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ABSTRACT
To contribute to automating the medical vision-language model, we
propose a novel Chest-Xray Difference Visual Question Answering
(VQA) task. Given a pair of main and reference images, this task
attempts to answer several questions on both diseases and, more
importantly, the differences between them. This is consistent with
the radiologist’s diagnosis practice that compares the current image
with the reference before concluding the report. We collect a new
dataset, namely MIMIC-Diff-VQA, including 700,703 QA pairs from
164,324 pairs of main and reference images. Compared to existing
medical VQA datasets, our questions are tailored to the Assessment-
Diagnosis-Intervention-Evaluation treatment procedure used by
clinical professionals. Meanwhile, we also propose a novel expert
knowledge-aware graph representation learning model to address
this task. The proposed baseline model leverages expert knowledge
such as anatomical structure prior, semantic, and spatial knowledge
to construct a multi-relationship graph, representing the image
differences between two images for the image difference VQA task.
The dataset and code can be found at https://github.com/Holipori/
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MIMIC-Diff-VQA.We believe this workwould further push forward
the medical vision language model.

CCS CONCEPTS
• Information systems → Question answering; • Computing
methodologies→ Image representations; • Applied computing
→ Imaging; • Software and its engineering → Visual languages.
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1 INTRODUCTION
The medical informatics community has been working on feed-
ing the data-hungry deep learning algorithms by fully exploiting
hospital databases with invaluable loosely labeled imaging data.
Among diverse attempts, Chest X-ray datasets such as MIMIC [9],
NIH14 [29] and Chexpert [7] have received particular attention.
During this arduous journey on vision-language (VL) modality, the
community either mines per-image common disease label (Fig.1.
(b)) through Natural Language Processing (NLP) or endeavors on
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Figure 1: (a) The ground truth report corresponding to the main(present) image. The red text represents labels incorrectly
classified by either text mining or generated reports, while the red box marks the misclassified labels. The green box marks the
correctly classified ones. The underlined text is correctly generated in the generated report. (b) The label "Pneumothorax"
is incorrectly classified because there is NO evidence of pneumothorax from the chest X-ray. (c) "There is a new left apical
pneumothorax" → This sentence is wrong because the evidence of pneumothorax was mostly improved after treatment.
However, the vascular shadow in the left pulmonary apex is not very obvious, so it is understandable why it is misidentified as
pneumothorax in the left pulmonary apex. "there is a small left pleural effusion" → It is hard for a doctor to tell if the left
pleural effusion is present or not. (d) The ImageCLEF-VQA-Med questions are designed too simple. (e) The reference(past)
image and clinical report. (f) Our medical difference VQA questions are designed to guide the model to focus on and localize
important regions.

report generation (Fig.1. (c) generated from [18]) or even answer cer-
tain pre-defined questions (Fig.1. (d)). Despite significant progress
achieved on these tasks, the heterogeneity, systemic biases, and
subjective nature of the report still pose many technical challenges.
For example, the automatically mined labels from reports in Fig.1.
(b) is problematic because the rule-based approach that was not
carefully designed did not process all uncertainties and negations
well [9]. Training an automatic radiology report generation system
to match the report appears to avoid the inevitable bias in the stan-
dard NLP-mined thoracic pathology labels. However, radiologists
tend to write more obvious impressions with abstract logic. For
example, as shown in Fig.1. (a), a radiology report excludes many

diseases (either commonly diagnosed or intended by the physicians)
using negation expressions, e.g., no, free of, without, etc. However,
the artificial report generator could hardly guess which disease
is excluded by radiologists. Instead of thoroughly generating all
of the descriptions, VQA is more plausible as it only answers the
specific question. As shown in Fig. 1, the question could be raised
strictly for "is there any pneumothorax in the image?" in the re-
port while the answer is no doubt "No". However, the questions in
the existing VQA dataset ImageCLEF-VQA-Med [1] concentrate on
very few general ones, such as "is there something wrong in the
image? what is the primary abnormality in this image?", lacking the
specificity for the heterogeneity and subjective texture. It not only
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Figure 2: Clinical motivation for Image difference VQA.

degrades VQA into classification but, more unexpectedly, provides
little helpful information for clinics. While VQA-RAD [12] has more
heterogeneous questions covering 11 question types, its 315 images
dataset is relatively too small.

To bridge the aforementioned gap in the visual language model,
we propose a novel medical image difference VQA task more consis-
tent with radiologists’ practice. When radiologists make diagnoses,
they compare current and previous images of the same patients
to check the disease’s progress. Actual clinical practice follows a
patient treatment process (assessment - diagnosis - intervention -
evaluation) as shown in Fig. 2. A baseline medical image is used as
an assessment tool to diagnose a clinical problem, usually followed
by therapeutic intervention. Then, another follow-up medical im-
age is retaken to evaluate the effectiveness of the intervention in
comparison with the past baseline. In this framework, everymedical
image has its purpose of clarifying the doctor’s clinical hypothesis
depending on the unique clinical course (e.g., whether the pneu-
mothorax is mitigated after therapeutic intervention). However,
existing methods can not provide a straightforward answer to the
clinical hypothesis since they do not compare the past and present
images. Therefore, we present a chest X-ray image difference VQA
dataset, MIMIC-Diff-VQA, to fulfill the need of the medical image
difference task. Moreover, we propose a system that answers doc-
tors’ questions by comparing the current medical image (main) to
a past visit medical image (reference). This allows us to build a
diagnostic support system that realizes the inherently interactive
nature of radiology reports in clinical practice.

MIMIC-Diff-VQA contains pairs of "main"(present) and "refer-
ence"(past) images from the same patient’s radiology images at
different times from MIMIC[9] (a large-scale public database of
chest radiographs with 227,835 studies, each with a unique report
and images). The question and answer pairs are extracted from the
MIMIC report for "main" and "reference" images using an Extract-
Check-Fix cycle. There are seven types of questions included in
our dataset: 1. abnormality, 2. presence, 3. view, 4. location, 5. type,
6. level, and 7. difference. The MIMIC-Diff-VQA dataset comprises

700,703 QA pairs extracted from 164,324 image pairs. Particularly,
difference questions are pairs of inquiries that pertain to the clini-
cal progress and changes in the "main" image as compared to the
"reference" image, as shown in Fig. 1(e).

The currentmainstream state-of-the-art image differencemethod
only applies to synthetic images with small view variations,[8, 22]
as shown in Fig. 5. However, real medical image difference com-
paring is a very challenging task. Even the images from the same
patient show large variances in the orientation, scale, range, view,
and nonrigid deformation, which are oftenmore significant than the
subtle differences caused by diseases as shown in Fig. 5. Since the
radiologists examine the anatomical structure to find the progres-
sion of diseases, similarly, we propose an expert knowledge-aware
image difference graph representation learning model as shown in
Fig. 5. We extract the features from different anatomical structures
(for example, left lower lung, and right upper lung) as nodes in the
graph.

Moreover, we construct three different relationships in the graph
to encode expert knowledge: 1) Spatial relationship based on the
spatial distance between different anatomical regions. 2) Semantic
relationship based on the disease and anatomical structure rela-
tionship from knowledge graph [33]. 3) Implicit relationship to
model potential implicit relationship beside 1) and 2). The image-
difference graph feature representation is constructed by simply
subtracting the main image graph feature and the reference im-
age graph feature. This graph difference feature is fed into LSTM
networks with attention modules for answer generation[27].

Our contributions are summarized as:
1)We propose the medical imaging difference visual question

answering problem and construct the first large-scale medical im-
age difference visual question answering dataset, MIMIC-Diff-VQA.
This dataset comprises 164,324 image pairs, containing 700,703
question-answer pairs related to various attributes, including ab-
normality, presence, location, level, type, view, and difference.

2) We propose an anatomical structure-aware image-difference
model to extract the image-difference feature relevant to disease
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progression and interventions. We extracted features from anatomi-
cal structures and compared the changes in each structure to reduce
the image differences caused by body pose, view, and nonrigid de-
formations of organs.

3) We develop a multi-relationship image-difference graph fea-
ture representation learning method to leverage the spatial relation-
ship and semantic relationship (extracted from expert knowledge
graph) to compute image-difference graph feature representation,
generate answers and interpret how the answer is generated on
different image regions.

2 MIMIC-DIFF-VQA DATASET.
We introduce our new MIMIC-Diff-VQA dataset for the medical
imaging difference question-answering problem. The MIMIC-Diff-
VQA dataset is constructed following an Extract-Check-Fix cycle
to minimize errors. In MIMIC-Diff-VQA, each entry contains two
different chest X-ray images from the same patient with a question-
answer pair. Our question design is extended from VQA-RAD, but
with an additional "difference" question type. Ultimately, the ques-
tions can be divided into seven types: 1) abnormality, 2) presence,
3) view, 4) location, 5) type, 6) level, and 7) difference. Tab. 1 shows
examples of the different question types.

The image pairs are selected from the MIMIC-CXR [9] dataset,
and each image in an image pair is from the same patient. A total
of 164,324 image pairs are selected from MIMIC-CXR, on which
700,703 questions are constructed. We also balance the "yes" and
"no" answers to avoid possible bias. The statistics regarding each
question type can be seen in Fig. 3. The ratio between the training,
validation and testing set is 8:1:1.

2.1 MIMIC-Diff-VQA dataset construction

Figure 3: Statistics by question types

To ensure the availability of a second image for differential com-
parison, we excluded patients with only one radiology visit before
constructing our dataset. The overall process of dataset construction
involves three steps: collecting keywords, building the Intermediate
KeyInfo dataset, and generating questions and answers.

2.1.1 Collecting keywords. We follow an iterative approach to col-
lect abnormality names and sets of important attributes, such as
location, level, and type, from the MIMIC-CXR dataset. We utilize
ScispaCy [16], a SpaCy model for biomedical text processing, to
extract entities from random reports. Subsequently, we manually
review all the extracted entities to identify common, frequently
occurring keywords that align with radiologists’ interests and add
these to our lists of abnormality names and attribute words. We
also record different variants of the same abnormality during this
process. The full lists of the selected abnormality names and the
attribute words are available in Appendix.

2.1.2 Intermediate KeyInfo dataset. The previous rule-based label
extraction method was limited to a small set of disease-related
labels, lacked important information such as complicated disease
pathologies, levels, and location, and was prone to errors due to
negations. To address these issues, we followed an Extract-Check-
Fix cycle to customize the rule set for MIMIC, ensuring the quality
of our dataset through extensive manual verification.

For each patient visit, we used regular expression rules to ex-
tract the abnormality names and their variants. Then, we detected
attribute words near the identified abnormalities using these rules.
Additionally, by going through the extracted entities, we manually
selected the keywords/expressions that indicated negation informa-
tion to locate the negative findings, i.e. cases where the abnormality
did not exist.

Next, to ensure the accuracy and completeness of the extracted
information, we conducted both manual and automated checks
using tools such as Part-of-Speech, ScispaCy entity detection, and
MIMIC-CXR-JPG [10] labels as references. These were used to
identify any missing or potentially incorrect information that may
have been extracted and refined the rules accordingly. We repeated
the Extract-Check-Fix cycle until minimal errors were found.

As a result, we have created the Key-Info dataset, consisting of
individual study details. As shown in Fig. 4, for each study, the
Key-Info dataset includes information on all positive findings, their
attributes, and negative findings. The "posterior location" attribute
represents the location information that appears after the abnor-
mality keyword in a sentence.

Figure 4: Structure of one study in the Key-Info dataset.
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Table 1: Selected examples of the different question types. See the Appendix for the full list.

Question type Example

Abnormality what abnormality is seen in the left lung?
Presence is there evidence of atelectasis in this image?
View which view is this image taken?
Location where in the image is the pleural effusion located?
Type what type is the opacity?
Level what level is the cardiomegaly?
Difference what has changed compared to the reference image?

2.1.3 Study pairing and question generation. Once the intermediate
Key-Info database is constructed, we can generate study pair ques-
tions accordingly. The examples of each question type are shown
in Tab. 1. Each image pair contains the main image and a reference
image, which are extracted from different studies of the same pa-
tient. The reference and main visits are chosen strictly based on
the earlier visit as the "reference" and the later visit as the "main"
image. Among all the question types, the first six question types
are for the main image only, and the difference question is for both
images.

2.2 Dataset Validation
To further verify the reliability of our constructed dataset, 3 human
verifiers were assigned 1700 random sampled question-answer pairs
along with the reports and evaluated each sample by annotating
"correct" or "incorrect". Finally, the correctness rate of the evaluation
achieved 97.33%, which is acceptable for training neural networks.
Tab. 2 shows the evaluation results of each verifier. It proves that our
approach of constructing a dataset in an Extract-Check-Fix cycle
works well in ensuring that the constructed dataset has minimum
mistakes.

Table 2: Evaluation results by human verifiers

Verifier # of examples # of correctness Correctness rate

Verifier 1 500 475 95%
Verifier 2 1000 989 98.9%
Verifier 3 200 193 96.5%
Total 1700 1657 97.4%

3 METHOD
3.1 Problem Statement
Given an image pair (I𝑚, I𝑟 ), consisting of the main image I𝑚 and
the reference image I𝑟 , and a question q, our goal is to obtain the
answer a of the question q from image pair. In our design, the main
and reference images are from the same patient.

3.2 Anatomical Structure-Aware Graph
Construction and Feature Learning

Within the language generation and vision research domain, the
most related works to the medical image difference VQA task is im-
age difference captioning [20, 25, 31], which is designed to identify
object movements and changes within a spatial context such as a
static or complex background. As shown in the left Fig.5, the object
changes and movements in general image difference captioning are
relatively large or significant compared to the background, making
the problem easier to solve. These works usually assume a stable
background with simple changes in the structure, position, and
texture of foreground objects, without significant scaling.

However, the medical image difference is distinct from the gen-
eral image difference. Changes caused by diseases are generally
subtle, and the image position, pose, and scale can vary significantly
even for the same patient due to the pose and nonrigid deformation.
As a result, general image difference methods can have difficulty
adapting to the medical image difference task. To better capture
the subtle disease changes and eliminate the pose, orientation, and
scale changes, we propose an anatomical structure-aware image
difference graph learning solution. Specifically, we represent each
anatomical structure as a node and then assess the image changes
within each structure in a similar manner to that of radiologists.

3.2.1 Anatomical Structure, Disease Region Detection, andQuestion
Encoding. To begin, we use a pre-trained Faster-RCNN on the Chest
ImaGenome dataset [6, 26, 30] to extract the anatomical bounding
boxes and their corresponding features f𝑎 from the input images.
Subsequently, we train a Faster-RCNN on the VinDr-CXR dataset
[24] to detect diseases. Rather than directly detecting diseases on
the given input images, we extract the features f𝑑 from the same
anatomical regions by utilizing the previously extracted anatomical
bounding boxes. Following previous work [14, 19], we tokenized
each question and answer and embedded them with Glove ([23])
embeddings. We then used a bidirectional RNN with GRU [3] and
self-attention to generate the question embedding q.

3.3 Expert Knowledge-Aware
Multi-Relationship Graph Module

After extracting the disease and anatomical structure, we construct
an expert knowledge-aware image representation graph for the
main and reference image. The multi-relationship graph is de-
fined as G = {V, E𝑠𝑝 , E𝑠𝑒 , E𝑖𝑚𝑝 }, where E𝑠𝑝 , E𝑠𝑒 , and E𝑖𝑚𝑝 rep-
resent the edge sets of spatial graph, semantic graph and implicit
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Figure 5: Expert knowledge-aware image-difference graph for medical image difference visual question answering.

Figure 6: Progression from cardiomegaly to edema and pleural effusion

graph, each vertex v𝑖 ∈ V, 𝑖 = 1, · · · , 2𝑁 can be either anatomical
node v𝑘 = [𝑓𝑎,𝑘 ∥q] ∈ R𝑑𝑓 +𝑑𝑞 , 𝑓𝑎,𝑘 ∈ f𝑎, for 𝑘 = 1, . . . , 𝑁 , or disease
node v𝑘 = [𝑓𝑑,𝑘 ∥q] ∈ R𝑑𝑓 +𝑑𝑞 , 𝑓𝑑,𝑘 ∈ f𝑑 , for 𝑘 = 1, . . . , 𝑁 , repre-
senting anatomical structures or disease regions, respectively. Both
types of nodes are embedded with a question feature as shown in
Fig. 5. 𝑑𝑓 is the dimension of the anatomical and disease features.
𝑑𝑞 is the dimension of the question embedding. 𝑁 represents the
number of anatomical structures of one image. Since each disease
feature is extracted from the same corresponding anatomical region,
the total number of the vertex is 2𝑁 .

We construct three types of relationships in the graph for each
image: 1) spatial relationship: We construct spatial relationships
according to the radiologist’s practice of identifying abnormalities
based on specific anatomical structures. For example, an actual

radiology report can state that "the effusions remain moderate and
still cause substantial bilateral areas of basilar atelectasis" In our
MIMIC-Diff-VQA dataset, we design questions to assess spatial
relationships, such as "Where in the image is the pleural effusion
located?" (see Table 1). Following previous work [32], we include
11 types of spatial relations between detected bounding boxes, such
as "left lower lung", "right costophrenic angle", etc. The 11 spatial
relations includes inside (class1), cover (class2), overlap (class3),
and 8 directional classes. Each class corresponds to a 45-degree of
direction. We define the edge between node i and the node j as
𝑎𝑖 𝑗 = 𝑐 , where c is the class of the relationship, 𝑐 = 1, 2, · · · , 𝐾 , K
is the number of spatial relationship classes, which equals to 11.
When 𝑑𝑖 𝑗 > 𝑡 , we set a𝑖 𝑗 = 0, where 𝑑𝑖 𝑗 is the Euclidean distance
between the center points of the bounding boxes corresponding to
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Figure 7: Radiologist’s annotation example.

the node 𝑖 and node 𝑗 , 𝑡 is the threshold. The threshold 𝑡 is defined
as (𝑙𝑥 + 𝑙𝑦)/3 by reasoning and imitating the data given by [14].

2) Semantic relationship: To incorporate expert knowledge
into our approach, we use two knowledge graphs: an anatomical
knowledge graph modified from [33] and a label occurrence knowl-
edge graph built by ourselves. Please refer to the Appendix for
detailed information about these knowledge graphs. If two labels
are linked by an edge in the knowledge graph, we connect the corre-
sponding nodes in our semantic relationship graph. The knowledge
graphs represent abstracted expert knowledge and relationships
between diseases, which are essential for disease diagnosis since
multiple diseases can interrelate during the progression of a par-
ticular disease. For example, Figure 6 shows the progression from
cardiomegaly to edema and pleural effusion. Cardiomegaly, which
refers to an enlarged heart, can result from heart dysfunction that
causes blood congestion in the heart, eventually leading to its en-
largement. The congested blood is pumped into the lungs’ veins,
increasing the pressure in the vessels and pushing fluid out of the
lungs and into the pleural spaces, indicating the initial sign of pul-
monary edema. At the same time, fluid accumulates between the
layers of the pleura outside the lungs, resulting in pleural effusion,
which can also cause compression atelectasis. If pulmonary edema
progresses, widespread opacification will appear in the lungs, as
stated in actual diagnostic reports such as "the effusions remain
moderate and still cause substantial bilateral areas of basilar at-
electasis" and "Bilateral basilar opacity can be seen, suggesting the
presence of the bilateral or right-sided basilar atelectasis" (Figure 7).

3) Implicit relationship: a fully connected graph is applied
to find the implicit relationships that are not defined by the other
two graphs (spatial and semantic graphs). This graph serves as a
complement to the other two as it covers all possible relationships,
although it is not specific to any one particular relationship. Among
these three types of relationships, spatial and semantic relationships
can be categorized as explicit relationships. The implicit graph itself
is categorized as the implicit relationship.

3.4 Relation-Aware Graph Attention Network
we construct the multi-relationship graph for both main and refer-
ence images and use the relation-aware graph attention network

(ReGAT) proposed by [14] to learn the graph representation for
each image. We then embed the image into the final latent feature,
which is input into the answer generation module to generate the
final answers. Please refer to Appendix for details of the calculation.

4 EXPERIMENTS
4.1 Datasets
MIMIC-CXR. The MIMIC-CXR dataset is a large publicly avail-
able dataset of chest radiographs with radiology reports, containing
377,110 images corresponding to 227,835 radiograph studies from
65,379 patients [9]. One patient may have multiple studies, each
consisting of a radiology report and one or more images. Two pri-
mary sections of interest in reports are findings: a natural language
description of the important aspects of the image, and an impres-
sion: a summary of the most immediately relevant findings. Our
MIMIC-Diff-VQA is constructed based on the MIMIC-CXR dataset.

Chest ImaGenome. MIMIC-CXR has been added more annota-
tions by [30] including the anatomical structure bounding boxes.
This new dataset is named Chest ImaGenome Dataset. We trained
the Faster-RCNN to detect the anatomical structures on their gold
standard dataset, which contains 26 anatomical structures.

VinDr-CXR. The VinDr-CXR dataset consists of 18,000 images
manually annotated by 17 experienced radiologists [17]. Its images
have 22 local labels of boxes surrounding abnormalities and six
global labels of suspected diseases. We used it to train the pre-
trained disease detection model.

4.2 Baselines
It is important to compare multiple baselines. However, we would
like to emphasize that the image difference question and answer
task is a novel problem even in the general computer vision domain.
To date, no prior research has specifically addressed the "image
difference question answering" problem. Only a few studies have
focused on the general image difference caption task, such as MM-
CFormers [25] and IDCPCL [31]. Therefore, our work serves as the
first step in this new direction and provides a valuable contribution
to the research community. We chose baseline models from tradi-
tional medical VQA tasks and image difference captioning tasks to
address both non-"Difference" and "Difference" queries. Below are
the baseline models we have selected:

1.MMQ is one of the recently proposed methods to perform the
traditional medical VQA task with excellent results. MMQ adopts
Model Agnostic Meta-Learning (MAML) [4] to handle the problem
of the small size of the medical dataset. It also relieves the problem
of the difference in visual concepts between general and medical
images when finetuning.

2.MCCFormers is proposed to handle the image difference cap-
tioning task [25]. It achieved state-of-the-art performance on the
CLEVR-Change dataset [22], a famous image difference caption-
ing dataset. MCCFormers used transformers to capture the region
relationships among intra- and inter-image pairs.

3.Image Difference Captioning with Pre-training and Contrastive
Learning (IDCPCL) [31] is the state-of-the-art method performed
on the general image difference captioning task. They use the pre-
training technique to build the bridge between vision and language,
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allowing them to align large visual variance between image pairs
and greatly improve the performance on the challenging image
difference dataset, Birds-to-Words [5].

4.3 Results and Discussion.
We implemented the experiments on the PyTorch platform. We
used an Adam optimizer with a learning rate of 0.0001 to train our
model for 30,000 iterations at a batch size of 64. The experiments
are conducted on two GeForce RTX 3090 cards with 3 hours and
49 minutes of training time. The bounding box feature dimension
is 1024. Each word is represented by a 600-dimensional feature
vector including a 300-dimensional Glove [23] embedding. We used
BLEU [21], METEOR [13], ROUGE_L [15], CIDEr [28], which are
popular metrics for evaluating the generated text, as the metric
in our experiments. We obtain the results using Microsoft COCO
Caption Evaluation [2]. For the comparison with MMQ, we use
accuracy as the metric.

4.3.1 Ablation Study. In Tab. 3, we present the quantitative results
of our ablation studies on the MIMIC-Diff-VQA dataset using differ-
ent graph settings. Our method was tested with implicit graph-only,
spatial graph-only, semantic graph-only, and the full model incor-
porating all three graphs. As we can see, our full model achieves
the best performance across most metrics compared to other graph
settings. Furthermore, in the Appendix, we illustrated the regions of
interest (ROIs) of our model using different graphs to demonstrate
the improved interpretability achieved by incorporating the spatial
and semantic graphs. This is particularly useful in analyzing the
location and relationship between abnormalities, providing crucial
insights into the anatomical structure from a medical perspective.

Table 3: Quantitative results of our model with different
graph settings performed on the MIMIC-Diff-VQA dataset

Metrics Implicit Spatial Semantic Full

Bleu-1 0.626 0.617 0.623 0.624
Bleu-2 0.540 0.532 0.540 0.541
Bleu-3 0.475 0.468 0.477 0.477
Bleu-4 0.418 0.413 0.421 0.422
METEOR 0.333 0.337 0.340 0.337
ROUGE-L 0.649 0.647 0.644 0.645
CIDEr 1.911 1.896 1.898 1.893

4.3.2 Comparison of accuracy. Due to the nature of MMQ being a
classification model, MMQ cannot perform on our difference ques-
tion type because of the diversity of answers. Also, given that the
baseline model cannot take in two images simultaneously, we ex-
clude the difference type question from this comparison. Therefore,
we compare our method with MMQ only on the other six types
of questions, including abnormality, presence, view, location, type,
and level. These six types of questions have a limited number of
answers. To compare with them, we use accuracy as the metric for
comparison. Please note that our method is still a text-generation
model. We count the predicted answer as a True answer only when
the prediction is fully matched with the ground truth answer.

The comparison results are shown in Tab. 4. We have refined
the comparison into open-ended question results and closed-ended
question (with only ’yes’ or ’no’ answers) results. It is clear that
the current VQA model has difficulty handling our dataset because
of the lack of focus on the key regions and the ability to find the
relationships between anatomical structures and diseases. Also,
even after filtering out the difference questions, there are still 9,252
possible answers in total. It is difficult for a classification model to
localize the optimal answer from such a huge amount of candidates.

Table 4: Accuracy comparison between our method and
MMQ on non-"Difference" questions of the MIMIC-Diff-VQA
dataset.

Question Open Closed Total

MMQ 11.5 10.8 11.5
Ours 26.4 79.9 52.5

4.3.3 Evidence and faithfulness. In terms of the evidence aspect,
our model is designed to enhance the diagnostic process for doctors.
Firstly, it highlights the regions of an image indicative of diseases,
allowing doctors to quickly and easily inspect and verify their
thoughts. Secondly, it empowers doctors to inquire further about
specific abnormalities, providing them with the necessary tools to
inspect and understand where the information comes from.

In terms of the faithfulness aspect, there is concern that the
model may capture the distribution of the dataset, relying solely on
language priors without comprehending the input image and medi-
cal knowledge. To assess this language prior issue, we performed
another experiment by removing all images and only keeping the
questions. As shown in Tab. 5, the resulting predictions were sig-
nificantly worse than those obtained using the original images.

Table 5: Comparison results between our method using ques-
tions only and using both images and questions.

Metrics Questions only Images + questions

Bleu-1 0.51 0.62
Bleu-2 0.33 0.54
Bleu-3 0.18 0.48
Bleu-4 0.12 0.42
METEOR 0.319 0.337
ROUGE_L 0.340 0.645
CIDEr 0 1.893

4.3.4 Comparison of quality of the text. To evaluate the generated
answers in the "difference" question, we use metrics specifically
designed for evaluating generated text, such as BLEU, METEOR,
ROUGE_L, and CIDEr. The comparison results between our method,
MCCFormers, and IDCPCL are presented in Tab. 6. Our method
outperforms MCCFormers in all metrics. Although IDCPCL per-
forms better than MCCFormers, it is still not comparable to our
method.
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Even though our method utilized the pre-training technique, the
comparison is not unfair. The main objective of our pre-trained
model is to utilize medical knowledge (read and compare the images
in each anatomical structure) to construct graphmodels and capture
subtle changes in images related to disease progression. Our model
is specifically tailored for the task of medical image difference
VQA and does not employ any general pre-trained strategies like
contrastive learning in our framework.

The IDCPCL baseline model used contrastive learning and a com-
bination of three pre-training tasks (Masked Language Modeling,
Masked Visual Contrastive Learning, and Fine-grained Difference
Aligning) to align images and text. This approach was found to
be effective in improving image difference captioning on datasets
with large changes and complex background variations. To adapt
this approach for the medical image difference VQA task, we made
modifications to the IDCPCL model and pre-trained the image and
text feature extraction on medical images and clinical notes. Con-
trastive learning has shown superior performances compared to the
conventional pre-trained Resnet classification model [11]. Despite
the complex pre-training tasks employed, our method significantly
outperformed IDCPCL across almost all metrics and interpretability
measures.

MCCFormers has inferior results compared to our method, as
it struggles to differentiate between images. This is due to the
generated answers of MCCFormers being almost identical and its
failure to identify the differences between images. MCCFormers,
a difference captioning method, compares patch to patch directly,
which may work well in the simple CLVER dataset. However, in
medical images, most of which are not aligned, the patch-to-patch
method cannot accurately identify which region corresponds to
a specific anatomical structure. Additionally, MCCFormers does
not require medical knowledge graphs to find the relationships
between different regions.

Table 6: Comparison results between our method and MC-
CFormers on difference questions of the MIMIC-diff-VQA
dataset

Metrics MCCFormers IDCPCL Ours

Bleu-1 0.214 0.614 0.628
Bleu-2 0.190 0.541 0.553
Bleu-3 0.170 0.474 0.491
Bleu-4 0.153 0.414 0.434
METEOR 0.319 0.303 0.339
ROUGE_L 0.340 0.582 0.577
CIDEr 0 0.703 1.027

4.3.5 Disccussion. During the process of clinical reasoning us-
ing medical imaging studies, a significant amount of background
knowledge is utilized to compare the baseline study (past) with
the target study (present). However, modeling background clinical
expert knowledge is not straightforward due to its implicitness,
which necessitates inferring the best configuration of knowledge
modeling based on multiple graphs, such as the implicit, spatial,
and semantic graphs (see Figure 3). Therefore, we stand on the

shoulder of [14] which constructs a multi-relationship graph for
general image VQA.

Please note that our model differs fundamentally from the one
presented in [14]. Their model is designed specifically for single-
image VQA problems, while ours is for medical image difference
VQA, which is a novel problem that involves two images. Addi-
tionally, our approach extracts anatomical structure-aware features.
This involves computing and normalizing the image differences
within each anatomical structure, ensuring relevance to disease pro-
gression, and invariance to changes in image pose, orientation, and
scale. To develop our approach, we created an expert knowledge-
aware graph that utilizes clinical knowledge. This graph follows the
workflow of clinicians who read, compare, and diagnose diseases
from medical images based on anatomical structures. Our model is
unique in its approach of incorporating clinical knowledge into a
multi-relationship graph learning framework, which has not been
utilized in general VQA models.

4.4 Visualization.
Visualized results can be found in Appendix.

5 CONCLUSION
First, We propose a medical image difference VQA problem and
collect a large-scale MIMIC-Diff-VQA dataset for this task, which is
valuable to both the research and medical communities. Also, we de-
sign an anatomical structure-aware feature learning approach and
an expert knowledge-aware multi-relation image difference graph
to extract image-difference features. We train an image difference
VQA framework utilizing medical knowledge graphs and compare
it to current state-of-the-art methods with improved performances.
However, there are still limitations to our dataset and method. Our
constructed dataset currently only focuses on the common cases
and ignores special ones, i.e. cases where the same disease appears
in more than two places. Our current Key-Info dataset can only
take care of, at most, two locations of the same disease. Further-
more, there are specific cases where different abnormality names
may be combined. For example, when examining edema, interstitial
opacities are indicative of edema. Therefore, future work should
focus on expanding the dataset to include more special cases.

It is worth noting that our model also brings some errors. Repre-
sentative errors can be summarized into three types: 1, confusion
between different presentation aspects of the same abnormality,
such as atelectasis and lung opacity being mistaken for each other.
2, different names for the same type of abnormality, such as enlarge-
ment of the cardiac silhouette being misclassified as cardiomegaly.
3, the pre-trained backbone (Faster-RCNN) used for extracting im-
age features may provide inaccurate features and lead to incorrect
predictions, such as lung opacity being wrongly recognized for
pleural effusion.
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A APPENDIX FOR VISUALIZATIONS,
RELATEDWORK, MIMIC-DIFF-VQA
DATASET, AND OUR METHOD

For further information on the Visualizations, related work, MIMIC-
Diff-VQA dataset, and our method, please refer to the additional ap-
pendix, available at https://github.com/Holipori/KDD2023Appendix/
blob/main/Appendix.pdf.
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