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ABSTRACT

Non-Intrusive Reduced Order Model Formulation for Inverse Shape

Design Including Deforming Meshes and Multiphysics Problems.

KAPIL ARYAL, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Brian H. Dennis

Despite significant advancements in computer capabilities for numerical simulations,

engineers continue to face limitations when dealing with large-scale full-order model(FOM)

simulations. These simulations often necessitate repeated solves, such as those encoun-

tered in inverse design, real-time solution prediction, error quantification, and solver con-

vergence, among others. To address these challenges, reduced order modeling (ROM)

has emerged as a valuable approach. This thesis focuses on the development of an ROM

framework that combines Proper Orthogonal Decomposition (POD) with machine learning

techniques. This integrated approach is applied to a diverse range of heat transfer and fluid

flow inverse design problems.

POD constructs optimal sets of basis vectors from high fidelity numerical simulations

which can be used in linear superposition to predict the FOM solution. The unknowns in the

model are the coefficients of the basis vectors. To obtain these coefficients, various methods
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can be employed, such as Galerkin projection or other optimization techniques, particularly

when the solution field is known. Then such data can be utilized to train (ANNs), which

will then be capable of making real time predictions of the coefficients for new sets of

parameters. These coefficients when used with POD bases constructs the full solution field

quickly. This versatile ROM framework is applied to address various heat transfer and fluid

flow problems, enhancing computational efficiency in a range of scenarios.

Firstly, it is applied to 3D linear heat conduction within a deforming mesh config-

uration in a pipe, where the internal surface is governed by 20 parameters. The ROM

accurately predicts the full temperature field with errors of less than 3.5% compared to the

actual values. All 20 parameters are approximated within a remarkable 0.7% of the actual

parameters. This framework establishes itself as a notably robust technique, surpassing

other methods that rely directly on ANNs. The ROM demonstrates strong resilience to

simulated errors in the target temperature.

Secondly, the ROM is applied to determine the detailed internal flow and tempera-

ture in a multiphysics, nonlinear conjugate heat and mass transfer problem within a hollow

cylindrical channel with a spherical heat source at its center, for varying inlet flow rates. As

flow rate information may not always be available, three nodal temperatures from the sur-

face of the cylinder or sphere are used to re-parameterize the problem. The ROM exhibits

satisfactory accuracy when temperature sensors are placed on the cylinder’s surface and

responds poorly to simulated errors. However, when the ROM is updated with sensors on

the surface of the heated sphere, its performance significantly improves, providing highly

accurate predictions even in the presence of substantial Gaussian noise in the sensor tem-

peratures. Impressively, the ROM predicts temperature and absolute velocity within 0.5%

and 2.5%, respectively, with errors not exceeding 5% for both temperature and velocity

when subjected to Gaussian noise within the range of ±10°C.

vii



In the final phase of the study, the ROM is applied to predict the pressure field for var-

ious 4-digit NACA airfoils at different angles of attack—a nonlinear 2D deforming mesh

fluid flow problem. The predicted nodal pressure values are within 4% of the actual values

for 25 test cases. In inverse approximation, the ROM demonstrates remarkable accuracy,

recovering parameters and AOA within 2.5% of actual values, even when facing substantial

Gaussian noise (equivalent to 5% of the highest pressure value). A groundbreaking discov-

ery is made that this ROM is capable of eliminating multiple local minima (resembling

noise) in the objective function.

The objective of this comprehensive investigation is to establish a generalized pro-

cedure applicable to a wide range of applications. By scrutinizing key factors such as

modal trajectories, sample sizes for POD and ANN, the number of modes, and sampling

techniques, the research aims to develop a versatile ROM framework capable of accommo-

dating various scenarios.
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CHAPTER 1

Introduction

1.1 Background

Numerical solutions for scientific and engineering challenges have gained widespread

popularity since the advent of computers. This popularity arises primarily because analyt-

ical solutions are often unavailable for most partial differential equations (PDEs). De-

spite substantial advances in computing power, engineers still encounter limitations, es-

pecially in the simulation of large-scale problems, particularly when frequent solving of

high-fidelity models is necessary.

The primary constraint stems from the significant increase in dimensionality during

the discretization process when employing high-fidelity models such as the Finite Dif-

ference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM),

Boundary Element Method (BEM), and similar techniques. Consequently, the compu-

tational expenses and time required for solving such models become prohibitively high.

When these high-cost models are applied to address problems that require repeated solu-

tions, such as optimization, inverse design, error quantification, or prediction of real-time

solutions, the associated time and costs escalate exponentially.

To address these challenges, model order reduction techniques have emerged as

highly effective tools. These techniques aim to reduce the dimensionality of the original
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full-order model (FOM) while preserving the essential system behavior characteristics. As

a result, these reduced models possess significantly fewer unknowns compared to the origi-

nal FOM, resulting in a substantial reduction in computational demands while maintaining

the accuracy of the solution.

Reduced order models (ROMs) are constructed through a model reduction process

that involves several steps, including selecting an appropriate reduced basis, projecting the

high-dimensional model onto this basis, and the subsequent solution of the reduced-order

model. FOM solutions are utilized to construct the reduced basis that represent the behavior

of the original system. These reduced basis are then used to construct a low-dimensional

subspace that captures the essential dynamics of the system. The high-dimensional FOM is

then projected onto this subspace, resulting in a lower-dimensional ROM that captures the

critical behavior of the original model. ROMs have been essential in modeling, reducing

computational costs in numerical simulations and making them valuable tools for both

academic and industrial research, particularly in post-processing analysis, optimization,

inverse problems, error quantification, and control-type problems where repeated solves of

the model are required over a wide range of parameters [1].

The first step involved in model order reduction is the selection of the right model

that can solve the system’s behaviour to generate high fidelity solution. Then such data

are used with appropriate model reduction techniques to come up with the right reduced

model. Finally, such models are validated against the known solution to ensure the correct

working of the models. The major shortcoming of using reduced model is that it comes

with a compromise in the accuracy of the solution. The quality of FOM solution, model

order reduction technique, and the complexity of the original model are the key factors

that determine the accuracy and the efficiency of reduced-order models, and hence study of

such models for their optimal applications in science and engineering is a major research

topic.
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Projection-based methods, such as Dynamic Mode Decomposition (DMD), Reduced

Basis Method (RBM), and Proper Orthogonal Decomposition (POD) method, are com-

monly used for model reduction in which the original model is projected onto a reduced-

dimensional approximation model [2]. DMD is a data-driven method for reduced-order

modeling that can capture dominant modes of the system’s evolution [3], [4]. RBM is a

physics-based method that uses the Galerkin projection to reduce the dimensionality of the

original system [5], [6]. POD is a projection-based method that uses statistical analysis to

construct a reduced-order model that retains the dominant modes of the original system.

While DMD and RBM are suitable for systems with non-linearities and time-dependent

behavior, POD is more effective for capturing dominant modes that exhibit linear behav-

ior. Similarly, POD modes represent spatial patterns in data variability, and thus give more

physical interpretation than DMD or RBM methods. This is specially advantageous in ar-

eas like fluid dynamics or structural dynamics where understanding the underlying physics

is a crucial part of the analysis. It captures dominant modes that exhibit linear behavior

with higher fidelity [7]. Other alternative approaches like balanced truncation [8], Krylov

Subspace Methods [9] and sparse grids [10] are frequently employed in various appli-

cations as model reduction techniques. Nevertheless, when considering various factors,

including simplicity, superior physical interpretability, noise resilience, a well-established

methodology, and seamless integration with other techniques, it becomes evident that POD

stands out as a superior choice. POD, which was originally developed for data analysis

in probability and statistics, is also known as Principal Component Analysis(PCA), Sin-

gular Value Decomposition (SVD), or Karhunen-Lo’eve expansion [11]. POD serves as

a foundational technique for modal decomposition of a collection of functions, including

data derived from experiments or numerical simulations. The characteristics of the POD

imply that it is the favored foundation to employ in diverse applications. The result of its

calculation often comes by the names of empirical eigenfunctions, empirical basis func-
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tions, empirical orthogonal functions, proper orthogonal modes, or basis vectors [12]. The

central concept of POD is to decrease a significant number of interconnected variables into

a significantly smaller set of unrelated variables, while still maintaining the majority of the

variance in the initial variables [13]. In POD, the high-fidelity solution is approximated

as a linear superposition of orthogonal base functions which are capable of capturing most

important structures in the data. POD technique constructs such basis vectors using a ro-

tated co-ordinate system where the chosen rotation angles are such that the projections of

the vectors on consecutive axes decay as quickly as possible [14]. In this theory, the de-

composition extracts deterministic functions from second-order statistics of a random field

and converges optimally fast in quadratic mean [15]. In other words, a random function

can be expanded as a linear combination of a set of deterministic functions with random

coefficients so that it is possible to separate the deterministic part from the random one.

The POD procedure provides sets of empirical eigenfunctions which approximate an en-

semble of a data set better than representations of the same dimension in terms of any other

bases [16] [17]. The unknowns in the POD-based model are the coefficients of the base vec-

tors. A comprehensive examination of these coefficients in the literature will be presented

in the upcoming section, aligning with the motivations and objectives of this research, as it

will be more contextually relevant to establish them there.

1.2 Literature Review of POD Applications in Diverse Fields.

POD has been applied to a wide variety of science and engineering disciplines very

successfully. The following areas of strong applications of POD provide a basis for the

thesis study: 1)Fluid mechanics: POD is used for flow analysis, turbulence modeling and

control problems. 2)Structural mechanics: POD is used for modal analysis, damage de-

tection and optimization. 3)Image processing: POD is used for feature extraction, com-
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pression and denoising. 4)Medical study: POD is used in analyzing brain activity and

abnormality detection, flow analysis inside the blood vessels and so on. 5)Computational

dynamics: POD is used for real time solution prediction, optimization, inverse design, error

quantification and so on.

1.2.1 POD in Fluid Mechanics

Rowley et al. [18] used POD for constructing reduced order models of turbulent flow

and shows that POD is capable of capturing the dominant dynamics of the flow field and

facilitates computationally efficient simulations. This paper focuses on spectral analysis

of non linear flows since the traditional linear analysis methods fall short in capturing the

intricate behaviour of non linear flows, such as turbulent flows. It emphasizes that such

linear analysis of POD is very suitable even for nonlinear flow analysis.

Bewley et al. [19] applied POD in conjuction with Direct Numerical Simulation

(DNS) for turbulence control strategies to determine the controls that minimizes the tur-

bulent kinetic energy and drag for turbulent flows in plane channels at different Reynolds

number.

Ly et al. [20] used POD for steady-state Rayleigh-Bénard convection by assuming

that its mathematical model is unknown. Basically, the paper used ensemble of data to

show that it can be used efficiently to accurately model the natural convection even in the

absence of mathematical model.

Fogleman et al. [21] applied POD to datasets of internal combustion engine flows

obtained through CFD and particle imaging velocimetry for different fixed crank-angle po-

sitions over a number of cycles. The method was used to analyze the instability mechanism

involved in tumble breakdown and to analyze the flow in time-varying domain.

Zhang et al. applied POD to study the aerodynamics of a membrane wing under

the micro air vehicle flight condition. The paper concluded that even though a substan-
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tial number of eigenmodes are required to adequately reproduce the aerodynamic data,

the framework is capable of offering a reduced ordered representation for the membrane

aerodynamics.

1.2.2 POD in Structural Mechanics

Lu et al. [22] studied the continuous modeling of rotor systems using POD and

also combined with a model based on network dynamics. It allowed an effective means of

studying the dynamic characteristics of rotor system from the network dynamic perspective.

Han et al. [23] applied POD in the modal analysis of beams with different boundary

conditions. It was shown that only one POD mode converges to the true normal modes

of the structure. Experimental data from both a homogeneous free–free beam and a non-

homogeneous free–free beam were utilized to perform a comparative analysis between

proper orthogonal modes and structural normal modes. The outcomes strongly endorse the

suitability of employing proper orthogonal decomposition for structural vibration analysis.

Bamer et al. [24] applied POD to structures subjected to transient earthquake loading

to both linear and nonlinear structures. The POD approximations were very close to the

actual solution for both cases even when small number of POD modes were utilized. It

was shown that the advantage of Proper POD over Modal Truncation extends beyond the

optimality of POD modes in terms of their energy representation; it also encompasses its

suitability for nonlinear systems.

Thiene et al. [25] studied POD for its application to damage detection in homoge-

neous plates and composite beams. The study was conducted to detect damage and effects

of several parameters such as damage severity, type of excitation, noise level, the model’s

sensitivity to sensor locations and modifications of the boundary conditions. It was shown

that POD successfully detected defects in cantilever plates as well as damage along the

length and thickness of the beam.
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1.2.3 POD in Image Processing

Kumar et al. [26] applied PCA for face images for compression or dimensionality

reduction and face recognition. The paper reviewed and compared the performance of three

such methods, Eigen Decomposition, SVD, and Hebbian Neural Networks.

Ting et al. [27] introduced an innovative method that deviates from the conventional

practice of applying PCA exclusively to rectangular or square Regions of Interest (ROIs).

Instead, it employs PCA to effectively compress ROIs of arbitrary shapes in MRI brain

images. Through factorization, this approach achieves successful compression of such

ROIs at varying compression ratios. The simulation outcomes demonstrate that even at a

total compression ratio as high as 80%, the test image exhibits no discernible distortion.

Gewers et al. [28] provided simple applications of PCA to real world data such as as-

tronomy, biology, chemistry, computer, engineering, geography, weather, medicine and so

on to outlier detection, variance explanation, pattern recognition and also to dimensionality

recognition to such data.

1.2.4 POD in Medical Study

Bakhshinejad et al. [29] presented a novel method for merging 4D flow magnetic

resonance imaging(MRI) with CFD to non-invasively measure blood velocities without

being affected by acquisition noise, flow artifacts, and resolution limits. POD solution

was used to compare against other denoising methods, and it was shown that POD method

preserved the small flow structures than other methods, while also eliminating noise.

Janiga et al. [30] visualized features of unsteady blood flow in intracranial aneurysms

with the help of POD. The 4D flow was decomposed with the help of POD and the POD

features were extracted with the help of POD velocity modes. Finally, the novel POD-based

visualizations were illustrated for 4D PC-MRI and CFD.
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Balasubramanian et al. [31] studied the efficacy of POD framework, designed for

identifying structural glaucomatous alterations in the optic nerve head, in individuals par-

ticipating in the UCSD Diagnostic Innovations in Glaucoma Study (DIGS). The POD

framework exhibits potential in offering a high level of specificity for detecting glauco-

matous changes, even with just a single follow-up examination.

1.2.5 POD in CFD and Heat Transfer

Samadiani et al. [32] reviewed reduced order modeling approaches used in predict-

ing flow and temperature fields within data centers, focusing on design parameters. The

motivation for such modeling in designing energy-efficient thermal management systems

was discussed. Special attention was given to POD as a means of modeling turbulent flows.

It was concluded that low-dimensional models, especially POD-based techniques, are valu-

able for accurately and rapidly predicting the thermal behavior of data centers, aiding in

design and control.

Rulli et al. [33] introduced and applied phase-invariant POD analysis, conditional

averaging, and triple and quadruple POD methods to an extensive database of particle im-

age velocimetry data from a well-known research engine. The results highlight the ability

of these methods to provide both quantitative and qualitative insights into cycle-to-cycle

variations. Additionally, the authors proposed a new quadruple proper orthogonal decom-

position methodology and compared it to existing techniques in the literature. Overall,

these methods proved useful in identifying turbulent structures responsible for cycle-to-

cycle variability, and they can be applied to both experimental and numerical datasets for

detailed analysis and comparisons of turbulent fields.

Manthey et al. [34] applied POD to reduce the model for in-depth analysis of natural

two-phase flow stability in a high pressure natural gas circulation system with great success
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and laid a basis to develop a reduced model for low pressure thermal hydraulics. The

validation of the ROM solutions showed very good agreements with the system code.

Vergari et al. [35] formulated a POD-ROM for multi-physics application to a ho-

mogeneous reactor model based on a Lid-Driven-Cavity configuration. The reduced-order

simulations demonstrated a high degree of accuracy in reproducing the complete velocity,

temperature, neutron flux, and precursor concentration fields that are coupled through tem-

perature feedback mechanisms. This accuracy was reflected in the relative L2 norms of the

discrepancies between the full-order and reduced-order simulations, all of which remain

below 1% for all the fields under consideration. The methodology introduced in this study

presented an efficient and precise approach for addressing multi-physics challenges within

the field of nuclear engineering while managing computational resources effectively.

German et al. [36] used POD aided Reduced-Basis technique to develop a multi-

physics reduced model for the analysis of nuclear system and applied it to parametric simu-

lations of Molten Salt Reactors(MSR). This model analyzed fluid dynamics, heat exchange

and neutronics phenomena and proved to have a capability of speeding the simulations on

the order of 1-105.

Lucia et al. [37] reviewed the ROM techniques and discussed their applicability to

various problems in computational physics. Large increases in computational efficiency

were obtained through ROM use thus justifying the initial computational investment in

constructing these model. The emphasis was given to methods based on Volterra series

representations, harmonic balance and POD.

Zimmermann and colleagues [38] employed Computational Fluid Dynamics (CFD)

on an airfoil to generate Proper Orthogonal Decomposition (POD) basis functions. These

basis functions were then combined with experimental lift and drag measurements to re-

construct the flow under various conditions.
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Ruscher et al. [39] harnessed the symmetries present in the velocity field of an ax-

isymmetric jet to address gaps caused by camera obstructions. They successfully utilized

the integrated POD approach to restore missing data in the instantaneous flow field.

1.3 Motivations and Objectives

Accurate approximation of the POD coefficients is the fundamental for the effec-

tiveness of POD-based applications across various domains, ranging from fluid dynamics

and structural mechanics to image processing and machine learning. A lot of ideas on the

determination of such coefficients can be found in scholarly works such as Galerkin pro-

jection [40], polynomial approximation [41], [42], [43], radial basis approximation [44],

krigging [45],least squares method [46], [47], missing point estimation [48]collection

methods, interpolation method [49], reduced basis method [50] and recently machine learn-

ing [51], [52], [53], [54], [2]. Therefore more exploration of the literature concerning the

selection of such concepts is required. As the research focuses on POD-ANN ROM, this

concise survey will primarily emphasize ANN-based approaches, their outcomes across

diverse applications, and their comparative analysis with other established techniques. Ul-

timately, the findings and the objectives of this research will be summarized.

Swischuk et al. [2] applied POD with four different machine learning techniques—neural

networks, multivariate polynomial regression, k-nearest-neighbors and decision trees—for

two engineering examples. The first example considered prediction of the pressure field

around an airfoil, while the second considered prediction of the strain field over a damaged

composite panel. Among four methods, the K-nearest-neighbors outperformed other 3

methods. The author pointed out that the poor performance of the neural network approach

is due to insufficient data being used in neural network. The case studies also demonstrate

the importance of embedding physical constraints within learned models and highlight the
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important point that the amount of model training data available in an engineering setting

is often much less than it is in other machine learning applications, making it essential to

incorporate knowledge from physical models.

Hesthaven et al. [55] proposed a non-intrusive reduced basis (RB) method for pa-

rameterized steady state partial differential equations based on POD and Artificial Neural

Network (ANN). This approach was successfully applied to nonlinear Poisson equation

and steady, viscous, incompressible Navier–Stokes equations. This study relied on Latin

Hypercube Sampling(LHS) and Levenberg-Marquardt algorithm to search for the optimal

number of neurons and the minimum number of training samples. This strategy provided

the same predictive accuracy provided by POD-Galerkin method.

San et al. [1] compared POD-ANN approach with POD-GP (Galerkin Projection) in

which it was shown that POD-ANN approach is superior to the POD-GP approach for the

Burgers equation. Two different neural network architectures, namely sequential network

(SN) and residual network(RN), were successfully used to train the trajectory of modal

coefficients evolving through time. In the SN approach, the network was trained with

modal coefficients at the current time step, current time and Reynold’s number as input

and the modal coefficients at the next step as output. In RN approach, the network was

trained with the same inputs as in SN, this time the outputs are the difference between the

modal coefficient at next time step and the modal coefficient at current time, also known

as residual. It was found that POD-ANN-RN gave more accurate and stable results both

inside and outside the database range than the standard intrusive Galerkin Projection model.

An importation result found was that the PO ANN is a viable tool for extrapolation and

interpolation beyond the data sets used to train its learning

Falkiewicz et al [56] studied the application of POD on thermal solution in hyper-

sonic aeroelastic simulations. It was found that the error incurred in the reduced-order

solution does not always decrease with the number of snapshots. Therefore, it is desired to
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study the effect of number of snapshots used in the POD model reduction. Also, the error

was found to increase outside of the time range considered by the snapshots.

Rogers et al. [57] applied POD integrated with a trained Radial Basis Function (RBF)

network in inverse estimation of the parameters in heat transfer, elasticity and fracture me-

chanics. This method was successfully applied to problems with relatively large measure-

ment errors or noise.

Everson et al [47] applied POD to restore the full image when partial data of the

image is given. It was shown that the recovery is possible within reasonable accuracy by

following least squares procedure with POD.

Huayamave et al. [58] tested and validated trained POD–RBF interpolation network

by performing the fast-algebraic interpolation to obtain the pressure distribution on the

photovoltaic system surface and they were compared to actual grid-converged fully turbu-

lent 3D CFD solutions at the specified values of the design variables. The POD-RBF was

validated and proved that large-scale CFD problems can be parametrized and simplified by

using this framework. They were able to obtain pressure distribution within one percentage

of the FOM solution for a case of five parameters.

Lee et al. [59] constructed ROM by POD-Kriging and POD-Radial Basis Function

Network(RBFN) for temperature, O2 and CO mass fraction fields in a 500 MWe tangen-

tially fired pulverized coal boiler. They showed overall good agreement within an accept-

able error range, while POD-Kriging showed slightly better accuracy than POD-RBFN.

Fic et al. [14] combined POD with FEM to solve transient nonlinear heat conduction

problem. In this approach, the matrices in FEM solution were transformed by the matrix

of POD basis vectors thus reducing the size of the systems of equations to be solved. This

method was applied to both linear and non-linear transient heat conduction problem in a

gas cooled turbine blade. The temperature field obtained was within a percentage in linear

case and within 7% in non-linear case.
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Ostrowski et al. [60] solved inverse steady state heat conduction problems by least

square fit of the trained POD-RBF network to estimate heat conductivity, and film coeffi-

cient distribution for a given temperature field in an internally cooled 2D gas turbine blade.

Some noise in the temperature field were introduced to illustrate the excellent filtration

property of the POD basis which suppresses the high frequency noise. Even in the pres-

ence of errors much greater than the physically realistic values, the method was shown to

be capable of producing stable results.

Here are the insights and main takeaways from this brief review. Galerkin Projection

is a fundamental method for approximating POD coefficients where the governing equa-

tions are projected onto the POD modes to derive the ordinary differential equations for the

coefficients. However, such approach requires prior knowledge of the underlying physics

and also it could be challenging to use it for highly non-linear problems. Polynomial ap-

proximation, radial basis approximation, least squares method, missing point estimation,

reduced basis method, krigging and interpolation methods, even though easier in mathemat-

ics, come with their own challenges. Such approximation techniques are inherently limited

in their ability to approximate complex and nonlinear functions. The choice of right basis

functions, loss of accuracy as the dimensions increase, difficulty with non-linear systems

and generalization issues are some of the major limitations to choosing these approaches.

On the other hand, the black box approach of machine learning, such as Artificial Neural

Network(ANN), can easily capture non-linear and complex systems. Likewise, machine

learning gives the flexibility of being completely data driven technique and generalizes

well with unseen data or parameter sets [61]. It can also handle high dimensional and com-

plex systems more effectively. Because of such valuable properties of machine learning,

this research will use ANNs to construct POD-ANN ROMs. Additionally, based on the

literature review and to the best of the author’s knowledge, the utilization of such ROM has

not been identified in the context of inverse parameter approximation involving domain de-
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formation. Furthermore, no instances of applying this ROM to non-invasive determination

of intricate flow and temperature characteristics were found. No examples of applying this

ROM in the context of inverse multiphysics applications were identified in the literature.

No research publications related to the quantification of potential reductions in the total

number of FOM calls achievable through the implementation of this approach has been

identified. Hence, the objective of this research is to expand the field of POD-ANN ROM

by addressing the aforementioned gaps in the literature, using various practical engineering

examples. This research attempts to study the following aspects of this ROM:

• What is the behavior of the coefficients of the basis vectors as they vary with param-

eters?

• How can we determine the optimal number of POD basis vectors required for this

model?

• What sample size is optimal for POD and training the Artificial Neural Network?

• What impact does the sampling technique have, and does it warrant further investi-

gation?

• How does the accuracy of this model compare to the FOM solution when applied to

the forward problem?

• To what extent can this model accurately predict parameters in the context of inverse

parameter estimation with a large number of parameters?

• How does this model’s performance compare to other models that exclusively utilize

ANNs?

• What is the computational time saved when applying this model to inverse problems

in comparison to the Full-Order Model formulation?
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1.4 Thesis Overview

The current chapter investigates the background, literature review, motivations and

objectives, mathematical formulations and operational principles of POD-ANN ROM. Chap-

ter 2 applies the ROM from chapter 1 to inversely determine the internal geometry of a

hollow pipe from temperature measurements from its outer wall for 3-D linear heat con-

duction. In Chapter 2, the ROM’s utilization for the non-invasive determination of intricate

internal flow and temperature characteristics in a conjugate heat and mass transfer multi-

physics application within a nuclear power plant is discussed. Chapter 3 is dedicated to

recover the shape of a 2D airfoil for a given target pressure on its surface. In these chap-

ters, different aspects of this ROM, such as choice of number of modes, number of POD

samples, sampling techniques, sensitivity to simulated noise, comparison of this technique

to other model reduction techniques, and its computational gain will be presented. Discus-

sions on future work is presented in chapter 5 followed by conclding remarks in chapter

6.

1.5 Methodology/ Reduced Order model Formulation

POD starts with the collection of FOM solution field with m nodes and stored in a

column vector, known as snapshot. Let, matrix S is the collection of n snapshots where

each column is a snapshot, then the covariance of S of dimension m by n is,

[Y ] = [S]T [S] (1.1)

The covariance matrix [Y ] can be decomposed as an eigenvalue problem as follows,

[Y ] = [v][λ ][v]−1 (1.2)
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Where (λ ) is eigenvector and v is the eigenvalue matrix of the covariance matrix [Y ]. If

the eigenvectors are sorted in a descending order of their corresponding eigenvalues in

(λ ), then the original snapshot matrix when multiplied by the eigenvector matrix gives the

non-normalized POD basis vectors, i.e.

[ū] = [S][λ ] (1.3)

Finally, all the column vectors of [ū] are normalized by dividing by their corresponding L2

norm and updated as [Ū ], which are referred to as POD modes (or basis vectors), i.e.

[Ū ]∗i =
[ū]∗i
||[ū]∗i||

(1.4)

Now, any FOM solution, Z(x,p), a function of both space and parameters, can be projected

onto these basis vectors as given by equation 1.5 [62].

Z(x, p) =
m

∑
k=1

Dk(P)Ūk(x) (1.5)

Where ~D is the column vector that stores the coefficients of the base vectors. Ū is also

known as modal matrix and ~D is its modal coefficient vector. Note that ~D is exclusively a

function of parameters only, including time, whereas ū is solely a function of space. In other

words, ~D encapsulates information related to parameters, whereas the spatial characteristics

of the solution are encoded within Ū . This separation enables the independent examination

of the solution concerning parameters and spatial aspects.

The contribution of all the modes are not equally significant, and it diminishes as the

eigenvalue of the corresponding eigenvector diminishes. Therefore, it is possible to truncate

the number of modes used in POD without losing any significant accuracy. Such trunca-

tion is dependent upon the eigenvalue of the corresponding base vector and user specified
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criteria for the accuracy, as will be obvious in the later section. The physical interpretation

of eigenvalue is the amount of energy(or information) of the system contained by the cor-

responding mode. Therefore, in most literature, the truncation criteria is given by equation

1.6 where the percentage of energy captured is dictated by the portion of eigenvalues used.

d = argmin

{
I(d) =

∑
d
k=1 λi

∑
n
k=1 λi

: I(d)≥ p
100

}
(1.6)

Where d is the number of required modes with highest eigenvalues for a desired percentage

accuracy of p and n is the total number of modes. As noted earlier, Galerkin Projection has

been one of the popular techniques used in determining ~D where the original Partial Dif-

ferential Equation (PDE) is projected onto the base vectors and the residual is minimized

[40]. However, the technique requires prior knowledge of the governing PDE and if the

problem is non-linear or involves parameters that affect shape or material properties, then

such method is not computationally efficient. The challenge can be circumvented by realiz-

ing this unique characteristics, namely, the orthogonality of Ū . Therefore, for any snapshot

included in the snapshot matrix, the modal coefficient can determined easily as given by

equation 1.7.

~D = ŪT Z (1.7)

Equation 1.7 is applicable only for parameters whose FOM solution(Z) is known. Often-

times, it is desirable to find the solution of the parameters that are not utilized in generating

snapshots for POD. Then the challenge is to determine ~D corresponding to parameters

whose solution field is unknown. Therefore, a new technique is utilized where the modal

coefficients of the snapshots included in the snapshot matrix are first calculated and then

they are used to train an Artificial Neural Network (ANN) with parameters as input and ~D

as output. This ANN, when successfully trained, is able to predict the modal coefficients
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Figure 1.1. Step chart of the proposed POD-ANN framework.

for any other snapshot (or parameter set) not included in the snapshot matrix. Essentially, a

relationship between the parameters of the PDE is established with the modal coefficients

of the corresponding solution field. Such model is non-intrusive, unlike the Galerkin ap-

proach, since no prior information about the governing PDE is required once the snapshots

are extracted. Access to the solver source code is not required and implementation simply

requires access to the FOM mesh and field data. The overall flowchart of the proposed

framework is shown in figure 1.1.
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CHAPTER 2

Inverse Unknown Boundary Shapes Iden-
tification to a Deforming Mesh 3D-Heat
Conduction in a Pipe: A Linear Problem.

The POD-ANN reduced model is applied to a 3-D steady state heat conduction problem

whose geometry and mesh deform as the parameters change. Specifically, the ROM is ap-

plied to a forward problem where we want to approximate the temperature field when the

parameters governing the internal surface of a pipe are known and to an inverse approxi-

mation where we want to recover the parameters governing the internal surface of the pipe

when its temperature on the outer surface is known. In the next section, we will discuss

domain parameterization and the forward problem of 3D heat transfer. We’ll also cover

a solver mesh convergence study and analyze modal trajectories. The selection of modes,

sample size, and sampling techniques for the forward problem will be addressed. Addition-

ally, we’ll apply the methodology to inverse parameter estimation, aiming to reconstruct the

internal pipe surface. Towards the end of this section, we’ll conduct a comparative analysis

against other ROMs and discuss the computational efficiency of our approach.
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2.1 Forward Problem

In our study of POD-ANN, we picked a forward problem of solving a heat transfer

equation in a hollow sphere to determine its temperature field for a given set of parameters

that govern its internal surface. The outer surface of the pipe is circular with radius (R)

1, which is maintained at a constant temperature of 1000K. The pipe has length (L) 10

times the outer radius. The inner surface, which is maintained at a constant temperature

of 200K, has geometry that is a function of parameters. The front and back of the pipe

are insulated. The pipe has isotropic thermal property with a unity coefficient of thermal

conduction(K). The schematic of the problem is shown in Figure 2.1a. The steady state

temperature field(T) on this pipe can be obtained by solving equation 2.1. Such choice

of heat transfer problem is made with the objective of addressing engineering challenges

where it is not always feasible to take a direct snapshot of the internal geometry and have

to rely on remote heat transfer data.

∇
2T = 0 (2.1)

2.2 Internal Geometry Creation

To get the internal surface of the pipe, we divided it into 5 planes along Z axis, with

each plane having 4 vertices that are fixed in θ and Z direction but can be varied between

0.4 and 0.6 units from the center of the pipe in radial direction. This gives us a total of 20

parameters that control the internal surface of the pipe (in the sections to follow, when we

say parameters, we refer to this set of radii). The schematic of a cross section of the pipe

is shown in Figure 2.1b. Even though the parameters are varied radially, such variations

are converted to cartesian co-ordinate system and thus rest of the calculations are done in

Cartesian co-ordinate system. Then, closed cubic spline curves are formed that connect the
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(a) (b)

Figure 2.1. (a) Schematic of the problem, (b) Cross section of the pipe used in the study

4 vertices in each plane. Also, open cubic spline curves are formed along the axial direction

to connect all 5 planes. The geometry is initialized by picking a random set of parameters-

An example is shown in Table 2.1. Each column in Table 2.1 represents the radii in each

plane. The internal surface of the pipe corresponding to this set of parameters is shown

in Figure 2.2. With these parameters, we built a reference solution for a forward problem

using full order finite element model (FOM) using hexahedral elements with linear basis

functions.
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Table 2.1. A random set of parameters that govern the internal surface of the pipe.

Plane Number

Radius 1 2 3 4 5

1 0.52948 0.47852 0.55670 0.55237 0.50327
2 0.52828 0.47314 0.47973 0.49369 0.44941
3 0.51404 0.48399 0.42630 0.56448 0.47028
4 0.49101 0.55936 0.53230 0.52660 0.50214

Figure 2.2. Sample internal surface of the pipe for the parameters shown in Table 2.1.
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2.3 Mesh Convergence Study

The forward problem is solved for a given set of parameters using inhouse FEM code

(written in MATLAB). When creating the mesh it is crucial to keep the same number of

nodes in every snapshot. Given that the geometry undergoes transformations with vary-

ing parameters, it becomes evident that the mesh must adjust to accommodate this need.

To achieve this, as the geometry evolves, the spacing between the nodes are stretched or

contracted in radial direction all while preserving both the total number of nodes and their

sequential ordering. To put simply, the number of nodes between the given radius and the

outer surface remains constant, but the distance between the nodes can change according

to the changing nature of the radius. Consequently, this issue pertains to a deforming mesh

problem. We started with mesh convergence study for the forward solution of the problem

with the parameters from Table 2.1. The results are shown in Table 2.2. In Table 2.2, Tmean

is the average of entire temperature field and Tmid is the temperature at plane 1 (Z = 0) of

the pipe halfway between the inner and outer radius and at an axis that is zero degrees to X-

axis for different number of nodes. Mesh 4 (4480 nodes) was chosen for the problem since

the error values are within a quarter of a percentage and allows for faster computations

while maintaining accuracy.

The temperature field at each node in the entire geometry using mesh number 4 is

shown in figure 2.3a. The temperature contour corresponding to the temperature in the first

plane (Z = 0) is shown in Figure 2.3b.

In the study of inverse problem in the following sections, we will use the temperature

field on the outer surface of the pipe in the optimizer’s objective function to recover the

parameters. Thus, it is important to have a unique temperature field on the outer surface

of the pipe for a given set of parameters when creating snapshots for POD. Therefore, we
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Table 2.2. Results for FOM mesh convergence study with the parameters from Table 2.1.

Mesh # of Nodes
Entire Geometry At a node
Tmean % Error Tmid % Error

1 1120 634.47 0.49 659.71 0.32
2 2240 636.89 0.11 660.04 0.37
3 3360 637.39 0.03 659.13 0.23
4 4480 637.39 0.03 659.13 0.23
5 5600 637.46 0.02 658.77 0.18
6 6720 637.50 0.01 658.50 0.16
7 7840 637.53 0.01 658.29 0.14
8 20160 637.58 0 657.64 0.00
9 21288 637.58 0 657.62 0.00
10 22400 637.58 0 657.61 0.00

will give heat flux boundary condition ,as opposed to maintaining a constant temperature,

on the outer surface of the pipe when creating POD snapshots. This heat flux vector will

come from the nodal heat fluxes of the forward problem used in mesh convergence study

in the preceding section.
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Figure 2.3. Mesh study results for mesh # 4 (from Table 2.2) for parameters in
Table 2.1.(a)Temperature distribution in the pipe at each node in the entire domain.
(b)Temperature contour at Z = 0 plane of the pipe.

2.4 Trajectories of Modal Coefficients

We created POD basis vectors using 80 snapshots whose parameter sets are randomly

chosen between 0.4 and 0.6. Then, we allowed one of the 20 parameters to vary uniformly

between 0.4 and 0.6 while keeping the remaining 19 parameters the same as above and

calculated their FOM solution as well. Since the objective is to study how the trajectories of

modal coefficient change with respect to a single parameter variation, we have few options

to calculate the modal coefficient for this new set of FOM solution. First, we considered

finding the coefficients by minimizing the L2 norm(distance) between the FOM solution

and ROM solution. Second, we included all additional FOM solution as extra snapshots

and used equation 1.7. The other technique utilized Galerkin method where the residual of
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Figure 2.4. Trajectories of the modal coefficients when the third radius in second plane of
the pipe (from parameter Table 2.1.) is varied while keeping all other radii the same for 80
snapshots POD. (a) First (b) Second (c) First five and (d) all modal coefficients.

the PDE is minimized. Dennis at al. [40] combined POD, FEM and Galerkin projection for

heat transfer analysis, whose final equation is given by equation 2.2.

¯[U ]
T
[K] ¯[U ]~D = ¯[U ]~Q (2.2a)
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i.e., KROM~D = ~QROM (2.2b)

where, KROM = ¯[U ]
T
[K] ¯[U ] (2.2c)

~QROM = ¯[U ]~Q (2.2d)

where, [K] is the global stiffness matrix, and ~Q is the load vector in FEM equation 2.3,

[K]T = ~Q (2.3)

Remarkably, regardless of the methods, the obtained modal coefficients were found

to be exactly the same. Such observation confirms an existence of a unique combination

of modal coefficients for a given set of POD basis vectors. Figures 2.4 show the variation

of elements of ~D as the third parameter from second plane in Table 2.1 changes. As ob-

served, there is a smooth transition in the coefficients as this parameter varies. Because

we observe a smooth variation in ~D as one of the parameters changes, it is reasonable to

expect that ANNs can effectively capture the combined effects resulting from alterations in

every parameter due to its interpolation capability, as also suggested by Ferrari et al. [63].

Therefore, we trained feed-forward ANNs with parameters as input and ~D as output using

Levenberg–Marquardt algorithm [64], a combination of Gradient Descent and the Gauss-

Newton method, particularly designed for solving nonlinear least squares problems, and

mainly useful when there are many parameters, as is the case here. Separate networks

are trained for each element of ~D. In training the networks, the number of hidden layers

and units are automated in MATLAB code such that the root mean squared error(rmse) is

minimum for 25% data selected for the validation.
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2.5 Number of Modes

In POD method, it is possible to truncate the number of POD basis without losing

the accuracy of approximation. This is because some of the POD modes might be linearly

dependent upon others and truncation of such modes is desirable for ROM computational

gain. Therefore, we studied the effect of number of POD vectors in POD-ANN accuracy

with 60 snapshots and 200 snapshots. The temperature field for a random set of parameters

(not included in the snapshots) was approximated using ROM. The maximum percentage
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Figure 2.5. RMSNE and maximum Percentage error in temperature recovered by POD-
ANN ROM as a function of number of POD modes for a parameter set not included in the
snapshots. ROM (a) has 60 snapshots and ROM (b) has 200 snapshots.

error and root mean squared normalized error (RMSNE, equation 2.4) between the ROM

approximated temperature and FOM temperature field is calculated as we varied the num-

ber of modes used in ROM. We made two such calculations, once using 60 snapshots ROM

and the other using 200 snapshots ROM. These errors as a function of number of modes are

shown in Figures 2.5 (in log scale). Clearly, the errors do not settle to a steady value as the
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number of modes increases for both 60 snapshots case and 200 snapshots case. Therefore,

no POD modes are truncated in the further development and study of POD-ANN ROM

whenever the number of snapshots used in ROM is less than 200 throughout this chapter

unless otherwise specified.

RMSNE =

√
1
N

N

∑
i=1

(
TFOM,i−TROM,i

TFOM,i

)2

(2.4)

2.6 Number of Samples

Another important consideration to be made in this approach is the choice of number

of POD snapshots and ANN training sample size. We tested POD-ANN ROM built with

different sample sizes to approximate the temperature field for 20 randomly selected sets of

parameters that are not included in the original snapshots. Consequently, we calculated the

average of the RMSNE and the average of maximum percentage error (averaged across 20

solution sets) in ROM-recovered temperature field as a function of number of samples used

in ROM and plotted them in Figure 2.6. These metrics change only very marginally after

about 60 samples. Also, after about 85 samples, the errors stabilize at cetrain values. This

is because only about 85 samples are required to effectively train the networks, as such,

adding more to the training would not significantly enhance their performances. Therefore,

in the further study of POD-ANN, we will employ 85 samples, unless specific conditions

dictate otherwise.
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Figure 2.6. maximum percent error and RMSNE (Averaged over 20 sets of error calcula-
tions) between FOM solution and POD-ANN ROM solution Vs. number of snapshots used
in the ROM.

2.7 Sampling Technique

Performance of POD approach and neural networks are highly dependent upon sam-

pling of their inputs and outputs. To explore this aspect, we created ROM with 85 snapshots

whose parameters are obtained through three distinct sampling techniques: Random sam-

pling, Latin Hypercube Sampling(LHS), and a custom sampling method we devised based

on experimental observations, denoted as ’Method 3’. In Method 3, we divided each pa-

rameter space into a set of N uniformly spaced parameters, where N is the number of snap-

shots desired in ROM. Then, these sets of evenly spaced parameters were shuffled to give

N sample parameters. Finally, this process is repeated for every parameter individually.

ROM created with each sampling technique is used to approximate the temperature

field for the above specified 20 sets of randomly generated parameters. Figure 2.7 through

Figure 2.9 show the maximum percentage error and RMSNE between the actual tem-
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perature distribution and ROM recovered temperature for different sampling techniques.

Clearly, Method 3 sampling outperformed LHS and random sampling in terms of error

results. While the accuracy of Method 3 sampling over random sampling may not be sig-

nificantly higher, the real advantage is its low likelihood of encountering an exceptionally

poor set of parameters because each parameter in Method 3 sampling has uniform data

from every parametric space that are later randomized. However, Method 3 sampling is

necessarily not the best sampling technique, and therefore further detailed studies are war-

ranted. In the sections to follow, we will continue to use Method 3 sampling technique in

our analysis.
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Figure 2.7. (a) RMSNE and (b) Maximum percentage error in temperature recovered using
POD-ANN with random sampling for 20 random sets of parameters.
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Figure 2.8. (a) RMSNE and (b) Maximum percentage error in temperature recovered using
POD-ANN with Latin Hypercube sampling for 20 random sets of parameters.
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Figure 2.9. (a) RMSNE and (b) Maximum percentage error in temperature recovered using
POD-ANN with ’Method 3’ sampling for 20 random sets of parameters.
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2.8 Fully Formulated ROM Applied to Forward Problem

Combining all results from previous sections, the ROM formulation utilizes the

Method 3 sampling technique, with 85 samples, and no truncation in POD modes (uses

all 85 modes). With this information, we built POD-ANN ROM (which will also be used

in inverse approximation of parameters in later sections) and approximated the temperature

field. Figures 2.10 show the maximum percentage error and RMSNE in temperature field

approximated by this ROM for 20 random sets of parameters. The maximum percent error

in the approximated temperature is about 3.25%, with the average being around 1.7%. The

actual temperature field and ROM recovered temperature field corresponding to parameters

from table 2.1. are shown in Figure 2.11.
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Figure 2.10. Errors in temperature recovered by fully formulated ROM for 20 random sets
of parameters.
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(a) (b)

Figure 2.11. Comparison of temperature distribution in the pipe obtained using (a)full order
FEM and (b) ROM.

2.9 Inverse Approximation

To further test the feasibility of the POD-ANN-ROM formulation, it is applied to an

inverse problem aiming to approximate the parameters in Table 2.1 when the temperature

field at each node on the outer surface of the cylinder is known.

For optimization, We used ‘fmincon’ with ‘interior-point’ algorithm option [65] in

MATLAB. ‘Interior-point’ algorithm works best for problems with many design variables,

which aligns with the characteristics of our study. This method reaches the best solution by

traversing the interior of the feasible region. The error objective function for the optimizer

is the RMSND between the target temperature distribution and inverse solution for a given

set of parameters, as given by equation 2.5. We solely consider temperature field from the
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outer surface of the pipe in the error objective function and so N in equation 2.5 represents

the nodes on the outer surface of the pipe rather than encompassing the entire geometry.

This mirrors the real case scenario where it is desired to know the internal surface of the

pipe when only the temperature of its outer surface (1000K) is known. Additionally, this

demonstrates the effectiveness of the POD-ANN formulation to solve inverse problems

even when only partial data of the field variable is known.

For optimization, the algorithm was set to stop when it attempted to take a step size

smaller than 5× 10−4. We started the optimization with initial guess shown in Table 2.3

(its geometry is shown in Figure 2.12), while the parameters to be recovered are from Table

2.1. Table 2.4 and Figure 2.13 show the percentage errors in ROM recovered parameters of

Table 2.1, the maximum error being 0.69% with the mean error of about 0.2%. The internal

surface of the pipe corresponding to the actual parameters and POD-ANN approximated

parameters are shown in Figure 2.14.

Errorob j =

√
1
N

N

∑
i=1

(
Tactual,i−TROM,i

Tactual,i

)2

(2.5)

Table 2.3. Initially guessed set of parameters.

Plane Number

R 1 2 3 4 5

1 0.404 0.404 0.404 0.404 0.404
2 0.404 0.404 0.404 0.404 0.404
3 0.404 0.404 0.404 0.404 0.404
4 0.404 0.404 0.404 0.404 0.404 Figure 2.12. Internal surface of the pipe cor-

responding to the parameters in Table 2.3.
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Table 2.4. Percentage errors in POD-ANN re-
covered parameters of Table 2.1 .

Plane Number

Radius 1 2 3 4 5

1 0.46 0.09 0.69 0.08 0.09
2 0.04 0.03 0.17 0.26 0.20
3 0.33 0.28 0.60 0.33 0.66
4 0.17 0.12 0.10 0.23 0.06
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Figure 2.13. Box and whisker plot showing
the errors in POD-ANN recovered parame-
ters of Table 2.1.

(a) (b)

Figure 2.14. Comparison of POD-ANN recovered geometry with the actual geometry.
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2.10 Comparison of POD-ANN with Other ANN Based Approaches

There are many other approaches that leverage ANN in solving similar problems.

One such approach is to train an ANN with parameters as input and the field variable of

interest as output or vice-versa and then subsequently using the trained network to approx-

imate the solution field or parameters. Another approach in inverse problem is to train an

ANN with parameters as input and the distance between the actual field solution and the

field solution at different parameter set as output. Then, it is desired to find the minimum

distance in order to recover the actual parameters. In the subsequent sub-sections, we will

compare the accuracy and efficiency of POD-ANN with such approaches.

2.10.1 POD-ANN Vs ANN Trained with Temperature Field and Parameters.

In this direct approach, we trained an ANN with the temperature on the outer sur-

face of the pipe as input and the parameters that govern its internal geometry as output.

We trained an ANN for each parameter separately using Levenberg Marquardt algorithm

whose number of hidden layers and units were dictated by the same rmse criteria explained

in earlier section. To maintain consistency, we selected the same sample of 85 snapshots

used in POD-ANN. Then, the parameters in Table 2.1 were recovered by supplying its cor-

responding nodal temperature data on the outer surface of the pipe to the network. The

maximum percentage error of the recovered parameters is 4.75% and mean error is about

2% with direct ANN training approach (shown in Table 2.5 and Figure 2.15). In compar-

ison, POD-ANN method yielded lower errors (0.66% and 0.2% respectively). The inputs

for ANN for this direct approach come from the temperature field, which could be a very

large number of inputs for the neural networks to handle and thus it makes this approach

impractical to use sometimes.
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Table 2.5. Recovered Parameters of Ta-
ble 2.1 using ANN trained with temper-
ature and parameters.

Plane Number

R 1 2 3 4 5

1 1.07 0.26 0.15 4.75 2.38
2 3.01 0.84 0.22 4.43 0.01
3 0.59 1.91 3.52 3.24 0.93
4 2.33 4.26 2.41 1.49 0.01
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Figure 2.15. Box and whisker plot showing
the errors in recovered parameters of Table
2.1 using ANN trained with temperature and
parameters.

2.10.2 POD-ANN ROM Vs ANN Trained with RMSNE and Paramrters

Another more commonly used approach in approximating the parameters is to train a

neural network with parameters as input and root mean squared normalized distance (RM-

SND) between the actual temperature and the temperature corresponding to those param-

eters as output. Then, in inverse parameter estimation, we seek to find a set of parameters

such that the network would give a minimum RMSND value. When experimented with

various training methods, we found that the approach used in POD-ANN worked best for

this particular case as well. Then, using ‘fmincon’ and interior point algorithm in MAT-

LAB, we tried to recover the parameters in Table 2.1. To make sure it is not stuck at some

local minimum, we started the optimizer using 40 different initial guesses. The percentage

errors in the recovered parameters are shown in Table 2.6 and Figure 2.16. Evidently, the

recovered parameters significantly vary from the actual parameters. The errors are confined

to about 25% due the constraint established in the optimizer that each parameter should fall

between 0.4 and 0.6, otherwise these errors would be significantly higher.
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Table 2.6. Recovered Parameters of Table 2.1
using ANN trained with parameters as input and
RMSNE as output.

Plane Number

R 1 2 3 4 5

1 10.22 10.67 23.78 24.40 16.60
2 10.15 10.65 19.65 9.60 6.76
3 9.73 14.78 0.80 13.89 11.14
4 19.05 1.35 7.67 11.34 7.49
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Figure 2.16. Box and whisker plot showing
the errors in recovered parameters of Table
2.1 using ANN trained with parameters and
their RMSNE.

The suboptimal results in this approach are not due to issues with ANN training or

optimization algorithm, but due to an insufficient number of samples used in training the

network. To demonstrate this, we could increase the number of POD snapshots and size of

ANN training sample, however, given that there are 20 parameters, all the possible combi-

nations among them would be exceedingly large and we would need an unrealistic number

of samples in the study. Alternatively, we tried this approach with fewer parameters. We

only considered 3 parameters each from first two planes in Table 2.1. This means that the

internal surface of the pipe is constructed using 3 vertices at each end of the pipe. There

are 720 possible combinations among the 6 parameters, and therefore we attempted to esti-

mate these 6 parameters again with 85 samples and 720 samples by minimizing RMSND.

The percentage errors are shown in Table 2.7, Table 2.8, Figure 2.17, and Figure 2.18 re-

spectively. The maximum percentage error in the parameter is 5.58% with 85 samples and

3.49% with 720 samples.
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Table 2.7. Percentage errors in
recovered parameters of Table
2.1 using ANN trained with pa-
rameters and their RMSNE:6
parameters, 85 samples

Plane Number

Radius 1 2

1 2.91 0.40
2 3.00 1.17
3 2.91 5.58
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Figure 2.17. Box and whisker plot showing
percentage error in recovered parameters us-
ing ANN trained with temperature and RM-
SNE with 6 parameters and 85 samples.

Table 2.8. Percentage errors
in recovered Parameters us-
ing ANN trained with temper-
ature and RMSNE: 6 parame-
ters, 720 samples.

Plane Number

Radius 1 2

1 0.97 3.49
2 1.63 0.38
3 3.18 0.03
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Figure 2.18. Box and whisker plot showing
percentage error in recovered parameters us-
ing ANN trained with temperature and RM-
SNE with 6 parameters and 720 samples.

Finally, to make comparisons, we repeated the parameter estimations (for 6 param-

eters case) using POD-ANN with 85 samples and 720 samples, the percentage errors in

the parameters are shown in table 2.9 and table 2.10 respectively. The POD-ANN recov-
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Table 2.9. Percentage errors
in recovered Parameters using
POD-ANN ROM with 6 pa-
rameters and 85 samples.

Plane Number

Radius 1 2

1 0.20 0.21
2 0.18 0.23
3 0.29 0.24
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Figure 2.19. Box and whisker plot show-
ing percentage errors in recovered Parame-
ters using POD-ANN ROM with 6 parame-
ters and 85 samples.

ered parameters are within a quarter of a percentage of the actual parameters for both 85

samples and 720 samples as opposed to 5.58% and 3.49% with RMSND minimization

approach. These results undeniably highlight a superiority of POD-ANN approach over

the commonly used approach that directly trains parameters vs errors for inverse approx-

imation, especially when dealing with high dimensional space. It is worth noting that the

POD-ANN approach did not gain any performances by increasing the number of samples

from 85 to 720. As stated in the forward solution in earlier section, this is because most of

the significant characteristics of the system are already captured by 85 modes. Addition-

ally, this quantity of sample is also sufficient for ANN training, yielding no benefits in the

context.
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Table 2.10. Percentage errors
in recovered Parameters using
POD-ANN approach:6 param-
eters, 720 samples.

Plane Number

Radius 1 2

1 0.21 0.24
2 0.19 0.22
3 0.20 0.24
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Figure 2.20. Box and whisker plot show-
ing percentage errors in recovered parame-
ters using POD-ANN approach with 6 pa-
rameters and 720 samples.

2.11 Inverse Approximation in the Presence of Noise

In order to test the feasibility of this ROM formulation in the presence of noise, we

added two different levels of white Gaussian noise into the target solution. The Gaussian

noises had maximum values of±2% and±10% of the maximum temperature temperature,

corresponding to ±20oK and ±100oK, respectively. The recovered parameters with such

noisy data are shown in Tables 2.11 and 2.12. The percentage errors in the calculation

visualized through box and whisker plots in Figures 2.21 and 2.22. The results clearly

show the robustness of this framework as an excellent filtration tool even with large levels

of noises.
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Table 2.11. Recovered Parameters of Table 2.1
using ROM and ±2% Gaussian noise.

Plane Number

R 1 2 3 4 5

1 0.527 0.478 0.553 0.555 0.498
2 0.527 0.475 0.479 0.492 0.449
3 0.517 0.483 0.427 0.565 0.476
4 0.491 0.561 0.531 0.528 0.491
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Figure 2.21. Box and whisker plot showing
the errors in ROM recovered parameters of
Table 2.1 with ±2% Gaussian noise noise.

Table 2.12. Recovered Parameters of Table 2.1
using ROM and ±10% Gaussian noise.

Plane Number

R 1 2 3 4 5

1 0.530 0.495 0.568 0.548 0.546
2 0.560 0.467 0.484 0.401 0.442
3 0.478 0.489 0.438 0.582 0.439
4 0.495 0.562 0.521 0.519 0.499
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Figure 2.22. Box and whisker plot showing
the errors in ROM recovered parameters of
Table 2.1 with ±10% Gaussian noise noise.

2.12 Trade-off between Number of Samples in ROM and FOM Calls in

Inverse Parameter Estimation.

Through Figure 2.6, we established that the change in error values using POD-ANN

were not appreciable after 60 samples and plateaued out after about 85 samples when ap-
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plied to the forward problem. In inverse estimation for 6 parameters case earlier, it was

shown that there is no added benefit to the framework’s performance by increasing the

sample size from 85 to 720. Therefore, it is justified to seek an optimal sample size for

inverse problem as well. On the other hand, after selecting the right sample size, the ROM

recovered parameters are precise enough for most of the applications, however, if higher

precision in the parameters in inverse solution is desired, then further use of optimizer with

FOM is needed. In such case, we want to start optimizer with the parameters recovered

by ROM as the initial guess since our ROM recovered parameters are very close to the

actual parameters already. The sample size and the efficiency of increasing POD snapshots

in such case is not obvious. Therefore, it is desired to seek an optimal trade-off between

the sample size used in ROM and the number of FOM runs required to recover the pa-

rameters whenever precision better than ROM recovered parameters is desired. We created

POD-ANN ROM with sample size of 40 using Method 3 sampling technique and applied

it to approximate the parameters in Table 2.1. With ROM recovered parameters as initial

guess, we noted the number of FOM runs required by the optimizer to satisfy a specified

constraint of step size tolerance of 5×10−4.

Since different sets of snapshots yield different results even with the same sample

size, we repeated these calculations for 12 times for sample size of 40, each time with

different snapshots used in ROM obtained using Method 3 sampling technique. Then, we

kept on increasing the sample size by 20 at a time until the size of 120 to create ROMs and

noted the total FOM calls required for each sample size in inverse approximation whose

results are shown in figure 2.23a. In Figure 2.23a, each circle represents the number of

FOM runs required by the optimizer plus the corresponding sample size used in ROM

when the optimizer was initialized with ROM recovered parameter set. The maximum,

average and minimum number of FOM runs are represented by the red, blue, and black
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solid lines respectively. Each circle at zero sample location shows the number of FOM

runs required by the optimizer at various random initial guesses without ROM.

Notably, around 60 to 80 samples, we reach a minimum, which is also the location

of an optimal trade-off between the number of samples used in ROM and total FOM calls

required. This is because the accuracy of ROM plateaus after this sample size and increas-

ing the size would only add to the number of total FOM runs (as demonstrated in figure

2.23b). The optimal sample size shown here is in direct agreement to what was observed

in figure 2.6 where about 85 samples were identified as optimal in the forward problem.

The slight decrease in the optimal sample size here is due to improvements in ROM as

sampling technique used here is changed from random sampling to Method 3 sampling.

Therefore, it will be safe to use the optimal sample size in forward problem as the optimal

number of samples for inverse problem too. In figure 2.23, the number of FOM runs at a

given sample size vary every time the snapshots used in the sample is changed, even when

Method 3 sampling technique is used. This result also underscores the need for a more

stable sampling technique to get better consistency in the results out of this model.

The difference between FOM runs required with ROM and without ROM is very

significant. As seen in figure 2.23a (note the small circles at 0 samples), the maximum

number of FOM runs required without ROM is 700 (which could go even higher depending

on the initial guess) while the minimum number of total FOM runs required with ROM is

197 (note the small circle at sample size of 80), which is 28% of the maximum FOM runs.

This means, if we had the most optimal sampling technique, we could have saved at least

72% or even higher number of FOM runs (depending on the target and the initial guess used

in the optimizer). It is noted that the percentage of FOM runs represented here depends on

the desired step size tolerance of the optimizer, which in our case was 5×10−4.
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Figure 2.23. (a)FOM runs required in inverse problem to satisfy optimizer’s step tolerance
of 5×10−4 when the optimizer was started at POD-ANN ROM recovered parameters Vs.
# of samples used in POD-ANN. (b) Illustration on why the plot on the left has such shape.

2.13 Conclusion

We have shown that a model that combines POD and ANN is a very robust approach

for estimating the solution to forward as well as inverse problem with very large number

of parameters for a deforming mesh 3-D heat conduction problem. The FOM was reduced

to a model of 85 unknowns, represented by the coefficients of POD. ANNs were trained

with parameters as input and the coefficients of POD as output from which we achieved an

ability to calculate POD modal coefficients for any given set of parameters very quickly.

This in turn allowed a real time approximation of its corresponding field variable. We

applied this methodology to a steady state linear heat conduction in a hollow sphere with

varying internal surface (governed by 20 parameters). Using POD-ANN approach, we were

able to get temperature field within 3.5% of the FOM solution and all 20 parameters within

0.69% of the actual parameters.
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We also investigated other approaches in inverse parameter estimation where ANNs

were trained with parameters vs RMSNE or parameters vs the actual temperature field.

POD-ANN approach proved more robust ROM than above methods. POD-ANN ROM

worked successfully in inverse approximation even in the presence of large noises. Addi-

tionally, we studied the total FOM runs required to get the parameters within certain level

of step size tolerance, both with and without utilization of POD-ANN ROM. Our findings

revealed that using the proposed ROM could potentially save 72% or even higher number of

FOM iterations in inverse approximation. We also suggested an improved sampling tech-

nique compared to Latin Hypercube Sampling and random sampling, even though there is

room for improvement and we identify this as a topic of further investigation.
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CHAPTER 3

Inverse Determination of Detailed Inter-
nal Flow And Temperature Fields from
Wall Measurements: A Non-Linear Mul-
tiphysics Application.

3.1 Chapter Overview

The ROM methodology described in chapter 1 is now applied to the inverse problem

of estimating field data based on wall measurements for conjugate heat and mass transfer,

a multi-physics application that involves heat conduction in a solid body coupled with

viscous fluid flow. The computational model consists of a heated sphere in the center of a

cylindrical channel with forced convection(fig. 3.1). The model is split into two domains,

one within the heated sphere where the heat conduction calculations are applied and one in

the fluid domain where the viscous incompressible fluid flow calculations are applied.

The next section will describe the forward problem, and FOM solution procedure

along with its governing equations. Since chapter 2 lays the foundation for chapter 3, some

of the analysis will be skipped and the findings in chapter 2 will be directly applied here,

such as selection of a method to calculate modal coefficients when the FOM solution is

known. After FOM forward solution is described, the following section briefly summarizes
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the metrics of the ROMs used. The next section discusses choice of number of modes

followed by the analysis of the modal trajectories. Subsequently, the ROM results for both

temperature and absolute velocity are compared with FOM solutions. Moving on, the next

section discusses the sensitivity of the model to some simulated noise. Finally, the ROMs

are updated to tackle the high sensitivity of this model to noise.

Full Order Model Forward Solution

The model consists of a heated sphere of radius (Ri) = 1 cm placed at the axial and

longitudinal center of a circular channel of radius (Ro) = 2 cm and length (lo) = 10 time

the outer radius. The heated sphere, made up of carbon steel, is modeled as a uniform heat

source emitting 100 W/cm3 of heat into the fluid domain. Water enters the channel at inlet

temperature of 25◦ C from one end and exits from the other end at a given flow rate, which

is also a parameter of the model. The walls of the channel are insulated. The schematic of

the problem is shown in figure 3.1

As the 3D geometry is axisymmetric (since the 3D geometry can be created by rotat-

ing the right or left domain along the centerline, fig.3.2), it is converted into a 2D axisym-

metric model for the simulations. In figure 3.2, the centerline is the axis of symmetry and

therefore, either the left or right side of of this centerline will be the fluid domain (shown in

figure 4.2). The model is meshed with unstructured triangular elements (a zoomed in image

of the mesh is shown in figure 4.2). Since, physics based and very fine mesh options are

selected in commercial software COMSOL Multiphysics ®, mesh convergence analysis is

skipped here. The boundary conditions applied are as follows- 1) mass flow rate (variable)

and temperature of the fluid (constant, 25◦C ) at the inlet, 2) No-slip adiabatic condition for

the channel walls, 3) No-slip boundary condition at heated body surface, 4) Open (Adia-
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Figure 3.1. Schematic of domain.

batic) boundary with 0 gauge pressure at the outlet, and 5) axisymmetry boundary condition

along the centerline.

The fluid flow (Navier-Stokes) and heat transfer (Energy) equations were solved us-

ing COMSOL ®. The fluid flow utilizes a laminar flow model and its governing equations

are given by

∇ ·u = 0 (3.1)

ρ(u ·∇)u = ∇ · [−pI+K]+F (3.2)

K = µ(∇u + (∇u)T ) (3.3)
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Figure 3.2. Boundary conditions of axisymmetric model.

Where u is the velocity vector, ρ is the density, p is the pressure, K is the viscous stress

tensor, and F is the body force. The heat transfer equations are as follows,

ρCpu ·∇T +∇ ·q = Q+Qp +Qvd (3.4)

q =−k∇T (3.5)

Where Cp is the specific heat capacity at constant pressure, T is the temperature, q is con-

ductive heat flux, Q is heat source, Qp is point heat source, and Qvd is viscous dissipation.

A stabilized FEM with triangular elements and linear basis function was used in

COMSOL® to solve for laminar fluid flow and heat transfer. Sample solution for tempera-

ture and velocity fields are shown in figures 3.4 for an inlet flow rate of 1L/min.
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Figure 3.3. Unstructured mesh used for the model discritization

Figure 3.4. (a) Temperature field (b) Velocity field for inlet flow rate of 1L/min
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3.2 Methodology and Details of ROM

The snapshots, 50 in total, were created from FOM simulations that were run as

steady-state flow for inlet flow rates from 0.1L/min up to 1.5L/min. Once the FOM solu-

tions were obtained, the temperatures at 3 different nodes (shown by red dots on fig. 3.2) on

the internal surface of the channel were recorded for each snapshot. These temperature data

will later be used as parameter sets of the FOM solution rather than the actual inlet flow

rates. This was done to account for the fact that the flow rate information may not always

be easily obtainable, such as in a nuclear power plant where engineers have to rely on some

remotely measured data from the surface of a solid body. Using POD, 50 modes and their

coefficients were calculated. Feed-forward ANNs were trained in commercial software

MATLAB® with the sensor temperature data as input and the modal coefficients(~D) as out-

put using Levenberg-Marquardt algorithm [66] and logarithmic sigmoid transfer function

for all hidden units. The number of hidden layers and its units were automated such that

the root mean squared errors(rmse) on the validation data (25% of the total data used) were

minimized. Each coefficient was trained in a separate network. Once successfully trained,

any new sets of temperature data were then used as inputs to the ANNs and the ANNs gave

the corresponding ~D, which were further used with POD modes to approximate the full

field variable. Two separate ROMs were built, each for temperature field and velocity field

inside the channel, both parameterized by sensor temperatures.

3.3 Trajectories of Modal Coefficients

We started by extracting POD modes and coefficients following the procedures out-

lined in Chapter 1. In order to determine the optimal set of snapshots, we studied the

trajectories of these modal coefficients taking into account the variations in the inlet flow
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Figure 3.5. Modal trajectories for temperature.

rate. These trajectories are plotted in (fig. 3.5 and fig. 3.6) for temperature and velocity

respectively as a function of inlet flow rate.

It’s worth noting some key differences in the findings from chapter 2. The trajectories

we observed were mostly linear (or very close), however, these trajectories, except for the

first one for velocity, deviate significantly from the linear behaviour. Such behaviours are

expected because of inheriantly non-linear behaviour of the problem at hand, as opposed

to a linear case in chapter 2.

Observe the growing complexities of the trajectories as we move from 1st to the 4th

one. Such intricacies introduce more burden for ANNs, therefore, it demands to truncate

the size of mode, unlike in chapter 1 where we used all the available modes. As explained

in chapter 1, doing so reduces the computational burden without compromising the ROM

accuracy significantly. Furthermore, we see sharp shifts in trajectories around 0.3 to 0.5

L/min and therefore we sampled more snapshots around this section.
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Figure 3.6. Modal trajectories for velocity.

3.4 Mode Size

The maximum percentage error and maximum rmse of the 50 snapshots as a function

of number of modes were calculated for each snapshot. Then the maximum errors out of

all the snapshots were extracted and plotted in figures 3.7 and 3.8 for different mode sizes.

Since some of the nodal velocities are zero, the percentages calculated are with respect to

the maximum value of the field variable. The truncation criteria for the number of modes

was set such that the maximum percentage error on the plot was less than 0.5%, as such,

from figures 3.7 and 3.8, 7 modes are selected for an ROM for temperature and 8 modes

for an ROM for velocity.
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Figure 3.7. Maximum percent error and rmse as a function of number of modes for tem-
perature.

Figure 3.8. Maximum percent error and rmse as a function of number of modes for velocity.

3.5 Results and Discussion

As stated, separate ROMs for temperature and velocity were built. The FOM and

ROM solution for a flow rate of Q = 1L/min (not included in the original snapshot matrix)
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were evaluated. Figure 3.9 shows a comparison of the FOM and ROM temperature profiles,

and the percent error (with respect to the maximum absolute value of the field variable)

between the two. The ROM accurately captures the temperature profile in the domain and

the error does not exceed more than 1 percent anywhere in the model. Similarly, figure 3.10

shows a comparison of the FOM and ROM velocity profiles, and the percent error between

the two. Here too, the ROM accurately captures the velocity profile in the domain and in

fact, the error is even smaller than the temperature profile at less than 0.2 percent across the

domain.

Figure 3.9. Temperature profile of FOM (top) and ROM (middle), and percent error be-
tween ROM and FOM (bottom) for Q = 1L/min.
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Figure 3.10. Velocity profile from FOM (top) and ROM (middle), and percent error be-
tween ROM and FOM (bottom) for Q = 1L/min.

To better understand the worst case scenarios, 50 more set of parameters were fed

to the ROM and the results were compared against the FOM solutions, whose maximum

percentage (w.r.to maximum absolute value of the field variable) errors in each snapshot

are shown in box and whisker plot in figure 3.11. The errors do not exceed more than 8%

of the maximum temperature value and 15% of the maximum velocity in any of the test

cases. The results are fairly acceptable. We will investigate more on how to improve the

accuracy of this results in the upcoming section.

The interesting behaviour worth taking a note is how well the POD-ANN ROM cap-

tured the coupling between the temperature field and the velocity field, since only the tem-

perature information was used to predict the full velocity field.
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Figure 3.11. Box and whisker plot for maximum percentage error in ROM approximation
for temperature and velocity.

3.6 Sensitivity Analysis

In order to study the ROM sensitivity to some simulated errors in the parameters,

we introduced Gaussian noise to the parameters whose range is ±1/1000 ◦C. Such noisy

parameters were used to obtain the ROM solutions for the same above sets of 50 parameters,

whose maximum percentage errors as compared to FOM solution are shown in figure 3.12.

Clearly, the errors increased very significantly even for such small noise in the pa-

rameters. To understand such high percentage errors in some of the approximations, we

plotted the inlet flow rate vs the temperature profile for each of the sensor locations.

As shown in figure 3.13, the temperature profiles are already noisy. Such noise can

be filtered out using different data smoothing techniques (one is shown here in figure 3.13

where the original parameters were reconstructed by taking a 5 point moving average).

Then, the ROMs were built on this smoothed parameters, whose maximum percentage

errors in the approximated solutions are shown in figure 3.14, which are still high.
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Figure 3.12. Maximum percentage errors for temperature and velocity using ROM approx-
imation with added noise.

Figure 3.13. Temperature profile at the sensor locations for different flow rates.
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Figure 3.14. Maximum percentage errors in ROM approximation after smoothing the noisy
input parameters.

3.7 Updated ROMs

Observe the range of the temperatures recorded by the sensors in figure 3.13, which

is about half a degree only for the first sensor. Therefore, even a small deviation from

actual measurement in the temperatures at the wall caused a significant error in the field

approximation. As a result, smoothing the data did not help to improve the solution results

even slightly. To circumvent this limitation, the location of the sensors were moved to the

surface of the heated sphere (shown in figure 3.15), where the range of temperature change

is higher (fig. 3.16) as compared to the temperatures at the wall and such parameters were

used to update the above ROM.

The maximum percentage errors of temperature and velocity with the updated ROM

for the same 50 parameter sets without any simulated noise are shown in figure 3.17. The

plot clearly shows that a slight update in the location of sensors improved the accuracy of

the ROM significantly.
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Figure 3.15. Updated locations of the sensors.

Figure 3.16. Temperature profiles at new sensor locations.
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Figure 3.17. Maximum % error in temperature and velocity approximation with updated
ROM without any simulated noise in the parameters.

Finally, we added different level of Gaussian noise to the test parameters and pre-

dicted the temperature and velocity field, the results of which are shown in figure3.18 and

figure 3.19 respectively. In figures 3.18 and 3.19, the x-axis represents the maximum value

of the Gaussian noise introduced in the parameters. As observed, the sensitivity of the mea-

surement errors to the temperature at the new location decreased very dramatically. Such

improvements are attributed to the fact that the range of new parameters are significantly

higher which can tolerate high levels of noise.
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Figure 3.18. Maximum percentage errors in temperature for different levels of simulated
noise in the parameters.

Figure 3.19. Maximum percentage errors in velocity for different noise levels in the pa-
rameters.
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3.8 CONCLUSIONS

A non-intrusive reduced order model(ROM) based on proper orthogonal decompo-

sition and artificial neural network was successfully applied in inversely estimating the

temperature and velocity field inside a cylindrical channel with a heat source at its center in

a conjugate multiphysics heat and mass transfer problem. Instead of using actual flow rate

information, the nodal temperature information were utilized to predict the full fluid flow

and temperature characteristics. The ROM based approach gave fairly satisfactory results

with the sensor location on the surface of the channel but worked poorly with simulated

noise, and very accurate results for both temperature and velocity field when the sensors

were moved to the surface of the heated sphere. The updated ROM showed very robust

results even in the presence of high levels of Gaussian noise in the parameters. Further-

more, this framework showed an excellent ability to capture the relationship between the

two field variables, namely temperature and velocity, since temperature information was

used to predict the full velocity field. Such results can be utilized in a nuclear power plant

to non-invasively get the full temperature and velocity field.
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CHAPTER 4

Inverse Airfoil Shape Identification: A Non-
Linear Deforming Mesh Problem.

4.1 Chapter Overview

The ROM methodology described in chapter 1 is further applied to inversely identify

the airfoil shapes parameterized by 4 digits National Advisory Committee for Aeronau-

tics(NACA) parameters for a given pressure distribution on its surface and different angle

of attacks(AOAs), for a 2D-viscous fluid flow problem.

The next section will describe the forward problem, and FOM solution procedure

along with its governing equations. Like in Chapter 3, some of the analysis will be skipped,

and the findings in Chapter 2 will be directly applied here, such as selection of a method

to calculate modal coefficients when the FOM solution is known. After the FOM forward

solution is described, the following section briefly summarizes the metrics of the ROMs

used, including the choice of number modes. Sometimes, getting the trajectories of the

modal coefficients can be costly, especially with large number of parameters. Therefore,

we attempted to study the ROM application for this case without any prior knowledge of the

modal trajectories. Subsequently, the ROM results for the forward problem are compared

with FOM solutions. Moving on, the next section discusses the sensitivity of the model to
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some simulated noise. Finally a breakthrough result of the ROM, its capability to perfectly

denoise the small local minima of the objective function in inverse design, is presented.

4.2 Forward Problem

The forward problem is to solve for a 2D-viscous fluid flow to extract the pressure

distribution on the surface of an airfoil for a given set of parameters that govern the air-

foil geometry. A lot of airfoil parameterization techniques are available in the literature

to create the airfoil geometry, such as the PARSEC method [67] or other parametric curve

techniques such as splines, B-spline parameter [68], Bezier curves [69] and so on. For

simplicity, the airfoil in this study was created using a 4-digit parametrization of the Na-

tional Advisory Committee for Aeronautics (NACA) 4-digit parametrization. This airfoil

depends on the mean camber line and the airfoil thickness (see fig.4.1), which are parame-

terized by three parameters: airfoil maximum camber(m), location of maximum camber(p),

and the maximum thickness(t). Once these parameters are picked, the airfoil coordinates

are generated using mathematical equations that are widely available in literature[70][71].

The mean camber line is given by equations 4.1.

Figure 4.1. A sample airfoil for parameters in table 4.1.
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yc =
m
p2 (2px− x2) f or x = 0 to x = p (4.1a)

yc =
m

(1− p)2 [(1−2p)+(2px− x2)] f or x = p to x = 1 (4.1b)

Once the mean camber is determined, adding thickness to the mean camber location

gives the y-coordinate of the airfoil. The thickness distribution for this airfoil is given by

equations 4.2.

± yt =
t

0.2
(0.2969

√
x−0.3516x2 +0.2843x3−0.1015x4) (4.2)

A set of NACA parameters are shown in Table 4.1. Figure 4.1 also shows the airfoil shape

corresponding to the parameters in Table 4.1.

Table 4.1. A set of NACA airfoil parameters.

m p t
0.03 0.45 0.2

Once the airfoil surface co-ordinates are generated for a given parameter set, the

geometry is imported and solved for pressure distribution using standard Finite Element

Method (FEM) in commercial software ’COMSOL Multiphysics ®’. An ′OC′ fluid domain

is created and meshed with quadrilateral element with linear basis function as shown in

figure 4.2. Since this is a deforming mesh problem, it is noted that the number of nodes

and the order of node numbering are the same in every snapshot. The boundary conditions

applied are as follows: i) The outer surface of the fluid domain is at horizontal velocity of

cos(α)m/s and vertical velocity of sin(α), where α is the angle of attack(AOA) ii) No slip
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Figure 4.2. Fluid domain with ’OC’ mesh for airfoil in table 4.1.

on the surface of the airfoil iii)0 gauge pressure at a point at location (x,y) = (5,0). The

fluid has a density of 1 kgm-3 and the dynamic viscosity of 1/1000 kgm-1s-1. The fluid flow

(Navier-Stokes) equations were solved in COMSOL ® using a laminar flow model whose

governing equations are given by

∇ ·u = 0 (4.3)

ρ(u ·∇)u = ∇ · [−pI+K]+F (4.4)

K = µ(∇u + (∇u)T ) (4.5)

Where u is the velocity vector, ρ is the density, p is the pressure, K is the viscous

stress tensor, and F is the body force. The pressure coefficient for the airfoil in figure 4.1,

above boundary conditions and 0 AOA is shown in figure 4.3.
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Figure 4.3. Pressure coefficient distribution on the surface of the airfoil in figure 4.1 for the
specified boundary conditions.

4.3 ROM Creation and Application for Airfoil in Forward Problem.

The parametric space used to produce the airfoil geometry for POD snapshots in this

study are as follows: i)the maximum camber is between 2% and 6% of the chord length

ii)the location of maximum camber lies between 25% and 75% of the cord iii)the maximum

thickness of the airfoil is greater than 12% and less than 30% of the chord length and iv)the

range of AOA is between 0 and 10 degrees. Using random sampling of parameters, 200

snapshots are generated and used for POD. As pointed earlier, some of the POD modes can

be excluded in the ROM without actually losing much accuracy. The cutoff mode size is

determined by a rule that the approximated solution at each node for all the POD snapshots

has absolute error of less than 1% (percentage calculated with respect to maximum pres-

sure of each snapshot). The maximum percentage error and average rmse as a function of

number of modes are shown in figure 4.4, from which 19 modes are selected for this study.

Separate feed-forward neural networks are trained for each of the 19 modal coef-

ficients using Levenberg-Marquardt algorithm [72] and sigmoid transfer function. The

number of hidden layers and units are automated such that the rmse on the validation data

(5% of the total data) is minimum. Once the neural networks are fully trained, the POD

coefficients can be easily determined for any parameter set in the training range. Finally,
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Figure 4.4. Average rmse and maximum percentage error in ROM approximation for dif-
ferent number of modes

the FOM solution is approximated using POD. Right sampling of the parameters is cru-

cial to minimize the number of snapshots required in the ROM since the performance

of POD and ANN depend on the sets of parameters chosen. Two widely used sampling

techniques, random sampling and latin hypercube sampling (LHS), are tested against the

author suggested new method, as described in chapter 2. In this new method, each para-

metric space is equally divided into the same number of points as the number of required

samples. Then, each of the 4 parameters are randomly chosen from their respective set.

Using each sampling technique, 3 ROMs are created with metrics outlined above and are

used to approximate the surface pressure on 25 random airfoils and random AOAs. The

box plot for maximum percentage errors in each test case are shown in figure 4.5. Clearly,

the maximum percentage error in any of the 25 approximations do not exceed 7% with me-

dian error being less than 3% for any sampling technique. This means, the ROM is a robust

predictor for this problem, with any sampling technique. Also, the results clearly show that

the author suggested sampling technique is superior to random sampling and LHS as the

maximum error is less than 4% with median error being less than 1.5%. Therefore, in the

following sections, ROM built with author suggested sampling technique will be used.
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Figure 4.5. Box plot for maximum percent error on surface pressure for 25 random sets of
parameters using ROM with different sampling techniques.

4.4 Inverse Approximation

The ROM built in the forward problem is further applied to recover the shape of the

airfoil for a given target pressure on its surface. The objective function to minimize is the

root mean squared distance between the target pressure and the inverse solution for a given

set of parameters. ‘fmincon’ with ’sqp’ algorithm is used in commercial software ’MAT-

LAB’ as the optimization tool. ’fmincon’ is a non-linear gradient based optimization tool

that works best for both linear and non-linear constrained problems. Sequential quadratic

programming (sqp) [73] optimizes by setting up an optimal sub-problem which searches

for next feasible point in the current iteration.

We tried to recover the airfoil shape of table 4.1 for both 1 degree AOA and 9 degrees

AOA with no noise and also with Gaussian noise whose maximum value is 5% of the

Table 4.2. Recovered parameters of table 4.1 and their % error using ROM for 1◦ AOA.

Recovered parameters percent error
m p t AOA m p t AOA

0 noise 0.0306 0.4531 0.2007 0.9855 0.07 0.31 0.07 0.15
5% noise 0.0297 0.4639 0.2012 0.7678 0.03 1.39 0.12 2.32
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Table 4.3. Recovered parameters of table 4.1 and their % error using ROM for 9◦ AOA.

Recovered parameters percent error
m p t AOA m p t AOA

0 noise 0.0301 0.4559 0.2006 9.1917 0.01 0.59 0.06 1.91
5% noise 0.0312 0.4441 0.1964 9.0928 0.01 0.95 0.36 0.92

Table 4.4. Recovered airfoil shapes of figure 4.1 using ROM for different AOA and noise
percentage.

Recovered shape
1 ◦ AOA 9 ◦ AOA

0 noise

5% noise

maximum value of the target pressure. Table 4.2 shows the recovered parameters of table

4.1 and its percentage error in approximation for 1 degree AOA case. Similar results are

shown in table 4.3 for 9 degrees AOA. The results show that this method is capable of

recovering parameters with excellent accuracy in inverse problems even in the presence

of large Gaussian noise. Note that the percentage errors calculated are with respect to

chord length for errors in location and maximum AOA(10◦) for errors in AOA. Visual

representations of the recovered airfoil shapes for table 4.2 and table 4.3 are shown in table

4.4.
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4.5 Computational Efficiency and Multiple Local Minima

In creating the ROM, 200 FOM solutions were required because of which the com-

putational advantage of using this method over FOM iteration in inverse approximation is

unknown. Therefore, we attempted to recover the parameters from table 4.1 and 1 degree

AOA using same tools, algorithms and objective function as in ROM in the previous sec-

tion but with the inverse solution being the FOM solution. From the recovered parameters,

it was observed that the optimizer was stuck very close to the starting point for all 20 sts

of initial guesses chosen, which clearly tells that the objective function has many local

minima. To make sure that such observance is not a result of non optimal optimization

algorithm, the value of the objective function was calculated for different values of camber

and maximum camber location for a fixed value of maximum thickness(20% cord) and 1

degree AOA. The contour plot and the surface plot in figure 4.6 clearly shows that the ob-

jective function has many local minima. Note the very small range of parameters used in

the plots, as such, it can be safely concluded that the number of local minima in full param-

eter space and for all 4 parameters is realistically too many to be handled computationally

when used with FOM in inverse approximation. The inverse problem that practically seems

impossible to solve using FOM with current technology is solved with high accuracy with

only 200 FOM solutions when applied with POD-ANN ROM. In situations where better

accuracies are desired, it can be safely concluded that the computational cost of increasing

few snapshots in ROM is very minimal in comparison to the number of FOM iterations that

would otherwise be required when used with FOM solution as inverse solution.
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Figure 4.6. Contour plot(left) and surface plot(right) for the error objective function as a
function of camber and location of maximum camber when thickness and AOA are fixed.

4.6 Conclusion

It is shown that a ROM that combines POD and ANN is a very robust approach in

estimating the solution in forward as well as inverse problems for a non-linear deforming

mesh fluid flow problem of inversely identifying the airfoil shapes. The dimensionality

of the FOM was reduced to a model of 19 unknowns using POD. Then the parameters

and their unknowns (modal coefficients) were trained using feed-forward neural networks

so that a quick approximation of the unknowns was possible in real time for any given

parameter set in the training range. This ROM was applied to predict the surface pressure

on NACA 4 digit airfoils for different AOA cases. The model predicted the surface pressure

very accurately with maximum error being less than 4% on all 25 test cases for the forward

problem. In comparing random sampling and Latin hypercube sampling techniques with

the author’s suggested method, it was demonstrated that the author’s approach outperforms

these alternatives for selecting samples in ROMs. The same framework was also used

in the inverse approximation to recover the NACA airfoil parameters and the AOA for

a given target surface pressure distribution. The predictions were very accurate that the

recovered parameters and AOA were within 2.5% of the actual values even in the presence

of large Gaussian noise (5% of the highest pressure value). The key discovery in this
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paper is that the model effectively removes the small local minima(or noise) in the error

objective function. This achievement enables the solution of an otherwise computationally

very extensive (or practically infeasible) problem using the FOM solution in an inverse

problem.
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CHAPTER 5

Concluding Remarks

In this thesis, three distinct applications of the POD-ANN ROM were explored in the field

of computational dynamics for fluid flow and heat transfer.

The first study investigates the applicability of this ROM for a 3D-linear heat conduc-

tion in a deforming mesh problem in a hollow pipe, with a random internal geometry. The

internal surface of the pipe was parameterized by a set of 20 parameters and provided with

a fixed temperature. The outside surface was exposed to a constant temperature, while the

side walls were insulated. The ROM accurately predicted the full temperature field, with

errors being less than 3.5% of the actual values. This chapter addressed various aspects

of the ROM that are applicable across diverse scenarios. These encompassed considera-

tions like sample size, mode size, sampling techniques, and sample size selection, which

formed the foundational principles for the subsequent chapters. Using the temperature in-

formation on the surface of the pipe, the framework was applied with optimization tools

for inverse parameter approximations, whose errors did not exceed more than 0.7% of the

actual parameter values for all 20 parameters. This framework worked perfectly even with

high Gaussian noise introduced in the target temperature in inverse approximation. This

method was compared against other commonly used approaches that leverage directly on

machine learning, such as direct training of ANNs with parameters and the whole temper-
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ature field. Also, the errors between the temperature on the surface for actual parameters

and the available surface temperature for other parameters were trained with their corre-

sponding parameter sets, and we sought to find the parameters with minimum error. The

POD-ANN ROM approach outperformed these approaches by far margins. Furthermore,

the author suggested sampling technique was found to be more stable and accurate sam-

pling technique than Latin Hypercube Sampling (LHS) or Random Sampling.

Secondly, the ROM was applied to an inverse non-invasive determination of detailed

internal flow and temperature for a non-linear conjugate heat and mass transfer multi-

physics problem inside a cylindrical channel with a spherical heat source at its longitudinal

and axial center for different inlet flow rates. This axisymmetric model was converted into

a 2D model for simplicity. Instead of parameterizing the case with the actual flow rates,

three temperature sensors were installed on the surface of either the cylinder or the sphere.

Such parameterizing was chosen to address the issue that the flow rate information may not

always be available, such as in a nuclear power plant. The full temperature and absolute

velocity were predicted for 50 sets of sensor temperatures, both with and without simulated

noise in the sensor temperatures. With the sensor locations on the surface of the cylindrical

channel, the accuracies were satisfactory, however, such errors grew exponentially even

with very small Gaussian noise. The ROM was then updated with sensors on the surface of

the sphere, where the range of temperature was comparatively higher for the given range

of flowrates. This slight update in the ROM made huge differences since the predictions

were very accurate (temperature within 0.5% and velocity within 2.5%), and showed very

robust behaviour with very high levels of Gaussian noise. Furthermore, this framework

showed an excellent ability to capture the relationship temperature and velocity, since only

temperature information was utilized to predict the full velocity field.

Finally, the ROM was applied for a non-linear deforming mesh fluid flow problem to

predict the pressure field over NACA airfoils for different angle of attacks, and to inversely
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identify the airfoil shapes for a given surface pressure distribution. The model predicted

the surface pressure very accurately with maximum error being less than 4% for all 25

test cases. Here too, the author developed sampling technique proved to be more robust

technique than LHS and Random Sampling. The predictions demonstrated remarkable

accuracy, with recovered parameters and AOA within 2.5% of actual values, even when

confronted with substantial Gaussian noise (equivalent to 5% of the highest pressure value).

AN important finding in this application is, this framework is capable of removing small

local minima (or noise) in the error objective function. Such discovery allows the solution

in inverse approximation with only few hundred FOM solutions, which would otherwise

be substantially high(or even computationally infeasible).
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CHAPTER 6

Future Work

Through 3 different applications, the usefulness of POD-ANN ROM was shown for fluid

flow and heat transfer problems. The first problem was a linear 3D heat conduction. The

second application dealt with a multiphysics, non-linear axisymmetric problem, later con-

verted to a 2D model. Ultimately, the third application was for a 2D non-linear deforming

mesh problem. This framework’s application and reliability are not tested for a 3D non-

linear deforming mesh. Therefore, some future work will be dedicated to the applications

of this novel concept to a wing optimization, a 3D-non linear deforming mesh application.

Similarly, its suitability for addressing multiphysics problems warrants comprehensive ex-

ploration. Thus, further research in this direction will be conducted in the future.

We have shown the robustness of POD-ANN framework for diverse areas of applica-

tions. Even though we outlined the pros of using ANNs over other statistical method in the

opening chapter, such comparisions are not quantified. In future research, a comparative

analysis will be undertaken to assess the performance of POD-ANN against POD-Galerkin

and other response surface methods like POD-kriging.

The ROM predicted solutions are very accurate for forward problems and inverse

problems. Therefore, the ultimate future research is to develop an algorithm that will be
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available for commercial software for general inverse design for predicting the initial pa-

rameters or initial solution for non-linear solvers.

81



Appendix

The Galerkin Projection methodology used in the determination of POD coefficients, ini-

tially devised by Dennis and colleagues, employs the Finite Element Method (FEM) to

address heat transfer problems, as depicted in detail in their work [40]. This work min-

imizes the residual of the PDE in weak sense. The images presented below have been

faithfully reproduced from the original work authored by Dennis and team.
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