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ABSTRACT
Understanding cognitive states from fMRI data have yet to be inves-
tigated to its full extent due to its complex nature. In this work, the
problem of understanding cognitive fatigue among TBI patients has
been formulated as a multi-class classification problem. We built a
Spatio-temporal encoder model using convolutions and LSTMs as
the building blocks to extract spatial features and to model the 4D
nature of fMRI scans. To learn a better representation of the data
and the condition, we used a self-supervised learning technique
called "Contrastive Learning" to pretrain our encoder with a public
dataset BOLD5000 and further fine-tuned our labeled dataset to
predict cognitive fatigue. Furthermore, we present an fMRI dataset
that contains scans from a mix of Traumatic Brain Injury (TBI)
patients and healthy controls (HCs) while performing a series of
standardized N-back cognitive tasks. This method establishes a
state-of-the-art technique to analyze cognitive fatigue from fMRI
data and beats previous approaches to solve this problem with
different modalities. Besides, the ability of our models to take in
raw fMRI scans (noisy images with artifacts output directly from
the scanner) eliminates the need to implement a manual signal
processing pipeline that varies based on the scanner used. Finally,
we study the impact of different brain regions contributing to CF.
The proposed technique outperforms the state-of-the-art method
by over 13 percent on this dataset.
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1 INTRODUCTION
Functional magnetic resonance imaging (fMRI) measures slight
changes in blood flow that occur with activity in different brain re-
gions. This imaging technique is completely safe and non-intrusive
to the human brain. It is used to identify parts of the brain that
handle critical functions and evaluate the effects of conditions such
as stroke and other diseases. Some abnormalities can only be found
with fMRI scans as it provides detailed access to activity patterns
in a human brain.

Traumatic Brain Injury (TBI) is one of the most prevalent causes
of neurological disorders in the US [14]. It is a condition that has
been shown to affect working memory [5], and induce cognitive
fatigue [25]. In this work, we focus on understanding cognitive
fatigue that results from performing standardized cognitive tasks
as it is one of the primary indicators of moderate-to-severe TBI.

Cognitive Fatigue (CF) is a subjective lack of mental energy per-
ceived by an individual which interferes with everyday activities [9].
It is a common condition among people suffering from moderate
to severe brain injury. Many researchers have tried to use different
approaches to assess CF through various cognitive tasks and as-
sessment tests by using objective measures such as response time
(RT) and error rate (ER) [9]. However, these measures have certain
limitations and do not correlate well with the self-reported scores
during the tasks [42]. The inability to relate objective measures to
self-reported cognitive fatigue led us to study the blood-oxygen-
level-dependent (BOLD) signal associated with neural activation
changes. The increased BOLD activation in TBI subjects signifies
excessive cognitive work when compared to healthy subjects [42].

Raw fMRI scans are full of artifacts and noise due to several
issues like central point artifacts, data clipping, data error artifacts,
etc. These artifacts can differ based on the scanner used, and the
settings applied during the scan. Thus, addressing and removing the
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unwanted noise is essential before analyzing the images. However,
if amodel canwork directly on the raw data, it eliminates the painful
process of pre-processing the images and saves time and effort.
Hence, we prioritized training our models on raw data right out of
the box and compared the performance with models learned from
pre-processed data. With the self-supervised approach, our model
outperformed supervised methods that were trained on images
without any artifacts or noise.

With the advancements in deep learning techniques that can
efficiently extract meaningful information from images/videos, we
built a model that predicts self-reported CF scores based on neural
activations captured through the fMRI scans. The main contribu-
tions of this work are:

• Identify multiple regions in the brain that contribute to cog-
nitive fatigue and potentially comprise a fatigue network.
The brain regions tested using Chaudhuri model of CF [3]
and other fatigue-related brain areas [4, 10, 11, 42] are Cau-
date, Anterior Insula, Medial Prefrontal Cortex (mPFC), and
Middle Frontal Gyrus (MFG).
• Developmachine learning (ML) models to detect and identify
six levels of CF with the best accuracy of 86.84% using both
pre-processed and raw fMRI brain scans. The models are
trained and tested on different brain regions using masks
and compared with their performance on the whole brain
scan. Furthermore, they eliminate the need for a manual
pre-processing pipeline based on the scanner used.
• A comprehensive dataset containing raw and pre-processed
fMRI images collected from TBI subjects and Healthy Con-
trols while performing CF inducing tasks
• Comparison of brain activity in the functional fatigue net-
work in the brain between TBI and HC subjects. Our models
and dataset indicate that TBI subjects undergo greater activ-
ity in the selected regions of the brain.

The rest of the paper is structured as follows: we start by dis-
cussing some of the previous works that have examined cognitive
fatigue from different modalities and results that use deep learning
for brain imaging. Then we explain the data collection, the prepro-
cessing stage, and the system architecture. Finally, we present our
experiments and results, followed by our conclusion on the work
done and future directions at the end.

2 RELATEDWORK
Previous researches have demonstrated that in people with Trau-
matic Brain Injury (TBI), the caudate nucleus of the basal ganglia
shows a distinct pattern of activation over time than in healthy con-
trols [25]. This finding was consistent with Chauduri and Behan’s
fatigue model [3], in which the basal ganglia played a crucial part
in fatigue experience. On the other hand, Kohl et al. [25] inferred
the presence of fatigue based on the pattern of brain activations
across time. However, the study by Wylie et al. [42] was the first to
look into state fatigue in people who have had a moderate-to-severe
TBI. They investigated the involvement of the Caudate nucleus in
fatigue by seeing if it changes its activity in direct proportion to
the patients’ instantaneous (state) fatigue experience [17].

While the Caudate nucleus and the Striatum as a whole were
previously thought to be solely responsible for motor behavior con-
trol [29], recent evidence from animal and human research shows
that this region is involved in a wide range of cognitive behaviors,
including learning [12, 35, 38], outcome processing [7, 8], and work-
ing memory [1, 27]. Recent data indicate that fatigue caused by such
cognitive tasks may manifest itself in Caudate nucleus activation
[10]. In children who have suffered a TBI, cognitive fatigue has been
linked to a network of areas in the Striatum and PFC, including the
vmPFC, nucleus accumbens, and Anterior Cingulate Cortex (ACC)
[34].

With the rapid increase in the availability of medical imaging
datasets, deep learning has been adopted efficiently to process
the data for diagnosing various diseases [15, 16, 33] and reha-
bilitation purposes [13, 23]. Researchers have also applied deep
learning to identify early symptoms of various cognitive disorders
[31, 45]. Specifically, works have been done in predicting diseases
and subject traits using fMRI data withmachine learning techniques
[24, 32]. Further, convolutional neural networks (CNNs) [26], an
approach that has been known to be very successful in solving
computer vision tasks have been widely used to analyze the spatial
features in fMRI images as well. A 4-layer convolutional neural
network was proposed in [40] for classification from raw fMRI
voxel values.

In [36], the authors used deep convolutional networks (DCNs)
to encode fMRI images into low-dimensional feature space and
decode them back for image reconstruction. Similarly, the authors
in [30] proposed a large-scale bi-directional generative adversarial
network called BigBiGAN to decode and reconstruct natural scenes
from fMRI patterns. Furthermore, an architecture based on sparse
convolutional autoencoder was used in [21] to learn high-level
features from handcrafted time series derived from raw fMRI data.

There has also been a recent surge in the use of sequence models
to process temporal fMRI data. Mao et al. [28] applied a specific type
of RNN known as Long Short-Term Memory (LSTM) to process
spatial features extracted from a CNN network. Another similar
work in [37] used bi-directional LSTM along with a CNN.

Based on the previous works, deep learning has come a long
way in understanding the structural and functional activities in
the brain. However, work done in analyzing cognitive fatigue from
fMRI scans has been severely limited and needs more attention.
Hence, combining sequential models is essential to incorporate the
temporal properties of 4D fMRI images and enhance the perfor-
mance of CNN models that can only learn structural features from
data. Furthermore, the addition of self-supervised learning methods
helps in learning low-level brain fMRI features from similar public
datasets. To the best of our knowledge, we are the first ones
to evaluate cognitive fatigue from fMRI brain scans.

3 METHODOLOGY
We induced CF in healthy controls (HCs) and individuals with TBI
using a working memory task during data collection. We assessed
CF scores at multiple intervals through surveys and questionnaires
and acquired fMRI data throughout the test. As the acquired raw
data contains noise, a standard pre-processing pipeline was imple-
mented to normalize and smoothen the data, as shown in Figure 2.
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Figure 1: Distribution of self-reported cognitive fatigue
scores after every N-back session from TBI subjects (top)
and Healthy Controls (bottom). The score is a difference be-
tween the reported session score and the resting-state fatigue
score recorded at the beginning of the first session.

The following subsections explain data collection, pre-processing,
and system architecture to predict CF from fMRI data.

3.1 Data Collection and Pre-processing
For data collection, fMRI scans of the brain were recorded over a pe-
riod where each subject was asked to perform a series of cognitive
N-back tasks, as shown in Figure 2. The data was collected from
thirty participants with moderate-severe TBI and 24 healthy con-
trols (HCs). The average age of the subjects was 41 years (SD=12.7).
Each participant performed four rounds of both 0-back and 2-back
tasks. A baseline fatigue score was reported initially, followed by
scores being reported after each round. Functional images were
collected in 32 contiguous slices during eight blocks (four at each of
two difficulty levels), resulting in 140 acquisitions per block (echo
time = 30 ms; repetition time = 2000 ms; field of view = 22 cm;
flip angle = 80°; slice thickness=4 mm, matrix = 64 × 64, in-plane
resolution = 3.438𝑚𝑚2). Using the Visual Analog Scale of Fatigue
(VAS-F), the subjects were asked to rate the amount of fatigue they
experienced (in the range 0-100) after each round of the N-back
task. The self-reported scores were mapped to six classes to make
it a multi-class classification problem as represented in table 1.

On empirical inspection of the distribution (in Figure 1), we
found that six categories strike a good balance/compromise between
adequately describing the distribution of VAS-F scores in a limited
set of categories while also maintaining sufficient complexity in the
VAS-F data to allow for accurate modeling. Reducing the number
of categories to five or increasing it to seven did not materially
affect the model’s performance. Additionally, the cognitive fatigue
levels shown in table 1 are for reference only in order to quantify

Figure 2: A flow diagram of a series of N-back tasks (some
performed the 2-Back tasks first) performed during data
collection (VAS-F Score: SR Score)

Table 1: Mapping self-reported (SR) Cognitive Fatigue scores
to respective class labels. The fatigue levels are for references
only and are not of any clinical significance.

Fatigue Score (SR) Fatigue Level (Reference) Class
0-10 No Fatigue 0
10-20 Very Low Fatigue 1
20-40 Mild Fatigue 2
40-60 Fatigue 3
60-80 High Fatigue 4
80-100 Extreme Fatigue 5

different levels of fatigue corresponding to the class label. The final
4D tensor acquired in NIfTI format was 140 x 32 x 64 x 64. The
raw fMRI images were preprocessed using Analysis of Functional
NeuroImages (AFNI) [6] and other standard techniques as discussed
in previous works [42], shown in Figure 2.

Figure 3: Pre-processing pipeline for fMRI scans to convert
from raw noisy format to normalized and smoothed version.

3.2 System Architecture
fMRI scans are 4D in shape and are represented as (t, x, y, z), where
’t’ represents the timesteps of individual 3D brain volumes. The
other three dimensions represent the intensity of voxels in the
brain. The temporal relation between the scans recorded at different
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Table 2: Performance results for different models on the cognitive fatigue classification task. Accuracies are calculated with
3-fold cross-validation. The encoder model used is CNN+LSTM and is the same for all three approaches. For the supervised
approach, we add a linear layer at the end for classification.

Approach Data Format Dataset Used
Accuracy

HC only TBI only Overall

Supervised
(Encoder + Linear)

Raw Ours 71.72
± 0.82

78.44
± 1.71

74.35
± 1.27

Supervised
(Encoder + Linear)

Pre-processed Ours 80.87
± 0.63

84.91
± 1.44

82.79
± 0.73

Self-supervised +
Fine-tuning

Raw BOLD5000 +
Ours

82.58
± 0.53

92.39
± 1.26

86.84
± 1.13

time steps is captured using a Recurrent Neural Network (RNN)
based architecture. We combined a CNN architecture with an LSTM
[18] network for the encoder as shown in Figure 4. We used three
layers of 2D convolution and batch normalization to learn the
images’ spatial (structural) features, whereas the LSTM network
understands the temporal relation between the timesteps.

The encoderwas pre-trained on a public dataset called BOLD5000
[2] using a self-supervised algorithm and was fine-tuned on our
labeled dataset by adding a linear classifier layer at the end. Many
researchers have opted BOLD5000 dataset as it is a large-scale, slow
event-related human fMRI study incorporating 5,000 real-world
images as stimuli. It also accounts for image diversity, overlapping
with standard computer vision datasets, making it ideal for transfer
learning tasks. Based on our experiment, the image representa-
tions learned by the encoder by first pre-training on the BOLD5000
dataset were more effective than training the models directly on
the supervised dataset.

3.3 Self-supervised Pre-training
We used a self-supervised learning approach (contrastive learning
[22]) to learn data representations from unlabelled samples, as it
has been proven to work well with visual data. The methods utilize
meta-data generated from the dataset that acts as pseudo-labels
during training. With contrastive learning, models can effectively
learn abstract features from images and videos. In this case, 4D fMRI
data can be treated as a series of videos such that self-supervised
methods [43] can be applied to it.

For pre-training the encoder, we use a contrastive-based ap-
proach. Two augmented versions are generated for every batch
containing 𝑁 samples, resulting in a total of 2𝑁 . Every sample’s
augmented version is considered the positive candidate, and their
similarity is encouraged to be maximum. In contrast, the model
tries to minimize the positive and negative pair similarity. This con-
dition is represented in Figure 5 with green and red double-headed
arrows. We use cosine similarity to measure the closeness between
two samples in a batch.

We apply extensive spatial and temporal augmentation during
training. As part of spatial transformation, methods such as ran-
dom affine, z-normalization, and re-scale intensity were used. One
arbitrary transformation is also used among random blur, gamma,
random motion, and random noise. Similarly, a random starting

time 𝑡 is selected for temporal augmentation, and 𝑛 consecutive
scans are extracted. Finally, the loss is calculated using a variant of
the Noise Contrastive Estimation function (NCE) called InfoNCE,
which is used when there is more than one negative sample present
during the learning process and is defined by equation 1.

𝐿𝑖𝑛𝑓 𝑜𝑁𝐶𝐸 = −𝑙𝑜𝑔 𝑒𝑥𝑝 (𝑠𝑖𝑚 (𝑞,𝑘+ )/𝜏 )
𝑒𝑥𝑝 (𝑠𝑖𝑚 (𝑞,𝑘+ )/𝜏 )+

∑𝐾
𝑖=0 𝑒𝑥𝑝 (𝑠𝑖𝑚 (𝑞,𝑘𝑖 )/𝜏 )

(1)

In the equation 1, 𝑞 represents the current sample, 𝑘+ represents
the positive sample (augmented version of 𝑞), and 𝑘𝑖 represents
the negative samples (other samples in the batch). 𝜏 represents the
temperature coefficient, and sim represents the cosine similarity
between two samples.

In this experiment, we used a contrastive learning method called
MoCo [19] that includes negative samples as a dictionary queue
and has been proven effective compared to other methods. Two en-
coders with the same architectural configuration are used; the main
encoder Q (Query Encoder) is trained end-to-end on the sample
pairs. The second encoder (Momentum Encoder) shares the same
parameters as Q. The momentum encoder generates a dictionary
as a queue of encoded keys with the current mini-batch enqueued
and the oldest mini-batch dequeued. It gets updated based on the
parameters of the query encoder using an update parameter called
momentum coefficient as represented by equation 2. In equation
2,𝑚 ∈ [0, 1) is the momentum coefficient. Only the parameters \𝑞
are updated by back-propagation.

\𝑘 ←𝑚\𝑘 + (1 −𝑚)\𝑞 (2)

3.4 Region of Interest Analysis and Cognitive
Fatigue Interactions

With emerging tools of cognitive neuroscience to investigate cog-
nitive fatigue, several fatigue-related brain areas have begun to
emerge. Specifically, based on the studies in [3, 4, 10, 11, 42], the
striatum of the basal-ganglia also known as caudate, the medial
prefrontal cortex (mPFC), the anterior insula, and the middle frontal
gyrus (MFG) as visualized in Figure 7 have been found to play a
critical role in functional connectivity of the fatigue network in the
brain. Therefore, these brain areas need to be analyzed thoroughly
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Figure 4: Spatio-temporal Model Architecture: CNN layers in the Encoder extract spatial features while LSTM layers model the
temporal relation of the fMRI images followed by attention-based averaging over time.

Table 3: Performance comparison of methods using different modalities for cognitive/mental fatigue detection or prediction

Modalities Methods Used Accuracy Reference

Physiological Sensors
(ECG, RESP, EDA, SpO2)

LDA/SVM/DT 70% Hirachan et. al [20]

Pre-processed fMRI Logistic Regression 73% Zadeh et. al [44]

Respiratory Signals CNN 77.29% Wang et. al [39]

EEG Channels Signal Processing 80.0 % Wei et. al [41]

Raw fMRI CNN+LSTM 86.84% Ours

to understand activation regions in the brain during cognitive fa-
tigue.

Data analysis occurs in two steps. A whole-brain study is con-
ducted first, followed by a fatigue-interaction (FI) analysis where
cerebral activity in the brain is investigated in different regions of
interest (ROIs). First, we train ML models for CF detection using the
whole brain scan. Next, we apply several masks one at a time to the
brain scans corresponding to different selected ROIs before training
the same ML models. Finally, we compare the performance of the
ML models for each region of interest against the whole brain scan.

4 EXPERIMENTS AND DISCUSSION
Most publicly available datasets are preprocessed with a standard
pipeline for fMRI images. However, we used two different data ver-
sions to train the models: one using the raw (unprocessed) version

and the other using preprocessed normalized version as obtained
from the preprocessing pipeline in Figure 2. Furthermore, we used
data from all four subjects in the publicly available BOLD5000
dataset for self-supervised pre-training of the Encoder model as
represented in Figure 5. In this case, we trained the encoder using
MoCo [19] algorithm and Adam optimizer on the public dataset.
The pre-training was carried out for a total of 200 epochs. The
starting learning rate was set to 0.03 with a weight decay factor
of 10−4 and a momentum parameter of 0.9. The learning rate was
decayed by ten at 120 and 160 epochs, respectively.

We split our supervised labeled dataset into train, validation,
and test sets to train the deep learning models. The train set con-
tained 70% of the dataset, while the validation and the test datasets
consisted of 15% each. The test set included a mix of TBI and HC
subjects and constituted more than 300 reported instances during
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Figure 5: Self-supervised Pre-training Framework: MoCo al-
gorithm for pre-training on BOLD5000 dataset. The green
arrows represent positive pairs and red arrows represent neg-
ative pairs.

Figure 6: Ortho visualization of a sample (a) Raw Image and
the (b) Pre-processed version cut out at coordinates (x=20,
y=20, z=20).

the N-back tasks. On the other hand, scans from all four subjects
in the BOLD5000 dataset were used to pre-train the model using
the self-supervised approach, as mentioned earlier. The primary
encoder was initially trained on our collected dataset separately
using a supervised approach for benchmarking. We used raw and

Figure 7: Ortho cut out visualization of (a) Insula Mask (b)
MedialPFC Mask, (c) MFG Mask, and (d) Caudate Mask at
coordinates (x=20, y=20, z=20).

preprocessed data for the supervised method to train two differ-
ent models, as shown in table 2. Finally, once the encoder was
pre-trained on the BOLD5000 dataset using the self-supervised
algorithm, it was fine-tuned on our dataset. The performance of
the different models is presented in table 2. The results show that
the model pre-trained on the public dataset (BOLD5000) and later
fine-tuned on our dataset outperformed other supervised methods.

Four NVIDIA GTX 1080 Ti GPUs were used to train the mod-
els, whereas, for testing, only one GPU was used. As shown in
table 2, our method beats all previous approaches, including [44]
in classifying cognitive fatigue from fMRI scans.
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Table 4: CF Detection using Different Regions of Interest
(ROIs) to identify areas with most brain activity. Supervised
model refers to (Encoder + Linear) combination of layers
trained on labeled data from our dataset where as SSL refers
to Self-supervised Model initially trained on BOLD5000
dataset and later finetuned on our dataset.

Mask Used Data Format Model Accuracy

Caudate
Pre-processed Supervised 69.21%

Raw
Supervised 62.33%
SSL 76.87%

Insula
Pre-processed Supervised 64.77%

Raw
Supervised 62.12%
SSL 67.94%

MedialPFC
Pre-processed Supervised 73.78%

Raw
Supervised 70.94%
SSL 78.92%

MFG
Pre-processed Supervised 75.29%

Raw
Supervised 70.98%
SSL 79.13%

NONE
Pre-processed Supervised 82.79%

Raw
Supervised 74.35%
SSL 86.84%

4.1 Performance based on different ROIs using
Masks

One of the main objectives of analyzing different brain regions is to
understand and quantify the activity in those regionswhen a subject
exerts effort in the brain and fatigue increases. The higher the
activation in an area, the more significant its contribution towards
the induction of CF. It can be made more evident by testing the ML
models on each selected brain region separately. To achieve this, 3D
binary masks of the same size as the original scan were generated
that correspond to each brain region respectively. Next, they were
applied to the input scans using multiplication to prepare them for
training. In this way, each of the four areas mentioned above in the
brain was used to train our ML models and evaluated based on its
sole ability to detect CF.

Table 4 highlights the performance of different models on detect-
ing cognitive fatigue when trained using scans from various regions
in the brain. It is prominent that the models perform better when
the whole brain scan is used than using only a part of the brain.
However, it is interesting to note that some regions in the brain
provide more information than others when detecting cognitive
fatigue. In this case, the medial prefrontal cortex (mPFC) and the
middle frontal gyrus (MFG) seem to contribute way higher than the
insula and slightly more than the caudate. This indicates a higher
functional activity in the brain’s frontal portion during the fatigue
induction process.

4.2 Performance on TBI vs HC Subjects
Since our dataset contains a mix of TBI and HC subjects, it is essen-
tial to understand the difference between the cerebral activity in
the brain that induces cognitive fatigue in both groups. Therefore,
we compare the performance of our ML models independently on
data from each group. As shown in table 2, when testing TBI and
HC subjects separately, the models seem to perform better on the
TBI data. It could mean that the enhanced brain activations in the
TBI subjects made it easier for the model to predict cognitive fa-
tigue compared to the scans from healthy subjects. However, the
difference in the performance is negligible, and the model seems
to perform comparatively well on data from both subjects, which
makes it robust for all cases. Also, based on the score distribution
of TBI and HC subjects in Figure 1, TBI subjects seem to induce
more fatigue than healthy subjects.

4.3 Comparison with Fatigue Detection
Techniques using Different Modalities

Table 3 emphasizes a direct comparison of several cognitive fatigue
detection and prediction techniques that use various input modal-
ities. Our approach achieves the best results compared to other
methods using different sensor-based modalities. One significant
advantage of our procedure in the fMRI domain is that it eliminates
the need to remove noise and artifacts from the raw images. Fur-
thermore, as a future direction, we can work on identifying the
region of interest in the brain that correlates to a specific fatigue
level with the help of fMRI imaging. Finally, the advantages and
the need to use fMRI scans to estimate cognitive fatigue accurately
are well explained in our previous sections.

5 CONCLUSION
This paper presents a pre-trained Spatio-temporal architecture with
self-supervised methods for processing 4D fMRI data that predicts
cognitive fatigue in TBI and healthy subjects. Motivated by video
classification, we use CNN layers to extract spatial features and
an LSTM network for temporal data modeling. Additionally, we
implemented a self-supervised algorithm to show that knowledge
of fMRI data gained from other public datasets is helpful in down-
stream tasks. Unlike previous works that used the whole brain scan
for binary prediction of cognitive fatigue, our method granulates
the prediction into six different levels of CF with higher accuracy.
Furthermore, we study the impact of essential brain regions that
play a more significant role in the induction of CF. Finally, we ob-
serve that brain activations in TBI subjects are more prominent
than HCs in the regions that we selected. Future works include
exploring large-scale public datasets with improved self-supervised
algorithms to enhance the overall performance and the granularity
of cognitive fatigue prediction.
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