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Abstract

The mixture cure rate model is the most commonly used cure rate model in the literature. In
the context of mixture cure rate model, the standard approach to model the effect of covariates
on the cured or uncured probability is to use a logistic function. This readily implies that
the boundary classifying the cured and uncured subjects is linear. In this paper, we propose
a new mixture cure rate model based on interval censored data that uses the support vector
machine (SVM) to model the effect of covariates on the uncured or the cured probability (i.e.,
on the incidence part of the model). Our proposed model inherits the features of the SVM and
provides flexibility to capture classification boundaries that are non-linear and more complex.
Furthermore, the new model can be used to model the effect of covariates on the incidence part
when the dimension of covariates is high. The latency part is modeled by a proportional hazards
structure. We develop an estimation procedure based on the expectation maximization (EM)
algorithm to estimate the cured/uncured probability and the latency model parameters. Our
simulation study results show that the proposed model performs better in capturing complex
classification boundaries when compared to the existing logistic regression based mixture cure
rate model. We also show that our model’s ability to capture complex classification boundaries
improve the estimation results corresponding to the latency parameters. For illustrative purpose,
we present our analysis by applying the proposed methodology to an interval censored data on
smoking cessation.

Keywords: Support vector machine; Multiple imputation; Sequential minimal optimization; Mix-
ture cure rate model; EM algorithm

1. Introduction

Ordinary survival analysis techniques such as the proportional hazards (PH) model, the propor-
tional odds (PO) model or the accelerated failure time (AFT) model are concerned with modeling
censored time-to-event data by assuming that every subject in the study will encounter the primary
event of interest (death, relapse, or recurrence of a disease etc.). However, it is not appropriate to
apply these techniques to situations where a portion of the study cohort does not experience the
event, e.g., clinical studies involving low fatality rate with death as the event. It can be argued that
if these subjects are followed up sufficiently beyond the study period, they may face the event due
to some other risk factors. Therefore, these subjects can be considered as cured with respect to the
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event of interest. The survival model that incorporates the effects of such cured subjects is called
the cure rate model. Remarkable progress in medical sciences also necessitate further exploration
in to the cure rate model where estimating the cure fraction precisely can be of great importance
Peng & Yu (2021).

Introduced by Boag (1949) and exclusively studied by Berkson & Gage (1952), the mixture cure
rate model is perhaps the most popular cure rate model. If T ∗ denotes the lifetime of a susceptible
(not cured) subject, then, the actual lifetime T for any subject can be modeled by

T = JT ∗ + (1− J)∞, (1)

where J is a cure indicator denoting if an individual is cured (J = 0) or not (J = 1). Further, con-
sidering Sp(t) = P (T > t) and Su(t) = P (T ∗ > t) as the respective survival functions corresponding
to T and T ∗, we can express

Sp(t) = (1− π) + πSu(t), (2)

where π = P (J = 1). The latency part Su(t) = Su(t|x) and the incidence part π = π(z) are
generally modeled to incorporate the effects of covriates x = (x1, . . . , xp)

T and z = (z1, . . . , zq)
T

for any integers p and q. Note here that x and z may share the same covariates.

The properties of the mixture cure rate model with various assumptions and extensions are explored
in details by several authors. Modeling lifetime of the susceptible individuals have been studied
extensively. For example, a complete parametric mixture cure rate model is studied by Farewell
(1982, 1986) by assuming homogeneous Weibull lifetimes and logit-link to the cure rate. Semipara-
metric cure models with PH structure of the latency is studied extensively by Kuk & Chen (1992),
Peng & Dear (2000) and Sy & Taylor (2000), to name a few. Generalizations to semiparametric
PO (Gu et al., 2011; Mao & Wang, 2010), AFT (Li & Taylor, 2002; Zhang & Peng, 2007, 2009),
transformation class (Lu & Ying, 2004) and additive hazards (Barui & Yi, 2020) under mixture
cure rate model were also investigated with various estimation techniques and model considerations.

On the other hand, the incidence part π(z) is traditionally and extensively modeled by sigmoid or
logistic function

π(z) =
exp(z∗Tβ)

1 + exp(z∗Tβ)
, (3)

where β = (β0, β1, . . . , βq)
T and z∗ = (1, zT)T (Farewell, 1982; Kuk & Chen, 1992; Peng & Dear,

2000). As observed in the case of logistic regression, the logistic model works well when subjects are
linearly separable into the cure or susceptible groups with respect to covariates. However, problem
arises when subjects cannot be separated using a linear boundary. Other options to model the
incidence include assuming a probit link function (Φ−1(π(z)) = z∗Tβ) or a complementary log-log
link function (log[− log(1− π(z))] = z∗Tβ), where Φ is the cumulative distribution function of the
standard normal distribution (Peng, 2003; Cai et al., 2012; Tong et al., 2012). However, these link
functions do not offer non-linear separability and are not sufficient to capture more complex effects
of z on the incidence. Non-parametric strategies, e.g., the generalized Kaplan-Meier estimate at
maximum uncensored failure time (Xu & Peng, 2014) to estimate the incidence part π(z) and the
modified Beran-type estimator (López-Cheda et al., 2017) to estimate the latency part in a mix-
ture cure model, are also considered in the literature. Again, applying these strategies to multiple
covariates can be challenging. Therefore, there exists necessity to identify a group of classifiers
which would be able to model the incidence part more effectively by allowing non-linear separating
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boundaries between the cured and non-cured subjects.

To this end, the support vector machine (SVM) could be a reasonable choice. Introduced by Cortes
& Vapnik (1995), the SVM is a machine learning algorithm that finds a hyperplane in multidimen-
sional feature space that maximizes the separating space (margin) between two classes. The main
advantage of the SVM is that it can separate nonlinear inseparable data by transforming it to a
higher dimensional space using kernel trick. Consequently, this classifier is more robust and flexible
than logit or probit link functions. Recently, Li et al. (2020) studied the effect of the covariates on
the incidence π(z) by implementing the SVM. The new mixture model is seen to outperform exist-
ing cure rate models especially in the estimation of the incidence, and performs well for non-linearly
separable classes and high dimensional covariates. However, Li et al. (2020) only considered data
under non-informative right censoring mechanism. Motivated by this work, we propose to employ
the SVM based modeling to study the effects of covariates on the incidence part of the mixture
cure rate model for survival data subject to interval-censoring.

Unlike right-censored data, interval-censored data occur for a study where subjects are inspected
at regular intervals, and not continuously Treszoks & Pal (2022). If a subject meets with the event
of interest, the exact survival time is not observed and is only known that the event has occurred
between two consecutive inspections. Interval-censored data marked by cure prospect are often ob-
served in follow-up clinical studies (cancer biochemical recurrence or AIDS drug resistance) dealing
with events having low fatality and patients monitored at regular intervals (Sun, 2007; Lindsey
& Ryan, 1998). As in the case of right-censored data, some subjects may never encounter the
event of interest, and are considered as cured. Mixture cure models with interval censored data
are examined based on several estimation techniques for both semiparametric and non-parametric
set-ups (Kim & Jhun, 2008; Ma, 2009, 2010; Xiang et al., 2011; Aljawadi et al., 2012).

The rest of the article is arranged as follows. In Section 2, we discuss about the mixture cure
rate model framework for interval-censored data and develop an estimation procedure based on
the expectation maximization (EM) algorithm that employs the SVM to model the incidence part.
In Section 3, a detailed simulation study is carried out to demonstrate the performance of our
proposed model in terms of flexibility, accuracy and robustness. Comparisons of our model with
the existing logistic regression based mixture cure rate models are made in this section. The model
performance is further examined and illustrated in Section 4 through an interval censored data on
smoking cessation. Finally, we end our discussion by some concluding remarks and possible future
research directions in Section 5.

2. SVM based mixture cure rate model with interval censoring

2.1 Censoring scheme and modeling lifetimes

The data we observe in situations with interval censoring are of the form (Li, Ri, δi,xi, zi) for
i = 1, . . . , n, where n denotes the sample size. For the i-th subject, Li denotes the last inspection
time before the event and Ri denotes the first subsequent inspection time just after the event. Note
that Li < Ri. The censoring indicator is denoted by δi = I(Ri < ∞), which takes the value 0 if
Ri =∞, meaning that the event is not observed for a subject before the last inspection time, and
takes the value 1 if Ri <∞, meaning that the event took place but its exact time is not known and
is only known to belong to the interval [Li, Ri]. Now, xi and zi are the respective p dimensional
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and q dimensional covariate vectors affecting the incidence and latency parts, respectively, of the
mixture cure rate model. To demonstrate the effect of covariates on the latency part, we consider
a proportional hazards structure to model the lifetime distribution of the susceptible or non-cured
subjects. That is, for the susceptible subjects, we model the hazard function by

hu(ti|xi) = h0(ti) exp
{
xT
i γ
}
, (4)

where γ = (γ1, . . . , γp)
T is the p dimensional regression parameter vector measuring the effects of

x and h0(·) is the unspecified baseline hazard function. To facilitate our discussion, we assume the
baseline hazard to be of the following form: h0(ti) = αtα−1

i , where α > 0. One is of course free to
use other forms for the baseline hazard. Therefore, we have

hu(ti|xi) = αtα−1
i exp

{
xT
i γ
}
. (5)

Note that (5) turns out to be the hazard function of a Weibull distribution with shape parameter α

and scale parameter {exT
i γ}−1/α. Weibull distribution is a popular and flexible choice for modeling

lifetimes or failure times in survival analysis. It is closed under proportional hazards family when
the shape parameter remains constant, and it accommodates decreasing (α < 1), constant (α = 1)
and increasing (α > 1) failure rates (Farewell, 1982; Tsodikov et al., 2003; Kleinbaum & Klein,
2010). From (2), the resulting survival function and density function of any subject in the study
(irrespective of the cured status) are respectively given by

Sp(ti|xi, zi) = 1− π(zi) + π(zi) exp {− (ti/mi)
α} (6)

and

fp(ti|xi, zi) = π(zi)
αtα−1
i

mα
i

× exp {− (ti/mi)
α} , (7)

where mi = {exT
i γ}−1/α.

2.2 Form of the likelihood function

As missing observations are inherent to the problem set-up and model framework, we propose to
employ the EM algorithm to estimate the unknown parameters (McLachlan & Krishnan, 2007; Sy &
Taylor, 2000; Peng & Dear, 2000; Balakrishnan & Pal, 2016). For implementing the EM algorithm,
we need the form of the complete data likelihood function. Let us define ∆0 = {i : δi = 0} and
∆1 = {i : δi = 1}. Missing observations that appear in this context are in terms of the cure
indicator variable J , where J is as defined in (1). Note that Ji’s are all known to take the value 1 if
i ∈ ∆1. However, if i ∈ ∆0, Ji can either take 0 or 1, and is thus unknown or missing. Using these
Ji’s as the missing data, we can define the complete data as (Li, Ri, δi, Ji,xi, zi), for i = 1, . . . , n,
which contain both observed and missing data. Under the interval censoring mechanism, we can
now express the complete data likelihood function and log-likelihood function as:

Lc =
∏
i∈∆1

[π(zi) {Su(Li|xi)− Su(Ri|xi)}]Ji ×
∏
i∈∆0

(1− π(zi))
1−Ji {π(zi)Su(Li|xi)}Ji (8)
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and

lc =
∑
i∈∆1

Ji [log π(zi) + log {Su(Li|xi)− Su(Ri|xi)}]

+
∑
i∈∆0

(1− Ji) log(1− π(zi)) + Ji {log π(zi) + logSu(Li|xi)} , (9)

where Su(ti|xi) = exp {− (ti/mi)
α} (Pal & Balakrishnan, 2017a). It can be further noted that

lc = lc1 + lc2, (10)

where

lc1 =
n∑
i=1

[Ji log π(zi) + (1− Ji) log(1− π(zi))] (11)

is a function that depends on the incidence part only and

lc2 =
n∑
i=1

[δi log {Su(Li|xi)− Su(Ri|xi)}+ (1− δi)Ji logSu(Li|xi)] (12)

is a function that depends on the latency part only; see Pal (2021).

2.3 Modeling the incidence part with support vector machine

Let us assume that Ji for i ∈ ∆0 are observed by some mechanism to assist our theory. Support
vector machine algorithm maximizes the linear or non-linear margin between the two closest points
belonging to the opposite classification groups (cured and susceptible). That is, SVM solves the
following optimization problem for di; i = 1, . . . , n:

max
d1,...,dn

−1

2

n∑
i=1

n∑
j=1

didj(2Ji − 1)(2Jj − 1)Φk(zi, zj) +
n∑
i=1

di

 (13)

subject to the constraint
∑n

i=1(2Ji−1)di = 0 and 0 ≤ di ≤ C, for i = 1, . . . , n, where C is a param-
eter that trades off between the margin width and misclassification proportion. Smaller values of
C cause optimizer to look for a larger margin width allowing higher misclassification. Φk(., .) is a
symmetric positive semi definite kernel function, which we consider to be the radial basis function

(RBF) given by Φk(zi, zj) = exp
{
− (zi−zj)T(zi−zj)

σ2

}
. RBF is a popular choice of the kernel function

owing to its robustness by implementing the idea that a linear classifier in higher dimension can be
used as a non-linear classifier in lower dimension. The parameter σ2 determines the kernel-width.
Both hyper-parameters C and σ2 are to be tuned to obtain the highest classification accuracy using
cross-validation methods (Chang & Lin, 2011). Grid search can be implemented to determine C
and σ2. Low values of σ2 result in overfitting and jagged separator, while high values of σ2 result
in more linear and smoother decision boundaries. Also, it is recommended to standardize the co-
variate vector z.

The mapping Ji to 2Ji−1 converts the respective 0 and 1s to -1 and +1s, which aids in formulation
of the optimization problem under the SVM framework. Once di’s are obtained, we can derive a
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threshold b as b =
∑n

i=1(2Ji − 1)diΦk(zi, zj) − (2Jj − 1), for some dj > 0. For any new covariate
vector znew, the optimal decision or classification rule is given by

ψ(znew) =
n∑
i=1

di(2Ji − 1)Φk(zi, znew)− b. (14)

As suggested by Li et al. (2020), the sequential minimal optimization method (SMO), introduced
by Platt (1999), can be applied to solve (13). As opposed to solving large quadratic optimization
problems to train a SVM model, SMO solves a series of smallest possible quadratic problems. Thus,
SMO is relatively time inexpensive algorithm. Any subject with covariate znew is assigned to the
susceptible group if ψ(znew) > 0 and to the cured group if ψ(znew) < 0.

In the given context, note that it is not enough to just classify subjects as being cured or susceptible.
It is also of our interest to obtain the estimates of uncured probabilities π(zi) or equivalently the
cured probabilities 1 − π(zi). For this purpose, we use the Platt scaling method to obtain an
estimate of π(zi) from the classification rule ψ(.) (Platt et al., 1999). The estimate of π(zi) by
Platt scaling method is given by

π̂(zi) =
1

1 + exp{Aψ(zi) +B}
, (15)

where A and B are obtained by maximizing the following function:

n∑
i=1

(1− ζi)[Aψ(zi) +B]− log[1 + exp{Aψ(zi) +B}]. (16)

Here,

ζi =

{
n(1)+1
n(1)+2

, if Ji = 1
1

n(0)+2
, if Ji = 0,

(17)

and n(1) and n(0) represents the number of subjects in the susceptible and cured groups, respectively.

We started our discussion on the SVM based modeling of the incidence part above with the as-
sumption that Jis are observed and available for training purpose. However, in practice, the cure
status Ji is not known for i ∈ ∆0. Multiple imputation based approach can be applied here to
obtain π̂(zi) with imputed values of Ji for i = 1, . . . , n. The steps are as follows:

1. For a pre-defined integer N∗ and n∗ = 1, 2, . . . , N∗, generate {J (n∗)
i : i = 1, . . . , n}, where

J
(n∗)
i is a Bernoulli random variable with success probability p

(n∗)
i . The discussion on deriving

p
(n∗)
i is provided in Section 2.4.

2. For the imputed data {J (n∗)
i : i = 1, . . . , n}, obtain π̂(n∗)(zi) as the estimate of π(zi) by the

Platt scaling method given in (15) for n∗ = 1, 2, . . . , N∗.

3. π̂(zi) = (1/N∗)
∑N∗

n∗=1 π̂
(n∗)(zi) is the final estimate of π(zi).

2.4 Development of the EM algorithm

The E-step in the EM algorithm involves finding the conditional expectation of the complete data
log-likelihood function in (9) given the current estimates (say, at the (r + 1)-th iteration step)
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and the observed data, which is equivalent to finding the conditional expectation of Ji given the
observed data, π(zi) and (α,γT)T, as

w
(r+1)
i = δi + (1− δi)

π(r)(zi)S
(r)
u (Li|xi)

1− π(r)(zi) + π(r)(zi)S
(r)
u (Li|xi)

, i = 1, . . . , n, (18)

where S
(r)
u (Li|xi) = exp

{
−
(
Li/m

(r)
i

)α(r)
}

with m
(r)
i = {exT

i γ
(r)}−1/α(r)

. Note that (18) implies

that w
(r+1)
i = 1 for all i ∈ ∆1. We obtain the conditional expectation of lc by simply replacing Ji’s

with w
(r+1)
i in (9). We denote the aforementioned conditional expectation by

Qc = Qc1 +Qc2, (19)

where

Qc1 =

n∑
i=1

[
w

(r+1)
i log π(zi) + (1− w(r+1)

i ) log(1− π(zi))
]

(20)

and

Qc2 =
n∑
i=1

[
δi log {Su(Li|xi)− Su(Ri|xi)}+ (1− δi)w(r+1)

i logSu(Li|xi)
]
. (21)

The M-step updates the parameters in Qc1 and Qc2. For r = 0, 1, . . . , the procedure for the
(r + 1)-th iteration step of the EM algorithm is given below.

1. Carry out the multiple imputation technique, as described in Section 2.3, by considering

p
(n∗)
i = w

(r+1)
i , for n∗ = 1, . . . , N∗ and i = 1, . . . , n. Obtain π̂(r+1)(zi) = (1/N∗)

∑N∗

n∗=1 π̂
(n∗)(zi)

by applying the Platt scaling method with the classification rule ψ(·) defined in (14). Recall

that the classification rule is built based on the imputed data {J (n∗)
i : i = 1, . . . , n}, where

J
(n∗)
i is a Bernoulli random variable with success probability p

(n∗)
i .

2. Obtain (α(r+1),γ(r+1)T) by maximizing the function Qc2, as defined in (21), with respect to
α and γ. That is, find

(α(r+1),γ(r+1)T)T = arg max
α,γ

Qc2. (22)

3. Check for the convergence as follows:

||θ(r+1) − θ(r)||22 < ε,

where θ(k) = (π(k)(z), α(k),γ(k)T)T, with π(k)(z) = 1
n

∑n
i=1 π

(k)(zi), ε > 0 is some pre-
determined and sufficiently small tolerance and || · ||2 is the L2-norm. If the above crite-
rion is satisfied, then, stop the algorithm. In this case, π̂(r+1)(zi), for i = 1, . . . , n, and
(α(r+1),γ(r+1)T)T are the final pointwise estimates. On the other hand, if the above criterion
is not met, continue to Step 4.

4. Update w
(r+1)
i in (18) to
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w
(r+2)
i = δi + (1− δi)

π̂(r+1)(zi)S
(r+1)
u (Li|xi)

1− π̂(r+1)(zi) + π̂(r+1)(zi)S
(r+1)
u (Li|xi)

, (23)

where S
(r+1)
u (ti|xi) = exp

{
−
(
ti/m

(r+1)
i

)α(r+1)
}

and m
(r+1)
i = {exT

i γ
(r+1)}−1/α(r+1)

.

5. Repeat steps 1-4 until convergence is achieved.

2.5 Calculating the standard errors

The standard errors are estimated by non-parametric bootstrapping. For b′ = 1, . . . , B, b′-th
bootstrapped data set is obtained by resampling with replacement from the original data. The
sample size of the b′-th bootstrapped data is the same as the original data. Then, we carry
out steps 1-5 of the EM algorithm as detailed in Section 2.4 to obtain the estimates of model
parameters for each bootstrapped data. This gives us B estimates for each model parameter. For
each parameter, the standard deviation of these B estimates provide an estimate of the standard
error of the parameter.

2.6 Finding the initial values

To start the EM algorithm, we need to provide initial values of π(zi), for i = 1, . . . , n, along with
α and γ. To come up with an initial guess of π(zi), first, we can consider the censoring indicator
δi, i = 1, . . . , n, as the cure indicator (i.e., δi = 0 would imply Ji = 0 and δi = 1 would imply
Ji = 1). Then, we can apply the SVM to come up with the classification rule, as given in (14), and,
finally, we apply the Platt scaling method, as given in (15), to obtain π(zi). To obtain an initial
guess of the latency parameters α and γ, we make use of the form of the survival function of the
susceptible subjects, i.e., Su(ti) = exp {− (ti/mi)

α} , where mi = {exT
i γ}−1/α. Note that this form

implies that
log{− logSu(ti)} = α log ti + xT

i γ, i = 1, . . . , n.

Hence, we can fit a linear regression model using log{− logSu(ti)} as the response to obtain esti-
mates of α and γ, which can be used as the initial guesses. For this purpose, Su(ti) can be the
estimated using the non-parametric Kaplan-Meier estimates. Since the form of the data is interval
censored, we can take ti = Li+Ri

2 , if Ri <∞, and take ti = Li, if Ri =∞, for all i = 1, . . . , n. Note
that this procedure may result in negative estimates of α. As such, we can take the initial guess of
α as 0.05 or 0.1 if the estimate of α turns out to be negative.

3. Simulation study

In this section, we assess the performance of the proposed SVM based EM algorithm to estimate
the model parameters of the mixture cure rate model for interval censored data. We generate two
random values x1 and x2 independently from the standard normal distribution and assume x = z
with x = (x1, x2)T. We consider two different sample sizes: n = 300 and n = 400 and use the
following links to generate uncured probabilities π(z):
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Scenario 1: π(z) =
e0.3−5z1−3z2

1 + e0.3−5z1−3z2
;

Scenario 2: π(z) =
e0.3+10z21−5z22

1 + e0.3+10z21−5z22
;

Scenario 3: π(z) = exp{− exp(0.3− 4 cos z1 − 5 sin z2)}.

Note that Scenario 1 represents the standard logistic regression model which captures a linear clas-
sification boundary. On the other hand, Scenarios 2 and 3 capture non-linear or more complex
classification boundaries, as shown in Figure 1. Figure 2 shows the plots of simulated uncured
probabilities and how they vary with respect to the covariates z1 and z2.

We assume lifetimes of the susceptible subjects follow the proportional hazards structure with the
hazard function

hu(t) = h0(t) exp(γ1x1 + γ2x2)

where h0(t) = αtα−1. As discussed before, the above hazard function implies that the susceptible
lifetime follows a Weibull distribution with shape parameter α and scale parameter {exp(γ1x1 +

γ2x2)}−
1
α . We consider the true values of (α, γ1, γ2) as (0.5, 1, 0.5). The censoring time is generated

from a Uniform distribution in (0, 20). Under these settings, the cure probabilities range from
50%− 65%, whereas the overall censoring proportions range from 60%− 75%. To generate interval
censored lifetime data (Li, Ri, δi), i = 1, 2, · · · , n, we carry out the following steps:

Step 1: Generate a Uniform (0,1) random variable Ui and a censoring time Ci;

Step 2: If Ui ≤ 1− π(zi), set Li = Ci, Ri =∞, and δi = 0;

Step 3: If Ui > 1 − π(zi), generate Ti from a Weibull distribution with shape parameter α

and scale parameter {exp(γ1x1i + γ2x2i)}−
1
α ;

Step 4:

a. If min{Ti, Ci} = Ci, set Li = Ci, Ri =∞, and δi = 0;

b. If min{Ti, Ci} = Ti, set δi = 1, and generate L1i from Uniform (0.2, 0.7) distribu-
tion and L2i from Uniform (0, 1) distribution. Next, create intervals (0, L2i], (L2i, L2i +
L1i], · · · , (L2i + k × L1i,∞], k = 1, 2, · · · , and select (Li, Ri) that satisfies Li < Ti ≤ Ri.

All simulations are done using the R statistical software (version 4.0.4) and all results are based
on M = 500 Monte Carlo runs. To employ our proposed methodology, we consider number of
imputations in the multiple imputation technique to be 5, which is in line with Li et al. (2020);
see also Wu & Yin (2013). In Table 1, we report the bias and mean squared error (MSE) of the
estimated uncured probability π̂(z) and the susceptible survival probability Ŝu = Ŝu(., .;x). These
are calculated as:

Bias(π̂(z)) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
π̂(k)(zi)− π(k)(zi)

}]
;

Bias(Ŝu) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
Ŝ

(k)
u (Li, Ri;xi)− S(k)

u (Li, Ri;xi)
}]

;
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Figure 1: Simulated cured and uncured observations for the three considered scenarios
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Figure 2: Simulated uncured probabilities and their behavior with respect to the covariates for the
three considered scenarios

MSE(π̂(z)) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
π̂(k)(zi)− π(k)(zi)

}2
]
;

MSE(Ŝu) =
1

M

M∑
k=1

[
1

n

n∑
i=1

{
Ŝ

(k)
u (Li, Ri;xi)− S(k)

u (Li, Ri;xi)
}2
]
,

where π(k)(zi) and S
(k)
u (Li, Ri;xi) are the true uncured probability and susceptible survival prob-

ability, respectively, corresponding to the i-th subject and the k-th Monte Carlo run. Similarly,

π̂(k)(zi) and Ŝ
(k)
u (Li, Ri;xi) are the estimated uncured probability and susceptible survival proba-

bility, respectively, corresponding to the i-th subject and the k-th Monte Carlo run. In the above

expressions, note that S
(k)
u (Li, Ri;xi) = S

(k)
u (Ti;xi), where Ti = Li+Ri

2 if Ri < ∞ and Ti = Li if

Ri =∞. Ŝ
(k)
u (Li, Ri;xi) is defined in a similar way.

From Table 1, it is clear that the bias and MSE of the estimated uncured probability from the
logistic based EM algorithm is smaller than that from the proposed SVM based EM algorithm
when logistic regression is the correct model (Scenario 1). However, when the true model for the
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Table 1: Comparison of Bias and MSE of the uncured probability and susceptible survival proba-
bility

n Scenario
Uncured Probability Susceptible Survival Probability

Bias MSE Bias MSE
SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

400
1 -0.126 -0.002 0.083 0.002 -0.062 0.001 0.021 0.001
2 -0.063 0.132 0.042 0.209 -0.005 0.051 0.004 0.037
3 -0.020 0.089 0.019 0.080 -0.006 0.013 0.002 0.005

300
1 -0.126 -0.001 0.088 0.002 -0.063 0.002 0.022 0.001
2 -0.063 0.130 0.046 0.210 -0.006 0.049 0.006 0.038
3 -0.023 0.087 0.022 0.080 -0.006 0.013 0.003 0.006

uncured probability is not the logistic regression in Scenarios 2 and 3, the proposed SVM based EM
algorithm produces smaller bias and MSE in the estimated uncured probability. Figure 3 presents
the biases of the estimates of the individual uncured probabilities plotted against each covariate.

For the estimates of the susceptible survival probability, when the logistic regression model (Sce-
nario 1) is the true model for the uncured probability, the logistic based EM algorithm produces
smaller biases and MSEs compared to the SVM based EM algorithm. On the other hand, when
the true model for the uncured probability is non-logistic (Scenarios 2 and 3), the SVM based EM
algorithm results in smaller biases and MSEs when compared to the logistic based EM algorithm.
Figure 4 presents the biases of the estimates of the susceptible survival probabilities when plotted
against each covariate. These findings clearly indicate that the SVM based EM algorithm is able to
capture more complex and non-linear classification boundaries, where the standard logistic based
EM algorithm produces relatively larger bias and MSE.

In Table 2, we present the estimation results corresponding to the latency parameters. In particu-
lar, we compare bias, standard deviation (SD) and MSE of the estimates of the latency parameters
corresponding to the proposed SVM based mixture cure rate model and the traditional logistic
regression based mixture cure rate model. We can see that the bias, SD and MSE corresponding
to the logistic regression based EM algorithm are smaller when the logistic regression is the true
model for the uncured probabilities (i.e., Scenario 1 is true). However, when the true model for
the uncured probabilities is non-logistic (i.e., Scenarios 2 and 3 are the true models), the SVM
based EM algorithm, in general, results in smaller bias, SD and MSE (note that in some cases, the
estimates of parameters tend to have larger biases, SDs and MSEs in SVM method than in logistic
method). With an increase in the sample size, the bias, SD and MSE tend to decrease further,
which is what we would expect.

Summarizing the findings from both Table 1 and Table 2, we can conclude that the proposed SVM
based EM algorithm performs better than the standard logistic regression based EM algorithm,
both in terms of the incidence part and the latency part of the mixture cure rate model, when the
true classification boundary is non-liner and complex. This clearly demonstrates the ability of the
proposed SVM based model to handle complex non-linear classification boundaries.

Although, in practice, the cured status is unobserved for a real data, we do know which observations
can be considered as cured when we simulate data. Using such information on the cured status for
simulated data, we can easily compare the proposed SVM based mixture model with the logistic

11
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Figure 3: Bias of the uncured probabilities with respect to each covariate for the three considered
scenarios

regression based mixture model using the receiver operating characteristic (ROC) curves and the
area under the curves (AUCs) for different scenarios we have considered. Figure 5 presents the
ROC curves under different scenarios. The corresponding AUC values are presented in Table 3.
These results are based on 500 Monte Carlo runs with n = 400 in each run. It is once again
clear that under Scenarios 2 and 3 (i.e., when the classification boundaries are non-linear), the
performance (or the accuracy) of the SVM based model is better than the logistic regression based
model. Note, in particular, that the performance of the SVM based model is significantly better
under Scenario 2. However, under scenario 1 (i.e., when the classification boundary is linear), the
logistic regression based model performs slightly better than the SVM based model.

3.1 Comparison with spline-based mixture cure model and using non-parametric
baseline survival function

To demonstrate the superiority of our proposed model, we also compare our model with the spline
regression-based mixture cure model which can also capture complex patterns in the data. We also
relax the parametric assumption on the baseline hazard function and estimate the baseline survival
function non-parametrically using the Turnbull type estimator. Considering scenario 3 and three
different sample sizes (n=300, 600, 900), we present the results in Table 4. The corresponding
ROC curves are presented in Figure 6. It is once again clear that our proposed SVM-based model
performs better when compared to both spline-based and logistic regression-based models.
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Figure 4: Bias of the susceptible survival probabilities with respect to each covariate for the three
considered scenarios

Table 2: Estimation results corresponding to the latency parameters

n Scenario Latency Parameter
Bias SD MSE

SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

400

1
α = 0.5 0.103 0.008 0.052 0.050 0.014 0.003
γ1 = 1.0 -0.498 0.010 0.139 0.123 0.270 0.018
γ2 = 0.5 -0.269 0.004 0.109 0.105 0.086 0.012

2
α = 0.5 0.074 -0.117 0.056 0.038 0.008 0.016
γ1 = 1.0 -0.099 -0.111 0.102 0.109 0.018 0.026
γ2 = 0.5 -0.012 0.740 0.167 0.132 0.022 0.574

3
α = 0.5 0.047 -0.010 0.049 0.045 0.005 0.002
γ1 = 1.0 -0.037 0.257 0.141 0.120 0.018 0.082
γ2 = 0.5 0.085 0.079 0.121 0.106 0.017 0.018

300

1
α = 0.5 0.107 0.007 0.062 0.060 0.015 0.004
γ1 = 1.0 -0.526 0.006 0.164 0.143 0.303 0.021
γ2 = 0.5 -0.281 -0.004 0.131 0.125 0.096 0.014

2
α = 0.5 0.067 -0.116 0.067 0.047 0.009 0.017
γ1 = 1.0 -0.093 -0.102 0.123 0.129 0.022 0.029
γ2 = 0.5 0.009 0.722 0.198 0.164 0.033 0.598

3
α = 0.5 0.056 -0.004 0.060 0.053 0.007 0.003
γ1 = 1.0 -0.036 0.252 0.162 0.141 0.021 0.085
γ2 = 0.5 0.092 0.073 0.142 0.125 0.021 0.022
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Figure 5: ROC curves under different scenarios

Table 3: AUC values under different scenarios

Scenario LOGISTIC SVM

1 0.973 0.927
2 0.502 0.948
3 0.873 0.962

Table 4: Comparison of SVM-based model with spline-based and logistic regression-based models

Bias MSE AUC
n SVM Spline Logit SVM Spline Logit SVM Spline Logit

300 0.0055 0.0303 0.0720 0.0174 0.0446 0.0841 0.9748 0.8881 0.5932
600 0.0049 0.0358 0.0720 0.0124 0.0507 0.0834 0.9838 0.8970 0.5723
900 0.0047 0.0394 0.0728 0.0097 0.0523 0.0828 0.9851 0.8925 0.5470

4. Illustrative example: smoking cessation data analysis

We further demonstrate our proposed methodology using a dataset on smoking cessation study
(Murray et al., 1998; Wiangnak & Pal, 2018). The study contains 223 subjects who had enrolled
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Figure 6: Figure 2: ROC curves for different mixture cure models (MCM) and sample sizes

for the study during November 1986 to February 1989 (Banerjee & Carlin, 2004; Kim & Jhun,
2008). Only those subjects who had tried to quit smoking at least once and who had identifiable
Minnesota zip codes during the study period are considered in the analysis set. These subjects were
all smokers at the time of enrollment, and were randomly assigned to two groups, namely, the smok-
ing intervention (SI, treatment group) and the usual care (UC, control group). The subjects were
monitored once every year for a period of 5 consecutive years. Information on whether they had re-
lapsed or not (1:Yes and 0:No) are present in the data set. A relapse implies resumption of smoking
and the event of interest for our illustration is the time to relapse. Obviously, the exact relapse time
was unobserved since the relapse could have happened anytime in between two consecutive annual
visits. Hence, the study falls under the scope of interval censored data analysis. Information on
several additional variables are also available, e.g., gender (GEN, 1:Female and 0:Male), duration of
smoking (DUR, time in years elapsed between commencement of smoking and entry to the study)
and average number of cigarettes smoked per day (AVGCIG) before the study period. These vari-
ables are treated as covariates since these factors supposedly can influence the relapse. Out of those
who relapsed, most did so in the first year of their smoking cessation trial (see Figure 7). In Figure
8, we present the Kaplan-Meier curve. Clearly, we can see that the curve levels off to a significant
non-zero proportion. This indicates that there could be a greater likelihood of the presence of cured
fraction in the data. In Table 5, we present few important descriptive statistics related to the study.

Table 5: Distribution of proportion of relapse, average duration and average number of cigarettes
smoked per year by gender and treatment group

Treatment Group Measure Gender
Female Male

n (%) 73 (32.735) 96 (43.049)
SI p̂r (95% CI) 0.329 (0.221, 0.437) 0.219 (0.136, 0.301)

Avg Dur (SD) 29.506 (6.390) 25.246 (9.667)
Avg Cig (SD) 30.343 (7.115) 29.375 (12.552)

n (%) 14 (6.278) 40 (17.937)
UC p̂r (95% CI) 0.357 (0.106, 0.608) 0.375 (0.224, 0.525)

Avg Dur (SD) 28.214 (8.833) 22.714 (9.160)
Avg Cig (SD) 30.750 (7.502) 26.875 (9.915)

SI: smoking intervention, UC: usual care, n: sample size, %: percentage of the total, p̂r: proportion of relapse, CI:
confidence interval, Avg Dur: average of DUR, Avg Cig: average of AVGCIG, SD: standard deviation
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Figure 7: Number of relapses in between every consecutive annual visits from study entry
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Figure 8: Kaplan Meier curve for the smoking cessation data

In our application, we consider DUR (x1), AVGCIG (x2) and GEN (x3) as covariates of interest.
We fit the proposed SVM based mixture cure rate model and, for comparison, we also fit the logistic
regression based mixture cure rate model. First, we draw inference on the incidence part of the
model. In Figure 9, for each gender, we plot the estimates of the uncured probabilities against
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DUR and AVGCIG for both models. Clearly, under the proposed SVM based model, the change
in the estimates of the uncured probabilities is non-monotonic with respect to DUR and AVGCIG.
This non-monotonic relationship is not captured by the logistic regression based model, owing to
its rigid model assumption.

Table 6 presents the estimates of the latency parameters and their standard deviations for both
SVM based and logistic regression based models. The effects of the covariates on the latency part
are the same for both models. Clearly, at 1% level of significance, only GEN turns out to be
significant as far as the time to relapse of uncured patients is concerned. Since the estimate of γ3

is negative, males tend to relapse faster than females. Also, since the estimate of γ1 is positive,
the hazard of smoking relapse increases with longer duration of smoking. However, such an effect
is not significant. Moreover, since the estimate of γ2 is negative, it implies that those who smoked
less cigarettes tend to relapse faster. This effect is significant at 5% level of significance only under
the SVM based model. In the Appendix, we present two plots. Figure A.1 presents the predicted
survival probabilities of uncured subjects for fixed DUR and different values of AVGCIG. Figure
A.2 presents the predicted survival probabilities of uncured subjects for fixed AVGCIG and different
values of DUR.
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Figure 9: Estimates of uncured probabilities as a function of DUR and AVGCIG
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Table 6: Estimation results corresponding to the latency parameters for the smoking cessation data

Parameter Estimates SD p-value

SVM LOGISTIC SVM LOGISTIC SVM LOGISTIC

α 1.013 0.968 0.129 0.093 – –
γ1 (DUR) 0.176 0.210 0.143 0.206 0.218 0.307
γ2 (AVGCIG) -0.283 -0.330 0.129 0.256 0.028 0.198
γ3 (GEN) -1.058 -1.423 0.150 0.200 1.71×10−12 1.32×10−12

5. Conclusion

The support vector machine has received a great amount of interest in the past two decades. It
has been shown that the SVM performs well in a wide array of problems including face detection,
text categorization and pedestrian detection. However, the use of the SVM in the context of cure
rate models is new and not well explored. In this manuscript, we have proposed a new cure rate
model that uses the SVM to model the incidence part and a proportional hazards structure to
model the latency part for survival data subject to interval censoring. The new cure rate model
inherits the properties of the SVM and can capture more complex classification boundaries. For
the estimation purpose, we have proposed an EM algorithm where sequential minimal optimization
together with Platt scaling method are employed to estimate the uncured probabilities. In this
regard, due to the unavailability of some cured statuses, we make use of a multiple imputation
based approach to generate missing cured statuses. Due to the complexity of the proposed model
and the estimation method, we approximate the standard errors of the estimated parameters using
non-parametric bootstrapping. Through a simulation study, we have shown that when the true
classification boundary is non-linear the proposed SVM based model performs better than the
standard logistic regression based model. This is true with respect to both incidence and latency
parts of the model. As future research, it is of great interest for us to extend the proposed model
to accommodate a competing risks scenario (Balakrishnan & Pal, 2015; Davies et al., 2021). It is
also of interest to explore other machine learning algorithms (e.g., neural network or tree-based
approaches) to study more complicated cure rate models such as those that look at the elimination
of risk factors (Pal & Balakrishnan, 2016, 2017a,b, 2018; Majakwara & Pal, 2019) and those that
belong to a transformation family of cure models Wang & Pal (2022). We are currently looking at
some of these problems and we hope to report the findings in our upcoming manuscripts.

Conflict of interest

The authors declare that there is no conflict of interests related to the publication of this manuscript.

References

Aljawadi, B. A., Bakar, M. R. A., & Ibrahim, N. A. (2012). Nonparametric versus parametric
estimation of the cure fraction using interval censored data. Communications in Statistics-Theory
and Methods, 41 (23), 4251–4275.

Balakrishnan, N., & Pal, S. (2015). An EM algorithm for the estimation of parameters of a flexible
cure rate model with generalized Gamma lifetime and model discrimination using likelihood-and
information-based methods. Computational Statistics, 30 (1), 151–189.

18



Balakrishnan, N., & Pal, S. (2016). Expectation maximization-based likelihood inference for
flexible cure rate models with Weibull lifetimes. Statistical Methods in Medical Research, 25 (4),
1535–1563.

Banerjee, S., & Carlin, B. P. (2004). Parametric spatial cure rate models for interval-censored
time-to-relapse data. Biometrics, 60 (1), 268–275.

Barui, S., & Yi, Y. G. (2020). Semiparametric methods for survival data with measurement error
under additive hazards cure rate models. Lifetime Data Analysis, 26 (3), 421–450.

Berkson, J., & Gage, R. P. (1952). Survival curve for cancer patients following treatment. Journal
of the American Statistical Association, 47 , 501–515.

Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer
therapy. Journal of the Royal Statistical Society. Series B (Methodological), 11 , 15–53.

Cai, C., Zou, Y., Peng, Y., & Zhang, J. (2012). smcure: An R-package for estimating semiparamet-
ric mixture cure models. Computer Methods and Programs in Biomedicine, 108 (3), 1255–1260.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2 (3), 1–27.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning , 20 (3), 273–297.

Davies, K., Pal, S., & Siddiqua, J. A. (2021). Stochastic EM algorithm for generalized exponential
cure rate model and an empirical study. Journal of Applied Statistics, 48 (12), 2112–2135.

Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term
survivors. Biometrics, 38 , 1041–1046.

Farewell, V. T. (1986). Mixture models in survival analysis: Are they worth the risk? Canadian
Journal of Statistics, 14 (3), 257–262.

Gu, Y., Sinha, D., & Banerjee, S. (2011). Analysis of cure rate survival data under proportional
odds model. Lifetime Data Analysis, 17 (1), 123–134.

Kim, Y.-J., & Jhun, M. (2008). Cure rate model with interval censored data. Statistics in Medicine,
27 (1), 3–14.

Kleinbaum, D. G., & Klein, M. (2010). Survival analysis. Springer.

Kuk, A. Y., & Chen, C.-H. (1992). A mixture model combining logistic regression with proportional
hazards regression. Biometrika, 79 , 531–541.

Li, C.-S., & Taylor, J. M. (2002). A semi-parametric accelerated failure time cure model. Statistics
in Medicine, 21 (21), 3235–3247.

Li, P., Peng, Y., Jiang, P., & Dong, Q. (2020). A support vector machine based semiparametric
mixture cure model. Computational Statistics, 35 (3), 931–945.

Lindsey, J. C., & Ryan, L. M. (1998). Methods for interval-censored data. Statistics in Medicine,
17 (2), 219–238.

19
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Figure A.1: Predicted survival probability of the susceptible for fixed duration as smoker (x1) and
different values of average cigarettes smoked per day (x2)
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Figure A.2: Predicted survival probability of the susceptible for fixed average cigarettes smoked
per day (x2) and different values of duration as smoker (x1)
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