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ABSTRACT

ANALYSIS OF A NANOPARTICLE’S DYNAMICS
IN AN OPTICAL TWEEZER

Vatsal Asitkumar Joshi, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Dr. Alan Bowling

This work presents a simulation and experimental analysis of a nanoparticle’s
motion in an optical tweezer. Specifically, different simulation and analysis tech-
niques are developed to investigate a suspected regime change in the dynamics of the
micro/nano particles from overdamped to underdamped motion as the particle size
reduces to submicron scale. Moreover, the simulation techniques developed here pro-
vide accurate prediction of the particle dynamics along with low computation time.
Finally, the experimental setup developed here provides new experimental data that
help answer the question of the regime change with increased certainty.

Micro- and nano- scale systems, such as an optical tweezer, require a longer time
to simulate because of the disproportionality that exists between fluid and inertia
forces. This problem is resolved by the use of a multiscale approach that relies on
the method of multiple scales, which scales the forces such that they are similar in
proportion.

The scaling approach has been used previously with two- and three- dimensional

models, where the laser forces were computed by discretizing the laser beam into a



finite number of rays. However, this method of calculating laser forces starts to fall
apart as the particle size becomes smaller than the wavelength of the laser. This work
presents a three-dimensional model that relies on the Generalized Lorenz-Mie Theory
(GLMT) to calculate laser forces.

An online constraint embedding method has been used in the past to enforce
the normality constraint of the Euler parameters in the rotational dynamics of the 3D
model. However, this method requires the integrator to be stopped in order to change
the dependent Euler parameter. This work provides a novel elimination approach
that does not require the definition of the dependent Euler parameter. Moreover,
this approach does not require extra equations to be solved during the integration,
which results in lower computation time.

The numerical solvers used to integrate the Equations of Motion (EOMs) change
both the type of result and the computational requirement. A micro- or nano- particle
observes forces due to the Brownian motion in the surrounding fluid. The inclusion of
such forces makes the EOMs of the particle stochastic differential equations (SDEs)
instead of the ordinary differential equations (ODEs). Moreover, the disproportion-
ality in the inertia and fluid forces makes these equations stiff in nature. Thus, the
stiff SDE solvers from the Julia programming language are used here to tackle both
of these scenarios. The use of these solvers along with the scaling technique helps
achieve further reduction in computation time.

The inclusion of Brownian motion force and the use of stochastic differential
equation solvers allow the analysis of the problem in the frequency domain. It is
common practice with optical trapping experiments to measure the trap stiffness with
the use of Power Spectral Density (PSD) analysis. This work develops a theoretical

equation of the PSD of the nanoparticle’s position along with scaling. This helps

vi



estimate the PSD of the nanoparticle that would show the underdamped behavior in
the experiments.

Finally, a completely new experimental setup is prepared to investigate the
claim of regime change from previous experiments in further detail. The experimental
setup is designed to achieve easy and repeated trapping of the nanoparticle along with
high frame rate recording of its trajectory. Software for all the necessary hardware, i.e.
the high-speed camera, laser shutter and the back illumination system, is developed

in-house to automate performing the experiments.
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CHAPTER 1
INTRODUCTION

1.1 Overview

This dissertation presents new findings and developments in the field of optical
trapping of micro/nano particles. The focus is on both the simulation models and the
experiments. Such simulations may involve modeling a free-floating body that has
six degrees of freedom. This raises the issue of treating the spatial rotations, which
requires special treatment beyond the use of Euler Angles. Chapter 2 proposes a novel
constraint elimination approach that handles the treatment of rotational dynamics
by using unit quaternions (Euler parameters) instead of Euler angles. The complete
simulation model for a particle in an optical trap is introduced in Chapter 3. It
discusses (1) different methods of computing laser forces, (2) the use of model scaling
technique to simulate small bodies at large time scales, (3) the use of stiff solvers
to improve the computational time, and (4) the inclusion of the stochastic term in
the differential equations and their solution. The scaling method used to speed up
the simulations relies on a scaling factor. It was commonly chosen by matching the
experimental and simulation data. Chapter 4 investigates the underdamped motion
observed in a previous dataset. The Power Spectral Density analysis (PSD), which
is regularly used to measure the optical trap stiffness, is also introduced in Chapter
4 as a tool to estimate the scaling factor without comparing the simulations with
the experiments. The introduction of the PSD analysis in the simulation allowed the
prediction of the PSD of the 500nm diameter particle in an optical trap that showed

the suspected underdamped motion in old experimental data. However, this data



lacked the time history and temporal resolution to perform PSD analysis. Chapter
5 discusses the new experimental setup developed to collect new data and tries to

explore the underdamped motion previously observed, with greater detail.

1.2 Treatment of rotational dynamics

The spatial orientation of a rigid body is often modeled with the help of three
independent parameters, e.g. Fuler Angles. This approach works fine when the
body’s rotation is limited in range. For example, the dynamics of a quad-rotor,
the dynamics of an aircraft, etc. However, there exist systems that require proper
treatment of the attitude dynamics since their rotation is not limited to a range.
Some common examples are free-floating micro and nano particles[46], spacecraft[55]
or astronomical systems[2]. The use of Euler Angles with such systems creates a
problem of ‘Gimbal Lock’ [38], where the ability to extract all three Euler angles
from the rotation matrix of the object is lost. Other such sets of three independent
parameters were also developed, e.g. classical or modified Rodrigues parameters[86],
that improve the working range of the rigid body orientation but do not eliminate
the problem of ‘Gimbal Lock’ completely.

The problem of ‘Gimbal Lock’ can be avoided by using a set of four parameters,
known as quaternions, which was introduced by W. E. Hamilton. However, the
implementation of quaternions in attitude dynamics also needs the enforcement of
a normality constraint during the numerical integration of the equations of motion
(EOMs). The equations of rotational motion of a rigid body can be computed without
enforcing the normality constraint of the Euler parameters. This results in an eight-
valued state vector. However, the body is not considered rigid anymore since the

unconstrained Euler parameters may represent a non-orthonormal rotation matrix.



This problem is known as Gauss’ mutation as discussed in [69, 81] and is generally
not desired for rigid body simulations.

The set of quaternions that follow this algebraic constraint is also known as
Euler parameters. Several approaches toward enforcing the normality constraint
use Lagrange Multipliers [67, 68, 94, 104, 92, 93, 82, 84], Hamiltonian dynamics
[85, 11, 12], coordinate reduction and constraint embedding techniques [21, 58, 34],
overparametrization techniques [40] or Lie groups and Lie algebra [102, 89, 3, 23, 60].
One of the earliest implementations was proposed by Nikravesh et al. [68, 67] using
Lagrange multipliers. However, Vadali [94] later showed that the EOMs can be re-
formulated such that the Lagrange multiplier is equal to zero. Sherif [84] provided
different formulations of rotational equations of motion when using Euler parameters
and showed that they can be transformed into each other. Extending Vadali’s work,
Shabana [82] showed that the forces related to the normality constraint are identically
equal to zero. Udwadia [92] initially provided the equations of motion using the fun-
damental equation of constrained motion. He later used this approach to develop a
rotational controller [93] as well. All the aforementioned approaches yield a full-rank
mass matrix, but the additional equations and variables in the EOMs mean that they
do not employ elimination.

Moéller and Glocker in [58] propose a coordinate reduction approach. The
quaternions (Euler parameters) were not normalized, which allows a violation of the
rigid body constraint. Thus, instead of a normality constraint, a perfect bilateral con-
straint was implemented to enforce the rigid body constraint, which requires an extra
variable per body. The resulting set of EOMs is expressed in differential algebraic
equation (DAE) form, which is not minimal, although the equivalent mass matrix is

full rank.



A more modern approach uses Lie algebra to integrate the equations of motion
[102, 89, 3]. This is accomplished using a special Lie group integrator like Crouch-
Grossman[23] or Runge-Kutta-Munthe-Kaas[60]. The integration step is performed
on the special unitary group SU(2) which inherently enforces the normality constraint
without introducing singularities into the mass matrix.

The approach closest to the proposed one was given by Haghshenas-Jaryani
et al. in [34]. It uses a constraint embedding technique [98] where the EOMs are
reduced to a minimal set by choosing a dependent Euler parameter and eliminating
it at the velocity and acceleration levels. However, this process requires a ‘Switching
Strategy’ to avoid the singularity introduced in the mass matrix by this type of
standard elimination.

In this work, a new elimination approach is proposed that takes advantage
of Kane’s Method’s ability to redefine state space. This allows enforcement of the
normality constraint at both the velocity and acceleration levels. It also reduces the
computation time by maintaining the system’s ODE form while eliminating the use

of the ‘Switching Strategy’.

1.3 Simulation of Micro/Nano particles in an optical trap

Many biomechanical systems are modeled as micro/nano scale rigid bodies mov-
ing in a fluid characterized by Stokes flow. An optical trap is one such system that is
widely used today to hold and manipulate objects from a couple of micrometers[4] to
a few nanometers[5] in size. Their ability to apply force in the piconewton scale and
measure displacements at nanometer scale has made them useful in numerous appli-
cations, such as measuring the viscoelastic properties of cell membranes[31], study the
physics of colloids[10], develop molecular motors[1], and measure mechanical proper-

ties of biopolymers[35] and microtubules[47].
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The need for a simulation model for the particles trapped in an optical tweezer
stems from the difficulty in measuring the particle’s position in all three dimensions.
Some modern techniques allow the measurement of the trapped particle in three
dimensions[17, 71]. However, these rely on adding more equipment to and having
good calibration of the experimental setup. A simulation model can help estimate
the particle trajectory in the third dimension by matching the simulation results with
the planar experimental data recorded using a camera.

Viscous drag force acting on a particle, Stokes’ drag, is extremely large at the
microscale and nanoscale compared to the body’s own inertia force [72]. The large
disproportion between the magnitudes of the inertia and viscous drag forces yields
a stiff system. To simulate such systems easily, it is a common practice to ignore
the inertia force, which results in a set of first-order ordinary differential equations
(ODEs) [97] referred to as the overdamped Langevin equation [70]. This model can
be solved fairly quickly using well-known Runge-Kutta methods [18]. However, it has
been shown that modeling the inertia force is important because it can affect a small
body’s motion [33, 16, 13] over longer time periods.

Solving a stiff system is challenging since the integration time steps commonly
end up being extremely small. The EOMs were previously[33] solved using an explicit
solver. The problem of long computation time was tackled using a well-established
scaling approach based on the Method of Multiple Scales (MMS) [61]. This approach
takes advantage of the disproportionality in the drag and inertia forces to scale them
such that they do not produce large accelerations, but achieve an accurate estimate
of the system’s motion at longer time periods. However, explicit solvers are not best
suited for stiff systems. Implicit solvers, such as the trapezoid [32] or Rosenbrock [83]

methods, are more suitable to such stiff problems and can solve them with much less



computational cost. This work makes use of implicit solvers along with the scaling
method described above to reduce the computation time even further.

Another force acting on the particle, that depends on the surrounding medium,
is the random force associated with Brownian motion [54]. Albert Einstein first
explained Brownian motion in 1905. Today, this motion is modeled as a random
white-noise force. When the differential equation model contains a random variable,
it is classified as a stochastic differential equation (SDE) model. Techniques used
to solve ODEs cannot be directly applied to the SDEs because of the existence of a
random variable [36]. The calculus required to solve SDEs was developed recently
[41] as compared to that of ODEs[18]. The numerical methods to integrate SDEs are
still an active area of research|[78].

Previous simulations [33] treated the stochastic nature of the equations as a con-
stant force over a short time period. This method generates trajectories similar to the
correct solution. However, the method falls apart when the results are analyzed using
frequency domain techniques. Moreover, it required the ODE solver to be stopped
repeatedly which increased the computation time. Many numerical methods exist,
which can adaptively solve stiff SDEs [39, 73]. This work uses the stiff SDE solvers
available in DifferentialEquations.jl package of the Julia programming language
to solve the EOMs of the particle.

Regardless of the choice of integration scheme, the model used for calculating
the forces generated by the interaction between the particle and the laser can affect
the final solution significantly. There exist three force models that have different
accuracies based on the wavelength, A\, of the laser being used and the radius, r, of
the particle. These three models are (1) Rayleigh scattering (when r < \), (2) Ray

Optics (when 7 > X) and (3) Generalized Lorentz-Mie theory (when r ~ \) [50].



The simulations were performed for particles with three different diameters,
500nm, 990nm and 1950nm. The laser wavelength used was 1064nm. Previous simu-
lations [33] used the Ray Optics model to calculate laser force while the particle sizes
were similar to that of the laser wavelength. The use of the Ray Optics model in such
a case is not desirable since it overestimates the laser forces acting on the smaller
particles. In this dissertation, Generalized Lorentz-Mie theory (GLMT) is used to
calculate the laser forces more accurately.

The collective use of stiff stochastic differential equation solvers, the model
scaling approach and the use of Generalized Lorentz-Mie theory for calculating the
laser forces achieved significantly lower computation times, &~ 21min in the previous
study([33] for a single simulation to ~ 1.4min in this work for 10000 simulations,
along with a more realistic representation of the Brownian motion physics and the

light-particle interaction.

1.4 Exploration of the underdamped motion

The scaling approach, discussed in the previous section, showed significant im-
provements in the computation time with the old model. However, it was important
to validate the model with more experimental data. Few optical trapping experi-
ments were performed with particles of diameter 500nm, 990nm and 1950nm. In
these experiments, the particle’s trajectory was recorded at a high frame rate while
it was being trapped, i.e. as the particle was moving toward the focal point. These
experimental trajectories are shown in Figs. 1.1, 1.2 and 1.3.

Conventional wisdom states that, at micro/nano scale, the viscous friction forces
have a much larger impact on the particle’s motion than inertial forces [72]. Thus,
many works omit the mass properties from the model[22, 20, 14, 6, 48], particularly

those that use the overdamped Langevin equations[91, 13]. As suggested by the
7
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Figure 1.1: Trajectory of a 500nm diameter particle showing the underdamped be-
havior as being trapped

name, these equations predict overdamped motion as the particle approaches the
focal point, i.e. the particle should not go beyond the focal point while moving
towards it. However, in the experiments, the smaller particles exhibit what appears
to be underdamped motion, i.e. particles go beyond the focal point and come back.
This phenomenon seemed to get more pronounced as the particle size was reduced.
A hypothesis was made based on the experimental data, that there should be
regime change in the dynamics of the particle as the size of the particle reduces below
lpum. However, only the simulation models with the use of the scaling approach
captured this phenomenon. Thus, it was concluded that there must be a force model,

either the laser, the fluid, or the inertia, that breaks down as the particle size reduces.
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Figure 1.2: Trajectory of a 990nm diameter particle being trapped

The limiting factor in analyzing this phenomenon was the amount of experimental
data that was available since only one dataset for each particle size was available.

A new experimental setup is developed here to conduct multiple optical trapping
experiments in a short time period. It was also desirable to keep the experimental
parameters close to the ones from the previous experiment. The final goal was to
characterize the experimental conditions that would repeatedly achieve the suspected
underdamped motion. Once such conditions are identified, a detailed analysis can be
conducted on the reliable and repetitive data of the underdamped phenomenon to
develop better force models.

The experimental setup developed here was able to trap polystyrene particles

ranging from 2um to 200nm in diameter. However, no underdamped behavior was
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Figure 1.3: Trajectory of a 1950nm diameter particle showing the overdamped be-
havior as being trapped

observed in about 100 experiments that were conducted in total for different particle
sizes. Thus, a decisive conclusion cannot be drawn at the moment regarding the
underdamped motion since the result of the new experimental data is in contradiction

with the old data.
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CHAPTER 2
EULER PARAMETERS AND THE NORMALIZATION CONSTRAINT

2.1 Introduction

While implementing the Euler parameters in the equations of motion of a dy-
namic system, avoiding both the singularity in the rotation matrix and the use of
differential-algebraic equations (DAEs) is a nontrivial task. Standard elimination
can be used here which involves choosing a dependent variable and eliminating it
from the EOMs at the velocity and acceleration levels. However, this method needs
a ‘Switching Strategy’ to tackle the problem of choosing the dependent Euler param-
eter. This increases the computation time since the ODE solver needs to be restarted
for the switch of the dependent Euler parameter to take place.

The approach proposed in this chapter uses Kane’s method to develop the equa-
tions of motion. Here, the normality constraint is addressed using a novel elimination
approach that does not require an explicit definition of one of the Euler parameters as
a dependent variable. This process involves a redefinition of the state space in terms
of an auxiliary speed, which is defined as the derivative of the normality constraint.
Later on, the EOM associated with this auziliary speed is omitted. This yields a
minimal set of EOMs with a full-rank mass matrix and an inherent enforcement of
the normality constraint at both the velocity and acceleration levels. Moreover, the
energy is also conserved within numerical integration tolerances, which is a common
way of checking the reliability of the solution. This is computationally faster com-
pared to the Lagrange multiplier based approaches [68, 67, 94, 82] as the number of

equations to be solved is lower.
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2.2 Addressing the Normality Constraint

The discussion of the proposed approach is within the framework of Kane’s
method [45, 15] and relies on its definition of auziliary speeds. Within this framework,
velocity is considered to be a vector and speeds are its components. Auxiliary speeds
are typically used to solve for non-contributing (reaction) forces, such as the Lagrange
multipliers associated with the normality constraint. The EOMs associated with
the auxiliary speeds can be omitted, yielding a set of relations equal in number to
the number of independent generalized speeds (which are the time derivatives of

generalized coordinates.)

A

Ny

Figure 2.1: 3D single pendulum model

To illustrate this approach, consider the spatial pendulum with mass m, in

Fig. 2.1, with a body-attached frame A = (Kl, 112, ./13) and a body-attached point A
12



at its mass center. The pendulum has three rotational degrees of freedom (DOFS).
The inertial reference frame is N = (1/\\11, Ny, ﬁg) and the inertial reference point is N.
Body A is connected to the ground by a spherical joint at the inertial reference point
N. If the vector of Euler parameters representing the spatial orientation of frame A

observed from the inertial frame N is designated e:

T
e = [60 er e 63} (2.1)

The angular velocity and the angular acceleration of this body observed from the

inertial frame are well-defined in [25]:

N(.UA = 2L (e)e = 91 Kl + 92 KQ -+ 92 2&3 (22)

NoA = 2L (e)é (2.3)

where € and e are the time derivatives of the Euler parameters and

—€1 € €3 —€2
L (e) = —€y —€3 € e (24)
—€3 €2 —€1 €

The position vector from the inertial point N to the mass center A and the

velocity of the mass center can be given as

Pyva = La A (2.5)
Vi = Yot xPyy = 2(Pva®)" L(e)e (2.6)

where, L4 is the half of the length of the rod, and ® is the cross product operator.

For a 3 x 1 vector X, the cross product operator is defined as

T 0 —I3 T2
X® == T ® = X3 0 —X1 (27)
T3 —XT2 T 0



Note that the matrix X® is a singular matrix.

The normalization constraint that must be enforced has the form,

2+ e +ed+el=cle=1 (2.8)

A standard elimination approach can be used to address this problem, but that in-
troduces a singularity. For example, if we choose é; as the dependent speed, we can

solve for it and eliminate it from subsequent equations:

61é1 + €2é2 + 63é3
€o

€y =

(2.9)

Equation (2.9) shows that eliminating é, will introduce a singularity in the EOMs
when ey — 0, and similarly if any other Euler parameter is chosen. However, the
Euler parameters must be constrained to prevent a singular mass matrix in the EOMs.
Here it is shown that elimination can still be used with a careful definition of the state
space.

To implement this constraint using the proposed approach, three quasi-speeds

and one auxiliary speed can be defined as

(751 91 —e1 €p €3 —E€9 éo
U9 02 —€y —€3 €0 €1 él L (e> .
u = e = Ee) e
us 03 —e3 e —e€1 € | |é2 el
Uy 94 € €1 €2 €3 ég
(2.10)

where w1, us and ug are the quasi-speeds, and u4 is the auxiliary speed; quasi-speeds
are defined as the non-existence of an antiderivative. Note that E (e) is an orthonor-
mal matrix, therefore

e = ETu (2.11)
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The equations of motion for this system can be expressed in the following form:

FY F
Fy Fy
= A(e)u + b(u,e) = I'(u,e) = (2.12)
Fy F
|7y P4

where b (u, e) is the vector of velocity forces, A (e) is the mass matrix, which is rank
deficient because of the use of Euler parameters (as discussed in the next paragraph),
and I" (u,e). The F; are generalized active forces and the F} are generalized inertia
forces.

The mass matrix A (e) for the system in Fig. 2.1 can also be calculated using

following formula [15] for kinetic energy, T,
2T =e"A(e)e=¢€" [ma Jy, Jv, + Ji a Iaa Ingoa] € (2.13)

where, the jacobian matrices Jy, and Jx,a are defined as

N IRELIC R0

J — MNw?  Nw?  INwA  GNwA = 2L (e
Nwh 0ég 0é1 0éa oés ( )

Thus, the mass matrix can now be expressed as,
Afe) =4L(e)" [mA (Pra®) (Paa®)" + IAA} L (e) (2.14)

Note that the matrix L (e) is a 3 x 4 matrix with the maximum rank of 3. While,
[mA (Pya®) (PNA®)T + IAA] is a 3 X 3 matrix with rank 3. For any two matrices A

and B, it can be said that

rank (AB) < min (rank (A) , rank (B)) (2.15)
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From (2.15), it can be concluded that the resultant mass matrix has to have rank 3
or less with size 4 x 4. Thus, the mass matrix has to be singular. Another simple
explanation for the singularity of the mass matrix is that a rigid body has a maximum
of 3 degrees of rotational freedom. Thus, if the mass matrix is 4 x 4 then it has to be
singular since the size of the mass matrix has to be n x n, where n is the degrees of
freedom. This conclusion applies directly to the single spatial pendulum in Fig. 2.1
but can be generalized to any system described in terms of the Euler parameters.
The set of dependent relations in Eqn. (2.12) can be reduced to an independent
set by eliminating u, and 4 from the EOMs, using the normalization constraint on

the Euler parameters
0=¢' e=u =6, — 0=c¢e de= 00, (2.16)

where, §6, is the virtual displacement associated with the auxiliary speed, uy.
This elimination is accomplished by considering the virtual work done on the

system:
4

W =0 = > (F-F;) b (2.17)
i=1
where, 06; are the virtual displacements associated with the quasi-speeds, u;.3, and

the auxiliary speed, uy. Combining Eqns. (2.16) and (2.17) yields,
* * * * 0
0 = (Fi— F)o0) + (Fy — F5) 00, + (Fy — Fy) 803 + (Fy — Fy) 067 (2.18)

which results in a reduced set of EOMs produced by eliminating u, and ty:

F T - iy F 1-
Fr| = A(e) |uy| +b(ue) = T(we) = |f (2.19)
Fi U3 Fy
where b (u,e) = by (u,e) is the vector of velocity forces, A (€) = Ay (€) is the
mass matrix, and T’ (u,e) = D'y (u,e) is the vector of generalized active forces. This

16



process of constraint elimination depends on a more general constraint embedding
approach discussed in Appn. A.2.
The governing kinematic and dynamic equations of the system can thus be

written in the following state space format

e ET u e
= | . ) = (2.20)
s A <I‘ _ b) N /2
where, 1y = wy = 0. This process can be generalized to any number of sets of

Euler parameters as long as the angular velocity considered reflects the frames that
define the particular rotation defined by those Euler parameters. Also, note that the
reduced 1 vector in Eqn. (2.20) is equivalent to half of the angular acceleration in
Eqn. (2.3) associated with the Euler parameters.

The transformation of the Euler speeds into quasi and auxiliary speeds yields
a clear delineation between independent and dependent EOMs. Thus, the dependent
EOM can be definitively eliminated; in contrast, it is unclear which Euler parameter
to choose as dependent. The proposed process of eliminating uy, @y and Fy — F; =0
(recall Eqns. (2.16) and (2.18)) is novel and yields a reduced set of EOMs with a full
rank mass matrix. Thus, it is possible to eliminate the dependent Euler parameter

without choosing one explicitly.

2.3 Simulation model

A three-dimensional double pendulum is used to illustrate the proposed method.
The model has two bodies, two cylindrical rods with length L and radius r, as shown
in Fig. 2.2. The two joints are spherical and so do not constrain spatial rotations of
the links. The rod attached to the ground link has a body attached frame A while

the rod with a free end has the body attached frame B. The inertial reference point

17



Gravity

Figure 2.2: 3D double pendulum model

N is defined at the joint at the ground link and the inertial reference frame is N =
(Nl, ﬁg, ﬁg) The mass centers of both bodies are points A and B respectively. Point
C is defined at the center of the spherical joint between the two links. The vector of
Euler speeds of body A with respect to frame N and of body B with respect to frame

A and the corresponding quasi- and auxiliary speeds are defined as,
T
éA = |:éA0 éA1 éAz éAS:| ua = E (eA) éA
T
€g = [éBo éBl é32 éB3:| up = E(eB)eB

The equations of motion are formulated using the proposed approach, which
is presented in detail in the Appn. A.1. The EOMs are also formulated using the
method in [34] and the one where integration update is done on rotation matrices. The
models are numerically integrated using the nonstiff variable step integrator ode45 in

MATLAB. This is a commonly used algorithm for numerical integration, which will
18
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Figure 2.3: Normality of Euler parameters for body A (RelTol = 1 x 107!, AbsTol =
1 x 1072 At =0.01)

be used here to examine the behavior of the proposed formulation of the EOMs. The
system is integrated with 10~ of absolute error and 10719 of relative error tolerances.
The system parameters and initial conditions are given in Table 2.1.

To validate the 3D double pendulum model, a check function based on the

conservation of energy is implemented:

AE = T, +V,— (To + Vo) (2.21)
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Figure 2.4: Normality of Euler parameters for body B (RelTol = 1 x 10719, AbsTol =
1% 1072, At = 0.01)

where, Ty and T; are the kinetic energy at the initial condition and 7th step of inte-
gration respectively, and V[, and V; are the potential energy at the initial condition
and 7th step of integration respectively. To conserve energy, the value of AE should
remain close to zero, if there are no errors in system modeling. However, due to the
computational errors, this value will not be exactly equal to zero. Thus, this function
also serves as a tool to gauge the performance of the presented approach. The results
of the simulation and the performance of the proposed approach are discussed in the

next section.
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Quantity Value Unit

L 0.3 m

T 0.05 m
ma, mp 1 kg

g 9.81 m/s?

en  [0.27315297 0.18150666 —0.15428524 0.93200796]" NA
es  [—0.13787739 0.35886182 0.25501366 0.88722941]" NA
éa [0 00 0] NA
ép [0 00 0" NA

Table 2.1: System parameters and initial conditions

2.4 Results and Discussion

This section provides the simulation results for the 3D double pendulum model
discussed in the last section for the time history of 10s. The computational time for
the proposed approach was & 17 seconds. That for the approach in [34] was ~ 56
seconds and for the rotation matrix update was ~ 27 seconds. Note that the 3D
double pendulum is a chaotic system. This means that a small error in computation
can produce vastly different final system states. Thus, this system was chosen as a
better performance measure among different techniques.

Herein, two metrics are used to analyze the accuracy of the proposed approach
which are the normality satisfaction and the change in total energy. The normality
satisfaction is checked by Eqn. (2.8) while the change in total energy is checked by
Eqn. (2.21).

The values of the normality satisfaction are given in Figs. 2.3 and 2.4. Note
that the norms for the proposed approach in Figs. 2.3 and 2.4 are in the order of 10~
which is two magnitudes smaller than the absolute tolerance of 107°. However, that
for the other approaches are in the order of 107!°. The change in total energy is given
in Fig. 2.5. For the proposed approach, it is on the order of the integration tolerance.

While that for the other approaches is larger than the integration tolerance.
21



1.3e-08

~1.4e-09

Change in Total Energy (J)

2 Reference|8]
o5km—- -Proposed
' Rotation Matrix Update -2.6e-08
-3 ! L L I
0 2 4 6 8 10

Time (s)

Figure 2.5: Change in total energy of the system for initial 10s (RelTol = 1 x 10719,
AbsTol =1 x 1079, At = 0.01)

A comparison of phase portraits, Euler parameters vs their derivatives, from all
three approaches are provided in Figs. 2.6 and 2.7 for the time history of 10 seconds.
Note that there is no observable difference in the system state trajectories and the
final system states, among the three methods being compared. This also shows that
the proposed approach does not affect the system behavior while providing results
that are energetically more consistent. The values of Euler parameters at different
times are provided in Tables 2.2, 2.3 and 2.4. Note that for all approaches, the Euler

parameter values are the same for the first 8 seconds.
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Figure 2.10: System Final state for ini-  Figure 2.11: System Final state for the
tial condition in Table 2.1 initial condition in Eqn. (2.22)

Another set of phase portraits is provided in Figs. 2.8 and 2.9. These phase
portraits were generated using the proposed approach. However, the initial Euler
parameter values differ slightly, which are given in Table 2.1 and Eqn. (2.22). Note
that the final system states are very different for such a small change in the initial
conditions of only one body. The final system states are shown in Figs 2.10 and 2.11.
The characteristic nonlinear and chaotic behavior of the chosen system is observable

in these phase portraits and is unchanged by the proposed approach.

T

ex = {0.2731520482 0.1815067144  —0.1542852873 0.9320082195}

. (2.22)

e = {—0.1378773929 0.3588618275  0.2550136679 0.8872294192}

2.5 Conclusion
This chapter showed that the proposed elimination approach is valid when using
the Euler parameter representation of spatial orientation. The work showed that the

normality constraint can be enforced without introducing singularities in the mass
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matrix and without explicitly designating one of the Euler parameters as a dependent
variable. A simulation showed that the proposed approach also yielded energetically
consistent predictions because the changes in energy remained on or below the order
of the numerical integration tolerance. Thus, the proposed approach provides a simple
means of addressing the dependency in Euler parameters in a manner that results in

an energetically consistent motion of the system.
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CHAPTER 3
SIMULATION OF A PARTICLE IN AN OPTICAL TRAP

3.1 Introduction

This chapter presents the simulation model for a particle in an optical trap.
Different forces acting on a particle are discussed here. This chapter also discusses
different methods used for numerically integrating the equations of motion of the
particle along with ways to reduce the computation time. The model scaling approach
is also discussed here.

An optical trap is formed when a laser beam is focused with an objective lens of
high numerical aperture (NA). A dielectric particle near the focal point experiences a
force due to the momentum transfer and due to the electric field from the scattering
of the laser. Figures 3.1(a),(b) and (c) describe the effect of a trap on a dielectric
particle in terms of the total force due to a typical pair of rays R1 and R2 of the
converging laser beam, under the assumption that the surface of the particle does
not reflect light. In this approximation, the forces F1 and F2 are entirely due to the
momentum change as a result of the refraction of incident rays R1 and R2. The forces
are shown pointing in the direction of the momentum change.

Figure 3.1(a) and (b) showcase an arbitrary displacement of the particle origin
P from the focal point f in the vertical direction, the magnitudes of F1 and F2 are
the same and their vector sum gives a net restoring force F directed back to the focal
point, and showcase the stability of the trap. Similarly, in Fig. 3.1(c), for arbitrary
displacements of the particle center P from the focal point f in the horizontal direction,

the magnitudes of F1 and F2 are different(shown by the change in thickness) and
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Figure 3.1: Arbitrary displacement of a trapped particle in the vertical direction, (a)
and (b), and in the horizontal direction, (c)

their vector sum gives a net restoring force F directed back to the focal point. This
difference in F1 and F2 arises from different intensities of the rays refracting through
the particle. The shaded red bar at the bottom of Figs. 3.1(a),(b) and (c) represent

the Laser’s intensity profile which follows a Gaussian distribution.

3.2 Model Description and Equations of Motion
The simulation model is based on a simple dynamic model of a sphere in a fluid
medium. The equations of motion for a particle trapped in an optical tweezer can be

given as
Aq=T(q,q,?) (3.1)

where, A is known as the mass matrix, q is a 3 X 1 generalized acceleration vector
(also the cartesian acceleration in this case) and I'(q,q,t) is a 3 X 1 vector repre-
senting generalized forces. The generalized active forces for an optical tweezer can be
expanded into

I'(q,q,t) = F, + F, + F; + F, + F, (3.2)
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as shown in Fig 3.2. Where, F, represents the gravitational force, Fy, is the buoyant

A

Direction of
Laser Beam
Propogation

AZ

Figure 3.2: Forces acting on a particle in an optical trap

force, F, represents the viscous drag on the particle by the fluid, F; represents the
effect of the laser beam interacting with the particle and F, represents the random

forces associated with Brownian motion.

3.2.1 Gravity and Buoyancy

The gravity and buoyancy forces are set as
T

T
Fo = mg = [() 0 —mg} F,= —p,Vg = {O 0 png] (3.3)
where, ¢ is gravitational acceleration, p,, is the density of the surrounding medium

and V is the volume of the surrounding medium displaced by the submerged particle.
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It is clear from Eqn. (3.3) that the gravitational force act in the negative z-direction

while the force due to buoyancy act in the positive z-direction.

3.2.2  Viscous Damping

To calculate the drag force acting on the particle, it is important to consider the
characteristics of the surrounding medium. Knudsen number, Kn, can be used here
to determine whether the fluid should be modeled as a continuum or as a discrete
molecule system. The Knudsen number is defined as the ratio of the mean free path
of the molecule of the surrounding medium, water here, and the characteristic length
of the system under observation. The system under consideration has three different
particle diameters 500nm, 990nm and 1950nm. The mean free path of the molecule
of the surrounding medium is the same, A, ¢, = 0.3nm, for all three cases. This yields
the Knudsen number of 0.0006 for the 500nm particle case. Since Kn = 0.00006, is
less than 0.001, the surrounding medium can be considered as a continuum. Stokes’

Law can be used to compute viscous drag force

T

where, ¢,, ¢, and ¢, are the translational velocities of the particle in each direction,
[ is the dynamic viscosity of the fluid medium and r is the radius of the particle.

It should be noted that the viscous drag acts opposite to the velocity of the particle.

3.2.3 Laser Beam Force

Beam force calculation for optical trap varies based on the size of the particle,
r, relative to the wavelength, A, of light used to trap it. At the macroscopic scale,
r > A, calculations based on the Ray-optics regime[4] are used. On the contrary,
at the microscopic scale, r < A, calculations based on the Rayleigh regime[88] are
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used. Calculating the beam force at the mesoscopic scale, r &~ A, is mathematically
the most challenging [50]. At this scale, the beam force can be calculated using the
Generalized Lorentz-Mie theory (GLMT)[30, 65].

The total force from the laser beam is generally divided into two components.
First is the scattering force, F,; , which acts in the direction of the laser propagation.
The second is the gradient force, Fy,, which acts in the direction of the laser intensity
gradient. The most commonly used laser intensity profile is a Gaussian profile, also

known as the lowest order Transverse Electromagnetic (TEMgy) mode[101], which is

Io(p) = 224 exp (—fﬂi) (3.5)

Tw?

defined as[96],

where, w is the beam radius, P, is the total beam power and p is the radial distance
from the center of the beam.

In the Rayleigh regime, since the particle is extremely small compared to the
wavelength of the laser, it is modeled as a dipole in the electromagnetic field of the
laser beam. The scattering force from the laser is proportional to the light intensity
at the location of the particle while the gradient force is proportional to the gradient

of the light intensity around the particle.

F Igon,, 1287518 (m? — 1\
= g =
b c 34 m? + 1
(3.6)
2T o 5 (m*—1
Flg = QVIO o =n,T (m2 I 2)

where, o is known as the scattering cross section, « is known as the polarizability
of the particle, ¢ is the speed of light in vacuum, n,, is the refractive index for the
medium, and m is the ratio of the refractive index for the particle (n,) to the refractive

index for the medium.
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In the Ray-optics regime, the laser beam is discretized into several rays, and
the approach of geometric optics is used to calculate the forces exerted by each ray on
the particle. The contribution of each ray to the total scattering and gradient force

on the particle is[4]

NP [ T? [cos(20 — 2¢)) + R cos 20
F, = 1+ Rcos260 —
b c | o 1+ R?+2Rcos2¢
(3.7)
nmP | T? [sin (26 — 2¢) + Rsin 20|
F, = Rsin 26 —
o c | S 1+ R?+2Rcos2¢

where, P is the power of the ray under consideration, 6 and ¢ are the angle of incidence
and the angle of refraction respectively, and R and T" are the Fresnel Refraction and
the Fresnel Transmission coefficients.

The third and more generalized approach known as the Generalized Lorenz-Mie
theory (GLMT)[30, 65] computes the laser force on the particle using the conserva-
tion law of electromagnetic wave momentum. The total beam force, including both
scattering and gradient, is computed by evaluating the flux of the Maxwell stress
tensor through any virtual surface enclosing the object. The equation for this force
is given as,

F, — f T, - n,dS (3.8)
S
where, n; is the unit vector normal to the enclosing surface, S, and T;; is the Maxwell
stress tensor. With recent advances in this field, it is easy to calculate the beam forces
for both smaller and larger diameter particles[100]. However, it also comes with large
computational costs exponentially increasing with the difference in particle size and
wavelength.

The simulations and experiments provided in this work are done on particles

with diameters of 500nm, 990nm and 1950nm. The wavelength of the laser used is

1064nm. Note that all three particle diameters are very close to the wavelength of
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the laser. Thus, this work uses a MATLAB toolbox[64, 53] for computing the laser

beam forces using GLMT.

3.2.4 Brownian Motion Force

Stochastic forces are modeled to represent the thermal noise and interactions
between modeled and non-modeled bodies. These forces essentially represent the
Brownian motion. It is modeled as random forces acting at the mass center of the

particle. They are implemented as Gaussian White noise. The random forces are

defined as

T

Fy = 2kgTPn(t) = 2ksTB |n,(t) n,(t) n.(t) (3.9)

where, each component of random force, 7;(t), is an independent random Gaussian

process where for all ¢ and #'[80]
Em(t)] = 0 Elnt)m(t)] = o(t —1) (3.10)

The above equations imply that the mean value, E [n;(t)], of the forces associated
with the Brownian motion is zero and the values at two distinct times, ¢ and ¢, don’t

correlate, E [n;(t)n;(t')], with each other.

3.2.5 Complete Model
Substituting the equations for all the forces into the equation of motion for the

particle (3.1) yields

m{ = mg — pn Vg —6mp,rq— Kq ++/2kgTBn(t) (3.11)
—_~ == Y—— ~ ——
Fy Fy Fq=8q F, Fs

Note that the laser force is added here as a linear spring using a stiffness matrix K.

This is true when the particle is in a close vicinity of the focal point[62], regardless

38



of the approach used for calculating the laser beam force. This approximation helps
with some simple analysis performed in later sections. However, the simulations are

still performed by calculating the laser force using GLMT.

3.3 Model Scaling Approach
A quick analysis of Eqn. (3.11) shows that a 2um diameter glass particle will
have the mass of m = 8.3776 x 10~ kg and the damping coefficient of 3 = 1.8887 x
1078 % This imbalance between mass and drag coefficient, O(1077), makes the
system stiff. The proposed method tackles the stiffness problem by first determining a
small number from the model, which in this case is m/8 = 4.4356 x 10~7 s. Rewriting
Eqn. (3.11) yields,
0:5(15)(1—%F+q:8i_j—%F+q (3.12)

where ¢ = 4.4356 x 1077 is unitless and F is a sum of all the forces except the drag

force. This small parameter ¢ is used to introduce the slower time scales as
Ty = % T =e't Ty =t . T, ="t (3.13)

The time derivatives q and q can now be expanded into an asymptotic series as

d 0 0
Q_0q+51q

+ &2 Jq

14
at Com, farn tan " (3.14)

and
Pq =, ; 0%
qQ=—> = ted ——— 3.15
1= ar szaﬂ-an (3.15)
=0 7=0
Substituting these expansions into Eqn. (3.12) and rearranging the terms in the

increasing order of ¢ yields

0 1
" g _ + £ —_ + —_ _'_ - . |6
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Note that the first term on the right side of Eqn. (3.16) contains all generalized
active forces. The second term contains generalized inertia forces and the first set
of higher-order terms. Considering how ¢ is defined, the difference between £° = 1
and e! = 4.4356 x 1077 is fairly large, and so, it is necessary for the first term to
largely cancel if the right side of Eqn. (3.16) is equal to zero. From the standpoint
of multi-body dynamics, if forces cancel each other, they do no work and produce no
motion. Such forces can thus be omitted from equations of motion.

The scaling of the generalized active forces is achieved by decomposing the first

term of Eqn. (3.16) into small and large parts as

0 (5—% _F (g’ t)) — (a1 + as) (g—j?o _F (g’ ”) (3.17)

where, a; +as = €® = 1 and a; > a,. Substituting Eqn. (3.17) back into Eqn. (3.16)

yields

B dq F(q,t) dq F(q,t) (. 9Pq | Oq
0_a1<8To 3 + as T, 3 +e maT§+8T1 +... (3.18)

As discussed, the assumption here is that the large part of generalized active forces
I' (q,q,t) cancel to the extent that it can be removed from Eqn. (3.18), yielding a

second-order model of the form

_(9a F(q) *q | Oq
o_az(a—%—7>+el(a—Tg+a—Tl)+... (3.19)
.0 = feq — asF (q,1t) + ax8q (3.20)
-.m(q) q+ axfq = asF (q,1) (3.21)

Note that the differential equation above is similar to Eqn. (3.12) except here the

external forces are scaled by a scalar, as.
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Quantity Definition Units Value

T Temperature K 293.15
kp Boltzmann Constant kg -m?/s? - K 1.38 x 10723
Ds Particle density kg/m3 2000
s Particle radius m 1.00 x 107
g Gravitational Acceleration — m/s? 9.80665
Pm Density of fluid kg/m? 998.2071
L Dynamic viscosity of fluid  kg/m-s 0.001002
N Refractive index of particle Unitless 1.45
N, Refractive index of fluid Unitless 1.33
c Speed of light in a vacuum m/s 299792458
NA Numerical aperture Unitless 1.2
A Laser wavelength m 1.06 x 10°¢
Py Laser Beam Power kg - m? /s 3.00 x 107!
q Initial position m [—0.16 0.35 0.0] x 10~°
q Initial velocity m/s (0.0 0.0 0.0] x 107¢

Table 3.1: System parameters and initial conditions used for the simulation

3.4 Simulation and Experimental Setup

The scaled model for a particle in an optical tweezer, developed in the previ-
ous section, should not be integrated using an ODE solver. This is because it has a
stochastic term in the form of the Brownian Motion force, F,. Here, the scaled sys-
tem of differential equations, Eqn. (3.21), is solved using five different SDE solvers
available in Julia programming language’s package DifferentialEquation.jl. More-
over, the statistical nature of the SDEs implies that the solution of these SDEs will
have a mean and variance. There are two possible approaches to achieve such a
solution. One is by running numerous simulations and then averaging the results
to obtain the mean and the variance[49]. An alternative approach to this is to use
the Fokker-Planck equation|[74] which operates in the probability space. The Fokker-
Planck equation is a partial differential equation (PDE) that, when solved, results in
the probability density function of the particle’s position over time. The solution may

require the use of analytical or numerical approaches[103] to solving PDEs depending
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on the external forces acting on the system. Here, the first approach is used. To
achieve good average and variance values, each solver computes 10000 trajectories
with the same initial condition for both scaled and unscaled systems. The initial
condition and the system parameters are given in Table 3.1. The simulations were
run on an AMD Ryzen 5 5600X CPU with 32GB RAM. A sample of the code to run
sich simulations is available in Appn. F.

The experimental data was obtained by optical trapping of a 2um diameter
silica particle. The experiments were conducted by Dr. Peter Goodwin at the Cen-
ter for Integrated Nanotechnologies (CINT) at the Los Alamos National Laboratory
(LANL). A simplified version of the experimental setup used at CINT to obtain the
experimental data is shown in Fig. 3.3. The detection laser, operating at 670nm, is
used to illuminate the particle and capture its position using a Quadrant Photodiode
Detector (QPD). Filtered green light from an incandescent lamp was used to illumi-
nate the field of view of a camera that simultaneously recorded the trajectory of the
particle falling into the optical trap. It should be noted that these devices can only
accurately measure the particle’s position in the focal plane, which is perpendicular
to the direction of laser propagation at the sample stage. After a particle is trapped,
the trapping laser is occluded, by electronic modulation of the trapping laser, to allow
the particle to diffuse by Brownian motion. The occlusion is removed after approxi-
mately 100 ms and the particle returns to the focal point. This unoccluded portion

of the particle’s trajectory is compared with the simulation.

3.5 Results and discussion
Figure 3.4 plots simulation data against the experimental data. Here, a single
simulated trajectory from each simulation is compared with the experimental data

using different scaling factors, a; = {1,0.1,0.3,0.01}. The 0 value on the displacement
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Figure 3.3: Experimental setup of the Optical Tweezer at the Los Alamos National
Laboratory
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Figure 3.4: Simulation result at different scaling factors, as = 1(—), ag = 0.3(—),
ay = 0.1(—), aa = 0.01(—), and experimental data from the camera(e) and
QPD(—)

axis of both Figs. 3.4a and 3.4b represent the focal point of the optical tweezer.
Note that regardless of the scaling factor, the overall trajectory from each simulation
matches with the experimental data. It can also be observed that the high-frequency

detail in the particle’s trajectory reduces as the scaling factor is decreased.
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Figure 3.5: Statistics of the simulation result at different scaling factors
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A comparison of different scaling factors is shown in Fig. 3.5. This comparison
provides a statistical summary of 10,000 simulations. Note that as the system is
scaled more, the mean trajectory and variance deviate from the unscaled system.
However, this deviation is more pronounced in the variance values than in the mean
trajectory. The computational time required for each solver for the different cases
is given in Table 3.2. Although the SDE solvers are quite fast on their own, it is
clear that the scaled system requires much less computational time than the unscaled
system. However, it is important to choose a scaling factor carefully so that the
final solution does not deviate much from the unscaled system. Also, note that some
solvers did not converge (DNC) to a solution at a smaller scaling factor. The choice

of an appropriate scaling factor is dependent on the PSD analysis which, is discussed

in the next chapter.

Scaling Factor

Method 1 0.3 0.1 0.01
TmplicitEM 163.42 79.33(51.4%) 47.54(70.9%) 24.48(85.0%)
ImplicitEulerHeun 184.55 80.46(56.4%) A47.74(74.1%) 25.41(86.2%)
Tmplicit RKMil 131.95 58.78(55.4%) 35.41(73.1%) 18.03(86.3%)
ISSEM 204.87 96.37(52.9%) 55.41(72.9%) DNC
ISSEulerHeun 204.27 97.36(52.3%) 55.61(72.7%) DNC

Table 3.2: Computational time in seconds, and percent decrease in computation time
as compared to the unscaled system for different adaptive SDE solvers with different
scaling factors

3.6 Conclusion
A novel scaling approach based on the method of multiple scales was discussed
in this work, which reduces the computational time required to solve stiff stochastic

differential equations using modern adaptive SDE solvers. An example of a 2um
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silica particle in an optical tweezer was used to present the effectiveness of the pro-
posed approach. It was also shown that even though the scaling approach changes
the differential equations of the system and reduces the high-frequency oscillation,
the solution remains in the close vicinity of the experimental data. The proposed
approach required 82.47sec of computation time on average for the scaling factor of
0.3, which is more than twice as fast as the computation time required to solve the

unscaled system.
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CHAPTER 4
UNDERDAMPED MOTION AND PSD ANALYSIS

4.1 Introduction

The model developed in the last chapter includes forces that contribute the
most to the behavior of a particle in an optical tweezer. However, the underdamped
behavior observed in the old experimental data[34], presented in Section 1.4, could
only be replicated using the scaled model. Furthermore, current literature [72, 63,
62, 70] also suggests that the conventional model will not predict the underdamped
motion observed in the experimental data. This chapter provides a mathematical
analysis and discussion of why this is the case and suggests a new experimental
investigation for further analysis of this phenomenon.

A Power Spectral Density (PSD) analysis[8, 9] is commonly used for calibrat-
ing the optical tweezers, i.e. computing the trap stiffness. This chapter presents a
theoretical background on the PSD analysis and compares the PSD of the scaled and
the unscaled system. This comparison also showed a discrepancy between the scaled
and unscaled model similar to the particle trajectories[43]. The simulated PSD of the
scaled model provides a different profile than previously observed[44, 90, 52]. How-
ever, the lack of data from the old experiment increases the need for new experiments
to compare the PSD profile. This chapter provides a discussion on the comparison
and defines the requirements for future experiments.

This chapter also discusses an approach to take advantage of the PSD analysis
to estimate the value of the scaling factor without the use of experimental data.

However, this approach relies on keeping the PSD profile close to the one given by

48



the unscaled model. Thus, the underdamped behavior is not shown by this approach

unless the unscaled model shows the underdamped behavior.

4.2 Investigation of the underdamped motion
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3 2.5
5 2t |
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Figure 4.1: Comparison of experimental, simulated unscaled, and simulated scaled
trajectory of 1950nm diameter particle

A comparison of the experimental data with the simulated trajectory from the
unscaled model and the scaled model for 1950nm, 990nm and 500nm diameters par-
ticles is shown in Figs. 4.1, 4.2 and 4.3 respectively. Note that there is an observable
overshoot of ~ 100nm in the experimental trajectory of the 500nm diameter particle.

Such an overshoot is not visible in the trajectory of the 1950nm diameter particle.
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Figure 4.2: Comparison of experimental, simulated unscaled, and simulated scaled
trajectory of 990nm diameter particle

Moreover, the simulated trajectory of the unscaled model does not have a noticeable
overshoot near the focal point for any particle size.

The lack of underdamped motion in the unscaled model can be explained by
analyzing a simplified version of the particle’s EOMs given in Eqn. (3.11). Note
that Eqn. (3.11) is similar to a spring-mass-damper system with a step input if the
Brownian motion forces are ignored. Thus, a rearranged version of Eqn. (3.11) can
be given as

mq + 67, rq+ Kq = (m — p,V)g (4.1)

Assuming that there is a 1.95um diameter polystyrene (p = 1060kg/m?) particle in
the optical trap surrounded by water, the mass of the particle would be m ~ 4.1154 x
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Figure 4.3: Comparison of experimental, simulated unscaled, and simulated scaled
trajectory of 500nm diameter particle

107%kg and the damping coefficient would be 8 = 1.8415x 108N -s/m. These values
can help us estimate the trap stiffness needed to achieve the underdamped behavior

using the equation of damping ratio, given as

p

= <1 4.2

T e (42)
2

k> f— =2.0601 x 102N /m = 2.0601 x 10*pN/um (4.3)
m

The calculation above shows that the trap stiffness must be larger than 2.0601 x
10*pN/um for a 1.95um diameter particle to show a visible underdamped behavior.
This situation becomes worse as the particle size reduces. For instance, the trap

stiffness will have to be at least 8.0342 x 10*pN/um for a 500nm polystyrene particle
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to show an underdamped behavior. The stiffness achieved by an optical tweezer for
such an experiment is typically limited to 1000pN/um [75, 87, 59, 79]. Thus, it is
clear that the unscaled model should have an overdamped response near the focal
point as per this theoretical analysis.

A similar analysis can be performed for the scaled model, Eqn. (3.21). The

rearranged scaled EOMs for a particle can be given as
mq + a6y, rq + as Kq = as(m — pp,,V)g (4.4)

Here, the value of the scaling factor, as, is chosen to match the simulated trajectory
with the experimental data. Table 4.1 gives the scaling factors for different particle
sizes. Values for these scaling factors can be used to estimate the trap stiffness
required, from Eqn. (4.2), for the particles to show the underdamped motion. Table
4.1 also shows these trap stiffnesses, the trap stiffness required for the unscaled model
to show the underdamped motion and the estimated experimental trap stiffnesses[42].
Note that the stiffness required to show an underdamped motion is much lower in the

case of the scaled model as compared to the unscaled model.

Particle Diameter (nm) | 1950nm 990nm 500nm
Scaling Factor 7x 1073 1x1073 1x107°
Experimental Stiffness (pN/um) 61.54 133.34 200

Unscaled model Stiffness (pN/um) @¢ =1 | 2.0601 x 10* 4.0577 x 10*  8.0342 x 10*
Scaled model Stiffness (pN/um) Q¢ =1 1.4420 x 10> 4.0577 x 10" 8.0342 x 107!

Table 4.1: Trap stiffness comparison between the experiment, unscaled model and
scaled model for underdamped motion of particles with different sizes

Another version of such analysis can be presented from a fluid dynamics per-
spective. The combination of the particle sizes and the fluid environment of the
optical trapping experiment yields a situation that can be characterized by a low
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particle Reynolds number (Re, < 1). The Re, is meant to characterize the properties
of the fluid based on the motion of an object moving through it. Particularly, it char-
acterizes the fluid viscosity in relation to the terminal velocity of an object moving

through the still fluid. The Re, is defined as,

pmsL — sL  Inertial Forces

Re, = (4.5)

L V,,  Viscous Forces

where, p,, is the fluid’s density, s is the maximum relative velocity between an object
and the fluid, L is a characteristic length (the diameter of the particle here), p,, is the
dynamic viscosity of the fluid, and v, is the kinematic viscosity of the fluid. If the
fluid is not moving or still, s is the object’s terminal velocity. The Re,, is interpreted
as representing the relative importance between inertial and viscous forces. Thus, a
small Reynolds number suggests that the inertia forces would be smaller than the
viscous damping. The Re, for all of the experiments are small, Re, < 1072, meaning
that all the particles should show an overdamped motion.

The Re, over time for the differently sized particles are shown in Figs. 4.4
through 4.6. The Re,, for the 990nm particle is smaller than or equal to 1 x 1073, see
Fig. 4.5. These small values of the Re, should indicate overdamped motion, but the
previous experimental results contradict this conclusion. Even more telling are the
results for the 500nm particle in Fig. 4.6 where Re, < 3 x 10~*. This should indicate
an even greater inclination toward the overdamped motion of the 500nm particle,
similar to what was discussed through the damping ratio calculation near Eqn. (4.2).
However, the previous experimental data in Fig. 4.3 indicate just the opposite, a
greater inclination toward underdamped motion. This is a significant contradiction
for the predictions of a low Re,,.

The discrepancy between the experimental data and the trajectories from the

unscaled model suggests that the model is either missing some forces or the force
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Figure 4.4: Particle Reynolds number (Re,) and absolute velocity for 1950nm diam-

eter particle

models used are not accurate. The match achieved between the simulation and the

experiment by the use of the scaled model strengthens the hypothesis that the force

models used for damping, laser beam or both might be inaccurate. However, it was

difficult to pinpoint the source of this discrepancy due to the low time resolution and

the lack of repeatable experimental data. Thus, it was necessary to do the experiments

again to collect new high-resolution, reliable and repeatable data.
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4.3 PSD Analysis
A particle trapped at the focal point of an optical trap has different Brownian
motion characteristics as compared to a particle freely moving in a fluid. This is

mainly due to the external laser forces acting on the particle. The power spectral

density analysis takes advantage of this property to estimate the stiffness of the optical
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trap experimentally [8, 9]. For this analysis, let’s consider the one-dimensional version

of Eqn. (3.11) given as

M, + Bds + kuads = 0(t)/2k5TB (4.6)

where, m is the mass of the particle, § is the Stokes drag coefficient, k., is the
optical trap stiffness in x-direction, kp is the Boltzmann constant, 7" is the system

temperature and 7(¢) is a random Gaussian process as discussed in Section 3.2.4.
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Note that the gravity and buoyancy forces are ignored here since those are smaller
compared to the laser forces.

The power spectral density can be defined in three different equivalent ways.
Here, the definition via finite Fourier transforms|7] is used since it will be directly
applicable to both the experimental and simulated data. The power spectral density,

for a recording of a particle’s position over a time period T}, can be given as

P(f) = = l@(f) (4.7)

where ¢, (f) is the Fourier transform of the particle’s position in the x-direction. This

can be computed by calculating the Fourier transform of Eqn. (4.6) as shown below,

m(i2m )2 (f) + B2 )Gu(f) + kowe(f) = 1(f)/2kpTB (4.8)

V2kpT (3 o VD/2r?
kyp — 4mm? f2 + Ziﬁwfn(f) T fo—2mef? + an(f) (4.9)

where, D = kgT/[ is known as Einstein’s diffusion constant, f. = k., /27 is known
as the corner frequency, ¢ = m/f as defined in Secc. 3.3 and 7(f) is the Fourier
transform of the Gaussian white noise. The absolute square value of §,(f) can be

computed by multiplying it with its complex conjugate, ¢(f), as shown below

_ 5 /D /2m? VD272
()" = A oy Ry woy Z.fn(f)n (f) (4.10)
@ (PP D/2n () (4.11)

TSR (L dmef) 2t At f
The power spectral density of Gaussian white noise is 1[7]. Thus, the value of |7(f)|?,
using the definition of the power spectral density, would be |7(f)|* = T,/2. The power

spectral density of the particle’s position can now be defined as,

B D /2r?
24 (1 —Aref.) f2 + Am2e2 f4
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The trap stiffness from the experiment can thus be calculated by fitting the equation
above to the PSD of the particle’s position, measured using a high-speed camera or
a quadrant photodiode. This allows the value of fc to be estimated, which directly
relates to the trap stiffness. Equations similar to (4.12) including different models for
fluid forces are available in [8, 9]. The MATLAB code for computing the PSD from
experimental data is provided in Appn. J.2.1 and the code for fitting Eqn. (4.12) to
the PSD generated from the experimental data is provided in Appn. J.2.5.

Note that the equation of the PSD of the particle’s position, Eqn. (4.12), is for

the unscaled model. Thus, for the scaled equation of motion,

MGy + a2Bq, + askprqe = aon(t)\/2ksT (4.13)

the equation of the PSD can be given as

2 ~ 2 D/27T2
P(f) = = |a.(f)? = 4.14
( ) Ts |q ( )| fc2+ (1_ 47;€fc) f2+ 47;2282]04 ( )
2 2

Figure 4.7 shows the equation above plotted with different scaling factors for 2um
particle diameter. Note that amplitudes at higher frequencies decrease as the scaling
factor is decreased. This was visible in the simulation plots discussed in Section 3.5.
However, decreasing the scaling factor decreases the computation time as well, as was

shown in Table 3.2, which provides the incentive to reduce the scaling factor.

4.4 Choosing a Scaling Factor

From the EOMs of the particle, note that the sampling rate should be on the
order of the relaxation time, i.e. 7 = m/3 = 4.4356 x 10~ "sec for a 2um diameter
particle, to observe the transients in the particle’s velocity. The sampling rate for
the experimental data collected using a camera is generally limited to ~ 25kHz, or to

~ 100kHz if a quadrant photodiode is used. Thus, the velocity transients will not be
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Figure 4.7: Theoretical PSD at different scaling factors for 2um particle (the unla-
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visible in the experimental trajectories. This information can be used to choose an
appropriate value of the scaling factor.

The trends shown in Figure 4.7, i.e. the effect of scaling the EOMs on the PSD
of the particle’s position, can be observed in the simulation data given in Figure 4.8
as well. To provide a baseline for comparison, the PSD from the theoretical Eqn.
(4.12) for the unscaled system, a; = 1, and that of the experimental data are given
in Figure 4.8a. Note that the data for experimental PSD has frequency values up
to 50kHz only, which is half of the sampling frequency of the QPD at 100kHz. It
can also be observed that the experimental PSD deviates from the theoretical plot
at higher frequencies. This is attributed to the sensor noise. Rest of the subplots in
Figure 4.8, i.e. Figure 4.8b to Figure 4.8e, compares the PSD from the theoretical
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Eqn. (4.12) for the unscaled system and the PSD obtained from the system simulated
with different scaling factors.

The PSD obtained from the simulation data for as = 0.3, Figure 4.8c, provides
the closest match to the theoretical PSD of the unscaled system throughout the
entire frequency range, ~ 100kHz. The PSD computed from simulation data loses
high-frequency information as the scaling factor is decreased, as suggested in Figure
4.7. However, all the scaling factors yield similar corner frequency values, f., which
is a direct measure of the trap stiffness.

Note that if the simulation data in Figure 4.8 is input to a curve fitting calcula-
tion [8, 9], it will attempt to match the unscaled PSD, Eqn. (4.14) with ay = 1, to the
scaled data. This may yield vastly different values for the corner frequencies in each
case. This wide variation can be reduced by limiting the data for the curve fit down
to a smaller frequency range, as the scaling factor is decreased, where the discrepancy
between scaled and unscaled system is less according to Figure 4.7. The result of this
exercise is shown in Table 4.2 where the corner frequencies remain somewhat close to

the unscaled one.

Table 4.2: Corner frequency value for systems with different scaling factors

Scaling Factor Corner Frequency Frequency Range

1 541.2Hz 1Hz - 20kHz
0.3 525.6Hz 1Hz - 20kHz
0.1 498.6Hz 1Hz - 10kHz
0.01 478.0Hz 1Hz - 2kHz
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4.5 PSD of particles from old experiments

The experimental PSD from the old experiments cannot be computed since
the high temporal resolution data for a long time period is not available. Thus, the
PSD for old experiments is estimated by first matching the trajectory of a simulation
to the experimental trajectory and then using the corresponding scaling factor to
compute the PSD with the help of the simulation. The estimated PSD for each
particle size is provided in Figs. 4.9, 4.10 and 4.11. Note that for the 1.95um diameter
particle, the estimated PSD matches well with the theoretical PSD for a wide range
of frequencies. However, the estimated PSD of 0.99pm and 0.5pm diameter particles
differ significantly from the theoretical PSD.

The PSD estimated for the old experimental data provides another parameter
that can be compared with future experimental data. It can be noted that if the
particle’s motion shows an underdamped behavior, then the PSD would achieve a
distinct peak before it starts to reduce at higher frequencies. Such a behavior has been
observed experimentally in the past [28] where the cause of the peak was attributed
to hydrodynamic memory. However, this study used melamine resin particles with
diameters between 2 and 3 um and suspended them in acetone, which are different
experimental parameters than being analyzed here.

The PSD profile of the scaled EOMs of the 500nm diameter particle also sug-
gests that there might exist a discrepancy between the experimental conditions and
the simulation model. Such discrepancies may include the hydrodynamic memory[28]
discussed in the last paragraph, laser misalignment and aberrations [95, 76], thermal
effects due to local heating [19] or other fluid effects [26]. Unfortunately, enough data
is not available from old experiments for the analysis of these discrepancies. Thus,

setting up a new experiment and collecting more data is necessary.
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4.6 Suggestions on new Experimental Setup

Note that the possible discrepancies between the experiment and simulation
model, discussed in the last section, can be classified into two broad categories corre-
sponding to fluid or laser forces acting on the particle. Two experiments can be set
up to isolate the effects of each major force and analyze them in detail.

One of the experimental setups would be an optical trap designed to minimize
the effects of beam misalignment and aberrations along with a well-defined laser
beam profile. This will achieve a closer match between the laser beam forces in
the experiments and the simulation. Once achieved, trap-release-retrap experiments
can be conducted where a trapped particle can be released and retrapped within a
few milliseconds. These experiments will help investigate the underdamped motion
observed in the trajectory of a 500nm particle being trapped. On the other hand,
the Brownian motion of a trapped particle can be recorded for long time periods to
perform PSD analysis and look for the peak in the PSD profile. This setup and new
results are discussed in the next chapter.

The other experimental setup can be designed to isolate the effects of fluid forces
on the particle. The eventual goal would be to make particle transport through an
“L” shaped microchannel. If there are fluid forces that do not adhere to the standard
Stokes drag model [24], then the particle’s trajectory would be different downstream
of the microchannel than expected. However, to observe this behavior, it will be
important to track single particle trajectories from a known position upstream of the
microchannel. This can be achieved by designing an electrical trap that relies on
the dielectrophoretic (DEP) force[51] generated by a strong oscillating electric field.
This experimental setup and the results are part of future work and thus will not be

discussed here.
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4.7 Conclusion

The existence of the underdamped motion was investigated here for both the
unscaled and scaled equations of motion. It was shown why the current unscaled
model would never predict the underdamped motion for the experimental scenario
being analyzed. A power spectral density analysis, commonly used to calibrate op-
tical tweezers, was introduced, Eqn. (4.14) and Fig. 4.7, which concretely showed
that decreasing the scaling factor of a stochastic differential equation model increases
the loss of high-frequency content in the resulting motion. The idea of choosing an
appropriate scaling factor, based on the desired preservation of high-frequency details
in the PSD profile, was proposed. An example of a 2um silica particle in an optical
tweezer was used to present the effectiveness of this idea. PSD profiles for the old
experimental data were generated, where the scaling factor was chosen by matching
the simulated and experimental particle trajectories. It was shown that there might
exist a peak in the PSD profile of the particle that showed the underdamped motion.

Based on these analyses, possible discrepancies between the simulation model
and the experiment were identified. Two experimental setups were suggested to isolate
the effects of different forces acting on the particle so that the suspected underdamped

motion could be analyzed in further detail.
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CHAPTER 5
EXPERIMENTAL EXPLORATION OF THE UNDERDAMPED MOTION

5.1 Introduction

The new optical trapping setup developed to further analyze the suspected
underdamped motion is discussed in this chapter. Note that the goal is to minimize
the laser aberration in the optical trap. Another goal is to keep the experimental
parameters, like the trap stiffness, particle material, NA of the objective, etc. similar
to the previous experiment.

This chapter also discusses the experimental procedures that were followed. The
simulation can compute the correct laser forces only if the laser beam profile, used
in the simulation, matches the one in the experiment. The procedures provided here
were designed to achieve the best laser beam alignment and profile measurement for
every experiment.

The data collected from the experiment is huge and in the form of images. Thus,
all the data needs to be compressed for better storage and processed to extract the
position of the particle. This chapter discusses different techniques of data compres-
sion and image processing and also touches upon the advantages and disadvantages
of each.

Finally, the new experimental data for 2pum, 1um and 500nm diameter particles
is presented in this chapter. Data for both types of experiments, the Brownian motion
of a trapped particle (referred to as the Brownian motion experiment) and the trap-

release-retrap (referred to as the TRR experiment), is discussed here.
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5.2  Experimental Setup

A simplified version of the optical tweezer platform along with the imaging
setup is shown in Fig. 5.1. A continuous wave DPSS laser, Excelsior from Spectra-
Physics Inc., beam with 1064nm wavelength and 800mW power was used to trap such
particles. This laser was chosen because of its ability to produce an intensity profile
that is close to Gaussian, which is commonly characterized by the beam quality factor
(M?) being close to 1 for TEMy, modes. The output beam from the laser unit has a
diameter of 0.45 4+ 0.05mm. However, note that a Gaussian function spans to +oo.
Thus, the beam diameter is defined as 1.7 times the full width at half maximum. This
is discussed further in the next section.

A shutter was developed in-house to block the laser at desired times. The goal
was to achieve low closing/opening timing. This was achieved by repurposing a dead
hard disk drive (HDD). Hard drives contain a voice coil (actuator) that moves at the
speed of &~ 2900° /s. This actuator was powered through a DRV8871 DC Motor Driver
Breakout Board, from Adafruit, operating at 12V supply. The shutter was created
by drilling a hole in the HDD case and attaching a razor blade to the actuator arm
that would cover the hole. This design was inspired by [56] and achieved 8ms of
closing/opening time after proper tuning.

The 0.45 4+ 0.05mm diameter beam from the laser was expanded to ~ 4.5mm
using a 10X Galilean-type beam expander from Thorlabs. The output from the beam
expander was passed through absorptive neutral density (ND) filters to reduce the
laser power going toward the sample. The lower power beam is guided toward a
dichroic mirror inside an inverted optical microscope, Nikon Eclipse E-800, via two
45° Broadband Dielectric Mirrors. The mirrors are placed on height-adjustable posts
with 2D kinematic mounts. This setup allows four-dimensional, two position and two

rotation, adjustments of the laser beam. After reflecting from the dichroic mirror, the
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Figure 5.1: A simplified version of the experimental setup developed at the University

of Texas at Arlington
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Figure 5.2: Front view of the experimental setup showing different components along
with the laser path

beam enters at the back aperture of a 100x oil immersion objective, from Nikon[66],
with a numerical aperture (NA) of 1.25.

The choice of the beam expander relies on the beam diameter at the output
of the laser and the size of the back aperture of the objective lens. In this case, the

back aperture of the objective lens is Ymm in diameter. This is important because if
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Figure 5.3: Side view of the experimental setup showing different components along
with the laser path

the beam is larger than the objective back aperture, then the beam output from the
objective will have an incomplete Gaussian profile. On the other hand, if the beam
is smaller than the objective back aperture, then the high angle of divergence of the

beam achievable, due to the high NA of the objective, will not be realized.
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Samples were illuminated using a blue 3Watt LED light through a blue/green
excitation-emission filter cube to achieve high contrast for particle tracking. However,
the light from this LED was not dense enough to illuminate 500nm particles properly.
This was tackled by illuminating the sample using a Cyan-colored (488nm wavelength)
laser, GH04850B2G from Sharp, from the condenser side. Particle trajectories were
captured with a high-speed digital camera, Hamamatsu Orca Flash 4. An infrared
(IR) blocking filter was used to prevent the back-scattered laser light from reaching
the camera.

The camera internally uses a Peltier device to actively cool the image sensor.
A heat exchanger with a fan is present in the camera that dissipates the heat during
normal operation. However, the vibrations from the fan were interfering with the PSD
analysis. Thus, a water-cooling apparatus was used to cool the camera and prevent
the onboard fan from running. The water cooling setup included a water pump with
a small reservoir and a finned heat exchanger with a fan. Both of these components
were located on a separate table from the optical table, RS4000 from Newport, on
which the rest of the optical trapping setup was located.

To conduct the TRR experiments, it was important to have real-time con-
trol over the shutter, illumination system and camera recording. This syncing was
achieved using a Raspberry Pi Pico microcontroller (uC). The program for the pC
was designed to first close the shutter, then send a signal to the camera to trigger
the recording and finally reopen the shutter. On top of controlling the timings for
an experiment, the uC code was also designed to allow the user to control everything
manually. The complete code of the uC is available in Appn. G. Frames recorded by
the camera were sent to the host computer through a Camera Link Frame Grabber,
FireBird 1XCLD-2PES from Active Silicon. The communication between the pC and

the host computer was handled through a USB Serial interface. All the aspects of
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communication with the camera and the uC combined were managed by a singular

software that was developed in-house, provided in Appn. H.

5.3 Experimentation Procedures

Green fluorescent polystyrene particles with diameters of 500nm, 1pm and 2um
were used for the experiments. The particles were first diluted in distilled water. It
was desirable to reduce the particle density in the solution to improve the chances
of trapping singular particles. The solution was filled into a cavity created by sand-
wiching multiple layers of 100um thick double-sided tape between a glass slide and
a cover slip as shown in Fig. 5.4. Precision coverslips with a thickness of 170um,
recommended by Nikon for the objective[66], were used to minimize the amount of

spherical aberration|[27].

f ‘:-"2'-:.-::'3 i

Double-Sided (a) Glass
Tape N Slide

(b)

Figure 5.4: Sample created by filling the solution with particles into a cavity created
by sandwiching double-sided tape between a glass slide and a cover slip. (a) Top
view, (b) Cross-sectional view
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The second important step during experiments was the alignment of the laser
beam. The location and angle at which the beam enters the back aperture of the
objective lens changes the trapping location and trap orientation[52, 62]. Thus, it
was necessary to make sure that the beam entered at the center of the objective back
aperture with an angle parallel to the longitudinal direction of the objective lens. A
custom objective lens was developed to assist with the alignment of the laser beam
entering the back aperture of the objective lens. This custom objective had acrylic
plates at both ends with a cross-hair pattern engraved on them. If the resulting
output of this custom objective showed only one cross-hair pattern then it meant
that the beam was aligned with the longitudinal direction of the objective lens. The
exploded rendering of this custom objective is shown in Fig. 5.5(a) and a sample of

the output beam in an aligned state is shown in Fig. 5.5(b).

/’— Objective Body

(a) (b)

Figure 5.5: (a) Rendered image of the custom calibration objective, (b) Output of
the custom objective when the laser is aligned well with the longitudinal direction of
the objective

Another important aspect that determines the quality of the optical trap is the
beam profile at the specimen plane. This was difficult to measure using a 100X oil
immersion objective. Thus, a 20X air objective, from Nikon, with an NA of 0.75 was

used along with a laser detection card. The surface of the detection card was brought
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to focus, and the emitted green light was imaged revealing the relative intensity
profile of the beam. However, the detection card surface is uneven which results in
hot and cold spots in the image. This was resolved by capturing multiple images at
different locations of the detection card and averaging the relative intensities. The
resulting beam profile is shown in Fig. 5.6 along with a Gaussian curve fit. Matlab’s

lsqcurvefit was used to fit the relative intensity values to a 2D Gaussian function,

I(z,y) = B+ A-exp (— ((x 2_;0)2 + y 2_0‘1;0)2>> (5.1)

where, B is the bias, A is the amplitude, (z¢,yo) represent the location of the peak

intensity and (o,,0,) are the standard deviations. Note that the beam intensity
profile is close to being Gaussian. The full width at half maximum (FWHM) and the
beam diameter, in Fig. 5.6, are defined as 2.35482¢ and 4o respectively [99]. The

curve fit parameters after optimization were found to be

B =0.0174 z7=502.8702px o, = 132.1023px (5.2)
5.2

A =0.9053 yo=491.4815px o, = 135.4913px

This step also helped in calculating the approximate location of the trap in the image
which will later be helpful with trapping the particles and maximizing the camera
capturing rate.

The experiments can begin once the laser is aligned and the beam profile is
measured. To conduct these experiments, the inner surface of the coverslip was first
brought to focus. This was done by finding some particles that were stuck to the
surface and did not show any Brownian motion. Experimental observations showed
that trapping particles farther away from the coverslip, greater than ~ 80um, was
difficult. This effect can be attributed to the increase in the aberration as the distance

from the coverslip increased. Thus, locating the coverslip surface helped find free
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Figure 5.6: Laser beam profile at the sample plane in relative intensity units, captured
using 20X objective and a laser detection card

particles that were close to it. Till this point, the trap is kept off by keeping the
shutter closed.

A free particle is brought closer to the trap location in the image and the shutter
is opened to trap it. The stage can be moved slowly to shift the trapped particle into

a low particle density region ensuring that no other particle will get trapped during
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the data collection process. The region of interest in the image is changed to reduce
the size of the images and achieve a high frame rate. Two different types of datasets
were collected. One was the Brownian motion data of the trapped particle and the
second was the data for the TRR experiment. The Brownian motion data of the
trapped particle was collected for roughly 60 seconds while each TRR experiment

was & 1 second long with different shutter closing times for different particle sizes.

5.4 Data Processing
5.4.1 Data Compression

The data collected from experiments is first compressed before conducting fur-
ther analysis. This step may not seem important for the research, however, it is very
important for long-term storage since the amount of data generated is huge. The
intensity value represented by each pixel of the image is 16 bits in depth, i.e. each
pixel value can fall between 0 and 65535 and thus requires 2 bytes of storage. Con-
sidering the fact that the Brownian motion data for a 1um particle is collected at
40px x 64px image size and ~ 5100 frames per second, one Brownian motion dataset
will be 40px x 64px x 2bytes/px x 60sec x 5100frames/sec ~ 1.46GBytes in size.

There exist multitudes of options for image and video compression; like con-
verting the images to JPG or PNG format, or converting the video to MP4 or AVI
format. However, these image/video formats perform lossy compression, i.e. some
information is lost. The goal here was to attain the highest possible compression in
lossless form. Two ways were encountered to achieve this, (1) Converting images into
a video with Motion JPEG 2000 (MJ2) file format with lossless compression and (2)

Accumulating all the images into a SuperFrame[37] image with JPEG 2000 (JP2)
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file format with lossless compression. The MATLAB codes for both approaches are
available in Appn. L.

Out of the two approaches, the SuperFrame approach gave better results, how-
ever, it was a bit difficult to implement compared to the first approach. Regardless,
the Superframe approach achieved a compression ratio close to 3 while the video
compression approach achieved a compression ratio of close to 2.3. However, during
the implementation of the Superframe approach, a bug in MATLAB was encountered
where a high image aspect ratio would cause the software to crash. Thus, the video
compression approach was used in this work which made the 1.46GBytes of Brownian

motion data for the 1um particle compress down to ~ 0.63GBytes.

5.4.2  Centroid Detection

Many techniques|29, 77, 57] exist that can help extract the position of a particle
from a gray-scale image. This work uses two techniques, (1) Image binarization and
region detection and (2) Region matching using cross-correlation[29]. Although each
technique used here performs well on its own, every image processing algorithm has
its pitfalls. Thus, the reliability of the data can be assessed by comparing the results
of the two approaches used here.

The first approach, referred to as the ‘imBinarize’ approach from here on out,
takes advantage of the fact that there is only one bright object in the image, i.e.
the fluorescent particle. Figure 5.7 shows the steps taken to calculate the centroid
of the particle. The first step is to use weiner2 filter from MATLAB to reduce the
background noise. After this, the image can be binarized using imbinarize. All the
connected regions in the binarized image can now be labeled using bwlabel. Finally,

the regionprops function can be used to extract information regarding each detected
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(a) (b)

Figure 5.7: Visualization of image binarization and region detection (imBinarize) al-
gorithm: (a) Image captured by the camera along with the computed particle centroid
represented by a red dot (e), (b) Image filtered using weiner2 function in MATLAB,
(c) Region in the image that represents the particle along with the computed centroid
(e) and the circle perimeter (—)

region. The resulting binary image, particle centroid and the circle representing the

particle are visualized in Fig. 5.7(c).

(a) (b) (©)

Figure 5.8: Visualization of region matching using cross-correlation (kernelFit) ap-
proach: (a) Kernel Image extracted from one of the images in the recording, (b)
Image taken by the camera along with the computed particle centroid represented
by a red dot (e), (c) Cross-Correlation matrix plotted as an image showing that the
highest cross-correlation is achieved when the kernel image overlaps the particle

The approach of region matching using cross-correlation, referred to as the
‘kernelF'it’ approach from here on out, starts with first choosing a kernel image, i.e.,
an image that represents a particle, out of a big image captured by the camera.
The camera image is stored in a matrix (z,y) with size p x ¢ pixels and the kernel
extracted from this image is stored in a matrix K (7, j) with size r x s pixels. It is
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assumed that the center pixel of the kernel image, referred to as pixel K(0,0), is the
centroid of the particle. A cross-correlation matrix of the same size as that of the

image can be computed using the following formula

Clay)= Y. Y I@+i,y+ ) = Inean) (K0, 5) = Kean) ~ (5.3)

where, I),cqn and K,eqn are the mean values of the complete image and kernel matrices
respectively, and the pixel values I(x + i,y + j) that are not within the bounds of
matrix [ are assumed to equal zero. A threshold value T' can be chosen to extract

the cross-correlation peak. The particle centroid can be computed by

> (C(z,y) —T) © X(Cly) - T) '

Figure 5.8 shows this process. Note that the particle coordinates found here, z. and

Le

Ye, are in Pixel units.

Note that the detected centroids from both approaches are different. This is
mainly because the kernelFit approach finds the center of the kernel image in the
camera image instead of finding the particle centroid. Thus, the results are reliable
as long as the difference in centroid from both approaches is constant. Figure 5.9
shows the centroid difference between the two approaches for a 70sec Brownian motion
dataset of a 2um diameter particle. Note that the standard deviation in the difference

of the centroid values is ~ 0.085px for both directions.

5.4.3 Trap stiffness estimation

Note that the coordinates of the particle centroid calculated in the last subsec-
tion are in pixel units. It is important to have these coordinates in physical units.
The physical size of each pixel on the Hamamatsu camera is 6.5um x 6.5um. A

conversion factor can be computed based on the objective zoom value that will allow
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Figure 5.9: Difference in the detected particle centroid from the two centroid detection
methods for a Brownian motion dataset of a 2um diameter particle

the conversion of pixel coordinates to physical units. The conversion factor for the

100X objective used for the experiments will be.

Camera Pixel Size 6.5um/px
CcC = =
Zoom of the Objective 100

= 0.065pm/px (5.5)

Many active and passive trap stiffness measurement techniques can be found in the
literature[79, 44]. Each method has its advantages and shortcomings. This work
utilizes a passive stiffness measurement technique, namely the Power Spectral Density

(PSD) analysis discussed in Sec. 4.3. After converting the particle centroid values
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to physical units, the Fourier transform of the Brownian motion data is calculated,
using fft function in MATLAB, to further calculate the PSD using Eqn. (4.7). The
noisy raw PSD profile is then filtered by dividing the data into several bins and
averaging the data of each bin. Finally, the theoretical equation of the PSD profile,
Eqn. (4.12), is fitted to the filtered PSD profile using lsqcurvefit in MATLAB. The
estimated value of the corner frequency, f., is used to calculate an estimate of the
trap stiffness in both the x and y directions. The PSD curve fits for particles with
different diameters and the corresponding trap stiffness values are presented in the

next section.

5.5 Results and Discussion
The following subsections discuss the experimental PSD profiles and the curve
fit of Eqn. (4.12) to the PSD profile along with the results of TRR experiments for

the 2um, 1um and 500nm diameter polystyrene particles.

5.5.1 Data for 2um diameter particle

Figures 5.10 and 5.11 show the experimental PSD profiles and Eqn. (4.12)
fitted to these profiles for a 2um diameter polystyrene particle. Specifically, Fig.
5.10 presents the PSD profile calculated from the particle position data that was
extracted using the imBinarize approach. On the other hand, Fig. 5.11 presents
the PSD profile calculated from the particle position data that was extracted using
the kernelFit approach. The statistical values from five different Brownian motion

datasets for the imBinarize approach are,

k, = 75.379823pN/um  k, = 78.893746pN/um

oh, = 0.766195pN?/um?* o = 0.731596pN”/pm?
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Figure 5.10: PSD profile for a 2um diameter particle centroid computed using the
imBinarize approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile

(—)
where, k, and Ey represent the average stiffnesses in x and y directions respectively,

and aﬁw and Jiy represent the corresponding variances. Similar values for the kernelF'it

approach are,

k, = 73.451003pN/um  k, = 76.546744pN/um 5.7
5.7
op, = 0.732422pN?/pm?* o} = 0.255802pN? /i

Note that the stiffness values are quite similar between the two directions as well as
between the two approaches. This means that the laser beam at the sample plane is
close to symmetric and the stiffness values are reliable. The PSD profiles and curve
fits for the other four Brownian motion datasets are available in Appn. B.1.

Figure 5.12 presents the data from the TRR experiment. These graphs present
data from both the imBinarize and kernelFit approaches. It should be noted that
the difference in the trajectory computed through both approaches has a constant
difference as discussed in Subsection 5.4.2. For these experiments, the trap was
turned off for 500ms so that the particle could wander off from the trap location
and be retrapped. Note that the particle shows a pure Brownian motion for the
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Figure 5.11: PSD profile for a 2um diameter particle centroid computed using the
kernelFit approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile
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Figure 5.12: TRR data for a 2um diameter particle computed using both the imBi-
narize (—) and the kernelFit (—) approaches, the trap was turned off for 500ms in
this experiment
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Figure 5.13: Particle Reynolds number and absolute velocity for a 2um diameter
particle computed using both the imBinarize (—) and the kernelFit (—) approaches

first 100ms before it gets trapped. Also note that there is no underdamped behavior
observed here similar to the previous dataset for the 1950nm diameter particle. Four
more datasets of TRR experiments are available in Appn. C.

Figure 5.13 presents the particle Reynolds number (Re,,), calculated using Eqn.
(4.5), for the particle trajectory in the TRR experiment, Fig. 5.12. The particle
velocity is calculated by numerically differentiating the particle position values in
each direction. Note that the Re, for the particle here is smaller than or equal to

2.5 x 1073, This is higher than the one observed in the previous dataset of 1950nm
84



diameter particle, see Fig. 4.4. However, the difference is not too big to show any

significant difference between the inertia forces and viscous forces.

5.5.2 Data for 1um diameter particle
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Figure 5.14: PSD profile for a 1um diameter particle centroid computed using the
imBinarize approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile

(—)

The experimental PSD profile and the corresponding curve fit for 1um diameter
polystyrene particle are presented in Figs. 5.14 and 5.15. The statistical values from

nine different Brownian motion datasets for the imBinarize approach are,

k, = 81.148448pN/um  k, = 75.956058pN /um

(5.8)
oy, = 18.859406pN?/pm?® o} = 18.762983pN>/pm?
Similar values for the kernelFit approach are,
k, = 69.425459pN /um  k, = 64.393509pN /um (5.9
5.9

oy, = 7.976650pN?/um?* o} = 7.705721pN*/pm?
The PSD profiles and curve fits for the other eight Brownian motion datasets are

available in Appn. B.2. It should be noted that even though the difference in the
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Figure 5.15: PSD profile for a 1ym diameter particle centroid computed using the
kernelFit approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile
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Figure 5.16: TRR data for a 1um diameter particle computed using both the imBi-
narize (—) and the kernelFit (—) approaches, the trap was turned off for 100ms in
this experiment
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Figure 5.17: Particle Reynolds number and absolute velocity for a 1um diameter
particle computed using both the imBinarize (—) and the kernelFit (—) approaches

stiffness values between the two directions and the approaches is small, the variances
are much larger than the ones for the 2pm particle. Thus, the accuracy of the stiffness
value might be lower. Furthermore, note that the magnitude of the stiffness values
found here is similar to the ones for the 2um particle. This is because the laser power
used to collect these datasets was lower than the one used for the 2um particle.
There has to be a balance between the framerate used to capture the video and
the trap stiffness. As the framerate increases, the light available from the particle

to be captured by the camera reduces, thus reducing the signal-to-noise ratio. As a
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result, it is difficult to achieve frame rates higher than ~ 5000FPS with the current
setup even though the camera is more capable than this. This puts a limit on the
observable frequency range of the PSD profile as per the Nyquist theorem. Thus,
the stiffness/power has to be low enough so that the corner frequency can fall in the
observable frequency range and can be estimated accurately. The main goal of the
PSD analysis here is to check the evenness of the stiffness values in both directions,
which is achieved here.

Figure 5.16 presents a dataset from the TRR experiments. For these experi-
ments, the trap was turned off for 100ms. Note that this time period was enough for
the particle to drift &~ 700nm away from the trapping location. The laser power used
for these experiments was the same as the one used for the 2pm particle. This was de-
sirable because the higher stiffness value, achieved using the higher laser power, would
increase the chances of causing the underdamped behavior as per Eqn. (4.3). How-
ever, there is no underdamped behavior observed here, contrary to a small amount ob-
served in the old dataset of the 990nm diameter particle. Thirty-seven more datasets
of TRR experiments are available in Appn. D.

Figure 5.17 presents the particle Reynolds number (Re,). Note that the Re,
here is smaller than or equal to 1.4 x 1072, Similar to the 2um particle, the Re, is
higher than the one observed in the previous dataset of 990nm diameter particle, see
Fig. 4.5. This should mean that the effect of inertia forces should be higher than the
viscous forces here. However, the underdamped behavior is nonexistent here while

the previous dataset showed a small amount of it.

5.5.3 Data for 500nm diameter particle
The particles were illuminated using only the blue LED in all the experiments

so far. However, the available fluorescent light from the 500nm diameter particle was
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Figure 5.18: PSD profile for a 500nm diameter particle centroid computed using the
imBinarize approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile
(—)
not enough, while using only the LED, to achieve high framerates. The addition of
the Cyan colored laser resolved this problem and achieved the camera framerate of
4000FPS.

The trapping laser power was lowered even further for the Brownian motion
experiments of the 500nm diameter particle. The experimental PSD profile and the
corresponding curve fit are presented in Figs. 5.18 and 5.19. The statistical values

from five different Brownian motion datasets for the imBinarize approach are,

k, = 21.388566pN /um  k, = 22.447706pN/um

(5.10)
op, = 0.517168pN?/um?® o} = 0.640007pN?/pm?
Similar values for the kernelFit approach are,
k, = 18.438312pN/um  k, = 19.416466pN/um 5.11)
5.11

or, = 0.460043pN?/um?* o} = 0.409082pN?/pm?
The PSD profiles and curve fits for the other four Brownian motion datasets are
available in Appn. B.3. Note that the difference in the stiffness values between

the two directions and the approaches is small along with the low variance values
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Figure 5.19: PSD profile for a 500nm diameter particle centroid computed using the
kernelFit approach (—) along with the curve fit of Eqn. (4.12) to the PSD profile
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Figure 5.20: TRR data for a 500nm diameter particle computed using both the
imBinarize (—) and the kernelFit (—) approaches, the trap was turned off for 30ms
in this experiment
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Figure 5.21: Particle Reynolds number and absolute velocity for a 500nm diameter
particle computed using both the imBinarize (—) and the kernelFit (—) approaches

compared to the 1um dataset. This was achieved because the use of the Cyan laser
improved the signal-to-noise ratio significantly. However, the particle would lose its
ability to fluoresce if it was illuminated using the laser for more than 60 seconds. Thus,
the Brownian motion datasets collected here were only 30 seconds long. Furthermore,
note that no peak is visible in the PSD profile near the corner frequency as what was
suggested by the simulated PSD from the scaled model for 500nm diameter particle

in Section 4.5.
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Data for the TRR experiment is presented in Fig. 5.20. The trap was turned
off for 30ms in this case. Note that the particle is ~ 800nm away from the trapping
location when the trap is turned on at 0.04s. The laser power used here was kept
the same as the one used for the 2um particle to increase the chances of causing
the underdamped behavior. However, no underdamped behavior was observed here,
compared to what was observed in the old dataset. Thirty-nine more datasets of TRR
experiments are available in Appn. E.

the particle Reynolds number (Re,) is presented in Fig. 5.21. Note that the Re,
here is smaller than or equal to 3.5 x 107*. This value is extremely close to the one
observed in the previous dataset of 500nm diameter particle, Re, < 3x 107, Fig. 4.6.
Although this value of Re, was enough in the old dataset to show an underdamped

motion, no underdamped motion was observed in this case.

5.6 Conclusion and Future Work

A new experimental setup for trapping micro/nano particles reliably and re-
peatedly is presented here with the primary goal of characterizing the suspected
underdamped behavior that was observed in the previous dataset. This new setup is
shown to have a measurably good quality of the laser beam intensity profile and the
correct alignment with the objective, which should have minimized the light aber-
rations. Different methods and techniques of data compression, particle centroid
detection and trap stiffness estimation were also presented here.

New experimental datasets for 2um, 1pym and 500nm diameter particles were
collected for both the Brownian motion experiments and the TRR experiments. No
significant underdamped behavior was observed in the 40 TRR trajectories for the
500nm diameter particle presented here. Furthermore, it was discussed in Section

4.5 that a distinct peak should be visible in the PSD profile of the 500nm diameter
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particle’s position if the particle was supposed to show the underdamped motion.
However, no such peak was observed in the new data presented here. Currently, the
findings of the new dataset contradict the old experimental data and the hypothesis
that was developed based on the previous observations.

One conclusion that can be drawn here is that if the laser beam profile has a
good quality factor (M?) and a correct alignment is achieved then the underdamped
motion does not occur. Thus, the possible reasons for the underdamped motion in
the old datasets could either be a poor beam quality or some type of fluid force effect
that was not captured in the experiments presented here. Unfortunately, no data
exists for the beam quality of the previous experiment.

The best way forward is to complete the experiments of transporting the par-
ticles through the “L” shaped microchannel as discussed in Section 4.6. If the data
from these experiments deviate from the Stokes drag model then the fluid forces ac-
tion on the particle can be analyzed in further detail. The current trapping setup
can also be improved to reproduce the conditions encountered in the microchannel
experiments.

Regardless of the steps that are taken in the future, the current optical trapping
setup is already being pushed to its limits. The primary challenge with the current
setup is the insufficient amount of fluorescent light emitting from the 500nm diameter
particle. This can be improved by using an objective lens with higher NA. However,
the problem may arise again as the particle size is reduced further. Furthermore,
the particle will barely be visible through a camera as its size reduces. Thus, for
the experiments with smaller particles, either a Quadrant Photodiode or a Lateral
Effect Position Sensor can be used, both of which provide better accuracy and higher

sampling rate.
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APPENDIX A

Equations of Motion for Double Pendulum System
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The equations of motion for the double pendulum example are computed using
Kane’s method. Because the final EOMs are too large, this section does not derive
complete EOMs. Rather it provides important equations in a format discussed in

[15], which when evaluated result in the EOMs for the double pendulum.

A.1 Equations of Motion
Rigid Bodies: There are two rigid bodies, the two cylindrical rods of double pen-

dulum.

Inertial Reference Frame and Point: The inertial reference point is N, and N

= (ﬁl, ﬁg, ﬁg) is the inertial reference frame shown in Fig. 2.2.

Other Points and Frames: Point A and B are body-attached points, and they
are also the center of gravity of bodies A and B respectively. Point C represents
the spherical joint between two rods. A = (Kl,gg,&),) and B = (E,ﬁz,ﬁg) are

body-attached frames shown in Fig. 2.2.

Location Descriptions: The location descriptions provide a formal way of speci-

fying the position of every point that comprises the rigid bodies in the system.
Ly = {PNA,fR} +geom. Lp = {PCB,E‘?R} + geom. (A.1)

Pva = Py = IaA Pxo = 204A; P = B, (A.2)
1

2 2 2 2
€4, T €4, T €4, T €4,

MR -

2 2 2 2
€4, + €4, — €4, — €4 2eq,64, — 264,644 2e4,€4, T 2e4,64, (Ag)

2 2 2 2
2eq e, +2ea,64, €3, — €, T €A, — €4,  2€a,6a, — 2€4.€4,

2 2 2 2
2e4,64, — 2€4,€4, 2eq,ea; +2ea,ea, €5, — €, — €4, T €4,
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1

2 2 2 2
€p, T €p, T €B, T €5,

o -

2 2 2 2
€p, t €5, —€p, — €,  2€p€ep, — 2ep,€p, 2ep,eB, + 2¢ep, €n, (A.4)

2 2 2 2
2ep,ep, + 2ep,ep, €, —€p T €p, —€p,  2€p,ep, — 2ep.ep

2 2 2 2
2ep,ep, — 2ep,€n, 2ep,ep, + 2ep,ep, e, —€p —€p, +€xn,

Coordinates: Eight coordinates appear in the location descriptions. Where, ey, .,
and ep, , are Euler parameters representing body A’s and body B’s orientation re-

spectively. The vector of generalized coordinates, q is defined as:

q = [e£ eg]T = [er €A, €A, €A5 €By €B; €B, 633]T

Constraints: The normalization constraint associated with both the Euler param-

eter sets are given as
Gta+ata =1 : GHa+E e =1

Degrees of Freedom (DOFs):

8 coordinates - 2 constraint = 6 DOFs
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Velocity: The angular velocity of body A and body B is

NUJA =2 <U1;&1 + UQKQ + U32&3>

~

= 2(q1G2 — @261 — @344 + q1G3) As

(A.5)
+ 2(q1G3 + @244 — 31 — qaga)Ag
+ 2(q1Gs — q243 + q3G2 — q1G1)As
A B _ 5 5 =
W =2 (usBy + ugB, + urBy )
= 2(q596 — 9695 — q7Gs + QSQ7)]§1
(A.6)
+ 2(g5G7 + geds — q7G5 — 4s4s) B2
+ 2(g54s — 96497 + q7ds — qs45)Bs
NwB = ARTNGA | ALB (A.7)

The translational velocity of the mass centers A and B and point C is given as

dPya

VA = i = NwA X PNA (A8)
dP
Vo = d]tVC = N x Py (A.9)
_ dPnp _ ApT N, B
Vg = F7 R Vo + "w” X Pep (AlO)

The quasi-velocities required to compute partial derivatives in Kane’s equations of

motion are uy and ug which are already defined in Section 2.3.
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Acceleration: The angular acceleration of body A and body B is
Nt = 2(qido — ot — g3dia + quiiz) Ay

+2(q1G3 + q2ds — @3G1 — qadi2) As (A.11)
+ 2(q1Ga — @2G3 + @342 — qaG1)As
A-B __ . . . e \D
w” = 2(gs5ds — 96G5 — qrds + qsGr)Bu
+ 2(gsGr + a6Gs — G705 — 4sGs) Bz (A.12)
+ 2(gs5Gs — g6Gr + qrds — 4sG5)Bs
NwB — éﬁlRTNwA _|_AwB +NUJB % AUJB <A13)
The translational acceleration of mass centers A and B and point C is given as

Vi o

VA = W = dJA X PNA + NwA X (NwA X PNA) <A14)
VC = % = Mot x Pyo + Nt x (NwA X PNC) (A.15)
. AY .

Vs = d—tB = ARTVo + NP x Pog + Nwb x (NwP x Pog) (A.16)

Mass Properties: Mass of body A and body B is assumed to be m4 and mpg
respectively while the spherical joint is assumed to be massless. The inertia matrix

of body A and body B can be given as

%mArz 0 0
Iw = 0  5maB3r*+L? 0 (A.17)
0 0 11—2mA(37’2 + L?)
-%mBT2 0 0
I = 0 Lmp(Br®+L?) 0 (A.18)
0 0 Lmp(3r? + L?)

Forces and Moments: No external moments are acting on the bodies. Only

the gravitational force acts on both the bodies. Note that both resultant force and
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moment vectors given below are expressed in inertial frame. Moments were taken

about the mass center of each body.

FA = —mAgﬁg s FB = —mBgﬁg (Alg)

My = 0 , Mgz = 0 (A.20)

Equations of Motion: The equations of motion can be computed using the Kane’s

equations given below. All the necessary terms are already defined in this appendix.

0=F —F;
bodies
8VK anK
bodies
. 8VK . 8NwK
Fr = Vi - Hyr -
i Z [mK K ou + Hix ou,
K=1
where i = {1,2,3,5,6,7} and,
HKK = ]KKN(.;JK—FNUJK X (IKKNLUK> <A22)

A.2  Online Constraint Embedding Method

The virtual work done by the system can be calculated from (A.21) as follows

n  bodies
8VK . 8VK anK . anK
0:5W:Z Z |:FK' o, —mg Vi - o, + Mgk - o, — Hgp - B, dq;
i=1 K=1

The equation above can also be expressed as

n

0= (F - F)dg (A.23)

i=1
Here, the F; and F* are generated for both the dependent and independent generalized
coordinates. Note that any holonomic constraint can be expressed in a form that is

linear in the virtual displacements. Let’s say that we are solving for a system that
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has five generalized coordinates and two constraints. Thus, the relationship between

dependent and independent virtual displacements can be given as

5 Cy Cp C %t
4dD, 41 42 43
= 5qr, (A.24)
5QD5 Cs1 Cse Css
5QI3

where, the subscripts ‘D’ and ‘I’ denote a dependent or independent virtual displace-

ment respectively. Substituting the equation above in Eqn. (A.23) yields

0 = (= F)oq + (F2— Fy)0q2 + (F3— Fy)dgs
+ (Fy— Fy)das + (F5 — Fy)dgs
= (FA —F))q + (Fo— F5)0qe + (F5— Fy)ogs
+ (Fy— F))(Cudgr + Cubdga + Cuszégs)
+ (F5 — F5)(Cs16q1 + Cs20q2 + Cs30g3)
= (F1— Fy + Cu(Fy— Fy) + Ca(Fs — F5))oq
+ (B —Fy + Cu(Fy—Ff) + Cs(F5 — Fy))igs
+ (F3—Fy + Cus(Fy— FY) + Css(F5 — F7))dgs (A.25)
Because the virtual displacements in the equation above are independent, the only

way for the virtual work to be equal to zero for any values they may take, is when

their coefficients are zero for all time. Thus, it can be shown that

B B B p+q B pt+q
j=p+1 Jj=p+1

where, p and ¢ are the number of independent and dependent generalized coordinates

respectively. And, i = {1,2,3,...,p}.
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APPENDIX B

PSD Profiles and Curve Fits
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Throughout this appendix, the blue line (—) corresponds to the data gen-
erated using the imBinarize centroid detection method while the orange line (—)
corresponds to the data generated using the kernelFit centroid detection method.
The solid black line represents the curve fit of Eqn. (4.12) to the experimental data.
The stiffness values estimated through curve fitting are provided in the caption of

each figure.
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B.1 Data for 2um diameter particle
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Figure B.1: k, = 73.9196pN/um, k, = 78.0766pN/pm
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Figure B.2: k, = 72.7761pN/um, k, = 76.7711pN/pum
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Figure B.3: k, = 75.8743pN/pum, k, = 78.9234pN/um
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Figure B.4: k, = 73.2490pN/um, k, = 76.6792pN/um
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Figure B.5: k, = 75.8401pN/um, k, = 79.7704pN/pm
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Figure B.6: k, = 74.4082pN/pm, k, = 75.7354pN /pum
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Figure B.7: k, = 76.0498pN/um, k, = 77.9873pN/um
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Figure B.8: k, = 74.2808pN/um, k, = 76.4626pN/pm
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B.2 Data for 1um diameter particle
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Figure B.9: k, = 78.2915pN/um, k, = 73.7166pN/pm
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Figure B.10: k, = 65.9141pN/um, k, = 62.2912pN/um
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Figure B.11: k, = 83.1381pN/um, k, = 78.8821pN/um
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Figure B.12: k, = 72.6940pN/pm, k, = 66.1881pN/um
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Figure B.13: k, = 86.4218pN/um, k, = 81.6438pN/um
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Figure B.15: k, = 88.9685pN/um, k, = 83.2548pN/um
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Figure B.16: k, = 72.7083pN/um, k, = 69.2532pN/um
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Figure B.17: k, = 76.7048pN/um, k, = 73.9067pN/pm
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Figure B.18: k, = 68.0154pN/um, k, = 64.6954pN/um
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Figure B.19: k, = 77.1914pN/um, k, = 70.5412pN/pum
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Figure B.20: k, = 65.5011pN/um, k, = 60.4925pN/pm
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Figure B.21: k, = 77.4360pN/um, k, = 72.4398pN/um
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Figure B.22: k, = 67.7851pN/um, k, = 61.8914pN/um
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Figure B.23: k, = 80.5437pN/um, k, = 73.7746pN/pm
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Figure B.24: k, = 69.0360pN/um, k, = 62.6550pN/pm

B.3 Data for 500nmm diameter particle
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Figure B.25: k, = 20.2335pN/pm, k, = 21.2079pN/pm
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Figure B.26: k, = 17.7502pN/um, k, = 18.4455pN/pm

107 , , 107

—_

=
o
T

3
PSD y-direction (Px>/Hz)

10! 10? 10° 10! 10? 10°
Frequency (Hz) Frequency (Hz)

Figure B.27: k, = 21.4025pN/um, k, = 22.0832pN/um

112



PSD x-direction (Px%/Hz) PSD x-direction (Px*/Hz)

PSD x-direction (Px%/Hz)

—_
<
ES

—_
<
ES

—_
<
<

PSD y-direction (Px>/Hz)

10! 102 10° 10! 10 10°

Frequency (Hz) Frequency (Hz)
Figure B.28: k, = 18.5560pN/pum, k, = 19.7081pN/um
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Figure B.29: k, = 22.2028pN/um, k, = 22.9997pN/um
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Figure B.30: k, = 19.2673pN/um, k, = 19.9635pN/pm
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Figure B.32: k, = 18.8710pN/um, k, = 19.8701pN/um
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APPENDIX C

TRR Experiments Data for 2um Diameter Particle
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APPENDIX D

TRR Experiments Data for 1ym Diameter Particle
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TRR Experiments Data for 500nm Diameter Particle
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APPENDIX F

Code Listings for the Optical Trapping Simulation
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The code presented here relies on a bunch of packages from Julia programming

language as well as a third-party toolbox for MATLAB. Following is the complete list of

these,

» Packages from Julia:

DifferentialEquations.jl: Provides a big set of Stichastic Differential
Equation solvers, some of which are used here.

Interpolations.jl: Provides fast interpolation functionality, needed here
to interpolate the laser force values.

LinearAlgebra.jl: Provides functions and structures for matrix opera-
tions.

MATLAB.j1l: Used to communication with MATLAB, where the laser force
calculation happens.

MAT.j1l: Used to store data in a MATLAB readable file format, *.mat.

Glob.jl: Provides functionality of file name matching and pattern finding.

e Toolbox for MATLAB:

ott: Full name is Optical Tweezer Toolbox, available at https://github.
com/ilent2/ott. It calculates the laser beam forces using T-Matrix ap-
proach of solving Mie Scattering problems. Used here to precaculate the

force field created by the trapping laser.
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B > G L B S V]

10
11
12
13
14
15
16
17
18
19
20
21

F.1 Directory tree

/

L eXPData/ i Contains particle trajectory data

L dinputData/ ......ovviiiiiiiiiiias Contains data and parameters for simulation
forceFields.......... Contains files that store precomputed laser force data
iNpULSEO. L.t File containing simulation parameters

o} o 1o Yo [V L =Y Module for optical tweezer simulation
compBeamForce.jl.............. Precomputes laser beam force field using ott
der .l Functions to calculate state derivatives
opticalTweezer.jl i iiiiiiiiiiiiiiieaaennnns Main file creating the module
sysInfo.jl.iiiiiiiinnnnnn, Defines a structure to store simulation parameters

| results/............. Folder to store simulation results (Automatically created)

,__beadSimCompScaling.j1l....... Effect of different scaling factors on an ensemble

problem
| beadSimCompScalingPSD.jl....... Effect of different scaling factors on the PSD
| beadSimCompScalingSingle.jl..... Effect of different scaling factors on a single

trajectory

F.2 Code Listings

F.2.1 inputSco.jl

# Load system parameters, initial comditions and experimental data

params = sysInfo(kgram = lel5, meter = le3, second = le3, kelvin = 1, temp = 293.15, ps =
— 2000, rs = le-6, pn = 998.2071, un = 0.001002, ns = 1.45, nn = 1.33, NA = 1.2, Ao =
— 1064e-9, sf = 1);

P = 300 * le-3 * (params.kgram * params.meter”2 / params.second”3);

expNo = 1;

# Load experimental data

expFile = matopen("./expData/tek" * string(expNo, base = 10, pad = 4) * ".mat"); # The
— dataset has time in ms and displacement in mm

gpdTrTime = vec(read(expFile, "qpdTrTime")) * le-3 * params.second;

vidTrTime = vec(read(expFile, "vidTrTime")) * le-3 * params.second;

gpdTrData = read(expFile, "qpdTrData") * le-3 * params.meter;

vidTrData = read(expFile, "vidTrData") * le-3 * params.meter;

close(expFile);

# Define initial condition and time span

expInitIdx = 89;

# ql23 = [vidTrpData(1,1) vidTrpData(1,2) -3.023*1lambda0];

ql23 = [qpdTrData[expInitIdx, 1]; gpdTrData[expInitIdx, 2]; -0 * params.Ae];
qd123 = [0; 0; 0] * params.meter / params.second; # Initial speed

w = 0; # Work done

g0 = [ql23; qdl123; w]; # Initial state vector

dt = 2e-6 * params.second; # m/beta v/5;
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tVals = Vector(qpdTrTime[expInitIdx]:dt:qpdTrTime[end]);

relaxationTime = params.ms / params.fv;

subInter = dt / (ceil(dt / relaxationTime * 5) - 1);

F.2.2 compBeamForce.jl

struct forceVals

Z :: Matrix{<:Real}

fVals :: Array{<:Real,3}
tVals :: Array{<:Real,3}

X :: Matrix{<:Real}
fStiffness :: Vector{<:Real}
k :: Matrix{<:Real}

x :: Vector{<:Real}

z :: Vector{<:Real}

function forceVals(matPath::String)
matStruct = matread(matPath);

@assert haskey(matStruct,"Z") && haskey(matStruct,"fVals") &&
— haskey(matStruct,"tVals") && haskey(matStruct,"X") &&

— haskey(matStruct,"fStiffness") && haskey(matStruct,"k") &&
— haskey(matStruct, "x") && haskey(matStruct,"z")

nx = length(matStruct["x"]); nz = length(matStruct["z"]);

@assert size(matStruct["Z"],1) == nz &&
— size(matStruct["fVals"],1l) == nz &&
@assert size(matStruct["Z"],2) == nx &&
— size(matStruct["fVals"],2) == nx &&
@assert length(matStruct["fStiffness"])

size(matStruct["X"],1) == nz &&
size(matStruct["tVals"],1l) == nz
size(matStruct["X"],2) == nx &&
size(matStruct["tVals"],2) == nx
== 3 && size(matStruct["k"]) == (6,6)

— new(matStruct["Z"],matStruct["fVals"],matStruct["tVals"],matStruct["X"],vec(matStruct["fStiffness"

end
end

function compBeamForce(params::sysInfo,P::Union{Vector{<:Real},Real})

if !ispath("./inputData/forceFields/")
mkpath("./inputData/forceFields/");
end

mlSessionSet = false;

for pwr in P
if !'isfile("./inputData/forceFields/" *

— string(trunc(Int,pwr*le-9)) * ".mat"

string(trunc(Int,params.rs*2e6)) * "." *

)

println("Computing force field for $pwr mW power.")

if !mlSessionSet
global s = MSession();
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end

put variable(s, :kgram, mxarray(params.kgram))
put variable(s, :meter, mxarray(params.meter))
put variable(s, :second, mxarray(params.second
put variable(s, :r, mxarray(params.rs));

put variable(s, :NA, mxarray(params.NA));

put variable(s, :n_s, mxarray(params.ns));

put variable(s, :n _m, mxarray(params.nn));

put variable(s, :lambda®, mxarray(params.Ao));
put variable(s, :c, mxarray(params.c));
mlSessionSet = true;

));

end

put variable(s, :P, mxarray(pwr));

mat"

% Generate the beam in SI units

beam = ott.BscPmGauss('NA',6NA, 'polarisation',[1

« 1i], 'power',P/(kgram*meter”2/second”3),...
"index medium',n m, 'wavelength@', lambda0/(meter))

% Calculate T-matrix in SI units

shape = ott.shapes.Shape.simple('sphere',r/(meter));
T = ott.Tmatrix.simple(shape, 'index medium', n_m,
'index particle', n_s, 'wavelength@', lambda0/(meter));

% Compute the forces at different locations of the beam

z = (-4:0.01:1)*1Lambda0;

X = (0:0.01:3)*lambda0;

[X,Z] meshgrid(x,z);

fVals = zeros([size(Z),3]);

tVals = zeros([size(Z),3]);

parfor j = 1l:size(Z,2)
[force,torque] = ott.forcetorque(beam, T, 'position',[X(:,])
— zeros(size(z,1),1) Z(:,j)]1'/(meter));
fvals(:,j,:) = (n_m*P/c)*reshape(force',size(z,1),1,3);
tVals(:,j,:) = (lambda®@*P/c)*reshape(torque',size(Z,1),1,3);

end

% Compute trap stiffness
[~,~,Kk] = ott.trap stiffness(beam,T);
fStiffness = abs(diag(-k(1:3,1:3)*(n m*P/c)/meter)); % Unit - pN/mm

% Save data to a file
save(['./inputData/forceFields/' num2str(r*2e6) '.' num2str(P*le-9)
- ‘'.mat'],'z','X','z','x','fvals', 'tvals', 'k', 'fStiffness');

if mlSessionSet

eval string(s,"delete(gcp('nocreate'))");
close(s);

163



[un

gt W N

© o N o

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

33
34
35
36
37
38
39
40
41
42
43

F.2.3 der.jl

function der f!(x::Vector{<:Real}, x::Vector{<:Real}, sysData::Tuple{sysInfo,Any,Any,Any},

—

end

t::Real)

params = sysData[l]
X sysData[2]

fy sysData[3]

fz = sysDatal4]

x[1:3] = x[4:6]

# Convert cartesian coordinates to cylindrical

¢ = atan(x[2], x[1])

rMat = [cos(¢) -sin(¢) 0; sin(¢p) cos(d) 0; 0 0 1]
gCyl = rMat' * x[1:3]

# Calculate the force on the particle
F_beam = rMat * [fx(qCyl[1], qCyl[3]); fy(aCyl[1l], qCyl[31); fz(qCyl[1], qCyl[3]1)]

# Calculation of translational acceleration

F drag = -params.Bv * x[4:6]

F bg = (params.ms - params.Vs * params.pm) * [0; O; -params.g] #

— [0,;0;params.rho _m*params.g*params.Vol] - params.m*[0;0;params.qg]
F = F bg + F beam + F _drag

x[4:6] = params.sf * params.M-* * F

if any(isnan. (X))
throw(error("x has NaN values."))
end

function der g!(x::Vector{<:Real}, x::Vector{<:Real}, sysData::Tuple{sysInfo,Any,Any,Any},

—

end

t::Real)
params = sysData[l]

val = params.sf * params.cv / params.ms

x[1] =0
x[2] =0
x[3] =0
x[4] = val
x[5] = val
x[6] = val
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F.2.4

opticalTweezer.jl

module opticalTweezer

using MATLAB
using MAT
using LinearAlgebra

export forceVals, compBeamForce, myinterp, sysInfo, der f!, der g!

include("myinterp.jl")
include("sysInfo.jl")
include("compBeamForce.jl")
include("der.jl")

end

F.2.5 sysInfo.jl
struct sysInfo

# All parameters values are defined with SI(kgram, meter, second) unit system.
m :: Real; meter ::
temp ::

kgra

kO :
Ps
rs
Vs
ms

I
g ::
Pm
e
Bv

Ov

ow ::
:: Real
:: Real

Ns
Nm
cC

NA ::

Ao

st ::

M-1

Real; second ::

Real # System Temperature

: Real# Boltzmann Constant

:: Real # Bead density

Real; kelvin

: Real # Bead radius 0.5e-3*(meter);#
: Real # Bead volume

:: Real # Bead mass
Matrix{<:Real} # Inverse of mass matrix
11 Matrix{<:Real} # Inertia matrix

Real # Gravitational acceleration

:: Real
:: Real
:: Real
Bw ::

Real
: Real
Real

#
#
#
#
#
#
#
#

Density of fluid medium
Dynamic viscosity of fluid
Translational drag coeffici
Rotational drag coefficient
Standard deviation for tran
Standard deviation for rota
Particle's refractive index
Medium's refractive index

Real # Speed of light in a vaccum

sysInfo(;kgram,meter,second, kelvin,temp,ps,rs,pn,Mdn,Ns,Nn,NA,Ao,sT)

medium at 20d C

ent

slational Brownian motion
tional Brownian motion

Real # Numerical Aperture of objective
:: Real # Wavelength of laser
Real # Scaling factor
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30 Creates a 'sysInfo' structure to store all the necessary Optical Tweezer simulation
— parameters.

31

32 # Example

33 “*"julia> sysInfo(kgram = 1lel5, meter = 1le3, second = 1le3, kelvin = 1, temp = 293.15,
— ps = 1050, rs = 0.25e-6, pm = 998.2071, pm = 0.001002, ns = 1.57773, nmn = 1.33, NA
— =1.3, Ae = 8e-7, sf =1)"""

34

35 All parameters values should be provided in SI(kgram, meter, second) unit system.

36

37 Conversion to desired unit system will be handeled using “kgram®, “meter’, “second’ and
— “kelvin® parameters at the time of object construction.

38

39 # Member/Parameter explanations

40 - “kgram® : Unit conversion constant for kg. If the unit system uses mg then this value
— would be le6.

41 - “meter’ : Unit conversion constant for m. If the unit system uses nm then this value
— would be 1e9.

42 - ‘second’ : Unit conversion constant for s. If the unit system uses us then this value
— would be 1le6.

43 - "kelvin® : Unit conversion constant for °K. This is generally 1.

44 - “temp® : System Temperature in °K

45 - “kg® : Boltzmann Constant

46 - “ps’ : Bead density

a7 - 'rs° : Bead radius

48 - "Vs' : Bead volume = “4/3*mkrs*rs*rs’

49 - 'ms’ : Bead mass = ps*Vs®

50 - "M-1" : Inverse of mass matrix = “diagm([1/ms, 1/ms, 1/ms])"

51 - "I : Inertia matrix = “diagm([2/5*ms*rs*rs, 2/5*ms*rs*rs, 2/5*ms*rs*rs])”

52 - 'g" : Gravitational acceleration = '9.80665*(meter/second”2)"’

53 - "pn : Density of fluid medium

54 - "Wn~ : Dynamic viscosity of fluid medium at defined temp’

55 - "Bv’ : Translational drag coefficient = “6*m*un*rs"

56 - "Bw’ : Rotational drag coefficient = “8*m*un*rs"3°

57 - 'ov' : Standard deviation for translational Brownian motion = “sqrt(2*Bv*kO*temp)"

58 - ‘ow’ : Standard deviation for rotational Brownian motion = “sqrt(2*Bw*kJ*temp)"

59 - 'ns’ : Particle's refractive index

60 - "nn : Medium's refractive index

61 - "¢’ : Speed of light in a vaccum

62 - "NA" : Numerical Aperture of objective

63 - "Ae’ : Wavelength of laser

64 - “sf' : Scaling factor

65 e

66 function
— sysInfo(;kgram::Real,meter::Real,second: :Real,kelvin: :Real, temp: :Real,ps::Real,rs::Real,pn::Real, un: :Re

67 temp = temp*kelvin;

68 k] = 1.38064852*1e-23*(meter”~2*kgram/second”2/kelvin);

69 ps = ps*(kgram/meter”3);

70 rs = rs*(meter);

71 Vs = 4/3*m*rs*rs*rs;

72 ms = ps*Vs;
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73 M-1 = diagm([1/ms, 1/ms, 1/ms]);

74 I = diagm([2/5*ms*rs*rs, 2/5*ms*rs*rs, 2/5*ms*rs*rs]);
75 g = 9.80665*(meter/second™2);
76 pn = pm*(kgram/meter”3);

77 Mm = um*(kgram/meter/second);
78 Bv = 6*m*um*rs;

79 Bw = 8*m*um*rs"3;

80 ov = sqrt(2*Bv*kO*temp);

81 ow = sqrt(2*Bw*kd*temp);

82

83 new (

84 kgram,meter, second, kelvin,
85 temp*kelvin,

86 kO,

87 Ps,

88 rs,

89 Vs,

90 ms,

91 M-1,

92 I,

93 9,

94 Pm,

95 Un,

96 Bv,

97 Bw,

98 Ov,

99 ow,

100 ns,

101 Nn,

102 299792458* (meter/second),
103 NA,

104 Ao*(meter),

105 sf

106 )

107 end

108 end

109

110 function Base.print(io::Core.I0, params::sysInfo)
111 for fname in fieldnames(typeof(params))
112 println("$fname = $(getfield(params, fname))")
113 end

114 end

115

116 Base.print(params::sysInfo) = print(stdout,params)

117

118 Base.println(io::Core.I0,params::sysInfo) = println(io,params)
119

120 Base.println(params::sysInfo) = println(stdout,params)
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F.2.6 beadSimCompScaling.jl

include("./otModule/opticalTweezer.jl")
using .opticalTweezer

using DifferentialEquations

using Interpolations

using Glob

using MAT

using DifferentialEquations.EnsembleAnalysis

for i in 0:3
include("./inputData/inputSc" * string(i) * ".jl")

# Compute the force field and load the data
compBeamForce(params, P)
forceData = forceVals("./inputData/forceFields/" * string(trunc(Int, params.rs * 2e6))

— k" " * string(trunc(Int, P * 1le-9)) * ".mat")

fx = scale(interpolate(forceData.fVals[:, :, 1]', BSpline(Quadratic(Line(OnGrid())))),

— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

fy = scale(interpolate(forceData.fVals[:, :, 2]', BSpline(Quadratic(Line(OnGrid())))),
(0:0.01:4) * params.Ao, (-4:0.01:4) * params.Aoe)

fz = scale(interpolate(forceData.fVals[:, :, 3]', BSpline(Quadratic(Line(OnGrid())))),

— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

# Run the SDE solver
prob = SDEProblem(der f!, der g!, q0[1l:(end-1)], (tVals[1l], 30), (params, fx, fy, fz))
ensembleprob = EnsembleProblem(prob)
compTime = @elapsed begin
sol = solve(ensembleprob, ImplicitEM(), EnsembleThreads(), trajectories=10000)
end
summ = EnsembleSummary(sol)
compTime = @elapsed begin
sol = solve(ensembleprob, ImplicitEM(), EnsembleThreads(), trajectories=10000,
< saveat=summ.t)
end
gMean, gVar = timeseries steps meanvar(sol)
gMean = Array(gMean[:, :1')
gVar = Array(qVar[:, :1")
t = Array(sol.u[l].t)
println(compTime)

# Save the data to a mat file
if !ispath("./results/ensemble/")
mkpath("./results/ensemble/")

end

rm. (glob("./results/ensemble/" * "tek" * string(expNo, base=10, pad=4) * "." *
— string(params.sf) * ".mat"))

matwrite("./results/ensemble/" * "tek" * string(expNo, base=10, pad=4) * "." *

— string(params.sf) * ".mat", Dict(
"expNo" => expNo,
"kgram" => params.kgram,
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"meter" => params.meter,
"second" => params.second,
"kelvin" => params.kelvin,
"temp" => params.temp,
"rho s" => params.ps,
"r s" => params.rs,
"rho m" => params.pn,
"mu_m" => params.pm,

"n s" => params.ns,

"n_m" => params.nm,

"NA" => params.NA,

"p" => P,

"lambda_0" => params.Ae,
"sf" => params.sf,
"expInitIdx" => expInitIdx,
"t o= t,

"gMean" => qgMean,

"qvar" => qgVar,

"compTime" => compTime

end

F.2.7 beadSimCompScalingPSD.jl

include("./otModule/opticalTweezer.jl")
using .opticalTweezer

using DifferentialEquations

using Interpolations

using Glob

using MAT

for i in 0:3
include("./inputData/inputSc" * string(i) * ".jl")

# Compute the force field and load the data
compBeamForce(params, P)
forceData = forceVals("./inputData/forceFields/" * string(trunc(Int, params.rs * 2e6))

— " " * string(trunc(Int, P * 1le-9)) * ".mat")

fx = scale(interpolate(forceData.fVals[:, :, 1]', BSpline(Quadratic(Line(OnGrid())))),

— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

fy = scale(interpolate(forceData.fVals[:, :, 2]', BSpline(Quadratic(Line(OnGrid())))),
(0:0.01:4) * params.Ao, (-4:0.01:4) * params.Ae)

fz = scale(interpolate(forceData.fVals[:, :, 3]', BSpline(Quadratic(Line(OnGrid())))),

— (0:0.01:4) * params.Ao, (-4:0.01:4) * params.Ae)

# Run the SDE solver
prob = SDEProblem(der f!, der g!, qO[1:(end-1)], (0, 11000), (params, fx, fy, fz))
compTime = @elapsed begin
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sol = solve(prob, ImplicitEM(), dtmax=0.001, save idxs=[1, 2], saveat=0.001,

< maxiters=1e8)

end

t

q
pr

= sol.t[1001:end]
= Array(sol[:, 1001l:end]")
intln(compTime)

# Save the data to a mat file

if !ispath("./results/PSD/")
mkpath("./results/PSD/")
end
rm. (glob("./results/PSD/" * "tek" * string(expNo, base=10, pad=4) * "." *
— string(params.sf) * ".mat"))
matwrite("./results/PSD/" * "tek" * string(expNo, base=10, pad=4) * "." *
— string(params.sf) * ".mat", Dict(
"expNo" => expNo,
"kgram" => params.kgram,
"meter" => params.meter,
"second" => params.second,
"kelvin" => params.kelvin,
# "temp" => params.temp,
# "rho_s" => params.ps,
# "r_s" => params.rs,
# "rho_m" => params.pn,
# "mu_m" => params.Un,
# "n_s" => params.ns,
# "n_m" => params.nn,
# "NA" => params.NA,
# "P" => P,
# "lambda_0" => params. Ao,
# "sf" => params.sf,
# "expInitIdx" => expInitIdx,
"t o= t,
"q" =>q,
"compTime" => compTime
))
end
F.2.8 beadSimCompScalingSingle.jl
include("./otModule/opticalTweezer.jl")
using .opticalTweezer
using DifferentialEquations
using Interpolations
using Plots
using Glob
using MAT
for i in 0:3
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include("./inputData/inputSc" * string(i) * ".jl")

# Compute the force field and load the data

compBeamForce(params, P)

forceData = forceVals("./inputData/forceFields/" * string(trunc(Int, params.rs * 2e6))
— k" " * string(trunc(Int, P * 1le-9)) * ".mat")

fx = scale(interpolate(forceData.fVals[:, :, 1]', BSpline(Quadratic(Line(OnGrid())))),
— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

fy = scale(interpolate(forceData.fVals[:, :, 2]', BSpline(Quadratic(Line(OnGrid())))),
— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

fz = scale(interpolate(forceData.fVals[:, :, 3]', BSpline(Quadratic(Line(OnGrid())))),
— (0:0.01:4) * params.Ae, (-4:0.01:4) * params.Ao)

# Run the SDE solver
prob = SDEProblem(der f!, der g!, qO[1:(end-1)], (tVals[l], tVals[end]), (params, fx,
- fy, fz))
compTime = @elapsed begin
sol = solve(prob, ImplicitEM(), dtmax=0.015)
end
t = sol.t
g = Array(sol[:, :1')
println(compTime)

# Save the data to a mat file
if !ispath("./results/single/")
mkpath("./results/single/")

end

rm. (glob("./results/single/" * "tek" * string(expNo, base=10, pad=4) * "." *
— string(params.sf) * ".mat"))

matwrite("./results/single/" * "tek" * string(expNo, base=10, pad=4) * "." *

— string(params.sf) * ".mat", Dict(
"expNo" => expNo,
"kgram" => params.kgram,
"meter" => params.meter,
"second" => params.second,
"kelvin" => params.kelvin,
"temp" => params.temp,
"rho s" => params.ps,
"r s" => params.rs,
"rho m" => params.pm,
"mu_m" => params.pm,
"n s" => params.ns,
"n m" => params.nn,
"NA" => params.NA,
"p" => P,
"lambda_0" => params.Ae,
"sf" => params.sf,
"expInitIdx" => expInitIdx,
"t o= t,
“q" => q,
"compTime" => compTime
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APPENDIX G

Code Listings for the Microcontroller
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G.1 Directory tree

/
CMaKELISTS . TXE wueet et e e e CMake configuration file
(TS o] DL R I0 of o] o Strings to print as help document
NETLPDOCS t N e Header file for helpDocs.cpp
serialCoOM.cpp....cvvvvvnnnnnn. Manages USB Serial communication with the PC
LY== 1 0 Header file for serialCOM. cpp
pico sdk_import.cmake...... Find and configure Pico C/C++ SDK for CMake
serialInput.cpp..ooieeees.. Parses strings from the USB Serial communication
SerialInPut.N....iieeeeeean Header file for serialInput.cpp
Y TV =] ] o) Main code of the microcontroller

G.2 Code Listings

G.2.1 CMakelLists.txt

cmake minimum required(VERSION 3.13)

set (ENV{PICO SDK PATH} "~/pico/pico-sdk/")
include(pico sdk import.cmake)

project(hddVcShutterCode C CXX ASM)
set (CMAKE C STANDARD 11)

set (CMAKE CXX STANDARD 17)
pico sdk init()

add executable(shutter
seriallnput.cpp
serialCOM. cpp
helpDocs. cpp
shutter.cpp

target _include directories(shutter PRIVATE
E<BUILD7INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}
)

pico_enable stdio usb(shutter 1)
pico enable stdio uart(shutter 0)

# Turn off floating point support

target compile definitions(shutter PRIVATE
PICO DEFAULT FLOAT IMPL=pico float none
PICO DEFAULT DOUBLE IMPL=pico double none

)

# Link common dependencies
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target link libraries(shutter pico stdlib hardware timer hardware watchdog hardware pwm)

# Create map/bin/hex files
pico add extra outputs(shutter)

G.2.2 helpDocs.cpp

// Author: Vatsal Asitkumar Joshi
// Date: May 23rd, 2022

// This code is a set of functions to work with USB serial communication.

//

// "“If you are done writing the code, now is a good time to debug it."

//
#include "helpDocs.h"

void help(const char *command)
{
if (!strcmp(command, NULL))
help about();

else if (!strcmp(command, "shutterForce"))

help shutterForce();

else if (!strcmp(command, "openingTiming"))

help openingTiming();

else if (!strcmp(command, "closingTiming"))

help closingTiming();

else if (!strcmp(command, "cycleTiming"))

help cycleTiming();

void help about()
{

const char *doc = "\r\n\r\n"

>\r\n"

"Optical Tweezer Laser Shutter and Camera Trigger Controller\r\n"
"Author: Vatsal Asitkumar Joshi\r\n"

"\ r\n"

>\r\n"

"This program is developed to control the shutter made out of a\r\n"
"Hard Disc Drive(HDD) and sync it with a camera to record the\r\n"
"motion of a bead in an optical trap.\r\n"

"\ rF\n"

"The user has to setup timings of one \"Experiment\" (Exp). The\r\n"
"shutter can be in one of the following states during an Exp:\r\n"

"\tExp start
"\t |
"\t |
"\t |

This is the default resting state of the\r\n"
shutter. In this state, the shutter is\r\n"
assumed to be open and the output for\r\n"
camera trigger is off. From this point\r\n"
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"\t |

< change\r\n"
"\t |

"\t |

"\tClosing ->
"\t |

"\t |

"\t |

— torque\r\n"
"\t |

< moving\r\n"
"\t |

— to\r\n"

"\t |

"\t |

"\t |

"\t |

< called\r\n"
"\t |

"\tClosed ->
— of\r\n"

"\t |

— torque\r\n"
"\t |

— the\r\n"

"\t |

< state\r\n"
"\t |

« Also,\r\n"
"\t |

— during\r\n"
"\t |

"\tOpening ->
< closing\r\n"
"\t |

"\t |

< (start,\r\n"
"\t |

"\t |

— state.\r\n"
"\t |

« is\r\n"

"\t |

"\tOpened ->
< is\r\n"

"\t |

"\t |

— period\r\n"
"\t |

"\t |

onward, the user is not allowed to

any parameters until the experiment\r\n"

is completed.\r\n"

The shutter is moving towards the closed\r\n"
state. This state is sub-divided into\r\n"
three more states which are start, delay\r\n"
and end. In start state, a negative

is applied on the shutter to start

it in the closed state. Then the power

the shutter is cut-off momentarily. And\r\n"
finally, a positive torque is applied on\r\n"
the shutter to stop its motion. The sum\r\n"

of all 3 sub-state time periods is

\"timeShutterClosing\".\r\n"
Right after the \"Closing stop\" state

the shutter, a very small negative

is applied on the shutter to keep it in
closed sate. The time period of this

is called \"timeShutterStayClosed\".
the camera trigger will be activated

this state.\r\n"
This state is very similar to the

state with the only difference that the\r\n"
torque directions in each sub-state

delay and end) is reversed so that the\r\n"
shutter now moves towards the opened

The sum of all 3 sub-state time periods

called \"timeShutterOpening\".\r\n"
In this state, the power to the shutter

cut-off and the system waits for the\r\n"
remaining time of one Exp. The time

of one complete experiment is called\r\n"
\"timeOfExperiment\".\r\n"
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75 "\tExp end -> At this point, the system moves to \"Exp
— start\"\r\n"

76 "\t state and stays there until another Exp
— is\r\n"

77 "\t initiated by the software.\r\n"

78 “\r\n"

79 "Following is the list of commands and their basic use,\r\n"

80 "\thelp -> To show this help document and the
— detailed\r\n"

81 "\t documentation for a specific command.\r\n"

82 "\tshutterForce -> Set the shutter torque amplitude as a %%\r\n"

83 "\t of maximum possible value for \"Closing\"
— or\r\n"

84 "\t \"Opening\" and \"Closed\" states.\r\n"

85 "\topeningTiming -> Set timings of the sub-states of
— \"Opening\"\r\n"

86 "\t state.\r\n"

87 "\tclosingTiming -> Set timings of the sub-states of
< \"Closing\"\r\n"

88 "\t state.\r\n"

89 "\tcycleTiming -> Set the timings of one experiment.\r\n";

90

91 // Print out the documentation

92 putsUSB(doc);

93 }

94

95 void help shutterForce()

96 {

97 const char *doc = "\tshutterForce <movingForce> <hldingForce>\r\n"

98 "\r\n"

99 "This command allows the user to set %% of the max\r\n"

100 "possible force to be used during shutter motion\r\n"

101 "states which are \"Closing\" and \"Opening\" and\r\n"

102 "the shutter holding state which is \"Closed\".\r\n"

103 "These values are set with command arguments <movingForce>\r\n"

104 "and <hldingForce> respectively. Both of these areguments\r\n"

105 "must have values between 0 and 100 inclusive. And, these\r\n"

106 "values have to be integer. If the command is called\r\n"

107 "without any arguments then the current set values are\r\n"

108 "printed out.\r\n"

109 “\r\n"

110 "Example:\r\n"

111 "\t>shutterForce This will print out current
— values of <movingForce> and <hldingForce>.\r\n"

112 "\t>shutterForce 100 10 This will make Closing/Opening
— torque = 100%% of max possible torque\r\n"

113 "\t and Closed torque = 10%% of max
< possible torque.\r\n"

114 “\r\n";

115

116 // Print out the documentation
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117 putsUSB(doc);

118}

119

120 void help openingTiming()

121 {

122 const char *doc = "\topeningTiming <start> <delay> <stop>\r\n"

123 "\r\n"

124 "User can set the time period of each sub-state\r\n"

125 "of \"Opening\" state using this command. The\r\n"

126 "<movingForce>%% of max possible power will be\r\n"

127 "applied for <start> microseconds to make the\r\n"

128 "shutter start moving towards \"Opened\" state.\r\n"

129 "In \"Opening\" state, the power will be cut-off\r\n"

130 "for <delay> microseconds. And, the negative\r\n"

131 "<movingForce>%% of max possible power will be\r\n"

132 "applied for <stop> microseconds to make the\r\n"

133 "shutter stop moving. All the argument values\r\n"

134 "have to be integers and are assumed to be in\r\n"

135 "the units of microseconds. If the command is\r\n"

136 "entered without any arguments then current set\r\n"

137 "values are printed out.\r\n"

138 “\r\n"

139 "Example:\r\n"

140 "\t>openingTiming This will print out current
— values of <start>, <delay> and <stop>.\r\n"

141 "\t>openingTiming 3000 2500 2000 This will make openingStart =
— 3ms, openingDelay = 2.5ms and openingStop = 2ms.\r\n"

142 “\r\n";

143

144 // Print out the documentation

145 putsUSB(doc);

146}

147

148 void help closingTiming()

149 {

150 const char *doc = "\tclosingTiming <start> <delay> <stop>\r\n"

151 "\r\n"

152 "User can set the time period of each sub-state\r\n"

153 "of \"Closing\" state using this command. The\r\n"

154 "negative <movingForce>%% of max possible power\r\n"

155 "will be applied for <start> microseconds to\r\n"

156 "make the shutter start moving towards \"Closed\"\r\n"

157 "state. In \"Closing\" state, the power will be\r\n"

158 "cut-off for <delay> microseconds. And, the\r\n"

159 "<movingForce>%% of max possible power will be\r\n"

160 "applied for <stop> microseconds to make the\r\n"

161 "shutter stop moving. All the argument values\r\n"

162 "have to be integers and are assumed to be in\r\n"

163 "the units of microseconds. If the command is\r\n"

164 "entered without any arguments then current set\r\n"

165 "values are printed out."
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"\r\n"
"Example:\r\n"

"\t>closingTiming This will print out current
— values of <start>, <delay> and <stop>.\r\n"
"\t>closingTiming 4000 800 2900 This will make closingStart =

< 4ms, closingDelay = 0.8ms and closingStop = 2.9ms.\r\n"
"\F\n";

// Print out the documentation
putsUSB(doc);
void help cycleTiming()

const char *doc = "\tcycleTiming <timeShutterStayClosed> <timeCameraTrigAdv>
<timeCameraRecorords> <timeOfExperiment>\r\n"

"\r\n"
"This command allows to set all the necessary\r\n"
"parameters for one experiment. All the values\r\n"
"provided here are assumed to be in microseconds\r\n"
"and must be integer values. If this command is\r\n"
"entered without any arguments then current set\r\n"
"values will be printed out. The time of one\r\n"
"experiment <timeOfExperiment> is defined as\r\n"
"\r\n"
timeOfExperiment = max(\r\n"
timeShutterClosing + timeShutterStayClosed
< + timeShutterOpening\r\n"
! ,\r\n"
" timeShutterClosing + timeShutterStayClosed
— + timeShutterOpening + timeCameraRecorords -
« timeCameraTrigAdv\r\n"

! )\r\n"

"\r\n"

"The meaning of each variable is explained below.\r\n"
"\ttimeShutterClosing Time period for which shutter is in
— \"Closing\" state,\r\n"

"\t i.e. sum of all sub-states of the
— \"Closing\" state.\r\n"

"\ttimeShutterStayClosed Time period for which the shutter
< stays in \"Closed\" state.\r\n"

"\ttimeShutterOpening Time period for which shutter is in
— \"Opening\" state,\r\n"

"\t i.e. sum of all sub-states of the
— \"Opening\" state.\r\n"

"\ttimeCameraTrigAdv Time period by which the camera

— trigger is advanced\r\n"

"\t before the shutter's \"Opening\"

— state starts. This\r\n"

"\t value must be smaller than

— <timeShutterStayClosed>.\r\n"
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"\ttimeCameraRecorords Time period for which camera trigger
« will be active.\r\n"

"\ttimeOfExperiment Total time of one experiment.\r\n"
"\ rF\n"

"Example:\r\n"

" >cycleTiming 200000 1000 500000 1000000\r\n"

"\r\n"

"For the exaple above, the shutter will stay in \"Closed\" state for
— 200ms.\r\n"

"The camera trigger will be active 1lms befor the shutter goes into
— \"Opening\"\r\n"

"state. This trigger will last for 500ms. And, the complete

— experiment will\r\n"

"last for 1s.\r\n";

// Print out the documentation
putsUSB(doc);

G.2

.3 helpDocs.h

// Author: Vatsal Asitkumar Joshi

//
//
//
//
//

#ifn

Date: May 23rd, 2022
This code is a set of functions to work with USB serial communication.

"If you are done writing the code, now is a good time to debug it."

def _ HELPDOCS DEFINED

#define _ HELPDOCS DEFINED

#inc

void
void
void
void
void
void
void
void
void
void

lude "serialCOM.h"

help(const char *command);
help about();

help shutterForce();

help openingTiming();

help closingTiming();

help cycleTiming();

help start();

help stop();

help status();

help reboot();

#endif
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G.2.4 serialCOM.cpp

// Author: Vatsal Asitkumar Joshi

// Date: May 23rd, 2022

// This code is a set of functions to work with USB serial communication.
//

// "“If you are done writing the code, now is a good time to debug it."
//

[

#include "serialCOM.h"

© 0 N O A W N

o
[=}

// Blocking function, if timeput us = 0, that returns with a character when available.
11 // Otherwise the number would be negative if no character is received within timeout.
12 int getcUSB(uint32_t timeout us)

13 {

14 int c;

15 if (timeout us)

16 c = getchar timeout us(timeout us);

17 else

18 while ((c = getchar timeout us(0)) < 0);
19 return c;

20 }

21
22 // Blocking function, if timeput us = 0, that reads a string when available.
23 // The timeout us value is used for each character.

24 bool getsUSB(struct serialInput *userInput, uint32_t timeout us)

25 |

26 uint8_t count = 0;

27 int c;

28

29 while (count < MAX_CHARS)

30 {

31 c = getcUSB(timeout us);

32 if (c == || ¢ == 127)

33 {

34 if (count == 0)

35 continue;

36 count--;

37 }

38 else if (¢ == 10 || ¢ == 13) // Putty generally sends '\r' on Enter key

39 {

40 userInput->str[count] = '\0@'; // Add Null character

41 c = getcUSB(1000); // Flush out the expected '\n' character if received within
— Ims

42 break;

43 }

44 else if (c > 31 && ¢ < 127)

45 userInput->str[count++] = c;

46 else if (!timeout us)

47 continue;

48 else

181



49 return 0;

50 }

51 parseString(userInput);

52 return 1;

53 }

54

55 uint32_t intPow(uint32_t x, uint32_t p)
56 {

57 uint32_t i = 1;

58 for (uint32_t j = 0; j < p; j++)
59 i *= x;

60 return i;

61 }

62

63 // void itoa(uint32 t iVal, char *str, uint8 t strlLength)
64 // {

65 // uint8_t p = 255;

66 // while (iVal / intPow(10, ++p) != 0)
67 // ;

68 // if (p)

69 // {

o // strip] = '\0';

o // for (uint8_ t i = 1; 1 < strLength - 1; ++i)
2 // {

3 // strip - i] = '0' + (iVal % 10);
a4 // iVal /= 10;

s // if (i == p)

% // {

// strLength = p;

s // break;

9 // }

80 // }

g1 // }

82 // else

83 // {

84 // str[0] = '0"';

85 // str[1] = "\0';

86 // }

87 // str[strLength] = '\0"';

g8 // }

89

90 void getPercentage(uint32_t iVal, char *str, uint8_t strLength)

a1 {

92 str[4] = ival % 10 + '0';
93 ival /= 10;

94 str[3] = ival % 10 + '0';
95 ival /= 10;

96 str[2] = '.';

97 str[l] = ival % 10 + '0';
98 ival /= 10;

99 str[0] = ival % 10 + '0';
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100 ival /= 10;
101 str[5] = '\0';
102}

G.2.5 serialCOM.h

// Author: Vatsal Asitkumar Joshi

-

2 // Date: May 23rd, 2022

3 // This code is a set of functions to work with USB serial communication.

4 //

5 // "If you are done writing the code, now is a good time to debug it."

6 //

7

8 #ifndef  SERIALCOM DEFINED

9o #define  SERIALCOM DEFINED

10

11 #include <stdio. h>

12 #include <string.h>

13 #include "pico/stdlib.h"

14 #include "serialInput.h"

15

16 // Define tokens used for communication

17 #define sndToken "115104117116116101114067111110116114111108108101114\r\n" // Each 3 digits
— converted to chars results in 'shutterController'

18 #define recToken "116119101101122101114083111102116119097114101" // Each 3 digits
— converted to chars results in 'tweezerSoftware'

19 #define endRspToken "101110100067109100082115112\r\n" // Each 3 digits

— converted to chars results in 'endCmdRsp'
20
21 #define putcUSB(c) printf("%sc", c) // Blocking function that writes a character
22 #define putsUSB(str ptr) printf("%s", str_ptr) // Blocking function that writes a string
23
24 int getcUSB(uint32_t timeout us = 0);
25 bool getsUSB(struct serialInput *userInput, uint32_t timeout us = 0);
26 // void itoa(uint32 t iVal, char *str, uint8 t strlLength);
27 void getPercentage(uint32_t iVal, char *str, uint8_t strLength);
28
29 #endif

G.2.6 pico sdk import.cmake

-

# This is a copy of <PICO SDK PATH>/external/pico sdk import.cmake

# This can be dropped into an external project to help locate this SDK
# It should be include()ed prior to project()

D otk W N

if (DEFINED ENV{PICO_SDK_ PATH} AND (NOT PICO_SDK_ PATH))
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set(PICO SDK PATH $ENV{PICO SDK PATH})

message("Using PICO SDK PATH from environment ('${PICO SDK PATH}')")

endif ()

if (DEFINED ENV{PICO SDK FETCH FROM GIT} AND (NOT PICO SDK FETCH FROM GIT))
set(PICO_SDK FETCH FROM GIT $ENV{PICO SDK_ FETCH FROM GIT})
message("Using PICO SDK FETCH FROM GIT from environment

— ('${PICO SDK FETCH FROM GIT}')")
endif ()

if (DEFINED ENV{PICO_SDK FETCH FROM GIT PATH} AND (NOT PICO SDK FETCH FROM GIT PATH))
set(PICO_SDK FETCH FROM GIT_PATH $ENV{PICO_SDK FETCH_FROM_GIT_ PATH})
message("Using PICO SDK FETCH FROM GIT PATH from environment
— ('${PICO_SDK_FETCH_FROM_GIT_PATH}"')'

endif ()

set(PICO SDK PATH "${PICO SDK PATH}" CACHE PATH "Path to the Raspberry Pi Pico SDK")
set(PICO SDK FETCH FROM GIT "${PICO SDK FETCH FROM GIT}" CACHE BOOL "Set to ON to fetch

— copy of SDK from git if not otherwise locatable")

set(PICO SDK FETCH FROM GIT PATH "${PICO SDK FETCH FROM GIT PATH}" CACHE FILEPATH "location

— to download SDK")

if (NOT PICO SDK PATH)
if (PICO SDK_FETCH FROM GIT)
include(FetchContent)

set (FETCHCONTENT BASE DIR SAVE ${FETCHCONTENT BASE DIR})

if (PICO SDK FETCH FROM GIT PATH)

get filename component(FETCHCONTENT BASE DIR "${PICO SDK FETCH FROM GIT PATH}"
< REALPATH BASE DIR "${CMAKE SOURCE DIR}")

endif ()
FetchContent Declare(
pico sdk

GIT REPOSITORY https://github.com/raspberrypi/pico-sdk

GIT TAG master

)
if (NOT pico sdk)

message("Downloading Raspberry Pi Pico SDK")

FetchContent Populate(pico sdk)

set(PICO SDK PATH ${pico_sdk SOURCE DIR})

endif ()

set (FETCHCONTENT_BASE_DIR ${FETCHCONTENT_BASE_DIR_SAVE})

else ()
message (FATAL ERROR

"SDK location was not specified. Please set PICO SDK PATH or set
< PICO SDK FETCH FROM GIT to on to fetch from git."

)
endif ()
endif ()

get filename component(PICO SDK PATH "${PICO SDK PATH}" REALPATH BASE DIR

— "${CMAKE_BINARY_DIR}")

")
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if (NOT EXISTS ${PICO SDK PATH})
message (FATAL ERROR "Directory '${PICO SDK PATH}' not found")
endif ()

set(PICO SDK INIT CMAKE FILE ${PICO SDK PATH}/pico sdk init.cmake)

if (NOT EXISTS ${PICO SDK INIT CMAKE FILE})
message (FATAL ERROR "Directory '${PICO SDK PATH}' does not appear to contain the
— Raspberry Pi Pico SDK")

endif ()

set(PICO SDK PATH ${PICO SDK PATH} CACHE PATH "Path to the Raspberry Pi Pico SDK" FORCE)

include(${PICO SDK INIT CMAKE FILE})

G.2.7 seriallnput.cpp

// Author: Vatsal Asitkumar Joshi

// Date: May 23rd, 2022

// This code is a set of functions to work with USB serial communication.
//

// "“If you are done writing the code, now is a good time to debug it."
//

#include "serialInput.h"

void parseString(struct serialInput *userInput)
{
bool prevCharState = 0; // Previous Character state. O = Character not useful, 1 =
— Character is useful
userInput->argCount = 0;
uint8_t length = strlen(userInput->str);
for (uint8_t i = 0; i < length; ++i)
{
char ¢ = userInput->str[i];
if ((c ==43 || ¢ ==46 || ¢ ==38) || (c > 47 & ¢c <58) || (c > 64 & ¢ < 91) ||
< (c > 96 & c < 123))

{
if (prevCharState == 0)
{
if (userInput->argCount == MAX FIELDS)
{
putsUSB("\r\n> Number of arguments entered is more than maximum
— limit.");
putsUSB("\r\n> All the arguments after maximum limit will be
— ignored.");
break;
}

userInput->pos[userInput->argCount++] = i;
prevCharState = 1;
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}
// if (c>64 && c<91)

/7 A
// userInput->str[i] += 32;
/7 }

}

else

{
prevCharState = 0;
userInput->str[i] = '\0';

}

const char *getArgString(struct serialInput *userInput, uint8_t argNumber)

{

if (argNumber + 1 <= userInput->argCount)

return userInput->str + userInput->pos[argNumber];
else

return NULL;

G.2.8 seriallnput.h

//
//
//
//
//
//

Author: Vatsal Asitkumar Joshi
Date: May 23rd, 2022
This code is a set of functions to work with USB serial communication.

"If you are done writing the code, now is a good time to debug it."

#ifndef  SERIAL INPUT
#define  SERIAL INPUT

#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "serialCOM.h"

#define MAX _CHARS 80
#define MAX_FIELDS 6

struct seriallInput

{

1

char str[MAX CHARS + 1];
uint8_t pos[MAX FIELDS], argCount;

void parseString(struct serialInput *userInput);
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const char *getArgString(struct serialInput *userInput, uint8_t argNumber);

#endif

G.2.9 shutter.cpp

// Author: Vatsal Asitkumar Joshi

// Date: May 23rd, 2022

// This code is a set of functions to work with USB serial communication.
//

// "“If you are done writing the code, now is a good time to debug it."
//

#include <stdio. h>

#include <stdlib. h>

#include "pico/stdlib.h"

#include "hardware/pwm.h"

#include "hardware/timer.h"

#include "hardware/watchdog.h"

#include "serialCOM.h"

#include "helpDocs.h"

// Define alarm numbers and IRQ vector numbers for shutter and camera timing
#define SHTR_ALARM NUM 0O
#define CMRA ALARM NUM 1

// Define the necessary pins
const uint blueLED = 14;
const uint shutterInA = 16;

const uint shutterInB
const uint camTrigger
const uint centrifuge

17;
9;
2;

// Shutter PWM specific definitions

#define SYSTEM FREQ 125000000 // RP2040 clock frequency 125MHz
#define SHTR PWM FREQ 20000 // Desired PWM output frequency 20kHz
#define SHTR_PWM_TOP (SYSTEM_FREQ / SHTR_PWM_FREQ) // Value that TOP register should have
— to get desired PWM frequency

// Blue LED PWM specific definitions

#define BLED PWM FREQ 125000 // Desired PWM output frequency 125kHz
#define BLED_PWM_TOP (SYSTEM_FREQ / BLED_PWM_FREQ) // Value that TOP register should have
« to get desired PWM frequency

// Structures to hold shutter timings
struct motion

{
uint
uint

start _us; // Time for which power will be applied in one direction during motion
delay us; // Time for which power will be off during motion
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uint stop us; // Time for which power will be in the opposite direction to stop the
< motion
}
struct _cycle
{
struct motion opening; // Shutter opening motion timings
struct motion closing; // Shutter closing motion timings

uint closed us; // Time for which shutter stay closed

uint camTrigAdv us; // Camera trigger applied befor this many microseconds of
— shutter start opening

uint camTriglLen us; // Time period for which the camera will be recording

// Length of one cycle = closing + closed us + opening + camTriglLen us - camTrigAdv us
} shutter = {4500, 800, 2500, 4500, 800, 2500, 200000, 1000, 500000};
struct _pwm

{
uint movingDutyCycle; // PWM CC register value while the shutter is
< moving
uint hldingDutyCycle; // PMW CC register value while the shutter is

< not moving
} pwm = {SHTR_PWM TOP + 1, SHTR PWM TOP * 10 / 100}; // Default values: movingDutyCycle =
— 100%, hldingDutyCycle = 1%

// Define necessary global variables
struct seriallInput usbSerialln; // Container to hold user input
volatile bool expInProcess = false; // States whether some experiments are currently
< hapenning or not
volatile bool camRecording = false; // Status whether camera is currently recording or not
uint expLen us = shutter.closing.start us + shutter.closing.delay us +
< shutter.closing.stop us
+ shutter.closed us
+ shutter.opening.start us + shutter.opening.delay us +
— shutter.opening.stop us
+ shutter.camTrigLen us - shutter.camTrigAdv us;

// Define different states the shutter could be in
enum shutterState
{
opened,
closing start,
closing delay,
closing stop,
closed,
opening start,
opening delay,
opening stop
}

void shutterISR(uint alarmNum)

{

static enum shutterState lastState = opened; // Assume that initially the shutter is
— open
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static absolute_time_t expStartTime;
— started

// Get current time
absolute time t t = get absolute time();

// State that experiments are hapenning
expInProcess = true;

// Time at which the experiment was

// Do stuff based on what the last state of the shutter was

switch (lastState)
{

case opened: // If the shutter was opened then start closing it

// Make INA = 100% and INB = 0%

pwm_set chan_ level(pwm gpio to slice num(shutterInA),
— pwm_gpio to channel(shutterInA), pwm.movingDutyCycle);
pwm set chan level(pwm gpio to slice num(shutterInB),

< pwm_gpio to channel(shutterInB), 0);

// Call this ISR after shutter closing start

hardware alarm set target(SHTR ALARM NUM, delayed by us(t,

— shutter.closing.start us));

// Save experiment start time
expStartTime = t;

// Make shutter state closing start
lastState = closing start;
break;

case closing start: // If the shutter has started closing then cut off the power

// Make INA = 0% and INB = 0%

pwm_set chan_level(pwm gpio to slice num(shutterInA),

— pwm_gpio_to_channel(shutterInA), 0);

pwm_set chan level(pwm gpio to slice num(shutterInB),

< pwm_gpio to channel(shutterInB), 0);

// Call this ISR after shutter closing delay
hardware alarm set target(SHTR ALARM NUM, delayed by us(t,

— shutter.closing.delay us));

// Make shutter state closing delay
lastState = closing delay;
break;

case closing delay: // If the shutter was in the closing delay then supply power in
< opposite direction to stop the motion

// Make INA = 0% and INB = 100%

pwm_set chan_ level(pwm gpio to slice num(shutterInA),

— pwm_gpio to channel(shutterInA), 0);

pwm set chan level(pwm gpio to slice num(shutterInB),
< pwm_gpio to channel(shutterInB), pwm.movingDutyCycle);
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// Call this ISR after shutter closing stop
hardware alarm set target(SHTR _ALARM NUM, delayed by us(t,
— shutter.closing.stop us));

// Make shutter state closing stop

lastState = closing stop;

break;
case closing stop: // If the shutter was stopping the closing motion then keep it in
— the closed position

// Make INA = 1% and INB = 0

pwm _set chan_ level(pwm gpio to slice num(shutterInA),

< pwm_gpio to channel(shutterInA), pwm.hldingDutyCycle);

pwm _set chan level(pwm gpio to slice num(shutterInB),

— pwm_gpio to channel(shutterInB), 0);

// Call this ISR after the time shutter should stay closed
hardware alarm set target(SHTR ALARM NUM, delayed by us(t, shutter.closed us));

// Call cameraISR slightly before shutter starts to open
hardware alarm set target(CMRA ALARM NUM, delayed by us(t, shutter.closed us -
— shutter.camTrigAdv us));

// Make shutter state closed
lastState = closed;
break;
case closed: // If the shutter was closed then start opening it
// Make INA = 0% and INB = 100%
pwm_set chan_ level(pwm gpio to slice num(shutterInA),
< pwm_gpio to channel(shutterInA), 0);
pwm_set chan level(pwm gpio to slice num(shutterInB),
< pwm_gpio to channel(shutterInB), pwm.movingDutyCycle);

// Call this ISR after timeShutterMoving
hardware alarm set target(SHTR ALARM NUM, delayed by us(t,
— shutter.opening.start us));

// Make shutter state opening start
lastState = opening start;
break;
case opening start: // If the shutter has started opening then cut off the power
// Make INA = 0% and INB = 0%
pwm_set chan_ level(pwm gpio to slice num(shutterInA),
< pwm_gpio to channel(shutterInA), 0);
pwm _set chan level(pwm gpio to slice num(shutterInB),
< pwm_gpio to channel(shutterInB), 0);

// Call this ISR after timeShutterMoving
hardware alarm set target(SHTR ALARM NUM, delayed by us(t,

— shutter.opening.delay us));

// Make shutter state opening delay
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lastState = opening delay;
break;

case opening delay: // If the shutter was in the opening delay then supply power in

—

opposite direction to stop the motion

// Make INA = 100% and INB = 0%

pwm_set chan_ level(pwm gpio to slice num(shutterInA),

— pwm_gpio to channel(shutterInA), pwm.movingDutyCycle);
pwm_set chan_ level(pwm gpio to slice num(shutterInB),

— pwm_gpio to channel(shutterInB), 0);

// Call this ISR after timeShutterMoving
hardware alarm set target(SHTR ALARM NUM, delayed by us(t,
— shutter.opening.stop us));

// Make shutter state opening stop
lastState = opening stop;
break;

default: // If the shutter was stopping the opening motion then cut off the power

// Make INA = 0% and INB = 1%

pwm_set chan_ level(pwm gpio to slice num(shutterInA),
— pwm_gpio to channel(shutterInA), 0);

pwm_set chan_ level(pwm gpio to slice num(shutterInB),
< pwm_gpio to channel(shutterInB), 0);

if (shutter.closed us + shutter.opening.start us + shutter.opening.delay us +
— shutter.opening.stop us >= shutter.closed us - shutter.camTrigAdv us +
— shutter.camTriglLen us)
expInProcess = false; // State that the experiment is done if the camera
— trigger end happens before shutter is openned

// Make shutter state opened
lastState = opened;
break;

void cameraISR(uint alarmNum)

{

// Get current time
absolute time t t = get absolute time();

if (camRecording) // If camera was recording previously then

{

gpio put(camTrigger, 0); // Make camera trigger pin = 0
camRecording = false; // State that camera has stopped recording
if (shutter.closed us + shutter.opening.start us + shutter.opening.delay us +
— shutter.opening.stop us <= shutter.closed us - shutter.camTrigAdv us +
— shutter.camTriglLen us)
expInProcess = false; // State that the experiment is done if the camera
< trigger end happens after shutter is openned

191



204
205
206

207

208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231

232

233

234

235

236

238
239

240

241

242

else // If camera was not recording previously then start recording
{
gpio put(camTrigger, 1);
— // Make camera trigger pin =1
camRecording = true;
— // State that camera has stopped recording
hardware alarm set target(CMRA ALARM NUM, delayed by us(t, shutter.camTrigLen us));
— // Call this ISR when camera has to stop recording

// Function that initializes all the pins and hardware
void setup()

{

stdio init all();

// Initialize GPIOs for shutter as output

gpio init(shutterInA);

gpio set dir(shutterInA, GPIO OUT);

// gpio _set slew rate(shutterInA, GPIO SLEW RATE FAST);

// gpio_set drive strength(shutterInA, GPIO DRIVE STRENGTH 8MA);
gpio init(shutterInB);

gpio set dir(shutterInB, GPIO OUT);

// gpio_set slew rate(shutterInB, GPIO SLEW RATE FAST);

// gpio_set drive strength(shutterInB, GPIO DRIVE STRENGTH 8MA);

// Initialize GPIOs for shutter as PWM

gpio_set function(shutterInA, GPIO_FUNC_PWM);

gpio set function(shutterInB, GPIO FUNC PWM);

pwm_set wrap(pwm gpio to slice num(shutterInA), SHTR PWM TOP);

— // Set the counter wrap value based on the desired PWM frequency

pwm_set wrap(pwm_gpio_to_slice num(shutterInB), SHTR_PWM_TOP);

— // Set the counter wrap value based on the desired PWM frequency
pwm_set_chan_level(pwm_gpio_to_slice num(shutterInA), pwm_gpio_to_channel(shutterInA),
« 0); // Chan A (GPIO 0) counter compare value (Decides duty cycle)

pwm_set chan level(pwm gpio to slice num(shutterInB), pwm gpio to channel(shutterInB),
— 0); // Chan B (GPIO 1) counter compare value (Decides duty cycle)

pwm_set enabled(pwm gpio to slice num(shutterInA), true);

— // Enable the PWM counter for InA

pwm_set enabled(pwm gpio to slice num(shutterInB), true);

— // Enable the PWM counter for InA

// Initialize GPIO for blue LED

gpio set function(blueLED, GPIO FUNC PWM);

pwm_set wrap(pwm gpio to slice num(blueLED), BLED PWM TOP); //
— Set the counter wrap value based on the desired PWM frequency

pwm_set chan level(pwm gpio to slice num(blueLED), pwm gpio to channel(blueLED), 0); //
— Chan A (GPIO 14) counter compare value (Decides duty cycle)

pwm_set enabled(pwm gpio to slice num(blueLED), true); //
< Enable the PWM counter for Blue LED
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// Initialize GPIO for camera as output
gpio init(camTrigger);

gpio _set dir(camTrigger, GPIO OUT);
gpio put(shutterInB, 0);

// Initialize GPIO for centrifuge as output
gpio init(centrifuge);
gpio set dir(centrifuge, GPIO OUT);

// Initialize GPIO for centrifuge as PWM

gpio set function(centrifuge, GPIO FUNC PWM);

pwm_set clkdiv_int frac(pwm gpio to slice num(centrifuge), 125, 0); // Set the clock
— divider to 125 to get lus reference

pwm_set wrap(pwm _gpio to slice num(centrifuge), 10000); // Set the counter wrap value
— to 10000 to get 10ms cycle time

pwn_set gpio_level(centrifuge, 1000); // Set default pulse width to Ims

pwm set enabled(pwm gpio to slice num(centrifuge), true); // Enable the pwm output

// Make sure the shutter is in open position by setting shutterInA = 0% and shutterInB
— = movingDutyCycle/2% duty cycle

pwm_set chan level(pwm gpio to slice num(shutterInA), pwm gpio to channel(shutterInA),
— 0);

pwm set chan level(pwm gpio to slice num(shutterInB), pwm gpio to channel(shutterInB),
— pwm.movingDutyCycle/2);

sleep ms(500);

pwm_set chan level(pwm gpio to slice num(shutterInA), pwm gpio to channel(shutterInA),
— 0);

pwm_set chan level(pwm gpio to slice num(shutterInB), pwm gpio to channel(shutterInB),
— 0);

// Make sure camera trigger is off
gpio put(camTrigger, 0);

// Set up ISRs and enable IRQs for shutter and camera alarms

hardware alarm claim(SHTR_ALARM NUM); // Claim an alarm for
— shutter and enable IRQ

hardware alarm set callback(SHTR ALARM NUM, shutterISR); // Define the callback
— function for shutter alarm

hardware alarm claim(CMRA_ALARM NUM); // Claim an alarm for
— camera trigger and enable IRQ

hardware alarm set callback(CMRA ALARM NUM, cameraISR); // Define the callback

— function for camera trigger

// Wait for the USB serial connection to be activated
while (!stdio usb connected());

// Keep sending the secret message untill a correct response is received
char s[80];

bool strRcv = 0;

do

{
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putsUSB(sndToken); // Send a token for handshake

strRcv = getsUSB(&usbSerialln, 200e3);

strcpy(s, getArgString(&usbSerialln, 0));
} while (!strRcv || strcmp(s, recToken)); // Check if the received token is correct or
— not

void loop()

{

// Read user input
getsUSB(&usbSerialln);
const char *command = getArgString(&usbSerialln, 0);

// Execute specific command based on user input
if (!strcmp(command, "help") && usbSerialIn.argCount < 3)

{
// Provide general discussion on how the shutter and this program works
help(getArgString(&usbSerialIn, 1));
}
else if (!strcmp(command, "shutterForce") && usbSerialIn.argCount == 1)
{
char outNumber[11];
putsUSB("Shutter force when it is moving =");
itoa(pwm.movingDutyCycle * 100 / SHTR PWM TOP, outNumber, 10);
putsUSB(outNumber);
putsUSB(" %%\r\n");
putsUSB("Shutter force when it is closed =");
itoa(pwm.hldingDutyCycle * 100 / SHTR PWM TOP, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" %%\r\n");
}
else if (!strcmp(command, "shutterForce") && usbSerialIn.argCount == 3)
{

uint movingForce = atoi(getArgString(&usbSerialln, 1));
uint hldingForce = atoi(getArgString(&usbSerialln, 2));

if (movingForce < 101 && hldingForce < 101)

{
pwm.movingDutyCycle = movingForce == 100 ? SHTR PWM TOP + 1 : SHTR PWM TOP *
< movingForce / 100;
pwm.hldingDutyCycle = hldingForce == 100 ? SHTR PWM TOP + 1 : SHTR PWM TOP *
< hldingForce / 100;
putsUSB("Warning: Choose the shutter moving and holding force
< carefully.\r\nContinuous high force can damage the shutter.\r\n");
}
else
{
putsUSB("The shutter force values have to be between 0%% and 100%%
< inclusive.\r\n");
}
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}
else if (!strcmp(command, "openingTiming") && usbSerialIn.argCount == 1)
{
char outNumber[11];
putsUSB("Power supplied for ");
itoa(shutter.opening.start us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" us to start opening the shutter.\r\n");
putsUSB("Power cut off for ");
itoa(shutter.opening.delay us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" us. \r\n");
putsUSB("Power supplied in opposite direction for ");
itoa(shutter.opening.stop us, outNumber, 10);
putsUSB(outNumber);
putsUSB(" us to stop shutter motion.\r\n");

}
else if (!strcmp(command, "openingTiming") && usbSeriallIn.argCount == 4)
{
uint start = atoi(getArgString(&usbSerialln, 1));
uint delay = atoi(getArgString(&usbSerialln, 2));
uint stop = atoi(getArgString(&usbSerialln, 3));
if (start && delay && stop)
{
shutter.opening.start us = start;
shutter.opening.delay us = delay;
shutter.opening.stop us = stop;
}
else
{
putsUSB("Motion timing values cannot be 0.\r\n");
)
}
else if (!strcmp(command, "closingTiming") && usbSerialIn.argCount == 1)
{
char outNumber[11];
putsUSB("Power supplied for ");
itoa(shutter.closing.start us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" us to start closing the shutter.\r\n");
putsUSB("Power cut off for ");
itoa(shutter.closing.delay us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" us. \r\n");
putsUSB("Power supplied in opposite direction for ");
itoa(shutter.closing.stop us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB(" us to stop shutter motion.\r\n");
}
else if (!strcmp(command, "closingTiming") && usbSerialIn.argCount == 4)
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uint start = atoi(getArgString(&usbSerialln, 1));
uint delay = atoi(getArgString(&usbSerialln, 2));
uint stop = atoi(getArgString(&usbSerialln, 3));

if (start && delay && stop)

{
shutter.closing.start us = start;
shutter.closing.delay us = delay;
shutter.closing.stop us = stop;
}
else
{
putsUSB("Motion timing values cannot be 0.\r\n");
}
}
else if (!strcmp(command, "cycleTiming") && usbSerialIn.argCount == 4)
{
// Update the values of experiment parameters
shutter.closed us = atoi(getArgString(&usbSerialIn, 1));
shutter.camTrigAdv _us = atoi(getArgString(&usbSerialln, 2));
shutter.camTrigLen us = atoi(getArgString(&usbSerialIn, 3));
if (shutter.camTrigAdv_us >= shutter.closed us)
{
putsUSB("The camera trigger can be advanced at max till the shutter closes.
— Make sure that\r\n");
putsUSB(" timeCameraTrigAdv < timeShutterStayClosed\r\n");
putsUSB("For now timeCameraTrigAdv is set to 0 us.\r\n");
shutter.camTrigAdv us = 0; // Set timeCameraTrigAdv to 0
}
expLen us = shutter.closing.start us + shutter.closing.delay us +
— shutter.closing.stop us + shutter.closed us + shutter.opening.start us +
— shutter.opening.delay us + shutter.opening.stop us;
if (shutter.closed us + shutter.opening.start us + shutter.opening.delay us +
— shutter.opening.stop us <= shutter.closed us - shutter.camTrigAdv us +
— shutter.camTriglLen us)
expLen us += shutter.camTrigLen us - shutter.camTrigAdv us;
}

else if (!strcmp(command, "cycleTiming") && usbSerialIn.argCount ==

{

char outNumber[11];

putsUSB("Shutter will stay closed for ");
itoa(shutter.closed us, outNumber, 10);
putsUSB(outNumber) ;

putsUSB(" us.\r\n");

putsUSB("Camera will be triggered ");
itoa(shutter.camTrigAdv us, outNumber, 10);
putsUSB(outNumber) ;

putsUSB(" us before shutter starts opening. \r\n");
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426 putsUSB("Camera will record for ");

427 itoa(shutter.camTrigLen us, outNumber, 10);
428 putsUSB(outNumber) ;
429 putsUSB(" us.\r\n");
430 putsUSB("One complete experiment will be ");
431 itoa(expLen_us, outNumber, 10);
432 putsUSB(outNumber) ;
433 putsUSB(" us long.\r\n");
434 }
435 else if (!strcmp(command, "centrifuge") && usbSerialIn.argCount == 2)
436 {
437 // Update the centrifuge pulse-width
438 int cc = atoi(getArgString(&usbSerialln, 1));
439 if (cc >= 0 & cc <= 9)
440 pwm set gpio level(centrifuge, cc * 100 + 1000);
441 else
442 pwm set gpio level(centrifuge, 1000);
443 }
444 else if (!strcmp(command, "led") && usbSerialIn.argCount == 2)
445 {
446 // Update the blue LED duty cycle
447 int cc = atoi(getArgString(&usbSerialln, 1));
448 if (cc >= 0 & cc <= 100)
449 pwm_set gpio level(blueLED, BLED PWM TOP * cc / 100);
450 else
451 pwm set gpio level(blueLED, 0);
452 }
453 else if (!strcmp(command, "shtrOpen") && usbSeriallIn.argCount == 1)
454 {
455 // Open the shutter
456 pwm_set chan level(pwm gpio to slice num(shutterInA),
— pwm_gpio_to_channel(shutterInA), 0);
457 pwm_set chan_level(pwm_gpio_to_slice num(shutterInB),
< pwm_gpio to channel(shutterInB), pwm.movingDutyCycle/2);
458 sleep ms(500);
459 pwm_set chan level(pwm gpio to slice num(shutterInA),
— pwm_gpio to channel(shutterInA), 0);
460 pwm_set chan_level(pwm_gpio_to_slice num(shutterInB),
< pwm_gpio to channel(shutterInB), 0);
461 }
462 else if (!strcmp(command, "shtrClose") && usbSerialIn.argCount == 1)
463 {
464 // Close the shutter
465 pwm_set chan_level(pwm_gpio_to_slice num(shutterInA),
< pwm_gpio to channel(shutterInA), pwm.movingDutyCycle/2);
466 pwm set chan level(pwm gpio to slice num(shutterInB),
— pwm_gpio to channel(shutterInB), 0);
467 sleep ms(500);
468 pwm_set chan_level(pwm_gpio_to_slice num(shutterInA),

< pwm_gpio to channel(shutterInA), 0);
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pwm _set chan level(pwm gpio to slice num(shutterInB),
< pwm_gpio to channel(shutterInB), 0);

}
else if (!strcmp(command, "++expLen") && usbSerialIn.argCount == 1)
{
char outNumber[11];
itoa(expLen us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB("\r\n");
}
else if (!strcmp(command, "++camTriglLen") && usbSerialIn.argCount == 1)
{
char outNumber[11];
itoa(shutter.camTrigLen us, outNumber, 10);
putsUSB(outNumber) ;
putsUSB("\r\n");
}

else if (!strcmp(command, "++start") && usbSerialln.argCount < 3)
{
// // Make sure that the shutter is in open state
// pwm_set chan level(pwm _gpio to slice num(shutterInA),
— pwm_gpio_to_channel(shutterInA), 0);
// pwm_set chan level(pwm gpio to slice num(shutterInB),
— pwm _gpio_to channel(shutterInB), pwm.hldingDutyCycle);
// sleep ms(500);
// pwm_set chan level(pwm gpio to slice num(shutterInA),
— pwm_gpio to channel(shutterInA), 0);
// pwm_set chan level(pwm gpio to slice num(shutterInB),
— pwm _gpio to channel(shutterInB), 0);

// Call the shutter alarm function after 1ms to initiate the experiment
hardware_alarm_set target(SHTR_ALARM NUM, make_timeout_time ms(1));
// shutterISR(SHTR ALARM NUM);

// Block all the other operations untill the experiment ends
while (expInProcess);
}
else if (!strcmp(command, "++reboot") && usbSerialIn.argCount)
{
putsUSB("The shutter controller is set to reboot.");
putsUSB("\r\n");
watchdog reboot(0, 0, 100);
}
else if (!usbSerialIn.argCount)
{
}
else
{
putsUSB("\tInvalid Command: ");
putsUSB(command) ;
putsUSB("\r\n");
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515 putsUSB("\tType \"help\" for list of commands.\r\n");

516 putsUSB("\tType \"help command\" for documentation of a specific command.\r\n");
517 }

518 // Send CR/LF pair to be on safe side

519 putsUSB("\r\n");

520

521 // Output a token to indicate end of command response
522 putsUSB(endRspToken) ;

523  }

524

525 int main()

526

527 setup();

528

529 while (true)

530 {

531 loop();

532 }

533  }

199



APPENDIX H

Code Listings for the Host-PC software
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The code provided here relies on many other pieces of software listed below:

e cli: A library to create command line interface. It is available at https:
//9ithub.com/daniele77/cli

e DCAM-API: Primarily provides a driver for the frame grabber card (FireBird
1XCLD-2PES) from Active Silicon. It also has other tools that can be used for
testing and configuration purposes, like ExCap4 and DCAM Configurator. It can
be downloaded from https://dcam-api.com/downloads/

e DCAM-SDK: This is the software development kit provided by Hamamatsu. It
provides important functions and headers to properly communicate with the
camera. It can be downloaded from https://dcam-api.com/dcam-sdk-login/

e glew, glfw and glm: These are OpenGL libraries that facilitate the live view
functionality for the camera. Only certain files from each library are required,
take a look at the directory tree and CMakeLists.txt for help. Following are
the download links for each

— glew: https://sourceforge.net/projects/glew/files/glew/2.1.0/glew-2.
1.0-win32.zip/download

— glfw: https://www.glfw.org/download

— glm: https://github.com/g-truc/glm

e serialib: This library facilitates the communication between the host pc and
the microcontroller. It can be downloaded from https://github.com/imabot2/

serialib
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H.1 Directory tree

/
cli/
dcamMisc/ ....... Modified versions of some files in dcamsdk4/samples/cpp/misc
common . cpp
common.h
console4.h
dcamsdk4/ ....ooiiiiiiiiiiiiiinnn. Everything else is the same except the following
inc/
Lg,dcamapi4.h .................. Modified version of dcamsdk4/inc/dcamapi4.h
glew-2.1.0/
glfw-3.3.8.bin.WIN64/
glm/
serialib/
Lo 111 o] o o]« P Get and Set Camera Properties
Lol Y11 T £ Header file for camProp.cpp
LoF= Y11 =Y ol of o o Records images from camera
LoF=T111 =Y oI Header file for camRec.cpp
Lol 11115 o o] o Main code of the host pc software
oF=T11 1o £ T Header file for camSoft.cpp
CMAKELISTS s EXT v uutet ettt e see e siee e riee e eieeeraneeans CMake configuration file
CONAEXPS . CPP e veeerrennrrennrennreeineenneennns Automates conducting experiments
CONAEXPS N ettt e Header file for condExps.cpp
L Y= 0= ] 30 of o Provides live camera stream
TAVECAP . Nt e Header file for liveCap.cpp
SHErCErL. CPP vrrrineeeeeeeenann Communicates with the microcontroller
] 4 O o o S, Header file for shtrCtrl.cpp

H.2 Code Listings
H.2.1 common.cpp

Make the following changes to the original file, remove the lines that are high-

lighted in red and add the lines that are highlighted in green .

// console/misc/common.cpp

//

#include "console4.h"
#include "common.h"
#include <stdarg. h>
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H.2.2 common.h

Make the following changes to the original file, remove the lines that are high-

lighted in - and add the lines that are highlighted in green .

// console/misc/common.h
//

#include "console4.h"
#include <stdarg.h>

#ifndef ASSERT
#define ASSERT(c)
#endif

void dcamcon_show dcamerr( HDCAM hdcam, DCAMERR errid, const char* apiname, const char*
— fmt=0, ... );

H.2.3 console4.h

Make the following changes to the original file, remove the lines that are high-
lighted in red and add the lines that are highlighted in green .

#1f defined( LINUX )

#include "dcamapi4.h"
#include "dcamprop.h"
#else

#include "../dcamsdk4/inc/dcamapi4.h"

#include "../dcamsdk4/inc/dcamprop.h"
#endif




63
64 #endif // _NO_DCAMAPI

H.2.4 dcamapi4.h
Make the following changes to the original file, remove the lines that are high-

lighted in red and add the lines that are highlighted in green .

1122 inline int failed( DCAMERR err )

1123 {

1124 return int(err) < 0;
1125}

1126

1127 #endif

1128

1120 #1if (defined( MSC VER)&&defined( LINK DCAMAPI LIB))
1130 #pragma comment(lib, "dcamapi.lib")

1131  #endif

1132

1133 #pragma pack()

1134

1135 #define INCLUDE DCAMAPI4 H

1136  #endif

H.2.5 camProp.cpp

[un

#include "camProp.h"

2

3 // Define global variables

4 std::vector<camPropInfo> camProps; // Array to store camera properties

5

6 camPropInfo get camPropInfo(HDCAM hdcam, int32 propID)

7 A

8 camPropInfo propInfo;

9 DCAMERR err;

10

11 propInfo.propID = propID;

12 memset (&propInfo.propAttr, 0, sizeof(propInfo.propAttr));

13 propInfo.propAttr.cbSize = sizeof(propInfo.propAttr);

14 propInfo.propAttr.iProp = propID;

15

16 dcamprop getname(hdcam, propID, propInfo.propName, propNameSize); // get
— property name

17 err = dcamprop getattr(hdcam, &propInfo.propAttr); // get property attribute

18

19 // Collect prop attribute info
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if (propInfo.propAttr.attribute & DCAMPROP_ATTR HASCHANNEL)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "HASCHANNEL");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR AUTOROUNDING)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize,

—  "AUTOROUNDING");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR STEPPING INCONSISTENT)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize,

— "STEPPING INCONSISTENT");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR DATASTREAM)

strcpy_s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "DATASTREAM");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR_HASRATIO)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "HASRATIO");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR VOLATILE)

strcpy _s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "VOLATILE");
if (propInfo.propAttr.attribute & DCAMPROP ATTR WRITABLE)

strcpy _s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "WRITABLE");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR_READABLE)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "READABLE");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR ACCESSREADY)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize,

< "ACCESSREADY");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR_ ACCESSBUSY)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "ACCESSBUSY");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR EFFECTIVE)

strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "EFFECTIVE");

// Collect prop attribute2 info
if (propInfo.propAttr.attribute & DCAMPROP_ATTR2_ ARRAYBASE)
strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize, "ARRAYBASE");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR2 ARRAYELEMENT)
strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize,
<  "ARRAYELEMENT");
if (propInfo.propAttr.attribute & DCAMPROP_ATTR2 INITIALIZEIMPROPER)
strcpy s(propInfo.attrNames[propInfo.nAttr++], attrNameSize,
«s "INITIALIZEIMPROPER");

// Get the datatype of the property
switch (propInfo.propAttr.attribute & DCAMPROP TYPE MASK)

{

case DCAMPROP TYPE MODE: strcpy s(propInfo.dataType, datatypeNameSize,
— "MODE"); break;

case DCAMPROP TYPE LONG: strcpy _s(propInfo.dataType, datatypeNameSize,
—  "LONG"); break;

case DCAMPROP TYPE REAL: strcpy s(propInfo.dataType, datatypeNameSize,
— "REAL"); break;

default: strcpy s(propInfo.dataType,
— datatypeNameSize, "NONE"); break;

}

// Extract the range of property values
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propInfo.min = (propInfo.propAttr.attribute & DCAMPROP ATTR HASRANGE) ?
— propInfo.propAttr.valuemin : std::numeric_limits<double>::quiet NaN();
propInfo.max = (propInfo.propAttr.attribute & DCAMPROP_ATTR HASRANGE) ?
— propInfo.propAttr.valuemax : std::numeric_limits<double>::quiet NaN();

// Extract the step size of property value
propInfo.step = (propInfo.propAttr.attribute & DCAMPROP_ATTR HASSTEP) ?
— propInfo.propAttr.valuestep : std::numeric_limits<double>::quiet NaN();

// Extract the default value of the property
propInfo.defaultVal = (propInfo.propAttr.attribute & DCAMPROP_ATTR HASDEFAULT) ?
— propInfo.propAttr.valuedefault : std::numeric_limits<double>::quiet NaN();

// Extract the current value of the property
dcamprop_getvalue(hdcam, propID, &propInfo.currentVal);

// Get all possible values if the datatype is MODE
if ((propInfo.propAttr.attribute & DCAMPROP_TYPE MASK) == DCAMPROP_TYPE MODE) //
— List possible values for the property
{
double lastValue = propInfo.min;
++propInfo.nSuppVals;
do {
DCAMPROP_VALUETEXT pvt;
memset (&pvt, 0, sizeof(pvt));
pvt.cbSize = sizeof(pvt);
pvt.iProp = propID;
pvt.value = lastValue;
propInfo.suppVals[propInfo.nSuppVals] = int32(lastValue);
pvt.text = propInfo.suppValNames[propInfo.nSuppVals++];
pvt.textbytes = suppValNameSize;
dcamprop_getvaluetext(hdcam, &pvt);
} while (!failed(dcamprop queryvalue(hdcam, propID, &lastValue,
— DCAMPROP_OPTION NEXT)));

// Get the unit of property value
switch (propInfo.propAttr.iUnit)

{

case DCAMPROP UNIT SECOND: strcpy s(propInfo.unit,

< unitNameSize, "SECOND"); break;

case DCAMPROP UNIT CELSIUS: strcpy _s(propInfo.unit,

< unitNameSize, "CELSIUS"); break;

case DCAMPROP UNIT KELVIN: strcpy s(propInfo.unit,

< unitNameSize, "KELVIN"); break;

case DCAMPROP UNIT METERPERSECOND: strcpy s(propInfo.unit, unitNameSize,
— "METERPERSECOND"); break;

case DCAMPROP UNIT PERSECOND: strcpy s(propInfo.unit, unitNameSize,
< "PERSECOND"); break;

case DCAMPROP UNIT DEGREE: strcpy s(propInfo.unit,

< unitNameSize, "DEGREE"); break;
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100 case DCAMPROP UNIT MICROMETER: strcpy s(propInfo.unit, unitNameSize,

— "MICROMETER"); break;
101 default: strcpy s(propInfo.unit,
< unitNameSize, "NONE"); break;
102 }
103
104 return propInfo;
105 }
106
107 void fillCamProps(HDCAM hdcam)
108 {
109 camProps.clear(); // Empty out the array
110 int32 iProp = 0; // property IDs
111 DCAMPROPOPTION opt = DCAMPROP_OPTION SUPPORT;
112 while (!failed(dcamprop getnextid(hdcam, &iProp, opt)))
113 {
114 camPropInfo propInfo = get camPropInfo(hdcam, iProp);
115 camProps.push _back(propInfo);
116 if (propInfo.propAttr.attribute2 & DCAMPROP_ATTR2 ARRAYBASE)
117 {
118 double nElem;
119 int32 iPropElemStep = propInfo.propAttr.iPropStep Element;
120 dcamprop _getvalue(hdcam, propInfo.propAttr.iProp NumberOfElement,
— &nElem);
121 for (int32 1 = 1; i < int32(nElem); ++i)
122 {
123 camPropInfo propElemInfo = get camPropInfo(hdcam, iProp + i
< * iPropElemStep);
124 camProps.push back(propElemInfo);
125 }
126 }
127 }
128 }
129
130 void printCamPropsArray(std::ostream& out)
131 {
132 out << std::setw(102) << std::setfill('-') << "" << std::endl << std::setfill(' ');
133 out << "| " << std::right << std::setw(11l) << "Property ID" << " | ";
134 out << std::left << std::setw(propNameSize) << "Property Name" << " | ";
135 out << std::right << std::setw(datatypeNameSize) << "Datatype" << " | ";
136 out << std::right << std::setw(11l) << "Value" << " | ";
137 out << std::right << std::setw(unitNameSize) << "Unit" << " |" << std::endl;
138 out << std::setw(102) << std::setfill('-') << "" << std::endl << std::setfill(' ');
139
140 for (size_t i = 0; i < camProps.size(); ++1i)
141 {
142 out << "| " << std::right << std::setw(11l) << camProps[i].propID << " | ";
143 out << std::left << std::setw(propNameSize) << camProps[i].propName << " |
= "
144 out << std::right << std::setw(datatypeNameSize) << camProps[i].dataType <<
N

’
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}

if (trunc(camProps[i].currentVal) == camProps[i].currentVal)
out << std::right << std::setw(1l) << camProps[i].currentVal << "

— ;
else
out << std::right << std::setw(1l) << std::setprecision(4) <<
— std::scientific << camProps[i].currentVal << std::defaultfloat
- << " "
out << std::right << std::setw(unitNameSize) << camProps[i].unit << " |" <<

— std::endl;

out << std::setw(102) << std::setfill('-') << "" << std::endl << std::setfill(' ');

void printCamPropInfo(std::ostream& out, size_t camPropsIdx)

{

// Make sure that the idx is within the array size
if (camPropsIdx < camProps.size())

{

out << "\tID: " << camProps[camPropsIdx].propID << std::endl; // Print out
— the ID of the property
out << "\tName: " << camProps[camPropsIdx].propName << std::endl; // Print
< out the name of the property
out << "\tAttributes: " << std::endl; // Print out the property attributes
for (int i = 0; i < camProps[camPropsIdx].nAttr; ++i)

out << "\t\t" << camProps[camPropsIdx].attrNames[i] << std::endl;
out << "\tDatatype: " << camProps[camPropsIdx].dataType << std::endl; //
< Print out the property datatype
if (camProps[camPropsIdx].nSuppVals >= 0) // List possible values for the
«— property

{
out << "\tSupported Values: " << std::endl;
for (int i = 0; i < camProps[camPropsIdx].nSuppVals; ++i)
out << "\t\t" << std::setw(8) << std::left <<
<« camProps[camPropsIdx].suppVals[i] << " " <<
— camProps[camPropsIdx].suppValNames[i] << std::endl;
}

if (!std::isnan(camProps[camPropsIdx].min)) // Print out the minimum
— possible property values
out << "\tMinimum: " << camProps[camPropsIdx].min << std::endl;
if (!std::isnan(camProps[camPropsIdx].max)) // Print out the maximum
— possible property values
out << "\tMaximum: " << camProps[camPropsIdx].max << std::endl;
if (!std::isnan(camProps[camPropsIdx].step)) // Print out the step size of
— property values
out << "\tStep: " << camProps[camPropsIdx].step << std::endl;
if (!std::isnan(camProps[camPropsIdx].defaultval)) // Print out the default
— property value
out << "\tDefault Value: " << camProps[camPropsIdx].defaultVal <<
— std::endl;
if (!std::isnan(camProps[camPropsIdx].currentVal)) // Print out current
— property value
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180 out << "\tCurrent Value: " << camProps[camPropsIdx].currentVal <<
— std::endl;
181 }
182 else
183 out << "Invalid Camera Property Index. Update the camera property list to
< make sure that the property exists." << std::endl;
184 }

185
186 int getCamPropsIdxByName(std::string& propName)

187 {
188 int propListIdx = -1;
189 for (int i = 0; 1 < camProps.size(); ++i)
190 if (propName.compare(camProps[i].propName) == 0)
191 {
192 propListIdx = i;
193 break;
194 }
195 return propListIdx;
196 }
197
198 int getCamPropsIdxByID(int32 propID)
199 A
200 int propListIdx = -1;
201 for (int i = 0; i < camProps.size(); ++i)
202 if (camProps[i].propID == propID)
203 {
204 propListIdx = i;
205 break;
206 }
207 return proplListIdx;
208 }
209
210 void setCamPropValue(HDCAM hdcam, std::ostream& out, size_t camPropsIdx, double val)
211 {
212 DCAMERR err = DCAMERR SUCCESS;
213 double reqVal = val;
214 do
215 {
216 val = reqVal;
217 err = dcamprop setgetvalue(hdcam, camProps[camPropsIdx].propID, &val);
218 fillCamProps (hdcam);
219 } while (err == DCAMERR SUCCESS && camProps[camPropsIdx].currentVal != val);
220
221 if (failed(err))
222 {
223 out << "Failed setting " << camProps[camPropsIdx].propName << " = " <<
— regVal << std::endl
224 << "Make sure that the value provided is valid." << std::endl;
225 camProps[camPropsIdx] = get camPropInfo(hdcam,
« camProps[camPropsIdx].propID);
226 printCamPropInfo(out, camPropsIdx);
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227 return;
228 }
229 }

H.2.6 camProp.h

1 #pragma once

V]

#define NOMINMAX

#include "dcamMisc/console4.h"
#include <limits>

#include <iomanip>

#include <vector>

© 0w N o o s Ww

constexpr int propNameSize 40;

10 constexpr int attrNameSize = 24;

11 constexpr int datatypeNameSize = 8;
12 constexpr int suppValNameSize = 24;
13 constexpr int unitNameSize = 16;

14

15 typedef struct _camPropInfo

16 {

17 int32 propID = 0;

18 DCAMPROP_ATTR propAttr;

19 char propName[propNameSize];

20 int nAttr = 0;

21 char attrNames[16][attrNameSize];

22 char dataType[datatypeNameSize];

23 int nSuppVals = -1;

24 int32 suppVals[32];

25 char suppValNames[32][suppValNameSize];

26 char unit[unitNameSize];

27 double min = std::numeric_limits<double>::quiet NaN();

28 double max = std::numeric_limits<double>::quiet NaN();

29 double step = std::numeric_limits<double>::quiet NaN();

30 double defaultVal = std::numeric_limits<double>::quiet NaN();
31 double currentVal = std::numeric_limits<double>::quiet_NaN();
32 } camPropInfo;

33

34 extern std::vector<camPropInfo> camProps; // Array to store camera properties

35

36 camPropInfo get camPropInfo(HDCAM hdcam, int32 propID);

37 void fillCamProps(HDCAM hdcam);

38 void printCamPropsArray(std::ostream& out);

39 void printCamPropInfo(std::ostream& out, size_t camPropsIdx);

40 int getCamPropsIdxByName(std::string& propName);

41 int getCamPropsIdxByID(int32 propID);

42 void setCamPropValue(HDCAM hdcam, std::ostream& out, size_t camPropsIdx, double val);

210



H.2.7 camRec.cpp

#include "camRec.h"

[un

2
3 // Variable to indicate the current state of recording

4 std::atomic<bool> camRcrdng = false;

5

6 // Variable to indicate whether the camera is ready to start recording
7 std::atomic<bool> camRdy2Capt = false;

8

9 void recordFrames(std::ostream& out, HDCAM hdcam, HDCAMWAIT hwait)

10 o

11 DCAMERR err;

12

13 // start capture

14 err = dcamcap_start(hdcam, DCAMCAP START SNAP);

15 if (failed(err))

16 {

17 out << "Could not start camera recording." << std::endl;

18 return;

19 }

20 else

21 {

22 // State that the camera is ready to capture frames

23 camRdy2Capt = true;

24

25 // set wait param

26 DCAMWAIT START waitstart;

27 memset (S&waitstart, 0, sizeof(waitstart));

28 waitstart.size = sizeof(waitstart);

29 waitstart.eventmask = DCAMWAIT CAPEVENT STOPPED | DCAMWAIT CAPEVENT RELOADFRAME;
30 waitstart.timeout = 1000;

31

32 // Wait for capture to complete

33 bool bStop = false;

34 while (!bStop)

35 {

36 err = dcamwait start(hwait, &waitstart);

37 if (!failed(err) && (waitstart.eventhappened & DCAMWAIT CAPEVENT STOPPED))
38 bStop = true;

39 if (!failed(err) && (waitstart.eventhappened & DCAMWAIT CAPEVENT RELOADFRAME))
40 out << "DCAMWAIT CAPEVENT RELOADFRAME" << std::endl;
41

42 // get capture and transfer status

43 int32 capStatus = 0;

44 err = dcamcap_status(hdcam, &capStatus);

45 out << "Capture Status: ";

46 if (failed(err))

47 out << "Can't retrieve";

48 else

49 switch (capStatus)
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}
}
void sta
{
//S
camR

{
case DCAMCAP STATUS BUSY: out << "BUSY"; break;
case DCAMCAP _STATUS ERROR: out << "ERROR"; break;
case DCAMCAP_STATUS READY: out << "READY"; break;
case DCAMCAP STATUS STABLE: out << "STABLE"; break;
case DCAMCAP STATUS UNSTABLE: out << "UNSTABLE"; break;
default: break;
}

out << ", ",

DCAMCAP_TRANSFERINFO transInfo;

memset (&transInfo, 0, sizeof(transInfo));

transInfo.size = sizeof(transInfo);

transInfo.iKind = DCAMCAP_TRANSFERKIND FRAME;

err = dcamcap_transferinfo(hdcam, &transInfo);

if (failed(err))

out << "Frames Captured: Unavailable, Newest Frame Index: Unavailable"

— std::endl;
else
out << "Frames Captured: " << transInfo.nFrameCount << ", "

<< "Newest Frame Index: " << transInfo.nNewestFrameIndex << std::endl;

}
// stop capture
dcamcap_stop(hdcam);

// State that the camera is not ready to capture frames
camRdy2Capt = false;

rtCamRecording(std: :ostream& out, HDCAM hdcam, camRecInfo recInfo)

tate that this function is called
crdng = true;

// Variable for string error codes

DCAM

// o
DCAM
mems
wait
wait

err
if (

else

{

ERR err;

pen wait handle

WAIT OPEN waitopen;
et(&waitopen, 0, sizeof(waitopen));
open.size = sizeof(waitopen);
open.hdcam = hdcam;

= dcamwait open(&waitopen);
failed(err))
out << "Could not create DCAMWAIT OPEN object." << std::endl;

HDCAMWAIT hwait = waitopen.hwait;

// Get frame size in bytes
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100 double bufframebytes;

101 err = dcamprop _getvalue(hdcam, DCAM IDPROP BUFFER FRAMEBYTES, &bufframebytes);

102 if (failed(err))

103 out << "Could not retrieve DCAM IDPROP BUFFER FRAMEBYTES value." << std::endl;

104 else

105 {

106 // Check if enough memory is available

107 MEMORYSTATUSEX mem;

108 mem.dwLength = sizeof(mem);

109 if (!GlobalMemoryStatusEx(&mem))

110 out << "Failed to retrieve physical memory info." << std::endl;

111 else

112 {

113 size_t frameSize = (size_t)bufframebytes;

114 int number of buffer = recInfo.nFrames;

115 if (mem.ullAvailPhys < frameSize * number of buffer)

116 out << "Not enough memory. Required: " << frameSize * number of buffer

— / 1024.0 / 1024.0 / 1024.0

117 << " GB, Available: " << mem.ullAvailPhys / 1024.0 / 1024.0 /
< 1024.0 << " GB" << std::endl;

118 else

119 {

120 // allocate buffer

121 void** pFrames = new void* [number of buffer];

122 char* buf = new char[frameSize * number of buffer];

123 memset (buf, 0, frameSize * number of buffer);

124

125 int i;

126 for (1 = 0; 1 < number _of buffer; i++)

127 {

128 pFrames[i] = buf + frameSize * 1i;

129 }

130

131 DCAMBUF ATTACH bufattach;

132 memset (&bufattach, 0, sizeof(bufattach));

133 bufattach.size = sizeof(bufattach);

134 bufattach.iKind = DCAMBUF ATTACHKIND FRAME;

135 bufattach.buffer = pFrames;

136 bufattach.buffercount = number_of_buffer;

137

138 // attach user buffer

139 err = dcambuf attach(hdcam, &bufattach);

140 if (failed(err))

141 out << "Could not attach frame buffer." << std::endl;

142 else

143 {

144 // Start recording

145 recordFrames(out, hdcam, hwait);

146

147 // release buffer

148 dcambuf release(hdcam);
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180
181
182
183
184

186
187
188

// S
std:
—

if (

else

{

}

// free
deletel]
deletel[]

}
// close wait handle
dcamwait close(hwait

// State that this funct
camRcrdng = false;

ave images

:ofstream imgsFile(recInfo.filePath, std::ios::out |
std::io0s::binary);
limgsFile)

out << "Could not open file:
— std::endl;

<< recInfo.filePath <<

double imgWidth d = 0, imgHeight d = 0;

DCAMERR errW = dcamprop getvalue(hdcam,

— DCAM IDPROP_IMAGE WIDTH, &imgWidth d);

DCAMERR errH = dcamprop getvalue(hdcam,

— DCAM IDPROP IMAGE HEIGHT, &imgHeight d);

if (failed(errW) || failed(errH))
out << "Could not retrieve image width and height
< properties." << std::endl;

else

{
uint32_t imgWidth = (uint32_t)imgWidth d, imgHeight =
— (uint32_t)imgHeight d, nFrames =
— (uint32_t)recInfo.nFrames;
imgsFile.write((char*)&imgWidth, sizeof(imgWidth));
imgsFile.write((char*)&imgHeight, sizeof(imgHeight));
imgsFile.write((char*)&nFrames, sizeof(nFrames));
imgsFile.write(buf, frameSize * number of buffer);

}

imgsFile.close();

if (!imgsFile.good())
out << "Error occurred at writing time!" << std::endl;

buffer
buf;
pFrames;

)i

ion call has ended

void waitFinishCamRcrdng(std::ostream &out)

{

if (camRcrdng)
out << "Waiting for

the camera to finish recording." << std::endl;
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while (camRcrdng);

H.2.8 camRec.h

#pragma once

#define NOMINMAX
#include "dcamMisc/console4.h"

#include <iostream>
#include <filesystem>
#include <fstream>

struct camRecInfo

{
std::filesystem::path filePath;
unsigned int nFrames = 0;

};

// Variable to indicate whether startCamRecording is currently executing
extern std::atomic<bool> camRcrdng;

// Variable to indicate whether the camera is ready to capture frames
extern std::atomic<bool> camRdy2Capt;

void startCamRecording(std::ostream& out, HDCAM hdcam, camRecInfo recInfo);
void waitFinishCamRcrdng(std::ostream &out);

H.2.9 camSoft.cpp

// camSoft.cpp : Defines the entry point for the application.
//

#include "camSoft.h"
HDCAM hdcam = NULL;

bool initCam()
{
std::cout << "Looking for Hamamatsu C11440-22C camera." << std::endl;
hdcam = dcamcon_init_open(); // Unitialize DCAM-API and open device
if (hdcam !'= NULL)
std::cout << "Camera initialization sucessful." << std::endl;
else
dcamapi uninit(); // Uninitialize DCAM-API
return (hdcam != NULL);
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void otSoftCamRec(std::ostream& out, unsigned int nFrames, std::filesystem::path filePath)

{

filePath.make preferred();
if (liveCapOn)
out << "Live feed must be turned off before recording.
else if (expsUnderProgress)
out << "The ongoing experiments must be stopped before recording is
— started." << std::endl;
else if (camRcrdng)
out << "The camera is already recording something." << std::endl;

<< std::endl;

else
{
if (filePath.extension() == ".bin")
{
camRecInfo recInfo;
if (filePath.parent path() == "")
{
recInfo.nFrames = nFrames;
recInfo.filePath = filePath.filename();
std::thread camRecThread(startCamRecording, std::ref(out),
< hdcam, recInfo);
camRecThread.detach();
}
else if (std::filesystem::is directory(filePath.parent path()) ||
— std::filesystem::create directories(filePath.parent path()))
{
recInfo.nFrames = nFrames;
recInfo.filePath = filePath.parent path() /=
— filePath.filename();
std::thread camRecThread(startCamRecording, std::ref(out),
— hdcam, recInfo);
camRecThread.detach();
}
else
out << "Failed to create the path specified." << std::endl;
}
else
out << "Recording file name must contain \".bin\" extension." <<
— std::endl;
}

void otSoftShtrCtrl(std::ostream& out, std::string cmd)

{

}

sndShtrCmd(out, cmd);

void camPropsUpdate(std::ostream& out)

{
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fillCamProps (hdcam);

void camPropList(std::ostream& out)

{

fillCamProps (hdcam);
printCamPropsArray(out);

void camPropInfoByName(std::ostream& out, std::string propName)

{

fillCamProps (hdcam);

int propListIdx = getCamPropsIdxByName(propName);

if (propListIdx >= 0)
printCamPropInfo(out, propListIdx);

else
out << "Property with name \"" << propName << "\" doesn't exist." <<
< std::endl;

void camPropInfoByID(std::ostream& out, int32 propID)

{

fillCamProps (hdcam);
int propListIdx = getCamPropsIdxByID(propID);
if (propListIdx >= 0)
printCamPropInfo(out, propListIdx);
else
out << "Property with ID \"" << propID << "\" doesn't exist." << std::endl;

void camPropSetByName(std::ostream& out, std::string propName, double val)

{

if (liveCapOn || camRcrdng || expsUnderProgress)
out << "Camera properties cannot be set while live feed is on, camera is
— recording or experiments are being conducted." << std::endl;

else
{
fillCamProps (hdcam);
int propListIdx = getCamPropsIdxByName (propName);
if (propListIdx >= 0)
setCamPropValue(hdcam, out, propListIdx, val);
else
out << "Property with name \"" << propName << "\" doesn't exist."
— << std::endl;
}

void camPropSetByID(std::ostream& out, int32 propID, double val)

{

if (liveCapOn || camRcrdng || expsUnderProgress)
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out << "Camera properties cannot be set while live feed is on, camera is
< recording or experiments are being conducted." << std::endl;

fillCamProps (hdcam);

int propListIdx = getCamPropsIdxByID(propID);

if (propListIdx >= 0)
setCamPropValue(hdcam, out, propListIdx, val);

else
out << "Property with ID \"" << propID << "\" doesn't exist." <<
— std::endl;

void liveCapStart(std::ostream& out)

if (liveCapOn)

out << "Live feed from camera is already on." << std::endl;
(expsUnderProgress)

out << "Live feed cannot be started while experiments are being conducted."
— << std::endl;

(camRcrdng)

out << "Live feed cannot be started while the camera is recording." <<

«— std::endl;

fillCamProps (hdcam);

int propListWidthIdx = getCamPropsIdxByID(DCAM IDPROP_IMAGE WIDTH);
int propListHeightIdx = getCamPropsIdxByID(DCAM IDPROP IMAGE HEIGHT);
setCamCapImgSize(camProps[propListWidthIdx].currentVal,

— camProps[propListHeightIdx].currentVal);

std::thread liveCapThread(startCamCap, std::ref(out), hdcam);
liveCapThread.detach();

void liveCapStop(std::ostream& out)

if (!liveCapOn)

else
{
}
}
{
else if
else if
else
{
}
}
{
else
}

out << "Live feed from camera is already off." << std::endl;

stopCamCap(out);

void liveCapLUT(std::ostream& out, int lutMin, int lutMax)

{

if (lutMax > 65535 || lutMax <= lutMin || lutMin < 0)

else

out << "Make sure that lutMin >= 0, lutMax <= 65535 and lutMax > lutMin."
— << std::endl;

setCamCapLUT (lutMin, lutMax);
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void condExp

{
if (
else

else

else

void condExp

{
stop

void condExp

{

exps

int main(int
{
// R
std:
—

—

std:
std:
std:
std:
std:
std:

std:

sStart(std::ostream &out, size_t numExps)

liveCapOn)
out << "Live feed must be turned off before conducting experiments." <<
— std::endl;
if (expsUnderProgress)
out << "Experiments are already being conducted." << std::endl;
if (camRcrdng)
out << "Experiments cannot be conducted while the camera is recording." <<
— std::endl;

std::thread condExpsThread(startConductingExps, std::ref(out), numExps,
< hdcam);
condExpsThread.detach();

sStop(std::ostream &out)

ConductingExps(out);

sStatus(std::ostream &out)

Status(out);

argc, char* const argv[])

oll the intro

rcout <<

YT 7777
<< std::endl;

:cout << "// otSoft: A Command Line Program to perform optical tweezer
experiments //" << std::endl;

:cout << "// Developed by: Vatsal Asitkumar Joshi

//" << std::endl;

:cout << "// Hardware required: Hamamatsu (C11440-22C Camera,

//" << std::endl;

icout << "// Raspberry Pi Pico Microcontroller,
//" << std::endl;
:cout << "// 1064nm Laser

//" << std::endl;

:cout << "// Date last updated: 03/09/2022

//" << std::endl;

rcout <<

I 7777777777777 7777777777777
<< std::endl << std::endl;

219



192
193
194
195
196
197
198
199

200
201

202
203
204

205

206

207

208

209

210
211
212
213
214

215
216
217

218
219
220
221

222

223
224

225
226
227
228
229

if (initShtr() && initCam())

{

fillCamProps(hdcam); // Get a list of camera properties
std::cout << std::endl;

// Create a root menu of our cli

auto otSoft = std::make unique<cli::Menu>("otSoft", "Main menu of this
— application.");

otSoft->Insert("camRec", otSoftCamRec, "Start camera recording.");
otSoft->Insert("shtrCtrl", otSoftShtrCtrl, "Passthrough for setting up
« shutter controller. Type 'shtrCtrl help' for more information.");

// Create a submenu for camera properties

auto camProp = std::make unique<cli::Menu>("camProp", "Menu to access

< Ccamera properties.");

camProp->Insert("update", camPropsUpdate, "Update the list of all the

< properties of Hamamatsu C11440-22C camera.");

camProp->Insert("list", camPropList, "List all the properties of Hamamatsu
< (C11440-22C camera.");

camProp->Insert("infoByName", camPropInfoByName, "Get info regarding a

< certain property by name.");

camProp->Insert("infoByID", camPropInfoByID, "Get info regarding a certain
— property by ID.");

camProp->Insert("setByName", camPropSetByName, "Set camera property

— value.");

camProp->Insert("setByID", camPropSetByID, "Set camera property value.");
otSoft->Insert(std::move(camProp));

// Create a submenu for camera live feed

auto liveCap = std::make unique<cli::Menu>("liveCap", "Menu to show live
— feed from the camera.");

liveCap->Insert("start", liveCapStart, "Start the camera live feed.");
liveCap->Insert("stop", liveCapStop, "Stop the camera live feed.");
liveCap->Insert("lut", liveCapLUT, "Update input-output mapping of the
< camera pixel values.");

otSoft->Insert(std::move(liveCap));

// Create a submenu for conducting experiments

auto condExps = std::make unique<cli::Menu>("condExps", "Menu for

— conducting experiments.");

condExps->Insert("start", condExpsStart, "Start conducting n

< experiments.");

condExps->Insert("stop", condExpsStop, "Stop ongoing experiments.");
condExps->Insert("status", condExpsStatus, "Status of the ongoing

— experiments.");

otSoft->Insert(std: :move(condExps));

// create the cli with the root menu
cli::Cli cli(std::move(otSoft));
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// global exit action
cli.ExitAction([](auto &out)
{

1)

cli::LoopScheduler scheduler;

stopConductingExps(out); // Make
— sure no experiment is being

— conducted

stopCamCap(out);

— // Make sure the camera is not

— capturing

waitFinishCamRcrdng(out); // Wait for

— the camera to finish recording
deinitShtr(out);

— // Reboot the shutter controller

dcamdev_close(hdcam); // close
— DCAM handle
dcamapi_uninit(); //

— Uninit DCAM-API

out << "Camera uninitialized properly.
— << std::endl;

out << "Press Enter to exit...";

cli::CliLocalTerminalSession localSession(cli, scheduler, std::cout, 200);

localSession.ExitAction(

[&scheduler] (auto &out) // session exit action

{
scheduler.Stop();
1)
scheduler.Run();
)
else

std::cout << "Shutter or Camera initialization unsucessful. Try again

« later." << std::endl;

camSoft.h

// camSoft.h :

#pragma once

#include <iostream>
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// TODO: Reference additional headers your program requires here.
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#include "camProp.h"

#include "liveCap.h"

#include "camRec.h"

#include "shtrCtrl.h"

#include "condExps.h"

#include "cli/include/cli/cli.h"

#include "cli/include/cli/loopscheduler.h"
#include "cli/include/cli/clilocalsession.h"
#include <iomanip>

#include <thread>

#include <filesystem>

H.2.11 CMakeLists.txt

# (CMakelList.txt : CMake project for camSoft, include source and define
# project specific logic here.

#

cmake minimum required (VERSION 3.15)

project ("camSoft")

# Make sure that dll runtime libraries are used
set (CMAKE _MSVC RUNTIME LIBRARY "MultiThreaded$<$<CONFIG:Debug>:Debug>")

# Add source to this project's executable.

add executable (camSoft

"dcamsdk4/inc/dcamapi4.h" "dcamsdk4/inc/dcamprop.h"
"dcamMisc/common.cpp" "dcamMisc/common.h" "dcamMisc/console4.h"
"serialib/lib/serialib.cpp" "serialib/lib/serialib.h"
"camProp.cpp" "camProp.h"
"camRec.cpp" "camRec.h"
"liveCap.cpp" "liveCap.h"
"shtrCtrl.cpp" "shtrCtrl.h"
"condExps.cpp" "condExps.h"
"camSoft.cpp" "camSoft.h"

)

if (CMAKE VERSION VERSION GREATER 3.15)
set property(TARGET camSoft PROPERTY CXX STANDARD 17)
endif()

# Define locations to the header files of different libraries
target include directories(camSoft PUBLIC
"${CMAKE_ SOURCE DIR}/glm"

"${CMAKE SOURCE DIR}/glew-2.1.0/include"
"${CMAKE_SOURCE_DIR}/glfw-3.3.8.bin.WIN64/include"

)
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# Look for DCAMAPI library
find library(
DCAMAPI LIB REQUIRED
NAMES dcamapi # Name of the file to look for
PATHS "${CMAKE SOURCE_DIR}/dcamsdk4/lib/win64" # Folder to look into
NO DEFAULT PATH # Do not search system default paths
)
message (STATUS "DCAMAPI LIB: [${DCAMAPI LIB}]")

# Look for OPENGL library
find package(OpenGL REQUIRED)

# Look for GLEW library
find library(
GLEW LIB REQUIRED
NAMES glew32s # Name of the file to look for
PATHS "${CMAKE_SOURCE_DIR}/glew-2.1.0/1lib/Release/x64" # Folder to look into
NO DEFAULT PATH # Do not search system default paths
)
message (STATUS "GLEW LIB: [${GLEW LIB}]")

# Look for GLFW library
find library(
GLFW _LIB REQUIRED
NAMES glfw3 mt # Name of the file to look for
PATHS "${CMAKE SOURCE DIR}/glfw-3.3.8.bin.WIN64/1lib-vc2022" # Folder to look into
NO DEFAULT PATH # Do not search system default paths
)
message (STATUS "GLFW LIB: [${GLFW LIB}]")

# Link all the libraries

target link libraries(camSoft PUBLIC
${DCAMAPI LIB}

${GLEW LIB}

${GLFW LIB}

OpenGL: :GL

)

H.2.12 condExps.cpp

#include "condExps.h"

// Define globals for this file only
size_t nExps = 0; // Number of experiments to be conducted
size_t expLen us = 0; // Length of one experiment in us

// Define globals that are 'extern' in the header file
std::atomic<bool> expsUnderProgress = false; // Whether the experiments are currently being
< conducted or not
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10 void startConductingExps(std::ostream &out, size_t numExps, HDCAM hdcam)
11 {

12 // State that some experiments are being conducted

13 expsUnderProgress = true;

14

15 // Get some info from the shutter controller

16 size_t expLen us = std::stoull(sndCmdRecRspShtr(std::string("++expLen"))); // Length of
— one experiment in us

17 size_t camTrigLen us = std::stoull(sndCmdRecRspShtr(std::string("++camTrigLen"))); //
— Length of time the camera should be recording in us

18

19 // Define the number of experiments

20 nExps = numExps;

21

22 // Get some camera info

23 size_t exposureTime ns = (size_t)(get camPropInfo(hdcam,
— DCAM IDPROP_EXPOSURETIME).currentVal * 1e9);

24 size_t nFrames = camTriglLen us * 1000 / exposureTime ns;

25

26 // Get camera property values so that we can reset it after conducting experiments

27 double trigSource = get camPropInfo(hdcam, DCAM IDPROP_TRIGGERSOURCE).currentVal;

28 double trigMode = get_camPropInfo(hdcam, DCAM_IDPROP_TRIGGER MODE).currentVal;

29 double trigPolarity = get camPropInfo(hdcam, DCAM IDPROP TRIGGERPOLARITY).currentVal;

30

31 // Name a folder with current date and time

32 char fldrName[80];

33 time_t t = std::time(nullptr);

34 struct tm timeInfo;

35 localtime s(&timeInfo, &t);

36 std::strftime(fldrName, sizeof(fldrName), "%Y%m%sd%H%M%S", &timeInfo);

37 std::filesystem: :path folderPath = std::string(fldrName);

38

39 // If the folder exists then delete it, probably won't ever happen.

40 if (std::filesystem::is directory(folderPath))

41 std::filesystem::remove all(folderPath);

42

43 // Create a folder

44 std::filesystem::create directories(folderPath);

45

46 // Start conducting experiments

a7 while (nExps && expsUnderProgress)

48 {

49 // Set up the recording stuff

50 std::filesystem::path filePath = (folderPath / (std::to string(numExps - nExps) +

— std::string(".bin"))).make preferred();
51 if (std::filesystem::is directory(filePath.parent path())) // Make sure if the
— folder was created

52 {

53 camRecInfo reclInfo;

54 recInfo.nFrames = (unsigned int) nFrames;
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55 recInfo.filePath = filePath.parent path() /= filePath.filename();

56 // Set camera trigger source to external

57 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP_TRIGGERSOURCE),
< DCAMPROP_TRIGGERSOURCE EXTERNAL);

58 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP_TRIGGER MODE),
< DCAMPROP_TRIGGER MODE__START);

59 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP TRIGGERPOLARITY),
< DCAMPROP_TRIGGERPOLARITY POSITIVE);

60 // Initiate the camera capture

61 std::thread camRecThread(startCamRecording, std::ref(out), hdcam, recInfo);

62 while (!camRcrdng); // Wait for the thread to actually start executing

63 camRecThread.detach();

64 }

65 else

66 out << "Failed to create the folder." << std::endl;

67

68 // Wait till camera is ready to capture or an error ocurred

69 while (camRcrdng && !camRdy2Capt);

70

71 // Make the shutter controller execute one experiment

72 if (camRcrdng)

73 sndShtrCmd(out, std::string("++start"));

74 else

75 out << "Seems like the camera could not be set up properly for Exp No.: " <<

< nExps << std::endl;
76

77 // If an experiment is started then code should not reach here before it is
— completed.

78 // Wait for the camera to finish recording, transferring images to SSD/HDD should
— be remaining at this point.

79 waitFinishCamRcrdng(out);

80

81 // Reduce nExps by one only if it is grather than 0

82 nExps += nExps ? -1 : 0;

83 }

84

85 // Reset Camera properties to the original values

86 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP TRIGGERSOURCE), trigSource);

87 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP TRIGGER MODE), trigMode);

88 setCamPropValue(hdcam, out, getCamPropsIdxByID(DCAM IDPROP TRIGGERPOLARITY),

— trigPolarity);
89

90 // State that the experiments are done

91 expsUnderProgress = false;

92

93 // Make sure that the number of experiments 1s zero
94 nExps = 0;

95 }

96

97 void stopConductingExps(std::ostream &out)

98 |

225



99 nExps = 0;

100 if (expsUnderProgress)

101 out << "The system will stop after finishing the ongoing experiment." << std::endl;

102 while (expsUnderProgress);

103}

104

105 void expsStatus(std::ostream &out)

106 {

107 if (expsUnderProgress)

108 {

109 out << "Number of experements remaining to be conducted: " << nExps <<
— std::endl;

110 out << "Time required to finish remaining experiments: " << expLen_us * nExps
— / 1000 << " ms at least" << std::endl;

111 }

112 else

113 out << "No experiments are under process." << std::endl;

114}

H.2.13 condExps.h

[N

#pragma once

#define NOMINMAX
#include <iostream>
#include <ctime>
#include <thread>
#include "camProp.h"
#include "shtrCtrl.h"
#include "camRec.h"

© 0 N O s W N
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extern std::atomic<bool> expsUnderProgress; // Whether the experiments are currently being
< conducted or not

12

13 void startConductingExps(std::ostream &out, size_t numExps, HDCAM hdcam);

14 void stopConductingExps(std::ostream &out);

15 void expsStatus(std::ostream &out);

H.2.14 1liveCap.cpp

=

#include "liveCap.h"

// Define globals for this file only

GLsizei liveCapImgWidth = 2048, liveCapImgHeight = 2048;

— // Global variables to store image size

5 double liveCapOffsetX = 0, liveCapOffsetY = 0, liveCapScale = 1, liveCapWinPxPerImPx = 1;
— // Global variables for pan and zoom

=W N
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GLfloat liveCapLutMin = 0, liveCapLutMax = 65535;

— // Global variables to define LUT

GLint liveCapLutMinUniformLoc = -1, liveCapLutMaxUniformLoc = -1;
— // Global uniform location for LUT values

GLint liveCapMVPUniformLoc
— // Global uniform location for MVP matrix

bool liveFeedStopped = true;

— // Variable stating whether the live feed is stopped or not

= -1;

// Define globals that are 'extern' in the header file
std::atomic<bool> liveCapOn = false; // Global variable to indicate live capture state

GLuint CompileShader(GLuint type, const std::string& source)

{

GLuint id = glCreateShader(type);

const char* src = source.c_str();
GLCall(glShaderSource(id, 1, &src, nullptr));
GLCall(glCompileShader(id));

int

result;

GLCall(glGetShaderiv(id, GL COMPILE STATUS, &result));
if (result == GL_FALSE)

GLCall(glGetShaderiv(id, GL_INFO LOG LENGTH, &length));

(char*) malloca(length * sizeof(char));
GLCall(glGetShaderInfoLog(id, length, &length, message));

std::cout << "Failed to compile " << (type == GL_VERTEX SHADER ? "vertex"

" shader: " << message << std::endl;

{
int length;
char* message =
— "fragment") <<
GLCall(glDeleteShader(id));
return 0;

}

return id;

GLuint CreateShader()

{

std:

:string vertexShader =
"#version 330 core\n"

"\n"
"layout(location
"layout(location

0) in vec2 position;\n"
1) in vec2 texCoord;\n"

"uniform mat4 u MVP;\n"

m\p"

"out vec2 v _TexCoord;\n"

"void main()\n"
II{\nII
" gl Position

u_MVP * vec4(position,0.0,1.0);\n"

" v_TexCoord = texCoord;\n"

"In*;
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52

53 std::string fragmentShader =

54 "#version 330 core\n"

55 “\n"

56 "out vec3 FragColor;\n"

57 "in vec2 v_TexCoord;\n"

58 "uniform sampler2D u imgTex;\n"

59 "uniform float u lutMin;\n"

60 "uniform float u lutMax;\n"

61 "void main()\n"

62 “{\n"

63 " float colorVal = texture(u imgTex,v TexCoord).r;\n"

64 /7" colorVal *= 600;\n"

65 " colorVal = (65535*colorVal - u lutMin) / (u_ lutMax - u_ lutMin);\n"

66 " colorVal = colorVal > 1 ? 1 : colorVal <0 ? 0 : colorVal;\n"

67 " FragColor = vec3(colorVal);\n"

68 “}\n";

69

70 GLuint program = glCreateProgram();

71 GLuint vs = CompileShader(GL_VERTEX SHADER, vertexShader);

72 GLuint fs = CompileShader(GL_FRAGMENT SHADER, fragmentShader);

73

74 GLCall(glAttachShader(program, vs));

75 GLCall(glAttachShader(program, fs));

76 GLCall(glLinkProgram(program));

77 GLCall(glvalidateProgram(program));

78

79 GLCall(glDeleteShader(vs));

80 GLCall(glDeleteShader(fs));

81

82 return program;

83 }

84

85 void applyMVP(float width, float height)

86 {

87 glm::mat4 mvp = glm::ortho(-width / 2, width / 2, height / 2, -height / 2); // Create
— orthogonal Projection matrix

88 glm: :mat4 model = glm::mat4(1.0);

89 model = glm::scale(model, glm::vec3(liveCapScale * liveCapWinPxPerImPx, liveCapScale *
— liveCapWinPxPerImPx, 1.0f));

90 model = glm::translate(model, glm::vec3(liveCapOffsetX, liveCapOffsetY, 0.0f));

91 mvp = mvp * model;

92 if (liveCapMVPUniformLoc >= 0)

93 GLCall(glUniformMatrix4fv(liveCapMVPUniformLoc, 1, GL FALSE, &mvp[0]1[0]));

94 }

95

96 void applyLUT()

a7 A

98 static float lutMinLast = 0, lutMaxLast = 0;

99 if ((lutMinLast != liveCapLutMin || lutMaxLast != liveCapLutMax) &&

— liveCapLutMinUniformLoc >= 0 && liveCapLutMaxUniformLoc >= 0)
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100 {

101 GLCall(glUniformlf(liveCapLutMinUniformLoc, liveCapLutMin));
102 GLCall(glUniformlf(liveCapLutMaxUniformLoc, liveCapLutMax));
103 lutMinLast = liveCapLutMin; lutMaxLast = liveCapLutMax;

104 }

105 }

106
107 void handleWindowResize(GLFWwindow* window, int width, int height)

108 {

109 double liveCapImgAspRatio = liveCapImgWidth / (float)liveCapImgHeight;
110 double liveCapWinAspRatio = width / (float)height;

111 if (liveCapImgAspRatio > liveCapWinAspRatio)

112 liveCapWinPxPerImPx = width / (float)liveCapImgWidth;
113 else

114 liveCapWinPxPerImPx = height / (float)liveCapImgHeight;
115 liveCapOffsetX = 0; liveCapOffsetY = 0; liveCapScale = 1;
116

117 applyMVP((float)width, (float)height);

118

119 GLCall(glViewport(0, 0, width, height));

120 }

121
122 void handleCursorPosition(GLFWwindow* window, double xpos, double ypos)

123 |

124 static bool buttonPressed = false;

125 static double dragX = 0, dragY = 0;

126

127 int width, height;

128 glfwGetWindowSize(window, &width, &height);

129 //ypos = height - ypos;

130

131 if (!buttonPressed && glfwGetMouseButton(window, GLFW_MOUSE BUTTON LEFT) == GLFW_PRESS)

132 {

133 dragX = xpos; dragY = ypos;

134 buttonPressed = true;

135 }

136 else if (buttonPressed && glfwGetMouseButton(window, GLFW _MOUSE BUTTON LEFT) ==
— GLFW_PRESS)

137 {

138 liveCapOffsetX += (xpos - dragX) / liveCapScale / liveCapWinPxPerImPx;

139 liveCapOffsetY += (ypos - dragY) / liveCapScale / liveCapWinPxPerImPx;

140 applyMVP( (float)width, (float)height);

141 dragX = xpos; dragY = ypos;

142 }

143 else if (glfwGetMouseButton(window, GLFW MOUSE BUTTON LEFT) == GLFW_ RELEASE)

144 {

145 dragX = 0; dragY = 0;

146 buttonPressed = false;

147 }

148}

149
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150 void handleMouseScroll(GLFWwindow* window, double xoffset, double yoffset)
151 {

152 double xpos, ypos;

153 glfwGetCursorPos(window, &xpos, &ypos);

154

155 int width, height;

156 glfwGetWindowSize(window, &width, &height);

157 //ypos = height - ypos;

158

159 glm: :mat4 projection = glm::ortho(-(float)width / 2, (float)width / 2, -(float)height /
— 2, (float)height / 2); // Create orthogonal Projection matrix

160 glm::vec3 imgPx = glm::unProject(glm::vec3(xpos, ypos, 0.0f), glm::mat4(1.0),

< projection, glm::vec4(0, 0, width, height));
161

162 liveCapOffsetX += -imgPx.x / liveCapScale / liveCapWinPxPerImPx;
163 liveCapOffsetY += -imgPx.y / liveCapScale / liveCapWinPxPerImPx;
164 liveCapScale += 0.1 * liveCapScale * yoffset;

165 liveCapScale = liveCapScale < 0.1 ? 0.1 : liveCapScale;

166 liveCapScale = liveCapScale > 100 ? 100 : liveCapScale;

167 liveCapOffsetX += imgPx.x / liveCapScale / liveCapWinPxPerImPx;
168 liveCapOffsetY += imgPx.y / liveCapScale / liveCapWinPxPerImPx;
169

170 applyMVP( (float)width, (float)height);

171}

173 void handleWindowClose(GLFWwindow* window)

174 |

175 glfwSetWindowShouldClose(window, GLFW_FALSE);
176  }

177

178 void handleKeyPress(GLFWwindow* window, int key, int scancode, int action, int mods)
179 A

180 if (key == GLFW_KEY SPACE)

181 {

182 int width, height;

183 glfwGetWindowSize(window, &width, &height);
184 liveCapOffsetX = 0; liveCapOffsetY = 0; liveCapScale = 1;
185 applyMVP( (float)width, (float)height);

186 GLCall(glViewport(0, 0, width, height));
187 }

188

189}

190

191 void liveCapShow(std::ostream& out, HDCAM hdcam)
192 {

193 DCAMERR camErr;

194

195 // prepare frame param

196 DCAMBUF FRAME bufframe;

197 memset (Sbufframe, 0, sizeof (bufframe));

198 bufframe.size = sizeof (bufframe);
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199 bufframe.iFrame = 0;

200

201 GLFWwindow* window;

202

203 /* Initialize the library */

204 if (!'glfwInit())

205 {

206 out << "GLFW initialization failed." << std::endl << "otSoft> ";

207 return;

208 }

209

210 glfwWindowHint (GLFW_CONTEXT VERSION MAJOR, 3);

211 glfwWindowHint (GLFW_CONTEXT VERSION MINOR, 3);

212 glfwWindowHint (GLFW_OPENGL PROFILE, GLFW _OPENGL CORE_PROFILE);

213

214 // Get Monitor information to set correct window size

215 GLFWmonitor* primaryMonitor = glfwGetPrimaryMonitor();

216 const GLFWvidmode* mode = glfwGetVideoMode(primaryMonitor);

217 int liveCapWindowWidth = (int) (mode->width / 1.5);

218 int liveCapWindowHeight = (int) (mode->height / 1.5);

219

220 /* Create a windowed mode window and its OpenGL context */

221 window = glfwCreateWindow(liveCapWindowWidth, liveCapWindowHeight, "liveCam", NULL,
— NULL);

222 if (!window)

223 {

224 out << "GLFW window creation failed." << std::endl;

225 glfwTerminate();

226 return;

227 }

228

229 // Set necessary callbacks

230 glfwSetWindowSizeCallback(window, handleWindowResize);

231 glfwSetCursorPosCallback(window, handleCursorPosition);

232 glfwSetScrollCallback(window, handleMouseScroll);

233 glfwSetWindowCloseCallback(window, handleWindowClose);

234 glfwSetKeyCallback(window, handleKeyPress);

235

236 /* Make the window's context current */

237 glfwMakeContextCurrent(window) ;

238 glfwSwapInterval(l);

239

240

241 GLenum err = glewInit();

242 if (GLEW OK != err)

243 {

244 out << "GLEW initialization failed." << std::endl;

245 out << "Error: " << glewGetErrorString(err) << std::endl;

246 glfwTerminate();

247 return;

248 }
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// Dark blue background
glClearColor(0.251f, 0.259f, 0.345f, 1.0f);

float vertices[16] = {
-(liveCapImgWidth / 2.0f), -
(liveCapImgWidth / 2.0f), -
(liveCapImgWidth / 2.0f),
-(liveCapImgWidth / 2.0f),

—_~ o~~~

}

GLuint indices[16] = {
0, 1, 2,
2, 3,0

}s

GLuint vao;
GLCall(glGenVertexArrays(1l, &vao));
GLCall(glBindVertexArray(vao));

GLuint vbo;
GLCall(glGenBuffers(l, &vbo));
GLCall(glBindBuffer(GL ARRAY BUFFER, vbo));

liveCapImgHeight / 2.0f
liveCapImgHeight / 2.0f
liveCapImgHeight / 2.0f
liveCapImgHeight / 2.0f

, 0.0f, 0.0f,
, 1.0f, 0.0f,
, 1.0f, 1.0f,
, 0.0f, 1.0f

—_— — ~— —

GLCall(glBufferData(GL ARRAY BUFFER, sizeof(float) * 16, vertices, GL_STATIC DRAW));

GLCall(glEnableVertexAttribArray(0));
GLCall(glVertexAttribPointer(0, 2, GL FLOAT,
GLCall(glEnableVertexAttribArray(1));
GLCall(glVertexAttribPointer(1, 2, GL FLOAT,
— sizeof(float))));

GLuint ibo;

GLCall(glGenBuffers
GLCall(glBindBuffer
GLCall(glBufferData
< GL_STATIC DRAW)

1, &ibo));
GL ELEMENT_ ARRAY BUFFER,
GL ELEMENT ARRAY BUFFER,

’

GLuint shader = CreateShader();
GLCall(glUseProgram(shader));

GL FALSE, 4 * sizeof(float), 0));

GL FALSE, 4 * sizeof(float), (void*)(2 *

ibo));
sizeof(GLuint) * 6, indices,

/* OpenGL texture binding of the image from the camera */

GLuint imgTexID;

GLCall(glGenTextures(1l, &imgTexID)); /* Texture name generation */
GLCall(glActiveTexture(GL_TEXTUREO)); // Activate texture unit O to store the image
GLCall(glBindTexture(GL TEXTURE 2D, imgTexID)); /* Binding of texture name */
GLCall(glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST)); /* We will
— use linear interpolation for magnification filter */
GLCall(glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST)); /* We will
— use linear interpolation for minifying filter */
GLCall(glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP TO EDGE));
GLCall(glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP TO EDGE));
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296 GLCall(glTexImage2D(GL TEXTURE 2D, 0, GL R16, liveCapImgWidth, liveCapImgHeight, O,
— GL_RED, GL_UNSIGNED SHORT, bufframe.buf));

297
298 // Get uniform location to update MVP matrix

299 liveCapMVPUniformLoc = glGetUniformLocation(shader, "u MVP");

300

301 // Get uniform location to update lutMin and lutMax

302 liveCapLutMinUniformLoc = glGetUniformLocation(shader, "u lutMin");
303 liveCapLutMaxUniformLoc = glGetUniformLocation(shader, "u lutMax");
304 GLCall(glUniformlf(liveCapLutMinUniformLoc, liveCapLutMin));

305 GLCall(glUniformlf(liveCapLutMaxUniformLoc, liveCaplLutMax));

306

307 // Call window resize function to correctly initialize MVP

308 handleWindowResize(window, liveCapWindowWidth, liveCapWindowHeight);
309

310 // State that the live feed is started

311 liveFeedStopped = false;

312

313 /* Loop until the user closes the window */

314 while (!liveFeedStopped)

315 {

316 /* Render here */

317 GLCall(glClear(GL COLOR BUFFER BIT));

318

319 // Update the texture

320 // access image

321 camErr = dcambuf lockframe(hdcam, &bufframe);

322 if (!failed(camErr) && bufframe.type == DCAM PIXELTYPE_MONO16)
323 GLCall(glTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, liveCapImgWidth,

— liveCapImgHeight, GL _RED, GL_UNSIGNED SHORT, bufframe.buf));
324 else

325 out << std::endl << "Error locking the camera frame." << std::endl;
326

327 // Update LUT

328 applyLUT();

329

330 // Draw the triangles

331 GLCall(glDrawElements(GL TRIANGLES, 6, GL UNSIGNED INT, nullptr));
332

333 /* Swap front and back buffers */

334 glfwSwapBuffers(window) ;

335

336 /* Poll for and process events */

337 glfwPollEvents();

338 }

339

340 // Cleanup VBO

341 GLCall(glDeleteTextures(1l, &imgTexID));

342 GLCall(glDeleteBuffers(1l, &vbo));

343 GLCall(glDeleteBuffers(1l, &ibo));

344 GLCall(glDeleteVertexArrays(1l, &vao));
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GLCall(glDeleteProgram(shader));

glfwTerminate();

retu

rn;

void setCamCapImgSize(double width, double height)

{

liveCapImgWidth = (GLsizei)width;
liveCapImgHeight = (GLsizei)height;

void setCamCapLUT(int min, int max)

{

liveCapLutMin =

liveCapLutMax

(GLfloat)min;
(GLfloat)max;

void startCamCap(std::ostream& out, HDCAM hdcam)

{

// State that live capture has started
liveCapOn = tru

€;

// Variable to hold camera errors
DCAMERR err;

// open wait handle
DCAMWAIT OPEN
memset (&waitopen, 0, sizeof(waitopen));
waitopen.size =
waitopen.hdcam

err

{

}

else

{

waitopen;

sizeof(waitopen);
= hdcam;

= dcamwait open(&waitopen);
if (failed(err))

out << "Could not create DCAMWAIT OPEN object." << std::endl;

retu

rn;

HDCAMWAIT hwait = waitopen.hwait;

// allocate buffer
int32 number of buffer = 1;

err

= dcamb

uf _alloc(hdcam, number of buffer);

if (failed(err))

{

}

else

out <<
return;

"Could not allocate frame buffer in the DCAM module." << std
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// start capture

err = dcamcap_start(hdcam, DCAMCAP START SEQUENCE);
if (failed(err))

{

out << "Could not start camera capture." << std::endl;
return;

}

else

{
// set wait param
DCAMWAIT START waitstart;
memset (&waitstart, 0, sizeof(waitstart));
waitstart.size = sizeof(waitstart);
waitstart.eventmask = DCAMWAIT CAPEVENT_ FRAMEREADY;
waitstart.timeout = 11000;

// wait image

err = dcamwait start(hwait, &waitstart);
if (failed(err))

{

out << "Could not detect frame ready event." << std::endl;

return;

// Start the live feed
liveCapShow(out, hdcam);

// stop capture
dcamcap_stop(hdcam);

// release buffer
dcambuf release(hdcam);

// close wait handle
dcamwait close(hwait);

// State that the liveCap is stopped
liveCapOn = false;

void stopCamCap(std::ostream &out)
{
if (liveCapOn)
{
out << "Stopping the live feed." << std::endl;
liveFeedStopped = true;
setCamCapLUT();
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447 }

448
449 while (liveCapOn);
450 }
H.2.15 1liveCap.h

1 #pragma once

2

3 #define NOMINMAX

4 #include "dcamMisc/console4.h"

5

6 #define GLEW STATIC

7 #include <GL/glew.h>

8

9 #include <GLFW/glfw3.h>

10 #include "glm/glm.hpp"

11 #include "glm/gtc/matrix _transform.hpp"

12

13 #include <iostream>

14 #include <vector>

15

16 // Macro to print opengl errors

17 #define GLCall(x) \
18 do { \
19 while(glGetError()); |
20 X; |
21 while(GLenum err = glGetError()) |
22 { |
23 std::cout << "[OpenGL Error] " \
24 << err << ": " \
25 << #x << " in " |
26 << FILE << " at " |
27 << LINE |
28 << std::endl; |
29 __debugbreak(); |
30 } \
31} while (0)

32

33 // Global variable to indicate live capture state
34 extern std::atomic<bool> liveCapOn;

35

36 void setCamCapImgSize(double width, double height);

void setCamCapLUT(int min = 0, int max = 65535);
void startCamCap(std::ostream &out, HDCAM hdcam);
void stopCamCap(std::ostream &out);

w o w W
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H.2.16 shtrCtrl.cpp

#include "shtrCtrl.h"

serialib shtrPort; // Serial connection to the uC that controls the shutter and camera
— trigger

// Blocking function, if timeput ms = 0, that returns with a character when available.
// Otherwise the number would be negative if no character is received within timeout.
int getcShtr(unsigned int timeout ms)

{
char c;
int retCode = 0;
if (timeout ms)
retCode = shtrPort.readChar(&c,timeout ms);
else
while ((retCode = shtrPort.readChar(&c, 0)) < 1);
if (retCode == 1)
return c;
else
return -2;
}

// Blocking function, if timeput ms = 0, that reads a string when available.
// The timeout ms value is used for each character.
bool getsShtr(char *s, unsigned int timeout ms)
{
uint8_t count = 0;
int c;

while (count < MAX_CHARS)

{
c = getcShtr(timeout ms);
if (c == || ¢ == 127)
{
if (count == 0)
continue;
count--;
}
else if (¢ == 10 || ¢ == 13) // Putty generally sends '\r' on Enter key
{
s[count] = '\0@'; // Add Null character
c = getcShtr(1000); // Flush out the expected '\n' character if
— received within 1ms
break;
)

else if (c > 31 && ¢ < 127)
s[count++] = c;

else if (!timeout ms)
continue;

else
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return 0;

}

return 1;

void flshShtrCommBuffer()

{

shtrPort.flushReceiver();

bool initShtr()

{

// Look for the ports
std::string devName;

bool correctToken = false;
char token[MAX CHARS];

for (int 1 = 1; i < 99; i++)
{

// Prepare the port name (Windows)

devName = "\\\\.\\COM" + std::to string(i);

// try to connect to the device

if (shtrPort.openDevice(devName.c str(), 115200) == 1)

{
// Set DTR and unset RTS
shtrPort.DTR(true);
shtrPort.RTS(false);

// Read string from the port
shtrPort.flushReceiver();
for (size_t j = 0; j < 5; ++j)

{

int nBytes = getsShtr(token,200);
correctToken = !strcmp(token,

if (correctToken)
break;

if (correctToken)

{

shtrPort.writeString(sndToken);

break;

}

else
shtrPort.closeDevice();

}

if (correctToken)

std::cout << "Shutter controller detected on

else
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std::cout << "No shutter controller was detected." << std

return correctToken;

void sndShtrCmd(std::ostream &out, std::string& s)

{

std:

// Flush the input buffer
shtrPort.flushReceiver();

// Append CR/LF combo to the string
s = s + "\r\n";

// Send the command
putsShtr(s.c_str());

// Receive the response
char response[MAX CHARS];
while (getsShtr(response))

{
if (!strcmp(response,endRspToken))
break;
else
out << std::string(response) << std::endl;
}

:string sndCmdRecRspShtr(std::string& s)

// Flush the input buffer
shtrPort.flushReceiver();

// Append CR/LF combo to the string
s =s + "\r\n";

// Send the command
putsShtr(s.c _str());

// Receive the response and append it to a string
char response[MAX CHARS];

std::string rsp;

while (getsShtr(response))

{
if (!strcmp(response, endRspToken))
break;
else
rsp += response;
}

return rsp;
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void deinitShtr(std::ostream &out)

{
sndShtrCmd(out, std::string("++reboot"));
shtrPort.closeDevice();

H.2.17 shtrCtrl.h

#pragma once

#define NOMINMAX

#include <iostream>

#include <string>

#include "serialib/lib/serialib.h"

#define MAX CHARS 80

// Define tokens used for communication

#define sndToken "116119101101122101114083111102116119097114101\r\n"
— converted to chars results in 'tweezerSoftware'

#define recToken "115104117116116101114067111110116114111108108101114"
— converted to chars results in 'shutterController'

#define endRspToken "101110100067109100082115112"

— converted to chars results in 'endCmdRsp'

// Each 3 digits

// Each 3 digits

// Each 3 digits

extern serialib shtrPort; // Serial connection to the uC that controls the shutter and

— camera trigger

#define putcShtr(c) shtrPort.writeChar(c) // Blocking function that writes a character
#define putsShtr(s) shtrPort.writeString(s) // Blocking function that writes a string

void flshShtrCommBuffer();
int getcShtr(unsigned int timeout ms = 0);
bool getsShtr(char *s, unsigned int timeout ms = 0);

bool initShtr();

void sndShtrCmd(std::ostream &out, std::string& s);
std::string sndCmdRecRspShtr(std::string &s);

void deinitShtr(std::ostream &out);
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APPENDIX I

Code Listings for the Image/Video Handling
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[.1 Directory tree

e Add this folder to MATLAB path for easy access
bin2avi.m............... Compress raw data from the camera into an AVI video
bin2jp2.m...... Compress raw data from the camera into a SuperFrame image
bin2mj2.m......ccvvvnnnns Compress raw data from the camera into an MJ2 video
JP2TOAVI .M. i Create playable video from the SuperFrame image
MI2TOAVI .M. Create playable video from the MJ2 video
readImgsBin.m.......c.ooieeiiiiiiniiinnnnns Load images from the raw camera data
readImgsIP2 .M. ...ueeeersiinnnnnneernnnns Load images from the SuperFrame image
readImgsMI2 .M. uueeeeeeeeeeeeeeieeiieeieeaeieanaen, Load images from the MJ2 video
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[.2 Code Listings

1.2.1 bin2avi.m

function bin2avi(binFilePath, slowness,videoFilePath)

% This function assumes that the camera is capturing in the center of the

[)

% will be wrong.
arguments

binFilePath {mustBeFile}

slowness (1,1) double =1

videoFilePath (1,1) string = binFilePath
end

% Read jp2 files
imgs = readImgsBin(binFilePath);

% Adjust the contrast
imgs = imadjustn(imgs,stretchlim(imgs(:),0.01));

% Create an output file

[fPath, fName,~] = fileparts(videoFilePath);

vOut = VideoWriter(fullfile(fPath,fName),"Grayscale AVI");
vOut.FrameRate = 60;

open(vOut);

expTime = size(imgs,1)/2*9.74e-6; % Taken from camera datasheet

for i = 1l:max(ceil(1l/expTime/60/slowness),1l):size(imgs,3)
writeVideo(vOut,im2uint8(imgs(:,:,1)));

end

close(vOut);

end
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[.2.2 bin2jp2.m

function bin2jp2(filePath)
arguments

filePath {mustBeFile}
end

% Load the images from binary file
imgs = readImgsBin(filePath);

if ~isempty(imgs)

% Create a folder with the name of the file

[fPath, fName,~] = fileparts(filePath);

folderPath = fullfile(fPath, fName);

if ~exist(folderPath, "dir")
mkdir(folderPath);

end

if ~isempty(dir(fullfile(fPath,fName, fName + "*.jp2")))
delete(fullfile(fPath, fName, fName + "*.jp2"));

end

% Determine how many output files will be generated since the raw data
% for compression cannot be larger than 2732 - 1 bytes

nPixV = size(imgs,1); nPixH = size(imgs,2); nImgs = size(imgs,3);
pixPerImg = nPixV*nPixH;

bytesPerImg = pixPerImg*2;

nImgsPer4Gb = floor((2732-1)/bytesPerImg);

nOutputFiles = ceil(nImgs/nImgsPer4Gb);

nImgsPerFile = ceil(nImgs/nOutputFiles);

imgsInEachFile = min((1:nOutputFiles)*nImgsPerFile,nImgs) -

— (((1l:nOutputFiles)-1)*nImgsPerFile);

splitVals = [0 cumsum(imgsInEachFile)];

% Save each chunk of images
for i = l:numel(splitVals)-1
img = reshape(imgs(:,:,splitVals(i)+1:splitVals(i+1)),pixPerImg,imgsInEachFile(i));

% This section is required for now because MATLAB crashes while

reading jp2 images of certain size, e.g. 16384x100000. Following code
s will prove this. If MATLAB doesn't crash while running following code
s then the bug is probably resolved. In that case delete this section

s since it won't be necessary to do this anymore.

img = zeros(100000,16384,"uintl6");

imwrite(img, "test.jp2", "Mode", "lossless");

imgComp = imread("test.jp2");

o o° o o° o° o°

o°

% Find appropriate height and width for each cell element

nPix = numel(img);

% Can be done in two ways

% 1. Try to make number of rows a multiple of pixPerImg and fit
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% multiple images in one column, gives better compression but may
% cause crash
nRows = ceil(sqrt(nPix)/pixPerImg)*pixPerImg;
while mod(nPix, nRows)
nRows = nRows + pixPerImg;
end
nCols = nPix/nRows;
% 2. Aim for number of rows and number of columns being as close as
% possible, will avoid crash better but provides poor compression
nRows = ceil(sqrt(nPix));
while mod(nPix, nRows)
nRows = nRows + 1;
end
nCols = nPix/nRows;
img = reshape(img,nRows,nCols);

% Save the image
imwrite(img, fullfile(fPath, fName, fName + num2str(i) + ".jp2"),"Mode","lossless",...
— Define height and width of the original images for future decoding.
"Comment", [num2str(nPixV) num2str(nPixH) "First value is height and second
— value is the width of the original images."]);
end

% Reload the images to check if the files were saved correctly
img = readImgsJp2(folderPath);

% Delete bin file if the data read from jp2 files is same as the binary data
if all(imgs == img,"all")
delete(filePath);
end
end
end

[.2.3 bin2mj2.m

function bin2mj2(filePath)
arguments

filePath {mustBeFile}
end

% Load the images from binary file
imgs = readImgsBin(filePath);

if ~isempty(imgs)
% Create a file with mj2 extension
[fPath,fName,~] = fileparts(filePath);
file = fullfile(fPath,fName) + ".mj2";
v = VideoWriter(file, "Motion JPEG 2000");
v.LosslessCompression = true;
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end
end

% Write frames to the file

imgs = reshape(imgs,size(imgs,1),size(imgs,2),1,size(imgs,3));

open(v);
writeVideo(v,imgs);
close(v);

% Load the video frames back
v = VideoReader(file);
imgsComp = read(v);

% Delete bin file if the data read from mj2 file is same as the binary data

if all(imgs == imgsComp,"all")
delete(filePath);
else

warning("Data from the compressed file doesn't seem to be the same as the bin

— file.\n");
end

[.2.4 jp2ToAvi.m

function jp2ToAvi(jp2FolderPath,slowness,videoFilePath)
% This function assumes that the camera is capturing in the center of the
% sensor. If this is not the case then the calculation of the exposure time

% wi
argu

end

% Re
imgs

Ll be wrong.

ments

jp2FolderPath {mustBeFolder}
slowness (1,1) double =1
videoFilePath (1,1) string = "video"

ad jp2 files
= readImgsJp2(jp2FolderPath);

% Adjust the contrast
= imadjustn(imgs,stretchlim(imgs(:),0));

imgs

% Create an output file

[fPa

vOut = VideoWriter(fullfile(fPath,fName),"Grayscale AVI");

vOut
open

expTime = size(imgs,1)/2*9.74e-6; % Taken from camera datasheet
i = l:max(ceil(1l/expTime/60/slowness),1):size(imgs,3)

for

end

th, fName,~] = fileparts(videoFilePath);

.FrameRate = 60;
(vOut);

writeVideo(vOut,im2uint8(imgs(:,:,1)));
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close(vOut);

end

[.2.5 mj2ToAvi.m

function mj2ToAvi(videoFilePath,expTime, slowness)

% This function assumes that the camera is capturing in the center of the
% sensor. If this is not the case then the calculation of the exposure time

% will be wrong.

arguments
videoFilePath {mustBeFile}
expTime (1,1) double
slowness (1,1) double =1

end

% Read mj2 file
imgs = readImgsMj2(videoFilePath);

% Adjust the contrast
imgs = imadjustn(imgs,stretchlim(imgs(:),0));

% Create an output file

[fPath, fName,~] = fileparts(videoFilePath);

vOut = VideoWriter(fullfile(fPath,fName),"Grayscale AVI");
vOut.FrameRate = 60;

open(vOut);

for i = l:max(ceil(1l/expTime/60/slowness),1l):size(imgs,3)
% imagesc(imgs(:,:,1));

colormap gray; axis equal; axis([-inf inf -inf inf])

s writeVideo(vOut,im2uint8(rgb2gray(getframe(gcf).cdata)));
writeVideo(vOut,im2uint8(imgs(:,:,1)));

end

o°

©

close(vOut);

end

[.2.6 readImgsBin.m

function imgs = readImgsBin(filePath)

arguments
filePath {mustBeFile}
end
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% Load the binary file containing images
imgsFile = fopen(filePath,"r");
if imgsFile > 2
% Read img size and number of frames
imgWidth = fread(imgsFile,1,"uint32"); % This was 'uintl6' previously
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imgHeight = fread(imgsFile,1,"uint32"); % This was 'uintl6' previously
nImgs = fread(imgsFile,1,"uint32"); % This was 'uintl6' previously

% Check if number of frames is correct
s = dir(filePath);

filesize

nImgsComp = (filesize - 12)/double(imgWidth*imgHeight*2);

if mod(filesize,1) ~= 0
warning("Invalid image file.");

imgs
else
try

% Make sure we have correct number of images
if nImgsComp ~= nImgs

disp("Mismatch between the number of frames stated in the file,
+ num2str(nImgs)...
+ ", vs what is available in the file, "...
+ num2str(nImgsComp) + ".");
nImgs = nImgsComp;
% nImgs = input("Please enter the correct number of frames: ");
end

% Allocate memory to store images
imgs = zeros(imgHeight,imgWidth,nImgs,"uintl16");

% Read images
for i = 1:nImgs

imgs(:,:,i) = fread(imgsFile, [imgWidth imgHeight],"uint16")";
end

% Close the file

fclose(imgsFile);
catch

warning("Error reading the file.");
imgs = [1;
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[.2.7 readImgsJp2.m

function imgs = readImgsJp2(folderPath)

arguments
folderPath {mustBeFolder}
end

% Get list of .jp2 files in the directory
files = dir(fullfile(folderPath,"*.jp2"));

% Check if there are any jp2 files
if isempty(files)

error("Folder
end

+ folderPath + " doesn't contain any jp2 files.");

% Make sure all the files are correct
imInfo = imfinfo(fullfile(files(1l).folder,files(1l).name));
nPixV = str2double(imInfo.Comments(1));
nPixH = str2double(imInfo.Comments(2));
nImgs = zeros(numel(files),2);
if mod(imInfo.Height*imInfo.Width,nPixH*nPixV)
error("File " + fullfile(files(1l).folder,files(1l).name) + " seems to be currupted.");
end
nImgs(1l,1) = 1; nImgs(1l,2) = imInfo.Height*imInfo.Width/nPixH/nPixV;
for i = 2:numel(files)
imInfo = imfinfo(fullfile(files(i).folder,files(i).name));
if str2double(imInfo.Comments(1l)) ~= nPixV || str2double(imInfo.Comments(2)) ~= nPixH
error("Size of the images isn't consistent.");
elseif
— mod(imInfo.Height*imInfo.Width,str2double(imInfo.Comments(1))*str2double(imInfo.Comments(2)))
error("File " + fullfile(files(1l).folder,files(1).name) + " seems to be
— currupted.");
end

% Count the total number of images

nImgs(i,1) = 1 + nImgs(i-1,2);

nImgs(i,2) = nImgs(i-1,2) + imInfo.Height*imInfo.Width/nPixH/nPixV;
end

% Create a matrix to hold the images
imgs = zeros(nPixV,nPixH,nImgs(end,2),"uint1l6");

% Load all the images
for i = l:numel(files)

imgs(:,:,nImgs(i,1):nImgs(i,2)) =

— reshape(imread(fullfile(files(i).folder,files(i).name)),nPixV,nPixH,[]1);
end

end
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[.2.8 readImgsMj2.m

function imgs = readImgsMj2(filePath)
arguments

filePath {mustBeFile}
end

% Load the video frames
v = VideoReader(filePath);

imgs = read(v);

% Reduce the one extra dimension

imgs = reshape(imgs,size(imgs,1),size(imgs,2),size(imgs,4));

end
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APPENDIX J

Code Listings for Processing Experimental Data
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J.1 Directory tree

/

imBinarize/ ..ovviiiiiiiiiii e Stores results of imBinarize approach
KEINELFIt/ v Stores results of kernelFit approach
AV L=V AT Acts as a local library of functions
oo ]11Tod ] N Calculates PSD profile
CrOPIMGS e M ettt ettt e Used to extract kernel image
L ] 0 Filters the PSD profile
findBeadCentroids.m............... Computes particle centroids from images
fitHydroFaxenPSD.m............... Fits theoretical PSD to experimental data
brownian@.mj2.......... Compressed recording of Brownian motion experiment
brownian®.m......coeevveeveeeennennn. Main code to process Brownian motion data
TrajO.mj2 . e Compressed recording of TRR experiment
Tra 0 Mttt Main code to process TRR data
README .Md...eveiiiiienneennnns Keeps the information regarding the experiments

J.2 Code Listings

J.2.1

compPSD.m

function [psd,frq] = compPSD(pos,dt)
arguments
pos (:,1) double

dt

end

(1,1) double

% Compute common values
Fs = 1/dt;
L = length(pos);

frq =

0:Fs/L:Fs/2;

% Take the mean position out of the data

pos =

pos - mean(pos);

% Calculate PSD

dft =
dft
psd

psd(2:

end

fft(pos);

dft(l:L/2+1);

(1/(Fs*L)) * abs(dft)."2;
end-1) = 2*psd(2:end-1);
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J.2.2  cropImgs.m

function imgs = cropImgs(imgs)

arguments

imgs (:,:,:) uintl6
end
imgsSz = size(imgs(:,:,1));

% Show the first image
imagesc(imgs(:,:,1));
colormap gray;

axis equal;

axis([-inf inf -inf inf]);

% Ask the user to enter the cropping region

cropRect = input("Enter xLow, xHigh, yLow and yHigh values of the crop region in array
— format: ");

close(imgcf);

if isequal(size(cropRect(:)), [4,11)
cropRect(1l) = max(cropRect(1),1);

( )
cropRect(2) = min(cropRect(2),imgsSz(2));
cropRect(3) = max(cropRect(3),1);
cropRect(4) = min(cropRect(4),imgsSz(1));
cropRect = round(cropRect);
else
cropRect = [1 imgsSz(2) 1 imgsSz(1)];
end

imgs = imgs(cropRect(3):cropRect(4),cropRect(1l):cropRect(2),:);
end

J.2.3 filtPSD.m

function [psd,frq] = filtPSD(psd, frqg,nValsPerBin)
arguments

psd (:,1) double

frq (:,1) double

nValsPerBin (1,1) double
end

if length(psd) ~= length(frq)
error("Length of psd and frq array don't match.");

end

[frgBins, frqEdges] = discretize(frq,ceil(length(frqg)/nValsPerBin));
psd = accumarray(frgBins(:),psd(:))./accumarray(frgBins(:),1);
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frq = (frqEdges(l:end-1)+frqEdges(2:end))"'./2;
end

J.2.4 findBeadCentroids.m

o

function [xc,yc] = findBeadCentroids(imgs,method,beadImg,threshold)

arguments
imgs (:,:,:) uintl6
method (1,:) char {mustBeMember(method, {'kernelFit', 'imBinarize'})}
beadImg (:,:) uintl6 = []
threshold (1,1) double {mustBeInRange(threshold,0,1)} = 0.6
end

© 0w N O s W N
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imagesc(img);

colormap gray;

axis equal;

axis([-inf inf -inf inf]);

%% Get some dimensions
size(imgs(:,:,1));
size(imgs,3);

%% Extract the bead image if not provided
if isempty(beadImg)
% Show the second image, sometimes the first image has issues
if nImgs > 1
img = imgs(:,:,2);

img = imgs(:,:,1);

% Ask the user to enter the cropping region

cropRect input("Enter xLow, xHigh, yLow and yHigh values of the bead region in array
— format: ");
close(imgcf);
if isequal(size(cropRect(:)), [4,1])
cropRect(1l) = max(cropRect(1l),1);
cropRect(2) min(cropRect(2),imgsSz(2));
cropRect(3) = max(cropRect(3),1);
cropRect(4) = min(cropRect(4),imgsSz(1));
cropRect = round(cropRect);
else
cropRect = [1 imgsSz(2) 1 imgsSz(1)];
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beadImg = img(cropRect(3):cropRect(4),cropRect(1l):cropRect(2));

%% Preallocate arrays



44 xc = zeros(nImgs,1);
45 yc = zeros(nImgs,1);
46

47 %% Find bead centroids
48 1if isequal(method, "kernelFit")

49 % Scale the kernel

50 beadImg = double(beadImg);

51 beadImg = beadImg - mean(beadImg,"all");
52 beadSz = size(beadImg);

53

54 % Compute the cross-correlation value

55 % taken from: Tracking kinesin-driven movements with nanometre-scale precision
56 parfor i = 1:nImgs

57 img = im2double(imgs(:,:,1));

58 img = img - mean(img,"all");

59

60 C = xcorr2(img,beadImg);

61 C =C((1l:imgsSz(1)) + (beadSz(1l) - 1)/2, (1:imgsSz(2)) + (beadSz(2) - 1)/2);

62 C = C./max(C,[],"all");

63

64 % Compute the centroid

65 CminThr = C - threshold;

66 CminThr(CminThr < 0) = 0;

67 CminThrSum = sum(CminThr,"all");

68 r = 1:imgsSz(1); ¢ = 1:imgsSz(2);

69 xc(i) = sum(CminThr.*c,"all")/CminThrSum; yc(i) =
— sum(CminThr.*r',"all")/CminThrSum;

70 end

71 elseif isequal(method,"imBinarize")

72 % Find area of the bead in beadImg

73 beadImg = wiener2(beadImg,[3 3]);

74 beadImg = imbinarize(beadImg);

75 [labeled,~] = bwlabel(beadImg,8);

76 graindata = regionprops(labeled, 'basic');

77 beadArea = max([graindata.Area]);

78

79 % Use 60% of the beadArea to find the bead in all the images

80 parfor i = 1:nImgs

81 img = imgs(:,:,1);

82 img = wiener2(img, [3 3]);

83 bw = imbinarize(img);

84 [labeled,~] = bwlabel(bw,4);

85 graindata = regionprops(labeled, 'basic');

86 graindata = graindata([graindata.Area] > threshold*beadArea);

87 maxArea = min([graindata.Areal);

88 biggestGrain = [graindata.Area]==maxArea;

89 xc(i) = graindata(biggestGrain).Centroid(1);

90 yc(i) = graindata(biggestGrain).Centroid(2);

91 end
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end
end

J.2.5 fitHydroFaxenPSD.m

function [D,k,convFact, fHndl] =
— fitHydroFaxenPSD(psd, frq,beadDia,wallDistance, beadDensity,dynViscosity, frgMin, frgMax)
arguments
psd (:,1) double
frq (:,1) double
beadDia (1,1) double
wallDistance (1,1) double
beadDensity (1,1) double
dynViscosity (1,1) double
frgMin (1,1) double
frgMax (1,1) double
end

%% All parameters values are assumed to be defined with unit system kgram, meter, second.

temp = 293.15; % System Temperature in kelvin

k B = 1.38064852*1e-23; % Boltzmann Constant in meter™~2*kgram/second~2/kelvin
= beadDensity; % Bead density in kg/m"3

rho m = 1000; % Density of water in kg/m"3

r = beadDia/2; % Bead radius in meter

Vol = 4/3*pi*r*r*r; % Bead volume in m"3

1
>

| o
o
I

m = rho_b*Vol; % Bead mass in kg

m star = m + 2*¥pi*r*r*r*rho m; % Hydrodynamical mass

mu_m = dynViscosity; % Dynamic viscosity of fluid medium at 20d C in Ns/m"~2
nu_m = mu_m/rho_m; % Kinematic viscosity of water

beta_v = 6*pi*mu_m*r; % Translational drag coefficient Ns/m

fv = nu_m/pi/r/r; % Frequency where delta = R
fm = beta v/2/pi/m_star; % Frequency of inertial relaxation
rlRatio = r/wallDistance; % Used for Faxen's drag coefficient correction

%% Try to compute k and D using optimization %%

% Limit the frequency range

idx = frq >= frgMin & frq <= frgMax; frq = loglO(frq(idx)); psd = loglO(psd(idx)); % Use
— log scaled values

% Set strict convergence criteria

opt = optimoptions('lsqcurvefit', 'Algorithm', 'levenberg-marquardt', 'Display', 'none',...
'OptimalityTolerance',1le-100, 'FunctionTolerance',le-100,...
'StepTolerance',1le-300, 'MaxFunctionEvaluations', 10000);

% Fit the function
X0 = [le-4 100]; % [D fc]
x = lsqcurvefit(@(x,f) psdFunc(x,f,fv,fm,rlRatio),x0,frq,psd, [0 frgMin],[inf frqgMax],opt);
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conv

splay the result

x(1); fc = x(2);
fc*2*pi*beta v;

Fact = sqrt(k B*temp/beta v/D);

fHndl = @(f) D/2/pi”2./(fc™2 + (1 - 4*pi*fc*eps)*f.”2 + 4*pi~2*eps™2*f."4);
disp("Conversion factor is " + num2str(sqrt(k B*temp/beta v/D)*1e6) + "um/px and stiffness

—

end

func
D =
f =
reGm

is " + num2str(k*le6) + "pN/um.");

tion psd = psdFunc(x,f,fv,fm, rlRatio)
x(1); fc = x(2);

10.~f; % Because the input is log scaled

Gm0 = 1 + sqrt(f./fv) - 3*rlRatio/16 +

— 3*rlRatio/4*exp(-2/rlRatio*sqrt(f./fv)).*cos(2/rlRatio*sqrt(f./fv));

imGm

GmO = - sqrt(f./fv) +

— 3*rlRatio/4*exp(-2/rlRatio*sqrt(f./fv)).*sin(2/rlRatio*sqrt(f./fv));

psd
.

end

) )

loglO(D.*reGmGmO / (2*pi~2) ./ ( (fc + f.*imGmGmO -

(f.”2)./fm).”2 + (f.*reGmGmoO) .

~2

J.2.

6 brownian@.m

clea

%% D
file

r; close all; clc;

efine necessary variables
Name = "brownian0";

imProcessingMethod = "kernelFit";

%% L
imgs
inte

oad the images
= readImgsMj2(fileName + ".mj2");
nsityLims = stretchlim(imgs(:),0);

% Adjust images for contrast

if i

sequal (imProcessingMethod, "kernelFit")
imgs = imadjustn(imgs,intensitylLims);

elseif isequal(imProcessingMethod,"imBinarize")

end

imgs = imadjustn(imgs,intensitylLims);

%% Crop the images

imgs

= cropImgs(imgs);

%% Extract image centers

if i

sequal (imProcessingMethod, "kernelFit")

[xc,yc] = findBeadCentroids(imgs,imProcessingMethod); % kernelFit: [17 43 11 37]
elseif isequal(imProcessingMethod,"imBinarize")
[xc,yc] = findBeadCentroids(imgs,imProcessingMethod,[],0.4);
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end

% Plot the image with the detected centroid

im = imagesc(imgs(:,:,1));

colormap gray; axis equal; axis([-inf inf -inf inf])

hold on;

s = scatter(xc(1l,:),yc(1,:),"r*");

hold off;

for i = 1:size(imgs,3)
im.CData = imgs(:,:,1);
s.XData = xc(i,:); s.YData = yc(i,:);
drawnow limitrate;

end

close(gcf);

%% Create time array and store the information

dt = 0.00025; % Taken from README.md
time = (0:size(imgs,3)-1)*dt;
mkdir(imProcessingMethod);

save(imProcessingMethod + "\" + fileName + ".mat","time","xc","yc");

%% Compute power spectrum %%

Xxc = xc(1:125000); yc = yc(1:125000); time

% Make the number of datapoints even
if rem(length(time),2) ~= 0

xc(end) = []; yc(end) = []; time(end) =

end

[PSD_X, FRQ_X]
[PSD_Y,FRQ_Y]

compPSD(xc,time(2));
compPSD(yc,time(2));

%% Post-Process the PSD Data %%

% Cut the data to start from 1Hz frequency
FRQ X(FRQ X>=1);
FRQ _Y(FRQ _Y>=1);

PSD X = PSD X(FRQ X>=1); FRQ X
PSD Y = PSD Y(FRQ Y>=1); FRQ Y

% Put the data into bins and average out
[psdX, frgX] = filtPSD(PSD X,FRQ X,30);
[psdY,frqY] = filtPSD(PSD Y,FRQ Y,30);

%% Plot the power spectrum %%
% For x direction

figure();

loglog(frgX,psdX);

grid on

title("PSD for x-direction")

% For y direction
figure();
loglog(frqY,psdY);
grid on

time(1:125000);

[1;
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77 title("PSD for y-direction")
78
79 %% Fit PSD data
80 beadDia = 0.5e-6;
81 beadDensity = 1060;
82 waterMu = 1.0016e-3;
83  [DX, kX, convFactX, fHnd1X] =
— fitHydroFaxenPSD(psdX, frgX,beadDia,10e-6,beadDensity,waterMu,50,1000);
84  [DY, kY, convFactY, fHndlY] =
« fitHydroFaxenPSD(psdY,frqY,beadDia,10e-6,beadDensity,waterMu,50,1000);
85 save(imProcessingMethod + "\" + fileName +
- ".mat","DX","kX","convFactX","fHnd1X","DY","kY","convFactY","fHndlY","-append");
86
87 %% Plot the curvefit and save the figures
88 figure(l);
89 hold on;
90 loglog(frgX, fHndlX(frgX),'r',"LineWidth",1);
91 hold off
92
93 figure(2);
94 hold on;
95 loglog(frqY, fHndlY(frqY),'r',"LineWidth",1);
96 hold off

J.2.7 trajo.m

clear; close all; clc;

[un

%% Define necessary variables
fileName = "trajo";
imProcessingMethod = "kernelFit";

%% Load the images
imgs = readImgsMj2(fileName + ".mj2");
intensitylLims = stretchlim(imgs(:),0);

© 0 N O oA W N

— e
= o

% Adjust images for contrast
if isequal(imProcessingMethod, "kernelFit")
imgs = imadjustn(imgs,intensitylLims);
14 elseif isequal(imProcessingMethod,"imBinarize")
15 imgs = imadjustn(imgs,intensitylLims);
16 end
17

=
w N

18 %% Crop the images

19 imgs = cropImgs(imgs);

20

21 %% Extract image centers

22 1if isequal(imProcessingMethod, "kernelFit")

23 [xc,yc] = findBeadCentroids(imgs,imProcessingMethod); % kernelFit: [23 43 14 34]
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elseif isequal(imProcessingMethod,"imBinarize")

[xc,yc] = findBeadCentroids(imgs,imProcessingMethod,[],0.4);

end
% Plot the image with the detected centroid
im = imagesc(imgs(:,:,1));
colormap gray; axis equal; axis([-inf inf -inf inf])
hold on;
s = scatter(xc(1l,:),yc(1,:),"r*");
hold off;
for i = 1:size(imgs,3)
im.CData = imgs(:,:,1);
s.XData = xc(i,:); s.YData = yc(i,:);
drawnow limitrate;
pause(0.1);
end
close(gcf);

%% Create time array and store the information
dt = 0.00032; % Taken from README.md
time = (0:size(imgs,3)-1)*dt;

save(imProcessingMethod + "\" + fileName + ".mat","time","xc","yc");

%% Generate plots and save them
mkdir(imProcessingMethod + "\figs\");
figure("WindowState", "maximized");

t = tiledlayout(2,2,"TileSpacing", "compact","Padding", "compact");

xData = nexttile(1l);
plot(time,xc*65);

grid on;

axis([-inf inf -inf inf]);
xlabel("Time (s)");
ylabel("x-Displacement (nm)");

yData = nexttile(3);
plot(time,yc*65);

grid on;

axis([-inf inf -inf inf]);
xlabel("Time (s)");
ylabel("y-Displacement (nm)");

xyData = nexttile(2,[2 1]);
plot(xc*65,yc*65);

grid on;

axis equal;
xlabel("x-Displacement (nm)");
ylabel("y-Displacement (nm)");

% Link time axes of the plots
linkaxes([xData yData], 'x');
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% Save the figure

savefig(imProcessingMethod + "\figs\" + fileName + ".fig");
exportgraphics(gcf,imProcessingMethod + "\figs\" + fileName + ".jpg","Resolution",600);

J.2.8 README.md

## Brownian motion and trapping motion data for 500nm bead

### Setup Info
- Number of Samples: 1
- Sample 1:
- Bead Diameter: 500nm
- Objective Zoom: 100X
- Objective NA: 1.25
- Centrifuged for: 0@ min
- Optical Table: On
- Number of ND filters: 1 thorl
- Sample 2:
- Bead Diameter: 500nm
- Objective Zoom: 100X
- Objective NA: 1.25
- Centrifuged for: 0 min
- Optical Table: On

- Number of ND filters: 1 thorlabs + ND4 from uScope

### Trapping Set 0

Sample: 1
Particle:

1

#### Camera configuration

“camProp
“camProp
“camProp
“camProp
“camProp
“camProp

“shtrCtrl

“liveCap

setByName
setByName
setByName
setByName
setByName
setByName

"led 30"°

start®

"SUBARRAY MODE"
"SUBARRAY VSIZE"
"SUBARRAY VPOS"
"SUBARRAY HSIZE"
"SUBARRAY HPOS"
"EXPOSURE TIME"

“liveCap lut 100 200°

“liveCap

stop”

#### Recording
“camProp setByName "SENSOR COOLER"
“shtrCtrl "cycleTiming 30000 20000
"led 100""

“condExps start 1°

“shtrCtrl

### Brownian Set 0

Sample: 2
Particle:

2

abs

2
40°
1004°
64"
796"
0.00032"

2
100000""
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44

45  #### Camera configuration

46 " camProp setByName "SUBARRAY MODE" 2°

47 “camProp setByName "SUBARRAY VSIZE" 48"

48 "~ camProp setByName "SUBARRAY VPOS" 1000°

49  “camProp setByName "SUBARRAY HSIZE" 64°

50  camProp setByName "SUBARRAY HPOS" 796°

51 camProp setByName "EXPOSURE TIME" 0.00025°

52 shtrCtrl "led 30"°

53 liveCap start’

54 liveCap lut 100 200"

55  liveCap stop”

56

57  #### Recording

58 shtrCtrl "led 100""

59 camProp setByName "SENSOR COOLER" 2°

60  camRec 250000 brownian@.bin®

61

62 #### Camera Reset Configuration (Let the system be in this state for camera and
— illumination laser to cool down)

63 shtrCtrl "led 30""

64 camProp setByName "SUBARRAY MODE" 1°

65  camProp setByName "EXPOSURE TIME" 0.01°

66  camProp setByName "SENSOR COOLER" 1°

67 liveCap start’

68  liveCap lut 100 200°

69  liveCap stop”

71 #### Shutter Commands
72 “shtrCtrl "shtrClose"®
73 “shtrCtrl "shtrOpen"®
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