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ON THE DEVELOPMENT AND EVALUATION OF A FRAMEWORK FOR BRAIN-COMPUTER INTERFACE AND
VIBROTACTILE FEEDBACK FOR HUMAN-ROBOT-INTERACTION IN VIRTUAL SPACES AND ROBOTIC HARDWARE
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Department of Mechanical and Aerospace Engineering

The University of Texas at Arlington
Arlington, TX 76019-0023

ABSTRACT
Research in Brain-Computer Interface (BCI) aims to un-

derstand human intent with the goal to enhance Human-Robot
Interaction (HRI) especially in the field of assistive robotics. The
goal of this research is to develop a behavioral sequence based
framework to help persons with upper limb disabilities to main-
tain self-dependence. The framework aims to operate in stages
and links multiple functional components to identify human intent
and control a robotic arm. The development, operation, and eval-
uation of the framework and the linked functional components to
acquire, process, evaluate, and map BCI signals generated using
facial expressions and head movements to predefined actions will
be introduced.The framework will integrate multiple functional
components such as a non-invasive BCI control device, a vibro-
tactile haptic feedback device, a visual feedback environment, the
evaluation and training platform, and a robotic arm. The robot
pick, move and place actions are mapped to different facial ex-
pressions and presented using haptic and visual feedback to the
user for classified action verification before performing the pro-
cess using a robotic arm. The initial evaluation of the developed
framework was 100% successful with two volunteers who also
provided constructive feedback. The initial successful evaluation
provides confidence to further test the framework with more vol-
unteers to identify limitations and/or areas of improvement and
its application for further research in HRI as it applies to assistive
robotic systems.
Keywords: Human Robot Interaction, Brain Computer Interface,
Vibrotactile Feedback, Process Verification, Virtual Environment,
Assistive Robotics, Interaction Framework
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NOMENCLATURE
Abbreviations
BCI Brain Computer Interface
HRI Human Robot Interaction
EEG Electroencephalogram
GUI Graphical User Interface
ERM Eccentric Rotating Mass
WVF Waveform Pattern
FG Facial expression

1. INTRODUCTION
HRI and BCI belong in a multidisciplinary field that allows

for interlinking multiple functional components while providing
an interaction interface. This interface provides a person the
ability to interact, control and monitor the behavior of the com-
ponents in a physical environment. A framework is required to
interlink the different functional components and organize the
information flow to follow a certain behavioral sequence. The
framework provides the ability to set control protocols to simu-
late autonomous behavior while confirming interactions that are
approved for a certain scenario.
As a part of daily life, a person accomplishes various actions

by performing motion actions related to grasping and moving ob-
jects, coordinating motion sequences, and sensing object proper-
ties performed using the hand and utilizing human haptics during
physical exploration. These actions are generally easy for an
able-bodied person. However, for an individual with upper limb
disability they can be a challenge to perform without additional
human assistance. In such scenarios, the integration of assis-
tive robotic systems in the daily life of a person can help them
maintain self-dependence. Assistive robotic system refers to a
system which can maintain or improve the functional capability
of a person with disability [1].
Assistive robotic systems for social interactions consider var-

ious factors and interaction methods [2]. The robot needs to un-
derstand when humans want to engage and be able to communi-
cate with the user. These communication methods include verbal
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and non-verbal modalities. The proposed interaction approach
would allow a user to interact with the robot using non-verbal
form of communication, facial expressions and nods (types of
head movement), as well as sense robot responses or intended
actions through the vibrotactile interaction.
An upper limb disability could be due to different reasons

such as spinal cord injuries, strokes, muscular dystrophy or upper
limb amputation. In the majority of the cases, the person retains
the ability to generate brain signals for various physical actions
even after loosing motor controls. In the United States alone
approximately 5,400,000 people have some form of paralysis [3]
and almost 185,000 people undergo some form of amputation
every year [4]. The field of HRI and BCI could consider such
limitations towards identifying ways to enable the interaction of
humans with assistive robotic systems.
In this study, we propose a framework to interlink multiple

functional components and establish an operation sequence for
an assistive robotic system. The framework is implemented in
LabVIEW due to its ability to easily communicate with diverse
hardware components, ease of graphical programming and de-
velopment of customized graphical user interfaces (GUIs). The
system utilizes the framework to communicate with various func-
tional components such as a non-invasive Emotiv EPOC+ head-
set, a custom developed glove-based haptic feedback system, a
Braccio robot, and Webots (a robot simulator). This system
could enable a person with upper limb disability to interact with
an assistive robot using a combination of EEG signals of facial
expressions and head movements based commands to define a
desired action, obtain haptic feedback on the understood action
before execution and confirm or abort execution.

2. RELATED WORK
With the growing market for commercially available EEG

based devices, research in the field of BCI has expanded over
the last few years. Emotiv EPOC+ is one of the many available
EEG sensing devices and frequently used in academic research.
Several studies have utilized the Emotiv headset to extract either
raw EEG data or classified data to control some form of robotic
hardware [5–12].
Chowdhury et al. [5] investigated the use of four mental

commands to control the motion of a mobile robot in four direc-
tions and an untrained facial expression to stop an ongoing mo-
tion. They presented an accuracy of 72.65% for motion control
by able-bodied people and 82% by individuals with a disability.
They also reported that mental commands training success rates
varied by large margins for all mental commands which could
lead to a false interpretation. Ouyang et al. [10] investigated
an implementation of mapping four mental commands to move a
robotic end effector. A majority of the subjects were able to only
perform control using one to two mental commands with low
accuracy, and had difficulty triggering more than 2 commands.
Aguiar et al. [8] and Zamora et al. [11] presented the

usage of facial expressions and gyroscope data captured using
Emotiv EEG headsets to control a simple robotic arm. A robotic
arm was controlled in both the studies with an accuracy of over
80%. While these studies were able to achieve a reasonably
high accuracy, there were still opportunities for false positives,

resulting in the robot performing an unintended action. Therefore,
the understood or classified action must be verified before robot
execution to avoid unintendedmotions or worse injuring a person.
Virtual simulations can be an effective medium to validate

robot actions to avoid undesirable behaviour. According to Choi
et. al. [13] virtual simulation provides the ability to present an
operation selected based on the user decisions. This is beneficial
in the field of HRI since it provides a safe environment for verifi-
cation of the selected action before robot execution. Webots [14]
is a virtual simulation package commonly used in investigations
with BCI to simulate robot actions [15–18].
Vibrotactile feedback can be used to guide a person by pro-

viding a perception which could be interpreted in reference to the
direction a movement should follow [19] or aid in propriocep-
tive rehabilitation [20] or generate sensory illusions for virtual
reality applications [21]. Vibrotactile feedback provided on the
fingertips allows a person to sense vibration variations due to
the presence of high concentration of mechanoreceptors under
the glaborous skin [22]. This ability could allow a person to
understand non-visual information provided in the form of tac-
tons. Tactons are waveform patterns which vary in amplitude,
frequency, duration and rhythm [23]. Chan et al. [24] reported
that these haptic feedback patterns can be identified by a person
even when a person is engaged in a task.
Previously proposed frameworks to control robotic systems

using BCI inputs, capture and interpret an EEG signal for an
intended task and send appropriate signals to control a robot. On
receiving an BCI input, the EEG signals are interpreted by being
processed through a controller which will extract features that
are recognizable and classifiable to generate control commands
for a robotic system. On receiving the control commands the
robotic system can perform the intended task and update the
user using sensory stimuli which could be visual, auditory, or
tactile. These frameworks purely focus on using signal processing
methodologies to interpret EEG signals provided by the user and
to reduce false positives. In such scenarios once the framework
has received the EEG signals the user is not part of the decision
making process and would need to visually monitor the assistive
hardware to understand and react if the action being performed
is correct or not [25–28].
Research in our laboratory investigates methodologies to in-

tegrate multiple functional components of BCI and HRI into a
behavioral procedure and provide vibrotactile haptic feedback to
the user, thus providing an interface to communicate between
multiple functional components and a library of distinguishable
haptic waveform patterns. Node-RED, a browser based program-
ming language, was used to transfer information pertaining to
classified mental commands, facial expressions, and extracted
gyroscope data for head movements from the EmotivBCI appli-
cation to Webots, and LabVIEW to control the simulation and
operation of a Braccio robot based on the classified action[29].
As a part of our investigation in the field of haptics, a procedure
is developed to generate distinguishable vibrotactile feedback.
A set of waveform patterns were prepared and evaluated to de-
termine the ability of a person to distinguish and identify these
waveform patterns[30] in order affirm or verify the execution of
the classified action or abort it.
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This investigation further extends our research in the field of
BCI and HRI and presents a framework which could be used by
individuals with upper limb disability. The proposed framework
will establish an operational behavioral based process sequence
and combine multiple functional components to safely perform
a desired action by an assistive robotic system. The proposed
framework is intended to increase the involvement of a user in the
decision making process before sending the control commands
to an assistive device to reduce the number of false positives and
to allow a user to act before the action is performed instead of
reacting while observing the action being performed by it.

3. FRAMEWORK
The proposed framework is based on a behavioral sequence

to link the multiple functional components and operate them in
an ecosystem consisting of the user, BCI control device (Emo-
tiv EPOC+), LabVIEW based control interface, haptic feedback
device (haptic feedback glove), visual feedback, training, and
evaluation platform (Webots), a robotic arm for action or task ex-
ecution (Braccio robot) and its associated microcontroller (Lab-
VIEW based myRIO). In order to apply the framework to an
assistive robotic system a set of requirements are defined. The
framework should have the ability to

• Sense and interpret BCI inputs such as facial expressions
and head movements.

• Map a desired action and a corresponding tactile feedback
to a BCI input.

• Verify an understood or classified action using tactile and
visual feedback before execution by robotic system.

The functional components interlinked by the framework are
categorised into four (4) modules based on the defined require-
ments.

• Module 1: EEG signal read and classify
This module acquires and processes data for facial expres-
sions and headmovements. After acquiring the raw informa-
tion using the BCI control device the EmotivBCI program
(supplied by manufacturer) classifies and interprets the EEG
signals based on the initially performed training for facial
expressions and provides X-, Y-, and Z-axis gyroscope data
based on the user’s head movement.

• Module 2: Signal verification using haptic feedback
This module initiates a verification process utilizing haptic
feedback to confirm if the action “understood" or classified
by the framework is the intended user defined action. This
module is also invoked when an action has been executed
by a robotic arm to indicate that all stages of operation have
been completed. A haptic feedback device is used to provide
a predefined distinguishable haptic feedback.

• Module 3: Signal verification using virtual simulation of the
classified task
This module initiates a verification process utilizing visual
feedback to confirm if the action "understood" or classified

FIGURE 1: SIMPLIFIED FRAMEWORK MODEL LINKING FUNC-
TIONAL MODULES

by the framework is the intended user defined action. Visual
feedback is provided by generating a virtual simulation of
the robotic arm motion for a desired action using Webots.
Webots could also be used for training the user and evaluat-
ing the robotic arm motion before executing the understood
action.

• Module 4: Action execution by robotic hardware
This module executes the desired action using a robotic arm.
The motion of the robotic arm is governed by the motion
commands according to a mapped action and executed using
the Braccio robot.

The simplified model of the proposed framework linking all
four (4) modules is presented in figure 1.

3.1 Framework Processes
The modules are linked according to the framework forming

an interactive system that can execute actions based on classifi-
cation of the user input provided in the form of facial expressions
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FIGURE 2: FACIAL EXPRESSIONS: FG-1 RAISED EYEBROWS, FG-
2 NEUTRAL FACE, FG-3 CLENCH [32]

FIGURE 3: TYPES OF NODS: TYPE 1 FOR A "YES" COMMAND,
TYPE 2 FOR A "NO" COMMAND [33]

and nods. Facial expressions and nods are a form of unique and
personal human-human non-verbal communication [31]. This
allows for the framework inputs to be personalized and mapped
to generate control signals to command the robotic system. The
current framework, as the first step, has two trained facial expres-
sions mapped to two actions, and two types of nods mapped for
the verification processes as shown in figures 2 and 3 respectively.
The waveform patterns used for haptic feedback verification are
presented in figure 4. The actions to be performed by the robotic
system are predefined, pick and place an object from and to a
known location.
Table 1 presents a list of facial expressions and nods, mapped

associated robot actions and the haptic feedback waveform pat-
terns predefined in the framework. The framework is intended to
operate in stages invoking modules as needed. The stages of the
framework operation are as follows:

• Stage 1: Action classification
In this stage only Module 1 is initiated. The facial expres-
sions performed by the user are captured and recognised by
the BCI control device. This recognition allows the frame-
work to classify an action and retrieve the commands for the
robot motion and the corresponding haptic feedback. After
an action is classified correctly, the framework will proceed
to Stage 2, otherwise it will maintain the current state of all
interlinked components and wait for a predefined user input.

FIGURE 4: ACTION MAPPING FOR HAPTIC WAVEFORM PAT-
TERNS: WVF-1 PICK OBJECT, WVF-2 PLACE OBJECT, WVF-3 CON-
FIRM ACTION COMPLETED

4 ASME ©; CC-BY distribution license



TABLE 1: LIST OF MAPPED COMMANDS, ACTIONS AND HAPTIC FEEDBACK WAVEFORM

Input Command Robot Action Haptic
Feedback

Action Description

Facial expression:
Clench

Pick Object WVF-1 Initiate robot motion to move the end effector at the object
pick up location while ensuring the gripper is open.

Facial expression:
Raised Eyebrow

Place object WVF-2 Initiate robotmotion for object pick by closing the gripper,
move robot to target location and open gripper to place
the object at the target location.

Head movement:
Nod Type 1

Task Confirmation:
Yes

Capture the user intent to confirm if the classified task is
correct during the verification phase.

Head movement:
Nod Type 2

Task Confirmation:
No

Capture the user intent to confirm if the classified task is
incorrect during the verification phase.

Robot task execution
Completion notifica-
tion

WVF-3 Indicate at system level that the actuation command signal
for the robot action has been sent to the controller for
execution.

• Stage 2: Action verification
In this stage Module 1, Module 2 and Module 3 are initi-
ated. The action classified in the framework is first verified
using haptic feedback and then using visual feedback if the
verification using haptic feedback is successful. The haptic
feedback is provided through a haptic feedback device which
utilizes the waveform pattern associated with the classified
action. Visual feedback is provided by simulating the mo-
tion of the robot according to the classified action. For every
verification feedback step provided, the user is required to
respond using nods to confirm if the action classified is cor-
rect or not in a verification response period of 5 seconds. If
the action classified is correct, the framework will proceed
to Stage 3. If the action classified is incorrect, the framework
will reinitialise all system inputs and return to Stage 1 and
wait for the next input. The simulated robot motion for two
actions, Pick object and Place object, in Webots is shown in
figure 5.

• Stage 3: Action execution
In this stage Module 4 and Module 2 are initiated. On suc-
cessful verification of the classified action, the Braccio robot
is used to perform an action using the motion commands re-
trieved during Stage 1. On completion of the classified
action, the user is notified using haptic feedback on the sta-
tus of the action execution. On completion of the action,
the framework will reinitialise the system inputs to accept
new commands and return to Stage 1. A sequence of actions
performed by the Braccio robot for the two actions, Pick
object and Place object, after being classified and verified is
shown in figure 6.

The detailed behavioral sequence based on the operation of
the framework is presented in figure 7.

4. FRAMEWORK SYSTEM COMPONENTS
The framework interlinks multiple hardware components

(Emotiv EPOC+ headset, haptic feedback glove, Braccio Robot

and myRIO microcontroller) using a LabVIEW based interface
to link programs such as EmotivBCI, Webots, and MATLAB to
control the hardware and provide an interactive interface to the
user.

4.1 Hardware and Software Components
The Emotiv EPOC+ headset is a non-invasive 14-electrode

EEG headset paired with the EmotivBCI program. The Emo-
tivBCI program is capable of classifying facial expressions based
on the sensed EEG signals and user training. The program also
allows for visualisation of the EEG signals based on performance
metrics and collects gyroscopic information pertaining to head
movements in real-time. The collected and classified informa-
tion is extracted using Node-RED, a browser-based programming
tool, that utilizes an EmotivBCI toolbox to communicate with the
Emotiv EPOC+. This information is sent from Node-RED to the
LabVIEW based master controller.
LabVIEW is a system design platform and development en-

vironment for visual programming and is used to program the
master controller utilizing the framework. LabVIEW interfaces
seamlessly to the NI myRIO microcontroller used to control the
Braccio robot and the haptic feedback device. The haptic feed-
back device is glove-based developed at our research lab (MARS
Lab) and shown in figure 8. The device consists of 5 eccentric
rotating mass (ERM) actuators of 10mm diameter operated at a
frequency of 220Hz to provide cutaneous sensation at the finger-
tip. The actuators are driven using a DRV2605L actuator driver
board powered using a 3.3V power supply provided through the
myRIOmicrocontroller. TheNImyRIOmicrocontroller operates
at a frequency of 1kHz to generate a PWM signal corresponding
to a duty cycle range of 0 to 1 based on the input haptic waveform
pattern to drive the ERM actuators.
The Braccio robot is tabletop 6-axis robotic arm with a max-

imum load capacity of 150𝑔 at an operating distance range of
32𝑐𝑚. A PWM signal, generated by the myRIO microcontroller,
is required to control the joint servo actuators to perform the pick
and place operations.
The master controller software implemented in LabVIEW

5 ASME ©; CC-BY distribution license



FIGURE 5: WEBOTS VIRTUAL SIMULATION OF ROBOT PERFORMING THE CLASSIFIED ACTIONS OF PICK (APPROACH AND GRASP) OB-
JECT AND PLACE (PLACE AND RELEASE) OBJECT

FIGURE 6: ACTUAL ROBOT PERFORMING THE CLASSIFIED ACTIONS OF PICK (APPROACH AND GRASP) OBJECT AND PLACE (PLACE
AND RELEASE) OBJECT

is also interfaced with a MATLAB based robot controller which
provides the control commands for the visual simulation of the
robot motion in Webots, an open source 3D robot simulator. The
GUI for the master controller provides an interactive interface
for continuous monitoring of the various Stages of operation of
the framework and signals. Figure 9a presents the interactive
interface for monitoring the operation of Stage 1, and figure 9b
presents the interactive interface to monitor the operations of
Stage 2 and Stage 3.

4.2 EmotivBCI Training and Gyroscope Data Interpretation
The training for the EmotivBCI program to recognize facial

expressions is performed using the on-screen avatar. The avatars
for the corresponding facial expressions are shown in figure 2.
The first training step is to establish a baseline based on neu-
tral expression (FG-2). Then, facial expressions such as raised
eyebrows (FG-1), neutral (FG-2) or clench (FG-3) are trained
following software guidelines [32, 34].
The gyroscope data obtained from the Emotiv EPOC+ was

analyzed in LabVIEW by comparing the gyroscope data to the
defined threshold values to be achieved during the nods. The
threshold values are minimum gyroscope sensor magnitude val-
ues in the X-, Y- and Z-axes which should be reached in order to
be usable. The thereshold values are experimentally determined
by recording the gyroscope data for each type of nod. Sample
gyroscope data corresponding to nods are presented in figure 10;
NOD-TYPE 1 represents a ‘Yes’ nod, and NOD-TYPE 2 repre-
sents a ‘No’ nod. Based on the data collected, threshold values
are defined per axis for each type of nod; a value of 800 along the
Y- and Z-axes for a ‘Yes’ and a ‘No’ nod respectively.

5. FRAMEWORK EVALUATION AND DISCUSSION
The operation and function of the proposed and developed

framework is evaluated to verify its effectiveness to follow a

certain behavioral sequence using a volunteer based test. The
three stages of the framework operation are evaluated to determine
its ability to follow a behavioral sequence to perform a desired
action and determine factors which could affect the performance
of this BCI and HRI interface.

5.1 Evaluation Protocol
In this initial evaluation there were 2 volunteers (able-bodied

male doctoral students in the age range of 25-30) who participated
on their own accord without expectation of special treatment.
These volunteers are provided instructional cues regarding the
framework stages and their order of operation using figure 7,
hardware components to be used, and types of inputs and expected
outputs.
After receiving the instructional cues, the volunteers are in-

troduced to the EmotivBCI program used to train facial expres-
sions and the distinguishable vibrotactile feedback to be provided
through the haptic feedback device. The volunteers are asked
to wear the headset according to the manufacturer (Emotiv Inc.)
guidelines such that the EEG signal strength reaches a minimum
of 95% and take part in the training process available through the
EmotivBCI program for facial expression recognition for facial
expressions Clench and Raised Eyebrows. The volunteers are
required to wear a glove based vibrotactile feedback device and
informed that feedback would only be provided on the tip of the
index finger. The volunteers are also introduced and trained to the
feedback patterns to be employed during the evaluation process.
Before starting the evaluation, the volunteers are guided to

perform a complete action sequence of picking and placing an ob-
ject. While performing the action sequence in a guided manner,
the expected inputs for Stages 1 and 2 were provided manually
through the system to avoid additional volunteer training and
focus on the operation of the complete framework. Upon com-
pletion of the guided action sequence all functional modules of
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FIGURE 7: BEHAVIORAL SEQUENCE FOLLOWED BY THE FRAMEWORK

FIGURE 8: HAPTIC FEEDBACK GLOVE: A) GLOVE OUTER SIDE, B)
GLOVE INNER SIDE [30]

the framework were initialised to accept predefined facial expres-
sion commands which are classified at Stage 1 of the framework
operation.
Following completion of the training process, the evaluation

of the proposed framework was performed.

5.2 Evaluation
The ability of the system to recognize facial expressions and

nods was evaluated and the procedure followed and the results are
discussed in this section including the ability of the framework
to follow a behavioral sequence to execute a desired action and
handle unintended facial expressions or false positive BCI inputs.

1. Evaluation of facial expression recognition
A score in the range of 0 to 100 is provided by the Emo-
tivBCI program and used to determine the quality of fa-
cial expression recognition. Using a researcher developed
training dataset, a recognition score of 90 out of 100 was
defined as the threshold cutoff to achieve consistent facial
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(a) Interactive interface for Stage 1

(b) Interactive interface for Stage 2 and Stage 3

FIGURE 9: FRAMEWORK INTERACTIVE INTERFACE IMPLE-
MENTED IN LABVIEW

expression recognition. When this dataset was applied to
the volunteers no consistent recognition was observed even
when the threshold cutoff value was reduced.
A different customized training dataset generated by each
volunteer for the facial expression achieved a consistent
recognition with a threshold cutoff value of 90. There-
fore, it is concluded that the BCI device training for facial
expression cannot be applied to different persons but it must
be customized for every individual.

2. Evaluation of nod recognition
A recognition threshold of 800 was set by the researcher
based on the data collected along the Y-axis to represent a
‘Yes’ nod and along the Z-axis to represent a ‘No’ nod. Each
volunteer performed both the nods which were recognized
correctly by the system. During the evaluation, the raw
data for the nods indicated different maximum gyroscope
magnitude values corresponding to the axis of rotation as the
volunteers had a different range of neck motion. Therefore,
the threshold values should be personalized as needed.

The ability of the framework to follow a behavioral sequence
was verified according to the sequence of actions as presented in
figure 7 and based on the evaluation of inputs by each individ-
ual. The customized training dataset generated by each volunteer

FIGURE 10: GYROSCOPE DATA TO IDENTIFY NODS DEPENDING
ON HEAD MOVEMENT

and a threshold value of 800 for nod recognition is used for the
evaluation of two cases as follows:

1. Case 1: Ability of framework to execute a desired action.
The volunteers provided facial expressions in a specified or-
der to first pick the object and then place it. This evaluation
was performed twice with changing verification response
time periods, 5 seconds during the first trial and 10 sec-
onds during the second trial. The facial expression provided
by the volunteers as input is recognized by the system and
they were able to successfully complete both verification
processes for which a ‘Yes’ nod is provided as the response
input. The volunteers were able to successfully perform
the desired action with the robotic arm using the facial ex-
pressions and nods as inputs. The framework was found to
follow the specified behavioral sequence for both the vol-
unteers during evaluation. The volunteers were observed to
provide a response during the verification process and then
wait for the system to proceed, further indicating that the
verification response time periods for the system might be
long and need to be adjusted.

2. Case 2: Ability of framework to handle unintended facial
expressions or false positive BCI inputs.
During this evaluation phase, the volunteers were asked to
provide either a Clench or Raised eyebrow facial expression
as input but are directed to provide a response in the form
of a ‘No’ nod for the verification process to treat it as an
unintended input and prevent the framework from executing
the action using the robot. The volunteers were able to
successfully stop the framework from executing the action
and the framework reinitialized to accept new inputs.

According to the preliminary results and observations, it
might be beneficial to introduce in the framework a user cali-
bration stage. This calibration stage will provide for user based
customization by allowing the user to prepare training data and
adjust threshold values as well as response wait times required
for both verification processes.
This initial evaluation had a 100% success rate for the frame-

work to follow the behavioral sequence which provides confi-
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dence to start recruiting additional test subjects for a more com-
prehensive study on the utility of the framework and to identify
limitations and/or areas of improvement.

6. CONCLUSIONS
This research in BCI and HRI presented the development,

operation, and evaluation of a behavioral based framework link-
ing, operating and controlling multiple functional components.
A set of actions to be performed by a robotic arm based on the
corresponding BCI signal and haptic feedback verification were
mapped prior to operating the framework. The developed frame-
work provided the ability for a person to generate an intended ac-
tion based on facial expressions using an Emotiv EPOC+ headset,
verify the understood action through a custom developed wear-
able haptic feedback device and visual simulation throughWebots
prior to the action executed by a robotic arm. The initial success-
ful evaluation of the proposed framework demonstrates its utility
for possible application in assistive robotic systems and especially
for persons with upper limb disability where a robot could prove
beneficial for simple daily tasks.
Even though the framework currently assumes the availabil-

ity of paired a-priori actions with facial expressions and ability
of the user to receive haptic feedback through the wearable glove,
future research could introduce more autonomy in the framework
as it relates to predefined actions and corresponding robot control
commands; for example for the pick and place locations or han-
dling and manipulation of different objects. Also, the success of
the hand based vibrotactile feedback could be customized and ex-
tended to other body locations that could sense and discriminate
vibration signals.
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