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ABSTRACT
We present a method for extracting high-level semantic informa-
tion through successful landmark detection using feature fusion
between RGB and depth information. We focus on the classification
of specific labels (open path, humans, staircases, doorways, obsta-
cles) in the encountered scene, which can be a fundamental source
of information enhancing scene understanding, and acting towards
the safe navigation of the mobile unit. Experiments are conducted
using a manual wheelchair equipped with a stereo RGB-D camera
that captures image instances consisting of multiple labels before
fine-tuning on a pre-trained Vision Transformer (ViT).

CCS CONCEPTS
• Computer systems organization→ Navigation Systems; •
Computing methodologies→ Semi-Supervised learning.
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1 INTRODUCTION
Identifying accessible routing through vision sensors, has an im-
mediate implementation on building navigation systems for smart
and powered wheelchairs. Wheelchair users face an array of chal-
lenges [17] in accomplishing daily tasks. This can be pertaining to
the presence of uneven and rough terrains [20], small corridors and
doorways [19], and also stochastic environments depicted by uncer-
tainty e.g due to the presence of humans. Furthermore, staircases
have been traditionally problematic due to the geometric threats
they present [10].

In this article we aim to perform some preliminary experiments
to extract high-level semantic information regarding the scene’s
navigability, based on the landmarks’ relative position with respect
to the vicinity of a manual wheelchair. The proposed multi-label
classification system, using both RGB and depth input, aims to
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efficiently detect the presence of particular labels (open path, hu-
mans, staircase, doorways, obstacles) by fusing the information
from the two aforementioned modalities. Integrating depth with
RGB information has been shown to enhance the performance of
image classification tasks due to the additional semantic informa-
tion that the depth channel provides [13]. Despite the fact that our
dataset is relatively small, we collect data instances combining all
the characteristics associated with the object’s appearance (geo-
metrical features, volume, environment’s illumination etc.) but also
the objects’ relative position with respect to the proximity of the
wheelchair. We aim to leverage the strengths of a fused system
consisting of RGB and depth information, in order to to enhance
scene perception by critically identifying the presence of obstacles
or not.

Exploiting the concept of transfer learning, we fine-tune a Vision
Transformer (ViT) [12] towards performing multi-label classifica-
tion on a small indoors dataset. We propose a framework that,
through the viewpoint of multi-label image classification, can de-
tect important landmarks for wheelchair navigation. Our approach
focus is on the relative position of a landmark encountered with
regards to the proximity of the mobile unit.

2 RELATEDWORK
In order to increase the levels of perception towards safe navigation,
the use of cameras on wheelchairs [17] has been examined in con-
junction with various modalities such as laser [23], ultrasound [16]
and tactile sensors [24]. Pre-trained transformers [11], [7] act as a
vital tool in creating rich feature representations that can be utilized
for fine-tuning with respect to the pertinent downstream tasks. In
the field of mobile robotics, ViTs have been the state-of-the-art
method exhibiting vast amounts of efficiency for applications that
include object detection [1], terrain classification [2], navigation
[8] and recognition [27]. Furthermore, Vision Transformers have
shown remarkable results on image classification [4, 6, 9] tasks
over methods such as Convolutional Neural Networks (CNNs) as
described by Raghu et al. [21]. An important property that a ViT
displays, is the fact that it can preserve input spatial information
at its higher layers. This is what renders ViT as a more promising
direction than ResNet which is less spatially discriminative.

Recent transformer-based depth estimationmethods [3], [28], [22]
have been employed for pixel-wise prediction. Liu et al. [18] pro-
pose a a cross-modalfusion framework for RGB-X semantic seg-
mentation, where X is any additional modality. Multi-Head Self-
Attention [26] can be a powerful tool in controlling the mixture of
information among parts of an input sequence and thus leading to
richer representations. As described in the work of Tsai et al. [25],
the multi-head cross-modal attention module is responsible for
updating each modality’s sequence(in their case video, audio, and
language) via low-level external information. Eventually, they infer
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Figure 1: Overall Architecture

that the cross-modal transformer learns to correlate meaningful
elements across different modalities. Other endeavors in robotics
fusing modalities through the use of the MHSA module include,
natural instructions and navigation graph [5], multi-robot collab-
oration for unknown exploration [30], UAV-driven segmentation
[29] etc. Since ViT has shown remarkable performance in maintain-
ing spatial information [21], we consider it as the backbone of our
method. Additionally, the Multi-Head Self-Attention module has
been shown great efficiency in modality fusion, and in this regard
we aim to fuse RGB and depth information as a means to enrich
the source of semantic information of the encountered scene.

3 METHOD DESCRIPTION
The methodology pursued in this article aims, by fusing modalities,
to identify meaningful landmarks that the mobile unit is encoun-
tering. Thus, our approach aims to act towards safe wheelchair
navigation by providing scene information regarding the presence
of obstacles or not.

We are using a ViT pre-trained on ImageNet-21k using the
generative, self-supervised learning method of Masked Autoen-
coders(MAE) [14] that has exhibited major amounts of effectiveness
in generalization. The MAE process includes the following steps:

• An input image is masked at random locations at a high
masking ratio, roughly 75%

• An encoder (ViT) is applied on the visible parts of the image
• The decoder operates on both the encoded paths and the
masked tokens

• Missing pixels are constructed
After the pre-training process is complete, the decoder is discarded
and the encoder is used for image classification tasks. Masked Au-
toencoders exhibit the potential to learn visual scene semantics in a
holistic manner and thus they act as a powerful pre-trainingmethod
for our multi-label classification task. They have also shown sub-
stantial efficiency in transfer learning tasks such as object detection,
instance segmentation etc.

The Multi-Head Self-Attention (MHSA) mechanism [26] obtains
a number of different representations (as many as the heads h) of
(Query, Key, Value), it then computes scaled dot-product attention
for each representation, concatenates the results, and projects the
concatenation through a feed forward layer. MHSA finds keys that

matches the query, and gets the values of those keys. Intuitively,
the rationale behind choosing multiple attention heads module
is that it allows operating on parts of the given sequence differ-
ently (for instance longer-term dependencies versus shorter-term
dependencies).

With regards to the supervised fine-tuning, the output feature
vector of ViT is 768x1 for each modality and it is then passed to
a projection head, consisting of two fully-connected (FC) layers.
Depth images are fed to a CNN Encoder consisting of four convolu-
tional layers of four convolutional and two fully connected layers
that each, except for the final, is followed by a ReLu activation func-
tion. The Depth output feature vector is of 128x1 dimension. RGB
and depth features are fed to each FC layer matching their dimen-
sions before getting fused using the MHSA module with two heads.
Afterwards, the fused features are fed to a linear classifier that clas-
sifies the encountered scene with respect to the candidate classes
(open path, doorways, staircase, humans, obstacle) (Figure 1). We
are using this simple network structure to prevent any overfitting
since our dataset is relatively small. We use the BCEWithLogitsLoss
loss function which combines a Sigmoid layer and the BCELoss in
one single class.

The reason for selecting this particular version of BCELoss is
that the sequence of the log-sum-exp trick offers room for improved
numerical stability. Due to the fact that we are addressing a multi-
label classification task, we need to determine a decision threshold
value for each label, that by evaluating the probability value for
each class label, decides whether the encountered scene includes
this label or not. For the rest of the paper we denote this thresh-
old hyper-parameter as d. This threshold directly determines how
conservative our method is towards the prediction of a certain label.

4 EXPERIMENTAL SETUP
4.1 Data collection and processing
Throughout the experimental process, a human operator navigated
a standard wheelchair in three different buildings around the Uni-
versity of Texas, Arlington (UTA) campus. For each building, we
navigated the wheelchair in safe areas such as hallways, ascend-
ing and descending staircases, doorways while encountering static
(chairs, bins, tables, lockers) or dynamic (humans) obstacles. With
respect to the data gathering process, we mounted an OAK-D depth
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camera on a manual wheelchair (Figure 2). The camera captures
both RGB and depth data simultaneously and processes the data
using a Python script along with the OpenCV1 and depthai2. RGB
stereo and depth data (Figure 3) are captured in real-time with a size
of 640x480 pixels and a frame rate of 30 frames per second. Data
were recorded for approximately 110 minutes and created a dataset
of 12610 images. All images were manually labeled and then resized
to 224x224 pixels, to match the resolution of the pretrained network.
The dataset includes 8965 single-labeled images and 3645 instances
that comprise of various combinations of the labels (open-path,
humans, staircase, doorway, obstacles). Among the multi-labeled
images, we notice 3219 two-labeled and 426 are described by three-
labels in total. Sets 1, 2, 3 include 4243, 4078, 4289 image instances
respectively. As far as the distinguishing features that each of the
three sets presents, we observe the following: Set 1 includes dark
ambience colours, voluminous objects, wide staircases, moving hu-
mans. Set 2 includes scenes of bright illumination, desks/chairs,
brick walls while finally Set 3 presents more balanced ambience
lighting, chairs/tables moving humans and narrow staircases.

4.2 Fine-tuning
For the experiments we used the Pytorch3 framework. Training
was done on a machine with 2 Titan RTX (24GB GDDR6 RAM,
4608 CUDA Cores) GPUs. We performed horizontal flip as a means
to augment the dataset. We trained for 50 epochs, using the BCE
loss function unless an early stopping callback terminated the trial
1https://opencv.org/
2https://docs.luxonis.com/en/latest/libraries
3https://pytorch.org/

Figure 2: Wheelchair setup for data collection

upon observed convergence. Furthermore, as training parameters
we used: batch size = 16, learning rate = 0.01 and weight decay =
5e-4. For the fine-tuning part, we freeze all transformer’s deeper
layers and replace the classifier with two fully-connected layers;
the last one performs the classification. We fine-tuned the layers
using stochastic gradient descent (SGD).

4.3 Ablation Study
We perform an ablation study to evaluate the performance of the
proposed fine-tunedmethod on our dataset.We perform 3-fold cross
validation on three buildings selected for training and the remaining
one for testing. The rationale behind folding on the buildings is
to exploit the visual dissimilarity between semantically equivalent
classes between buildings. This comparison is going to help us
evaluate the ability of the proposed method to generalize beyond
learning visual representations of specific landmarks. We also fine-
tune, utilizing the same architecture for the projection head, a deep
residual network (ResNet) [15], in particular the ResNet50 variant,
that has been pre-trained on ImageNet-21k.We replace the classifier
with the projection head for the multi-label classification.

5 RESULTS AND DISCUSSION
Our method’s aim is to perform efficient landmarks’ detection to-
wards safe wheelchair navigation. For the detection of staircases,
humans and static obstacles, we assign a lower value for d. Since

Figure 3: Examples of RGB and Depth pairs
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Table 1: 3-fold cross-validation results

Hamming Loss[%] Testing on Set 1 Testing on Set 2 Testing on Set 3
ViT𝑅𝐺𝐵−𝐷 12.6 9.7 11.2
ViT𝑅𝐺𝐵 14.9 12.5 13.1

ResNet50𝑅𝐺𝐵−𝐷 15.1 15.9 16.7
ResNet50𝑅𝐺𝐵 17.1 16.0 17.4

humans’ moves can be unpredictable, we assign a lower thresh-
old value for humans’ detection. The best results were achieved
when 𝑑ℎ𝑢𝑚𝑎𝑛𝑠 = 0.12. Likewise, the best detection results for stair-
cases, doorways, obstacles and open paths were achieved when
𝑑𝑠𝑡𝑎𝑖𝑟𝑐𝑎𝑠𝑒𝑠 = 0.16, 𝑑𝑑𝑜𝑜𝑟𝑤𝑎𝑦𝑠 = 0.16, 𝑑𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 = 0.17, 𝑑𝑜𝑝𝑒𝑛 = 0.85
respectively. Table 1 presents the results of the ablation study. We
can notice that the fused ViT𝑅𝐺𝐵−𝐷 outperforms all other networks
while displaying critical levels of consistency across all three sets.
This observation can be supported by results in literature in which
ViT’s performance is significantly increased due to the: 1)the depth
integration [13] and 2) the argument that ViT can outrun CNNs
in image classification tasks [12], [21]. This argument is also sup-
ported by the fact that pre-training with Masked Autoencoders
includes the notion of learning visual semantics holistically.

The lowest values of hamming loss which imply higher levels of
performance, are observed for Set 2. This is due to the fact that Set
2 displays considerable amounts of balance with respect to varying
illumination and object features. Contrariwise, Set 1 presents the
largest amounts of hamming loss because it is the one with the most
uniquely distinct features in terms of visual information. Compared
to the others sets, Set 1 is significantly more differentiated than
Sets 2 and 3 due to the presence of more voluminous objects as well
as darker illumination. Figure 4 displays a comparison between
the hamming loss as computed by fine-tuning the ViT𝑅𝐺𝐵−𝐷 and
ResNet50𝑅𝐺𝐵−𝐷 on Set 2 that exhibits the best overall performance.
In specific, the fine-tuned 𝑅𝐺𝐵−𝐷 convincingly outperforms fine-
tuned ResNet50𝑅𝐺𝐵−𝐷 , with the performance margin, described
by the hamming loss, widening as the fraction of training data
increases. Moreover, we notice that even for a small amount of
training data available, ViT𝑅𝐺𝐵−𝐷 ’s hamming loss is smaller than
the ResNet50𝑅𝐺𝐵−𝐷 one. This shows that integration of RGB with
depth information for 𝑉𝑖𝑇 , can be largely beneficial in scenarios
where only a small amount of training instances is available. Fig-
ure ?? presents the recall performance as observed in Set 2 for
images that include the "humans" label and the "staircases" label.
It can be inferred that the utilization of depth information seems
to have a substantial effect on the recall rates especially while the
fraction of training data is getting increased.

6 CONCLUSIONS
We propose a RGB-D fusion method that extracts high-level seman-
tic information regarding the scene’s navigability for a wheelchair
through landmark detection. Experiments were conducted in differ-
ent indoors environments using a manually driven wheelchair and
the OAK-D camera. The results present an improvement on multi-
label classification when fusing with depth information rather than
solely relying on RGB. Additionally, it is shown that fine-tuning
a Vision Transformer can act as a powerful tool for multi-label

Figure 4: Graph of test hamming loss against between
ViT𝑅𝐺𝐵−𝐷 and ResNet50𝑅𝐺𝐵−𝐷 with respect to the fraction
of training data used for Set 2

classification tasks in small datasets. We show that fine-tuning a
Vision Transformer on RGB-D information pre-trained with MAE,
led to a stronger performance compared to state-of-the-art deep
architecture for image classification such as ResNet. Avenues for
further research include experimenting with more instances and
different Vision Transformer architectures.
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Figure 5: Recall performance with depth integration against
only RGB as noted for the "Staircases" labels

Figure 6: Recall performance with depth integration against
only RGB as noted for the "Humans" labels
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