results in biomedical
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image segmentation tasks as well as in nuclei segmentation problems [73, 29, 71].

However, to successfully train these fully-supervised methods, we need at least a few

amount of annotated data (i.e., images with their corresponding pixel-level ground-

truth labels) [46, 101, 71]. Unfortunately, such well-annotated datasets, even if very

small-sized, are highly rare in biomedical domain. Moreover, due to the heterogeneity

of nuclei, it’s even harder to learn good models under the scenario of lacking annota-

tions and samples. Also, commonly used strategy which first collects an unannotated

histopathology dataset and then do the manual pixel-level labeling with the help of

experts is also an expensive, time-consuming and tedious process [94, 13, 99]. For

example, annotating even a small nuclei segmentation dataset consisting of 50 im-

age paches takes 120-130 hours of an expert pathologist’s time [34]. Therefore, an

urgent question is raised: how could we robustly train a deep CNN model for nuclei

segmentation without any further need for annotations?

For nuclei segmentation problem, simply applying Transfer Learning (i.e., mod-

els trained with one organ or cancer type, and then evaluated with different organ

or cancer types) unfortunately leads to poor performance due to the domain shift

problem [71]. This domain shift problem happens due to different scanners, scanning

protocols, tissue types, etc. [71]. In this paper, we propose Domain Adaptation, a

subclass of Transfer Learning, based framework to solve the domain shift problem for

nuclei segmentation. We consider the unannotated dataset (i.e., for which we want

to predict the labels) as the target domain. Then, with the help of another related

but different annotated dataset, referred as the source domain, we apply adversarial

learning [25] based domain adaptation technique for nuclei segmentation problem.

Thus, our proposed framework, learns from the labeled source domain and adapts to

the unlabeled target domain.
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Figure 3.2. Images from different domains look dissimilar while their pixel-level seg-
mentation outputs are similar. In this figure, source domain and target domain
images come from Kidney Renal Clear cell carcinoma (KIRC) and Triple Negative
Breast Cancer (TNBC), respectively.

In this work, we first propose an Unsupervised Domain Adaptation (UDA)

model for nuclei segmentation to close the gap between the annotated source domain

and unlabeled target domain. UDA methods are capable to minimize the labeling

cost by utilizing cross-domain data and aligning the distribution shift between labeled

source domain data and unlabeled target domain data. We empirically and carefully

observed that, images from different nuclei datasets, even if collected from different

organ or cancer types, exhibit dissimilarity although their corresponding segmenta-

tion ground-truth labels are quite similar (see Figure 3.2). In summary, ground-truth

labels for nuclei segmentation are domain-invariant. Because of the aforementioned

observation, we apply domain adaptation in the output space. Thus, with the help

of adversarial learning, we train a robust nuclei segmentation network to generate

source-domain look-alike outputs for target images. Adversarial learning attempts

to align target-domain predictions with source-domain ground truths via discrimi-

nator training. In addition to image-level domain adaptation at the output space,

we apply domain-invariant class-conditional feature-level domain adaptation in the

feature space. However, simply forcing the target-domain distribution towards the

source-domain distribution can destroy the latent structural patterns of the target

domain, leading to a drop in the model’s accuracy. Consequently, we also use a
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reconstruction network to maximize the correlation between target images and tar-

get predictions. Again, a reconstruction network alone can not perfectly reconstruct

original images (i.e., the reconstructed images lack original texture, style, color dis-

tribution, etc.) for which we incorporate adversarial learning into the reconstruction

network, which in turn helps us to translate source domain images to the target

domain. We additionally train our UDA model with these target-translated source

images, and observe a significant performance boost. Finally, we extend our UDA

framework to Semi-Supervised Domain Adaptation (SSDA) model considering that

we have some annotations available from the target domain.

Conducting extensive experiments on two nuclei segmentation datasets we con-

clude that, our proposed UDA method, NuSegUDA, outperforms fully-supervised

model trained on source domain and evaluated on target domain, and baseline generic

and biomedical UDA segmentation models. Experimental result (see Section 4) also

shows the impacts of training NuSegUDA with proposed image reconstruction adver-

sarial loss, target-translated source images, and feature-level clustering loss. Further-

more, the accuracy of our SSDA model, NuSegSSDA, is highly competitive to the

upper bound of fully-supervised model trained in the target domain.

Therefore, the main contributions of this paper are: 1) We propose an adver-

sarial learning based Unsupervised Domain Adaptation (UDA) approach, which is

applied at both of feature space and output space to solve nuclei segmentation prob-

lem for unannotated datasets. 2) Additionally, we incorporate adversarial learning

into a reconstruction network to translate source domain images to the target domain,

and train proposed model with these target-translated source images. 3) Compared

to many of the baselines, our proposed method is simple as it does not depend on

any data synthesization or data augmentation. 4) Our proposed UDA framework can

be easily extended to Semi-Supervised Domain Adaptation (SSDA) in the scenario
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where a small portion of the target domain is labeled. 5) Extensive and comprehen-

sive experiments on two datasets have demonstrated the superiority of the proposed

methods.

3.2 Related Work

In literature, several domain adaptation models have been proposed for generic

image segmentation. Isola et al. [38] applied conditional GAN [57] for image-to-

image translation problems. CyCADA proposed an Unsupervised Domain Adapta-

tion (UDA) model utilizing both of input space and feature space adaptation [33].

A multi-level adversarial network based domain adaptation approach for semantic

segmentation was proposed in AdaptSegNet [79]. Zhang et al. [103] proposed a fully

convolutional adaptation network for semantic segmentation. CrDoCo proposed a

cross-domain consistency loss based pixel-wise adversarial domain adaptation algo-

rithm [17]. Yang et al. [96] proposed adversarial self-supervision UDA model which

maximizes agreement between clean samples and their adversarial examples. Toldo

et al. [78] proposed feature-clustering based UDA framework that groups features of

the same class into tight and well-separated clusters.

Domain adaptation has also been employed in different biomedical image seg-

mentation tasks. A multi-connected domain discriminator based UDA model for

brain lesion segmentation was proposed by Kamnitsas et al. [41]. Dong et al. [22] in-

troduced another UDA framework for cardiothoracic ratio estimation through chest

organ segmentation. Huo et al. [36] proposed an end-to-end CycleGAN [108] based

whole abdomen MRI to CT image synthesis and CT splegonmegaly segmentation

network. Mahmood et al. [56] proposed a nuclei segmentation approach in which

a large dataset is generated using synthesization. Gholami et al. [24] proposed a

biophysics-based medical image segmentation framework which enriches the training
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dataset by generating synthetic tumor-bearing MR images. Hou et al. [34] also syn-

thesized annotated training data for histopathology image segmentation. Haq and

Huang [28] utilized adversarial learning at output space along with a reconstruc-

tion network for nuclei segmentation. Xia et al. [90] proposed Uncertainty-aware

Multi-view Co-Training (UMCT) framework which is capable of utilizing large-scale

unlabeled data to improve volumetric medical image segmentation. Raju et al. [65]

proposed an user-guided domain adaptation framework for liver segmentation which

uses prediction-based adversarial domain adaptation to model the combined distri-

bution of user interactions and mask predictions. EndoUDA proposed another UDA-

based segmentation model for gastrointestinal endoscopy imaging which comprises of

a shared encoder and a joint loss function for improved unseen target domain gener-

alization [11]. Li et al. [49] proposed another GAN [57] based framework for unsuper-

vised domain adaptation of nuclei segmentation which also utilized self-ensembling

and conditional random field [5]. Sharma et al. [71] proposed a mutual information

based UDA method for cross-domain nuclei segmentation.

Several previous approaches [79, 22, 28, 78] employed unsupervised domain

adaptation technique either in the output space or the feature space. Differently from

these approaches, in our work we apply domain adaptation at both of output space

and feature space. Additionally, unlike previous works, we utilize a reconstruction

network to ensure that the target domain predictions spatially correspond to the

target domain images. Also, several recent works [36, 56, 24, 34] applied complicated

data synthesization techniques to generate a large training dataset. On the contrary,

in our work we simply incorporate adversarial learning so that the source domain

images can be translated to the target domain for further training.
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3.3 Methodology

In this section, we first describe the problem that we aim to solve. Then, we

introduce the details of our proposed Unsupervised Domain Adaptation (UDA) and

Semi-Supervised Domain Adaptation (SSDA) framework. Finally, we discuss the

implementations of the proposed models.

3.3.1 Problem Definition

In our nuclei segmentation problem, we have nuclei histopathology image patches

as input X of size H ×W × 3. The input X comes from either the source domain or

the target domain. Depending on the problem (i.e., unsupervised or semi-supervised)

and domain (i.e., source or target), we may also have the corresponding pixel-wise

ground-truth label Y of size H × W × 1 which is basically a binary mask. Then,

using the segmentation network, we want to predict the segmentation output Ŷ of

size H ×W × 1.

Formally, in Unsupervised Domain Adaptation (UDA) problem, the source do-

main consists of Ns annotated images {(Xs, Ys)}, and the target domain has Nt unan-

notated images {(Xt)}. In the case of Semi-Supervised Domain Adaptation (SSDA)

problem, the source domain is the same as it is in UDA problem, and we assume that

the target domain has N l
t images with annotations {(X l

t , Yt)} and Nu
t unannotated

images {(Xu
t )}. In both of UDA and SSDA problem, the source domain data and

target domain data are the related data but they come from different distributions

(i.e., different organ or cancer types). For both of unsupervised and semi-supervised

domain adaptation, our ultimate goal is to learn nuclei segmentation models that

accurately produce the segmentation outputs in the target domain.
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3.3.2 Unsupervised Domain Adaptation

We refer our nuclei segmentation Unsupervised Domain Adaptation (UDA)

model as NuSegUDA, and the framework is shown in Figure 3.3. NuSegUDA consists

of four modules: Segmentation network (S), Reconstruction network (R), Prediction

Discriminator (DP), and Image Discriminator (DI).

3.3.2.1 Segmentation network

The segmentation network S takes image X as the input and produces the

segmentation prediction Ŷ of the same size as the input. Here, X can be either the

source domain image Xs, or the target domain image Xt. Hence, the source domain

prediction Ŷs = S(Xs), and the target domain prediction Ŷt = S(Xt). From the

perspective of GAN [25] framework, the segmentation network S can be thought as

the generator module.

We train S to generate the source domain segmentation predictions Ŷs to be

similar to the source domain ground-truth labels Ys. Since in Unsupervised Domain

Adaptation (UDA) the ground-truth labels are not available for target images, we

can not compute any supervised pixel-level loss for target predictions. In practice,

we found that combining dice-coefficient loss and entropy minimization loss is more

effective than simply using binary cross-entropy loss for nuclei segmentation tasks.

Therefore, we define segmentation loss Lseg as:

Ldice(Xs) = 1− 2.Y ′s .Ŷ
′
s

Y ′s + Ŷ ′s
(3.1)

Lem(Xs) = − 1

H ×W
∑
h,w

Ŷs log(Ŷs) (3.2)

Lseg(Xs) = Ldice(Xs) + Lem(Xs) (3.3)

where Y ′s and Ŷ ′s are the flattened Ys and Ŷs, respectively.
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Figure 3.3. Complete architecture of NuSegUDA. Segmentation network generates
segmentation outputs, from which reconstruction network reconstructs input images.
Prediction discriminator distinguishes between source domain outputs and target
domain outputs. Image discriminator distinguishes between original images and re-
constructed images.

Here, question may arise that why we are using single segmentation network

S in NuSegUDA although we have two different domains. Since we are particularly

looking for nuclei from both domain images, it is very unusual to use multiple seg-

mentation networks. Additionally, using two segmentation networks would increase

the number of learnable parameters which would slow down the training process in

turn. Therefore, single segmentation network helps to prevent the memory issues and

training latency in NuSegUDA.

Training the segmentation network S with only the annotated source data

teaches S to make accurate predictions for source images. However, this segmen-

tation network may generate incorrect outputs for target images as there are visual
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discrepancies between source images and target images (see Figure 3.2). This visual

gap between domains causes the domain shift problem. According to our aforemen-

tioned observation that nuclei segmentation outputs are domain-invariant, we require

S to produce target domain predictions as much as close to the source domain predic-

tions. In other words, we want to make the distribution of target predictions Ŷt closer

to the distribution of source predictions Ŷs. For this reason, we utilize Prediction

Discriminator DP in NuSegUDA, and we define the prediction adversarial loss as:

LadvP (Xt) = − 1

Hp ×Wp

∑
hp,wp

log (DP (Ŷt)) (3.4)

where Ŷt = S(Xt), andHp andWp are height and width of the prediction discriminator

output DP (Ŷt). The details of the Prediction Discriminator DP is discussed in 3.3.2.3.

The prediction adversarial loss in Eq. (3.4) helps S to fool the prediction discrim-

inator so that it considers Ŷt as source domain segmentation outputs. Segmentation

loss and the prediction adversarial loss jointly guide S to generate target domain

predictions Ŷt which look similar to source domain ground-truths.

3.3.2.2 Reconstruction network

As we mentioned earlier, the segmentation network S produces domain-invariant

predictions for both domains. In other words, we want to generate the target domain

predictions in a way so that they become similar to the source domain predictions.

However, it is highly probable that the target predictions are not well-correlated with

corresponding target input images. In this scenario, the ability of reconstructing

the images from the predictions with similar visual appearance as input images will

ensure that there is a correlation between the input image and segmentation output.

To ensure that our target domain predictions spatially correspond to the target

domain images, reconstruction network R is used in NuSegUDA. In a similar way
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Figure 3.4. Visualization of the target-translated source domain images Xs→t which
are also the same as reconstructed source images X̃s. (a)-(c), and (d)-(f) are chosen
from Kidney Renal Clear cell carcinoma (KIRC) domain, and Triple Negative Breast
Cancer (TNBC) domain, respectively. In (c) and (f), we see that KIRC domain
image is translated (i.e. reconstructed) into TNBC domain styles, and vice versa,
respectively. In (b)-(c) and (e)-(f), Xs→t w/o LadvI and Xs→t w/ LadvI refer to the
translated image when NuSegUDA is trained without and with image reconstruction
adversarial loss LadvI , respectively..

to [89], we consider the segmentation network S and the reconstruction network R

as an encoder and a decoder, respectively. R reconstructs target images from the

corresponding predictions. Thus, S and R altogether works as an autoencoder.

Using our reconstruction network R, we first reconstruct target input images

Xt from Ŷt. Then, we calculate the reconstruction loss as:

Lrecons(Xt) =
1

H ×W × C
∑
h,w,c

(Xt −R(Ŷt))
2

(3.5)

where, R(Ŷt)) is the output of reconstruction network for Ŷt, and C is the number of

channels of input image Xt.

Although we use above reconstruction loss to reconstruct the target domain im-

ages from its predictions, the reconstructed images may have very different textures

and styles (for both of nuclei and background) than the original images (see Fig-

ure 3.4). The reason is that the pixel-wise reconstruction loss Lrecons (in Eq. (3.5))

can not capture the overall pixel distribution of target domain images. To solve this

issue, in addition to Lrecons, we also utilize an Image Discriminator DI to distinguish

the original images and the reconstructed images. To train R and S to generate
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original-alike reconstructed images, we define image reconstruction adversarial loss

as:

LadvI(Xt) = − 1

Hi ×Wi

∑
hi,wi

log (DI(X̃t)) (3.6)

where X̃t = R(Ŷt)), and Hi and Wi are height and width of the image discriminator

output DI(X̃t). This adversarial loss LadvI trains R and S to reconstruct target

domain images of similar distributions (in terms of texture, style, color distribution,

etc.) to the original images from target domain.

In NuSegUDA, LadvP helps the segmentation network S to generate target pre-

dictions Ŷt to be similar to the source predictions Ŷs. And, due to LadvI , reconstruc-

tion network R learns to reconstruct target images (i.e., X̃t) which are very similar

to the original target images in terms of texture, style, color distribution, etc. In

other words, S maps both domain images (i.e., Xs and Xt) to a common prediction

subspace Rn
p , and from Rn

p R reconstructs the images in target domain. Therefore,

using S and R we can translate source domain images Xs to the target domain. Thus,

target translated source domain images Xs→t = R(S(Xs)). Figure 3.4 shows the vi-

sualizations of the impacts of image reconstruction adversarial loss LadvI on Xs→t.

Finally, we train the segmentation network S with {(Xs→t, Ys)} using following Ltrans

loss which is a combination of dice-coefficient loss and entropy minimization loss:

Ldice(Xs→t) = 1− 2.Y ′s .Ỹ
′
s

Y ′s + Ŷ ′s
(3.7)

Lem(Xs→t) = − 1

H ×W
∑
h,w

Ỹs log(Ỹs) (3.8)

Ltrans(Xs→t) = Ldice(Xs→t) + Lem(Xs→t) (3.9)

where Ỹs = S(Xs→t). And, Y ′s and Ỹ ′s are the flattened Ys and Ỹs, respectively.
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3.3.2.3 Discriminators

We utilize two discriminators in NuSegUDA: Prediction Discriminator (DP ),

and Image Discriminator (DI). Prediction Discriminator distinguishes between source

domain outputs and target domain outputs, whereas Image Discriminator distin-

guishes between original images and reconstructed images. We discuss the details of

both discriminators in the following.

Prediction Discriminator As our goal is to generate similar predictions for both

of source images and target images, we incorporate prediction discriminator DP in

NuSegUDA. This discriminator takes source domain prediction or target domain pre-

diction as input, and then distinguishes whether the input (i.e., prediction) comes

from the source domain or the target domain. To train DP , we use following cross-

entropy loss:

LdisP (Ŷ ) = − 1

Hp ×Wp

∑
hp,wp

zp. log (DP (Ŷ )) + (1− zp). log (1−DP (Ŷ )) (3.10)

where zp=0 when DP takes target domain prediction as its input, and zp=1 when the

input comes from source domain prediction.

Image Discriminator We use image discriminator DI in NuSegUDA so that the

reconstructed image distribution becomes similar to original image distribution. The

input ofDI is either the original target image or the reconstructed target image. Then,

DI distinguishes whether the input is original or the reconstructed one. Similar to

DP , we use following cross-entropy loss to train DI :

LdisI(X) = − 1

Hi ×Wi

∑
hi,wi

zi. log (DI(X)) + (1− zi). log (1−DI(X)) (3.11)
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where zi=0 when DI takes reconstructed target image X̃t as its input, and zi=1 when

the input comes from original target images Xt.

3.3.2.4 Feature-level adaptation

In addition to image-level domain adaptation at the outputs, we also apply

feature-level domain adaptation in NuSegUDA to reduce the domain gap in the fea-

ture space. We assume that, our segmentation network S is composed of an encoder

SE and a decoder SD (i.e., S = SEoSD). Here, the encoder SE works as a feature ex-

tractor. Due to the discrepancy of input statistics across domains, there is also a shift

of feature distribution in the feature space spanned by SE. Similar to [78], we utilize

a clustering loss at the feature-level to serve as a constraint toward a class-conditional

feature alignment between domains.

Given source image Xs and target image Xt, we first extract the features Fs =

SE(Xs) and Ft = SE(Xt). Then, the clustering loss is computed as:

Lcl(Xs, Xt) =
1

| Fs,t |
∑

fi∈Fs,t,ŷi∈Ŷs,t

d(fi, cŷi)−
1

| C | (| C | −1)

∑
j∈C

∑
k∈C,k 6=j

d(cj, ck)

(3.12)

where fi is the feature vector corresponding to a spatial location of Fs or Ft, ŷi is the

corresponding predicted class, and C is the set of semantic classes which is {0, 1} for

our nuclei segmentation problem. To compute ŷi, the segmentation prediction Ŷ is

downsampled to match the spatial dimension of F . We set the function d(.) to L1

norm. In Eq. (3.12), cj denotes the centroid of semantic class j, which is computed

using following formula:

cj =

∑
fi

∑
ŷi
δj,ŷifi∑

ŷi
δj,ŷi

, j ∈ {0, 1} (3.13)

where δj,ŷi is equal to 1 if ŷi = j, and to 0 otherwise.
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In Eq. (3.12), the clustering loss is composed of two terms: the first term

measures how close the features are from their respective centroids, and the second

term measures how far the semantic class centroids are from each other. Therefore,

according to the first term, the feature vectors of the same class from same or different

domain are tightened around the class feature centroids. And, because of the second

term, features from different classes gets a repulsive force applied to feature centroids

which moves them apart.

Thus, we minimize the following total loss when training our segmentation

network S and reconstruction network R:

Luda(Xs, Xt) = Lseg(Xs) + λadvPLadvP (Xt) + λreconsLrecons(Xt)+

λadvILadvI(Xt) + λtransLtrans(Xs→t) + λclLcl(Xs, Xt)

(3.14)

where, λadvP , λrecons, λadvI , λtrans and λcl are the weights to balance corresponding

losses.

3.3.3 Semi-Supervised Domain Adaptation

In Semi-Supervised Domain Adaptation (SSDA) problem, we aims to ensure

the best usages of available target domain annotations Yt when training our segmen-

tation network S. In such scenarios, we extend proposed NuSegUDA framework to

NuSegSSDA, a nuclei segmentation SSDA model.

In NuSegSSDA, for unannotated target images Xu
t we follow the same steps

as NuSegUDA. However, when we encounter an annotated target data (X l
t , Yt) while

training, we additionally compute the segmentation loss Lseg(X
l
t) in the similar man-

ner to Eq. (3.3). Then, while computing the total loss we incorporate Lseg(X
l
t) so
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that the segmentation network learns to generate the predictions closer to target

ground-truths. Therefore, Eq. (3.14) is now modified as below:

Lssda(Xs, X
l
t , X

u
t ) = Lseg(Xs) + Lseg(X

l
t) + λadvPLadvP (Xu

t ) + λreconsLrecons(X
u
t )+

λadvILadvI(X
u
t ) + λtransLtrans(Xs→t) + λclLcl(Xs, X

l
t , X

u
t )

(3.15)

3.4 Experiments

3.4.1 Dataset

In our experiments, we use two H&E stained histopathology datasets with

ground-truth annotations: 1) KIRC, and 2) TNBC. Both of the datasets that we

used are public.

3.4.2 Implementations

In our work, we use U-Net [67] as both of our segmentation network and re-

construction network. We choose U-Net so that our proposed segmentation frame-

work can be directly applied in other biomedical domains. We preferred U-Net over

UNet++ [106] because of the less number of parameters. Following DCGAN [64],

we designed our prediction discriminator and image discriminator consisting of five

convolutional layers. To train NuSegUDA and NuSegSSDA, we followed the training

strategy from GAN [25]. Adam optimizer [44] with learning rate 0.0001, 0.001, 0.001

and 0.001 are used in segmentation network, reconstruction network, prediction dis-

criminator, and image discriminator, respectively. We empirically choose 0.001, 0.01,

0.001, 0.001 and 0.002 as λadvP , λrecons, λadvI , λtrans and λcl, respectively. We imple-

ment NuSegUDA and NuSegSSDA using PyTorch [61], and trained on a single GPU.

We do not use any data augmentation in our experiments.
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Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Method IoU% Dice score HD IoU% Dice score HD
U-Net (source-trained) 52.66 0.6875 10.1214 54.82 0.7056 9.2487
DA-ADV 54.93 0.7079 9.6531 55.43 0.7107 9.0142
AdaptSegNet 56.49 0.7198 9.1512 56.87 0.7235 8.3477
CellSegUDA 59.02 0.7394 8.5653 57.09 0.7242 8.1739
OrClEmb 59.23 0.7402 8.5564 57.05 0.7236 8.1923
EndoUDA 59.81 0.7445 8.3317 57.39 0.7277 8.1254
SelfEnsemb 60.02 0.7468 8.2524 57.45 0.7292 8.1121
MaNi 60.09 0.7477 8.2746 57.48 0.7293 8.1493
U-Net (target-trained) 66.57 0.7985 7.7301 62.04 0.7621 7.6281
NuSegUDA (ours) 60.51 0.7525 8.0011 57.68 0.7303 8.0881

Table 3.1. Unsupervised Domain Adaptation (UDA) results for Experiment-1 and
Experiment-2. IoU and HD denotes Intersection over Union, and Hausdorff Distance,
respectively. Results are from testing on TNBC-test and KIRC-test for experiment-1
and experiment-2, respectively.

3.4.3 Experimental results

3.4.3.1 Unsupervised Domain Adaptation

Experiment-1 (KIRC → TNBC) In our first experiment, we choose KIRC as

source domain and TNBC as target domain, denoted by KIRC → TNBC. In our

experiment, we choose U-Net [67] as the representative of Convolutional Neural Net-

work (CNN) based approaches. Fully-supervised segmentation model U-Net gives an

insight of how it performs when directly applying transfer learning (i.e., training with

only KIRC and then test it on TNBC without any modifications). AdaptSegNet [79]

and OrClEmb [78] represent generic Unsupervised Domain Adaptation (UDA) mod-

els. DA-ADV [22], CellSegUDA [28], EndoUDA [11], SelfEnsemb [49] and MaNi [71]

are chosen as the representatives of UDA model for biomedical image segmentation.
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Figure 3.5. Visualizations of Unsupervised Domain Adaptation (UDA) for
KIRC→TNBC. In (c)-(f), green pixels, red pixels, and blue pixels indicate the true
positives, false positives, and false negatives, respectively. In other words, green and
red pixels indicate the predicted nuclei pixels, whereas green and blue pixels indicate
the ground-truth nuclei pixels. This average-dense nuclei histopathology image in (a)
is chosen so that the reader can easily find out the visual differences without further
zooming-in.

From Table 3.1, we see that source-trained U-Net gives the lower-bound of ex-

perimental performance (see first row of Table 3.1) which happens because of the

visual domain gap between source training images and target test images, also known

as domain shift problem. We see that, our proposed UDA model NuSegUDA outper-

forms all UDA baseline models in terms of IoU%, Dice score, and Hausdorff distance.

Specifically, NuSegUDA has 1.28 and 0.42 higher IoU% than best generic UDA base-

line OrClEmb, and best biomedical UDA baseline MaNi, respectively. Figure 3.5

shows the visualization results of CellSegUDA, SelfEnsemb, MaNi and NuSegUDA.

In Table 3.1, the second to last row (i.e., U-Net (target-trained)) shows the upper-

bound of experimental performance (i.e., training U-Net with TNBC-train and testing

it on TNBC-test).

Experiment-2 (TNBC → KIRC) We conduct another experiment in the similar

way to experiment-1 by selecting TNBC as source and KIRC as target domain. This

experiment also reflects the excellence of NuSegUDA compared to other approaches

in terms of segmentation accuracies (see last three columns of Table 3.1).
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Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Method IoU% Dice HD IoU% Dice HD
U-Net (source 100% + target 10%) 60.74 0.7534 8.3627 56.89 0.7194 8.5122
CellSegSSDA (source 100% + target 10%) 60.96 0.7557 8.3563 58.81 0.7377 7.9817
NuSegSSDA (source 100% + target 10%) (ours) 61.12 0.7578 8.3274 58.99 0.7401 7.9629
U-Net (source 100% + target 25%) 61.67 0.7607 8.2742 59.32 0.7405 7.9211
CellSegSSDA (source 100% + target 25%) 62.94 0.771 8.0966 59.73 0.7443 7.8647
NuSegSSDA (source 100% + target 25%) (ours) 63.15 0.7732 8.0487 59.79 0.7449 7.8752
U-Net (source 100% + target 50%) 56.73 0.7208 9.1473 59.95 0.7464 7.8461
CellSegSSDA (source 100% + target 50%) 63.59 0.7748 7.9802 60.32 0.7494 7.7958
NuSegSSDA (source 100% + target 50%) (ours) 63.97 0.7802 7.9549 60.53 0.7511 7.7754
U-Net (source 100% + target 75%) 59.06 0.7394 8.6286 61.63 0.7592 7.7026
CellSegSSDA (source 100% + target 75%) 64.96 0.7862 7.8496 61.01 0.7541 7.7275
NuSegSSDA (source 100% + target 75%) (ours) 65.22 0.7901 7.7928 61.68 0.7598 7.6872
U-Net (target 100%) 66.57 0.7985 7.7301 62.04 0.7621 7.6281

Table 3.2. Semi-Supervised Domain Adaptation (SSDA) results for Experiment-1 and
Experiment-2. IoU, Dice, and HD denotes Intersection over Union, Dice score, and
Hausdorff Distance, respectively. NuSegSSDA refers to our proposed SSDA model.
NuSegSSDA (source 100% + target n%) denotes n% annotations available in TNBC-
train and KIRC-train for experiment-1 and experiment-2, respectively. Results are
from testing on TNBC-test and KIRC-test for experiment-1 and experiment-2, re-
spectively.

3.4.3.2 Semi-Supervised Domain Adaptation

Experiment-1 (KIRC → TNBC) In experiment-1, we assess our Semi-Supervised

Domain Adaptation (SSDA) method NuSegSSDA for KIRC → TNBC. Table 3.2

shows the experimental performances of NuSegSSDA. For this experiment, the source

dataset KIRC is the same as UDA experiments. However, now we treat TNBC as

partially labeled. We train NuSegSSDA considering 10%, 25%, 50% and 75% images

from TNBC-train dataset have annotations available. Then, testing on TNBC-test

gives us increasing IoUs and Dice scores, and decreasing Hausdorff Distances. This

happens because more false negative nuclei can be identified and some false positive
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Figure 3.6. Visualizations of Semi-Supervised Domain Adaptation (SSDA) for
KIRC→TNBC. In (c)-(f), green pixels, red pixels, and blue pixels indicate the true
positives, false positives, and false negatives, respectively..

nuclei can be removed by NuSegSSDA as we train it with more target annotations

(see Figure 3.6). We compare NuSegSSDA with fully-supervised model U-Net [67],

and baseline biomedical SSDA model CellSegSSDA [28] to demonstrate the superior-

ity of our proposed SSDA model. To train U-Net, we combine full KIRC dataset with

the same 10%, 25%, 50% and 75% of TNBC-train we chose to train NuSegSSDA. We

observe that, the accuracy of NuSegSSDA approaches to the upper-bound (only lower

by 1.35 IoU%) as we train with more annotations from target domain.

Experiment-2 (TNBC → KIRC) In our second experiment, we select TNBC as

source and KIRC as target domain. The second experiment also demonstrates the

excellence of NuSegSSDA compared to U-Net [67] and CellSegSSDA [28] (see last

three columns of Table 3.2). Similar to experiment-1, for the second experiment we

again see that the segmentation accuracies of NuSegSSDA increase when more target

images are annotated.

3.4.3.3 Ablation Studies

To verify the robustness of proposed UDA framework, we perform extensive

ablation studies on the adaptation of NuSegUDA from KIRC to TNBC, and from
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Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Method LadvI Ltrans Lcl IoU% Dice HD IoU% Dice HD
CellSegUDA 59.02 0.7394 8.5653 57.09 0.7242 8.1739
CellSegUDA w/ LadvI X 59.38 0.7405 8.4316 57.17 0.7252 8.1422
CellSegUDA w/ Ltrans X 58.44 0.7357 8.6123 56.77 0.7209 8.3865
CellSegUDA w/ Lcl X 59.11 0.7398 8.5734 57.02 0.7237 8.1203
NuSegUDA w/o LadvI X X 58.59 0.7365 8.5914 56.82 0.7212 8.3685
NuSegUDA w/o Ltrans X X 59.45 0.7411 8.4021 57.19 0.7253 8.2468
NuSegUDA w/o Lcl X X 60.36 0.7512 8.1963 57.63 0.7298 8.1247
NuSegUDA (ours) X X X 60.51 0.7525 8.0011 57.68 0.7303 8.0880

Table 3.3. Impacts of LadvI , Ltrans and Lcl loss on NuSegUDA for Experiment-1
and Experiment-2. IoU, Dice, and HD denotes Intersection over Union, Dice score,
and Hausdorff Distance, respectively. NuSegUDA w/o LadvI , NuSegUDA w/o Ltrans,
and NuSegUDA w/o Lcl refer to our proposed UDA model without image adversarial
loss, target-translated source supervised loss, and clustering loss, respectively. Results
are from testing on TNBC-test and KIRC-test for experiment-1 and experiment-2,
respectively.

TNBC to KIRC. First, we examine the contribution of each loss to the final IoU%,

Dice score, and Hausdorff Distance; then, we investigate the effects of different seg-

mentation network backbones on NuSegUDA.

Effectiveness of Losses The contribution of image adversarial loss LadvI , target-

translated source supervised loss Ltrans, and clustering loss Lcl to our proposed

NuSegUDA model is shown in Table 3.3. We see that, simply applying only LadvI or

Lcl to CellSegUDA [28] gives little better performance than CellSegUDA alone. How-

ever, when we apply only target-translated source supervised loss Ltrans to CellSegUDA,

the performance is inferior due to the absence of LadvI loss. Without applying image-

adversarial loss LadvI , target-translated source images Xs→t looks very different from

the target-domain images in terms of texture, style, color distribution, etc. (see Fig-
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Figure 3.7. Visualizations of the effectiveness of proposed LadvI , Ltrans and Lcl loss
on NuSegUDA for KIRC→TNBC. In (c)-(f), green pixels, red pixels, and blue pixels
indicate the true positives, false positives, and false negatives, respectively..

ure 3.4). As a result, the performance of the model (i.e., CellSegUDA w/ Ltrans)

decreases when trained with these Xs→t images.

Similarly, NuSegUDA w/o LadvI gives much worse performance than NuSegUDA

which happens because of training NuSegUDA with less-realistic target-translated

source domain images. This again validates the effectiveness of LadvI on NuSegUDA.

Finally, with all the proposed losses enabled, we achieve the best performing model

NuSegUDA for both of the experiments which demonstrates the combined impact of

newly proposed image adversarial loss, target-translated source supervised loss, and

clustering loss on NuSegUDA. Figure 3.7 shows the visualization results of NuSegUDA

w/o LadvI , NuSegUDA w/o Ltrans, NuSegUDA w/o Lcl, and NuSegUDA.

Impacts of different segmentation networks In NuSegUDA, we use U-Net [67]

as the backbone segmentation network. We also assess the model performance by

replacing the backbone segmentation network with two more frequently-used Con-

volutional Neural Network (CNN) based approaches: FCN [53] and UNet++ [106].

As mentioned earlier, CNN based approaches are still the dominant ones for seman-

tic segmentation of nuclei. However, due to the intrinsic locality nature and limited

receptive fields of convolution operations, CNN based models may be incapable of
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Experiment-1 Experiment-2
KIRC → TNBC TNBC → KIRC

Segmentation Network IoU% Dice score HD IoU% Dice score HD
FCN 59.23 0.7398 8.4125 55.81 0.7165 8.7365
U-Net 60.51 0.7525 8.0011 57.68 0.7303 8.0880
UNet++ 60.57 0.7529 8.0336 57.41 0.7282 8.1575
TransUNet 59.87 0.7476 8.1562 57.02 0.7256 8.1742

Table 3.4. Impacts of different segmentation network backbones in NuSegUDA.

capturing the global context of the input [14, 104, 39]. To this end, we explore the

feasibility of Transformers, an alternative to CNNs, as the backbone segmentation

network in NuSegUDA. Transformer mainly utilizes self-attention mechanism to ex-

tract inherent features [77], and due to this self-attention mechanism, transformers

are powerful at modeling the global context of an input [104]. To examine the effec-

tiveness of Vision Transformer based model, we replace U-Net in NuSegUDA with

TransUNet [14] which basically combines a hybrid CNN-transformer encoder archi-

tecture with a decoder.

Table 3.4 shows the quantitative results of using different segmentation net-

works in NuSegUDA. We see that, among CNN-based models, UNet++ and U-Net

outperform other CNN approaches in Experiment-1, and Experiment-2, respectively.

We also see that, Transformer-based model TransUNet does not give any better ac-

curacy than U-Net and UNet++ for both of the experiments. This happens due to

our small-sized training datasets, because Vision Transformers (VT) need lot of data

for training, usually more than what is necessary to standard CNNs [52].
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3.5 Conclusion

Accurate nuclei segmentation is a significant step for cancer diagnosis and fur-

ther clinical procedures. Collecting a fully annotated nuclei segmentation dataset, or

manually labeling an unannotated dataset is expensive, time-consuming and imprac-

tical although such annotations are required to train Convolutional Neural Networks

in fully-supervised manner. In this work, we propose a novel Unsupervised Domain

Adaptation (UDA) framework named NuSegUDA for segmenting nuclei in unanno-

tated datasets by utilizing adversarial learning. In NuSegUDA, we apply domain

adaptation at both of feature space and output space. We also incorporate image ad-

versarial loss and target-translated source supervised loss into NuSegUDA, and train

the model with target-translated source domain images. Extensive and prominent

experimental results validate the effectiveness of each of the newly proposed modules

and losses, and the superiority of NuSegUDA over baseline models. Finally, assuming

we have a few annotations available, we extend our work to Semi-Supervised Domain

Adaptation (SSDA). We expect our proposed UDA and SSDA approaches to be very

useful in other biomedical image segmentation tasks.
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CHAPTER 4

SELF-SUPERVISED PRE-TRAINING FOR NUCLEI SEGMENTATION

The accurate segmentation of nuclei is crucial for cancer diagnosis and fur-

ther clinical treatments. For semantic segmentation of nuclei, Vision Transform-

ers (VT) have the potentiality to outperform Convolutional Neural Network (CNN)

based models due to their ability to model long-range dependencies (i.e., global con-

text). Usually, VT and CNN models are pre-trained with large-scale natural image

dataset (i.e., ImageNet) in fully-supervised manner. However, pre-training nuclei

segmentation models with ImageNet is not much helpful because of morphological

and textural differences between natural image domain and medical image domain.

Also, ImageNet-like large-scale annotated histology dataset rarely exists in medi-

cal image domain. In this chapter, we propose a novel region-level Self-Supervised

Learning (SSL) approach and corresponding triplet loss for pre-training semantic nu-

clei segmentation model with unannotated histology images extracted from Whole

Slide Images (WSI). Our proposed region-level SSL is based on the observation that,

non-background (i.e., nuclei) patches of an input image are difficult to predict from

surrounding neighbor patches, and vice versa. We empirically demonstrate the supe-

riority of our proposed SSL incorporated VT model on two public nuclei segmentation

datasets.

4.1 Introduction

Nuclei segmentation is considered as a fundamental task of digital histopathol-

ogy image analysis. For semantic segmentation of nuclei, Convolutional Neural Net-
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work (CNN) based approaches give very promising results [54, 66, 107, 28]. However,

due to the intrinsic locality nature and limited receptive fields of convolution opera-

tions, CNN based models are incapable of capturing the global context of the input

[14, 104]. Transformers, an alternative to CNNs, are powerful at modeling the global

context of input images [104]. Also, Transformers show superior transferability for

downstream tasks, when pre-trained with large-scale dataset. However, Vision Trans-

formers (VT) need lot of data for training, usually more than what is necessary to

standard CNNs [52].

Usually, VTs are pre-trained with large-scale annotated natural image dataset

like ImageNet [19], and then fine-tuned to downstream tasks [23]. However, histol-

ogy images are quite different from natural images due to the nuclei and background

textures, morphological structures of nuclei, large variations in the shape and ap-

pearance of nuclei, clustered and overlapped nuclei, blurred nuclei boundaries, in-

consistent staining methods, scanning artifacts, etc. [56, 95]. Due to this domain

gap between natural images and medical images, the ImageNet pre-trained models

may yield marginal improvement over train-from-scratch models for nuclei segmen-

tation tasks [93]. Unfortunately, in medical image domain, ImageNet-like large-scale

annotated histopathology image datasets do not exist, and they are very difficult

to produce, because of expensive, time-consuming and tedious labeling process of

histology images [95, 12].

In this work, we propose a Transformer-based Self-Supervised Learning (SSL)

approach for pre-training so that the segmentation network implicitly acquires a bet-

ter understanding of the nuclei and background using a large-scale unannotated his-

tology image dataset extracted from Whole Slide Images (WSI). In computer vision,

SSL is used to learn useful data representations without using any labels [60, 8, 9].

To achieve this goal, we first divide the image into k× k patches where k=32. Then,
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Figure 4.1. We divide the input image into kxk patches. We try to predict patch
features using its 8-connected neighboring patches. We see that, predicting a non-
background (i.e., nuclei) patch is much harder than predicting a background patch.

we try to predict each of the patch features from its 8-connected neighboring patches.

Figure 4.1 shows that predicting non-background patches (i.e., that contain nuclei)

is much harder than background patch prediction. Based on this aforementioned ob-

servation, we design region-level triplet loss to pre-train the segmentation network.

Our pre-trained SSL model learns to separate nuclei features from the background

features in the embedding space. Additionally, our SSL approach involves the image-

level sub-task of predicting the scale of image, which enables the segmentation network

to implicitly acquire further knowledge of nuclei size and shape. Finally, we fine-tune

the pre-trained network for nuclei segmentation with a small annotated dataset.

Thus, the main contributions of this paper are: 1) We propose a novel region-

level Self-Supervised Learning (SSL) approach and corresponding triplet loss for

pre-training semantic nuclei segmentation model with unannotated histology im-

age dataset. 2) We incorporate our proposed pre-training technique into a Vision

Transformer (VT). To the best of our knowledge, this is the first work focusing on

47



Transformer-based SSL for semantic segmentation of nuclei. 3) Extensive experimen-

tal results demonstrate the superiority of our proposed SSL incorporated transformer

model over baseline methods.

4.2 Related Work

Several Self-Supervised Learning (SSL) approaches have been proposed for nu-

clei segmentation. An instance-aware SSL model is proposed considering scale-wise

triplet learning and count ranking as proxy sub-tasks [93]. Another self-supervised nu-

clei segmentation approach without requiring annotations is proposed utilizing scale

classification as a self-supervision signal to locate nuclei [68].

In literature, Transformer has been employed in various computer vision prob-

lems [27, 81, 23, 7, 97, 104, 92, 83, 14]. For natural image segmentation, a pure

transformer-based model named SEgmentation TRansformer (SETR) [104] is pro-

posed by treating semantic segmentation problem as a sequence-to-sequence predic-

tion task. For medical image segmentation, TransUNet [14] is proposed to solve

multi-organ segmentation task. In recent times, SSL have been applied to Vision

Transformers (VT). In Self-supervised vision Transformer (SiT) [2], parts of the in-

put image are corrupted using several local transformation operations, and original

image is reconstructed later from the corrupted one. An auxiliary self-supervised

localization task also has been proposed which encourages the VTs to learn relative

distances between patch embedding pairs [52].

4.3 Methodology

In semantic nuclei segmentation problem, we have nuclei histology image of

size H ×W × 3 as input, and we want to predict the segmentation output of size
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H × W . We first pre-train our proposed model with unannotated image patches

Ds = {(Xn)}. Then, we fine-tune the model with annotated images Dt = {(Xt, Yt)}.

In this work, since we propose Transformers-based Self-Supervised learning method

for Nuclei segmentation, we name our proposed framework as TransNuSS. Figure 4.2

shows the complete architecture of TransNuSS.

In our work, we adopt TransUNet [14] as the segmentation network. The en-

coder of the segmentation network consists of a hybrid Convolutional Neural Network

(CNN) - Transformer architecture. CNN works as a feature extractor to generate fea-

ture map Fx for the input. Then, patch embedding is applied to get embedding

Z0 ∈ Rnpatch×d, where npatch = H
16
× W

16
and d is the dimension of embedding space

which we set to 768. After that, transformer encoder appears which consists of L lay-

ers of Multi-head Self-Attention (MSA) and Multi-Layer Perceptron (MLP) blocks.

The final layer of the transformer encoder produces hidden features ZL ∈ Rnpatch×d.

In encoder, we use ResNet-50 [31] and ViT [23] as CNN and transformer, respectively.

The decoder of the segmentation network consists of multiple upsampling steps. At

first, hidden features ZL is reshaped to the shape of d× H
16
× W

16
, which we denote as

A. Then, a 3×3 convolution is applied to decrease the depth to 512. Finally, multiple

upsampling blocks are used to generate the full resolution segmentation mask. We

refer the reader to [14] for more details.

4.3.1 Self-Supervised Pre-Training with unannotated dataset

For each image Xn ∈ Ds of size H ×W × 3, we generate a same-size image Xs

by cropping and scaling. To generate Xs, we first randomly select a scaling-factor

zs from a pool {1.0, 1.25, 1.5, 1.75, 2.0}. We denote this scale-pool as Sp. Now, we

randomly crop a patch from Xn, and then scale the cropped patch zs times so that
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Figure 4.2. Complete architecture of TransNuSS.

the scaled patch becomes of size H ×W × 3. Thus, for self-supervised pre-training,

our input consists of {(Xn, Xs, zs)}.

4.3.1.1 Region-level triplet loss

For self-supervised pre-training, we consider that we have background and non-

background image patches (see Figure 4.1) in an input image. Then, we propose

region-level triplet loss to learn the embedding space. We expect that, in the embed-

ding space, feature should have similarity and dissimilarity among same and different

types of patches, respectively. We design our triplet loss in a way so that the seg-

mentation network can implicitly learn to separate background and non-background

patch features in a given image. To generate triplet samples, we use feature map A

which is of size d × h × w where h = H
16

and w = W
16

. Therefore, A contains h × w

number (i.e., the number of patches) of d-dimensional feature vectors. As we men-
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tioned before, our intuition and observation is that: in this embedding space, we can

easily predict a background feature vector from its 8-connected neighboring features

vectors, whereas predicting a non-background feature vector is comparatively harder.

We try to predict feature vector Ai,j ∈ Rd at each spatial location (i, j) of

A, where 2 ≤ i ≤ h − 1 and 2 ≤ j ≤ w − 1. To compute the correspond-

ing predicted feature vector Bi,j ∈ Rd, we use PredictNet P which consists of two

fully-connected layers with 2d and d output neurons, respectively. To predict Bi,j,

we first concatenate 8-connected features of Ai,j which is denoted as ei,j ∈ R8d.

Thus, ei,j = (Ai−1,j−1, ..., Ai−1,j+1, Ai,j−1, Ai,j+1, Ai+1,j−1, ..., Ai+1,j+1). We forward ei,j

through PredictNet to predict Bi,j. Now, we produce a hardness-to-predict matrix

Hard ∈ Rh×w which computes the prediction difficulty for each of the non-boundary

patches. Hard is computed as:

Hardi,j =


dL1(Ai,j, Bi,j) , if 2 ≤ i ≤ h− 1 and 2 ≤ j ≤ w − 1

0 , otherwise

(4.1)

where Bi,j = P (ei,j), and dL1(.) is the Mean Absolute Error (MAE) between two

feature vectors. Now, we normalize Hard matrix, and denote normalized matrix as

Hard′. To avoid selecting boundary patch features later, we also replace boundary

pixel values of Hard′ with the median of Hard′. For input image pair {Xn, Xs}, we

denote corresponding feature map pair, predicted feature map pair, and normalized

hardness matrix pair as {An,As}, {Bn,Bs}, and {HardN ′, HardS ′}, respectively.

Now, from HardN ′ and HardS ′ we generate following sets of feature vectors:

FGn = {Ani,j : HardN ′i,j ≥ τfgn};BGn = {Ani,j : HardN ′i,j ≤ τbgn}

FGs = {Asi,j : HardS ′i,j ≥ τfgs};BGs = {Asi,j : HardS ′i,j ≤ τbgs}
(4.2)

We empirically set the value of τfgn and τfgs to 95th percentile ofHardN ′ andHardS ′,

respectively. And, we set the value of τbgn and τbgs to 5th percentile of HardN ′ and
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HardS ′, respectively. In words, FGn and BGn set contain feature vectors from po-

tential foreground (i.e., nuclei) and background patches of Xn, respectively. Similarly,

FGs and BGs contain probable foreground and background patch features of scaled

image Xs, respectively.

We now generate triplet samples {(a, p, n)} from feature map pair {An,As}.

We consider a, p and n as as anchor, a positive sample, and a negative sample,

respectively, each of which is a d-dimensional feature vector. To generate a triplet

sample (a, p, n) from input pair {Xn, Xs}, we randomly sample feature vector from

FGn, FGs and (BGn ∪ BGs), respectively. Thus, a contains the feature vector of a

non-background patch from unscaled image Xn, and p contains the feature vector of

a non-background patch from probably-scaled image Xs. And, n contains the feature

vector of a background patch from either Xn or Xs. We randomly generate m number

of triplet samples for an input pair {Xn, Xs}. We set, m=32 in our experiments. We

define our region-level triplet loss as:

Lregion(Xn, Xs) =
1

m

m∑
k=1

max(0, dL2(ak, pk)− dL2(ak, nk) + c) (4.3)

where dL2(.) is the squared L2 distance between two features, and c is the margin value

which is empirically set to 1.0. Triplet loss encourages features from the same class to

be located nearby, and pushes apart features from different classes in the embedding

space [70, 16]. In other words, being pre-trained with proposed region-level triplet loss,

the segmentation network can narrow down the distance between anchor and positive

samples in the embedding space, and enlarges the semantic dissimilarity between the

anchor and negative samples [93]. Note that, in the embedding space, we separate

background and non-background patch features regardless of the corresponding scales

of the patches of input image Xn and Xs. This design helps to map multi-scale nuclei

features to be located nearby in the feature space. Similarly, multi-scale background
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features are also mapped so that they are located far from nuclei features, and remain

close to each other in the embedding space. Finally, for accurately predicting the

feature vectors, we train PredictNet with following loss function:

Lpred(Xn, Xs) =
1

(h− 2)× (w − 2)

h−1∑
i=2

w−1∑
j=2

(dL1(Ani,j, Bni,j)+dL1(Asi,j, Bsi,j)) (4.4)

where dL1(.) is the Mean Absolute Error (MAE) between two features.

4.3.1.2 Scale loss

According to [68], looking at the size and texture of nuclei should be enough to

determine the magnification level (i.e., scale) of input image, and this identification

of the scale can generate a preliminary self-supervision signal to locate nuclei. Similar

to [68], we compute the attention map Js for input Xs with Js = Ŷs �Xs, where Ŷs

is segmentation output for Xs, and � represents element-wise multiplication. We use

a scale classification network ScaleNet C to predict the scale from Js. For C, we use

ResNet-34 [31]. The output of C is a 5-dimensional vector v which gives the scores

for each magnification level. Therefore, v = C(Js). We use negative log-likelihood

to train ScaleNet C, and in turn the segmentation network S. Thus, our scale loss is

defined as:

Lscale(Xs, zs) = −log(pl) (4.5)

where l is the class label for zs (i.e. index of zs in Sp), and pl = [softmax(v)]l .

Therefore, the total loss LPT for pre-training TransNuSS is defined as:

LPT (Xn, Xs) = Lregion(Xn, Xs) + Lpred(Xn, Xs) + λscaleLscale(Xs, zs) (4.6)

where, λscale is the weight to balance scale loss which is empirically set to 0.5.
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4.3.2 Fine-Tuning with annotated dataset

After pre-training, we fine-tune our segmentation network S with a small anno-

tated dataset. For fine-tuning, S takes image Xt as input, and produces the segmen-

tation prediction Ŷt of the same size as output. We denote the ground-truth label

by Yt. In practice, we found dice-coefficient loss to be more effective than the binary

cross-entropy loss for nuclei segmentation tasks. Therefore, we choose dice-coefficient

loss as our supervised segmentation loss for fine-tuning:

LFT (Xt) = 1− 2.Yt
′.Ŷt
′

Yt
′ + Ŷt

′
, (4.7)

where Yt
′ and Ŷt

′ are flattened Yt and Ŷt, respectively.

4.3.3 Implementations

We train TransNuSS with batch size 16, and using four GPUs. To train seg-

mentation network, we use SGD optimizer with learning rate 0.01, momentum 0.9

and weight decay 0.0001. We use SGD optimizer with learning rate 0.001 and 0.0001

to train PredictNet and ScaleNet, respectively. We pre-train our model for 20 epochs,

and then fine-tune for 80 epochs.

4.4 Experiments

4.4.1 Dataset

In this paper, we use MoNuSegWSI dataset for pre-training purposes. For

fine-tuning the model, we use two datasets: 1) TNBC, and 2) MoNuSeg.

4.4.2 Experimental results

Experiment-1 In our first experiment, we fine-tune our pre-trained TransNuSS

model with TNBC dataset. We choose FCN [54], U-Net [66], UNet++ [107] and
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ResUNet-50 [21] as the representatives of Convolutional Neural Network (CNN) based

approaches. SETR-MLA [104] and TransUnet [14] represent transformer-based se-

mantic segmentation models. TransUnet + Ldrloc shows the performance when aux-

iliary self-supervised localization loss [52] is utilized while training TransUNet. At-

tnSSL [68] and InstSSL [93] are chosen as representatives of Self-Supervised Learning

(SSL) models for nuclei segmentation. We choose AttnSSL and InstSSL over the

generic SSL models for two reasons: 1) AttnSSL and InstSSL were explicitly devised

for nuclei segmentation problem, and 2) these two SSL methods perform significantly

well for nuclei segmentation with better performance compared with generic self-

supervised methods. We also employ TransUNet in InstSSL (i.e., replacing ResUNet

backbone with TransUNet) model which is denoted as InstSSL-ViT in Table 4.1.

From Table 4.1, we see that our proposed TransNuSS model outperforms all

other approaches in terms of IoU% and dice score. We also see that, our pre-trained

model also achieves superiority over AttnSSL, and InstSSL without fine-tuning. The

excellence of TransNuSS is mainly due to our proposed region-level triplet learning,

which enables the segmentation network to separate nuclei from the backgrounds in a

better manner in feature space. We also see that, MoNuSegWSI-pretrained and then

fine-tuned InstSSL, InstSSL-ViT and TransNuSS models outperform ImageNet [19]-

pretrained models, which proves the effectiveness of pre-training nuclei segmentation

models with Whole Slide Image (WSI) patches. Figure 4.3 shows the visualization

results of ResUNet-50, TransUNet, InstSSL and our proposed TransNuSS model. Fig-

ure 4.3 shows that, TransNuSS can significantly reduce false positive nuclei generated

by other approaches. From Figure 4.3(f), we see that TransNuSS is capable to segment

nuclei which were missed out by InstSSL model. Also, our intuition and assumption

is that, HardN ′i,j and HardS ′i,j will have larger values if corresponding patch contains
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Experiment-1 Experiment-2
TNBC dataset MoNuSeg dataset

Method Pre-trained on IoU% Dice score IoU% Dice score
AttnSSL [68] MoNuSegWSI 45.86 0.6018 59.93 0.7412
InstSSL w/o fine-tuning [93] MoNuSegWSI 46.91 0.6136 61.05 0.7521
FCN [54] - 63.01 0.7726 63.81 0.7803
U-Net [66] - 64.65 0.7824 64.91 0.7982
UNet++ [107] - 64.35 0.7813 65.38 0.7998
ResUNet-50 [21] ImageNet 64.96 0.7863 65.79 0.8041
SETR-MLA [104] ImageNet 64.87 0.7854 65.39 0.8021
TransUNet [14] ImageNet 65.66 0.7905 66.02 0.8072
TransUNet + Ldrloc [14, 52] ImageNet 65.73 0.7894 66.63 0.8101
InstSSL [93] ImageNet 64.68 0.7831 66.57 0.8112
InstSSL [93] MoNuSegWSI 65.85 0.7942 67.92 0.8244
InstSSL-ViT [93, 14] MoNuSegWSI 66.32 0.7991 68.11 0.8256
TransNuSS w/o fine-tuning MoNuSegWSI 48.11 0.6252 63.43 0.7664
TransNuSS w/o Lregion MoNuSegWSI 66.28 0.7951 66.83 0.8147
TransNuSS w/o Lscale MoNuSegWSI 66.72 0.8007 67.66 0.8236
TransNuSS (ours) MoNuSegWSI 67.02 0.8059 68.72 0.8307

Table 4.1. Nuclei segmentation results for Experiment-1 and Experiment-2. IoU de-
notes intersection over union. Results are from testing on TNBC-test and MoNuSeg-
test for experiment-1 and experiment-2, respectively.

nuclei (i.e., is non-background patch). Figure 4.4 shows the visualization of HardN ′

matrices, which empirically validates our aforementioned intuition.

To understand the impact of each of the losses (i.e., region-level triplet loss,

and scale loss), we also pre-train TransNuSS using a single (i.e., either triplet loss or

scale loss) loss, and then we fine-tune the pre-trained model. From last three rows

of Table 4.1, we see that the proposed TransNuSS outperforms both of TransNuSS

w/o Lregion, and TransNuSS w/o Lscale. The overall good performance of TransNuSS

comes when both losses are applied together. In summary, both losses complement

each other for the excellent performance of TransNuSS.

56



Figure 4.3. Visualization of the nuclei segmentation outputs of ResUNet-50 [21],
TransUNet [14], InstSSL [93], and our proposed TransNuSS model. Input image is
chosen from TNBC-test dataset. In (c)-(e), blue arrows indicate false positive nuclei
that are removed in TransNuSS. In (f), yellow arrows denote missing nuclei from
previous models.

Figure 4.4. Visualizations of HardN ′ matrices. Yellow color denotes values that are
greater than or equal to 95th percentile, and we denote this matrix as HardN ′η.95 (a),
(c) and (e) show input images, and (b), (d) and (f) show corresponding HardN ′η.95 ,
respectively. Images are randomly chosen from MoNuSegWSI. In (b), (d) and (f), we
zoom-in 32x32 matrices to 512x512 for a better visualization. (b), (d), and (f) show
matrices from 1st, 3rd, and 5th epoch, respectively.

Experiment-2 We conduct second experiment with MoNuSeg dataset in the similar

way to Experiment-1. This experiment again reflects the excellence of TransNuSS

compared to other approaches (see last two columns of Table 4.1).

4.5 Conclusion

Due to a large domain gap between natural images and histology images,

ImageNet-pretrained Vision Transformers (VT) does not transfer very well to nu-

clei segmentation tasks. In this paper, we propose Self-Supervised Learning (SSL)
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based region-level triplet learning for pre-training so that VT implicitly learns to

separate nuclei from the backgrounds. Prominent experimental results validate the

effectiveness of our proposed TransNuSS model.
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CHAPTER 5

TranSSCon: CONSISTENT SELF-SUPERVISED PRE-TRAINING FOR NUCLEI

SEGMENTATION

For semantic segmentation of nuclei, Convolutional Neural Network (CNN)

based approaches show excellent performances. However, the convolution operations

of CNN models have limited receptive fields for context modeling, and thus can not

model long-range dependencies (i.e., global context). Vision Transformer (VT), on

the contrary, has the ability to model the global context at each stage of feature rep-

resentation learning, and consequently VTs have the potentiality to outperform CNN

based models. Usually, VT and CNN models are pre-trained with large-scale natu-

ral image dataset (i.e., ImageNet) in fully-supervised manner. However, pre-training

nuclei segmentation models with ImageNet is not much helpful because of morpho-

logical and textural differences between natural image domain and medical image

domain. Also, ImageNet-like large-scale annotated histology dataset rarely exists

in medical image domain. In this chapter, we propose region-level, image-level and

clustering-based Self-Supervised Learning (SSL) approach for pre-training semantic

nuclei segmentation model with unannotated histology images extracted from Whole

Slide Images (WSI). Unfortunately, due to the lack of annotations, SSL alone can not

guarantee the consistency of the model while pre-training. To reduce disagreements

among the predictions, we propose hierarchical, scale and transformation equivari-

ance consistency losses. Thus, we introduce a simple yet effective combination of

SSL approaches and consistency losses for pre-training semantic nuclei segmentation

model.
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5.1 Introduction

Histopathology image analysis is an important step for cancer recognition and

diagnosis. Nuclei segmentation is considered as a fundamental task of digital histopathol-

ogy image analysis [99]. For semantic segmentation of nuclei, Convolutional Neural

Network (CNN) based approaches give very promising results [54, 66, 107, 28, 30].

However, CNN based nuclei segmentation methods have several limitations: 1) Due

to the intrinsic locality nature and limited receptive fields of convolution operations,

CNN based models are incapable of capturing the global context of the input [14, 104].

Thus, these approaches can not model the long-range dependency very well, and this

may cause missing out some nuclei to segment (i.e., predicting false negatives). 2)

Due to the lack of global context, CNN based methods often mistakenly consider the

crowded objects as one connected region, and this may lead to under-segmentation

of nuclei. 3) These models show limited transferability for target task (i.e., model

trained on one type of organ may not work well on another ones) [14, 104].

Due to the mentioned drawbacks of CNN based models, we explore the feasi-

bility of an alternative approach to solve the semantic nuclei segmentation problem.

Transformers, an alternative to CNNs, are powerful at modeling the global context

of input images [104]. Thus, if there are any inter-nucleus relationships in the given

input image, transformers will be able to explore them and segment those nuclei

accordingly. Also, transformers show superior transferability for downstream tasks,

when pre-trained with large-scale dataset. So, if we have a large-scale nuclei segmen-

tation pre-training dataset available, transformer based models may transfer better to

the target dataset than other approaches even if the target dataset is small enough.

Therefore, if properly designed, transformers have the potentiality to outperform

CNN based models.
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However, Vision Transformers (VT) need lot of data for training, usually more

than what is necessary to standard CNNs [52]. Usually, VTs are pre-trained with

large-scale annotated natural (i.e., generic) image dataset like ImageNet [19], and

then fine-tuned to downstream tasks [23]. But, histology images are quite different

from natural images due to the nuclei and background textures, morphological struc-

tures of nuclei, large variations in the shape and appearance of nuclei, clustered and

overlapped nuclei, blurred nuclei boundaries, inconsistent staining methods, scanning

artifacts, etc. [95, 56]. Due to this domain gap between natural images and medical

images, the ImageNet pre-trained VT models may yield marginal improvement over

train-from-scratch models for nuclei segmentation tasks [93]. As an alternative to

ImageNet, we may think of pre-training nuclei segmentation VT models with large-

scale annotated histology datasets. However, in medical image domain, ImageNet-like

large-scale annotated histopathology image datasets do not exist, and unfortunately

they are very difficult to produce, because of expensive, time-consuming and tedious

labeling process of histology images [95, 12].

In this work, we propose a Transformer-based Self-Supervised Learning (SSL)

approach for pre-training so that the segmentation network implicitly acquires a bet-

ter understanding of the nuclei and background using a large-scale unannotated his-

tology image dataset extracted from Whole Slide Images (WSI). In computer vision,

SSL is used to learn useful data representations without using any labels [8, 60, 9, 109].

To achieve this goal, we first divide the image into k× k patches where k=32. Then,

we try to predict each of the patch features from its 8-connected neighboring patches.

Figure 5.1 shows that predicting non-background patches (i.e., that contain nuclei)

is much harder than background patch prediction. Based on this aforementioned ob-

servation, we design region-level triplet learning and corresponding loss to pre-train

the segmentation network. Our pre-trained SSL model learns to separate nuclei fea-
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Figure 5.1. We divide the input image into k × k patches. We try to predict patch
features using its 8-connected neighboring patches. We see that, predicting a non-
background (i.e., nuclei) patch is much harder than predicting a background patch..

tures from the background features in the embedding space. Additionally, our SSL

approach involves the image-level sub-task of predicting the scale of image, which

enables the segmentation network to implicitly acquire further knowledge of nuclei

size and shape. We also utilize a clustering loss at the feature space which serves as

a constraint toward a class-conditional feature alignment.

However, SSL alone can not guarantee that the learned representations and seg-

mentation predictions have the intra-image and inter-image consistency. Therefore, a

challenging issue here is the inconsistent and uncertain predictions on the unannotated

image dataset. To enforce invariant predictions over different layers of the segmen-

tation network we propose hierarchical consistency enforcement and corresponding

consistency loss. Specifically, the hierarchical consistency enforcement module pre-

dicts segmentation masks from different layers of the decoder, and minimizes the

disagreements among predictions. Nevertheless, self-guided hierarchical consistency

loss lacks supervision signal into it, and thus the model may still generate inconsis-

tent predictions. To make the hierarchical predictions further consistent, we utilize

supervised learning and propose scale consistency loss. This scale consistency loss
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ensures that the predicted scale from different hierarchical predictions are consistent

to each other. Hierarchical consistency loss and scale consistency loss reduce intra-

image disagreements. To enforce inter-image consistency, we utilize transformation

equivariance loss which guides to generate consistent predictions for the same image

with probable cropping and scaling. Finally, after pre-training the model with SSL

and consistency losses, we fine-tune the pre-trained network for nuclei segmentation

with a small annotated dataset.

Thus, the main contributions of this paper are: 1) We propose region-level,

image-level, and clustering-based Self-Supervised Learning (SSL) approaches for pre-

training semantic nuclei segmentation model with unannotated histology image dataset.

2) To enforce intra-image and inter-image consistency while pre-training, we propose

hierarchical, scale, and transformation consistency losses. 3) We introduce a novel

combination of SSL techniques and consistency losses for learning from large-scale

unannotated histology dataset. 4) We incorporate our proposed pre-training tech-

nique into a Vision Transformer (VT). To the best of our knowledge, this is the first

work focusing on Transformer-based consistency-preserving SSL for semantic segmen-

tation of nuclei. 5) Extensive experimental results demonstrate the superiority of our

proposed consistency-guaranteed SSL incorporated transformer model over baseline

methods.

5.2 Related Work

Transformer was first designed for sequence-to-sequence prediction tasks. A

solely attention mechanism based transformer model was proposed for English con-

stituency parsing tasks [81, 27]. Later, Transformer has been employed in various

computer vision problems [7, 23, 92, 14, 83, 97, 104, 63].
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As a solution to loose the requirement of manual annotations for neural net-

works, Self-Supervised Learning (SSL) recently attracts increasing attentions from

the community [93]. Several SSL approaches have been recently proposed for nuclei

segmentation [93, 68]. In recent times, SSL also has been applied to Vision Trans-

formers (VT) for generic image classification, segmentation, etc. [2, 50, 10, 52, 109].

Recently, for semantic segmentation of nuclei, [29] proposed a region-level SSL ap-

proach and corresponding triplet loss for pre-training the model with unannotated

histology images extracted from Whole Slide Images (WSI).

In literature, for different weakly-supervised and semi-supervised models, the

idea of consistency regularization has been successfully applied [51, 105, 84]. For

weakly supervised cardiac segmentation, [102] tackled incomplete shape of scribbles

by proposing the shape-consistency loss to regularize cutout equivalence and capture

global shape of the heart. Reference [40] proposed a Mean-Teacher based hierarchical

consistency enforcement framework with learnable and self-guided mechanisms for

semi-supervised histological image segmentation.

5.3 Methodology

In semantic nuclei segmentation problem, we have nuclei histology image of size

H ×W × 3 as input, and we want to predict the segmentation output of size H ×W .

We first pre-train our proposed model with unannotated image patches Ds = {(Xn)}.

Then, we fine-tune the model with annotated images Dt = {(Xt, Yt)}. In this work,

since we propose Transformers-based Consistency-preserving Self-Supervised learning

method for nuclei segmentation, we name our proposed framework as TranSSCon.

Figure 5.2 shows the complete architecture of TranSSCon.

In our work, we adopt TransUNet [14] as the segmentation network S. The

encoder of the segmentation network consists of a hybrid Convolutional Neural Net-
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Figure 5.2. Complete architecture of TranSSCon..

work (CNN) - Transformer architecture. In encoder, we use ResNet-50 [31] and ViT

[23] as CNN and transformer, respectively. The decoder of the segmentation network

consists of multiple upsampling steps. We refer the reader to [14] for more details.

5.3.1 Pre-Training with large-scale unannotated dataset

For each image Xn ∈ Ds of size H ×W × 3, we generate a same-size image Xs

by cropping and scaling. To generate Xs, we first randomly select a scaling-factor

zs from a pool {1.0, 1.25, 1.5, 1.75, 2.0}. We denote this scale-pool as Sp. Now, we

randomly crop a patch from Xn, and then scale the cropped patch zs times so that the

scaled patch becomes of size H ×W × 3. Thus, for pre-training, our input consists of

{(Xn, Xs, zs)}. The outputs of the segmentation model S are Ŷn and Ŷs, which denote

the segmentation predictions of Xn and Xs, respectively. Therefore, Ŷn = S(Xn), and

Ŷs = S(Xs).
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5.3.1.1 Region-level triplet loss

For self-supervised pre-training, we consider that we have background and non-

background image patches (see Figure 5.1) in an input image. Then, we propose

region-level triplet loss to learn the embedding space. We expect that, in the embed-

ding space, feature should have similarity and dissimilarity among same and different

types of patches, respectively. We design our triplet loss in a way so that the seg-

mentation network can implicitly learn to separate background and non-background

patch features in a given image. To generate triplet samples, we use feature map A

which is of size d × h × w where h = H
16

and w = W
16

. Therefore, A contains h × w

number (i.e., the number of patches) of d-dimensional feature vectors. As we men-

tioned before, our intuition and observation is that: in this embedding space, we can

easily predict a background feature vector from its 8-connected neighboring features

vectors, whereas predicting a non-background feature vector is comparatively harder.

We try to predict feature vector Ai,j ∈ Rd at each spatial location (i, j) of

A, where 2 ≤ i ≤ h − 1 and 2 ≤ j ≤ w − 1. To compute the correspond-

ing predicted feature vector Bi,j ∈ Rd, we use PredictNet P which consists of two

fully-connected layers with 2d and d output neurons, respectively. To predict Bi,j,

we first concatenate 8-connected features of Ai,j which is denoted as ei,j ∈ R8d.

Thus, ei,j = (Ai−1,j−1, ..., Ai−1,j+1, Ai,j−1, Ai,j+1, Ai+1,j−1, ..., Ai+1,j+1). We forward ei,j

through PredictNet to predict Bi,j. Now, we produce a hardness-to-predict matrix

Hard ∈ Rh×w which computes the prediction difficulty for each of the non-boundary

patches. Hard is computed as:

Hardi,j =


dmae(Ai,j, Bi,j) , if 2 ≤ i ≤ h− 1 and 2 ≤ j ≤ w − 1

0 , otherwise

(5.1)
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where Bi,j = P (ei,j), and dmae(.) is the Mean Absolute Error (MAE) between two

feature vectors. Now, we normalize Hard matrix, and denote normalized matrix as

Hard′. To avoid selecting boundary patch features later, we also replace boundary

pixel values of Hard′ with the median of Hard′. For input image pair {Xn, Xs}, we

denote corresponding feature map pair, predicted feature map pair, and normalized

hardness matrix pair as {An,As}, {Bn,Bs}, and {HardN ′, HardS ′}, respectively.

Now, from HardN ′ and HardS ′ we generate following sets of feature vectors:

FGn = {Ani,j : HardN ′i,j ≥ τfgn};BGn = {Ani,j : HardN ′i,j ≤ τbgn}

FGs = {Asi,j : HardS ′i,j ≥ τfgs};BGs = {Asi,j : HardS ′i,j ≤ τbgs}
(5.2)

We empirically set the value of τfgn and τfgs to 95th percentile of HardN ′

and HardS ′, respectively. And, we set the value of τbgn and τbgs to 5th percentile

of HardN ′ and HardS ′, respectively. In words, FGn and BGn set contain feature

vectors from potential foreground (i.e., nuclei) and background patches of Xn, respec-

tively. Similarly, FGs and BGs contain probable foreground and background patch

features of scaled image Xs, respectively.

We now generate triplet samples {(a, p, n)} from feature map pair {An,As}.

We consider a, p and n as as anchor, a positive sample, and a negative sample,

respectively, each of which is a d-dimensional feature vector. To generate a triplet

sample (a, p, n) from input pair {Xn, Xs}, we randomly sample feature vector from

FGn, FGs and (BGn ∪ BGs), respectively. Thus, a contains the feature vector of a

non-background patch from unscaled image Xn, and p contains the feature vector of

a non-background patch from probably-scaled image Xs. And, n contains the feature

vector of a background patch from either Xn or Xs. We randomly generate m number
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of triplet samples for an input pair {Xn, Xs}. We set, m=32 in our experiments. We

define our region-level triplet loss as:

Lregion(Xn, Xs) =
1

m

m∑
k=1

max(0, dL2(ak, pk)− dL2(ak, nk) + c) (5.3)

where dL2(.) is the squared L2 distance between two features, and c is the margin

value which is empirically set to 1.0.

Triplet loss encourages features from the same class to be located nearby, and

pushes apart features from different classes in the embedding space [70, 16]. In other

words, being pre-trained with proposed region-level triplet loss, the segmentation

network can narrow down the distance between anchor and positive samples in the

embedding space, and enlarges the semantic dissimilarity between the anchor and neg-

ative samples [93]. Note that, in the embedding space, we separate background and

non-background patch features regardless of the corresponding scales of the patches

of input image Xn and Xs. This design helps to map multi-scale nuclei features to

be located nearby in the feature space. Similarly, multi-scale background features are

also mapped so that they are located far from nuclei features, and remain close to

each other in the embedding space.

Finally, for accurately predicting the feature vectors, we train PredictNet with

following loss function:

Lpred(Xn, Xs) =
1

(h− 2)× (w − 2)

h−1∑
i=2

w−1∑
j=2

(dmae(Ani,j, Bni,j) + dmae(Asi,j, Bsi,j))

(5.4)

where dmae(.) is the Mean Absolute Error (MAE) between two features.
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5.3.1.2 Scale loss

According to [68], looking at the size and texture of nuclei should be enough to

determine the magnification level (i.e., scale) of input image, and this identification

of the scale can generate a preliminary self-supervision signal to locate nuclei. Similar

to [68], we compute the attended image Js for input Xs with Js = Ŷs �Xs, where Ŷs

is the segmentation output for Xs, and � represents element-wise multiplication. We

use a scale classification network ScaleNet C to predict the scale from Js. For C, we

use ResNet-34 [31]. The output of C is a 5-dimensional vector v which gives the scores

for each magnification level. Therefore, v = C(Js). We use negative log-likelihood

to train ScaleNet C, and in turn the segmentation network S. Thus, our scale loss is

defined as:

Lscale(Xs, zs) = −log(pl) (5.5)

where l is the class label for zs (i.e., index of zs in Sp), and pl = [softmax(v)]l.

In our segmentation network S, the segmentation head (i.e., classifier) consists

of a convolutional operation followed by a sigmoid activation. Thus, the segmentation

output Ŷs = σ(y), where y is the output of convolutional operation in segmentation

head. The scale loss Lscale considers the segmentation output Ŷs as an attention map

that focuses on the nuclei in the input image. In order to force the attention map

to focus only on parts of the input image, we need to apply a sparsity regularizer on

the segmentation prediction Ŷs [68, 35]. Similar to [68], we impose the sparsity by

picking the 93rd percentile value in y for all images in the batch. In other words, we

assume that, on an average 7% of the pixels in an input patch represent nuclei. Thus,
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we choose a threshold τsparse equal to the average of this percentile for all images in

the training batch. Formally, τsparse is defined as:

τsparse =
1

b

b∑
i=1

y
(η)
i (5.6)

where y
(η)
i represents the 93rd percentile value in yi for the i-th image in the training

batch, and b is the batch size. Now, we define the sigmoid as σ(y) = 1
1+exp(−r(y−τsparse)) .

This sigmoid function is biased and compressed in order to force sharp transitions in

the activated segmentation prediction Ŷs. The compression is determined by r, which

we set to 20 in our experiments.

5.3.1.3 Clustering loss

The region-level triplet loss Lregion guides TranSSCon to separate nuclei features

from the background features in the embedding space by extracting and considering

the features from two different images Xn and Xs. However, Lregion does not align the

same-class features of a single image, for which we additionally employ a clustering

loss in TranSSCon at the feature space.

If ScaleNet C can correctly predict the scale of the attended scaled image Js, we

can consider the corresponding segmentation prediction Ŷs as the pseudo-label. While

pre-training TranSSCon, we apply a clustering loss at the feature-level to serve as a

constraint toward a class-conditional feature alignment. Specifically, for the scaled

image Xs, we have the corresponding feature map As. Then, the clustering loss is

computed as:

Lcl(Xs) = qs.

 1

| As |
∑

ai∈As,ỹi∈Ỹs ds

d(ai, cỹi)−
1

| C | (| C | −1)

∑
j∈C

∑
k∈C,k 6=j

d(cj, ck)


(5.7)
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where ai is the feature vector corresponding to a spatial location of As, ỹi is the

corresponding predicted class, and C is the set of semantic classes which is {0, 1}

for our nuclei segmentation problem. Here, qs is equal to 1 if the scale of Xs is

correctly predicted by ScaleNet C, and to 0 otherwise. We set the function d(.) to

L1 norm. To compute ỹi, the segmentation prediction Ŷs is downsampled to match

the spatial dimension of As and then it is converted to predicted class labels (i.e.,

pseudo-labels). We denote this downsampled pseudo-label by Ỹs ds. In Eq. (5.7), cj

denotes the centroid of semantic class j, which is computed using following formula:

cj =

∑
ai

∑
ỹi
δj,ỹiai∑

ỹi
δj,ỹi

, j ∈ {0, 1} (5.8)

where δj,ỹi is equal to 1 if ỹi = j, and to 0 otherwise.

5.3.1.4 Consistency loss

Pre-training with region-level triplet loss, scale loss and clustering loss trains

TranSSCon to separate nuclei from the background in the embedding space. However,

these losses does not consider any intra-image and inter-image prediction consistency

in the output space. While pre-training TranSSCon with large scale unannotated

dataset, we employ three consistency losses: (a) Hierarchical consistency loss, (b)

Scale consistency loss, and (c) Transformation Equivariance loss. We discuss the

details of these consistency losses in the following.

a) Hierarchical consistency loss TranSSCon consists of four decoder blocks (see

Figure 5.2). To avoid the intra-image prediction disagreement among the unlabeled

data, we regularize TranSSCon by a hierarchical consistency. We design Hierarchi-

cal Consistency Enforcement (HCE) module to constrain the consistency over the

hierarchical outputs of the decoders.
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Specifically, the i-th hierarchical representation Gi is first computed from the

decoder at i-th block. As shown in Figure 5.2, the blocks are numbered from the

deep to shallow ones. Similar to [100] and [40], we apply R stochastic perturba-

tion functions, denoted by Pr with r ∈ [1, R], to Gi. We randomly introduce the

dropout and add noise as our perturbation operations Pr. Thus, the perturbed vari-

ant Ĝi = Pr(Gi). Then, instead of one-step upscaling which may introduce additional

noisy predictions, we consider a Progressive UPsampling (PUP) strategy [104] that

alternates convolutional layer and upsampling operations. While designing PUP lay-

ers, we restrict the upsampling to 2x. PUP upsamples the perturbed variant Ĝi to

the size H ×W × 16, from which the segmentation head generates the segmentation

prediction Ŷi.

The HCE module can provide stronger enforcement among the unlabeled dataset.

Besides, the consistency constraint over the perturbed variant representations add

more generalization to the model while pre-training. In HCE module, we consider

the final prediction (i.e., Ŷ ) as the guidance, and minimize the inconsistency among

all other decoders. We define the self-guided hierarchical consistency loss as:

Lcons hier(Xn, Xs) =
1

hr − 1

hr∑
i=2

dmse(Ŷn i, Ŷn) +
1

hr − 1

hr∑
i=2

dmse(Ŷs i, Ŷs) (5.9)

where hr represents the number of hierarchical blocks used in TranSSCon, and dmse(.)

is the Mean Squared Error (MSE) between two segmentation predictions. Ŷn and Ŷs

is the probability prediction from the main decoder for Xn and Xs, respectively. Ŷn i

and Ŷs i denote the probability prediction from the i-th decoder block for Xn and Xs,

respectively. Therefore, Ŷn = Ŷn 1, and Ŷs = Ŷs 1. In our experiments, we set hr = 4.

b) Scale consistency loss Although hierarchical consistency loss Lcons hier reduces

the disagreement among hierarchical segmentation predictions, we can not employ
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any supervision into it. To make the hierarchical predictions more consistent through

supervised learning, we add scale consistency loss to TranSSCon.

For 2 ≤ i ≤ 4, we first compute the attended image Js i for input Xs with

Js i = Ŷs i �Xs. Here, Ŷs i is the segmentation prediction of Xs generated from i-th

decoder block, and � represents element-wise multiplication. Then, we use ScaleNet

C to predict the scale from Js i. Therefore, for 2 ≤ i ≤ 4, we get vi = C(Js i), and

then we compute pl i = [softmax(vi)]l where l is the class label for zs (i.e., index of

zs in Sp). Now, we define the scale consistency loss as:

Lcons scale(Xs, zs) =
1

hr − 1

hr∑
i=2

−log(pl i) (5.10)

where hr is the number of hierarchical blocks which we set to 4 in our experiments.

We backpropagate the scale consistency loss only through our segmentation network

(i.e., skipping the updating of ScaleNet parameters) while pre-training, so that the

segmentation network can learn to generate consistent predictions from different hi-

erarchies being guided by a supervision signal.

c) Transformation Equivariance loss While pre-training TranSSCon, we add

an equivariance constraint on the segmentation prediction of original image Xn and

corresponding scaled image Xs. As previously described, to generate Xs from Xn, we

first randomly select a scaling-factor zs, then randomly crop a patch xn from Xn, and

scale the cropped patch zs times to make xn of size H ×W × 3. We assume that, the

top-left corner of xn is located at (r, c) spatial coordinates in Xn, and xn has an equal

height and width of l. We denote this cropping and then zs-times scaling operations

together by the transformation operation t(r,c,l,zs)(.). Therefore, Xs = t(r,c,l,zs)(Xn).

While pre-training, we want the segmentation prediction Ŷs to be equivariant

to the prediction obtained from similarly cropping from Ŷn and then scaling it, where

Ŷs = S(Xs) and Ŷn = S(Xn) (i.e., the segmentation prediction for Xs and Xn,
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respectively). In other words, we want S(Xs) = S(t(r,c,l,zs)(Xn)) = t(r,c,l,zs)(S(Xn)).

In TranSSCon, we define the transformation equivariance loss as:

Lequiv(Xn, Xs, zs) = dmse(t(r,c,l,zs)(S(Xn)), S(Xs)) (5.11)

where dmse(.) is the Mean Squared Error (MSE) between two segmentation predic-

tions.

Therefore, the total loss LPT for pre-training TranSSCon is defined as:

LPT (Xn, Xs, zs) = Lregion(Xn, Xs) + Lpred(Xn, Xs) + λscaleLscale(Xs, zs)+

λclLcl(Xs) + λcons hierLcons hier(Xn, Xs) + λcons scaleLcons scale(Xs, zs)+

λequivLequiv(Xn, Xs, zs)

(5.12)

where, λscale, λcl, λcons hier, λcons scale and λequiv are the weights to balance correspond-

ing losses. We empirically set λscale, λcl, λcons hier, λcons scale and λequiv to 0.5, 0.1, 0.2,

0.2 and 0.2, respectively.

5.3.2 Fine-Tuning with annotated dataset

After pre-training, we fine-tune our segmentation network S with a small anno-

tated dataset. For fine-tuning, S takes image Xt as input, and produces the segmen-

tation prediction Ŷt of the same size as output. We denote the ground-truth label

by Yt. In practice, we found dice-coefficient loss to be more effective than the binary

cross-entropy loss for nuclei segmentation tasks. Therefore, we choose dice-coefficient

loss as our supervised segmentation loss for fine-tuning:

LFT (Xt) = 1− 2.Yt
′.Ŷt
′

Yt
′ + Ŷt

′
, (5.13)

where Yt
′ and Ŷt

′ are flattened Yt and Ŷt, respectively.
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5.3.3 Implementations

To train segmentation network, we use SGD optimizer with learning rate 0.01,

momentum 0.9 and weight decay 0.0001. We use SGD optimizer with learning rate

0.001, 0.0001 and 0.0001 to train PredictNet, ScaleNet and PUP, respectively. We

pre-train our model for 20 epochs, and then fine-tune for 80 epochs. We implement

TranSSCon using PyTorch [61]. We train TranSSCon with batch size 16, and using

four GPUs.

5.4 Experiments

5.4.1 Dataset

In our experiments, we use MoNuSegWSI dataset for pre-training purposes.

For fine-tuning the model, we use two datasets: 1) TNBC, and 2) MoNuSeg.

5.4.2 Experimental results

5.4.2.1 TranSSCon

Experiment-1 In our first experiment, we fine-tune our pre-trained TranSSCon

model with TNBC dataset. We choose ResUNet-50 [21] as the representative of

Convolutional Neural Network (CNN) based approaches. TransUNet [14] represents

transformer-based semantic segmentation models. TransUNet + Ldrloc shows the per-

formance when auxiliary self-supervised localization loss [52] is utilized while training

TransUNet. AttnSSL [68], InstSSL [93] and TransNuSS [29] are chosen as represen-

tatives of Self-Supervised Learning (SSL) models for nuclei segmentation. We choose

AttnSSL, InstSSL and TransNuSS over the generic SSL models for two reasons: 1)

AttnSSL, InstSSL and TransNuSS were explicitly devised for nuclei segmentation

problem, and 2) these three SSL methods perform significantly well for nuclei seg-
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Experiment-1 Experiment-2
TNBC dataset MoNuSeg dataset

Method Pre-trained on IoU% Dice IoU% Dice
AttnSSL MoNuSegWSI 45.86 0.6018 59.93 0.7412
InstSSL w/o fine-tuning MoNuSegWSI 46.91 0.6136 61.05 0.7521
TransNuSS w/o fine-tuning MoNuSegWSI 48.11 0.6252 63.43 0.7664
ResUNet-50 ImageNet 64.96 0.7863 65.79 0.8041
TransUNet ImageNet 65.66 0.7905 66.02 0.8072
TransUNet + Ldrloc ImageNet 65.73 0.7894 66.63 0.8101
InstSSL ImageNet 64.68 0.7831 66.57 0.8112
InstSSL MoNuSegWSI 65.85 0.7942 67.92 0.8244
InstSSL-ViT MoNuSegWSI 66.32 0.7991 68.11 0.8256
TransNuSS MoNuSegWSI 67.02 0.8059 68.72 0.8307
TranSSCon w/o fine-tuning MoNuSegWSI 48.75 0.6304 63.71 0.7697
TranSSCon (ours) MoNuSegWSI 67.83 0.8109 69.19 0.8337

Table 5.1. Nuclei segmentation results for Experiment-1 and Experiment-2. IoU
and Dice denotes Intersection over Union, and Dice score, respectively. Results are
from testing on TNBC-test and MoNuSeg-test for experiment-1 and experiment-2,
respectively.

mentation with better performance compared with generic self-supervised methods.

We also employ TransUNet in InstSSL (i.e., replacing ResUNet backbone with Tran-

sUNet) model which is denoted by InstSSL-ViT in Table 5.1. In our experiments, we

choose Intersection-over-Union (IoU) and Dice score as the evaluation matrices.

From Table 5.1, we see that our proposed TranSSCon model outperforms all

other approaches in terms of IoU% and dice score. Our pre-trained model (see the

second last row in Table 5.1) also achieves superiority over AttnSSL, and InstSSL

and TransNuSS without fine-tuning. The excellence of TranSSCon is mainly due

to our proposed combination of the consistency losses (i.e., hierarchical, scale, and

transformation equivariance) with region-level and image-level SSL strategies, which

enables the segmentation network to separate nuclei from the backgrounds in a better
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Figure 5.3. Visualization of the nuclei segmentation outputs of TransUNet [14], In-
stSSL [93], TransNuSS [29], and our proposed TranSSCon model. Input image is
chosen from TNBC-test dataset. In (c)-(e), blue arrows indicate false positive nuclei
that are removed in TranSSCon. In (f), yellow arrows denote missing nuclei from
previous models..

manner in feature space while reducing inter-image and intra-image disagreements.

From Table 5.1, we also see that MoNuSegWSI-pretrained and then fine-tuned In-

stSSL, InstSSL-ViT, TransNuSS and TranSSCon models outperform ImageNet[19]-

pretrained models, which proves the effectiveness of pre-training nuclei segmentation

models with Whole Slide Image (WSI) patches.

Figure 5.3 shows the visualization results of TransUNet, InstSSL, TranNuSS,

and our proposed TranSSCon model. Figure 5.3 shows that TranSSCon can signifi-

cantly reduce false positive nuclei generated by other approaches. From Figure 5.3(f),
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we see that TranSSCon is capable to segment nuclei which were missed out by other

models.

Experiment-2 We conduct second experiment with MoNuSeg dataset in the similar

way to Experiment-1. This experiment again reflects the excellence of TranSSCon

compared to other approaches (see last two columns of Table 5.1).

5.5 Conclusion

Accurate nuclei segmentation is a significant step for cancer diagnosis and fur-

ther clinical procedures. For semantic segmentation of nuclei, Vision Transformers

(VT) have the potentiality to outperform Convolutional Neural Network (CNN) based

models due to their ability to model long-range dependencies. But, VTs need lot

of annotated data for training, which is highly unavailable in biomedical domain.

Moreover, due to a large domain gap between natural images and histology images,

ImageNet-pretrained VT does not transfer very well to nuclei segmentation tasks. In

this paper, we first propose Self-Supervised Learning (SSL) based region-level triplet

learning, image-level scale loss, and clustering loss for pre-training so that VT im-

plicitly learns to separate nuclei from the backgrounds. We then propose hierarchical

consistency loss, scale consistency loss, and transformation equivariance loss to reduce

the disagreements at both of output space and and feature space while pre-training.

Consistency losses helps the model to preserve consistency among different layers,

and different views of the same image. We combine the proposed consistency losses

with SSL strategies for pre-training nuclei segmentation model with large-scale unan-

notated histology dataset. Prominent experimental results validate the effectiveness

of our proposed TranSSCon model.
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CHAPTER 6

DiffNuSS: DIFFUSION MODEL BASED SELF-SUPERVISED PRE-TRAINING

FOR NUCLEI SEGMENTATION

The convolution operations of CNN models have limited receptive fields for

context modeling, and thus can not model long-range dependencies (i.e., global con-

text). Vision Transformer (VT), on the contrary, has the ability to model the global

context at each stage of feature representation learning, and consequently VTs have

the potentiality to outperform CNN based models. Usually, VT and CNN models are

pre-trained with large-scale natural image dataset (i.e., ImageNet) in fully-supervised

manner. However, pre-training nuclei segmentation models with ImageNet is not

much helpful because of morphological and textural differences between natural im-

age domain and medical image domain. Also, ImageNet-like large-scale annotated

histology dataset rarely exists in medical image domain. In this chapter, we pro-

pose Denoising Diffusion Probabilistic Model (DDPM) based Self-Supervised Learn-

ing (SSL) approach for pre-training semantic nuclei segmentation model with unan-

notated histology images extracted from Whole Slide Images (WSI). We feed-forward

the DDPM outputs (i.e., estimated noise) to a generation module for predicting the

segmentation mask. Since DDPM are capable of extracting powerful and discrim-

inative features via generative pre-training for dense prediction tasks, we combine

SSL with DDPM. To pre-train the model for generating realistic segmentation masks

and acquiring knowledge of nuclei, we employ a discriminator and scale loss, respec-

tively. Thus, we introduce a simple yet effective combination of DDPM, generation
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module, discriminator, and scale loss for label-efficient pre-training of semantic nuclei

segmentation model.

6.1 Introduction

Histopathology image analysis is an important step for cancer recognition and

diagnosis. Nuclei segmentation is considered as a fundamental task of digital histopathol-

ogy image analysis [99]. For semantic segmentation of nuclei, Convolutional Neural

Network (CNN) based approaches give very promising results [54, 66, 107, 28, 30].

However, CNN based nuclei segmentation methods have several limitations: 1) Due

to the intrinsic locality nature and limited receptive fields of convolution operations,

CNN based models are incapable of capturing the global context of the input [14, 104].

Thus, these approaches can not model the long-range dependency very well, and this

may cause missing out some nuclei to segment (i.e., predicting false negatives). 2)

Due to the lack of global context, CNN based methods often mistakenly consider the

crowded objects as one connected region, and this may lead to under-segmentation

of nuclei. 3) These models show limited transferability for target task (i.e., model

trained on one type of organ may not work well on another ones) [14, 104].

Due to the mentioned drawbacks of CNN based models, we explore the feasi-

bility of an alternative approach to solve the semantic nuclei segmentation problem.

Transformers, an alternative to CNNs, are powerful at modeling the global context

of input images [104]. Thus, if there are any inter-nucleus relationships in the given

input image, transformers will be able to explore them and segment those nuclei

accordingly. Also, transformers show superior transferability for downstream tasks,

when pre-trained with large-scale dataset. So, if we have a large-scale nuclei segmen-

tation pre-training dataset available, transformer based models may transfer better to

the target dataset than other approaches even if the target dataset is small enough.
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Figure 6.1. Denoising Diffusion Probabilistic Model (DDPM).

Therefore, if properly designed, transformers have the potentiality to outperform

CNN based models.

However, Vision Transformers (VT) need lot of data for training, usually more

than what is necessary to standard CNNs [52]. Usually, VTs are pre-trained with

large-scale annotated natural (i.e., generic) image dataset like ImageNet [19], and

then fine-tuned to downstream tasks [23]. In literature, for semantic segmentation

problem, pre-training is often used to improve the label-efficiency of segmentation

models [6]. However, histology images are quite different from natural images due to

the nuclei and background textures, morphological structures of nuclei, large varia-

tions in the shape and appearance of nuclei, clustered and overlapped nuclei, blurred

nuclei boundaries, inconsistent staining methods, scanning artifacts, etc. [95, 56].

Due to this domain gap between natural images and medical images, the ImageNet

pre-trained VT models may yield marginal improvement over train-from-scratch mod-

els for nuclei segmentation tasks [93]. As an alternative to ImageNet, we may think

of pre-training nuclei segmentation VT models with large-scale annotated histology

datasets. However, in medical image domain, ImageNet-like large-scale annotated

histopathology image datasets do not exist, and unfortunately they are very difficult

to produce, because of expensive, time-consuming and tedious labeling process of

histology images [95, 12].
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In this work, we propose a Transformer-based Self-Supervised Learning (SSL)

approach for pre-training so that the segmentation network implicitly acquires a bet-

ter understanding of the nuclei and background using a large-scale unannotated his-

tology image dataset extracted from Whole Slide Images (WSI). In computer vision,

SSL is used to learn useful data representations without using any labels [8, 60, 9, 109].

To advance the efficacy further, here we combine SSL with Denoising Diffusion Prob-

abilistic Model (DDPM). The essential idea of DDPM is to systematically and slowly

destroy structure in a data distribution through an iterative forward diffusion process,

and then learn a reverse diffusion process that restores structure in data [74, 32, 42].

DDPM is basically a generative Markov chain which converts a simple known distri-

bution (e.g., a Gaussian) into a target (data) distribution using a diffusion process

[74, 32]. Figure 6.1 shows the forward and reverse diffusion process of DDPM. Gen-

erally, in DDPM (or, Diffusion Models, for brevity), noise is added to clean data and

model is trained to separate the noisy data back into clean data and noise compo-

nents. This strategy requires the model to learn the data distribution. Denoising

objectives are well-suited for training dense prediction models (e.g., semantic seg-

mentation, etc.) because they can be defined on a per-pixel level [6]. Additionally,

denoising models are powerful deep generative models that can obtain better sam-

ple quality than state-of-the-arts GANs [20, 26, 3]. Diffusion models are also able

to acquire discriminative representations for classification via generative pre-training,

and this generative pre-training can enhance the label utilization of semantic seg-

mentation models [91, 98, 4]. The latent representation learned by diffusion models

is found to be useful in discriminative tasks (e.g., image segmentation, classification

and anomaly detection) [18]. Moreover, Gaussian-based denoising is compatible with

convolutional networks and Vision Transformers.
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In this paper, at first we utilize denoising models to extract powerful discrim-

inative feature from the unannotated histology images while pre-training. Then, we

pre-train a generation module with the those meaningful features. Since the diffusion

models estimate the noise added to the perturbed input data, and the adversarial

learning model generated images for given the noisy vectors, we can reasonably con-

nect the diffusion model with the adversarial learning. We use a discriminator to

guide the segmentation prediction networks so the predicted mask becomes very sim-

ilar to the ground-truth annotations. Additionally, our SSL approach involves the

image-level sub-task of predicting the scale of image, which enables the segmentation

network to implicitly acquire further knowledge of nuclei size and shape.

Thus, the main contributions of this paper are: 1) We propose a novel Diffusion

model based Self-Supervised Learning (SSL) approach for pre-training semantic nuclei

segmentation model with large-scale unannotated histology image dataset. To the

best of our knowledge, this is the first work focusing on utilizing diffusion models

for pre-training nuclei segmentation models without using any annotations. 2) We

introduce a novel combination of Denoising models, Generation module, and and

scale loss for label-efficient SSL. 3) We incorporate Vision Transformer (VT) into our

proposed pre-training technique. 4) Extensive experimental results demonstrate the

superiority of our proposed DDPM incorporated SSL approach over baseline methods.

6.2 Related Work

Transformer was first designed for sequence-to-sequence prediction tasks. A

solely attention mechanism based transformer model was proposed for English con-

stituency parsing tasks [81, 27]. Later, Transformer has been employed in various

computer vision problems [7, 23, 92, 14, 83, 97, 104, 63].
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As a solution to loose the requirement of manual annotations for neural net-

works, Self-Supervised Learning (SSL) recently attracts increasing attentions from the

community [93]. Several SSL approaches have been recently proposed for nuclei seg-

mentation [93, 68]. In recent times, SSL also has been applied to Vision Transformers

(VT) for image classification, segmentation, etc. [2, 50, 10, 52, 109, 29].

In literature, diffusion models have been used for a variety of computer vision

problems [15, 3, 1, 4, 6, 82, 48]. Diffusion models also have been successfully utilized

in medical imaging problems [85, 75, 69, 62, 87, 88, 59, 72, 86, 43, 76]. MedSegDiff

[87] proposed diffusion model based medical image segmentation method utilizing

dynamic conditional encoding and feature frequency parser. MedSegDiff-V2 [88] en-

hances MedSegDiff by incorporating the transformer mechanism into the original

UNet backbone. DiffMix [59] proposes a data augmentation technique using a condi-

tioned diffusion model for imbalanced pathology nuclei datasets. Diffusion Adversar-

ial Representation Learning (DARL) [43] combines diffusion models with adversarial

learning, and applies it to self-supervised vessel segmentation without ground-truth

labels.

6.3 Methodology

In semantic nuclei segmentation problem, we have nuclei histology image of size

H ×W × 3 as input, and we want to predict the segmentation output of size H ×W .

We first pre-train our proposed model with unannotated image patches Du = {(xu)}.

Then, we fine-tune the model with annotated images Dl = {(xl, yl)}. In this work,

since we propose Diffusion model based Self-Supervised learning method for Nuclei

segmentation, we name our proposed framework as DiffNuSS. Figure 6.2 shows the

complete architecture of DiffNuSS.

84



Figure 6.2. Complete architecture of DiffNuSS..

6.3.1 Pre-Training with large-scale unannotated dataset

For each image xu ∈ Du of size H × W × 3, we generate a same-size image

xs by cropping and scaling. To generate xs, we first randomly select a scaling-factor

zs from a pool {1.0, 1.25, 1.5, 1.75, 2.0}. We denote this scale-pool as Sp. Now, we

randomly crop a patch from xu, and then scale the cropped patch zs times so that the

scaled patch becomes of size H ×W × 3. Thus, for pre-training, our input consists

of {(xs, zs)}.

As shown in Figure 6.2, DiffNuSS is comprised of four modules: a diffusion

model εθ to estimate the latent features, a generation module G to predict the seg-

mentation masks, a discriminator D to distinguish real and fake images of the segmen-

tation masks, and scale loss. We discuss the details of each modules in the following.
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6.3.1.1 Diffusion model

In literature, Denoising Diffusion Probabilistic Models (or, Diffusion Models for

brevity) [74, 32] transform noise xT ∼ N(0, I) to the sample x0 by gradually denoising

xT to less noisy samples xt. Formally, the forward diffusion process is is defined as:

q(xt | xt−1) := N (xt;
√

1− βtxt−1, βI), (6.1)

for some fixed variance schedule β1, ..., βt. We can obtain a noisy sample xt from the

data x0 by:

q(xt | x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (6.2)

We can simplify Eq. (6.2) as:

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N(0, 1) (6.3)

where αt := 1− βt, ᾱt :=
∏t

s=1 αs.

Pre-trained diffusion models approximates a reverse process:

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),
∑
θ

(xt, t). (6.4)

The denoising model is typically parameterized by different variants of UNet

[66] architecture. In DiffNuSS, we adopt TransUNet [14] as the diffusion model εθ.

In DiffNuSS, the diffusion model can be considered as a noise predictor εθ(xt, t)

which predicts the noise component at the step t. While pretraining, we are given

input image xs. From the perspective of diffusion models, we consider that xs0 = xs.

Now, using the forward diffusion process from Eq. (6.3), we sample the noisy image

xst from xs0. Here, t is uniformly sampled time step in [0, T ]. We set T = 2000 in our

experiments.

86



Since the diffusion model εθ learns the distribution of images to estimate mean-

ingful latent features of the inputs, we use following standard loss for training diffusion

model in DiffNuSS:

Ldiff (x
s) := Et,x0,ε[‖ε− εθ(

√
ᾱtx

s
0 +
√

1− ᾱtε, t)‖2] (6.5)

where ε ∼ N(0, I).

6.3.1.2 Generation module

The generation module takes the latent feature εθ(x
s
t , t) from the noisy image

xst as its input, and predicts the segmentation mask. Therefore, the output of the

generation module, ŷs = G(εθ(x
s
t , t)). In DiffNuSS, the generation module G consists

of N residual blocks (ResnetBlock). ResnetBlock consists of convolutional layer,

ReLU activation, and instance normalization (also known as contrast normalization)

[80] layer. After ResnetBlocks, there is a Segmentation Head in generation module,

which consists of a convolutional layer and outputs the segmentation prediction.

6.3.1.3 Discriminator

According to [28, 30], ground-truth labels for nuclei segmentation are domain-

invariant. While pretraining DiffNuSS, to generate realistic nuclei segmentation

masks without using any ground-truth labels, DiffNuSS is trained by adversarial

learning using a discriminator D. The discriminator D tries to distinguish the esti-

mated segmentation masks from the real masks (i.e., the ground-truth masks from

the fine-tuning dataset). We define the adversarial loss as:

Ladv(x
s) = − 1

Hp ×Wp

∑
hp,wp

log (D(Mτ (ŷ
s))) (6.6)
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where ŷs = G(εθ(x
s
t , t)), Mτ is binarization operator with a fixed threshold τ , and

Hp and Wp are height and width of the discriminator output. This adversarial loss

helps the noise predictor and generator module to fool the discriminator so that it

considers Mτ (ŷs) as real (i.e., very similar to the ground-truths) segmentation masks.

In other words, the adversarial loss Ladv guides DiffNuSS to generate unannotated

images predictions ŷs which looks similar to the annotated images ground-truths.

The discriminator D takes unannoated image binarized prediction or annotated

image ground-truths as input, and then distinguishes whether the input (i.e., predic-

tion) looks like fake or real. To train D, we use following cross-entropy loss:

Ldis(ŷ) = − 1

Hp ×Wp

∑
hp,wp

z. log (D(ŷ)) + (1− z). log (1−D(Mτ (ŷ))) (6.7)

where z=0 when D takes unannoated image prediction as its input, and z=1 when

the input comes from annotated images ground-truths.

6.3.1.4 Scale loss

According to [68], looking at the size and texture of nuclei should be enough to

determine the magnification level (i.e., scale) of input image, and this identification

of the scale can generate a preliminary self-supervision signal to locate nuclei. Similar

to [68], we compute the attended image js for input xs with js = ŷs � xs, where ŷs

is the segmentation output for xs, and � represents element-wise multiplication. We

use a scale classification network ScaleNet C to predict the scale from js. For C, we

use ResNet-34 [31]. The output of C is a 5-dimensional vector v which gives the scores

for each magnification level. Therefore, v = C(js). We use negative log-likelihood to

train ScaleNet C, and in turn the noise estimator and the generation module. Thus,

our scale loss is defined as:

Lscale(x
s, zs) = −log(pl) (6.8)
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where l is the class label for zs (i.e., index of zs in Sp), and pl = [softmax(v)]l.

In our generation network G, the segmentation head (i.e., classifier) consists of

a convolutional operation followed by a sigmoid activation. Thus, the segmentation

output ŷs = σ(y), where y is the output of convolutional operation in segmentation

head. The scale loss Lscale considers the segmentation output ŷs as an attention map

that focuses on the nuclei in the input image. In order to force the attention map

to focus only on parts of the input image, we need to apply a sparsity regularizer on

the segmentation prediction ŷs [68, 35]. Similar to [68], we impose the sparsity by

picking the 93rd percentile value in y for all images in the batch. In other words, we

assume that, on an average 7% of the pixels in an input patch represent nuclei. Thus,

we choose a threshold τsparse equal to the average of this percentile for all images in

the training batch. Formally, τsparse is defined as:

τsparse =
1

b

b∑
i=1

y
(η)
i (6.9)

where y
(η)
i represents the 93rd percentile value in yi for the i-th image in the training

batch, and b is the batch size. Now, we define the sigmoid as σ(y) = 1
1+exp(−r(y−τsparse)) .

This sigmoid function is biased and compressed in order to force sharp transitions in

the activated segmentation prediction ŷs. The compression is determined by r, which

we set to 20 in our experiments.

Therefore, the total loss LPT for pre-training DiffNuSS is defined as:

LPT (xs, zs) = Ldiff (x
s) + λadvLadv(x

s) + λscaleLscale(x
s, zs) (6.10)

where, λadv and λscale are the weights to balance corresponding losses. We empirically

set λadv and λscale to 0.001, and 0.5, respectively.
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6.3.2 Fine-Tuning with annotated dataset

After pre-training, we fine-tune DiffNuSS with a small annotated dataset. For

fine-tuning, DiffNuSS takes image xl as input, and produces the segmentation pre-

diction ŷl of the same size as output. We denote the ground-truth label by yl. In

practice, we found dice-coefficient loss to be more effective than the binary cross-

entropy loss for nuclei segmentation tasks. Therefore, we choose dice-coefficient loss

as our supervised segmentation loss for fine-tuning:

LFT (xl) = 1− 2.y′.ŷ′

y′ + ŷ′
, (6.11)

where y′ and ŷ′ are flattened yl and ŷl, respectively.

6.3.3 Implementations

We use SGD optimizer with learning rate 0.0001, 0.0001, and 0.001 to train

generation module, ScaleNet, and discriminator, respectively. Following DCGAN

[64], we designed our prediction discriminator and image discriminator consisting of

five convolutional layers. We pre-train our model for 20 epochs, and then fine-tune

for 80 epochs. We implement DiffNuSS using PyTorch [61]. We train DiffNuSS with

batch size 16, and using four GPUs.

6.4 Experiments

6.4.1 Dataset

In this paper, we use MoNuSegWSI dataset for pre-training purposes. For

fine-tuning the model, we use two datasets: 1) TNBC, and 2) MoNuSeg.
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6.4.2 Experimental results

Experiment-1 In our first experiment, we fine-tune our pre-trained DiffNuSS model

with TNBC dataset. We choose ResUNet-50 [21] as the representative of Con-

volutional Neural Network (CNN) based approaches. TransUNet [14] represents

transformer-based semantic segmentation models. TransUNet + Ldrloc shows the per-

formance when auxiliary self-supervised localization loss [52] is utilized while training

TransUNet. Decoder Denoising Pretraining (DDeP) [6] and Label-Efficient Seman-

tic Segmentation (LESS) [4] models represent generic semantic segmentation models

pretrained using diffusion techniques. We also choose MedSegDiff-V2 [88] as a repre-

sentative of diffusion model based medical image segmentation framework. AttnSSL

[68], InstSSL [93] and TransNuSS [29] are chosen as representatives of Self-Supervised

Learning (SSL) models for nuclei segmentation. We choose AttnSSL, InstSSL and

TransNuSS over the generic SSL models for two reasons: 1) AttnSSL, InstSSL and

TransNuSS were explicitly devised for nuclei segmentation problem, and 2) these three

SSL methods perform significantly well for nuclei segmentation with better perfor-

mance compared with generic self-supervised methods. We also employ TransUNet in

InstSSL (i.e., replacing ResUNet backbone with TransUNet) model which is denoted

by InstSSL-ViT in Table 6.1. In our experiments, we choose Intersection-over-Union

(IoU) and Dice score as the evaluation matrices.

From Table 6.1, we see that our proposed DiffNuSS model outperforms all

other approaches in terms of IoU% and dice score. Our pre-trained model (see the

second last row in Table 6.1) also achieves superiority over AttnSSL, and InstSSL

and TransNuSS without fine-tuning. The excellence of DiffNuSS is mainly due to our

proposed combination of diffusion models, generation module and scale loss, which

enables the diffusion models extract features in a way so the whole network learns to

separate nuclei from the backgrounds in a better manner. From Table 6.1, we also see

91



Experiment-1 Experiment-2
TNBC dataset MoNuSeg dataset

Method Pre-trained on IoU% Dice IoU% Dice
AttnSSL MoNuSegWSI 45.86 0.6018 59.93 0.7412
InstSSL w/o fine-tuning MoNuSegWSI 46.91 0.6136 61.05 0.7521
TransNuSS w/o fine-tuning MoNuSegWSI 48.11 0.6252 63.43 0.7664
ResUNet-50 ImageNet 64.96 0.7863 65.79 0.8041
LESS MoNuSegWSI 57.56 0.7271 61.47 0.7597
DDeP MoNuSegWSI 65.12 0.7881 61.86 0.7624
MedSegDiff-V2 ImageNet 65.45 0.7893 61.14 0.7527
TransUNet ImageNet 65.66 0.7905 66.02 0.8072
TransUNet + Ldrloc ImageNet 65.73 0.7894 66.63 0.8101
InstSSL ImageNet 64.68 0.7831 66.57 0.8112
InstSSL MoNuSegWSI 65.85 0.7942 67.92 0.8244
InstSSL-ViT MoNuSegWSI 66.32 0.7991 68.11 0.8256
TransNuSS MoNuSegWSI 67.02 0.8059 68.72 0.8307
DiffNuSS w/o fine-tuning MoNuSegWSI 48.43 ± 0.09 0.6289 ± 0.0011 63.52 ± 0.12 0.7691 ± 0.0015
DiffNuSS (ours) MoNuSegWSI 67.74 ± 0.11 0.8105 ± 0.0008 69.03 ± 0.14 0.8325 ± 0.0012

Table 6.1. Nuclei segmentation results for Experiment-1 and Experiment-2. IoU
and Dice denotes Intersection over Union, and Dice score, respectively. Results are
from testing on TNBC-test and MoNuSeg-test for experiment-1 and experiment-2,
respectively. For DiffNuss, we report the Mean and Stdev. obtained over five runs.

that MoNuSegWSI-pretrained and then fine-tuned InstSSL, InstSSL-ViT, TransNuSS

and DiffNuSS ImageNet[19]-pretrained models, which proves the effectiveness of pre-

training nuclei segmentation models with Whole Slide Image (WSI) patches.

Figure 6.3 shows the visualization results of TransUNet, InstSSL, LESS, DDeP,

TranNuSS, and our proposed DiffNuSS model. Figure 6.3 shows that DiffNuSS can

significantly reduce false positive nuclei generated by other approaches. From Fig-

ure 6.3(h), we see that DiffNuSS is capable to segment nuclei which were missed out

by other models.

Experiment-2 We conduct second experiment with MoNuSeg dataset in the similar

way to Experiment-1. This experiment again reflects the excellence of DiffNuSS

compared to other approaches (see last two columns of Table 6.1).
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Figure 6.3. Visualization of the nuclei segmentation outputs of TransUNet [14],
InstSSL [93], DDeP [6], MedSegDiff-V2 [88], TransNuSS [29], and our proposed
DiffNuSS model. Input image is chosen from TNBC-test dataset. In (c)-(g), blue
arrows indicate false positive nuclei that are removed in DiffNuSS. In (h), yellow
arrows denote missing nuclei from previous models..

6.5 Conclusion

Accurate nuclei segmentation is a significant step for cancer diagnosis and fur-

ther clinical procedures. For semantic segmentation of nuclei, Vision Transformers

(VT) have the potentiality to outperform Convolutional Neural Network (CNN) based

models due to their ability to model long-range dependencies. But, VTs need lot

of annotated data for training, which is highly unavailable in biomedical domain.

Moreover, due to a large domain gap between natural images and histology images,

ImageNet-pretrained VT does not transfer very well to nuclei segmentation tasks.

In this paper, we propose Denoising Diffusion Probabilistic Model (DDPM) based

Self-Supervised Learning (SSL) approach for pre-training so that VT learns to ex-
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tract powerful features and utilize them for dense prediction task. In addition to

DDPM, we utilize a generation module to predict the segmentation mask, and addi-

tionally use a discriminator and scale loss. The discriminator pre-trains the model to

generate masks similar to the ground truths, while scale loss provides a preliminary

self-supervision signal to the model to locate nuclei. Prominent experimental results

validate the effectiveness of our proposed DiffNuSS model.
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CHAPTER 7

CONCLUSIONS

The accurate segmentation of nuclei is crucial for cancer diagnosis and further

clinical treatments. To successfully train fully-supervised Convolutional Neural Net-

work (CNN) or Vision Transformer (VT) models, we need at least a few amount of

annotated data. Unfortunately, such well-annotated histopathology datasets, even if

very small-sized, are highly rare. Therefore, due to high unavailability of annotated

nuclei segmentation dataset and tedious labeling process, we require to discover a

way for training nuclei segmentation models with unlabeled datasets.

In this thesis, I present my work towards solving this critical problem by uti-

lizing Adversarial Learning, Self-Supervised Learning (SSL), and Diffusion Models.

Thus, my approaches can be summarized into three directions: 1) employing adversar-

ial learning based unsupervised and semi-supervised domain adaptation techniques to

solve nuclei segmentation problem for unannotated datasets; 2) proposing SSL based

approaches for pre-training VT models with unannotated image dataset; 3) introduc-

ing Denoising Diffusion Probabilistic Model (DDPM) based approach for pre-training

nuclei segmentation model.

In the first approach, I apply Unsupervised Domain Adaptation (UDA) and

Semi-Supervised Domain Adaptation (SSDA) with the help of another labeled dataset

that may come from another organs or sources. Later, I extend the model by uti-

lizing an adversarial learning incorporated reconstruction network to translate the

source-domain images to the target domain for further training. Then, in my sec-

ond approach, I introduce a novel region-level SSL based framework for pre-training
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semantic nuclei segmentation model with a large-scale unannotated histopathology

image dataset extracted from Whole Slide Images (WSI). Additionally, I propose hi-

erarchical, scale, and transformation equivariance loss to reduce the disagreements

among predictions. Finally, in the third approach, I utilize DDPM for extracting

discriminative and powerful features. Then, I combine a generation module, a dis-

criminator, and scale loss with DDPM for effective label-efficient SSL based pre-

training. Extensive and comprehensive experiments demonstrate the superiority of

the proposed methods over the baseline models.

In conclusion, I expect the techniques described in this thesis to be very useful

in other biomedical image segmentation tasks. On the future directions, I would like

to devise approaches for utilizing the limited annotations to the fullest. In future,

my next move would be to generate pseudo ground-truth masks for the unannotated

images (e.g., target domain images, pre-training dataset, etc.) for further training.

Also, for pre-training models, it might be very interesting to combine the proposed

DDPM-based model with the consistency losses.
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