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Abstract

This dissertation delves into the enhancement of biomedical image analysis through the
deployment of artificial intelligence methodologies, focusing on the transition from theo-
retical innovation to practical clinical utility. Spanning four cornerstone projects, the work
encapsulates the development of predictive models for spatial transcriptomics, efficient
image compression for cancer pathology slides, and critical evaluations of histopathology
slide search engines. The first project employs Random Forest Regression and spatial point
processes to forecast cell distribution patterns, thereby offering a novel perspective on gene
expression in embryogenesis at a single-molecule resolution. The second venture intro-
duces a Variational Autoencoder (VAE) that sets a new precedent in histopathology imag-
ing with a significant compression ratio, maintaining diagnostic reliability. Lastly, the third
project assesses the performance of leading histopathology slide search engines, establishing
a benchmark for their clinical application and suggesting enhancements for future integra-
tion. Together, these projects pave the way for AI-driven approaches to be woven into the
fabric of clinical practice, signaling a transformative leap in the utility of biomedical imag-
ing and multi-channel data interpretation
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1
Introduction and Overview

At the heart of this dissertation lies the exploration of artificial intelligence’s transformative

role in biomedical imaging, a domain where innovation, technology, and medical science

converge to redefine the boundaries of diagnosis, prognosis, and treatment strategies. This

introductory chapter sets the stage for a comprehensive journey through a series of studies

that collectively aim to enhance the analysis and prediction capabilities in biomedical imag-
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ing. Each paper within this dissertation not only stands as an individual testament to the

advancements in the field but also contributes to a cohesive narrative that addresses critical

challenges in spatial transcriptomics, cancer pathology, and the integration of multi-modal

data. Here, we delineate the common problems these studies seek to solve, the unique con-

tributions of the dissertation writer and co-authors, and the context within which this re-

search is situated in the broader landscape of medical imaging and AI. By providing a syn-

thesis of the existing literature and the gaps our research aims to fill, this chapter offers a

roadmap for the insights and innovations that unfold in the subsequent sections, encapsu-

lating the essence of the dissertation’s contribution to the ever-evolving field of biomedical

imaging.

1.1 Introduction to the Dissertation Theme

The advent of artificial intelligence (AI) and its integration into biomedical imaging has

marked a transformative era in medical diagnostics, research, and treatment strategies.

Biomedical imaging stands at the forefront of modern clinical practice, offering a window

into the complex workings of the human body. Its evolution, particularly through the inte-

gration of AI, has been nothing short of revolutionary, reshaping how clinicians approach

diagnosis, treatment planning, and patient monitoring. The application of AI in biomedi-

cal imaging has led to significant improvements in image quality, diagnostic accuracy, and

the efficiency of image analysis.
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1.1.1 Overview of AI in Biomedical Imaging

AI algorithms have been instrumental in enhancing the resolution and clarity of medical

images, allowing for more precise identification of pathological changes in tissues. Tech-

nologies like deep learning have shown exceptional promise in identifying patterns in imag-

ing data that are often subtle and complex, well beyond the capabilities of traditional imag-

ing techniques45,30. This advancement is pivotal in fields such as radiology and pathology,

where accurate image interpretation is critical for diagnosing diseases like cancer, neurologi-

cal disorders, and cardiovascular diseases16,49.

Moreover, AI-driven tools have streamlined the process of medical imaging, reducing the

time required for image analysis and interpretation. This efficiency is particularly beneficial

in high-volume clinical settings, where rapid and accurate analysis of a large number of im-

ages is crucial for patient care44,50. AI’s capacity to process and analyze vast datasets rapidly

not only aids in early disease detection but also enables personalized medicine by facilitat-

ing the identification of disease subtypes and the prediction of treatment responses39,41.

The transformative impact of AI on biomedical imaging is also evident in its role in ad-

vancing non-invasive diagnostic techniques. For example, AI has played a significant role in

the development and refinement of techniques such as magnetic resonance imaging (MRI)

and computed tomography (CT), enabling more detailed and accurate visualization of

internal structures without the need for invasive procedures12,27. This advancement not

only enhances patient comfort but also reduces the risks associated with invasive diagnostic

methods.

Biomedical imaging also plays a crucial role in spatial transcriptomics, a rapidly emerg-

ing field that combines gene expression data with spatial context. This integration allows
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for the visualization and analysis of the spatial distribution of transcripts within tissue sec-

tions, providing insights into the complex cellular architecture of tissues and the spatial

heterogeneity of gene expression47,37. In cancer pathology, biomedical imaging serves as an

indispensable tool for detecting and characterizing tumors. The detailed images obtained

through advanced imaging techniques facilitate the identification of cancerous cells and

structures, enabling pathologists to make accurate diagnoses and tailor treatment strategies

to individual patients13,31.

In the realm of histopathology slide analysis, biomedical imaging is pivotal for the exam-

ination of tissue samples at the microscopic level. AI-enhanced imaging techniques have

significantly improved the accuracy and efficiency of detecting pathological changes, such

as the presence of tumor cells or the assessment of tumor margins17,10. These advancements

not only accelerate the diagnostic process but also ensure greater consistency and precision

in histopathological evaluations.

The convergence of biomedical imaging with AI technologies in these areas represents

a paradigm shift, offering opportunities to enhance our understanding of complex biolog-

ical processes and diseases. It enables the medical community to move beyond traditional

diagnostic methods and embrace more precise, personalized approaches to patient care.

1.1.2 Challenges in the Field

While AI in biomedical imaging has brought about significant advancements, the field

also faces several challenges that need to be addressed to fully realize its potential. One of

the primary challenges is the need for large, diverse, and high-quality datasets for training

AI models. The accuracy and robustness of AI algorithms heavily depend on the volume
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and variety of data they are trained on. However, acquiring such extensive datasets is often

hindered by issues related to patient privacy, data sharing regulations, and the inherent vari-

ability in medical imaging due to different equipment and protocols across institutions36.

Another significant challenge is the interpretability and explainability of AI models in

medical imaging. Many advanced AI algorithms, particularly deep learning models, operate

as ’black boxes,’ making it difficult for clinicians to understand how these models arrive at

a particular diagnosis or prediction. This lack of transparency can lead to trust issues and

reluctance in adopting AI-driven diagnostic tools in clinical practice15,4.

Furthermore, integrating AI into clinical workflows poses its own set of challenges. The

healthcare industry often faces barriers in terms of infrastructure, funding, and technical

expertise required to implement and maintain AI solutions effectively. Additionally, there is

a need for significant training and adaptation among healthcare professionals to efficiently

utilize AI-enhanced tools in their daily practice1.

Lastly, addressing the ethical and legal considerations surrounding AI in healthcare is

crucial. This includes ensuring patient confidentiality, addressing potential biases in AI

algorithms, and navigating the legal implications of AI-driven medical decisions11,5.

1.1.3 Advancing Predictive and Analytical Techniques in Biomedical Imag-

ing

This dissertation tries to address some of these challenges by delving into the nuances of

biomedical imaging in areas like spatial transcriptomics, cancer pathology, and histopathol-

ogy slide analysis, underscoring the pivotal role of AI in enhancing predictive accuracy and

optimizing image compression for comprehensive insights into complexity of cancer.
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The significance of AI extends beyond mere image analysis, venturing into the realm of

predictive modeling, a facet crucial for understanding disease progression and therapeu-

tic outcomes. Predictive models in spatial transcriptomics, for instance, are essential for

deciphering the spatial distribution of gene expression within tissues, offering invaluable

insights into cellular interactions and functions in a spatial context43. These models aid in

interpreting the complex spatial arrangements of cells, which are pivotal for understanding

various biological processes and disease pathologies, including cancer development.

Furthermore, the integration of AI in image compression, particularly for cancer pathol-

ogy slides, addresses the significant challenge of managing and analyzing the enormous

datasets typical in digital pathology35,22. High-resolution whole-slide images (WSIs) of

pathological samples generate vast amounts of data, necessitating efficient compression

techniques to facilitate storage, transmission, and analysis. Variational Autoencoders (VAEs),

for example, have emerged as a promising solution, offering a balance between compression

efficiency and image reconstruction fidelity21,48.

Finally, histopathology slide analysis, another cornerstone of modern diagnostics, bene-

fits immensely from AI-driven search engines and analytical tools. These tools not only ex-

pedite the diagnostic process but also enhance the accuracy and reproducibility of histopatho-

logical assessments30,3. The incorporation of machine learning algorithms in the analysis of

histopathology slides enables the identification of subtle patterns and features that might be

overlooked by the human eye, thereby supporting more accurate diagnoses and prognostic

evaluations.

In conclusion, the application of AI in biomedical imaging is a rapidly evolving field,

with significant implications for medical research and clinical practice. This dissertation
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aims to contribute to this field by exploring and advancing AI techniques in predictive

modeling, image compression, and histopathology slide analysis.

1.2 Overview of Included Papers

In this dissertation, we explore a series of studies that collectively enhance the analysis and

prediction capabilities in biomedical imaging. Each paper contributes unique insights and

methodologies, addressing different yet interconnected aspects of this vast field. From the

intricate analysis of spatial transcriptomics to the nuanced evaluation of cancer pathology,

these papers collectively push the boundaries of what is achievable through the application

of AI in biomedical imaging. This section provides a succinct overview of each paper, high-

lighting their individual contributions while weaving a common thread that underscores

their collective impact in advancing the field.

1.2.1 Paper 1: Predicting the Future States of Gene Expression

The first paper in our exploration, ”Predicting Future States with Spatial Point Processes

in Single Molecule Resolution Spatial Transcriptomics,” presents a pioneering approach to

understanding cellular behavior at the molecular level. This study addresses a critical chal-

lenge in spatial transcriptomics: predicting the future distribution of cells expressing spe-

cific genes. Leveraging the power of Random Forest Regression, we developed a predictive

model that operates with high accuracy and resolution.

In spatial transcriptomics, understanding how genes are expressed spatially within a cell

and how this expression changes over time is crucial for unraveling complex biological pro-

cesses. Traditional methods often fall short in capturing these dynamic changes with the
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needed precision. This paper introduces an innovative pipeline that combines Ripley’s

K-function with spatial point processes, providing a detailed view of gene expression pat-

terns at a single-molecule resolution. The approach is exemplified through the study of the

Sog-D gene in the Drosophila embryogenesis process, offering fresh insights into how cells

control gene expression over time.

The significance of this paper lies not just in its technical novelty but also in its practi-

cal implications. By accurately predicting the future states of gene expression, researchers

can gain a deeper understanding of developmental biology, disease progression, and even

potential therapeutic targets. This work stands as a testament to the power of integrat-

ing computational methods with biological data, opening new avenues for research in ge-

nomics and beyond. A sample prediction made by this model is showcased in 1.1.

The common thread that links this paper to the others in this dissertation is its focus

on enhancing the predictive capabilities in biomedical imaging. Just as the other papers

explore new frontiers in cancer pathology, histopathology, and multi-modal data analysis,

this study advances our ability to forecast biological processes with greater precision and

detail, underscoring the transformative impact of AI in the realm of biomedical imaging.

1.2.2 Paper 2: Clinically RelevantHistopathology Slide Compression

The second paper titled ”Clinically Relevant Latent Space Embedding of Cancer Histopathol-

ogy Slides Through Variational Autoencoder Based Image Compression” marks a signifi-

cant advancement in the field of digital pathology. This paper addresses the critical chal-

lenge of efficiently managing the vast amounts of data generated by high-resolution cancer

histopathology slides. The sheer size of these datasets poses substantial challenges in terms

8



Figure 1.1: The predicted distribution of active cell for stage NC 14 A for the sample with the best accuracy based on
mean absolute error values. The top and right plot show the distribution of active cells along the anterior to posterior
(AP) and Dorsal to Ventral (DV) axes, respectively. The solid red lines are true distributions, and the blue dotted lines are
predicted distributions. The middle plot shows the absolute error in each grid.
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of storage, retrieval, and analysis. To tackle these issues, we present a novel approach utiliz-

ing a Variational Autoencoder (VAE) for image compression.

The core of this paper revolves around the development of a VAE-based training pipeline

that achieves high compression ratios while maintaining the integrity and clinical relevance

of the histopathological images. This is particularly crucial in cancer diagnostics, where

the fidelity of images is paramount for accurate analysis and diagnosis. The VAEmodel

developed in this study not only compresses images efficiently but also ensures that the

compressed images retain critical histological features necessary for clinical diagnosis and

research.

One of the most important aspects of this study is the generation and visualization of

embeddings from the compressed latent space. These embeddings demonstrate that the

compressed data maintains crucial clinical information, which can be used for rapid and ac-

curate searches of large histopathological image databases. Such capability, if perfected,

has the potential to revolutionize how pathologists and researchers access and analyze

histopathology slides, especially in large-scale studies. The UMAP plot of these embeddings

are illustrated in 1.2. Also, reconstructed slides at different compression ratios are presented

in 1.3 for a sample breast tissue.

The paper aligns seamlessly with the overarching theme of the dissertation by enhancing

the analysis and prediction capabilities in biomedical imaging. While the first paper focuses

on predicting cellular behavior at the molecular level, this paper contributes to the efficient

handling and analysis of large-scale histopathological data. Together, these studies under-

score the diverse yet cohesive applications of AI in biomedical imaging, each addressing

different facets of the challenges inherent in the field.
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Figure 1.2: The UMAP plot of embedding space demonstrates clinical information preservation (©2023 IEEE).

The innovations presented in this paper are not just technical feats; they hold profound

implications for cancer research and diagnosis. By enabling more efficient storage and re-

trieval of cancer pathology slides and preserving their clinical utility even in a compressed

format, this work paves the way for more streamlined and effective diagnostic processes.

It exemplifies the potential of AI to transform the way medical data is handled, making it

more accessible and usable for clinicians and researchers alike.
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Figure 1.3: The reconstruction results for breast cancer tissues at 5 different compression ratios (©2023 IEEE).
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1.2.3 Paper 3: Readiness of Histopathology Slide Search for Clinic

The third paper in this series, titled ”Histopathology Slide Indexing and Search: Are We

There Yet?” delves into a critical area of digital pathology - the indexing and retrieval of

histopathology slides. This paper presents an in-depth analysis of the current state and

advancements in the technologies used for managing and searching vast repositories of

histopathology images. It provides a comprehensive review of the methodologies employed

in indexing these slides and evaluates the effectiveness of various search algorithms within

this domain.

Histopathology slides are integral to the diagnosis and study of diseases, especially can-

cer. However, the sheer volume of slides produced in clinical and research settings presents

significant challenges in terms of storage, management, and retrieval. Efficient indexing

and search mechanisms are crucial for leveraging these vast datasets effectively. This paper

scrutinizes the progress made in this field, assessing how far we have come in terms of tech-

nology and what gaps still exist.

One key focus of the paper is the evaluation of the effectiveness of current search engines

designed for histopathology slides. We explore various dimensions of these search engines,

including their accuracy, efficiency, and the algorithms that power them. They discuss the

challenges faced, such as the need for high precision in search results, handling the vari-

ability in slide preparation and imaging, and the integration of these systems into clinical

workflows. A sample patch retrieval analysis is shown in 1.4.

The paper’s significance lies in its critical analysis of a fundamental aspect of digital

pathology. While the previous papers in this dissertation discuss predictive modeling and

efficient data compression, this paper addresses the practical aspects of handling and uti-
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lizing the resultant data effectively. It highlights the need for robust and intelligent search

engines that can handle the complexity and scale of histopathology datasets.

The common thread linking this paper to the others is the overarching goal of enhanc-

ing the utility and accessibility of biomedical imaging data. Just as the other papers propose

methods to predict biological processes and compress large datasets effectively, this study

addresses the subsequent challenge of retrieving and utilizing this data efficiently. It under-

scores the necessity of continued innovation in AI and machine learning to develop more

sophisticated tools for managing the ever-growing repositories of medical imaging data,

thereby contributing to the broader objectives of improving diagnostic accuracy and ad-

vancing medical research.

In summary, ”Histopathology Slide Indexing and Search: Are We There Yet?” is a piv-

otal contribution to the field, offering insights into the current capabilities and limitations

of histopathology slide indexing and search technologies. It sets the stage for future ad-

vancements in this area, calling for ongoing research and development to address the re-

maining challenges and fully harness the potential of digital pathology.

1.3 Description of the Problem

The realm of biomedical imaging, particularly when augmented with artificial intelligence,

presents a host of complex challenges that are crucial to address for advancing medical

science and patient care. This dissertation, through its included studies, tackles several of

these pivotal challenges:
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Figure 1.4: Results of patch retrieval for two patches from sample patches from paper 3. Correct labels are printed in
green to the left of query patches. Green border means correct label; red border means wrong label.
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1.3.1 Challenges in Analyzing and Predicting Spatial Transcriptomics and

Cancer Pathology

The study of spatial transcriptomics and cancer pathology requires not only the analysis of

vast amounts of complex biological data but also the accurate prediction of how these data

evolve over time. In spatial transcriptomics, the challenge lies in mapping and interpreting

the spatial arrangement of gene expression within tissues, which is key to understanding

cellular functions and interactions in a given biological context. This requires sophisticated

tools capable of handling high-dimensional data and extracting meaningful patterns from

them38,7.

In cancer pathology, the difficulty intensifies with the need to differentiate between sub-

tle morphological features that distinguish benign frommalignant cells and among various

cancer subtypes. The complexity of tumor biology, including its heterogeneity and the

variability in its presentation, makes accurate diagnosis and prognosis a challenging task14.

1.3.2 The Need for Robust Image CompressionMethods

In the digital era of pathology, the transition from glass slides to digital slides generates

massive datasets, especially when dealing with high-resolution whole-slide images (WSIs).

These datasets necessitate robust image compression methods to enable efficient storage,

transmission, and analysis. However, traditional image compression techniques often re-

sult in loss of critical information, making them unsuitable for medical applications where

precision is paramount2.
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1.3.3 The Complexity of Histopathology Slide Analysis

Histopathology slide analysis is integral to disease diagnosis and research. The challenge

here is twofold: first, in the accurate segmentation and classification of pathological features

from slide images, and second, in the development of systems capable of handling the sheer

scale and variability of histopathology data. This demands algorithms that are not only

precise but also adaptable to various staining techniques, tissue types, and disease states22,30.

In conclusion, these challenges form the basis of the problems addressed in this disserta-

tion. Each of the included studies tackles a specific aspect of these challenges, contributing

to the overarching goal of enhancing the capabilities in biomedical imaging and predictive

analysis through the application of advanced AI techniques.

1.4 Contributions of the DissertationWriter and Co-Authors

The body of work presented in this dissertation is the result of collaborative efforts between

the dissertation writer and various co-authors. Each paper reflects a synergy of expertise

from different fields, bringing together innovative ideas, technical skill sets, and domain-

specific knowledge. Below is a detailed breakdown of the contributions made by the disser-

tation writer and the co-authors for each paper:

1.4.1 Paper 1: Predicting the Future States of Gene Expression

DissertationWriter’s Contributions

1. Conceptualization and Methodology: Originated the idea of applying Random

Forest Regression for predicting future states in spatial transcriptomics.
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2. Implementation: Developed the Random Forest Regression model and executed

the hypothesis testing, including analysis.

3. Data Analysis and Visualization: Conducted and visualized the grid search for the

optimal grid size (Fig. 2), created the layout and code for plotting results (Fig. 3), and

generated bootstrap plots (Fig. 4).

Co-First Authors’ Contributions

• Parisa Boodaghi Malidarreh: Played a pivotal role in writing most of the paper,

procuring imaging samples, interpreting results, and leading the project.

• Biraaj Rout: Managed bulk data analysis and feature extraction, developed an auto-

mated data pipeline, and coordinated with the biology department for data acquisi-

tion. Also ran the high throughput segmentation pipline for cell segmentation.

• Priyanshi Borad: Responsible for imaging and video capturing under lab condi-

tions.

• Jillur Rahman Saurav: Assisted in defining the prediction problem and translating

biological aspects into computational solutions.

1.4.2 Paper 2: Clinically RelevantHistopathology Slide Compression

DissertationWriter’s Contributions

1. Data Acquisition and Scripting: Authored the script for downloading the large

dataset and developed the deep learning pipeline in Python.
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2. Technical Implementation: Parallelized the code for multiple GPU usage, created

slurm scripts for supercomputer execution, and generated Figures 1 and 2. Authored

the methods section of the paper.

Co-First Author’s Contributions

• Amir Hajighasemi: Conducted experiments on the CIFAR-10 dataset and designed

hypothesis testing to elucidate the model’s superior performance on histopathology

images. Contributed to parts of the analysis and methods sections.

1.4.3 Paper 3: Readiness of Histopathology Slide Search for Clinic

DissertationWriter’s Contributions

1. Original Concept and Design: Initiated the paper idea and designed experiments

for testing various search engines.

2. Software Development and Analysis: Wrote the complete source code, imple-

mented RetCCL from scratch, conducted ablation studies, performed statistical

analysis, and generated Figures 2 and 3. Authored the methods section.

Co-First Author’s Contributions

• Dr. Helen Shang: Managed the medical analysis, patient data interpretation, and

most of the paper writing. Facilitated access to human samples fromUCLA.

These contributions underscore the collaborative nature of scientific research, where

each member brings unique skills and insights. The dissertation writer, through their direct
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involvement in conceptualizing, developing, and implementing these studies, has demon-

strated a deep understanding and capability in AI applications in biomedical imaging. This

collaborative effort has significantly advanced the field, addressing some of the most press-

ing challenges in biomedical imaging and predictive analysis.

1.5 Review of PriorWork and Literature Review

The field of biomedical imaging, particularly in the context of AI-enhanced analysis and

prediction, stands at the forefront of modern medical research and practice. This section

delves into a comprehensive review of prior work and literature that has paved the way for

the current research presented in this dissertation. Each paper included in this work builds

upon a rich foundation of previous studies, addressing critical aspects of spatial transcrip-

tomics, cancer pathology, and image compression. By reviewing and contextualizing the

existing literature, we aim to highlight the evolutionary trajectory of these research domains

and underscore the significant gaps our current research endeavors to fill. This literature re-

view not only serves to situate our contributions within the broader research landscape but

also to demonstrate the progressive nature of these fields, where each advancement brings

us closer to more precise, efficient, and predictive capabilities in biomedical imaging and

analysis.

1.5.1 Paper 1: Predicting the Future States of Gene Expression

In ”Predicting Future States with Spatial Point Processes in Single Molecule Resolution

Spatial Transcriptomics,” we delve into the frontier of understanding spatial gene expres-

sion patterns in embryogenesis, a critical aspect of modern genomics and developmental
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biology. The introduction of the paper lays a foundation for the study by highlighting key

advancements and challenges in the field.

Comprehensive Review of Existing Research

Recent technological strides have enabled the capture of high-resolution images during

the embryogenesis process, which are pivotal for studying gene expression patterns24,9.

The Drosophila embryo, in particular, has been a model organism for understanding how

enhancers control gene expression in a complex and dynamic manner33,42. However, the

rapid advancement in genetic and live imaging techniques has outpaced the development of

analytical methods capable of extracting the wealth of information contained within these

datasets29.

The paper discusses the challenge of systematically assessing mutant enhancer pheno-

types. We developed a quantitative approach using enhancer-drivenMS2-yellow reporter

constructs, captured through in vivo imaging, to provide insights into the timing, levels,

and spatial domains of expression34. These advancements in imaging technology necessi-

tate novel methods for efficient prediction and analysis of spatial gene expression data.

The concept of RNA velocity, defined as the time derivative of gene expression, was in-

troduced as a novel way to estimate the future state of individual cells in standard scRNA-

seq protocols26. Furthermore, methodologies capturing spatial proteomics data to predict

cancer patient survival, utilizing tools like Ripley’s K-function for spatial feature analysis,

have inspired the proposed pipeline in this study8.
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Contextualizing the Papers within the Broader Research Landscape

This paper is positioned at the intersection of advanced imaging techniques and computa-

tional analysis. We acknowledge the rich history of developmental biology research and the

current technological capabilities that enable the study of gene expression dynamics with

increased temporal resolution. However, they also identify a gap in the ability to predict

and analyze these dynamics efficiently, especially in the context of spatial transcriptomics.

Highlighting the Gaps Addressed by the Current Research

The research addresses the critical gap in predictive analysis of spatial gene expression data.

While previous methods have provided static snapshots of gene expression, this study in-

troduces a dynamic perspective, offering a tool analogous to RNA velocity but tailored for

spatially resolved developmental biology. The introduction of a Random Forest Regression

model, combined with temporally resolved spatial point processes, marks a significant ad-

vancement in the field. It exemplifies the transition from static to dynamic analysis of gene

expression, an essential step in understanding complex biological processes like embryogen-

esis.

The literature review in this paper underscores the necessity for innovative computa-

tional approaches to keep pace with rapid advancements in imaging technology. By ad-

dressing the need for dynamic predictive models in spatial transcriptomics, the study makes

a substantial contribution to the field, bridging a crucial gap between data acquisition and

data analysis.
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1.5.2 Paper 2: Clinically RelevantHistopathology Slide Compression

The second paper, ”Clinically Relevant Latent Space Embedding of Cancer Histopathol-

ogy Slides Through Variational Autoencoder Based Image Compression,” focuses on ad-

dressing the challenges of managing and analyzing large-scale histopathological image data.

The introduction section provides an extensive review of the current state of histopatho-

logical image analysis and the need for efficient image compression methods in the field.

Comprehensive Review of Existing Research

Histopathological images, particularly those derived from cross-sectional tissue microscopy,

play a crucial role in diagnosing various diseases and conditions13,14. The introduction of

Hemotoxylin and Eosin (H&E) staining has been a significant advancement, enabling the

discernment of nuclear and cytoplasmic structures for identifying carcinomal regions in

excised tissue from cancer patients40. With the creation of large databases like the NIH

Genomic Data Commons (GDC), containing tens of thousands of Whole Slide Images

(WSIs), the need for efficient data management has become more pressing20.

However, traditional compression methods like JPEG2000 have limitations in maintain-

ing the usability of images for histopathological classification beyond certain compression

ratios25,23. This has prompted the exploration of neural networks, particularly Variational

Auto Encoders (VAEs), which have shown higher efficiency and fidelity in compressing

image data while retaining critical information necessary for medical applications46,19.
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Contextualizing the Papers within the Broader Research Landscape

The paper is situated at a critical juncture in the field of digital pathology, where the grow-

ing size of histopathological datasets demands innovative solutions for data compression

and retrieval. The authors highlight the advancements in VAE technology and its applica-

tion in medical image analysis, demonstrating its superiority over traditional compression

methods18,32.

Highlighting the Gaps Addressed by the Current Research

The research addresses a significant gap in the field of histopathological image analysis - the

need for a compression method that balances high efficiency with the preservation of clini-

cally relevant information. The introduction of a VAE-based approach for the compression

and indexing of WSIs presents a novel solution to this problem. It not only facilitates the

efficient storage and retrieval of large-scale histopathological data but also ensures the clini-

cal utility of the compressed images, a crucial aspect in cancer diagnostics and research.

The literature review in this paper underscores the importance of developing advanced

computational methods to keep pace with the increasing scale of histopathological datasets.

By focusing on the efficient compression and retrieval of these images, the study makes

a substantial contribution to the field, bridging a vital gap between data acquisition and

clinical application.

1.5.3 Paper 3: Readiness of Histopathology Slide Search for Clinic

The paper ”Histopathology Slide Indexing and Search: Are We There Yet?” presents a com-

prehensive examination of the current state of histopathology slide indexing and retrieval
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systems. This review focuses on the evolution of these systems, their technological advance-

ments, and the existing challenges in the field.

Comprehensive Review of Existing Research

Histopathology, a critical domain in medical diagnostics, has undergone a significant trans-

formation with the digitization of slides. This shift has prompted the development of au-

tomated search and retrieval systems, which are essential for managing the burgeoning vol-

ume of digital slides. Among the notable advancements are end-to-end systems like Yot-

tixel20, SISH6, RetCCL51, and HSHR28. Yottixel, for example, introduced an innovative

approach of processing large-scale WSIs by using a DenseNet-based feature extractor on

mosaic tiles, rather than the entire WSI, marking a significant improvement in handling

large volumes of data efficiently.

Contextualizing the Papers within the Broader Research Landscape

This research fits into a broader landscape where the efficiency and accuracy of histopathol-

ogy slide search engines are critical. These systems not only enhance the diagnostic process

but also play a vital role in research and education. The advancements in CBIR systems,

feature extraction techniques, and integration with AI and machine learning have marked

significant strides in this field.

Highlighting the Gaps Addressed by the Current Research

The paper identifies gaps in existing methodologies, notably the need for more sophisti-

cated, accurate, and user-friendly systems for histopathology slide indexing and search. De-
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spite advancements, challenges persist in handling the scale of digital pathology, ensuring

the clinical relevance of search results, and integrating these systems into existing work-

flows. This study addresses these gaps, providing insights and directions for future research.
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2
Paper 1: Predicting the Future States of

Gene Expression

2.1 Introductory Comments

The study presented in this chapter, ”Predicting Future States with Spatial Point Processes

in Single Molecule Resolution Spatial Transcriptomics,” explores the intricate process of
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embryogenesis in Drosophila, focusing on the spatial and temporal patterns of gene expres-

sion. Central to this exploration are the Anterior-Posterior (AP) and Dorsal-Ventral (DV)

axes, which play a crucial role in the development of the embryo.

Significance of the AP andDVAxes in Development

The AP and DV axes are fundamental in determining the body plan of an organism during

embryonic development. In Drosophila, as in many other organisms, these axes are estab-

lished very early in embryogenesis and dictate the spatial arrangement of tissues and organs.

The AP axis runs from the head (anterior) to the tail (posterior) of the organism, while the

DV axis runs from the back (dorsal) to the belly (ventral) side.

Understanding the gene expression patterns along these axes is crucial for unraveling the

complex mechanisms that guide embryonic development. Genes expressed along these axes

determine the positional information of cells, influencing their fate and function in the

developing organism. Any alterations or disruptions in the expression patterns along these

axes can lead to developmental abnormalities.

Approach and Relevance of the Study

This study employs a sophisticated approach using Random Forest Regression combined

with spatial point processes, enabling the prediction of future states of cell distribution

along the AP and DV axes. By leveraging high-resolution imaging data, the research pro-

vides insights into the dynamic nature of gene expression at different stages of embryogene-

sis.

The ability to predict the distribution of cells expressing specific genes is not just a tech-
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nical achievement but also a significant step forward in understanding the developmental

biology of organisms. This research contributes to a deeper understanding of how organ-

isms develop from a single cell to a complex system of tissues and organs, shedding light on

the fundamental processes that underpin life itself.

The following pages will present the full manuscript of ”Predicting Future States with

Spatial Point Processes in Single Molecule Resolution Spatial Transcriptomics,” including

the title page, abstract, main body, references, and any supplementary material, formatted

according to the requirements of the publisher and renumbered for consistency within the

thesis/dissertation.
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ABSTRACT

In this paper, we introduce a pipeline based on Random For-
est Regression to predict the future distribution of cells that
are expressed by the Sog-D gene (active cells) in both the An-
terior to posterior (AP) and the Dorsal to Ventral (DV) axis
of the Drosophila in embryogenesis process. This method
provides insights about how cells and living organisms con-
trol gene expression in super resolution whole embryo spatial
transcriptomics imaging at sub cellular, single molecule reso-
lution. A Random Forest Regression model was used to pre-
dict the next stage active distribution based on the previous
one. To achieve this goal, we leveraged temporally resolved,
spatial point processes by including Ripley’s K-function in
conjunction with the cell’s state in each stage of embryogen-
esis, and found average predictive accuracy of active cell dis-
tribution. This tool is analogous to RNA Velocity for spatially
resolved developmental biology, from one data point we can
predict future spatially resolved gene expression using fea-
tures from the spatial point processes.

Index Terms— Random Forest, Regression, Dorpsophila,
Sog-D, Ripley’s K-function, transcriptomics, embryogenesis

1. INTRODUCTION

Recent technological advances have made it possible to cap-
ture high resolution images from embryogenesis process that
help researchers to study gene expression patterns.[1, 2].
One of the major challenges of the modern genomics era
is to better understand how gene expression is regulated to
support spatiotemporal outputs that change over the course
of development. The early Drosophila embryo has served
as a paradigm for how enhancers control patterning and has

⋆Equal contribution.
†Responsible authors. Email: jacob.luber@uta.edu,

theodora.koromila@uta.edu

demonstrated that the patterning process is complex and dy-
namic. It is known that multiple, transiently acting enhancers
act sequentially to support changing outputs of expression for
some genes[2, 3, 4], whereas other genes are controlled by
enhancers that act over a longer period and support chang-
ing spatial outputs over time. For example, expression of
the gene short gastrulation (sog) is driven by at least two
co-acting enhancers that support temporally dynamic expres-
sion. Live imaging experiments offer the capacity to analyze
gene expression dynamics with increased temporal resolution
and linear quantification. However, genetic and live imaging
techniques have outpaced analysis techniques to harvest the
bountiful information contained within real-time movies of
transcriptional dynamics with modern methods confined to
static parameter cell and transcript tracking methods [1, 5, 6].
To assess these mutant enhancer phenotypes systematically,
we developed a quantitative approach to measure the spa-
tiotemporal outputs of enhancer-driven MS2-yellow reporter
constructs as captured by in vivo imaging to provide informa-
tion about the timing, levels, and spatial domains of expres-
sion. Using transgenic fly lines, we conducted live imaging
of the GFP signal associated with the MS2 stem-loop re-
porter sequence. This MS2 cassette contains 24 repeats of a
DNA sequence that produces an RNA stem loop when tran-
scribed. The stem-loop structure is specifically bound by the
phage MS2 coat protein (MCP). MCP fused to GFP binds to
MS2-containing transcripts (i.e., sog Distal.MS2) producing
a strong green signal within the nuclei of Drosophila em-
bryos at sites of nascent transcript production. In this system,
the nuclear GFP signal is only observed as a single dot for
every nucleus corresponding to nascent transcription of the
one copy of the MS2-containingreporter transgene site inte-
grated into the genome. Furthermore, the nuclear periphery is
marked by a fusion of RFP to nuclear pore protein (Nup-RFP)
[7]. The imaging protocol was optimized to provide spatial
information across the entire dorsal-ventral (DV) axis of em-
bryos with the fastest temporal resolution that also retains
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embryo viability. In brief, embryos were imaged on Zeiss
LSM 900 continuously over the course of 2hr at an interval
of 30s per scan (twice as fast compared to previous studies).
Importantly, this imaging protocol is not phototoxic to em-
bryos. Because spatial outputs likely change in time across
the embryo for many gene expression patterns, we developed
an image processing approach to collect detailed information
in both time and space by capturing one lateral half of the
embryos. With this qualified imaging dataset, our goal was
to predict the distribution of active cell in each stage of the
embryo development. Several methods have been proposed
for the efficient prediction of temporal variables. Authors in
[8] proposed a novel concept called RNA velocity, which is
defined as the time derivative of the gene expression. This
concept allows for the estimation of the future state of indi-
vidual cells in standard scRNA-seq protocoles. In [9], authors
proposed a method to capture spatial proteomics data to map
cell states in order to predict cancer patient survival. They
utilized the Ripley’s K-function for capturing spatial features
which inspired us in our proposed pipeline. We developed a
feature extraction method and analysis pipeline that can be
used to predict the future distribution of cells in which the
Sog-D gene is expressed.

2. METHODS

We generated super resolution live imaging data expressing
sog gene (control) and sog-D gene (case) in early embryo of
Drosophila (9 case, 4 control). We conduct pre-processing,
feature extraction, training, and testing Fig.1. Both the train-
ing and testing phases incorporate identical pre-processing
and feature extraction steps. The videos shows real time
images from embryonic development, which were manually
given stage development labels: NC 13 early, NC 13 late, NC
14 A, NC 14 B, NC 14 C, NC 14 D. In the pre-processing
step, we used a generalist, deep learning-based segmentation
method called Cellpose, which can precisely segment cells
in each frame of the embryo development. Active cells were
identified based on prevalance of green pixels indicative of
gene expression within the cell, and the active mask under-
went feature extraction. During this stage, the masked images
underwent a gridding procedure with a predetermined size.
Subsequently, the entire imaging dataset was transformed
into a tabular format, taking into account the spatial infor-
mation of each cell. We utilized four different metrics to
capture both local and global features in a frame including
m1, m2 for both AP and DV axes, Ripley’s k-function, and
n (total number of cells in each grid). Here, m1 and m2 de-
note the first and second moments, respectively, capturing the
distribution of active cells at each stage. Furthermore, Rip-
ley’s k-function was employed to analyze spatial correlation
and quantify deviations from a random spatial distribution.
Equation 1 illustrates the formula for calculating Ripley’s
k-function. Where, A is the area under each window with

constant radius, n is the number of data points, dij is the
distance between two points, and eij is an edge correction
weight. Then, the tabular data went through two steps of
averaging on each stage and time correcting. Since our goal
is to predict the distribution of active cells in each stage and
we have different number of frames for each stage, we av-
eraged the whole feature values based on each stage. Also,
to account for temporal alignment, we implemented a one-
stage shift in features, where we utilized the features from the
previous stage in prediction of the current stage. Following
the completion of the feature extraction process, the dataset
undergoes preparation for training a random forest regression
model, a supervised learning algorithm. The outcome of
this pipeline is the count of active cells within each grid at a
given stage, determined by the features from the preceding
stage. Subsequent to training the model, its performance is
evaluated using test data. During testing, all pre-processing
and feature extraction steps are replicated, and the pre-trained
random forest regression model is employed to forecast the
count of active cells for each grid across various stages.

K̂r =
A

n(n− 1)

n∑
i=1

n∑
i=1,j ̸=i

1(dij ≤ r)eij (1)

3. EXPERIMENT AND RESULTS

3.1. Main study

As outlined in the methodology section, during the feature
extraction phase, square grids were applied to images, and
the number of active cells within each grid was predicted.
The key challenge was selecting the optimal grid size to en-
hance performance on test data. Consequently, we replicated
the entire process of pre-processing and feature extraction for
four distinct grid sizes: 250, 125, 62.5, and 31.25 (where the
grid size of ’n’ indicates the division of the entire image into
n*n squares). We used three different metrics to calculate the
model performance on test data for different grid sizes which
are rmse (root mean squared error), mae (mean absolute er-
ror), and Kullback-Leibler (KL) Divergence. Fig.2 shows the
experiment for different grid sizes. Our analysis revealed the
same increasing trend in both rmse and mae as the grid size in-
creases from 31.25 to 250 which indicated that a smaller grid
size corresponds to a lower error. KL Divergence, which we
also utilized as a metric, measures how one probability distri-
bution diverges from a second one. Thus, the smaller value
for it shows that two distributions are closer to each other. We
used this criterion to see how well the pipeline can capture
the trends in the active cells distribution. The KL Divergence
for these four different grid sizes showed the different trend.
Increasing the grid size from 31.25 to 250 yielded a decrease
in KL Divergence. We had two options, the first one was to
select 31.25 based on the lower rmse and mae. However, the
problem was the average size of the cell was approximately
36 so if we set the grid size to 31.25 we have just one cell
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Fig. 2. The experiment for grid search to find the optimal grid
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in each grid which changes the problem to a classification of
active or inactive for each grid which was not our purpose.
Another option was to select the optimal grid size based on
KL Divergence, which finally, We selected the grid size of
62.5 over 31.25. The decision of selecting 63.5 over 125.0 al-
though the 125 had lower KL Divergence, is attributed to the
computational constraints of calculating Ripley’s k-function
for larger grid sizes in our setup.

In subsequent experiment, we conducted an ablation
study to discern the relative importance of features, identify-
ing those deemed crucial for inclusion in the final release and
those that may be omitted. Table 1 indicates the performance
of different combinations of features. It can be concluded that
features of the first row including Ripley’s k-function and n
are the most important features that we used them for training
and testing the pipeline. All reported mae values underwent
the K-fold cross validation method to mitigate the influence
of random results.

To visualize the performance of the pipeline with selected
features and parameters we tested the pre-trained model on
test dataset. Fig 3 shows the distribution of active cell for the

Feature list mae
n, Ripley’s k-function 4.53

m2 DV, n, Ripley’s k-function 4.73
m1 DV, n, Ripley’s k-function 4.75

m1 DV, m2 AP, n, Ripley’s k-function 4.77
m2 AP, n, Ripley’s k-function 4.77

Table 1. The average mae value on K-fold cross validation
over test dataset for different combinations of features for ab-
lation study.

best, median and the worst prediction based on the average
mae values.

3.2. Case and control study

As, we had 4 videos for case (transgenic) and 9 for control,
we randomly selected 3 videos from each group for training
and 1 for testing. Then, we averaged the AP mae, DV mae,
and mean mae for whole case and control experiments and
calculated the difference between case and control for each
of these metrics and the results were 1.86, -0.689, and 0.58
respectively. We also utilized cross-validation to avoid over-
fitting. These results show there is a difference between the
performance of our pipeline on case and control in AP mean
and mean mae. In other words, our method works better in
predicting along AP axis and the mean of AP and DV on
control data in comparison with the case one. However, the
negative difference between case and control for DV mae
indicates that the pipeline works better in predicting the dis-
tribution on DV axis of case compared to control. In order
to To substantiate this assertion, we conducted two additional
experiments: First, we leveraged Mixed-Effects modelling,
which can account for both fixed effects (like the group:
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Fig. 3. The distribution of active cell for the best (A), median (B), and worst (C) accuracy based on mae values. For each A, B,
and C from left to right stages are NC 14 A-D. For each stage the top and right plot shows the distribution of active cells along
AP and DV axis respectively. The middle plot shows the absolute error in each grid.

case or control) and random effects (like the variation within
videos and stages). The mixed-effects model can help in un-
derstanding the influence of these fixed and random effects on
our dependent variables like DV mae, AP mae, mean mae.
The goal is to understand whether there is a significant dif-
ference in any metrics between the case and control groups,
accounting for the variability introduced by different stages.
The control group has, on average, a lower AP mae compared
to the case by about 1.828 units with the P value of 0.003.
It shows based on this test, there is a statistically signifi-
cant difference in AP mae between case and control groups.
However, the result for DV mae shows the control group has
higher value by 0.714 units and 0.231 P value. Also, the
result for mean mae indicates control has higher value by -
0.557 units and 0.347 P value. Two latter results for DV mae
and mean mae cannot indicate any significant difference
between case and control because of the high P values. In ad-
dition, we implemented another empirical hypothesis testing
called Bootstrap method. Bootstrap methods can be used to
estimate the distribution of our metrics under the null hypoth-
esis. To implement the bootstrap, we used the same metrics
as previous method. we drew samples from the original
dataset with replacement, to create a new dataset. Then, for
each bootstrap sample, we computed the statistics of interest
which are DV mae, AP mae, and mean mae. By analyzing
the this bootstrap distribution we can find the confidence
intervals for each metrics. Fig 4 shows the Bootstrap distribu-
tion of mean difference in AP mae, DV mae, and mean mae.
It indicates that with 95% confidence interval the mean dif-
ference of AP mae, (AP mae(case) - AP mae(control)) was
between [0.69061964 3.11528348]. It can be concluded
that with 95% confidence interval the AP mae for case is

Fig. 4. The Bootstrap Distribution of Mean Difference in
AP mae, DV mae, and mean mae between case and control
in 1000 iterations.
at least 0.69061964 units higher than case, which means
the performance of the pipeline is better for control outper-
forms case one. These ranges for DV mae and mean mae are
respectively, [-1.65878863 0.27041668] and [-0.33784703
1.5450897 ]. It can be seen that for DV mae and mean mae
the ranges include zero means the performance of control
can be better, equal, or worse than case. The results with
Bootstrap method confirms the results derived from mixed
effects method, which makes sense given that large amounts
of training data are needed to model transgenic effects.

4. CONCLUSION

Our work presents several key contributions. Firstly, we have
developed a novel and optimized imaging technology that de-
livers spatial information throughout the entire DV axis of
an embryo. Secondly, we introduce an automated pipeline
that effectively discriminates cell types with high accuracy.
Lastly, our approach enables the accurate prediction of the
stage-level distribution of active cells, based on data from the
preceding stage.
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3
Paper 2: Clinically Relevant

Histopathology Slide Compression

3.1 Introductory Comments

In this chapter, we delve into the paper titled ”Clinically Relevant Latent Space Embedding

of Cancer Histopathology Slides Through Variational Autoencoder Based Image Compres-
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sion,” which addresses the challenges of managing and analyzing large-scale histopatholog-

ical data. Central to this study are the concepts of Variational Autoencoders (VAEs) and

UniformManifold Approximation and Projection (UMAP), both of which represent sig-

nificant advancements in the field of machine learning and data representation.

3.1.1 Understanding Variational Autoencoders (VAEs)

A Variational Autoencoder (VAE) is a type of deep learning model that’s particularly effec-

tive for unsupervised learning of complex data distributions. VAEs are designed to com-

press data into a latent, or hidden, space and then reconstruct the original data from this

compressed representation. The key aspect of VAEs lies in their ability to model the latent

space in a way that encourages efficient, continuous, and structured data representation.

This makes VAEs highly suitable for tasks like image compression, where the goal is to re-

duce the dimensionality of the data while retaining its critical features.

In the context of histopathology slides, the VAEmodel facilitates the compression of

high-resolution images into a manageable size, making it easier to store, process, and analyze

these large datasets. The model’s ability to reconstruct images from the latent space ensures

that crucial diagnostic information is not lost during compression.

3.1.2 Role of UniformManifold Approximation and Projection (UMAP)

UMAP is a dimensionality reduction technique that is particularly useful for visualizing

high-dimensional data in a lower-dimensional space. In this study, UMAP is employed to

visualize and understand the latent space created by the VAE. This visualization provides

insights into how different types of histopathological data are represented and clustered in
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the latent space.

UMAP’s strength lies in its ability to maintain the local and global structure of high-

dimensional data, making it an excellent tool for exploring patterns and relationships in

complex datasets. In the context of histopathology slide compression, UMAP helps demon-

strate that even after significant data reduction, the latent representations preserve essential

clinical and biological information.

The following pages will present the full manuscript of ”Clinically Relevant Latent

Space Embedding of Cancer Histopathology Slides Through Variational Autoencoder

Based Image Compression,” including the title page, abstract, main body, references, and

any supplementary material. This presentation will adhere to the publisher’s formatting re-

quirements and be seamlessly integrated into the overall structure of the thesis/dissertation.
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ABSTRACT
In this paper, we introduce a Variational Autoencoder (VAE)
based training approach that can compress and decompress
cancer pathology slides at a compression ratio of 1:512, which
is better than the previously reported state of the art (SOTA)
in the literature, while still maintaining accuracy in clinical
validation tasks. The compression approach was tested on
more common computer vision datasets such as CIFAR10,
and we explore which image characteristics enable this com-
pression ratio on cancer imaging data but not generic images.
We generate and visualize embeddings from the compressed
latent space and demonstrate how they are useful for clinical
interpretation of data, and how in the future such latent em-
beddings can be used to accelerate search of clinical imaging
data.

Index Terms— Histopathology cancer slides, autoen-
coder, image compression, latent space, clinical image search

1. INTRODUCTION

Histopathological images derived from cross sectional tissue
microscopy are used in the clinical setting for diagnosis of
various diseases and conditions [1]. Hemotoxylin and Eosin
(H&E) staining, which introduce a contrast dye for the dis-
cernment of nuclear and cytoplasmic structures, has long been
used to determine carcinomal regions of excised tissue from
cancer patients [2]. For this reason, databases of tumor pa-
tient slides, such as the NIH Genomic Data Commons (GDC),
have been compiled for researchers to access tens of thou-
sands of cancer patients’ histopathological data. The GDC
itself contains more than 30,000 Whole Slide Images (WSIs)
which, with each slide representing over a billion pixels each,
is stored on over 20 TB of data. Most purposes, from retrieval
to transmission, local storage, and data analysis would benefit

⋆These authors contributed equally to this work.
†Responsible author. Email: jacob.luber@uta.edu
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Fig. 1. (a) Overview of the VAE training pipeline. (b)
Overview of the pipeline at inference. For generating UMAP
plots, a similar patch sampling as training is used.

from efficient, indexable storage structures of this WSI data
[3]. This is especially applicable to image search algorithms
for large whole slide image databases [4].

Several solutions have been proposed for the efficient stor-
age and indexing of cancer tissue image data. Classic com-
pression formulas such as JPEG2000 can successfully reduce
image size at a compression ratio of 32:1 before becoming un-
usable for histopathological classification of malignancy [5].
Compression and scaling has also been found to adversely ef-
fect tissue segmentation up to ratios of 50:1 [6]. In contrast to
discrete cosine transformation models, neural networks have
been proven to retain high efficiency and fidelity in the lossy
compression of image data [7]. While neural networks seek
to store image data in latent space representations, not ev-
ery network does this at equivalent efficiency or accuracy [8].
Several studies have demonstrated that Variational Auto En-
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Fig. 2. (a) Example of how normalization affects the per-
formance of our pipeline. Both models are trained using the
exact same hyper-parameters (latent dim = 64). (b) The
effect of batch size and latent dimension of validation loss.
For better visualization, early stopping is not used for these
experiments.

coders (VAEs) retain higher image quality and lower noise
ratios at extreme compression ratios [9, 10, 11]. Tellez et
al., [12] showed in a benchmark study that VAE compression
of medical tissue images to a latent space of 128 (>5000:1
compression ratio) retained the most details of the original
whole slide image compared to 4 other encoders. In the cur-
rent study, we develop a VAE to compress and index images
in latent space for fast complex search of whole slide H&E
cancer images.

2. METHODS

2.1. Dataset

The dataset we used for this study is publicly available at
the NCI GDC data portal (Sec. 5). These are real sam-
ples from cancer patients in the US, and all samples contain
cancerous cells. For this study, We downloaded 20% of the
available .svs samples for primary sites: ”Brain”, ”Breast”,
”Bronchus and Lung”, and ”Colon” (647, 551, 580, and 267
images, respectively).

2.2. Latent Variables and VAE

For an observation x(i), its latent vector of variables is as-
sumed to be an unobserved random variable z(i) sampled
from a lower dimension space (latent space) that is involved
in producing xi in a random process [13]. For a particular
task, it is assumed that using latent variables removes non-
informative dimensionality and is suitable for downstream
machine learning tasks. Since the latent space is unobserved,
latent variables should be somehow inferred. Autoencoders
and Variational Auto Encoders are two very effective meth-
ods for inferring these latent variables and encoding very
high-dimensional data into highly compressed latent space
with minimal loss of information. VAEs, as opposed to reg-
ular Auto Encoders, try to find a distribution for each latent

variable, rather than single point estimate, resulting in a reg-
ularized latent space with generative capability.

VAEs are comprised of two parts: an encoder and a de-
coder (Fig.1-a). If the latent variable z(i) and data point x(i)

are sampled from parametric probability distributions pθ(z)
and pθ(x|z) for some parameter θ, then the encoder will
try to estimate the approximate posterior qϕ(z|x) with vari-
ational parameter ϕ. The decoder tries to find the likelihood
pθ(x|z). The model can be trained by minimizing the loss in-
troduced in Eq.1 over all observations ([13]). The first term of
the loss is called the Kullback–Leibler (KL) divergence term,
which is introduced to ensure that the variational approxima-
tion is as informative as the generative true posterior. The
second term is reconstruction loss, which makes sure the gen-
erated output from the learned latent distribution is close to
the original input. In our experiments, we used a weighted
loss with a KL term coefficient of 0.1.

L
(
θ,ϕ;x(i)

)
=−DKL

(
qϕ

(
z|x(i)||pθ (z)

))
+ Eqϕ(z|x(i))

[
log pθ

(
x(i)|z

)] (1)

2.3. Training and Inference Pipelines

As illustrated in Fig.1, we use two pipelines for training and
inference. For the training phase (Fig.1-a), a selected num-
ber of patches from whole slide images (WSIs) in the training
and validation set are randomly sampled. A white space fil-
ter is utilized to ensure that these patches are not blank, and
that they do not overlap. The mean and standard deviation of
all patches sampled from the training set is calculated and all
patches are normalized using the standard score method with
these values (not shown in Fig.1). The inverse transforma-
tions are also stored to be applied to the outputs of the model.

Our model assumes a Gaussian prior and a Gaussian ap-
proximate posterior. The encoder learns the parameters of
the Gaussian prior and the decoder uses a re-parameterized
sample from this prior and tries to reconstruct the input. Both
encoder and decoder use ResNet18 ([14]) architectures. A
ResNet50 archiecture (not-shown) provides similar perfor-
mance; ResNet18 was selected to keep the number of model
parameters as small as possible for future downstream de-
ployment in the clinic.

During inference (Fig.1-b), to perform a a compres-
sion/decompression task, the test image is fully tiled. Each
patch is then fed into the trained networks and stitched to-
gether once all patches are reconstructed. However, for the
UMAP experiment, the same patch sampling algorithm used
for training is used to generate random patches to be fed to the
model. For the reconstruction task, we want a whole image,
but for the UMAP plot, sample latent variables are enough.

41



Original Reconstructed

GDC
Breast

CIFAR10
Colored

CIFAR10
Grayscale

CIFAR10
Low Entropy

CIFAR10
High Entropy

Entropy

6.979

7.329

7.039

7.623

9.685

(a) (b)

Fig. 3. Effect of dataset entropy and color content on perofor-
mance. All hyper-parameters are the same for all 5 models.

2.4. Dimension Reduction and UMAP

Uniform Manifold Approximation and Projection ([15]) is a
manifold based dimensionality reduction algorithm used for
visualizing and clustering high dimensional datasets. This al-
gorithm tries to reduce the points in a manner that the distance
between resulting points would be still meaningful. UMAP is
utilized to visualize and demonstrate that not only do the la-
tent vectors learned by our pipeline provide visually accurate
decompressed images, but also they contain relevant clinical
information from different cancer types (Fig.4). UMAP can
use many metrics for distance calculation; ”cosine similarity”
was selected for its ability to capture correlation features.

3. SETTINGS AND EXPERIMENTS

In this section, we summarize different scenarios and their
experimental settings used for training and validating the
compression and latent space approximation of histopathol-
ogy images, and establish that the compression ratio our
pipeline achieves is state of the art.

3.1. Training Settings

For hyperparamter tuning, the effect of normalization of data
on the quality of outcome was tested (based on visual inspec-
tion), and it was concluded that normalization is necessary for
acceptable results (Fig. 2-a). Since all datasets are normalized
using the same procedure, the validation can be perceived as
a metric to compare the performance of different models on
different datasets. All experiments are conducted using and
early stopping on validation loss with patience = 5 unless
mentioned otherwise.

As illustrated in Fig. 2-b, higher batch sizes result into
faster objective minimization, but lower batch sizes eventu-
ally results in better validation loss due to a higher regulariza-
tion effect ([16]). To take the middle ground, all experiments
were conducted using a batch size of 128 unless mentioned
otherwise. Also, as expected, higher latent dimensions re-
sulted into a better performance.

The model is developed with PyTorch Lightning API. All
experiments were conducted using the DDP parallelization
strategy on an NVIDIA DGX A100 with 8, 80 GB A100
GPUs, and a learning rate of 10−4.

3.2. Compression Experiments

Experimental results demonstrate a better performance of our
compression model on histopathology slides than is achieved
on images of every day objects datasets such as in CIFAR10
([17]). We first hypothesised that this diffeence is rooted in
the difference of entropy between the average image in these
two datasets. Entropy is a way of calculating the context in-
formation of a datapoint. We reasoned that low entropy im-
ages are more compressible han high entropy ones. There-
fore, we divided the CIFAR10 dataset by entropy with a high
entropy fold (average entropy = 7.623) and a low entropy fold
(average entropy = 7.039), each containing 30,000 images,
and ran two experiments to see which one is more compress-
ible when fed through our model. For both experiments, batch
size was set to 256, latent dimension was set to 16, and the in-
put images were of dimension 32 × 32 × 3. The results are
shown in Fig. 3. The final validation loss for low entropy
and high entropy datasets are 0.601 and 0.570, respectively
contradicted our original hypothesis. We ran the same exper-
iment on the same number of patches sampled for the breast
cancer slides, and although having lower entropy, it showed
a better performance (numbers are reported in Fig3). Hence,
we concluded that entropy is not a reliable factor to explain
the SOTA performance of our VAE compression pipeline on
cancer imaging data.

We then hypothesized that color distribution may be a
contributing factor. H&E slides are limited to the colors
present in tissue, while CIFAR10 images have a more di-
verse color distribution. For this hypothesis, we randomly
chose 30,000 images from CIFAR10 dataset. Using the same
settings, we ran one experiment on the sampled images and
another on the same images but with grayscale transforma-
tion to eliminate olor diversity. The final validation loss for
colored dataset is 0.599 and for the grayscale dataset is 0.525
(Fig. 2-a). The lower validation loss indicates that less color
content can be attributed to a better comprehensibility.

3.3. Validation Experiments

In order to examine whether the latent space preserves nec-
essary information for downstream clinical tasks, we tested
the accuracy of original slide images against regenerated slide
images on CLAM ([18]), the state-of-the-art model in lung
cancer classification from H&E slides. We first used CLAM
on the original test set for the two classification tasks, i.e. ”tu-
mor vs. normal” and ”sub-typing” between Lung Adenocar-
cinomas (LUAD) and Squamous Cell Carcinomas (LUSC).
Then, we created a reconstructed (post compression) version
of the test set using our inference pipeline (Fig. 1-b). This
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Fig. 4. (a) The reconstruction results for breast cancer tissues
at 5 different compression ratios. (b) UMAP plot generated
on 4 different tissue types with a compression ratio of 1:64.

reconstructed test set was then run through the same classi-
fication problems as the original images. We then calculated
the percentage of the images that had the same label for both
original and reconstructed images over all test images as a
measure of performance and observed that our compression
did not decrease performance on clinical application tasks.

To test the clinical information preservation of the latent
space, we chose a model trained on lung tissues with the high-
est compression ratio (1:512) in our pipeline (Sec. 3.3). This
compression ratio is twice as high as the best models intro-
duced in the literature ([12, 19]). For the ”tumor vs. normal”
task, the reconstructed images did not show loss of perfor-
mance, however, this level of compression made it difficult
for lung cancer sub-typing model to perform as before.

We used 900 images from the GDC TCGA (Sec. 5) in-
cluding 450 samples for each LUAD and LUSC sub-types for
training and 100 images (50 LUAD, 50 LUSC) for testing.
The CLAM model has 10-fold validated pre-trained weights;
thus, we calculated the performance in a 10-fold setting, too.

3.4. UMAP Experiments

To show that the latent space preserves important and clini-
cally relevant information, 4 models were trained with a la-
tent space of size 64 on different tissue types (brain, breast,
bronchus and lung, and colon) on 20,000 patches of size 64×
64 pixels, and tested them on 10,000 patches from their re-
spective tissue type. We then ran the latent vectors of the test
patches through the UMAP algorithm using the ”cosine” dis-
tance as the similarity metric. The results are shown in Fig.4.

4. RESULTS AND CONCLUSION

Fig. 4-a shows the impact of various compression ratios on
VAE output images. At lower compression ratios, recon-
structed images more closely resemble original input images.
Importantly, we see a marked improvement in histologic
features that are critical for interpretability such as refined

cell-to-cell borders and sharper demarcation of cytoplasmic
vs. nuclei compartments. Moreover, in Fig. 4-b, we use
UMAP to visualize the latent space vectors learned by our
pipeline. The UMAP captures intra-tumor and across-tumor
relationships, separating all four tissue types into distinct
clusters. Interestingly, clusters of brain and colon cancers
share overlapping boundaries whereas the breast cancer clus-
ter is uniquely separated from the brain cancer cluster. Also,
the UMAP identifies a distinct sub-cluster of brain tumor
samples that does not overlap with any other cancer types.

We envision our pipeline being useful to clinicians and
researchers across multiple domains. One potential applica-
tion is more accurate sub-typing and diagnoses of poorly un-
derstood cancers. A notable example of this is brain cancer,
which contains over 150 different histologic subtypes, many
of which are so rare that a pathologist may only encounter a
handful of cases in his or her career ([20]). In our UMAP vi-
sualization of the latent space, there is an unexpected but dis-
tinct sub-cluster of brain tumor samples that does not overlap
with other cancer types (Fig. 4-b). Further characterization of
this sub-cluster and its unique attributes could provide novel
insights into intra-tumor relationships in brain cancer.

Our pipeline also facilitates experiments across differ-
ent tumor types. The latent space separates breast, colon,
lung/bronchus, and brain tissue into unique clusters, demon-
strating the preservation of important histological features.
Interestingly, we see a closer clustering between brain and
colon cancer versus brain and breast or lung (Fig. 4-b).
More investigation into these relationships is warranted –
one possible explanation of this phenomenon could be due to
both brain and colon tissue containing ganglion nerve cells
whereas breast and lung tissue do not. In the future, our em-
bedding approach could be deployed to a hospital system and
linked to the electronic health record (EHR) to help clinicians
diagnose patients with rare disorders: the images closest to
that of the input patient in UMAP embedding have the most
similarities, and their records could be retrieved to better
contextualize a differential diagnosis for the query patient.

However, our pipeline carries several limitations. To
start, we will need to further explore acceptable thresholds
of reconstruction loss introduced via our VAE-based archi-
tecture. Additionally, our model architecture lacks human
interpretable features, which may lead to higher levels of
end-user distrust as “peeking under the hood” to audit our
model for biases or errors may be more limited. Along these
lines, any insights or novel conclusions will still require man-
ual review and interpretation by human pathologists. In future
iterations of this work, we intend to improve upon these areas.

5. DATA AND CODE AVAILABILITY

All dataset used in this study are accessible from NCI GDC
portal at portal.gdc.cancer.gov/repository. The code is also
accessible at github.com/jacobluber/uta cancer search.
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4
Paper 3: Readiness of Histopathology Slide

Search for Clinic

4.1 Introductory Comments

This chapter presents the paper ”Histopathology Slide Indexing and Search: Are We There

Yet?” which delves into the critical aspect of developing efficient and accurate search en-
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gines for histopathology slides. The focus of this study is on enhancing the capabilities of

digital pathology by facilitating the retrieval of relevant cases, thereby significantly improv-

ing diagnostic processes and patient care.

4.1.1 Benefits of an EfficientHistopathology Search Engine

1. Enhanced Diagnostic Accuracy: Having a robust search engine in histopathology

can dramatically improve the accuracy of diagnoses. By retrieving the most simi-

lar cases to the patient at hand, pathologists can compare and contrast current cases

with previously diagnosed ones, leading to more informed and precise diagnoses.

This comparative analysis is especially beneficial in complex or rare cases where his-

torical reference can provide crucial insights.

2. Speed and Efficiency in Clinical Practice: An efficient search system significantly

reduces the time spent by pathologists in finding relevant cases or reference materi-

als. This efficiency is not only beneficial in terms of workflow optimization but also

crucial in time-sensitive situations where quick diagnosis can lead to faster treatment

decisions.

3. Educational and Research Benefits: Such a search engine also serves as a valuable

educational tool for medical students and trainees, allowing them to access a vast

repository of cases for study and comparison. For researchers, it facilitates the explo-

ration of pathological data, enabling them to identify patterns and correlations that

may not be immediately apparent.

4. Personalized Patient Care: With the ability to quickly retrieve similar cases, pathol-
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ogists and clinicians can offer more personalized care to patients. Understanding

how similar cases have progressed and responded to treatments can informmore

tailored and effective treatment plans.

5. Advancing Digital Pathology: Implementing a sophisticated search engine is a

significant step forward in the digitization of pathology. It not only enhances the

current capabilities of digital pathology systems but also opens up new possibilities

for integrating AI and machine learning tools to further refine search and analysis

processes.

The following pages will comprehensively detail the manuscript of ”Histopathology

Slide Indexing and Search: Are We There Yet?” including the title page, abstract, main

body, references, and any additional material. The chapter is structured to align with the

publisher’s requirements and is renumbered for consistency within the overall thesis/dissertation.
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Abstract

The search and retrieval of digital histopathology slides is an important task that has yet to be solved.
In this case study, we investigate the clinical readiness of four state-of-the-art histopathology slide search
engines, Yottixel, SISH, RetCCL, and HSHR on both unseen datasets and several patient cases. We
provide a qualitative and quantitative assessment of each model’s performance in providing retrieval
results that are reliable and useful to pathologists. We found high levels of performance across all models
using conventional metrics for tissue and subtyping search. Upon testing the models on real patient
cases, we found the results were still less than ideal for clinical use. Based on our findings, we propose a
minimal set of requirements to further advance the development of accurate and reliable histopathology
image search engines for successful clinical adoption.

1 Introduction

As histopathology slides become increasingly digitized, the process of manually searching and retrieving slides
has become increasingly more time-consuming for pathologists (Hegde et al.; Z. Li et al.). Recently, there has
been growing interest in the development of automated search and retrieval systems for digital histopathology
slides (Kalra et al.; C. Chen et al.; Wang et al.; Hegde et al.; Kalra et al.; S. Li et al.), which can help
pathologists identify similar cases in both developing and narrowing a differential diagnosis. These systems
leverage advances in artificial intelligence and machine learning to analyze large volumes of slides efficiently
and accurately.

The exploration of medical image databases predominantly relies on content-based image retrieval (CBIR)
(Kalra et al.; Z. Li et al.; Lew et al.). CBIR systems initially transform images into a feature-based database
accompanied by corresponding indices. Subsequently, by utilizing a similarity metric, the retrieval process
simplifies into a k-nearest neighbors problem. Extracting features from extensive whole slide images (WSI)
is typically achieved through either the sub-setting method, which focuses on a small section of a large
pathology image to significantly reduce processing time, or the tiling method, which segments images into
manageable patches (i.e., tiles) for intra-patch processing (Kalra et al.; Gutman et al.).

Among the recent end-to-end systems proposed for histopathology image search, Yottixel (Kalra et al.),
SISH (C. Chen et al.), RetCCL (Wang et al.), and HSHR (S. Li et al.) have emerged as influential contenders,
showcasing promising outcomes. Yottixel pioneered the processing of large-scale WSIs by introducing the
concept of mosaics. Instead of extracting features from the entire WSI, Yottixel’s approach involves extracting
features from mosaic tiles using a DenseNet-based feature extractor. Additionally, Yottixel incorporates the
notion of barcoding (Tizhoosh; Tizhoosh et al.) to facilitate expedited retrieval by binarizing the extracted

∗These authors contributed equally to this work.
†Corresponding author. Email: jacob.luber@uta.edu
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Figure 1: A summary of feature extraction and database creation processes proposed by (a) Yottixel (Kalra
et al.), (b) SISH (C. Chen et al.), (c) RetCCL (Wang et al.), and (d) HSHR (S. Li et al.). The feature
extractor of Yottixel is switched with KimiaNet (Riasatian et al.).

features. Similarly, SISH adopts a framework very similar to Yottixel but incorporates an additional VQ-
VAE-based (Oord et al.) feature extractor. SISH also introduces advanced VEB tree-based (van Emde Boas)
indexing and ranking algorithms to enhance the quality of the retrieved samples. In contrast, RetCCL
employs the mosaic concept as well, but uniquely converts WSIs to mosaics after extracting features from
tiled WSIs. Moreover, RetCCL introduces an effective contrastive-based feature extractor to improve feature
quality. Finally, HSHR expands the idea of using Self-Supervised Learning (SSL) to both extract the mosaics
and creating hash codes from them. It uses SimCLR (T. Chen et al.) to train the feature extractor and uses
MOCO (He et al.) to train the Cluster-Attention Hash Encoder (CaEncoder). The results are then processed
to create a hypergraph which leads to similarity-based WSI retrieval.

The introduction of successive systems claiming to have achieved state-of-the-art performance in the
search and retrieval of histopathology slides, often supported by statistical metrics demonstrating agreement
with trained pathologists’ judgments, raises the fundamental question of whether this problem has been
satisfactorily addressed. Specifically, it prompts an inquiry into the readiness of these systems for deployment
in clinical settings, where they can provide genuinely valuable information to pathologists, especially in
challenging cases where even the most experienced group of pathologists struggle to reach a consensus.

In this case study, we evaluate these models on patient cases from our health system and several external
datasets. Our objective is to provide a quantitative analysis of these models’ performances on unseen slides
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while offering a qualitative assessment of the usefulness of these models in the clinical setting and potential
areas of improvement. To ensure fairness, we constructed each model’s database using a fixed number of slides
from The Cancer Genome Atlas (TCGA) (Weinstein et al.), while employing the same feature extractors as
published by the original authors.

In subsequent sections, we provide an overview of our methods and approach towards implementation
(Section 2). We then report our quantitative and and qualitative analysis of model performance (Section 3).
Finally, we discuss the current state of histopathology slide search engines and propose a set of minimal
requirements for real-world deployment based on our findings (Section 4).

2 Methods

2.1 Search Engines

Search engines commonly comprise two fundamental components: indexing and database generation, as well
as ranking and retrieval. Given the large-scale nature of the images involved in this study, feature extraction
becomes imperative for effective indexing. In terms of ranking, a suitable similarity measure is crucial,
followed by post-processing steps to ensure result quality. In the supplementary methods section, we provide
an overview of the feature extraction techniques, database indexing approaches, employed similarity measures,
and result ranking methodologies utilized by the four primary methods under investigation (Fig. 1). Please
be advised that all the hyper-parameters employed here are the parameters recommended by the authors
of the models. We additionally share our code that we used to re implement methods that were not made
available by the authors.

To summarize, The Yottixel method creates a mosaic of patches from whole slide images (WSIs), applies
a feature extractor, KimiaNet (Riasatian et al.), and generates binary codes, or barcodes, from the extracted
features. These barcodes represent each WSI, form a database, and enable the retrieval of related slides or
patches based on the median of the minimum Hamming distances (Hamming).

The SISH method also generates a mosaic and uses DenseNet for feature extraction similar to Yottixel,
but it further employs a pretrained VQ-VAE for index creation. Querying in SISH involves converting a slide
into a mosaic, generating indices and features, and utilizing the ”guided VEB search” algorithm to retrieve
top slides based on Hamming distance.

RetCCL takes inspiration from both Yottixel and SISH but applies a unique approach by obtaining
contrastive-based feature vectors for each patch within the segmented foreground tiles. The method employs
a clustering-guided contrastive learning method with two InfoNCE losses to capture irregular regions in
patches, which is particularly important given the prevalence of normal cells in WSIs (Oord et al.).

Finally, HSHR first trains a encoder in a self-supervised manner on a small subset of patches extracted
from database slides. By clustering the features from this encoder, it creates mosaics for each slide, and
then passes the the features of mosaics to the CaEncoder. By following teh guidelines of MOCO (He et
al.), they train the desired CaEncoders and this way, they are able to create hashings and weights for each
slides. Hashing and weights are then incorporated into building a hypergraph for the database. Every query
slide is then considered a new node and hyperedge in this hypergraph database and similarity scores can be
calculated for it. Per the authors’ emphasize on global perception of WSIs, HSHR is not designed to be used
with patch retrieval tasks.

A more detailed explanation of these models also can be found in Supplementary Materials (Supplemen-
tary Section 4). Specifically, Supplementary Algorithms 1 to 4 would summarize the process a query slide
would undergo in all the discussed methods. Moreover, time complexity of various stages of ranking and
retrieval of these methods are also juxtaposed in Supplementary Table 4.

2.2 Database Slides

To ensure a fair comparison among all models, it was necessary to have consistent slides in the databases of
each model. We constructed the database using slides available in TCGA (Weinstein et al.). Given our focus
on lung, brain, and liver as primary sites for testing (see Section 2.4), it was essential to include slides from
these sites in the databases. Additionally, to introduce a challenging aspect, slides from breast and colon
were added to ensure that site retrieval experiments were not trivial. For each site, we randomly selected
between 50 to 75 slides from subtypes containing at least 75 slides. The varying number of slides aimed
to introduce class imbalance, mirroring real-world scenarios where some subtypes have more samples than
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others. Importantly, none of the slides in the database shared the same patient ID. The resulting database
comprised 508 slides from 5 different sites and 8 different subtypes (Supplementary Table 1).

It is worth noting that in each experiment, we utilized the pre-trained feature extractors provided by the
respective authors (except for the backbone of HSHR, see Supplementary Section 4). These feature extractors
were trained on different datasets of varying sizes. The relatively small size of our database does not affect
the performance of these models, as the only aspect influenced by data size is the feature extractor. As long
as we have samples of the same class as the query within the database, a correctly functioning model should
be capable of retrieving them.

Due to preprocessing criteria, we were not able to include 6 slides for Yottixel, 1 slide for SISH,. 4 slides
for HSHR in the database. These slides are listed in Supplementary Table 3.

2.3 Test Datasets

In order to conduct fair quantitative experiments and avoid data leakage, we needed to acquire test slides
that were not seen by the encoders of these models. Table 1 summarizes the all the datasets used in validation
experiments. Except from the in house UCLA dataset, all other datasets are downloaded from the publicly
available Cancer Imaging Archive database (Clark et al.) (Supplementary Table 2). For all the datasets, we
made sure not to have samples from the same patient using the patient identifiers provided.

All UCLA slides were sourced from real clinical cases at our institution to best approximate real-world
scenarios. Team members who were responsible for algorithmic implementation were blinded from the ground
truth to reduce the likelihood of bias.

Table 1: Summary of test slides used for experiments. Abbreviations are based on (Kalra et al.).

Experiment Slides Dataset Site Diagnosis

UCLA slide1 In House lung LUAD
slide2 In House brain LGG
slide3 In House liver LIHC

Reader Study MSB-09151-01-11 CMB-CRC colon COAD
MSB-09977-01-22 CMB-LCA lung LUSC
Her2Pos Case 66 Yale Her2+ Cohort breast BRCA

Microscope Study 34 slides CPTAC-GBM (Leica) brain GBM
34 slides UPENN-GBM (Hamamatsu) brain GBM

HER2+ prediction 93 slides Yale Her2+ Cohort breast BRCA
97 slides Yale Her2- Cohort breast BRCA

Ablation 85 slides Yale Trastuzumab Cohort breast BRCA

2.4 Experiments

In general, we have three types of experiments: site (tissue) retrieval, subtype retrieval, and patch retrieval.
We define “site” as the tissue of cancer origin and “subtype” as the final diagnosis, which is specific to the
tissue type. For patch retrieval tasks, the models should return the closest patches to a query patch as
opposed to WSIs to WSIs. For subtype and patch retrieval experimetns, we limited the search database to
the slides with the same tissue type as the query.

Consistent with prior work on WSI search algorithms, we chose majority top-k accuracy (mMV@K) and
mean average precision (mAP@K) as our quantitative metric of performance, which returns the predicted
label by majority vote amongst the top K slides. For tissue search, K has commonly been 10 for mMV and 5
for mAP. As with prior studies, we choose mMV@1,3,5 and mAP@3,5 for subtype search (See Supplementary
Algorithms 5 and 6).

We have designed 5 experiments to validate the methods for different purposes. The UCLA experiment
aims to bring qualitative evaluation to the 3 in house slides by evaluating them for all three tasks. Reader
study is designed to bring pathologists’ point of view to the quality retrieved patches by the models. The
microscope study is intended to measure the robustness of the models’ performances with respect to different
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microscope brands. The Her2+ prediction tries to answer the question whether there is evidence that the
models would perform differently given different sub-subtype. And finally, since the authors’ of Yottixel
mentioned their model would perform better using KimiaNet instead of DenseNet pretrained on ImageNet,
we designed the ablation study to measure this change in performance.

3 Results

Table 2: Evaluation results of different methods on UCLA slides for primary site retrieval task.

Method UCLA
Slides

MV@1 MV@3 MV@5 MV@10 AP@3 AP@5

YOTTIXEL
+ KimiaNet

Slide1 0 0 0 0 0 0
Slide2 1 1 1 1 1 1
Slide3 0 0 0 0 0 0

SISH +
DenseNet

Slide1 0 - - - 0 0
Slide2 1 1 1 1 1 0.888
Slide3 0 0 - - 0 0

RetCCL
Slide1 1 0 1 1 1 0.750
Slide2 0 1 1 1 0.583 0.679
Slide3 1 1 1 1 1 1

HSHR
Slide1 1 1 1 1 1 1
Slide2 1 1 1 1 1 1
Slide3 0 0 0 0 0.500 0.500

Detailed results are included in the supplement, and a concise summary is provided here.

3.1 Tissue and subtype retrieval

A quantitative analysis of model performance on our patient cases is reported in Table 2 and Table 3. While
we cannot arrive at definitive conclusions on algorithmic performance due to the few number of cases here,
we observed higher mMV and mAP metrics for RetCCL on both tissue and subtype retrieval relative to the
other models.

Supplementary Table 9 and Supplementary Table 10 show the results of our quantitative evaluations on
GBM and BRCA datasets encompassing 344 unseen slides. Of note, UPENN GBM was not feasible for
RetCCL due to extensive computational burdens. When testing the models on brain tissue retrieval, we
found that RetCCL had the highest performance at mMV @ 10 although there is almost a 15 point drop in
performance versus the mMV @ 10 score reported by the authors at 90.21. For subtyping on GBM versus
LGG, we see that HSHR and SISH are the top performers at mMV@5 for GBM versus LBB subtyping, which
are lower than prior work by the authors of HSHR showing a mMV@5 of 0.937 and 0.916 for HSHR and
SISH, respectively, when tested on 3580 TGCA GBM and LGG slides.

For breast tissue retrieval on the Yale Trastuzumab dataset, Yotixxel performed the best on both metrics
with a mMV@10 of 0.588 and mAP@5 of 0.650. Of note, the authors of RetCCL previously showed that
Yotixxel achieved a mMV@10 of 0.663 relative to RetCCL’s score of 0.914 on a set of frozen WSIs. Subtype
search on the BRCA dataset was not performed as all of the cases were of the same diagnosis.

3.2 Visual review of query results

To better investigate discrepancies in performance, we reviewed the top five ranked results on subtyping and
tissue search for three different WSI slides from our own patient cases as illustrated in Figure 2. Additional
details on patient cases and slide preparation methods can be found in the Supplementary Section on Patient
Cases.

In Figure 2, we see several errors made on tissue and subtype search. We also review of patch-level results
for Yotixxel, SISH, and RetCCL on two patches from our LUAD case, one showcasing tumoral tissue and the
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Table 3: Evaluation results of different methods on UCLA slides for subtype retrieval task.

Method UCLA
Slides

MV@1 MV@3 MV@5 AP@3 AP@5

YOTTIXEL
+ KimiaNet

Slide1 0 0 1 0.500 0.533
Slide2 0 0 0 0 0
Slide3 1 1 1 1 1

SISH +
DenseNet

Slide1 1 - - 1 1
Slide2 0 0 0 0 0
Slide3 1 1 1 1 1

RetCCL
Slide1 1 1 1 1 1
Slide2 1 1 1 1 1
Slide3 1 0 0 1 0.700

HSHR
Slide1 1 1 1 1 0.867
Slide2 1 0 0 1 1
Slide3 0 0 0 0.500 0.500

other with normal alveolar tissue (Figure 3). HSHR was excluded due to its inability for patch-level search.
We found that all three algorithms are capable of retrieving patches containing tumoral and alveolar tissue
but there were visual discrepancies in some of more granular features on slides. For example, while all models
retrieve patches corresponding to alveoli, all three models return patches with varying degrees of necrosis,
inflammation, and hyperplasia, which may point pathologists towards different diagnoses and treatments.

3.3 Reader study

We next compared model performance on patch-level retrieval results qualitatively. Supplementary Figure
1 shows the Mean Opinion Score (MOS) of seven pathologists on the top three ranked results when query-
ing a patch containing tumor from three WSI H&E slides. We include Yottixel, RetCCL, and SISH but
not HSHR given the latter’s inability to perform patch-level search. For consistency, we used MOS as an
evaluation metric based on prior studies on the quality of WSI search results. We found SISH had overlap-
ping performance with Yotixxel and RetCCL due to higher variance but when comparing RetCCL versus
Yotixxel, we see a statistically significant improvement in RetCCL performance. However, the Fleiss’ Kappa
for all algorithms combined was 0.131 suggesting low rates of agreement amongst pathologists. Quantitative
performance metrics are provided in Supplementary Tables 5 and 6 on our reader study slides.

3.4 HER2+ prediction

To test the richness of feature representations, we compared the ability of the four models in distinguishing
between HER2+ and HER2- BRCA (Supplementary Figures 3,4,5, & 6). At present, immunohistochemistry
is required for the interpretation of HER2 status although recent work using a CNN-based architecture was
capable of predicting HER2 positivity with an AUC of 0.81 on untested datasets (Farahmand et al.). All
models tended to predict HER2- slides with greater precision despite the nearly 50-50 distribution of HER2-
and HER2+ cases in the dataset, suggesting an ability to learn subtle features specific to HER2 status.

For this experiment, we calculated MV@10 and AP@5 for tissue retrieval task in both Her2+ and Her2-
cohorts. Then using the Shapiro-Wilk normality test, and Levene’s homogeneity of variances test, we checked
the distribution of these two metrics. Since they did not pass the Independent T test requirements, we
conducted a non-parametric Mann-Whitney U Test. We concluded that all 4 models would have a better
performance in terms of AP@5 on Her2- cohort for the site retrieval task. However, for MV@10, the evidence
was only significant for Yottixel and HSHR (Supplementary Table 8).

3.5 Ablation study

Figure 6 shows comparative analysis of Yottixel and SISH algorithms using two distinct networks, Kima Net
and Densenet, on the Yale Trastuzumab dataset is presented. The figure is subdivided into two subplots,
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Figure 2: Results of site retrieval (left) and sub-type retrieval (right) at slide level for all three test slides.
Correct labels are printed in green under query slides. Green border means correct label; red border means
wrong label. For details about distances and similarities, see Section 2.1.
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each illustrating the performance of a base algorithm, Yottixel or SISH, evaluated across six different metrics:
mmV @ 1, 3, 5, 10 and mAP @ 3 and 5. Configurations employing Kima Net generally outperform those using
Densenet across our evaluation metrics. Disparities in performance underscore the impact of the network
choice on the efficacy of the algorithms, highlighting the importance of optimal network-algorithm pairing.

3.6 Microscope study

We investigated differences in performance for Yotixxel, SISH, and HSHR on two GBM datasets utilizing
different microscopes, UPENN and CPTAC GBM, to test model generalizability. As RetCCL was not com-
patible with the UPENN dataset, it was excluded from this experiment. We found that all three algorithms
had overlapping results with p-values of > 0.05 across both subtype and tissue retrieval at mMV @ 5 and
10 on both GBM datasets, indicating that differences in microscopes did not affect performance. Full results
can be found in the Supplementary Table 7.
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Figure 3: Results of patch retrieval for two patches from Slide 1. Correct labels are printed in green to the
left of query patches. Green border means correct label; red border means wrong label. For details about
distances and similarities, see Section 2.1.

4 Discussion

In this case study, we evaluated the performance and clinical utility of state-of-the-art histopathology slide
search engines, Yotixxel, SISH, and RetCCL and HSHR. To our knowledge, this is the first independent,
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external validation of these four models. While all models demonstrate significant advancements in the field,
we also noticed clinically significant shortcomings.

Based on our findings, we propose a framework of minimal requirements to facilitate the development of
these systems both fairly and transparently while minimizing patient harm and maximizing clinical utility:

1. Richness of feature representations: We observed several clinically relevant inconsistencies across
our queried and retrieved patches, suggesting the need for improvements in feature extraction. Our
ablation study also highlights the importance of encoder architecture on model performance. Large
pre-trained models such as Virchow (Vorontsov et al.), with extensive training on 1.5 million images,
are a potential solution, similar to natural image processing models such as VGG16 (Simonyan and
Zisserman) and ResNet-50 (He et al., Deep Residual Learning for Image Recognition). This strategy can
also facilitate the prioritization of downstream tasks while alleviating extensive computational burdens
in the pre-training stage.

2. Systematic and rigorous evaluations: We found it challenging to evaluate relative model perfor-
mance due to variable results across the four algorithms in our experiments. For example, RetCCL
had the highest performance on brain tissue retrieval but Yottixel had better performance on breast
tissue. Likewise, while we found that pathologists tended to rank patches retrieved by RetCCL highly,
due to large inter-observer variation on quality, relative performance was still uncertain. Our findings
highlight the need for systematic and rigorous methodologies for model evaluation.

3. Robustness: A vital measure of clinical applicability is model performance across diverse clinical pop-
ulations and environments, as in the case of real-world health systems. This is motivated by our findings
that all models experienced a notable decrease in performance when tested against unseen datasets.
However, we were pleased to find that batch level effects from external factors such as microscope type
did not result in statistically significant differences on tissue and subtyping performance. We propose
that all future models be validated for their generalizability in addition to precision.

4. Replicability: We found variable degrees of replicability across the models evaluated in this work.
Some were constructed for specific slide ratios and resolutions, while others were capable of handling
variable slide formats. Models also differed in terms of ease of applicability and transparency due to
differences in the availability of model development code and indexed databases. Model transparency
fosters scientific integrity and accelerates the pace of innovation through collective efforts and unbiased
evaluations.

5. Clinical benefit: For clinical adoption, the unique aspects of each model and their value need to be
clear for end-users. To date, the ongoing development of WSI search algorithms has focused on achieving
stepwise improvements in performance on tissue and subtyping search. While these are worthy goals,
we propose the inclusion of new tasks based on existing challenges in the field of pathology, such as
helping to determine the tissue of cancerous origin in the metastatic setting.

6. Computational Efficiency: Clinical applicability not only requires theoretical efficiency, but also
hinges on the performance of these systems in a real-world, high-demand environment. Thus, discussions
on computational efficiency should reflect the realities of clinical implementation. Especially, we need
to make sure the processes of querying an expanding the database are really efficient. These two
processes are of utmost importance for a sustainable search engine. We recommend the database
indexing algorithms to be online (i.e. adding a new data point does not require compiling the whole
database from scratch). Also, one shortcoming of models like RetCCL, SISH, and Yottixel is that they
generate mosaics as a percentage of number of patches in a cluster. Now, if like GBM UPENN, slides
become very large, number of patches becomes unnecessarily large and query time becomes very long.
We recommend models such as HSHR at use a fixed size for patches for this matter.

As the field of digital pathology continues to evolve, we anticipate exciting developments in the near future.
These will likely include more efficient and reliable systems for indexing and searching of histopathology slides,
increasingly robust algorithms for feature extraction, and potentially transformative diagnostic tools. Given
the high-stakes nature of patient care, we anticipate a significant amount of work ahead to ensure the validity
of these models prior to clinical adoption. As we continue to make strides in the development of histopathology
slide search engines, our proposed criteria ensures that these systems are not only theoretically sound but
also ready for meaningful clinical adoption.
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Code and Data Availability

The test slides along with the updated source codes for all three methods used to generate the results
can be found at github.com/jacobluber/PathologySearchComparison. All other data used in databases are
publicly available at portal.gdc.cancer.gov and www.cancerimagingarchive.net/. The list of data included in
the database can also be found in the github repository above.
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Supplementary Material

Datasets

Supplementary Table 1: Summary of database used for comparison experiments. Abbreviations are based
on (Kalra et al.).

Primary
Site

Project Name (Subtype) Abbr. Num.
Slides

Num.
Selected
Slides

Brain Glioblastoma Multiforme GBM 2040 61
Brain Lower Grade Glioma LGG 1543 69
Lymphoid Neasm Diffuse Large
B-cell Lymphoma

DLBC 4 0

Breast Breast Invasive Carcinoma BRCA 2704 72
Lymphoid Neasm Diffuse Large
B-cell Lymphoma

DLBC 2 0

Bronchus
and lung

Lung Adenocarcinoma LUAD 1359 68

Lung Squamous Cell Carcinoma LUSC 1265 57
Mesothelioma MESO 2 0

Colon Colon Adenocarcinoma/Rectum
Adenocarcinomaa

COAD/READ 1307+18 59 (COAD)

Lymphoid Neasm Diffuse Large
B-cell Lymphoma

DLBC 6 0

Sarcoma SARC 4 0

Liver and
intrahepatic
bile ducts

Liver Hepatocellular Carcinoma LIHC 778 72

Cholangiocarcinoma CHOL 80 50

a Although from pathologist point of view Colon Adenocarcinoma and Rectum Adenocarcinoma
are genetically and morphologically the same entity, TCGA considers them different projects.

Supplementary Table 2: Access links to the test datasets used in experiments.

Dataset link

CMB-CRC wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=93257955
CMB-LCA wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=93258420
Yale Her2 wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=119702524
Yale Trastuzumab wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=119702524
CPTAC-GBM wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=30671232
UPENN-GBM wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70225642

H&E Staining and Preparation

Tissues were stained with Harris’ hematoxylin solution for 6 h at a temperature of 60 ◦C–70 ◦C and were
then rinsed in tap water until the water was colorless. Next, 10% acetic acid and 85% ethanol in water were
used to differentiate the tissue 2 times for 2 h and 10 h, and the tissues were rinsed with tap water. In the
bluing step, we soaked the tissue in saturated lithium carbonate solution for 12 h and then rinsed it with tap
water. Finally, staining was performed with eosin Y ethanol solution for 48 h. Tissues were dehydrated with
95% ethanol twice for 0.5 h, and then soaked in xylene for 1 h at 60 ◦C–70 ◦C followed by paraffin for 12 h.
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Supplementary Table 3: Unprocessed slides in the database for each model.

Model Slide IDs

Yottixel

9ecf91d4-0d9e-4400-bf38-99420acd14cc
f18b6fc0-6f40-4f0d-82ef-0b092a21b6bf
846087b8-f70c-4970-a1b7-24d403229801
c95681f3-53d4-4b15-833d-ff68f171965e
71dc7ba0-a623-4aaf-9502-f2fe9d188401
2dc5d0b4-04ff-4731-bda1-8ad7cd0fa345

SISH 2dc5d0b4-04ff-4731-bda1-8ad7cd0fa345

RetCCL All slides in the database processed.

HSHR

f2d5aa37-d9ce-4264-a447-fc69dd0d7d85
a2658e39-e476-44b2-99ee-118056cf6201
f84130fe-4853-4252-a292-9372aeea4a5d
22904f9d-0788-463c-9961-02629cf9a85f

The stained tissues were cut into 7µm slices, dewaxed, mounted with neutral balsam and then imaged using
Nikon NIS-Elements microscopy.

Search Engines Methods

In the Yottixel method, the initial preprocessing step involves segmenting the foreground from the back-
ground in large whole slide images (WSIs). The segmented foreground is then divided into patches of size
1000×1000 for 20× slides and 2000×2000 for 40× slides. The 2000×2000 patches are resized to 1000×1000
before being input to the feature extractor. These patches undergo clustering using the K-means algorithm,
resulting in 9 clusters based on the RGB histogram of each patch. A further selection process is applied,
retaining 15% of the patches in each cluster using another K-means clustering method based on the spatial
coordinates. This final collection of patches forms a ”mosaic.” The Yottixel model, as recommended by its
authors (Kalra et al.), employs KimiaNet (Riasatian et al.), a fine-tuned version of DenseNet specifically
designed for histopathology slides, as the primary feature extractor (Fig. 1a). The outputs of the feature
extractor undergo barcoding, where binary codes are generated from the extracted features. Thus, each WSI
is represented by a set of barcodes (BoBs). The database comprises BoBs for each slide in the dataset. The
distance between two BoBs is calculated as the median of the minimum Hamming distances (Hamming)
between each barcode in the first BoB and all barcodes in the second BoB. When a query slide is introduced,
it is converted into a BoB. The distance between the query BoB and all BoBs in the database is computed,
and the top 5 slides with the lowest distances are returned. For patch retrieval, the query BoB is not required,
and instead, the top 5 patches from all BoBs with the minimum distances to the query patch are retrieved.

The SISHmethod uses a similar approach to Yottixel for mosaic generation, with patch sizes of 1024×1024
for 20× slides and 2048× 2048 for 40× slides. After mosaic generation, artifacts such as pure white patches
are filtered out. The feature extraction in SISH consists of two parts: feature and index (Fig. 1b). The
feature extraction process is the same as Yottixel, where each patch in the mosaic is fed into a pretrained
DenseNet, and the resulting features are binarized. The index, however, is obtained from a pretrained VQ-
VAE. The patch is encoded, resulting in a latent code, which is then subjected to three layers of average
pooling. The output of these layers is multiplied by scaling factors, and the sum of these results represents
the index in the VEB tree. This creates the database. When querying a slide, it is converted into a mosaic,
and indices and features are generated from the patches in the query mosaic. The ”guided VEB search”
algorithm is utilized, leveraging the properties of VEB trees, forward and backward searches, and entropy-
based uncertainty calculations to retrieve the top slides based on hamming distance. The ranking algorithm
accounts for class imbalance when returning the results. For patch retrieval, an index and feature are created
for the query patch using a similar approach, and the best matches are found among the patches in the
mosaics of the database. They also use a hamming distance threshold of 128 to make sure they only keep
high quality results. That is why sometimes they return only a few matches.

RetCCL, drawing inspiration from both Yottixel and SISH, adopts a distinct approach. Instead of
clustering patches based on RGB histogram values, RetCCL first obtains contrastive-based feature vectors

61



for each patch within the segmented foreground tiles. These features serve as inputs for a 9-class K-means
clustering. Within each cluster, an additional K-means process based on spatial coordinates is performed
to select 20% of the patches. These selected patches form the mosaics, which constitute the database. The
proposed feature extraction algorithm in RetCCL utilizes a clustering-guided contrastive learning method,
employing the InfoNCE loss introduced in (Oord et al.) (Fig. 1c). Given the prevalence of normal cells in
WSIs, learning irregularities from a limited number of patches becomes crucial. The self-supervised feature
extractor employs two InfoNCE losses to capture irregular regions in patches. It worth mentioning that
RetCCL was not able to perform the indexing on UPENN GBM dataset within a reasonable run time and
was not utilized for certain experiments involving this dataset.

For retrieving similar slides, a query slide is first transformed into a mosaic, generating a set of features
for each patch in the mosaic. Similarity between two patches is measured using cosine similarity between
their feature vectors. The retrieval process involves returning a set of patches in the database that exhibit
a similarity score of at least 70% to the query patch. Each query patch and its corresponding results form
a ”bag.” To account for class imbalance, an entropy-based uncertainty measure is calculated based on the
occurrence of each label within the bag. Patch members in the bag are sorted according to this entropy
measure. A threshold is then determined to remove lower quality results. Ultimately, the top 5 samples
within each bag are returned as the final results for slide retrieval. For patch retrieval, only the top 5 patches
with the highest cosine similarity scores are returned.

InHSHR, the first step is to train the ResNet18 (He et al., Deep Residual Learning for Image Recognition)
backbone encoder using the SimCLR (T. Chen et al.) approach. Unlike the other methods, authors had not
provided their backbone pre-trained weights, so we trained it from the scratch. The training data for this
backbone was approximately 508 × 100 = 50, 800 randomly patches of size 224 × 224. We trained it for
200 epochs using the same hyperparameters as the authors on 2 Nvidia A100 GPUs. Once the backbone
is trained, it is used to extract the features for all densely-patched patches for each WSI. These features
are used to train a 20-class k-means clustering algorithm. The features of the centroids of these clusters
create the mosaic for each WSI. These features are then passed to CaEncoder for generating the hashes and
attention weights. Unlike the backbone, the authors had provided the weights for their CaEncoder, and we
used the same weights in our experiments. The outputs of CaEncoder is further used to create a hypergraph
for the database using Eq. 15 in (S. Li et al.). We used K = 10 in this equation.

Once the hypergraph for database is constructed, each query slide would go through the same pipeline and
becomes and turns into hash codes and attention weights. Using these values, the query can be appended to
the hypergraph as a new vertex and a new hyperedge. Updating the hypergraph, the similarity score between
this vertex and all vertices in the database can be calculate using Eq. 19 in (S. Li et al.). Then the top-k
results are returned. We used α = β = 1 in this equation.

Methodological Breakdown of Query and Retrieval Processes

Algorithm 1: Yottixel Algorithm

Input: Image I
Output: Top 5 retrieved slides

1 Patch the image densely to get patches p1, p2, . . .;
2 Perform RGB histogram clustering;
3 Perform spatial clustering and calculate mosaic patches;
4 Feed mosaic patches to KimiaNet for feature extraction and calculate barcode for each patch;
5 foreach patch in input slide do
6 Calculate hamming distance between barcode of input patch with barcodes of patches from all

slides in database;

7 Choose the median of the list of minimum hamming distances for each slide in database;
8 Retrieve the slides with the top five smallest medians;
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Algorithm 2: SISH Algorithm

Input: Image I
Output: Similar slides to query slide I

1 Patch the image densely to get patches p1, p2, . . .;
2 Perform RGB histogram clustering;
3 Perform spatial clustering and create mosaic patches;
4 Feed mosaic patches to DenseNet and VQ-VAE encoder to calculate parameters h and m

respectively, and create the VEB tree;
5 Apply guided-search algorithm to tuples of m and h to calculate corresponding set of tuples r;
6 Create a set of candidate indices mi, c+ and mi, c− along with the original mi;
7 Call helper functions forward-search and backward-search on mi, c+ and mi, c− respectively;
8 Take the results RI = {r1, r2, . . . , rk} from Guided-Search as input by Results Ranking Algorithm;
9 Return similar slides to query slide I;

Algorithm 3: RetCCL Algorithm

Input: Image I
Output: Top k similar WSIs

1 Patch the image densely to get patches p1, p2, . . .;
2 Feed patches to feature extraction algorithm;
3 Cluster based on extracted features, then on coordinates to create mosaic patches;
4 foreach patch in query WSI do
5 Perform Knn search to retrieve a bag of most similar patches in database to each patch, using

cosine similarity in pretrained SSL encoder’s learned embedding space;

6 Calculate entropy within each bag, reorder bags by entropy;
7 Remove bags with low quality based on mean of cosine similarity scores in top-5;
8 foreach bag do
9 Perform voting for each diagnosis within the bag, get the top-5 samples, then do majority vote to

get associated WSI;

10 Retrieve top-k similar WSIs;

Algorithm 4: HSHR Algorithm

Input: Image I
Output: Top k similar WSIs

1 Patch the image densely to get patches p1, p2, . . .;
2 Feed patches to feature extraction algorithm;
3 Cluster based on extracted features, then on coordinates to create mosaic patches;
4 foreach patch in query WSI do
5 Create a bag containing the query patch and its retrieved patches;

6 Calculate entropy within each bag, reorder bags by entropy;
7 Remove bags with low quality based on mean of cosine similarity scores in top-5;
8 foreach bag do
9 Perform voting for each diagnosis within the bag, get the top-5 samples, then do majority vote to

get associated WSI;

10 Retrieve top-k similar WSIs;

Complexity Analysis

The time complexities of the key operations in different algorithms are summarized in Table Supplementary
Table 4. In the table, n (Yottixel) denotes the length of the hamming vector, m (Yottixel) denotes the
maximum number of patches for each WSI, T (common across Yottixel, HSHR, and RetCCL) denotes the
total number of slides in the database, B (SISH) denotes the number of patches in a WSI, K (RetCCL,
HSHR) denotes the number of patches of the query slide, M (RetCCL, HSHR) denotes the total number of
diagnoses in the database, and H (HSHR) denotes the hash vector size.
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Supplementary Table 4: Time complexity analysis for different components of the compared methods.

Algorithm Operation and Time Complexity

Yottixel
Hamming distance calculation: O(n.T.m2)
Minimum: O(T.m2)
Median: O(T. log(T ))

SISH
Search Performance: O(1)
Ranking: O(B′), B′ = 0.05 ·B

RetCCL

Cosine similarity calculation: O(K.B)
Probability calculation: O(M.K.B)
Entropy calculation: O(K.M)
Sorting bags based on entropies: O(K2)
Mean of cosine similarity scores: O(T.K)
Removing bags with low quality: O(K)

HSHR

Hamming distance: O(H.T.M2)
Sorting: O(M)
Incidence Matrix calculation: O(K.M.T )
Cross similarity: O(T 2)
Vertex similarity: O(T 3)
Hyperedge similarity: O(T 3)
Final sorting: O(T )

Studies

Performance Metrics

As discussed, we use majority voting and average precision at k as main performance metrics in different
experiments. Supplementary Algorithms line 5 and line 6 summarize they way we defined these metrics. The
important point about majority voting at k is that if it returns None, that sample would not be counted in
the average, while 0 outputs are counted towards average.

Algorithm 5: Majority Voting at k

Data: row, k
Result: Result of the majority vote

1 votes← empty list
2 for i = 1 to k do
3 ret site← row[f’ret i site’]
4 if ret site is null then
5 append −1 to votes
6 else
7 append ret site to votes

8 if not votes then
9 return 0

10 counter ← Counter(votes)
11 most common← counter.most common(1)
12 if most common[0][0] = row[’query site’] then
13 return 1
14 else
15 if most common[0][0] = −1 then
16 return None
17 else
18 return 0

64



Algorithm 6: Average Precision at k

Data: row, k
Result: Average precision at k

1 relevant count← 0
2 precision sum← 0
3 for i = 1 to k do
4 ret site← row[f’ret i site’]
5 if ret site is None then
6 continue

7 if ret site = row[’query site’] then
8 relevant count← relevant count+ 1

9 precision sum← precision sum+ relevant count
i

10 if relevant count = 0 then
11 return 0

12 return precision sum
min(k,relevant count)

Reader study

Seven pathologists were shown the top three ranked results on patch-level retrieval for one patch across three
different H&E slides. All pathologists were shown the original queried patch of interest but were blinded to
the algorithms involved, ranked order of the retrieved patches, and diagnoses of both the queried and retrieved
patched. Pathologists were then asked for their Mean Opinion Score (MOS) based on their perspective on
the quality of the results, ranked from one to five with higher scores indicating higher quality.

Supplementary Figure 1: Reader Study: Average quality ratings and standard deviation for each algorithm
as evaluated by seven pathologists.

Extended Results

We choose three internal patient cases for visual review of tissue, subtype, and patch-level search results.
Slide 1 is a Lung Adenocarcinoma (LUAD) case from a patient’s partial lobectomy. Slide 2 is a Low Grade
Glioma (LGG) that was retrieved by surgical biopsy. Slide 3 is from a patient with Hepatocellular Carcinoma
(LIHC) who underwent a liver biopsy by fine needle aspiration.
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Supplementary Table 5: Evaluation results of different methods on Reader Study slides for primary site
retrieval task.

Method Reader Study MV@1 MV@3 MV@5 MV@10 AP@3 AP@5

YOTTIXEL
+ KimiaNet

MSB-09151-01-11 0 0 0 0 0 0.250
MSB-09977-01-22 1 1 1 0 1 1
Her2Pos Case 66 1 1 1 1 0.833 0.806

SISH +
DenseNet

MSB-09151-01-11 0 0 0 0 0 0
MSB-09977-01-22 0 0 0 0 0 0
Her2Pos Case 66 0 0 0 0 0 0

RetCCL
MSB-09151-01-11 0 0 0 1 0 0.250
MSB-09977-01-22 1 1 0 0 0 1
Her2Pos Case 66 0 0 0 1 0 0.325

HSHR
MSB-09151-01-11 1 1 1 1 0.833 0.833
MSB-09977-01-22 1 1 1 1 1 0.700
Her2Pos Case 66 1 1 1 0 1 0.867

Supplementary Table 6: Evaluation results of different methods on Reader Study slides for subtype retrieval
task.

Method Reader Study MV@1 MV@3 MV@5 AP@3 AP@5

YOTTIXEL
+ KimiaNet

MSB-09151-01-11 - - - - -
MSB-09977-01-22 0 0 0 0 0
Her2Pos Case 66 - - - - -

SISH +
DenseNet

MSB-09151-01-11 - - - - -
MSB-09977-01-22 0 0 0 0 0
Her2Pos Case 66 - - - - -

RetCCL
MSB-09151-01-11 - - - - -
MSB-09977-01-22 0 1 1 0.583 0.589
Her2Pos Case 66 - - - - -

HSHR
MSB-09151-01-11 - - - - -
MSB-09977-01-22 1 1 1 0.833 0.806
Her2Pos Case 66 - - - - -

Supplementary Table 7: Mann-Whitney U Test Results for Microscope

Microscope Metric U-statistic P-value

SISH

MV at 10 site nan nan
AP at 5 site 578.000 1.0000000000000000

MV at 5 subtype nan nan
AP at 5 subtype 543.000 0.6156890923465373

HSHR

MV at 10 site 658.500 0.0670269674521155
AP at 5 site 523.500 0.6135535212442216

MV at 5 subtype 672.500 0.0905435676918205
AP at 5 subtype 636.000 0.3353506099579945

Yottixel

MV at 10 site 523.500 0.5298120557113710
AP at 5 site 455.500 0.1566946582170631

MV at 5 subtype 532.000 0.6415761864226559
AP at 5 subtype 534.500 0.7372510705087723
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Supplementary Table 8: Mann-Whitney U For Her2+

Model Metric U-statistic P-value

Yottixel
MV at 10 site 2906.500 0.0000006008842402
AP at 5 site 3287.500 0.0008328526912513

SISH
MV at 10 site nan nan
AP at 5 site 3651.500 0.0130448102685896

RetCCL
MV at 10 site nan nan
AP at 5 site 2483.500 0.0000000486711422

HSHR
MV at 10 site 3407.500 0.0002646668324846
AP at 5 site 3274.500 0.0008856874714843

Supplementary Figure 2: Performance comparison of Yottixel and SISH algorithms using Kima Net and
Densenet on the Yale Trastuzumab dataset across various metrics.
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Supplementary Figure 3: Metrics for HSHR Microscope comparison analysis and Her2 analysis.

Supplementary Figure 4: Metrics for RetCCL Her2 analysis.
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Supplementary Figure 5: Metrics for YOTTIXEL Her2 analysis.

Supplementary Figure 6: Metrics for SISH Her2 analysis.
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Supplementary Table 9: Evaluation results of different methods on large datasets for primary site retrieval
task. mMV means mean Majority Voting score and mAP means mean Average Precision.

Method Dataset mMV@1 mMV@3 mMV@5 mMV@10 mAP@3 mAP@5

YOTTIXEL
+ KimiaNet

UPENN GBM 0.706 0.735 0.735 0.794 0.752 0.765
CPTAC GBM 0.606 0.606 0.667 0.727 0.646 0.644
Yale Her2 Pos 0.548 0.559 0.538 0.570 0.627 0.624
Yale Her2 Neg 0.742 0.742 0.784 0.814 0.809 0.788
Yale Trastuzumab 0.565 0.600 0.576 0.588 0.647 0.650

SISH +
DenseNet

UPENN GBM 0.735 0.706 0.706 0.758 0.730 0.720
CPTAC GBM 0.706 0.697 0.697 0.710 0.725 0.729
Yale Her2 Pos 0.269 0.247 0.221 0.167 0.294 0.304
Yale Her2 Neg 0.454 0.442 0.446 0.375 0.476 0.480
Yale Trastuzumab 0.329 0.321 0.333 0.295 0.345 0.356

RetCCL

UPENN GBM - - - - - -
CPTAC GBM 0.588 0.594 0.750 0.846 0.728 0.736
Yale Her2 Pos 0.172 0.301 0.355 0.481 0.345 0.404
Yale Her2 Neg 0.510 0.602 0.742 0.864 0.656 0.671
Yale Trastuzumab 0.212 0.247 0.353 0.420 0.382 0.428

HSHR

UPENN GBM 0.794 0.824 0.765 0.735 0.816 0.809
CPTAC GBM 0.758 0.727 0.818 0.909 0.813 0.810
Yale Her2 Pos 0.247 0.323 0.323 0.301 0.429 0.449
Yale Her2 Neg 0.571 0.592 0.622 0.663 0.632 0.612

0.447 0.447 0.494 0.529 0.581 0.569

YOTTIXEL
+ DenseNet

Yale Trastuzumab 0.224 0.224 0.235 0.247 0.318 0.353

SISH
+ KimiaNet

Yale Trastuzumab 0.536 0.578 0.417 0.571 0.542 0.540

Supplementary Table 10: Evaluation results of different methods on large datasets for subtype retrieval task.

Method Dataset mMV@1 mMV@3 mMV@5 mAP@3 mAP@5

YOTTIXEL
+ KimiaNet

UPENN GBM 0.382 0.382 0.294 0.468 0.454
CPTAC GBM 0.303 0.303 0.242 0.399 0.418

SISH +
DenseNet

UPENN GBM 0.706 0.656 0.677 0.725 0.725
CPTAC GBM 0.676 0.667 0.656 0.686 0.681

RetCCL
UPENN GBM - - - - -
CPTAC GBM 0.529 0.375 0.406 0.667 0.648

HSHR
UPENN GBM 0.618 0.559 0.559 0.721 0.704
CPTAC GBM 0.758 0.727 0.758 0.806 0.785
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5
General Conclusions

This dissertation embarked on a journey to enhance the capabilities of artificial intelligence

in biomedical imaging, a field that stands at the intersection of medical research, computa-

tional science, and technology. The central objective was to address pressing challenges in

the analysis and prediction of spatial transcriptomics, cancer pathology, and histopathology

slide analysis. The research questions poised at the beginning of this dissertation focused
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on how advanced AI methodologies could be leveraged to improve the precision, efficiency,

and predictive power in these domains.

Each of the included studies adopted a unique methodological approach, tailored to the

specific challenges and nuances of the respective research areas. In the first study, we ex-

plored the use of Random Forest Regression combined with spatial point processes to pre-

dict the future distribution of cells in spatial transcriptomics. This approach represented a

fusion of computational modeling with intricate biological data, offering a novel perspec-

tive on gene expression analysis at the single-molecule level.

The second paper shifted focus to the realm of cancer histopathology, where a Varia-

tional Autoencoder (VAE) was used for the compression of large-scale histopathological

images. This study tackled the significant challenge of managing voluminous biomedical

image data without compromising the clinical relevancy and integrity of the images.

Finally, in the third study, we examined the current landscape of histopathology slide in-

dexing and search systems. The emphasis was on evaluating and enhancing the efficiency

and accuracy of these systems using state-of-the-art AI techniques. This included a compre-

hensive analysis of existing systems and the development of an improved methodology for

slide retrieval.

Collectively, these studies underscore the transformative potential of AI in biomedical

imaging, each contributing to a facet of the broader goal of advancing the field. They rep-

resent an amalgamation of innovative computational techniques and deep domain knowl-

edge, pushing the boundaries of how AI can be utilized to extract meaningful insights from

complex biological data.

The methodologies adopted across these studies not only address the specific challenges
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within each research area but also contribute to the overarching theme of enhancing AI’s

role in biomedical imaging. The integration of these diverse yet complementary approaches

highlights the multidisciplinary nature of the field and sets the stage for the conclusions

and future directions discussed in the subsequent sections of this chapter.

5.1 Summary of Key Findings

5.1.1 Paper 1: Predicting the Future States of Gene Expression

The first study in this dissertation made significant strides in the field of spatial transcrip-

tomics, particularly in predicting cellular behavior and gene expression patterns during the

embryogenesis of Drosophila. This research utilized Random Forest Regression in con-

junction with spatial point processes, marking a novel approach in the analysis of super-

resolution whole embryo spatial transcriptomics imaging.

Key outcomes of this study include:

1. Development of a Predictive Model: The implementation of Random Forest Re-

gression, combined with Ripley’s K-function, enabled the accurate prediction of the

future distribution of cells expressing the Sog-D gene. This approach was pivotal

in understanding the dynamic nature of gene expression during the embryogenesis

process.

2. Enhanced Resolution and Predictive Accuracy: The study achieved a significant

breakthrough in analyzing gene expression at a sub-cellular, single-molecule reso-

lution. This high-resolution analysis allowed for a more nuanced understanding of

cellular dynamics and gene expression patterns.
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3. Novel Methodological Integration: By leveraging temporally resolved spatial point

processes, the study introduced a methodological innovation that bridged the gap

between static and dynamic analyses of gene expression. This integration was instru-

mental in moving beyond traditional static snapshots of gene expression to a more

dynamic and predictive model.

4. Practical Implications: The findings of this study have profound implications for

understanding the complex mechanisms of gene expression regulation during devel-

opment. The predictive model provides insights that are crucial for further research

in developmental biology, potentially influencing studies in disease progression and

therapeutic interventions.

The outcomes from this study not only contribute significantly to the field of spatial

transcriptomics but also exemplify the potential of combining computational models with

biological data to yield deeper insights into complex biological processes.

This section of the final chapter offers a concise yet comprehensive summary of the crit-

ical findings from the first paper, showcasing the innovative approaches and significant

contributions to the field of spatial transcriptomics.

5.1.2 Paper 2: Clinically RelevantHistopathology Slide Compression

The second paper in this dissertation focused on addressing the challenge of efficiently

managing and analyzing large cancer histopathology slide datasets through advanced im-

age compression techniques. This study employed a Variational Autoencoder (VAE) based

approach, offering innovative solutions to the field of digital pathology.

Key outcomes of this study include:
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1. State-of-the-Art Image Compression: The development and implementation of a

VAEmodel achieved a remarkable compression ratio of 1:512, surpassing previous

benchmarks in the field. This high compression ratio was attained while maintaining

the accuracy and integrity of the histopathological images, crucial for clinical valida-

tions.

2. Preservation of Clinically Relevant Information: One of the most significant

achievements of this approach was the ability to compress images without losing

critical histological features necessary for accurate medical diagnosis and research.

This balance between compression efficiency and data integrity marks a significant

advancement in medical image processing.

3. Enhancement of Image Retrieval and Analysis: The study demonstrated that the

compressed images, through their latent space embeddings, retained essential clini-

cal information. This finding is vital for the development of efficient image search

algorithms in large whole slide image databases, greatly facilitating the retrieval and

analysis process.

4. Methodological Innovations: The use of a DenseNet-based architecture within the

VAEmodel, along with methodological improvements for handling large-scale image

data, showcased the potential of deep learning techniques in revolutionizing medical

image analysis.

5. Implications for Digital Pathology: The research presented in this paper has broad

implications for the field of digital pathology. By significantly reducing the stor-

age and computational requirements for large datasets without compromising the

75



quality of analysis, this approach paves the way for more scalable and efficient digital

pathology practices.

The findings from this study contribute significantly to the ongoing efforts to integrate

AI and machine learning into the realm of medical imaging, particularly in optimizing the

storage, retrieval, and analysis of large-scale histopathological datasets.

5.1.3 Paper 3: Readiness of Histopathology Slide Search for Clinic

The third paper in the dissertation delves into the critical aspect of indexing and search-

ing histopathology slides, a key component in the efficient handling and analysis of digital

pathology data. This study provided a comprehensive evaluation of the current state of

histopathology slide indexing and search systems, assessing their effectiveness and identify-

ing areas for improvement.

Key outcomes of this study include:

1. Evaluation of Existing Systems: The paper conducted a thorough analysis of ex-

isting histopathology slide search engines, such as Yottixel, SISH, RetCCL, and

HSHR. This evaluation provided valuable insights into the strengths and limita-

tions of current methodologies, highlighting the advancements made in the field and

the challenges that still persist.

2. Innovations in Feature Extraction and Retrieval: A significant focus of the study

was on the methods of feature extraction fromWhole Slide Images (WSIs). The

paper discussed various techniques, including the innovative approach of Yottixel,
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which uses a DenseNet-based feature extractor on mosaic tiles, offering a more effi-

cient processing method for large-scale WSIs.

3. Identification of Challenges and Gaps: The research identified key challenges in

the field, such as the need for higher precision in search results, handling variabil-

ity in slide preparation and imaging, and integrating search systems into clinical

workflows. These challenges are critical in understanding the current limitations

and guiding future developments.

4. Future Directions for Histopathology Search Engines: The study proposed po-

tential improvements and future directions for histopathology slide indexing and

search systems. It emphasized the importance of developing more sophisticated and

user-friendly systems that can handle the increasing scale of digital pathology and

provide clinically relevant search results.

5. Implications for Digital Pathology: The findings of this study have broad impli-

cations for digital pathology, particularly in enhancing the diagnostic process and

supporting medical research. Efficient and accurate search systems are essential for

pathologists and researchers to navigate through large volumes of digital slides, im-

proving both the speed and quality of medical diagnoses and research.

The insights gained from this paper contribute significantly to the field of digital pathol-

ogy, particularly in the context of AI and machine learning. It highlights the need for on-

going innovation in histopathology slide indexing and search systems, aiming to meet the

growing demands of digital pathology and enhance the efficiency and accuracy of medical

imaging analysis.
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With the completion of this summary of key findings from the third paper, the disserta-

tion concludes its exploration of advancements in AI applications in biomedical imaging,

setting the stage for the final conclusions and future research directions in the subsequent

sections.

5.2 Discussion on the Integration of Results

This dissertation, through its individual studies, presents a cohesive narrative that show-

cases the advancement of AI in biomedical imaging. Each paper, while focusing on a unique

aspect of this broad field, contributes to a collective understanding and enhancement of the

capabilities in analysis and prediction.

5.2.1 Interrelation of Findings Across Studies

The first paper on spatial transcriptomics introduced a novel method to predict cell distri-

bution using Random Forest Regression, advancing our ability to interpret complex gene

expression patterns at a single-molecule resolution. This study set the tone for precision

and predictive accuracy, essential themes that resonate through the subsequent papers.

The second paper, focusing on the application of a Variational Autoencoder for image

compression in cancer histopathology, further underscored the theme of precision but

added a layer of efficiency in handling large-scale datasets. By ensuring that critical histo-

logical information is preserved even after significant data compression, this study com-

plemented the first by enhancing the manageability of large-scale biomedical data without

losing analytical accuracy.

The third paper ventured into the realm of histopathology slide indexing and search
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systems, addressing the practical challenges of managing and retrieving vast amounts of

digital pathology data. This study highlighted the importance of sophisticated AI-driven

systems that can navigate through the complexities of histopathology slides, ensuring that

the valuable data generated by the methodologies in the previous papers are accessible and

usable.

5.2.2 Advancements in Analysis and Prediction in Biomedical Imaging

Collectively, these studies have significantly advanced the analysis and prediction capabili-

ties in biomedical imaging. They have done so by:

1. Enhancing Predictive Modeling: The first paper’s predictive modeling approach

in spatial transcriptomics represents a significant leap in understanding dynamic

biological processes, a critical aspect of precision medicine.

2. Improving Data Management and Efficiency: The second paper’s contribution

to efficient data management through innovative image compression techniques

has enabled the handling of large-scale histopathology data, a bottleneck in digital

pathology.

3. Optimizing Data Retrieval and Usage: The third paper’s focus on improving slide

indexing and search systems ensures that the vast amounts of data generated and

managed are effectively utilized, thereby supporting both clinical decision-making

and research.
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5.2.3 Contributions to the Central ResearchQuestions

In addressing the central research questions posed at the outset of this dissertation, these

studies collectively demonstrate how AI can be leveraged to not only analyze complex

biomedical data but also predict future states and trends within these data. They illustrate

the potential of AI to transform biomedical imaging from a field that is traditionally reac-

tive (focused on diagnosis) to one that is increasingly predictive, aiding in prognosis and

personalized medicine.

In conclusion, the integration of results from these individual papers presents a compre-

hensive picture of how AI can revolutionize various aspects of biomedical imaging. From

enhancing the precision of predictive models and improving the efficiency of data handling

to optimizing the retrieval and application of vast datasets, these studies collectively push

the boundaries of what is possible in the realm of biomedical research and clinical practice.

5.3 Impact of the Research

The research presented in this dissertation has made significant contributions to the fields

of biomedical imaging and artificial intelligence, both from a theoretical standpoint and

in terms of practical applications. The advancements achieved in these studies have im-

plications that extend far beyond the scope of the individual papers, influencing clinical

practice, medical research, and the broader field of AI in healthcare.
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5.3.1 Contributions to the Field of Biomedical Imaging and AI

1. Advancing Predictive Analytics in Biomedical Imaging: The dissertation’s first

paper introduces advanced predictive modeling in the realm of spatial transcrip-

tomics, representing a major leap in our ability to forecast cellular behavior and gene

expression. This advance not only contributes to the field of biomedical imaging but

also exemplifies the application of AI in predicting complex biological processes.

2. Innovating in Efficient Data Management and Compression: The implemen-

tation of a Variational Autoencoder for image compression, as presented in the

second paper, addresses a critical need in digital pathology – managing large-scale

histopathological data efficiently. This innovation stands at the intersection of

biomedical imaging and AI, demonstrating how deep learning can be applied to

solve practical data management challenges in medicine.

3. Enhancing Accessibility and Usability of Biomedical Data: The third paper’s

focus on optimizing histopathology slide indexing and search systems has direct im-

plications for the accessibility and usability of vast amounts of digital pathology data.

This contribution is vital for the effective application of AI in biomedical imaging,

ensuring that data are not only well-managed but also readily accessible for analysis

and decision-making.

5.3.2 Practical Implications for Clinical Practice andMedical Research

1. Enhancing Diagnostic Accuracy and Efficiency: The techniques developed in

these studies have the potential to significantly enhance the accuracy and efficiency
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of disease diagnosis. By providing more precise predictive models and efficient data

management systems, clinicians can access and interpret relevant medical imaging

data more quickly and accurately, leading to improved patient outcomes.

2. Facilitating Personalized Medicine: The ability to predict cellular behavior and

analyze large-scale histopathological data more effectively paves the way for personal-

ized medicine. These advances allow for a more nuanced understanding of individ-

ual patient conditions, enabling tailored treatment strategies based on specific disease

characteristics and patient profiles.

3. Accelerating Medical Research: The methodologies and technologies developed in

this dissertation will also accelerate medical research by providing more efficient tools

for data analysis. Researchers can leverage these AI-driven techniques to uncover

new insights into disease mechanisms, treatment responses, and epidemiological

trends.

In summary, the research presented in this dissertation has substantial implications for

the future of biomedical imaging and AI. It contributes to the advancement of the field by

introducing innovative methodologies and technologies that enhance our ability to analyze,

predict, and utilize medical imaging data. These contributions not only represent signifi-

cant academic achievements but also have the potential to transform clinical practice and

medical research, ultimately improving patient care and health outcomes.
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5.4 Reflection onMethodological Approaches

The methodologies employed in this dissertation represent a significant advancement in

the integration of AI with biomedical imaging. Each study utilized distinct approaches

tailored to specific challenges, offering a broad perspective on the potential and limitations

of current AI technologies in this field.

5.4.1 Critical Analysis of theMethodologies

1. Spatial Transcriptomics (Paper 1): The use of Random Forest Regression com-

bined with spatial point processes was a novel approach in predicting cell distri-

bution in spatial transcriptomics. This methodology allowed for high-resolution

analysis and predictive modeling, which is critical in understanding dynamic gene

expression patterns. However, the complexity of the model and the specificity of the

data might limit its applicability to different types of transcriptomic data or other

biological processes.

2. Image Compression in Histopathology (Paper 2): The Variational Autoencoder

approach for compressing cancer histopathology slides marked a significant advance-

ment in digital pathology. Its ability to maintain image integrity at high compression

rates is a key strength. Nevertheless, the reliance on deep learning models necessitates

substantial computational resources, and the model’s performance may vary with

different types of histopathological data.

3. Histopathology Slide Indexing and Search (Paper 3): The exploration of current

histopathology slide indexing and search systems highlighted the need for more so-
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phisticated AI-driven methods. While the study provided valuable insights into the

current state of these systems, it was more of an evaluative approach rather than a

development of new technology. The findings point towards the potential for future

innovations in this area.

5.4.2 Strengths, Limitations, and Generalizability

1. Strengths: Across all studies, the methodologies demonstrated the power of AI to

provide deeper insights and more efficient solutions in biomedical imaging. They

showcased the potential for AI to transform data analysis from a largely manual and

time-consuming process to an automated, efficient, and more accurate one.

2. Limitations: A common limitation across these methodologies is the need for large

datasets and computational resources, which can be a barrier to widespread adop-

tion. Additionally, the specificity of some methods to certain data types or condi-

tions can limit their applicability in broader contexts.

3. Generalizability: While the methods employed in each study showed promising

results in their specific applications, the generalizability of these approaches to other

areas of biomedical imaging or different diseases remains to be thoroughly tested.

Future research should focus on adapting and testing these methodologies in varied

contexts to fully realize their potential.

In conclusion, the methodological approaches used in this dissertation represent a signif-

icant stride in the application of AI in biomedical imaging. They offer a balance between

innovation and practicality, providing solutions to some of the field’s most pressing chal-
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lenges while also highlighting areas for future improvement. The insights gained from these

approaches form a solid foundation for further research and development in this rapidly

evolving field.

5.5 Future ResearchDirections

The findings from this dissertation open several avenues for future research in the field of

AI and biomedical imaging. These directions not only extend the work presented but also

propose methodological enhancements and explore new areas of investigation.

5.5.1 Paper 1: Enhancing Spatial Transcriptomics Predictions

Future research stemming from the first paper could focus on integrating image and vision

deep learning methods to predict the actual active cells, rather than just their distribution.

This advancement would hinge on the availability of larger datasets that provide more com-

prehensive spatial and temporal information. By employing advanced image processing

and pattern recognition techniques, researchers could achieve a more granular and accurate

prediction of cell behavior, enhancing our understanding of complex biological processes.

5.5.2 Paper 2: Advancing AutoencoderModels for Image Compression

For the second paper, an exciting area of future research involves training an autoencoder

on the latent variable while conditioning it on clinical features. This approach would al-

low the model to incorporate relevant clinical information, potentially leading to more

clinically pertinent image compression. Additionally, improving the model to a Vector

Quantized-Variational AutoEncoder (VQ-VAE) could offer better control over the latent
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space and enhance the quality of the reconstructed images. These improvements would

make the model more robust and applicable in diverse clinical settings.

5.5.3 Paper 3: FoundationModels for Search inHistopathology

In relation to the third paper, future work should include testing foundation models for

search and retrieval in histopathology. This exploration should aim to identify additional

requirements for effective search mechanisms in digital pathology. By extending the evalua-

tion criteria and incorporating more sophisticated AI models, researchers can develop more

advanced search systems that address the nuanced needs of pathologists and researchers.

This would significantly contribute to making digital pathology more efficient and effec-

tive.

5.5.4 General Suggestions forMethodological Improvements

Across all areas, there is a continuous need for methodological improvements. Enhanc-

ing computational efficiency, reducing the reliance on large datasets, and improving the

generalizability of models are crucial goals. Furthermore, exploring new applications of

AI in areas such as real-time diagnostics, prognostic modeling, and personalized treatment

planning could significantly impact patient care. The integration of AI with emerging tech-

nologies like augmented reality and robotics in surgery, for instance, presents a fascinating

area for exploration.

In conclusion, the future research directions proposed here aim to build upon the foun-

dational work of this dissertation, seeking to push the boundaries of AI in biomedical

imaging further. By addressing these potential areas for research and methodological im-
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provements, the field can continue to evolve and make substantial contributions to medical

science and patient care.

5.6 General Conclusions

This dissertation has traversed a significant journey in the realm of AI-enhanced biomedical

imaging, demonstrating how advanced computational techniques can revolutionize our

understanding and capabilities in this field. The collective findings from the individual

studies present a comprehensive narrative of innovation, challenge, and progress.

1. Advancement in Predictive Analytics: The dissertation has significantly con-

tributed to predictive analytics in biomedical imaging, particularly in spatial tran-

scriptomics and histopathology. It has shown how AI can be harnessed to predict

complex biological behaviors and improve the accuracy of medical diagnoses.

2. Efficiency in Data Management: The research underscored the importance of ef-

ficient data management in digital pathology. By introducing advanced image com-

pression techniques, it has paved the way for more effective handling and analysis of

large-scale histopathological data.

3. Enhancement of Data Accessibility and Analysis: The studies emphasized the

need for sophisticated systems for indexing and searching histopathology slides. Im-

proving these systems is key to making the vast amounts of digital pathology data

more accessible and analyzable, thereby enhancing both clinical practice and medical

research.
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4. Implications for Clinical Practice and Research: The methodologies and findings

of this dissertation hold significant implications for clinical practice and medical re-

search. They demonstrate the potential of AI to enhance the precision and efficiency

of medical imaging analysis, which is crucial for both patient care and scientific dis-

covery.

5.7 Final Remarks

The journey of this research has been one of exploration, discovery, and innovation. It has

highlighted the immense potential of AI in transforming biomedical imaging, opening new

doors for diagnosis, prognosis, and treatment in medicine. This work has laid a founda-

tion for future research, proposing new directions and methodologies that could further

advance the field.

The future of AI in biomedical imaging is bright, with endless possibilities for enhanc-

ing patient care and medical research. As technology continues to evolve, so too will the

methods and applications of AI in this field, promising a future where AI and medicine are

inextricably linked for the betterment of human health.
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