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ABSTRACT

HeMLN-SD: Substructure Discovery in Heterogeneous Multilayer Networks

Kiran Bolaj, M.S.

The University of Texas at Arlington, December 2023

Supervising Professor: Dr. Sharma Chakravarthy

Graph mining analyzes the real-world graphs for finding core substructures in

chemical compounds (e.g., Benzene), identify the structure that occurs frequently in

a given graph or forest. These identified structures are important as they reveal an

inherent feature or property in the given graph or forest. Substructures represent

interesting and repeating patterns found within an application, offering insights into

hidden regularities. Therefore, the process of finding these interesting and frequent

patterns in an unsupervised manner is known as substructure discovery. SUBDUE

was the first main-memory algorithm developed for substructure discovery. Since

then, for scalability, the algorithm has been extended to Database approaches and

more recently to Map/Reduce framework to exploit distributed processing.

Graph sizes have been increasing due to the advent of Internet and Social net-

works applications. To model complex data sets (sets with multiple types of entities

and relationships), Multilayer networks, or MLNs, have been Proposed. MLNs have

also been shown to be superior as compared to simple and attribute graphs for mod-

eling complex data. MLNs are classified into three different types: Homogeneous

(HoMLNs), Heterogeneous (HeMLNs), and Hybrid (HyMLNs). Homogeneous MLNS
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have same type of entities in each layer but differ in connectivity as it represents

a unique relationship. Heterogeneous MLNs have different types of entities in each

layer and also differ in connectivity and have explicit interlayer edges that connects

nodes between the layers. Hybrid MLNs are the combination of Homogeneous and

Heterogeneous MLNs. Algorithms have been developed for substructure discovery in

HoMLNs, which differ from earlier approaches of aggregating MLN layers to a single

graph and using the single graph algorithms.

Drawing inspiration from the earlier work of finding substructures in Homoge-

neous Multilayer Networks, this thesis focuses on substructure discovery in Hetero-

geneous Multilayer Networks without aggregating the layers into a single graph. We

use the decoupling-based approach by processing each layer separately/independently

which can be done in parallel, if necessary, to find the substructures and then compos-

ing independently generated layer substructures after each iteration with interlayer

edges to get the substructures across HeMLN for that iteration. The algorithm is

implemented using the Map/Reduce paradigm. The main focus of this dissertation

is the correctness of the algorithm by verifying with ground truth for which we use

the SUBDUE algorithm. Another focus is the scalability of the approach to handle

arbitrary MLN sizes. For this, we perform extensive experimental analysis on large

synthetic data sets (generated by Subgen) and real-world datasets to analyze the

speedup over diverse graph characteristics.
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CHAPTER 1

INTRODUCTION

Large applications data that can be modeled using graphs can be found ev-

erywhere. Examples include the analysis of the World Wide Web’s structure [1–3],

social-media data, representation of bio-informatics data using de Bruijn graphs [4],

atoms and covalent relationships in chemistry [5], etc. Many open-source frameworks

have been developed [6–8] as a result of the release of proprietary graph processing

tools by academic research centers working with industry leaders like Facebook, Mi-

crosoft, and Google. They must manage enormous graphs, such as the Facebook

graph, which has hundreds of billions of edges and billions of vertices [9].

Graphs are better than other representations (e.g., relational) for data that has

relationships among objects in the data. A variety of applications such as chemical,

bioinformatics, computer vision, social networks, text retrieval and web analysis come

under this category. Graphs are also easy to understand. Graph models use vertices

and edges where each vertex of the graph will correspond to an entity and each edge

will correspond to a relationship between two entities. These models are used to find

frequent patterns which is the same as discovering subgraphs which occurs frequently

or compress the graph better over the entire graph or forest. The graph models are

of three kinds as described below -

1. Simple graphs: Simple graphs (also called single graphs or monoplexes) ex-

press entities as nodes and relationships as edges. Node numbers are usually

unique, although labels (for both nodes and edges) are not. This graph model

is simple to grasp and analyze because it doesn’t allow loops or multiple edges
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between nodes. Figure 1.1(a) shows a simple graph with only one type of

nodes and edges without any labels. This kind of graph can best represent one

entity type and one relationship type. If more entity and relationship types

are present, they need to be combined as a single node/edge for representation.

Even with this limitation, this model has been extensively used for modeling. In

addition, most of the algorithms have been developed for this type of graph rep-

resentation. However, we cannot express several entity and relationship types

with multiple edges and labels in this model. To overcome these limitations, an

attributed graph is used.

2. Attributed graphs: Attributed graphs, also known as Multigraphs, can be

represented as multiple entity types and relationships by allowing multiple edges

between nodes and loops (identical start and end nodes). Figure 1.1(b) shows

an attributed graph with multiple node and edge types, with different colors

representing distinct types. Nodes and edges are allowed to multiple labels as

well. This model is more expressive than a simple graph, but is also difficult to

analyze. The added complexity makes graph analysis and interpretation more

challenging. Algorithms developed for simple graphs cannot be directly used

on multigraphs. This leads to the introduction of multilayer networks.

3. Multilayer Networks (MLNs): MLNs are simple graph networks with mul-

tiple layers, each capturing a unique relationship between entities and their re-

lationship. Figure 1.1(c) demonstrates a multilayer network for the attributed

graph in Figure 1.1. each layer contain nodes of a particular entity type and

relationship as edges. As an example, a MLN splits a multigraph into discrete

layers, based on entity types and their relationships, each layer being a simple

graph. This method improves data comprehension. Although new algorithms
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need to be developed for MLNs, it may be possible to use existing algorithms

for each layer when the decoupling-approach is used for new algorithms.

Figure 1.1: Different Types of Graph Models

1.1 Substructure Discovery in Graphs

Finding interesting patterns that occur in a graph or forest is a process known

as substructure discovery, which is one of the well-studied problems in the field of

graph mining. The goal of this approach is to uncover underlying regularities in the

data, that is finding repetitive patterns that compresses the graph better as illus-

trated in Figure 1.2. Figure 1.2 shows how these substructures compresses a graph.

Substructure S1 in Figure 1.2(a) can be used to compress the graph in Figure 1.2(a)

to Figure 1.2(b) and the compressed graph can be further compressed hierarchically

to Figure 1.2(c) using the substructure S2 in Figure 1.2(b).

The Minimum Description Length (MDL) concept is a information theoreti-

cal metric employed for this compression with the objective of identifying the sub-

structure that best compresses a given graph. In the context of graph compression
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through the identification of substructures, the MDL principle posits that an effective

compression method should not only accurately capture the original graph but also

incorporate a descriptive encoding of the identified substructures. The identification

of significant substructures or patterns within the graph and their subsequent efficient

encoding might result in a more succinct representation.

Figure 1.2: Substructures: (a) An Example Graph, (b) First Level Compression S1,
(c) Second Level Compression S2

The process of uncovering substructures is done in two steps. The first step in-

volves generating subgraphs of increasing sizes within the graph through an iterative

process. The second step involves employing subgraph isomorphism to count the num-

ber of exact or similar substructure instances. The implementation of substructure

discovery methods are often impacted by the following factors: graph representation,

subgraph generation, detecting substructure isomorphism, and metric used (frequency

or MDL) for evaluation.
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1.2 Why Multilayer Networks (MLNs)?

Multilayer networks provide an alternate model for complex data sets. It can

separate different relationships into independent graphs (termed layers) increasing

the understandability through multiple layers. Hence, It is versatile, and easy to un-

derstand. Layers (single graphs) can also be connected by edges if relationships exits

between two entity types. For example, actor and director layers can be connected

by the “direct-actor’ relationship where a director entity has an edge with each actor

entity s/he directs in a movie. Formulation of multilayer network model for a data

set is beyond the scope of this thesis and is discussed in [10]. Multilayer Networks,

by their structure, also offers flexibility to process each layer individually (and in

parallel) and subsets of layers can be grouped to analyze as well.

Multilayer networks, based on entity types in each layer and connectivity within

and across layers, can be classified into homogeneous, heterogeneous, and hybrid

multilayer networks. An example of each type of MLN is shown in Figure 1.3

Homogeneous Multilayer Networks (HoMLNs) have same (or a common

subset) of entities as nodes, but connectivity may be different in each layer as it rep-

resents a unique relationship. Node labels are same across layers as they represent

the same entity (e.g., same person on facebook and LinkedIn) It is used for problems

where there are multiple relationships among the same set of entities/nodes.For ex-

ample, consider social networks, such as Facebook, LinkedIn, and Call Network. All

the entities are same and form different layers individually and relationships among

them are different based on the social media application. We want to infer “groups

of people who have strong “connections” in LinkedIn are also strongly connected

“friends” on Facebook”. Similarly, we want to find groups of people who are strongly

connected through call networks as well as on Facebook and LinkedIn.
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Heterogeneous Multilayer Networks (HeMLNs) have different entity

types (the same entity may be an actor in one layer and director in another layer), and

relationships that are different from layer to layer. There can also be edges between

entities (or nodes) from two layers representing a different relationship. This model

captures different associations or relationships among different entities both within

(as intra-layer edges) and across (as inter-layer edges) of the data set. If we consider

IMDb dataset, we have different layers with actors, directors, and movies. Actors

have relationships among themselves based on the movies they have acted together

in. Directors have relationships based on common genre types they have directed and

Movies are linked together based on ratings. We want to find interesting patterns

like actors who acted in the movies directed by same group of directors. Similarly,

movies which has highest ratings directed by different directors. This thesis mainly

deals with this type of MLN. Our focus is to develop an algorithm that works directly

on HeMLNs to infer best substructures without converting the HeMLN into a single

graph.

Hybrid multilayer networks (HyMLNs) as the name says “hybrid” means

combination of two or more type of MLNs. Here it’s the combination of Homogeneous

and Heterogeneous MLNs. For example, in the IMDB dataset we have Actors as

a layer, Directors as another layer now if we want to include another layer where

two actors are linked if they are friends on Facebook. This is a combination of

HoMLNs and HeMLNs. In this case Facebook is HoMLN and Actors and Directors

are HeMLNs.

This thesis mainly focuses only on HeMLNs. Figure 1.3 shows an example

of HeMLNs where layer one consists of co-actors and layer two consists of nodes

representing same genre directors and a third layer consisting of movies.
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Figure 1.3: Types of MLN: (a) Homogeneous, (b) Heterogenous and (c) Hybrid

1.3 Current Approaches to Analyze MLNs

Conventional approaches for analyzing Multilayer Networks (MLNs) typically

involve the mapping of networks to an equivalent single graph using various methods.

In the case of homogeneous MLNs, this mapping entails aggregating the edges of the

multilayer network into a single-layer network. However, this mapping process can

result in the loss of valuable information inherent in the multilayer graphs.

An alternative method for analyzing MLNs, known as network decoupling, is

introduced to address this issue without transforming the networks into another form.

This innovative approach, proposed in [10–12], focuses on finding substructures in

multilayer networks by decoupling the network into individual layers of the MLN.

The decoupling approach preserves the structure and semantics of the layers in the

result while leveraging existing algorithms. It operates similar to a divide and conquer

strategy for MLNs, as illustrated in Figure 1.4(b). The application of this method is

outlined as follows:
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Figure 1.4: Approaches to Analyze MLNs

1. Employ the analysis function to analyze each layer individually and in parallel,

considering aspects such as frequent subgraphs, community structure, centrality

metrics, etc.

2. Implement a composition function to combine the partial results obtained from

each layer for any two selected layers, producing intermediate results.

3. Iterate through the composition process until the desired expression is com-

puted.

This approach stands in contrast to current methods, as illustrated in Figure

1.4(a), where aggregation-based approaches result in the loss of both structure and

semantics. Additionally, Figure 1.4(c) depicts MLN approaches where only inter-layer

edges are considered, neglecting all edges.

The effectiveness of the decoupling-based approach has been demonstrated,

particularly in centrality [12–14] and community [11,15] analysis. However, its appli-

cation to substructure discovery has been limited [16]. A comprehensive exploration
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of the effectiveness of the decoupling-based approach for substructure discovery has

yet to be undertaken.

1.4 Substructure Discovery in Multilayer Networks (MLNs)

There are two major approaches for finding interesting substructures in a Mul-

tilayer Network -

1. Aggregating the layers to form a single graph: This method aggregates

the layers of the MLN to a single graph. Subsequently, simple graph mining

methodologies can be employed to detect substructures within either the single

or aggregated graph. However, there are certain limitations associated with this

methodology.

• When the layers are combined into one, the knowledge that is unique to

each layer is lost. It’s not possible to handle each layer separately and at the

same time because of the aggregation process, which limits parallelization.

• The computational cost of aggregating layers and processing might escalate

as the size of the single graph grows, mostly because of the incorporation of

edges from each layer. The scalability of the approach may be constrained

by this factor. When dealing with exceedingly large multilayer networks,

the aggregated graph becomes too large to be accommodated within the

memory. Consequently, alternative strategies such as partitioning must be

employed.

• The use of aggregation may not be suitable in situations where it is nec-

essary to focus on certain subsets of layers. In such cases, each subset

would require individual aggregation, resulting in the generation of several

graphs for examination.
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2. Decoupling based approach: This method was proposed in [10–12] for find-

ing substructures in multilayer networks that approaches the problem by de-

coupling the network into individual layers of the MLN. In this method, the

substructures are identified inside each layer independently. Subsequently, the

substructures are generated by employing a novel composition function span-

ning two layers, resulting in the ultimate substructures within the Multilayer

Network. The binary composition has the potential to be iterated beyond two

layers.

The decoupling-based strategy possesses numerous advantages -

(a) Preservation of MLN Structure: The Multilayer Network (MLN) struc-

ture and its modeling are conserved without any loss of information [17].

This preservation includes the semantics, such as labels in each layer. In

contrast, aggregating all layers into a single graph might hide the original

generated substructures, making it challenging to identify their respective

layers.

(b) Utilization of Existing Algorithms: This approach allows for the utiliza-

tion of existing single-layer algorithms for substructure identification. Any

existing algorithm applicable to single-layer graphs can be employed for

substructure discovery in each layer, facilitating parallel processing. The

natural decomposition of an MLN into layers, which are likely to be smaller,

is leveraged, and the composition utilizes the output of these algorithms.

(c) Flexibility for Subset Analysis: Decoupling provides the flexibility to an-

alyze specific subsets of layers within the MLN. This allows for tailored

analysis on selected layers without necessitating the processing of the en-

tire combined MLN.
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(d) Improved Parallel Processing: Handling each layer individually and in par-

allel enhances resource utilization efficiency. This approach enables inde-

pendent processing of each layer, harnessing parallel processing capabilities

for faster results.

1.5 Problem Statement

The problem being addressed in this thesis is to find interesting patterns in a

given Heterogeneous Multilayer Network (HeMLN) without converting the MLN into

a single graph. The main challenge here is to develop a composition function that

produces the same result as the ground truth (GT). Union of the two layers and using

the traditional algorithm is considered as the ground truth. This needs to be done

by combining the interlayer edges with the intralayer edges/substructures correctly

during the composition step to identify all the substructures that would have been

generated in the ground truth. The existing algorithms solves the problem of finding

the substructures in a single graph. We design and develop a composition function

that correctly combines the substructures from each layer with the interlayer edges

to find all missing substructures which exist across the layers and the resultant sub-

structures are substructures in our HeMLN. There are many approaches introduced

to find the substructures in a graph.

The algorithms in the literature [18–20] are not suitable for multilayer settings

as they focus on identifying substructures in a single graph. Aggregating the MLN

into a graph, which we used to build our ground truth, can detect these substruc-

tures. However, aggregated MLN analysis becomes computationally expensive and

inefficient as the MLN grows.

Subdue [18] is the first main memory graph mining technique that identifies the

best substructures using the minimum description length approach. Subdue builds
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the graph as an adjacency matrix in main memory and mines by repeatedly expanding

the vertex of a substructure of size k to a substructure of size (k + 1) in iteration k.

HDB-Subdue [19] uses a relational model to represent a simple graph and SQL

to implement the subdue algorithm. Since RDBMS has no size restriction on rela-

tions, large graphs that cannot be accommodated in main-memory can be represented.

Graphs with labeled edges, cycles, and multiple edge graphs are supported. Hierar-

chical substructure discovery is also supported. Unconstrained substructure expan-

sion with duplication elimination lets HDB-Subdue analyze all feasible expansions,

including numerous edges. The beam is also applied. But this technique cannot han-

dle any graph size. M/R Subdue [20] uses the Map/Reduce distributed framework.

Fundamental graph mining techniques, including systematic expansion and computa-

tion of graph similarity, have been successfully implemented within this Map/Reduce

paradigm. This approach facilitates the horizontal scalability of substructure dis-

covery through effective partitioning strategies. Consequently, Map/Reduce-based

substructure discovery exhibits the capability to scale to larger graphs compared to

traditional methods. We shall cover these tactics in Chapter 2.

Using M/R subdue technique, the first algorithm introduced for MLN substruc-

ture discovery was in [16]. This method uses decoupling based approach introduced

in [21] to independently find substructures in each layer and then compose the sub-

structures from each layer to find substructures across the layers. This method is an

iterative method and in each kth iteration (k + 1) size substructures are found until

a desired size substructures is found. Drawing inspiration from this approach we use

similar strategy decoupling approach using map/reduce framework.
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1.6 Map/Reduce Paradigm

The distributed paradigm of map/reduce [22] has been used to process very

huge data. Researchers have developed Map/Reduce framework to handle massive

amounts of data that can be partitioned and processed independently. Numerous

businesses, including Google, Facebook, Yahoo, and Amazon use Map/Reduce to

process large amount of data in the order of terabytes. Particularly, Apache Hadoop,

an open-source Map/Reduce framework available in public domain, has been em-

ployed frequently.

We use Map/Reduce programming paradigm to leverage distributed and par-

allel processing. Map/Reduce framework has various advantages -

• Scalability

• Cost efficiency

• Flexibility

• Fast

• Parallel processing

• Availability and Resilient

• Simple programming model

• Security and Authentication

Map/Reduce automatically parallelizes and executes the program on a large

cluster of commodity machines. The runtime system takes care of the details of

partitioning the input data, scheduling the program’s execution across a set of ma-

chines, handling machine failures, and managing required inter-machine communica-

tion. Also, one of the key features in hadoop implementation of Map/Reduce is fault

tolerance [23].

A Map/Reduce framework is composed of three steps as shown in Figure 1.5:
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Figure 1.5: Map/Reduce Paradigm

• Map phase: Processes a key/value pair to generate a set of intermediate key/-

value pairs

• Shuffle phase: Distribute the data based on partitions using keys such that

all keys in a partition are sent to the same reducer.

• Reduce phase: Merges all intermediate values associated with the same inter-

mediate key and invokes a user defined reduce function.

In order to find substructures in Map/Reduce, we employ a partitioning tech-

nique that was previously suggested [20]. Parallel processing of partitions has been

accomplished using maps. To aggregate incomplete results and update partitions, we

utilize the shuffle and reduce paradigm.

Currently, a Map/Reduce-based iterative technique is employed for the purpose

of identifying substructures within partitioned graphs. The algorithm finds substruc-
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tures with increasing sizes, starting from the smallest substructure consisting of two

edges. It eliminates any duplicate substructures, maintains a count of identical or

similar substructures, and subsequently use a metric, such as Minimum Description

Length (MDL) as previously used [18], to establish a ranking for the substructures.

The method is iterated until the desired substructure size is reached or there are no

more substructures to generate. In order to restrict the expansion process, either

all substructures or a selected subset of substructures (based on beam value) are

propagated in each iteration, depending on the rank of the substructures.

This method divides a single large graph into several smaller parts and processes

them into parallel. The development of algorithms that operate on a heterogeneous

multilayered network graph is the main topic of this thesis.

1.7 Thesis Contributions

The contributions of this thesis are:

• Extending the work of a scalable graph mining approach for substructure dis-

covery to a heterogeneous multilayer network, where each layer is processed

separately and in parallel.

• Developing composition algorithm to correctly compose the intralayer edges and

interlayer edges to find the missing substructures across the layers after each

iteration.

• Developing the Map/Reduce based substructure discovery algorithm on large

single graphs to work correctly on HeMLN.

• Validating the correctness of the composition algorithm.

• Extensive experimental analysis with both synthetic and real-world datasets

with diverse graph characteristics.
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1.8 Thesis Organization

Rest of the thesis is organized as follows -

• Chapter 2 addresses the relevant research work with regards to this thesis’s

inspiration.

• Chapter 3 explains all preliminaries that are used in the Map/Reduce framework

for graph mining, such as input graph representation, layer expansion, duplicate

removal, graph isomorphism, and partition management.

• Chapter 4 presents the design of iterative decoupling based graph mining ap-

proach and algorithm for substructure discovery in a heterogeneous multi-layer

network.

• Chapter 5 explains implementation of our iterative composition algorithm more

specifically giving details of how each component is utilized for substructure

discovery in a Heterogeneous Multilayer Network (HeMLN).

• Chapter 6 provides drill-down analysis along with in-depth experimental study

of several data sets.

• Chapter 7 draws conclusions and gives the direction for future work.
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CHAPTER 2

RELATED WORK

In this chapter, we present related substructure discovery work. We will review

substructure discovery studies and methods for complex datasets. We will also de-

scribe the memory-based, disk-based, and database-oriented techniques. We seek to

fully comprehend the literature by critically examining each approach’s strengths and

weaknesses. This will let us compare our HeMLN-SD algorithm and their benefits to

the work in the literature.

2.1 Existing Graph Mining techniques

The primary challenge in enumerating all occurrences of a specific substructure

inside a graph lies in the formulation of an algorithm capable of identifying identical

or similar subgraphs. The establishment of all substructures necessitates the use of a

methodical approach. This process involves the systematic generation of increasingly

larger substructures. In order to mitigate the exponential expansion of that particular

space, a heuristic is required. The selection of top-k values (or beam size) can be

determined using either frequency or Minimum Description Length (MDL) [24]. The

presence of minimum description length (MDL) or higher frequency may indicate an

interesting characteristic of the graph. As previously stated, graph mining for the

purpose of substructure discovery can be implemented using main memory, disk, or

database-based approaches. This thesis focuses on the extraction of recurring patterns

and noteworthy substructures inside a Heterogeneous Multilayer Network (HeMLN).

In this analysis, we will examine scholarly investigations pertaining to monoplexes
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and multilayered graphs, with the aim of elucidating the progression of substructure

mining techniques in response to the increasing complexity of data modeling.

2.1.1 Main Memory Approaches

Most of the early graph mining methods used main memory algorithms. These

algorithms loaded a complete graph representation, usually an adjacency list or ma-

trix, into memory for processing. This allowed algorithms to access and process the

full graph and extract relevant patterns and insights from the data. This method

worked because the graphs were small enough to fit in memory.

2.1.1.1 SUBDUE

The SUBDUE method is the first main memory algorithm [18]. It uses iterative

process to find progressively larger substructures which are evaluated using Minimum

Description Length (MDL) principle. SUBDUE uses beam to restrict the number

of substructures carried to the next iteration. The algorithm starts with a one-

edge substructure. This approach expands one edge in every iteration and generates

best substructures after each iteration that forms candidates for next iterations. All

expansions are done in this are unbounded expansion. Once all possible substructures

are examined or the calculation exceeds a threshold, the method outputs the top best

substructures that can best compress the graph.

The SUBDUE algorithm uses background knowledge to find better substruc-

tures, which is intriguing. Background knowledge can be applied to build associative

rules in several fields. The above regulations affect algorithm framework evaluation.

Every rule has a positive or negative weight that guides the substructure search.

Thus, user’s previous knowledge and the Minimum Description Length (MDL) con-

cept affect substructure evaluation.
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2.1.1.2 Apriori-based approach

AGM [25] and FSG [26] are two popular memory-based graph mining algorithms

that use the Apriori-based methodology. The bottom-up Apriori-based method for

finding recurrent substructures starts with smaller graphs and expands the search

space. Each iteration expands substructures by merging two similar substructures

with minor changes. The approach generates frequent (k+1) subgraphs from frequent

k-subgraphs. Combining two substructures with two edges and one edge missing gives

a three-edged substructure.

[25] introduced the Apriori property, which underpins the Apriori Graph

Mining (AGM) approach. The AGM method optimizes search scope using the

apriori property, making recurring substructure exploration more efficient and scal-

able.

The Frequent Subgraphs (FSG) technique identifies repeating substructures

in graphs using an apriori approach [26]. This is different from Subdue since it

entails finding intriguing substructures in a graph or forest. Canonical labeling is

added to the Apriori association rule mining algorithm. The property that identical

graphs have identical canonical labeling can be strategically used to identify frequent

substructures. FSG determines canonical labels using a flattened graph adjacency

matrix.

These main memory techniques cannot handle large and broad patterns, pro-

duce massive lists of prospective candidates, and require several database scans. The

above limits and the growing size of database make current approaches unworkable

for big data.
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2.1.2 Disk-Based Approaches

More structural information has been added due to more sophisticated data

collecting methods. Due to this, graph sizes can grow too huge for main memory

storage. To address this issue, disk-based graph mining algorithms were [27–29] devel-

oped. Some graph data is saved in memory, while the rest is stored on disk. Indexing

disk-based graphs seemed like the best option due to the difficulties and high costs

of random access. Due to their database update stability, frequent substructures are

ideal for indexing. This makes incremental index maintenance cost-effective. This is

especially useful for indexing huge graphs due to their many substructures.

The gIndex approach [30] use frequent substructures as units for indexing. A

substructure is considered to be common when its frequency surpasses a predeter-

mined minimum support threshold. The process of indexing facilitates the immediate

retrieval of frequent substructures. The construction of gIndex can be achieved using

a single database scan by utilizing incremental updating.

However, many graph indexing methods need computationally demanding index

building. For rapid and efficient access, a compact index structure that fits in main

memory must limit indexing features. When the graph is huge, the index grows corre-

spondingly. This causes expensive and inefficient index building and index structures

that may be too large for memory. Considering these challenges, efficient methods

are crucial.

2.1.3 Database-oriented Approaches

Disk-based algorithms efficiently manage graph segments that exceed memory

available for processing. However, these solutions need explicit data marshalling be-

tween disk and main memory. This element must be carefully integrated into the

algorithm’s design and execution. The speed of data transmission between the disk
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and memory, the buffer size, buffer maintenance and replacement rules, and hit rates

can all affect disk-based methods. Database Management Systems (DBMSs) have

effective buffer management and query optimization strategies. This involves match-

ing graph mining techniques with SQL queries and using a Database Management

System (DBMS) for data storage to take use of its sophisticated optimizations. We

used the strategy from [19,31] in this study. We will now discuss the methodologies.

2.1.3.1 HDB-Subdue

DB-Subdue and EDB-Subdue proposed in [32] are initial effort towards imple-

menting a database-centric approach for graph mining. In this paradigm, the graphs

are stored directly in a database as relations. The identification of the best substruc-

tures within a graph is achieved by determining the frequency of instances of those

substructures present in the graph. These two approaches are modified to create

HDB-Subdue [19]. It supports more graph structures, including cycles and multi-

ple edges between vertices. HDB-Subdue permits unlimited substructure extension

to overcome EDB-Subdue’s constraints. The uncontrolled expansion can generate

fake duplicate instances of the same substructure. This can happen when the same

instance is enlarged or enumerated in a different sequence. HDB-Subdue sorts sub-

structure instances by vertex counts and connection maps to discover and eliminate

pseudo-duplicates. In order to count substructure instances, HDB-Subdue uses vertex

labels and connection properties. Hierarchical graph reduction is another feature of

HDB-Subdue. After finding the optimum substructure for an iteration, HDB-Subdue

compresses the graph by replacing all instances with one vertex.
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2.2 Distributed Approach to Graph Mining

As discussed, Graph sizes can be large, making main memory-based systems

ineffective. In response, alternative methods save the graph on disk and load it into

memory when needed. Disk-based techniques can handle graphs larger than memory,

but they present additional issues like as buffer customization and I/O latency [33].

Big data makes conventional systems unsuitable, necessitating distributed data ad-

ministration and processing. Numerous distributed graph databases, such as Neo4J,

ArangoDB, and Dgraph, are suitable for large-scale processing. These databases favor

graph data storage over graph mining.

A number of graph mining methods have shown success in cloud-based deploy-

ments [34–36]. Additionally, research has explored patterns in big graphs using the

Map/Reduce framework [34]. However, the pattern searching technique in [34] re-

quires a specified pattern to search for all instances of that pattern in the graph.

If we need to find a pattern with the highest compressibility, we cannot supply it

beforehand. Research is underway to split large graphs into manageable parts for

distributed processing across computational resources [37].

2.3 Substructure discovery using MapReduce

M/R Subdue, as introduced in [20], adapts the Subdue algorithm to the

Map/Reduce paradigm, transforming the original main memory approach into a dis-

tributed framework. By leveraging Map/Reduce’s distributed processing capabilities,

the algorithm operates on graph partitions, facilitating parallel processing and scala-

bility across a cluster of commodity machines. This approach significantly enhances

the efficiency of large-scale graph data mining.
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The algorithm initiates substructure discovery by partitioning the input graph

into smaller segments and aggregating results across these partitions. It iteratively

generates substructures of increasing sizes, starting from a single-edge substructure.

Duplicates are eliminated, and a ranking metric, such as Minimum Description Length

(MDL), is applied. Each iteration expands substructures by one edge using adjacency

lists for each partition. The process continues until a specified substructure size is

reached or no further substructures can be generated. After each iteration, a subset

of the best substructures is chosen for further consideration, updating substructure

partitions accordingly. This allows for an efficient and distributed exploration of

meaningful substructures within large graphs.

In the Map/Reduce process, the Mapper handles each input record indepen-

dently. The input graph is represented as a sequence of graph edges, with each edge

denoted by an edge label, source vertex ID and label, and destination vertex ID and

label. Initially, substructure partitions are disjoint to prevent duplication of the same

edge across multiple partitions. The adjacency list is partitioned accordingly. After

the first iteration, new edges are integrated into existing substructure partitions, re-

quiring updates to the adjacency list for each affected partition. Careful consideration

of the partitioning and updating approach is essential for the algorithm’s effectiveness.

2.4 Substructure discovery in Multilayer Networks

Although most of the methods up to this point have only dealt with single

graphs, in practice, enriched graphs containing complicated relationships are the

norm. A good example of this complexity is a graph with several layers, where each

layer represents a different set of connections between vertices. One way to visualize

these levels is in a Multilayer Network (MLN), where different types of relationships

are represented by different layers.
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The MLN-Subdue algorithm, as described in the previous work [16], utilizes a

decoupling-based approach that is specifically tailored for Homogeneous Multilayer

Networks (HoMLN). This approach is motivated by the substructure discovery tech-

niques used for single graphs, such as M/R Subdue [20] which uses decoupling based

approach introduced in [21]. The objective of this approach is to identify substruc-

tures within HoMLN, where each layer is analyzed independently and in parallel,

without aggregating the layers into a single graph. In this technique, the composition

algorithm executed within the Map/Reduce framework and possesses the capability

to effectively process an arbitrary quantity of layers within the Homogeneous Multi-

layer Network. The processing of each layer occurs in parallel, with the substructures

generated for each layer being combined after each iteration to find substructures

that span across many layers of the MLN. Here the key components of graph mining,

including as substructure generation, composition of substructures across layers, elim-

ination of duplicates, and counting of isomorphic substructures, has been successfully

included into the Map/Reduce paradigm.

This process entails an iterative approach to independently identify the sub-

structures of size k within each layer. The process begins with k being set to 1.

Afterwards, a composition function is employed to ascertain substructures of a spe-

cific size, k, that are present throughout all layers. The composition algorithm is

based upon the idea that in a HoMLN, each connected substructure is connected to

a common vertex or node. This vertex serves as a connection for edges that originate

from different layers.

Taking into account the prior research conducted on Substructure Discovery on

Homogeneous Multilayer Networks (HoMLN), our objective is to propose a substruc-

ture discovery algorithm specifically designed for a Heterogeneous Multilayer Network

(HeMLN) in the context of a Map/Reduce distributed environment. Range partition-
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ing is employed in order to create the initial partitions. In this study, we present a

proposed composition technique that employs an iterative approach to identify the

missing substructures across the layers. In the forthcoming chapters, we shall describe

the foundational aspects pertaining to this algorithm and provide a comprehensive

details of its design and implementation.
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CHAPTER 3

PRELIMINARIES

In this chapter we will briefly introduce the concepts required for the substruc-

ture discovery. We will discuss all the definitions and concepts that are used in this

thesis.

3.1 Graphs

Graphs, as a data structure, represent a collection of nodes or vertices intercon-

nected by edges. This fundamental structure is characterized by its ability to model

intricate relationships and connections within a system. Each node in the graph can

hold data, and the edges define the relationships between these nodes. Graphs can

be directed, where edges have a specific direction, or undirected, where edges have

no inherent direction. Additionally, graphs may contain weighted edges, assigned

with a numerical value or a label. These have applications in various domains, from

computer science algorithms and network analysis to social network modeling and

transportation systems. For instance, consider a social media platform where users

are nodes, and friendships or connections are edges. This inherent flexibility of graphs

makes them a fundamental and powerful concept in the representation and analysis

of interconnected data.

3.2 Input Layer Graph Representation

The choice of graph representation can have a significant impact on the efficiency

and effectiveness of various algorithms and analyses applied to the data. Different
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types of graphs and representations are suited to different scenarios based on the

nature of the graph, the operations to be performed, and efficiency considerations.

There are three common graph representations - adjacency matrix, adjacency lists

and edge lists. Adjacency matrix can be used for dense graphs applications where

the number of edges is close to the maximum possible edges and can be more space-

efficient than an adjacency list. If the graph is sparse (contains relatively few edges

compared to the maximum possible), an edge or adjacency list [38] representations are

often more memory-efficient than an adjacency matrix. In this thesis, we deal with the

large labeled graphs, commonly exhibiting sparsity. So we represent our layer graph

using both adjacency list and edge list data structures. These representations are

applicable to both directed and undirected graphs, but we have specifically focused

on directed graphs in our analysis. Figure 3.1 shows an example of input graph

corresponding to a layer in a MLN.

Our methodology can be easily expanded to encompass undirected graphs as

previously discussed in [20]. Given that undirected graphs lack a clear source-destination

link, it is possible to transform them into directed graphs by substituting each edge

with two directed edges. However, this conversion results in the creation of loops

inside the graph. Graph traversals handles these loops by maintaining a record of

visited nodes or edges. For graphs with bi-directional edges, a sixth element denoting

the direction of the edge, need to be added to the current edge representation.
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Figure 3.1: Input Layer Graph

3.2.1 Edge List

Our input layer graph is represented as a list of unordered edges (or 1-edge

substructure) including its direction. Each edge is completely represented by a 5

element tuple - < El, Vsid, Vsl, Vdid, Vdl > where, El is edge label, Vsid is source vertex

Id, Vsl is source vertex label, Vdid is destination vertex Id and Vdl is destination vertex

label. In this context, it is important to note that the vertex Ids (Vsid and Vdid) are

guaranteed to be unique. However, it is not necessary for the vertex labels (Vsl and

Vdl) and the edge label (El) to possess uniqueness. Table 3.1 shows the edge list

representation for the input layer graph shown in Figure 3.1.

This representation is generic and can be extended for multiple edges as well

by using an edge identifier in the edge representation to demarcate multiple edges

between same two nodes. This representation of a directed edge is used to represent

a k-edge substructure (a connected graph with k edges) as a collection of k 1-edge

substructures. Our algorithm takes a input as graph represented as a text file with a

1-edge substructure in each line.
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3.2.2 Adjacency List

Adjacency list is a graph representation where each vertex is associated with

an edge list (list of 1-edge substructures) in which each edge depicts the connection

between the vertex and its neighboring vertex. For each vertex, the size of the edge

list is the sum of the in and out degrees of that vertex. The adjacency list is used

for performing expansion by an edge for each node in a subgraph. By sequentially

traversing the edges in an adjacency list, one can systematically expand the substruc-

ture by one edge from any vertex, uncovering the interconnected relationships within

the graph and facilitating a detailed exploration of its components. Table 3.2 shows

the L1 adjacency list of the input layer graph as shown in Figure 3.1.

Edge List

⟨ab,4,A,5,B⟩
⟨ac,4,A,6,C⟩
⟨bd,5,B,7,D⟩
⟨ch,6,C,1,H⟩
⟨dc,7,D,6,C⟩
⟨ja,2,J,4,A⟩
⟨jh,2,J,1,H⟩
⟨ih,11,I,1,H⟩
⟨ja,10,J,12,A⟩
⟨ji,10,J,11,I⟩

Table 3.1: Edge List

Vertex
ID

Adjacency List

1 ⟨ch,6,C,1,H⟩;⟨jh,2,J,1,H⟩;⟨ih,11,I,1,H⟩;
2 ⟨ja,2,J,4,A⟩;⟨jh,2,J,1,H⟩;
4 ⟨ab,4,A,5,B⟩;⟨ac,4,A,6,C⟩;⟨ja,2,J,4,A⟩;
5 ⟨ab,4,A,5,B⟩;⟨bd,5,B,7,D⟩;
6 ⟨ac,4,A,6,C⟩;⟨dc,7,D,6,C⟩;⟨ch,6,C,1,H⟩;
7 ⟨bd,5,B,7,D⟩;⟨dc,7,D,6,C⟩;
10 ⟨ja,10,J,12,A⟩;⟨ji,10,J,11,I⟩;
11 ⟨ih,11,I,1,H⟩;⟨ji,10,J,11,I⟩;
12 ⟨ja,10,J,12,A⟩;

Table 3.2: Adjacency List

3.3 Graph Partitioning:

A MLN layer may be too large to fit in a main memory. If so, our goal is to

partition the layer Li into p partitions (Li
1, L

i
2,..., L

i
p) that are small enough to fit in

main memory.
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Range − based partitioning is used to create the partitions using the vertex

ids [20]. Each partition is a range of node ids and the size of each partition need not

be same. There can be missing vertex ids in a given range. For example, if a graph has

5000 vertices starting from1 to 6000, ranges could be 1 to 1000, 1001 to 3000, 3001

to 6000 making 3 range-based partitions.Range information divides the adjacency

list into a range of vertex Ids. We can change the size and number of partitions to

accommodate RAM. As the ranges are disjoint, the adjacency list of the partitions

are also disjoint. Each vertex Id in a range and its adjacency list corresponds to a

single adjacency list partition. If neighboring nodes are in two partitions, the edge

connecting them will be in the adjacency list of both partitions. As a result, during

expansion, the same substructure can belong to many adjacency partitions. Because

adjacency partitions are connected based on vertex Ids, each substructure is only

expanded once. As a result, partitioning produces no duplicates but there may be

duplicates across the partitions. As shown in Figure 3.2. Partition Li
1 is assigned

vertex Ids from 1 to 6, whereas partition Li
2 is allotted vertex ids 7 to 12. Hence

range 6 is fixed for both partitions. Both partitions are connected by blue edges,

which appear in different adjacency list partitions. The adjacency list partitions are

displayed in table 3.3 along with range info table. The edges of both adjacency list

partitions are < bd, 5, B, 7, D >, <dc, 7, D, 6, C>, and <ih, 11, I, 1, H>.

3.4 Graph Expansion

For substructure discovery, we systematically generate substructures of progres-

sively increasing size to get the best substructures that can compress the entire graph

better . And in this context, graph expansion plays a crucial part in the process of

uncovering substructures of varying sizes. Since the input to our algorithm is 1-edge

substructure, we start by expanding this 1-edge by adding one edge in every possi-
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Figure 3.2: Graph partitioning

Vertex
ID

Adjacency List Partition 1

1 ⟨ch,6,C,1,H⟩;⟨jh,2,J,1,H⟩;⟨ih,11,I,1,H⟩;
2 ⟨ja,2,J,4,A⟩;⟨jh,2,J,1,H⟩;
4 ⟨ab,4,A,5,B⟩;⟨ac,4,A,6,C⟩;⟨ja,2,J,4,A⟩;
5 ⟨ab,4,A,5,B⟩;⟨bd,5,B,7,D⟩;
6 ⟨ac,4,A,6,C⟩;⟨dc,7,D,6,C⟩;⟨ch,6,C,1,H⟩;

Vertex
ID

Adjacency List Parti-
tion 2

7 ⟨bd,5,B,7,D⟩;⟨dc,7,D,6,C⟩;
10 ⟨ja,10,J,12,A⟩;⟨ji,10,J,11,I⟩;
11 ⟨ih,11,I,1,H⟩;⟨ji,10,J,11,I⟩;
12 ⟨ja,10,J,12,A⟩;

Pid Range

p1 1-6
p2 7-12

Table 3.3: Adjacency List Partitions

ble direction. Our expansion is based on independently growing each substructure

into a number of larger substructures at each iteration, with each node of the input

substructure being expanded by adding a single edge incident on that node. This

expansion process is unconstrained to guarantee the accuracy of substructure discov-

ery. And such an unconstrained expansion leads to duplicates as shown in Figure

3.3 which are exactly same in labels, connectivity and vertex Ids. To identify these

duplicates, we introduce the concept of canonical instance.
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Figure 3.3: Graph Expansion: (a) Edge list, (b) Adjacency list, and (c) Expansion
on vertex ID 5

3.5 Canonical Instance:

To remove duplicates we convert the expanded instance to its canonical form.

We use a lexicographic ordering technique on edge label for canonical form. In the

case of a substructure containing multiple edges with identical edge labels, these edges

are arranged based on the source vertex label. If the label of the source vertex is the

same, they are additionally sorted based on the label of the destination vertex. In

the case where both the edge label and vertex labels are identical, the ordering of the

source and destination vertex Ids is used. Figure 3.4 shows how the duplicates are

represented in canonical form and are removed.

The use of canonical representation of instances proves to be advantageous in

the process of finding and then eliminating duplicate instances. However, the task

of determining the frequency of isomorphic substructures necessitates the use of a

canonical form that is independent of vertex identification. Consequently, a canonical
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Figure 3.4: Canonical Instance

form of the substructure is obtained by ordering the vertex Ids relatively, using the

canonical instances.

3.6 Graph Isomorphism

The concept of graph isomorphism refers to the idea that two graphs have

the same underlying structure, regardless of any differences in their labels, vertex

IDs, or edge orientations. The incorporation of isomorphs is crucial in accurately

computing frequent substructures. Isomorphs are characterized by having identical

labels for their vertices and edges, while maintaining different IDs for each vertex.

To determine their identity, it is important to create a canonical substructure using
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Figure 3.5: Canonical Substructure

the canonical instance. [20] states that the relative ordering of vertex identifiers in

any two isomorphic substructures is same. As a result, they will have a comparable

canonical substructure.

Given that the canonical instance already adheres to a lexicographic ordering, it

is possible to create a canonical k-edge substructure by arranging the distinct vertex

identifiers in the sequence of their occurrence within the canonical instance. Hence,

the canonical substructure can be obtained by substituting each vertex identifier with

its corresponding positional value within the instance. The resultant canonical sub-

structure enables us to readily identify isomorphs. The creation of a canonical sub-

structure from the canonical instance is exemplified in Figure 3.5. It should be noted

that the isomorphs are distinct canonical instances, however their relative locations

subsequent to the canonical instance remain consistent. The vertex id (4, 5, 7) for the

first instance and (12, 13, 15) for the second occurrence can be simplified to (1, 2, 3)
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by relative placement. Consequently, both entities possess an identical canonical sub-

structure. The generation of canonical labels plays a vital role in our technique, since

it facilitates the identification of duplicates and isomorphic instances. This thesis

uses the notion of a canonical instance and a canonical substructure to distinguish

between duplicate instances and isomorphic substructures, correspondingly.

3.7 Metric for Ranking the Substructures

When it comes to the process of discovering substructures, the notion of what

constitutes an interesting substructure can change depending on the objective of the

study. The metric choice depends on how you define an interesting substructure.

Finding the most common substructure or the one that compresses a graph best may

be the goal. Two common substructure ranking and relevance metrics are compres-

sion and frequency. In graph mining, MDL [3] and frequency are common ranking

measures. The former emphasizes the substructure’s ability to compress the graph,

while the later just considers number of instances or frequency. Both metrics need

counting instances.

3.7.1 Minimum Description Length

The Minimum Description Length (MDL) metric is a domain-independent mea-

sure that has been demonstrated to emphasize the significance of a substructure in

terms of its ability to compress a complete graph. The description length of a graph G

refers to the minimum number of bits needed to represent and encode the graph. The

calculation of Minimum Description Length (MDL) for a substructure S in a graph

G involves the use of the formula MDL = (DL(S) + DL(G—S))/DL(G). Here, DL(S)

represents the description length of the substructure being evaluated, DL(G—S) rep-

resents the description length of the graph G when compressed by representing each
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instance of the substructure as a node, and DL(G) represents the description length

of the original graph. The pattern in a graph that achieves the highest level of

compression, namely by minimizing the combined measure of DL(S) and DL(G—S),

is regarded as the best substructure. Both the frequency of the subgraph and its

connectivity have an impact on compression.

Instead of bits, we compute MDL using the number of vertices and edges called

DMDL (Database Minimum Description Length) proposed in [19]. Below is the

DMDL formula -

MDL =
V + E

[V − (v ∗ f) + v] + [E − (e ∗ f)] + [v + e]

where V = Total no. of nodes in MLN,

E = Total no. of edges in MLN,

v = Total no. of nodes in Substructure,

e = Total no. of edges in Substructure,

f = frequency of the isomorphic instances of substructure.

3.7.2 Frequency Calculation

1. Overlap-independent Frequency In this metric, all instances of overlapping

substructures are regarded as independent occurrences and are included in the

counting process. As shown in the Figure 3.6, the frequency calculation yields

a value of 4, despite the presence of a considerable degree of overlap among

the cases. In the uppermost pair of substructures, there is an overlap between
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vertex Ids 4 and 8. Conversely, in the lowermost pair of substructures, there is

an overlap between vertex Ids 1 and 8. The presence of overlaps in the data

leads to a discrepancy in the frequency count, making it an inaccurate measure

of frequency when compared to separate substructures that share the same

vertex and edge labels. Consequently, this frequency measure is not commonly

employed in academic research.

Figure 3.6: Overlapping Instances

2. Overlap-cognizant Frequency In this metric, overlapping instances of sub-

structures are not considered as independent occurrences and, as a result, is

not included in the count. In order to determine the number of non-overlapping

occurrences, we use the Most Restrictive Node (MRN) metric, which has been

previously introduced in scholarly works [39,40].

The Most Restrictive Node (MRN) refers to the specific node inside a certain

substructure that exhibits the lowest frequency of occurrence throughout the
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graph. The calculation of the frequency of a substructure involves multiplying

the number of occurrences of the MRN in the graph by the number of occur-

rences of the remaining nodes in the substructure that are not directly connected

to the MRN. The computation of overlap-cognizant frequency involves deter-

mining the maximum number of non-overlapping instances given a canonical

substructure. As depicted in Figure 3.6, the function F(A) is represented by

the interval [1,4], F(B) is represented by the interval [3,5,7], and F(D) is repre-

sented by the interval [8]. The minimum value within the set 2, 3, 1 is 1, which

indicates that node D is the MRN. The frequency of the substructure is also 1.

Nevertheless, the presence of overlapping instances can hold significance in spe-

cific settings. Therefore, we also monitor occurrences that overlap and employ

both sets of data to calculate the frequency and Minimum Description Length

(MDL) for a specific substructure.

In this chapter, we have discussed the preliminaries related to this thesis. In the next

chapter, we shall discuss the design of our composition algorithm.
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CHAPTER 4

DESIGN

This chapter focuses on the design of the composition algorithm and the overall

methodology employed in the context of Substructure Discovery in Heterogeneous

Multilayer Networks (HeMLNs). In this discussion, we will explore the challenges en-

countered during composition and subsequently explain why this approach is correct.

4.1 Overview of Design

The general framework proposed for analysing the Multilayer Networks (MLNs)

which processes each layer of MLN independently and in parallel according to the

decoupling-based approach developed in [21]. This approach is based on divide-

and-conquer technique which basically involves two phases: Analysis phase (ψ)

for analyzing each network layer independently and then Composition phase (θ)

for combining the results of each layer using a composition function.

In the context of substructure discovery in HeMLN, based on the decoupling-

based approach philosophy, composition will be done in each iteration. Note that it

is also possible to compose after some iterations or at the end of substructure discov-

ery for each layer. In this methodology, we systematically generate substructures of

progressively increasing sizes within each layer referred to as intralayer substructures

(analysis phase) and these expanded substructures will then be composed with inter-

layer edges to get the missing substructures (referred to as composed or inter-layer

substructures) across the layers (composition phase) to obtain all the substructures in

HeMLN. During this process, we perform expansion, remove any duplicate instances,
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quantify the number of isomorphic substructures, and apply a ranking metric. Next,

we apply the top-beam technique to limit the scope of our search, exclusively consid-

ering these beam substructures as potential candidates for further expansion in the

subsequent iteration.

The main focus of this thesis is to find the missing substructures that span

layers using interlayer edges which ultimately lead to finding all the substructures

within the entire Heterogeneous Multilayer Network (HeMLN).

In our composition algorithm, we basically perform expansion using interlayer

edges. For this we generate adjacency list out of expanded substructures of each

layer and then use it to expand interlayer substructures to generate substructures

that span layers. Additionally, we find substructures consisting only of interlayer

edges to obtain all the missing composed substructures in HeMLN. We also generate

adjacency list from composed substructures to be used in the next iteration. This

composition is performed iteratively in order to generate progressively increasing size

of substructures and hence gives 100% accuracy, as there is no loss of information

between iterations.

We address the following aspects in our design -

1. Scalability: Scalability is effectively managed by the use of the ”Divide and

Conquer” approach, which is employed to effectively handle large layer graphs

that exceed the memory capacity of a single system. The input graph of i-th

intralayer (Li) is partitioned into p smaller graph partitions (shards), denoted as

Li
1, L

i
2, . . . , L

i
p. Similarly, input graph of (i, j)-th interlayer (Li,j) is partitioned

into p smaller graph partitions, denoted as Li,j
1 , L

i,j
2 , . . . , L

i,j
p .

2. Resource Utilization: In order to exploit parallel processing capabilities on

graph partitions, we choose a strategy where p partitions are processed concur-

rently, utilizing k processors simultaneously. It is worth noting that the value
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of k might range from 1 to p. The value of k can be adjusted in response to the

availability of resources. For instance, in the event that a sufficient quantity of

resources is available, it is feasible to progressively augment the value of k until

it reaches the upper limit of p.

4.2 Challenges involved in Composition

Substructures discovery in a Multilayer Network (MLN) differs from discovering

them in a single graph as discussed in [20]. Finding substructures in a Multilayer Net-

work (MLN) requires considering numerous parameters as stated below to effectively

identify them -

1. Substructures can only be found in intralayer.

2. Substructures can exist across multiple layers (interlayer)

And finding substructures specifically in HeMLN involves considering interlayer edges

in composition. And hence challenges involved in composition are -

1. To correctly compose the expanded intralayer substructures with interlayer

edges to find missing substructures across the layers.

2. To correctly compose the substructures only using interlayer edges. (Substruc-

tures within interlayer graph)

Therefore, finding the substructures within layers (intralayer) and across the layers

using interlayer edges is the matter of finding all the substructures within HeMLN.

Since we will be having layer partitions (both intralayer and interlayer) as discussed

previously, substructures will be spanning in these partitions. We need to correctly

and efficiently find the substructures in all partitions by properly handling expansion

and composition and removing duplicates in each of these steps.
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4.3 Iterative Decoupling-Based Approach for Substructure Discovery in

HeMLN

We use iterative Decoupling-Based approach for our HeMLN-SD developed

in [41], to facilitate substructure discovery. The primary objective is to process each

layer of the Multilayer Network independently and in parallel. The main difference

lies in the composition phase, where we incorporate our composition algorithm to

identify missing substructures across the layers. This approach is based on ”divide-

and-conquer” technique to generate substructures for individual layers and then com-

pose substructures from individual layers using interlayer edges to find substructures

across the layers. In particular, we use the composition function after each iteration,

rather than after identifying all substructure sizes in each layer. To illustrate, we

create a k-edge substructure in each layer (k = 1 for the 1st iteration) and expand

each vertex by adding one edge. The composition function is applied to expanded

instances of each layer to identify substructures across the layers. This process is

repeated until a termination condition is applied. Figure 4.1 shows overall iterative

decoupling-based approach for substructure discovery in a heterogeneous multilayer

network.

Because we are primarily concerned with large graphs, we assume that a single

machine’s memory cannot possibly contain all of the necessary information (layer

data and its adjacency list). As a result, partitioning graph across different proces-

sors is an absolute necessity. The earlier work that was done on Map/Reduce-based

substructure discovery served as the basis for this partitioning technique that we have

developed [20].

Using a decoupling approach instead of aggregating the layers into one graph

has many benefits that we have already seen in chapter 1.
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Figure 4.1: Iterative Decoupling-Based Approach for Substructure Discovery in
HeMLN for k-iterations

4.4 HeMLN-SD Iterative Composition Algorithm (ICA)

In this section, we shall discuss the analysis and composition phases of our

iterative decoupling based approach for HeMLN-SD in detail.

4.4.1 Analysis Phase

In this phase, we process each layer of HeMLN independently and in parallel

to find the substructures of size k in iteration (k − 1). Finding the substructures

follows the same technique of expansion where in we expand a k-edge instance to

form a (k + 1)-edge instance. Duplicates are generated during this phase and are

eliminated by converting them to canonical instance. As we use these generated

instances for composition, we create the adjacency list out of the expanded and unex-

panded instances which forms the input to our composition phase. Here, we also add

unexpanded instances in adjacency list because these edges may be composed with
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interlayer edges to form (k+1)-edge expanded instance. This adjacency list helps us

to find the missing substructures across the layers. Finally we generate the canonical

substructure from canonical instance which will be used for substructure evaluation

after composition phase.

4.4.2 Composition Phase

In this phase, we perform the composition of intralayer substructures using

interlayer edges to generate missing substructures across the layers. Our composition

has 3 main steps -

1. Expand k-edge interlayer instance using L1 adjacency list [L1
ALk] (Figure

4.2)

In this step, we expand k-edge interlayer instance (1-edge interlayer edge in

1st iteration) by one edge to form (k + 1)-edge interlayer instances using layer

1 intralayer adjacency lists generated in current kth iteration from expanded

and unexpanded intralayer instances (i.e. k-edge input interlayer instances) of

layer 1. Figure 4.3 shows the expansion in 2nd iteration using layer 1 intralayer

adjacency list.

Figure 4.2: Expansion using L1
AL2 in iteration k = 2

2. Expand k-edge interlayer instance using L2 adjacency list [L2
ALk] (Figure

4.2)
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In this step, we expand k-edge interlayer instance (1-edge interlayer edge in

1st iteration) by one edge to form (k + 1)-edge interlayer instances using layer

2 intralayer adjacency lists generated in current kth iteration from expanded

and unexpanded intralayer instances (i.e. k-edge input interlayer instances) of

layer 2. Figure 4.3 shows the expansion in 2nd iteration using layer 2 intralayer

adjacency list.

Figure 4.3: Expansion using L2
AL2 in iteration k = 2

3. Expand k-edge interlayer instance using interlayer adjacency list [IL1,2
ALk ]

(Figure 4.4)

In this step, we expand k-edge interlayer instance (1-edge interlayer edge in 1st

iteration) by one edge to form (k+1)-edge interlayer instances using interlayer

adjacency lists generated in previous (k− 1)th iteration from top BEAM inter-

layer instances. Figure 4.4 shows the expansion in 2nd iteration using layer 2

intralayer adjacency list.

Figure 4.4: Expansion using IL1,2
AL2 in iteration k = 2
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During the composition, duplicates may be generated and can be eliminated by

converting each expanded instance into canonical instance. Finally we generate the

canonical substructure from canonical instance which will be used for substructure

evaluation after composition phase.

Substructure Evaluation: Now we have all the substructures and its instances

from layer 1, layer 2 and composition, we use MDL metric evaluation to rank the

substructures and top beam substructures will form the candidates to our next iter-

ation. And this process continues till the termination condition is applied.

4.5 Need for updating Adjacency Lists

Adjacency lists changes with the iteration and the specific adjacency lists used

in composition for each iteration is described in Table 4.1.

Table 4.1: Adjacency Lists used for Composition

Adjacency
List

Description

L1
AL Initially generated L1 adjacency list for iteration k = 1

L2
AL Initially generated L2 adjacency list for iteration k = 1

IL1,2
AL Adjacency list of interlayer edges for iteration k = 1

L1
ALk Adjacency list generated from k–edge instances of L1 for iteration k

where k = 2, 3, . . . , S − 1 and S is maximum substructure to obtain
L2
ALk Adjacency list generated from k–edge instances of L2 for iteration k

where k = 2, 3, . . . , S − 1 and S is maximum substructure to obtain

IL1,2
ALk Adjacency list generated from top BEAM k–edge interlayer instances

in previous (k − 1)th iteration for iteration k where k = 2, 3, . . . , S − 1
and S is maximum substructure to obtain

• Updating Intralayer Adjacency Lists [L1
ALk and L2

ALk]: In iteration k, k-

edge intralayer instances are responsible for composition with interlayer edges

to form (k + 1)-edge interlayer instances. And hence, no need to read original
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intralayer adjacency list [L1
AL and L2

AL] in subsequent iterations. Figure 4.5 (a)

shows an example of 4-edge composed instances from 3-edge intralayer instances

in iteration k = 3.

• Updating Interlayer Adjacency List [IL1,2
ALk ]: In iteration k, all k-edge

substructure instances are subset of (k + 1)-edge substructure instances [Sk ⊂

S(k+1)], hence no need to use original interlayer adjacency list [IL1,2
AL]. In layer

graph, there may be disconnected components having isolated edges/instances.

For these isolated edges/instances in L1 and L2, if we don’t update the IL1,2
AL,

(k − 1)-edge information won’t be present in the L1
ALk and L2

ALk to generate

(k + 1)-edge interlayer instances. Figure 4.5 (b) shows an example of 4-edge

composed instances from 3-edge interlayer instances in iteration k = 3.

Figure 4.5: Composed Instances in iteration k = 3, (a) 4-edge composed instances
from 3-edge intralayer instances (b) 4-edge composed instances from 3-edge

interlayer instances

4.6 Composition Algorithm

In this we discuss the algorithmic approach of iterative composition algorithm of

HeMLN-SD (ICA). As shown in Algorithm 1, the input to our composition algorithm

is the list of k-edge composed instances (1-edge interlayer edge list for iteration 1)

ILi,j
k , adjacency list of composed instances generated in previous iteration (adjacency

list of interlayer edges in iteration 1) ILi,j
ALk and adjacency list of i-th and j-th layer
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generated from k-edge expanded and unexpanded instances of i-th and j-th layer

respectively (Li
ALk and Lj

ALk respectively). The output generated is the (k + 1)-edge

composed substructures of k-th iteration where k stands for iteration.

For each of the k-edge instance, we expand on all the vertex Ids present in

the instance using all the three adjacency lists as depicted from line 2 to 14. We

get all the edge list corresponding to the vertex Id from the union of all the three

adjacency lists as depicted from line 2 to 4. We expand each edge on vertex Id

v and convert to canonical instance using lexicographical order technique. This

helps us to eliminate duplicates as depicted from line 5 to 9. Hence, all the missing

substructures are generated across the layers and within interlayer.

Algorithm 1 HeMLN Iterative Composition Algorithm (ICA) of kth iteration for
HeMLN-SD

Input: ILi,j
k , ILi,j

ALk , L
i
ALk , L

j
ALk

Output: ILi,j
k+1 ▷ Set of (k + 1)-edge composed substructures of kth iteration

1: ILi,j
k+1 ← ∅

2: for each k-edge instance ks ∈ ILi,j
k do

3: for each vertex-id v ∈ ks do
4: ELv ← {v ∈ ILi,j

ALk

⋃
Li
ALk

⋃
Lj
ALk |v.edgelist}

5: for each edge e ∈ ELv do
6: if e /∈ ks then
7: ci← merge ks to e in lexicographical order
8: if ci /∈ ILi,j

k+1 then ▷ check for duplicates in the result set

9: ILi,j
k+1 ← ILi,j

k+1

⋃
{ci}

10: end if
11: end if
12: end for
13: end for
14: end for
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Table 4.2: Table of Notations

Notations Description
k Used as subscript for iteration and takes values 1, 2, . . . , s− 1 where s is

size of substructures to be obtained.
i, j Used for for indicating interlayer -ids, where i = 1, 2, . . . , n and j = i+1

where n is total number of layers in HeMLN.

ILi,j
k Set of composed interlayer substructures of i,j and this changes with

iteration. For k = 1, it is list of interlayer edges.

ILi,j
ALk Adjacency list of composed substructures of previous iteration and this

changes with iteration. For k = 1, its adjacency list of interlayer edges.
Li
ALk Adjacency list of expanded substructures of i-th layer and this changes

with iteration.

Lj
ALk Adjacency list of expanded substructures of j-th layer and this changes

with iteration.

ks Each ks ∈ ILi,j
k , ks =< E1

l , V
1
sid, V

1
sl, V

1
did, V

1
dl >;< E2

l , V
2
sid, V

2
sl, V

2
did, V

2
dl >

; . . . ;< Ek
l , V

k
sid, V

k
sl , V

k
did, V

k
dl > as list of 5 tuples

where,
El− edge label,
Vsid− source vertex-id,
Vsl− source vertex label,
Vdid− destination vertex-id,
Vdl− destination vertex label.

ci Canonical instance, generated after arranging the expanded instance in
lexicographical order.

4.7 Correctness of the HeICA

We will now prove the correctness of our approach using induction method.

Lemma Statement: For any substructure s in the MLN, the iterative algo-

rithm HeICA generates s as an element of S, where S represents the set of substruc-

tures generated by HeICA.

Proof:

Our goal is to prove that for any iteration k, HeICA correctly generates all

substructure for the next iteration (k + 1). Following are the induction steps -

Base Case:
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In iteration 1,

1. HeICA generates all L1 intralayer substructures by using SUBDUE algorithm

on L1 using L1
AL adjacency list

2. HeICA generates all L2 intralayer substructures by using SUBDUE algorithm

on L2 L2
AL adjacency list

3. Iterative composition algorithm (ICA) generates interlayer substructures using

L1
AL, L

2
AL and IL1,2

AL

Step 3 will generate all the 2-edge interlayer substructures which were missed

by SUBDUE when only processing L1 and L2.

Thus HeICA correctly generates all 2-edge substructure instances in the first

iteration (k = 1).

Inductive Step:

Lets assume that for some arbitrary iteration k, the algorithm correctly gener-

ates all instances.

HeICA will expand composed substructure instances of previous iteration (k-

1 ) to generate expanded composed substructure instances for iteration (k + 1) in

iteration k. Specifically it uses corresponding intralayer adjacency list and a composed

adjacency list to generate composed instances.

1. It generates all intralayer substructures by expanding L1 substructures using

L1
AL adjacency list and L2 substructures using L2

AL adjacency list.

2. It generates all composed substructures using composed instances from previous

iteration and expanding them using L1
ALk , L

2
ALk adjacency lists generated in

current iteration k and L1,2
ALk adjacency list generated in previous iteration (k−1)

The unrestricted nature of this expansion process ensures that no instances are

missed. Consequently, HeICA precisely generates all instances for the subsequent

iteration k + 1.

50



Conclusion:

Based on the base case and the inductive step, we can confidently assert that

HeICA consistently generates substructures of all sizes in the input data for a given

iteration giving complete accuracy. We shall show empirical correctness of this ap-

proach in 6 section.

4.8 Resource Utilization

We use range-based partitioning to divide a single layer into different partitions.

The utilization of a partitioning technique is of utmost importance due to the potential

size constraints of the adjacency list of a single layer, which may exceed the capacity

of the main memory.

It is important to note that the number of partitions of a layer is specified as p.

Our approach has the capability to effectively utilize all accessible resources. In an

ideal situation, it is possible to load and process all p partitions concurrently using

separate processors, resulting in maximum parallelism.

Nevertheless, in situations when there is a scarcity of resources, it may not be

practical to process all p partitions simultaneously. In instances of this nature, it is

possible for numerous partitions to be allocated to a single CPU. Ideally, the objective

is to achieve a one-to-one correspondence between the number of partitions and the

number of available processors in order to facilitate effective parallel processing.

Another scenario that supports the use of more divisions occurs when there is an

uneven distribution of data across the partitions. The use of range-based partitioning,

employing fixed ranges, might lead to uneven partition sizes as a consequence of the

inherent properties of the graph. Unequal partitions can give rise to load imbalance,

wherein specific processors are burdened with a greater workload compared to others,

hence leading to sub optimal utilization of resources. In this particular scenario, the
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utilization of a greater number of partitions compared to the number of processors

can yield advantageous outcomes in terms of enhancing load balancing.

In this chapter we have explained the design of the HeMLN-SD system and

also elaborated on the detailed HeMLN iterative composition algorithm (HeICA).

Having provided this discussion, in the next chapters we elaborate the implementation

aspects of our design in the Map/Reduce framework and present our analysis of the

map/reduce approach.
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CHAPTER 5

IMPLEMENTATION

This chapter provides detailed description of the implementation of scalable

HeMLN-SD approach based on partitioning and parallel processing. HeMLN-SD de-

veloped as part of this thesis uses Map/Reduce framework for a distributed processing

to utilize parallel processing.

5.1 Layer Graph Representation

Our input graph is represented as a sequence of unordered edges (often known

as 1-edge substructures). This enables the distribution of data among different ma-

chines. Our approach can have both undirected and directed graphs. However, in

our HeMLN-SD system, we have chosen to focus solely on directed graphs due to

their explicit representation of relationships through directions. Table 3.1 presents

the edge input representation of the graph depicted in Figure ?? of chapter 3. The

representation of each edge consists of a tuple with five elements, namely the edge

label, the identifier of the source vertex, the label of the source vertex, the identifier

of the destination vertex, and the label of the destination vertex.

5.2 Layer Graph partitioning

As previously mentioned in the preceding chapter, the partitioning of our layer

graph is undertaken as a means to overcome the limitations of main memory. The par-

titions of adjacency lists are generated in order to facilitate processing on individual

processors. This is achieved through the use of range-based partitioning technique, as
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previously explored in the work [20]. In the context of our HeMLN-SD, the map/re-

duce architecture is employed, and as a result, input splits of the layer graph are

generated in order to ensure that each split is processed by a single map task. Note

that splits are different from range partitioning of the graph. Splits are used by the

Map/reduce framework for distributed processing. Range-based partitions are used

for the substructure discovery algorithm. As we shall see, creation of substructures

belonging to a range as well adjacency list required for each range are also gener-

ated using the ma/reduce job. Routing of substructures to appropriate range-based

partitions are all done using map/reduce.

5.3 HeMLN-SD using Map/Reduce Paradigm

The map/reduce architecture is employed in our HeMLN-SD system to har-

ness the capabilities of distributed and parallel computing. Figure 5.1 shows overall

map/reduce flow for HeMLN-SD. The first and second map reduce jobs are utilized

for performing layer-wise expansion, which is analogous to the graph expansion task

outlined in [20]. In our thesis, we conduct independent and parallel analyses to

identify all intralayer substructures within layer 1 and layer 2 in job1 and job2, re-

spectively (Analysis phase). The adjacency list is derived from both the expanded

and unexpanded substructure instances, and it serves as a valuable input throughout

the composition phase. Figure 5.2 and Figure 5.3 shows detailed flow of M/R job1

and job2.

In our composition, we employ adjacency lists to incorporate interlayer edges

during the first iteration. Additionally, we leverage the composed adjacency list

generated in the previous iteration to generate all missing substructures across the

layers. In addition, we generate the substructure within the interlayer by exclusively

utilizing interlayer edges in the initial iteration, and composed instances in subse-
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quent iterations for expansion purposes. Figure 5.4 shows detailed flow of M/R job

3 (Composition phase).

All the substructures from layer 1, layer 2 and composition are input to the

job4 for substructure evaluation. We rank the substructures based on MDL metric

and top beam size substructures are carried to next iteration for further expansion.

And this process continues till the termination condition is applied. Figure 5.4 shows

detailed flow of M/R job 4.

Figure 5.1: Overall Map-Reduce Workflow for kth-iteration
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Figure 5.2: Map-Reduce Job1 - Layer 1 Expansion for kth-iteration

Figure 5.3: Map-Reduce Job2 - Layer 2 Expansion for kth-iteration
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Figure 5.4: Map-Reduce Job3 - Composition phase for kth-iteration

Figure 5.5: Map-Reduce Job4 - Substructure Evaluation for kth-iteration
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5.4 Algorithmic Approach

5.4.1 Layer Expansion

Algorithm 2 details our layer wise expansion routine in the reducer. Each k-

edge instance is read as Mapper input (one substructure instance at a time), while

range information of adjacency list partition is loaded in setup function of mapper

and kept in memory (line 2). For Mapper, the input key is the line no. and the value

is k-edge instance. For each of the vertex in k-edge instance, we add corresponding

partition Id (where that vertex Id lies in the range) into the set of partition Ids (line

3 to 6). We also append the layer Id for each k-edge instance which will be useful to

separate the layer wise instances after substructure evaluation (line 8). For each of

partition Id we emit the key as partition Id and value as k-edge instance.

Here, we don’t need combiner as, partition Ids are unique and each of the

value emitted is also unique corresponding to partition Id and hence duplicates are

generated.

In reducer, we load the adjacency list partition from HDFS based on key. And

for each of the k-edge instance we generate (k + 1)-edge instance. To remove the

duplicates we convert the expanded instance to canonical instance. We maintain a set

for removing duplicates. If the canonical instance not present in the duplicates set we

convert the canonical instance to canonical substructure for substructure evaluation

and emit the key as canonical substructure and value as canonical instance. Line 5

to 15 depicts all these steps. In clean up phase of reducer, we create the adjacency

list from expanded and unexpanded instances (i.e. from k-edge intralyer instances)

and write to HDFS (line 16 to 19).
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5.4.2 Composition Phase

Algorithm 3 details our composition phase implemented as job 3. Each k-edge

instance is read as Mapper input (one substructure instance at a time), while range

information of adjacency list partitions is loaded in setup function of mapper and

kept in memory (line 2). For Mapper, the input key is the line no. and the value

is k-edge instance. For each of the vertex in k-edge instance, we add corresponding

partition Id (where that vertex Id lies in the range) into the set of partition Ids (line

3 to 6). We also append the layer Id for each k-edge instance which will be useful

to separate the layer wise instances after substructure evaluation (line 8). For each

of partition Id we emit the key as partition Id and value as k-edge instance. From

iteration k = 2, though we read all partitions in each reducer, we use the range

information of adjacency list of interlayer edges in order to just partition the data to

reducer.

In the reducer phase, the adjacency list partition is loaded from the Hadoop

Distributed File System (HDFS) depending on the key which is partition Id. In the

1st iteration, the interlayer adjacency list is loaded based on the partition key. In sub-

sequent iterations, all the constructed adjacency list partitions formed in job4 of the

previous iteration are read. In addition, the adjacency list that is generated from the

expanded and unexpanded instances (i.e from k-edge intralayer instances) is loaded.

We will merge all the adjacency lists into one in memory. For every instance with k

edges, we create an instance with (k+1) edges by utilizing the merged adjacency list.

In order to eliminate duplicate elements, it is necessary to transform the expanded

instance into a canonical instance. We employ a set collection for the purpose of

eliminating duplicate elements. In the event that the canonical instance is not found

inside the set of duplicates, we proceed to transform the canonical instance into a

canonical substructure for the purpose of substructure evaluation. The resulting key
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is emitted as the canonical substructure, while the value is emitted as the canonical

instance. The sequence of steps is illustrated in lines 21 to 37.

5.4.3 Substructure Evaluation

Algorithm 4 is our forth Map/Reduce job where we evaluate Canonical sub-

structures from the isomorphic instances. Count their frequency and apply a metric

to restrict future expansion in the Reducer.

We have already generated canonical substructures and its instances in job1,

job2 and job3. In Mapper we just route these substructures and its instances. We

emit key as canonical substructure and value as canonical instance (line 2). Here

we don’t use the combiner as the duplicates generated in job1 and job2 are removed

locally in their respective reducers of their jobs. Some duplicates are generated in

composition phase as we use interlayer adjacency list [IL1,2
ALk ] generated in previous

iteration. There are chances to generate the intralayer and interlayer instances as

IL1,2
ALk will have both intralayer and interlayer edges and these duplicates can be

removed in reducer of job4 itself.

Frequency Counting by the Reducer: The reducer is responsible for receiving

instances from the mappers, which are categorized based on their canonical substruc-

ture. In this, we will employ the concept of a ”beam” to effectively store the best

substructure instances. Specifically, on line 40, a beam of size B is allocated as a hash

map. This beam will be responsible for storing MDL values together with their corre-

sponding instances. Lines 41-46 involve the process of removing duplicates, counting

and identifying instances that possess the highest beam Minimum Description Length

(MDL) values. This is done in order to limit the future expansion to the best sub-

structures in the subsequent iteration. In clean up phase, we segregate the instances

to their corresponding layers and emit the value as canonical instance to correspond-
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ing layer partition. We also write the adjacency list of composed instances to HDFS

to be used in the next iteration for composition.

And all these steps continue till the termination condition is applied.

5.5 Configuration Parameters

The HeMLN-SD system accepts parameters for different tasks from a configura-

tion file. We have provided options for various parameters such as beam size, metric,

maximum substructures to generate, number of substructures to output, layer and

interlayer input path in HDFS file system, initial adjacency list of layers, number of

mappers and reducers for each job and so on. In the case where certain parame-

ters (related to hadoop configurations) are absent in the configuration specification,

the system uses default values for the same. Listed below are the most important

parameters of configuartion file that we process to our HeMLN-SD system -

1. Input Layer Graph File: It specifies the path in HDFS where the input graphs

of intralayers and interlayer in MR format is loaded.

2. Input Adjacency List Files: It specifies the path in HDFS where the initial

adjacency list partitions of intralayer and interlayer edges are loaded.

3. Beam Size: It indicates beam size for substructure evaluation using MDL metric

and the value represents the number of top substructures carried to the next

iteration. Its default value is 4.

4. Range Information: It specifies the vertex ids range for each partition. This

is provided in form of mapping between partition id and vertex start and end

range (inclusive).

5. Layer Details: It specifies 4 elements - minimum vertex Id, maximum vertex Id,

total nodes and total edges present in corresponding intralayer and interlayer.
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6. Metric: This indicates which metric to use for substructure evaluation. We use

”MDL” as default metric and the only one which is handled in our HeMLN-SD

algorithm.

7. Number of Mappers: This parameter states how many mappers are to be used

for each Map/Reduce job.

8. Number of Reducers: This parameter states how many reducers are to be used

for each Map/Reduce job.

9. Maximum Size Substructure: This specifies the maximum size of the substruc-

ture to be obtained. Basically, one less than this value indicates number of

iterations till which we run our algorithm.

10. Number of substructures to output: This indicates how many substructures to

store in result set.

Following is the sample input parameter file used in our implementation of HeMLN-

SD system for 50KV100KE dataset -

// Graph: 50KV100KE.graph, HeMLN, random partitioning,

// No. of layers: 2, Distribution ratio: [0.7, 0.3], disconnected layers

// base name to be used to construct other parameters and file names

BASE_NAME = "50KV100KE_HeMLN"

NO_OF_LAYERS = 2 // no. of layers

// minVid,maxVid,total_nodes,total_edges (added by graph-to-layers.py)

DETAILS_OF_50KV100KE_HeMLN_L1 = 1,50000,35000,49250

DETAILS_OF_50KV100KE_HeMLN_L2 = 6,49996,15000,8880

DETAILS_OF_50KV100KE_HeMLN_IL_L1L2 = 1,50000,46692,41870

// 4 ranges written by partitioned-adj-lists.py

RANGE_INFO_50KV100KE_HeMLN_L2 = 6-12503,12504-25001,25002-37499,37500-49996

RANGE_INFO_50KV100KE_HeMLN_IL_L1L2 = 1-12500,12501-25000,25001-37500,37501-50000
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RANGE_INFO_50KV100KE_HeMLN_L1 = 1-12500,12501-25000,25001-37500,37501-50000

// below are manually added parameters

USER = "kiranbolaj"

BASE_DIRECTORY = "/user/"

BEAM_SIZE = 4 // beam size

// "FREQUENCY", "MINSUP", "MDL" - same as SIZE evaluation in SUBDUE

METRIC = "MDL"

NO_OF_MAP_TASKS_JOB1 = 4

NO_OF_MAP_TASKS_JOB2 = 4

NO_OF_MAP_TASKS_JOB3 = 4

NO_OF_MAP_TASKS_JOB4 = 4

NO_OF_REDUCE_TASKS_JOB1 = 4

NO_OF_REDUCE_TASKS_JOB2 = 4

NO_OF_REDUCE_TASKS_JOB3 = 4

NO_OF_REDUCE_TASKS_JOB4 = 4

MAX_SIZE_SUBSTRUCTURE = 6 // Max size of substructures generated

N_SUBSTRUCTURES_TO_OUTPUT = 10 // Best substructures to print

MR_LAYERS_INPUT_PATH = "/layers_mr_input"

MR_INTERLAYERS_INPUT_PATH = "/interlayers_mr_input"

LAYERS_ADJACENCY_LIST_PATH = "/layers_adjacency_list"

INTERLAYERS_LAYERS_ADJACENCY_LIST_PATH = "/interlayers_adjacency_list"

//renamed after job completion later based on BASE_NAME, NO_OF_LAYERS, etc.

TIME_ANALYSIS_FILE = "analysis.csv"

SUPPORT = 0 // in case of MINSUP
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5.6 Implementing Analysis

Implementing Job Counters:

In order to evaluate the performance of our Map/Reduce jobs. We have utilized

the built-in counters and incorporated a few custom counters (user-defined) in our

Mapper and Reducer program. Hadoop Map/Reduce counters are a valuable channel

for collecting statistics pertaining to the Map/Reduce operation, serving purposes

such as cost and space analysis and quality control. A list of all utilized job counters

appears below.

• Setup time: The inclusion of a counter to track setup time facilitates the

analysis of the setup cost associated with a Mapper/Reducer. In the Map/Re-

duce task conducted for HeMLN-SD, the setup time cost is deemed insignificant

due to the absence of any computational operations being executed. Here, the

global parameters utilized in the mapper and reducer functions are initialized.

• Map time: The mapper calls the map method for every key/value pair. The

map time for a mapper refers to the time taken to process all the assigned key/-

value pairs. The time taken for mapping in our HeICA algorithm exhibits vari-

ation across different jobs. The map time refers to the time taken to determine

the partition Id of the substructure instance in job1 through job3. Regarding

job4, the mapping process involves the routing of all the substructures (both

interlayer and intralayer) to their respective partitions.

We compute the map time by finding the maximum value among the map times

of all mappers. This enables the measurement of the total time dedicated to

the mapping step. In our algorithm, it has been observed that by increasing the

number of mappers while keeping the graph size constant, there is a noticeable

decrease in the time required for mapping. This reduction in map time can be
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attributed to the fact that each mapper is assigned a smaller portion of the data

to analyze.

• Reduce time: As reduce method in our algorithm carries partial answers to

appropriate partition, this counter details the time taken in reducer for expan-

sion, reading and writing the adjacency lists (job1 through job3), substructure

evaluation (job4). The reduce time here is significantly high in comparison to

map time because most of the computation is performed in the reducer.

• Cleanup time: The reducer clean up time has significant important than the

mapper clean up time which is negligible as no work is done in mapper clean

up time. Reducer clean up time corresponds to the time taken to write the

adjacency lists and writing the substructures to corresponding layers.

• I/O time: This time determines the total I/O cost for reading and writing the

HDFS files.

• Duplicates removed by reducer: This counter tells us how many duplicates

are removed by the reducer. And all the duplicates are removed within the

partition and not across the partitions.

• Substructures written: This counter determines total substructures written

to all the reducer partitions. This gives important information about how many

substructure instances are in the beam for that iteration. This counter aids in

figuring out how big the beam substructure set should be for every iteration.

• Read and write time of the adjacency lists: These are the time taken

reading and writing adjacency lists from and to the HDFS file system in the

reducers of all the jobs.

• Adjacency list file size: As we write the adjacency lists in job1, job2 and

job4 we want to determine the size of the file that will be read in the reducer.
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Controlling the number of Mappers and Reducers: In the context of Map/Re-

duce model, response time is optimized by controlling mappers and reducers. We

control the mappers by generating input splits. The Map/Reduce system divides the

entire data into splits and are handled on different machines in a cluster. The default

input split size is 128 MB which can be altered. So, for instance let us say we have a

cluster of 4 Machines which can be used in parallel and you have 1 GB of input data.

If you go by the default input split size provided by Map/Reduce it would divide your

data into 2 partitions which will be processed in parallel on 2 Machines. But if you

want to utilize all of your resources (4 Machines) to decrease your response time, then

we can change the input split size to 256 MB, and it would create 4 partitions (4 Map

tasks) which can be processed in parallel and it will decrease the response time. We

used this approach in our implementation to control the Map tasks and eventually

the mappers. We control the reducers based on adjacency list partitions. For our

experimentation, we use same number of reducers as that of number of adjacency list

partitions (for first 3 jobs). Since we want to make consistent, we keep number of

mappers and reducers same for all the jobs.

On Expanse, each compute node has maximum of 128 processors, and each task

will be running on single processor. So if we want 16 map/reduce tasks we specify

16. If less than 16, then all the processors will not be utilized. So we can alter the

size of split size as discussed above to match the number of processors.

In the next chapter, we discuss the detailed experimental analysis by evaluating

the correctness, scalability and performance on large synthetic and real-world datasets

using different partitions. We also examine the impact of distributions on different

data sizes.

66



Algorithm 2 First/Second Map/Reduce Jobs for Layer Expansion (L1 and L2) for
k-th iteration

INPUT: k-edge substructure instances of i-th layer (i = 1, 2)
OUTPUT: (k + 1)-edge substructures of i-th layer
Class Mapper

1: function SETUP
2: R = Load the range info of adjacency list partitions of i-th layer
3: end function

1: function MAP(key = line no, value = k-edge instance)
2: PIds = Set for unique partition ids for an instance
3: get the source vertex id(sV id) and destination vertex id(dV id) from each edge
4: for each vertex–id v in value do
5: PIds.addPartitionId(v,R)
6: end for
7: for each partition–id p in PIds do
8: value = append layer Id Li to value
9: emit(key = p, value = value)
10: end for
11: end function

Class Reducer

4: function REDUCE(key = partition-id, values = list of k-edge instances)
5: Load partition key from HDFS
6: create an empty set of duplicateSet
7: for each k-edge canonical instance ks in values do
8: ci = expand ks to (k + 1)-edge canonical instance
9: // Remove duplicates
10: if ci /∈ duplicatesSet then
11: cs = convert (k + 1)-canonical instance to canonical substructure
12: emit(key = (k + 1)-canonical substructure, value = (k + 1)-canonical

instance)
13: end if
14: end for
15: end function
16: function CLEANUP
17: Create adjacency list from (k + 1)-edge canonical instance
18: Write the adjacency list to HDFS
19: end function
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Algorithm 3 Third Map/Reduce Job for Composition for k-th iteration

INPUT: k-edge composed instances (1-edge interlayer edges in 1st iteration)
OUTPUT: (k + 1)-edge composed substructures
Class Mapper

1: function SETUP
2: R = Load the range info of adjacency list partitions of interlayer edges
3: end function

1: function MAP(key = line no, value = k-edge instance)
2: PIds = Set for unique partition ids for an instance
3: get the source vertex id(sV id) and destination vertex id(dV id) from each edge
4: for each vertex–id v in value do
5: PIds.addPartitionId(v,R)
6: end for
7: for each partition–id p in PIds do
8: value = append layer Id L1,2 to value
9: emit(key = p, value = value)
10: end for
11: end function

Class Reducer

20: function REDUCE(key = partition-id, values = list of k-edge instances)
21: if k = 1 then
22: Load partition key from HDFS
23: else
24: Load all composed adjacency list partitions from HDFS
25: end if
26: Load all L1 and L2 adjacency list partitions generated in M/R job1 and job2

from HDFS
27: merge all the adajcency list to single adajcency list
28: create an empty set of duplicateSet
29: for each k-edge canonical instance ks in values do
30: ci = expand ks to (k+1)-edge canonical instance using all adjacency lists
31: // Remove duplicates
32: if ci /∈ duplicatesSet then
33: cs = convert (k + 1)-canonical instance to canonical substructure
34: emit(key = (k + 1)-canonical substructure, value = (k + 1)-canonical

instance)
35: end if
36: end for
37: end function
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Algorithm 4 Forth Map/Reduce Job for Substructure Evaluation for k-th iteration

INPUT: (k + 1)-edge composed substructures and its instances
OUTPUT: Top (k+ 1)-edge Beam size substructures taken to next iteration Class
Mapper

1: function MAP(key = canonical substructure, value = canonical instance)
2: emit(key = key, value = value)
3: end function

Class Reducer

38: function REDUCE(key = partition-id, values = list of k-edge instances)
39: create Set isoSet to store isomorphs
40: create a local beamMap to store MDL as key and instances as value
41: for each canonical k-edge instance ks in values do
42: add ks to isoSet //remove duplicates
43: end for
44: c = count(substructures in isoSet)
45: mdl = MDL(c,#vertices and #edges in key)
46: update beamMap with mdl
47: end function
48: function CLEANUP
49: Create an empty composed adjacency list IL1,2

AL(k+1)

50: for each instance ks in beamMap do
51: if ks has single layer Id then
52: emit(key = null, value = ks) to that layer Id partition.
53: else
54: emit(key = null, value = ks) to composed layer Id partition.
55: add all the vertex Ids and corresponding edges in IL1,2

AL(k+1)

56: end if
57: end for
58: Write IL1,2

AL(k+1) to HDFS
59: end function
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CHAPTER 6

EXPERIMENTAL ANALYSIS

In this chapter we will discuss the results and analysis of various experiments

performed on diverse range of synthetic and real-world graphs. Our objective is to

examine the effects of MLN graph characteristics, such as graph sizes, layer distribu-

tions, the influence of partitions, and the scalability of our HeMLN-SD algorithm.

6.1 Experimental Environment

All experiments are performed on the Expanse cluster located at SDSC (San

Diego Supercomputer Center). The Expanse cluster is organized into 13 SDSC Scal-

able Compute Units (SSCUs), comprising 728 standard nodes, 54 GPU nodes, and 4

large-memory nodes. For tasks involving Java with Hadoop MapReduce, we utilized

the standard nodes. These standard compute nodes on Expanse are equipped with

dual 64-core AMD EPYC 7742 processors and possess 256 GB of DDR4 memory.

Additionally, each compute node has access to a 12 PB parallel file system and is

equipped with a 1 TB SSD for local scratch space. Job scheduling on Expanse is

managed through the SLURM workload manager. The configuration details for each

compute node are outlined in Table 6.1.

6.2 Dataset Generation

In our HeMLN-SD algorithm, we represent a single graph as a Heterogeneous

Multilayer Network (HeMLN), where each layer is treated as an independent graph.

Consequently, we have the capability to generate a HeMLN from a single graph,
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Compute Node Component Configuration

Node Count 728
Cores/Node 128 built on 2 processors (64 cores each)
Processor AMD EPYC 7742
Memory 256 GB DDR4 DRAM
Storage 1TB Intel P4510 NVMe PCIe SSD

Table 6.1: Expanse System Details

taking into account various graph characteristics such as the number of nodes in each

layer. Also, for testing the empirical correctness of our algorithm, we can embed

substructures of different size (5 and 10) with known frequency. This ensures that

the same substructures are obtained whether the dataset is processed as a single

graph or as a HeMLN graph. As a result, our data generation process entails initially

generating a single graph and subsequently generating a HeMLN from that single

graph.

6.2.1 Graph Generation

This section provides an overview of the graph generator used for our dataset

generation. The synthetic graph generator utilized to create the input graphs for

this thesis was developed by the AI Lab at the University of Texas at Arlington as

discussed in [42]. This graph generator is configurable and accepts various parameters

for generating the graph. The following parameters are accepted:

1. Graph output filename

2. Number of vertices in the graph

3. Number of edges in the graph

4. Number of unique vertex labels

5. Number of unique edge labels

6. Number of substructures to embed in the graph
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7. For each substructure

(a) Number of instances

(b) Number of vertices

(c) For each substructure vertex

i. The vertex label. (The label can have any alpha numeric characters.

Ex. v0, v1, v2, etc.)

(d) Number of edges

(e) For each substructure edge

i. The edge label.(The label can have any alpha numeric characters. Ex.

e0, e1, e2, etc.)

ii. The first vertex ID to which this edge is connected.

iii. An integer ranging from 0 to (number of substructure vertices - 1)

iv. The second vertex ID to which this edge is connected.

v. An integer ranging from 0 to (number of substructure vertices - 1)

Following is an example of input file for graph generator -

50KV100KE_embed_5E_3000_15vl30el.g

50000

100000

15

30

1

3000

6

y1

y2

y3

y4

y5

y6

5
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c1

0

1

c2

1

2

c3

2

3

c4

2

4

c5

1

5

Each parameter is indicated on a separate line. In this example, a graph is

generated with 50 thousand vertices and 100 thousand edges. There are 15 distinct

vertex labels and 30 distinct edge labels. Within the graph, a substructure of size

5 is embedded with a frequency of 3000. This substructure comprises of 6 vertices

(labeled y1, y2, y3, y4, y5, y6) and 5 edges (labeled c1, c2, c3, c4, c5). The resulting

graph file is named as 50KV100KE embed 5E 3000 15vl30el.g denoting its size

50KV100KE, the embedded substructure size, the frequency (5E and 3000), and the

number of distinct vertex labels (15vl) and the edge labels (30el). The generated

graph file has .g extension. Given input file just shows an example to embed 5-edge

substructure. But, we have embedded both 5-edge (as shown in Figure 6.1) and

10-edge size substructures in all our graphs to test the scalability of our algorithm.

6.2.2 Layer Generation

The input to our HeMLN-SD algorithm is in MR (Map/Reduce) format and

the single graph generated is in Subgen format. Therefore, we will use a python
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script: graph-to-layers.py which will partition a single graph to layers and each

layer graph generated is in MR format.

The initial step is to create the layers from the single input graph. The script

randomly partitions the nodes into the layers based on the distribution ratio and

then distributes the corresponding edges connecting those nodes to the layers. If

an edge has both the nodes in two different layers, then that edge is written to

respective interlayer edge file. Here all the layer files are in MR format. We have

used different distributions - 50/50, 70/30 and 90/10 to divide the graph into 2 layers

for all our synthetic graph experiments. The script also provides option to connect

the layers. To connect the disconnected components within a layer, we leverage the

Python package NetworkX [43] to identify all connected components. Subsequently,

each connected component is connected to another by introducing an edge between

them, marked by a unique edge label. This process is iterated as needed to establish

a fully connected layer. The newly added edges are then reintegrated into the single

aggregated subgen graph, ensuring the consistency of our Multilayer Network (MLN)

with the ground truth. It’s worth noting that each connecting edge is assigned a

distinct label, preventing it from forming a frequent substructure. This is because

any substructure with a connecting edge will always have only one instance.

Below is an example of input file (input parameters layer generation.config) to

our graph-to-layers.py script -

INPUT_GRAPH_PATH = "50KV100KE.graph"

MLN_OPTION = "hemln" //"hemln" or "homln"

LAYER_DISTRIBUTION_OPTION = "random"

NO_OF_LAYERS = 2 // no. of layers to generate

DISTRIBUTION_RATIO = "50:50,70:30,90:10"

CONNECTIVITY_OPTION = "disconnected" // "connected" or "disconnected"
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Below is an example of the output file (50KV100KE HeMLN 2L G2L.config)

generated by graph-to-layers.py script for 50/50 node distribution which forms input

to our partitioned-adj-lists.py script -

// Graph: 50KV100KE.graph, HeMLN, random partitioning,

// No. of layers: 2, Distribution ratio: [0.5, 0.5], disconnected layers

// base name to be used to construct other parameters and file names

BASE_NAME = "50KV100KE_HeMLN"

NO_OF_LAYERS = 2 // no. of layers

// minVid,maxVid,total_nodes,total_edges (added by graph-to-layers.py)

DETAILS_OF_50KV100KE_HeMLN_L1 = 2,49999,25000,24727

DETAILS_OF_50KV100KE_HeMLN_L2 = 1,50000,25000,25239

DETAILS_OF_50KV100KE_HeMLN_IL_L1L2 = 1,50000,43014,50034

Our next step is to generate the adjacency list and its range-based partitions,

based on the required number of partitions. We have a python script: partitioned-

adj-lists.py to generate these partitions. It reads .config file generated by graph-

to-layers.py script and input as the number of adjacency list partitions to generate.

Generating the adjacency list for each layer is crucial, as the expansion process in

each layer functions independently. While we create the adjacency list in memory,

it’s worth noting that the Map/Reduce framework can be utilized if the graph size is

exceptionally large. The partition script updates the .config file with all the required

ranges for each layer including interlayer and other parameters which are crucial

parameters to our HeMLN-SD algorithm. An example of a configuration file is shown

in the chapter 5 under Configurations Parameters section which will be generated

from adjacency list partitioning script.

6.3 Dataset Description

We performed a series of experiments to evaluate the performance, accuracy,

speedup by varying the configurations of mappers and reducers, and the scalability

75



Dataset Used For M/R configs (per layer)
Synthetic Accuracy, Response Time 2M/2R, 4M/4R
50KV 100KE 8M/8R, 16M/16R

Synthetic Large Response Time, Scalability 16M/16R, 32M/32R
1MV 4ME and 2.5MV 10ME 64M/64R, 128M/128R

Amazon Response Time, Scalability 8M/8R, 16M/16R
32M/32R, 64M/64R

DBLP and Word-Association Response Time 2M/2R, 4M/4R
16M/16R, 32M/32R

Table 6.2: Dataset description

of our approach. The datasets used in our experiments are detailed in Table 6.2 and

its distributions are detailed in Table 6.3. We included synthetic graphs of diverse

sizes featuring multiple embedded substructures with user-defined frequencies. This

allows us to cross-verify our results against known frequencies and substructures. Fur-

thermore, our experiments incorporated real-world datasets sourced from Amazon,

DBLP and Word-Association. This comprehensive dataset selection ensures a thor-

ough evaluation, encompassing both synthetic datasets with embedded substructures

and real-world datasets for a more realistic assessment of our approach.
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Dataset Node L1 L2 L1 L2 L1,2

Distribution #Nodes #Nodes #Edges #Edges #Edges

50KV 100KE 50/50 25000 25000 29236 29048 49858
70/30 35000 15000 49250 8880 41870
90/10 45000 5000 81203 1040 17757

100KV 500KE 50/50 50000 50000 124719 124837 250444
70/30 70000 30000 245122 45196 209682
90/10 90000 10000 404942 4998 90060

400KV 1ME 50/50 200000 200000 250297 249961 499742
70/30 280000 120000 490686 89987 419327
90/10 360000 40000 809920 9967 180113

800KV 3ME 50/50 400000 400000 749725 750265 1500010
70/30 560000 240000 1468707 269877 1261416
90/10 720000 80000 2429768 29972 540260

1MV 4ME 50/50 500000 500000 998911 1000756 2000333
70/30 700000 300000 1959976 359709 1680315
90/10 900000 100000 3239820 40233 719947

2.5MV 10ME 50/50 1250000 1250000 2497921 2498771 5003308
70/30 1750000 750000 4902860 899571 4197569
90/10 2250000 250000 8100658 99761 1799581

AMAZON 50/50 367661 367661 653541 652406 1304644
[0.74MV 2.6ME] 70/30 514726 220596 234961 234961 1095233

90/10 661790 73532 2115827 25559 469205
WORD-ASSOCIATION 50/50 5308 5308 8839 9226 18051
[10.6KV 36KE] 70/30 7431 3185 17947 3075 15094

90/10 9555 1061 29811 300 6005
DBLP – 16918 18 2483 18 29984

Table 6.3: Dataset Distributions

6.4 Empirical Correctness

We evaluate the empirical correctness to assess the performance of our algo-

rithm, instead of just relying only on theoretical or operational correctness.

To validate the accuracy of our algorithm, we conducted experiments using

small synthetic graphs generated by Subgen. Subgen is used to generate synthetic

graphs containing predefined embedded substructures. We have generated synthetic
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Figure 6.1: Embedded substructures

graphs ranging from 50KV 100KE to 2.5MV 10ME sizes. Both SUBDUE [18] and

HeICA consistently identified same substructures when applied to these synthetic

graphs. Furthermore, we evaluated the correctness and efficiency of our algorithm

by comparing its results with SUBDUE on the same dataset which is converted into

HeMLN layers. Since, SUBDUE is a main-memory approach it has many challenges

when dealing with large graph sizes beyond 100KV 500KE.

To verify correctness on these synthetic graphs, we have embedded the sub-

structures with a user-defined frequency, aiming to find the same substructures from

our algorithm. Figure 6.1 shows the 5-edge and 10-edge substructures that we have

embedded in the synthetic datasets.

6.5 Accuracy

Throughout our experimental analyses using synthetic datasets, HeICA consis-

tently identifies all instances of the embedded substructure with exact frequencies,
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Figure 6.2: Accuracy: 50KV 100KE [5-edge embedded substructure with frequency
3000]

thereby achieving complete accuracy. Now we will discuss how this is verified using

different parameters like layer distribution and connectivity.

6.5.1 Effect of Layer Distribution on Accuracy

HeICA consistently achieves complete accuracy irrespective of the layer distri-

bution, demonstrating robustness to variations in distribution ratios, whether they

are 50/50, 70/30, or 90/10. As shown in the Figure 6.3, we get the exact frequency for

5-edge substructure embedded for 50KV 100KE graph. Substructures tend to extend

more towards a skewed layer (90/10) due to the increased involvement of nodes in

layer-wise expansion and composition. In the case of a uniform distribution (50/50),

the substructures tend to span across both layers, resulting in the emergence of the

most extensive composed substructures.
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Figure 6.3: Accuracy: 50KV 100KE [10-edge embedded substructure with frequency
1000]

6.5.2 Effect of Layer Connectivity on Accuracy

In order to verify whether the connectivity of layers affects the accuracy, we

have performed our experiment on both connected and disconnected layers. Surpris-

ingly, there is no noticeable difference in accuracies emerged between connected and

disconnected layers during the experimental analysis. This absence of distinction can

be clarified by considering the introduction of a unique connecting edge, which does

not constitute a frequent substructure. Due to its distinctive nature, the presence of

this connecting edge and the resulting instance in the beam substructures is improb-

able. Since all these edges have frequency of 1, they always come under lower MDL

values. In reality, the only circumstance in which these instances could be part of the

beam is when the entire graph is present in the beam. Such a scenario is undesir-

able, as including the entire graph in the beam is to be avoided. Consequently, the

introduction of a connected layer does not have a major impact.
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6.6 Response Time and Scalability

To evaluate our response time, we will use different number of partitions along-

side an equivalent number of mappers and reducers to maximize parallelization. The

goal is to observe a decrease in the time required to complete our experiments as

we scale up resources. We seek to comprehend the speedup achievable, exploring

whether it adheres to a linear trend or demonstrates diminishing returns over time.

Our verification of the speedup and scalability of our approach involves the use of

large synthetic and real-world datasets.

6.6.1 Synthetic Graphs

For the analysis of speedup achieved on synthetic datasets, we explored various

dataset sizes, ranging from 50,000 vertices and 100,000 edges (50KV 100KV) to 2.5

million vertices and 10 million edges (2.5MV 4ME). Despite variations in layer size,

each layer was partitioned into the same number of partitions. We conducted exper-

iments with 2, 4, 8, 16, 32, 64, and 128 partitions, maintaining an equal number of

mappers and reducers for each configuration. A consistent trend was observed across

all datasets, and for the sake of focus, we delve deeper into the analysis of the largest

datasets, specifically 1 million vertices and 4 million edges (1M 4ME) and 2.5 million

vertices and 10 million edges (2.5MV 10ME).

As we can observe in Figure 6.4(a), we get an average speedup of 30% by

increasing both the number of partitions and the count of mappers/reducers from 16

to 32. Subsequently, a speedup of 22% was noted upon further increasing them from

32 to 64. Finally, a speedup of 13% was observed by further increasing them from 64

to 128. It’s important to highlight that the achieved speedup was not linear; doubling

the mappers and reducers did not result in halving the time taken. As the number
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Figure 6.4: Speedup: (a) 1MV 4ME, (b) 2.5MV 10ME

of partitions increased, the speedup exhibited diminishing returns. Similar trend was

observed in Figure 6.4(b).

6.6.2 Real-World Dataset

We have employed real-world graphs to demonstrate scalability and speedup.

Two real-world datasets, namely Amazon and LiveJournal, were utilized, featuring

sizes of 0.74MV2.6ME and 4.9MV69ME, respectively. These datasets were parti-

tioned into 8, 16, 32, and 64 partitions, ensuring equivalent number of mappers and

reducers for each partition configuration.

Amazon(0.74MV2.6ME): The speedup exhibited no difference when compared to

the speedup achieved in synthetic graphs. Figure 6.5 illustrates the response time

and the average speedup achieved for varying numbers of partitions and the count of

mappers/reducers, ranging from 8 to 16 to 32 to 64.

The similarity in speedup for the layer distribution can be attributed to the

fact that the most frequent substructures in the dataset were of size 2. Considering
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Figure 6.5: Speedup: Amazon Dataset

that real-world datasets may or may not contain frequent substructures, and larger

substructures were not embedded in these datasets, our algorithm demonstrate similar

performance in capturing substructures of size 2.

Word-Association(10.6KV36KE): Its a graph describing the results of an exper-

iment where the nodes correspond to words and edges represent a cue-target pair as

described in [13]. This graph has a maximum degree of 269 and generates 2-edge

substructure of varying frequency. As depicted in Figure 6.6, we observe an average

speedup of 46% despite variations in the number of mappers and reducers. This is

attributed to the fact that the most frequent substructure identified was of size 2.

Consequently, the work involved in composition becomes more pronounced, as the

maximum degree node leads to increased expansion of edges, subsequently escalat-
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Figure 6.6: Speedup: Word-Association

ing the workload for a single partition reducer task and consequently prolonging the

composition time.

DBLP: We are dealing with 2 layers of DBLP dataset - CoAuthors (Nodes: 16918,

Edges: 2483) and Years (Nodes and Edges: 18) . Intralayer edges represent the

year of publication (29984 edges). This graphs has maximum degree of 756. Again as

observed in Figure 6.7, we observe an average speedup of 45% despite variations in the

number of mappers and reducers. This is attributed to the fact that the most frequent

substructure identified was of size 3. Consequently, the work involved in composition

becomes more pronounced, as the maximum degree node leads to increased expansion

of edges, subsequently escalating the workload for a single partition reducer task and

consequently prolonging the composition time.
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Figure 6.7: Speedup: DBLP

6.7 Response Time for All Experiments Performed

Our goal is to examine the variations in response time across different datasets,

each characterized by diverse sizes and features. To provide a comprehensive overview,

we have synthesized the results from various experiments into two graphs—one for

real-world datasets and the other for synthetic datasets.

In Figure 6.8 and Figure 6.9 show all the experiments executed on real world

and synthetic datasets respectively.

In summary, our study involved comprehensive experiments conducted on a

diverse set of datasets, emphasizing the differences between the two proposed ap-

proaches. The graphs employed in these experiments demonstrated varied character-

istics. Through this extensive experimentation, we successfully validated our HeMLN-
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Figure 6.8: Speedup: Real-world datasets

Figure 6.9: Speedup: Synthetic datasets
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SD algorithm across a spectrum of graph sizes and diverse graph characteristics.

These thorough experiments have robustly confirmed the validity and effectiveness of

our proposed approach.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis introduced a scalable algorithm for substructure discovery in Het-

erogeneous Multilayer Networks (HeMLN) using an iterative decoupling-based ap-

proach. We designed and implemented a composition algorithm aimed to identify

missing substructures across HeMLN layers by leveraging interlayer edges using the

Map/Reduce paradigm with a focus on both correctness and efficiency. The algorithm

incorporates essential graph mining elements such as sub-graph generation, elimina-

tion of duplicates, and counting isomorphic substructures. Furthermore, we validated

the correctness of our HeMLN-SD algorithm and conducted extensive experimental

analyses on synthetic and real-world datasets.

The field of partitioned graph mining offers interesting opportunities for future

research. Currently, our composition algorithm reads all the adjacency lists in each

reducer and stores them in memory. To further enhance efficiency and scalability, we

can introduce a new map/reduce job before the composition phase to perform range-

based partitioning on the adjacency lists which are read as input to the composition.

Moreover, our HeMLN-SD algorithm can be extended to include more than two layers.

We can also consider alternative approaches to substructure discovery in HeMLN,

such as composing substructures at the end of each iteration or composing them at

the end of all iterations.
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