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ABSTRACT

HoMLN-SD: Substructure Discovery In Homogeneous Multilayer Networks

Arshdeep Singh, M.S.

The University of Texas at Arlington, 2023

Supervising Professor: Dr. Sharma Chakravarthy

Substructure discovery is a process in data analysis and data mining that in-

volves identifying and extracting meaningful patterns, structures, or components

within a larger dataset. These substructures can be of various types, such as fre-

quent patterns, motifs, or any other relevant features within the data. The growth

of the internet and the proliferation of mobile devices have led to the generation of

enormous amounts of data. Companies like Facebook and Twitter can generate large

datasets from user interactions on their websites, such as connections between users

and user generated content. Moreover, advances in processing power and storage ca-

pacity have made it possible to collect and store these large amounts of data, known

as big data.

The present research in big data focuses on developing new techniques and

technologies for modeling, processing, and analyzing large and complex datasets.

MLNs (Multilayer Networks) are more effective at modeling complex, diverse data,

as compared to traditional data modeling techniques such as transactions or graphs

(simple or attributed). MLNs consist of multiple layers, each layer representing a

different feature of the dataset. For example, in a social network, each layer can
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represent a different type of connection between users, such as friendship, work, or

family. We can also model the same set of users across different social networks, with

each network as its own layer making the data easier to understand and comprehend.

Substructure discovery in Multilayer Networks typically requires aggregation

and integration of information from multiple layers, as substructures can extend be-

yond individual layers. Existing algorithms designed for single and attributed graphs

and do not work natively on MLNs. As MLNs are a relatively new representation

model, there is a need to develop algorithms that are specifically designed for the

analysis of MLNs or to develop frameworks that can apply existing algorithms to

MLNs while preserving the structure and semantics of the data. Currently available

algorithms for graph mining are for single graphs or forests. They are memory based,

disk based or use a database system approach. These algorithms have been extended

to work on the MapReduce framework to improve scalability and have the capacity

to process increasingly large datasets. But most of these need to aggregate the mul-

tilayer network to a single graph using projection or other types of aggregation (e.g.,

union).

This thesis presents two algorithms for computing substructures in homoge-

neous MLNs (where each layer has the same set of nodes but different connectivity)

without layer aggregation, utilizing the decoupling approach. The first approach

involves applying composition after each iteration of the substructure discovery algo-

rithm. In this method, composition is carried out frequently, with the aim of attaining

the same accuracy as ground truth. In the alternative approach, composition is only

applied once at the end of the substructure discovery process. This approach is more

computationally efficient, as it reduces the overhead associated with frequent com-

position. This approach is a trade-off between accuracy and efficiency. One of the

goals for this dual approach is to analyze and understand this trade-off. In both
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approaches, the iterative substructure discovery process remains the same. We begin

with individual layers and identify substructures within each layer. Subsequently, the

generated results from each layer are used to compose substructures that span across

multiple layers.

We use a decoupling approach (divide and conquer paradigm) for MLN sub-

structure discovery to accommodate layers of arbitrary size. We employ the MapRe-

duce framework to leverage distributed data processing for substructure discovery.

This allows us to achieve better scalability and response time. The decoupling ap-

proach can be applied to handle multiple layers. Mining substructure in this way

posed several challenges which we had to address: i) finding layer-wise substructures,

ii) composing the layer-wise results to find substructures across layers, iii) maximizing

performance by exploiting parallelism as much as possible, and iv) verifying the cor-

rectness of results. For verification, the proposed algorithms were applied to synthetic

(Subgen) and real-world datasets like Amazon and DBLP.
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CHAPTER 1

INTRODUCTION

The ability to analyze large, diverse datasets is becoming increasingly impor-

tant in many areas of research from diverse application domains. Big data analytics

can provide valuable insights and help businesses make data-driven decisions. Big

data analysis is extremely valuable for organizations as it provides knowledge that

would be difficult to discover using traditional methods. They may reveal interest-

ing patterns, trends, and invaluable business insights which can then be used for

improving business strategies, developing new products or services, and making bet-

ter decisions. Moreover, big data analytics is not limited to a specific industry or

sector. It is being used in healthcare to develop personalized treatments, in finance

to detect fraud, in transportation to optimize routes, and in retail to gain insights

into customer behavior and improve product design and delivery. With the massive

amount of data generated by sources such as social media, e-commerce websites, sci-

entific experiments, and financial transactions, there is a need for effective methods

and frameworks to model this data and extract insights. This includes the ability to

identify important relationships that constitute repeating patterns in the data.

Therefore, data mining has always been a crucial component of big data anal-

ysis, helping organizations understand large and complex data sets. The purpose of

data mining is to extract interesting patterns that are frequent or possess interesting

properties, such as good compression of the original graph in data that may not be

apparent without mining. Because graph databases are widely used to represent data

in which entities have one or more relationships, graph mining is useful for analyzing
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data that has many structural relationships. Graphs are used to model data by repre-

senting objects or entities as nodes, and the relationships between them as edges. For

example, in a social network, nodes might represent users with username as node label

and edges might represent connections between those users like friends, followers, etc.

as edge labels. Similarly, in a chemical compound, nodes might represent atoms, and

edges might represent the bonds between those atoms. Graph based database man-

agement systems like Neo4J [1] are becoming increasingly popular due to their ability

to model interconnected and complex data sets as graphs and analyze them. They

offer optimized performance and scalability, making them well-suited for applications

such as social networking, recommendation engines, and network management.

Graph-based data mining has proven to be a powerful approach for analyzing

data that can be naturally represented as a graph. The key to this approach is the

ability to extract and analyze the numerous components (in the form of substructures

which are connected subgraphs) that are present within the data modeled by a graph.

We can then use these to extract interesting patterns present in the dataset. By

leveraging graph mining techniques, we can discover these interesting patterns that

may be difficult or impossible to identify using other methods.

1.1 Substructure Discovery in Graphs

Substructure discovery is an unsupervised approach to data mining to infer

new knowledge and is typically applied on graph representations. Frequent patterns

are a common concept in data mining that refers to item sets, subsequences, or

substructures that occur frequently in a given dataset, meeting or exceeding a user-

defined threshold. For example, in a transactional dataset, a frequent itemset could

be a set of items, such as bread and butter, that are often bought together. Such an

insight can be used to identify sets of items that are frequently purchased together and
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help a business stock and group their items appropriately. Similarly, in the context

of graph theory, frequent structural patterns can be recurring patterns of subgraphs,

subtrees, or sublattices that occur frequently in the data.

Suppose we have a graph database, and we want to identify frequently occurring

subgraphs. Frequent occurrence indicates the importance of the substructure in the

larger data set and hence can be of interest. For example, number of occurrences

of a substructure in a protein indicates the contribution of the substructure to the

overall characteristic. This may differ from protein to protein. We could define a

frequent subgraph as a substructure that appears in a minimum number of graphs

in the database, as specified by a user-specified threshold. By identifying frequent

subgraphs, we can gain insights into the underlying structure of the data and identify

recurring patterns or motifs.

Frequent substructures have numerous applications across various domains, and

their identification can help uncover essential insights and knowledge that can be

used to advance research and development in these fields. For example, in the field

of bioinformatics, substructure discovery can be used to identify common patterns

in DNA sequences, which may be indicative of important biological functions or

relationships. As graphs are often used to model complex systems, such as social

networks, transportation networks, and biological networks, identifying substructures

within these graphs can help us understand the underlying patterns and relationships

that govern these systems.

In the biological domain, frequent structural patterns can identify common

substructures or motifs in biological networks, such as protein-protein interaction

networks or gene regulatory networks. These may correspond to functional units or

biological pathways, which can provide valuable insights into the underlying biology.
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In social network analysis, frequent structural patterns can identify common

substructures in social networks, such as groups of individuals that frequently inter-

act or clusters of individuals with similar interests. This information can be useful

in identifying groups, understanding the dynamics of social networks, and predicting

behaviors or outcomes. For example, number of subgraphs (frequency) of a partic-

ular size indicates the number of people with that many relationships (e.g., friends,

connections etc).

In chemistry, frequent subgraphs or structural patterns in chemical compounds

can provide insights into the properties of the molecules, such as their reactivity

or biological activity. For example, identifying frequent subgraphs in a database

of compounds with known biological activities can help identify structural features

associated with specific biological functions, which can be useful in drug discovery

and design.

In computer science, these substructures can be used for a variety of applications

such as network analysis, data mining, and machine learning. They can be used to

simplify and analyze complex graphs. By identifying and isolating substructures, we

can reduce the complexity of a large or dense graph, making it easier to analyze or

visualize.

1.2 Why MultiLayer Networks (MLNs) instead of traditional graphs

Most complex systems are made up of a variety of interacting components that

work together to create novel emergent behavior. A promising method for studying

such systems is to analyze the networks that encapsulate these interactions among

the system’s components within its model. Simple networks like single graphs (also

called simple graphs or a monoplex) have provided valuable insights into the func-

tioning of different natural, social, biological, and technological systems in recent

4



decades. However, real-world systems are often interconnected, and they may have

multiple interdependencies that single-layer networks can represent but are difficult

to understand (structure as well as semantics) or analyze. A more comprehensive

framework that allows for different networks to develop or interact with one another

is required to manage this added complexity.

For example, the edges within networks can possess diverse characteristics, as

observed in modern social networks. They frequently comprise multiple forms of

connectivity information, edges can either be classified based on the nature of the

relationships between people or the interactions between them. Moreover, social

networks often include diverse types of nodes, such as males and females, or social

structures, such as individuals being a part of a club or an organization. Representing

a social system as a network where people are connected by only one type of relation-

ship often leads to an oversimplification of reality and information loss. Therefore,

sociologists have long acknowledged the significance of studying multiple social net-

works using distinct types of connectivity among the same group of individuals [2].

Such systems are better studied through multilayer networks. Multilayer networks

are a more general framework that allows for the analysis of complex systems with

multiple interacting units and inter-dependencies that are not properly captured by

single layer networks. In a multilayer network, each layer represents a different type

of interaction or relationship between the system’s constituents. For example, in a so-

cial network, one layer may represent friendships between individuals, while another

layer may represent professional LinkedIn connections. By analyzing the interactions

between layers, it is possible to gain insights into the emergent behavior of the system

as a whole.

Multilayer networks are a powerful tool for modeling complex systems because

they allow for the analysis of several types (or subsets of several types) of interactions
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and relationships simultaneously. This can reveal patterns and structures that would

be difficult to detect using single layer network models or using the aggregated ap-

proach. Multilayer networks have been used to study a wide range of systems, from

biological networks to transportation systems to social networks.

Multilayer networks provide a complete and more nuanced picture of the inter-

actions and inter-dependencies that give rise to emergent behavior in complex sys-

tems, making them an essential tool for network science and other fields of research.

Although there has been a lot of research for analyzing conventional graphs and a

number of main-memory algorithms have been developed for various analysis, extend-

ing these to the multilayer networks can be challenging. Traditional network analysis

techniques have limitations when applied to multilayer networks, and therefore, there

is a need to develop new algorithms and methods to explore these networks and their

characteristics. Traditionally, although multilayer networks are used for modeling,

they are converted into a single graph using aggregation or projection for analysis.

The benefits of modeling data using multilayer networks are explored in detail in

[3,4]. To illustrate the benefits of multilayer networks in real world applications, Zitnik

et al. [5] constructed a multilayer network comprising molecular interactions, where

each layer represented a different human tissue. Their results demonstrated that

incorporating the tissue hierarchy into the model enhanced its predictive capability

as compared to simple graphs.

Multilayer networks can be of several types, including homogeneous, heteroge-

neous, and hybrid, depending on the type of layers and connections between them.

Figure 1.1 shows these types of multilayer networks.

1. Homogeneous Multilayer Networks (HoMLNs): In this type of MLN,

each layer has the same or common set of nodes which are interconnected within

the layer and termed as intra-layer edges. However, each layer has its own set of

6



Figure 1.1: Different Types of Graph Models

inter-layer edges based on the relationship being modeled. Each node or edge

can have a labels. Labels of nodes and edges are not unique. For example,

in a social network, we could have different layers representing different types

of interactions (e.g., online messaging, face-to-face interactions), but the set of

individuals remains the same in each layer.

2. Heterogeneous Multilayer Networks(HeMLNs): Here, the layers have

different sets of node types, and the edges in each layer differ in terms of their

meaning or interpretation. The presence of inter-layer edges that connect differ-

ent types of nodes or entities across layers distinguish HeMLNs from HoMLNs.

This makes them suitable for modeling and analyzing complex, heterogeneous

data. For instance, we could have a multilayer network representing a trans-

portation system, where each layer corresponds to a different mode of transport

(e.g., roads, trains, flights), and the nodes in each layer are different (e.g., sta-

tions, airports, highways).
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3. Hybrid Multilayer Networks(HyMLNs): This type of network combines

elements of both homogeneous and heterogeneous multilayer networks, where

some layers have the same set of nodes and edges, while others have different sets

of nodes and edges. This type of network is often used to represent complex

systems where there are both uniform and diverse interactions between the

nodes, such as a social network where some individuals have multiple roles

(e.g., student and teacher).

Over the past few years, there has been a surge of interest in mining and anal-

ysis of multilayer networks. Several algorithms have been developed for substruc-

ture discovery on single graphs and even attributed graphs, but to the best of our

knowledge not for MLNs. Many existing algorithms for mining complex networks

are main-memory algorithms and hence cannot deal with large graphs (depending

on the available memory). However, massive-scale datasets from many applications

areas (social networks being one of them) cannot be analyzed using these algorithms.

Online social networks such as Facebook [6] and LinkedIn [7] have 3 billion and 950

million monthly active users respectively. Internet Movie Database (IMDb) [8] infor-

mation on 513,598,803 data items with 14,631,612 titles and 12,418,036 individuals

(actors, directors, writers, etc.) involved in the entertainment industry. These dataset

sizes are typical of the databases that we see today.

Computing substructures on such large datasets is no longer viable on indi-

vidual machines. Consequently, distributed approaches for storing and processing

such data have become necessary. Moreover, the present approach of aggregating the

MLN into a single graph becomes infeasible. This has led to a growing demand for

the development of algorithms that can run directly on MLNs without aggregating

them. Such algorithms for graph mining in multilayer networks can handle large-scale

data and provide effective solutions to the challenges posed by multilayer networks.
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Figure 1.2: Approaches to Analyze MLNs

Among some of the work already done on MLNs, [9] proposed a novel general-purpose

approach that can be used for any analysis by leveraging the layers as decompositions

of MLN and computing analysis using a composition of results from individual layers.

1.3 Current Approaches to Analyze MLNs

Current approaches to analyze Multilayer Networks (MLNs) typically involve

mapping the networks to an equivalent single graph through various methods. In case

of homogeneous MLNs this involves aggregating the edges of the multilayer network

into a single-layer network. However, this mapping process can lead to the loss of

valuable information present in the multilayer graphs.

A network decoupling is presented as a method for analyzing MLNs without

transforming them into another form. This is a novel method proposed in [10–12] for

finding substructures in multilayer networks that approaches the problem by decou-
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pling the network into individual layers of the MLN. The decoupling approach retains

the structure and semantics of the layers in the result while leveraging existing algo-

rithms. It is akin to a divide and conquer strategy for MLNs, as illustrated in Figure

1.2(b). It is applied as follows:

1. Utilize the analysis function to analyze each layer individually, considering as-

pects such as frequent subgraphs, community structure, centrality metrics, etc.

2. Apply a composition function to compose the partial results from each layer for

any two chosen layers, generating intermediate results.

3. Repeat the composition process until the desired expression is computed.

This approach contrasts with current methods, as depicted in Figure 1.2(a),

where aggregation-based approaches lead to the loss of both structure and semantics.

Additionally, Figure 1.2(c) illustrates MLN approaches where only inter-layer edges

are considered instead of all edges.

The decoupling-based approach has demonstrated effectiveness, particularly for

centrality [12–14] and community [11, 15] analysis. However, its application to sub-

structure discovery has been minimal [16]. A comprehensive investigation into the

efficacy of the decoupling-based approach for substructure discovery has not been

undertaken.

1.4 Substructure Discovery in a Multilayer Networks

There are two major approaches to find substructures in multilayer networks:

1. Layer Aggregation into a single graph

This method aggregates the information from different layers of the network

into a single network. We can then apply traditional graph mining techniques

to identify substructures in the single or aggregated network. But there are

drawbacks to this approach:
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• Loss of information: Aggregating the layers to a single layer results

in the loss of information that is specific to each layer. Processing each

layer independently and in parallel is not possible due to the aggregation

process, which limits the parallelization opportunities.

• Complexity: Aggregating the layers and processing can become computa-

tionally expensive as the size of the single graph increases due to inclusion

of edges from each layer. This can limit the scalability of the approach. In

the case of very large multilayer networks, the combined graph is too large

to fit into memory and we need to use other approaches like partitioning.

• Lack of flexibility: Aggregation is not appropriate when we need to work

on a subset of the layers as each subset would need to be aggregated and

separate single graphs generated for analysis.

2. Decoupling based approach

In this approach, the substructures are identified in each layer independently.

After that, the substructures are composed using a new composition function

across two layers to obtain the final substructures in the Multilayer Network.

This binary composition can be repeated for more than 2 layers.

Decoupling approach offers a many of advantages over aggregating multiple

layers into a single graph:

(a) Preservation of MLN Structure: The underlying structure and modeling of

the Multilayer Network (MLN) are retained. There is no loss of information

[17] as the MLN structure is preserved along with the semantics (labels in

each layer). In contrast, combining all layers into a single graph may hide

the origin of generated substructures, making it challenging to discern

which layers they belong to.
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(b) Use of Existing Algorithms: It allows for the use of existing single-layer

algorithms for identifying substructures. Any existing algorithm can be

used for substructure discovery in each layer and parallel processing of

each layer. This approach leverages the natural decomposition of a MLN

into layers, which are likely to be smaller. The composition uses the output

of these algorithms.

(c) Flexibility for Subset Analysis: Decoupling provides the flexibility to ana-

lyze specific subsets of layers within the MLN. This allows tailored analysis

on selected layers without requiring the entire combined MLN.

(d) Better Parallel Processing: By handling each layer individually and in

parallel,it enables more efficient use of resources. Each layer can be pro-

cessed independently, taking advantage of parallel processing capabilities

for faster results.

1.5 Problem Statement

This thesis addresses the problem of finding “interesting” substructures in a

given Homogeneous Multilayer Network (MLN) using the decoupling approach while

retaining the MLN structure and semantics. The crucial part is to compute the inter-

layer substructures only after the identification of all the intra-layer substructures,

by only using the results from individual layers and no other information. We also

achieve this without aggregating the MLN layers into a single graph.

We use a decoupling approach to find substructures present in the layers [18]

and then compute the inter-layer substructures (not generated when processing each

layer individually) that exist across layers. When finding substructures in MLNs, the

best substructures may exist across layers, which makes it challenging to compute the

best substructures in the MLN correctly. As substructure discovery algorithms are
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iterative by nature, composition can be done in multiple ways: i) after each iteration,

ii) after all iterations, or iii) somewhere in between.

The algorithms available in the literature [18–20] are not applicable to the mul-

tilayer setting as they are designed to identify substructures in a single graph. How-

ever, these substructures can be detected by aggregating the MLN into a single graph,

which is the approach we have employed to generate our ground truth. Nonetheless,

as the size of the MLN expands, analysis on the MLN using the aggregated approach

becomes computationally costly and inefficient.

Subdue [19] is one of the early graph mining algorithms that detects the best

substructure using the minimum description length principle. Subdue constructs the

whole graph and stores it in the form of an adjacency matrix in main memory and

then mines by iteratively expanding vertex of a substructure of size k to a substructure

of size k+1 in iteration k.

HDB-Subdue [20] implements subdue using a relational database approach us-

ing SQL. The goal was to remove main-memory dependency as RDBMS has no size

limitation on a relation. A graph is represented using a relation to represent an edge

with label information as a tuple. It can handle multiple edges, cycles, and hier-

archical reduction to deal with a general graph. HDB-Subdue uses unconstrained

substructure expansion with duplicate elimination, to explore all possible expansions

including multiple edges. SQL-based analytic functions were used to implement the

beam. HDB-Subdue was able to scale to a million nodes and 1.6 million edges. But

due to the self-joins on relations, the response time increased with the size of the

graph. This approach could not be used for graphs of arbitrary size. Partition and

distributed processing were essential to handle them.

MapReduce (or M/R) Subdue [18] casts the subdue into a distributed frame-

work using the MapReduce framework. The basics of graph mining such as systematic
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expansion and computing graph similarity have been implemented in the MapReduce

paradigm. This approach enables horizontal scalability of substructure discovery

using partitioning strategies. This allowed the MapReduce based substructure dis-

covery to scale to even larger graphs over traditional methods. We will discuss these

approaches in more detail in Chapter 2.

The algorithm proposed in [16] followed the decoupling approach to find sub-

structures in an MLN. The approach was to find increasing size substructures present

in the layers of the MLN and compose them to compute inter-layer substructures

after each iteration. This process was repeated till the desired size of substructure

was reached or when there were no more substructures to generate.

As substructure discovery is an iterative process the composition function can

be employed in each iteration or after the conclusion of the substructure discovery

process for each layer, presenting a trade-off between response time and accuracy.

In this thesis, we propose two approaches to substructure discovery in Homogeneous

Multilayer Networks (HoMLNs): i) employing the composition function after each it-

eration, generating inter-layer substructures multiple times, and ii) applying the com-

position function only once at the end, generating inter-layer substructures only once.

We are analyzing the trade-off between response time and accuracy to understand

the nuances for these two approaches. We also employ a range-based partitioning

scheme to handle arbitrarily large layers in the MLN.

1.6 MapReduce: A Distributed Framework

MapReduce is a widely used framework for processing large-scale data in a dis-

tributed environment. The ability of MapReduce to process data in parallel across

distributed computing resources has made it a popular choice for large-scale data

processing tasks, including graph computations. Many companies, such as Google,
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Facebook, and Twitter, have used the MapReduce framework for graph processing

tasks, such as page ranking, community detection, and recommendation systems.

Apache Hadoop is an open-source framework that implements the MapReduce pro-

gramming model and has been widely used for large-scale distributed processing of

data that can run on a large cluster of commodity machines and is highly scalable.

The MapReduce model involves three stages:

• Map stage: In this stage, the input data is split into smaller parts, and each

split is processed independently using the same code (data parallelism) by a

different worker node in the cluster. The worker nodes apply the user defined

map function which takes an input data in the form of key-value pairs one at

a time and converts it into a set of key- value pairs which are the intermediate

outputs. Before the data is sent to the reducer nodes, an optional combiner

can be applied to each group of key-value pairs at the mapper nodes. The

combiner aggregates and combines values for the same key locally on the mapper

node. This step reduces the amount of data that needs to be transferred to the

reducers.

• Shuffle stage: In this stage, the intermediate outputs produced in the map

stage are partitioned on the key emitted by the mapper (number of partitions

determined by the number of reducers given or default which is 1) and shuffled

based on partitions. All key value pairs within the same partition are sent to

the same reduce worker node.

• Reduce stage: Partitions from each mapper are merged based on key value

to obtain a single value list for each key in the partition. In this stage, the

worker nodes process each key-value-list in the partition. Each key-value list is

processed by the user code to generate the desired output. Each reducer writes

it own output to HDFS.
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The framework automatically handles the distribution of data by generating splits

as indicated or using default block size, task scheduling, and fault tolerance across

a cluster of commodity machines. The runtime system handles the parallelization

and execution of the program, machine failures that may occur, and the required

inter-machine communication.

The MapReduce model is designed to be user-friendly, even for programmers

without prior experience with parallel and distributed systems. The model abstracts

away the complexities of parallelization, fault-tolerance, locality optimization, and

load balancing. As a result, users can focus on developing algorithms and logic

specific to their applications without having to worry about the low-level details of

distributed computing. This is why we have chosen the MapReduce paradigm to

address our problem of substructure discovery in multilayer networks. MapReduce

framework provides the architecture to process each of the layers independently while

achieving maximum parallelization. It is also possible to split each layer and process

the layer in a distributed manner if the layer size increases.

We have adapted the substructure discovery approach proposed for large single

graphs in MapReduce [18] to work in the case of multilayer networks. The Mapper

allows us to process the layers in parallel to find substructures in each layer. The

shuffle and reduce stages are used to bring substructures that exist across layers

together for composition. After composition, we rank the discovered substructure

using graph isomorphism and a specified metric (MDL or frequency). Using the

algorithms proposed in [18] enables the partitioning of layers using a range-based

partitioning scheme. This approach allows us to handle input layers of arbitrary that

are part of MLN.

Using this framework, our goal to preserve the MLN structure and process the

layers independently is also accomplished. In addition, the MapReduce framework
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can automatically adjust to the available resources. The framework can be scaled

up easily by requisitioning as many nodes as needed which can help to improve the

response time for larger datasets. Our approach can use an arbitrary number of

processors to exploit parallelism.

1.7 Thesis Contributions

The contributions of this thesis are:

• Proposed two composition algorithms for Substructure Discovery in a Homoge-

neous Multilayer Network.

• Incorporating the algorithms within the MapReduce framework

• Ensured correctness of both the approaches

• Evaluated the impact of various parameters (layer distribution, beam size, sub-

structure size) on the accuracy.

• Extensive experimental analysis using large scale real-world and synthetic datasets

to test accuracy and performance against the ground truth.

1.8 Thesis Organization

Rest of the thesis is organized as follows -

• Chapter 2 discusses the background and related work in graph mining and

substructure discovery using MapReduce and other approaches.

• Chapter 3 elaborates on the preliminaries for graph mining such as input graph

representation, sub graph expansion, duplicate elimination, graph isomorphism,

partition management in the MapReduce framework.
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• Chapter 4 presents our decoupling-based design of the composition algorithms

for homogeneous multilayer networks – one for iterative (HoICA algorithm) and

one for at-the-end single composition (HoSCA algorithm)

• Chapter 5 discusses the implementation details for all the components used for

substructure discovery for Multilayer Networks in the MapReduce environment.

• Chapter 6 provides extensive experimental analysis of several data sets used to

validate our approach.

• Chapter 7 concludes the thesis and discusses the avenues for future work.
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CHAPTER 2

RELATED WORK

In this chapter, we shall present a comprehensive review of the significant work

that has been done in the field of substructure discovery. We will examine the exist-

ing studies and methodologies undertaken for finding substructures within complex

datasets. We will investigate the diverse approaches employed, ranging from memory-

based approaches to disk-based approaches to database-oriented approaches. By crit-

ically analyzing the strengths and limitations of each approach, we aim to achieve a

complete understanding of the current literature. This will allow us to compare our

proposed algorithms and their advantages as compared to the work in the literature.

2.1 Existing Graph Mining techniques

The main challenge of counting all instances of a specific substructure that

are exact or similar, in a graph is to develop an algorithm for detecting identical

or similar subgraphs. To ensure the generation of all substructures, a systematic

approach is required. This involves generating substructures of increasing sizes in

each iteration. To contain the exponential size of that space, a heuristic is needed.

This is done by using frequency or Minimum Description Length (MDL) [21] and

choosing top-k values (or beam size). Higher frequency or MDL can indicate an

interesting property of the graph. As discussed earlier, graph mining techniques

in the context of substructure discovery can be main memory based, disk based

or database-oriented. In this thesis, our focus is on mining recurring patterns and

”interesting substructures” in a Homogeneous Multilayer Network. We will discuss
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research done in both single layer graphs (monoplexes) and multilayered graphs as

this would enable us to observe the inherent evolution of substructure mining as the

data modelling became more complex.

2.1.1 Main Memory Approaches

Most of the earlier approaches developed for graph mining utilized main mem-

ory algorithms. These algorithms employed a complete representation of the graph,

typically an adjacency list or matrix, which needed to be loaded into memory for

processing. In this approach, the algorithms could effectively access and process the

entire graph, enabling the extraction of meaningful patterns and insights from the

data. This approach was feasible as the size of the graphs was not too large and was

able to fit into memory.

2.1.1.1 Subdue

Among the very first main memory algorithms was Subdue [19]. It iteratively

generates substructures of increasing sizes and evaluates them using the MDL princi-

ple. The subdue algorithm uses a constrained beam search approach. The algorithm

is initiated with a substructure of size one, which represents a single edge. In each

iteration, the algorithm selects the best substructures and expands their instances

by one edge. This expansion is unconstrained and all possible expansions are under-

taken. The best substructures from the newly generated instances are selected for the

next iteration. The algorithm keeps track of the best substructures, which would be

returned when either all potential substructures have been evaluated or the overall

computation surpasses a predefined threshold.

An intriguing aspect of the Subdue algorithm involves its utilization of back-

ground knowledge, which is used to direct the search towards more suitable substruc-
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tures. This background knowledge is formulated as rules for assessing substructures,

and it can have domain dependent or independent rules. When evaluating a substruc-

ture, these rules influence the value given to the substructure by the algorithm. Each

rule is attributed with a positive or negative weight, which steers the search towards

the desired type of substructure. Consequently, the assessment of each substructure

is influenced by the insights provided by the user’s background knowledge and the

MDL principle.

2.1.1.2 Apriori-based approach

The other main memory approaches to graph mining are AGM [22] and FSG

[23], with both following the Apriori-based methodology. The Apriori-based approach

to searching for repetitive substructures follows a bottom-up approach, beginning with

small-sized graphs and progressively expanding the search. During each iteration,

existing substructures are expanded by merging two similar substructures that have

slight variations. It uses frequent k-subgraphs to generate frequent (k+1) subgraphs.

For instance, a substructure involving 3 edges could be identified by merging two

substructures containing 2 edges each, which differ by only 1 edge.

The Apriori property, initially introduced in [22], forms the foundation of the

Apriori Graph Mining (AGM) technique. AGM utilizes the apriori property to

streamline the search scope, enhancing the efficiency and scalability of the repeti-

tive substructure exploration process.

The FSG algorithm (Frequent Subgraphs) (FSG) [23] is another apriori-based

approach which aims at discovering interesting substructures that appear frequently

over an entire set of graphs. This differs from Subdue, where interesting substructures

are discovered within a single graph (or a forest). It is designed along the lines of

Apriori association rule mining algorithm but utilizes the concept of canonical label-
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ing. By leveraging the fact that identical graphs exhibit the same canonical labeling,

we can exploit this property to detect occurrences of frequent substructures. FSG em-

ployes a flattened representation of the graph’s adjacency matrix for determining the

canonical labels. This reduces the V! complexity for canonical labeling to V1!+V2!..

where V1 and V2 are smaller than V. Hence it avoids V! complexity.

However, main memory algorithms possess certain inherent limitations, such as

their inability to manage large and extensive patterns, the generation of vast candidate

sets, and the need for multiple database scans. These limitations, combined with the

growing size of today’s datasets, render these approaches infeasible within the current

landscape of big data.

2.1.2 Disk-Based Approaches

The advent of increasingly comprehensive methodologies for data acquisition

has led to the incorporation of even more structural information. This gives rise to

the issue of graph sizes becoming so large that the data can no longer be stored in

main memory. Disk-based graph mining methods [24–26] emerged to resolve this is-

sue. A portion of the graph data is maintained in memory, while the remaining data

is stored on the disk. Given the challenges and excessive costs associated with random

access to disk-based graphs, indexing the graph appeared to be the most suitable ap-

proach. Moreover, frequent substructures are particularly well-suited for indexing due

to their relative stability in database updates. This enables cost-effective incremental

maintenance of the index. This is particularly beneficial in scenarios involving large

graphs, where indexing can be achieved through the frequent substructures inherent

within the graph.

The gIndex methodology [27] capitalizes on frequent substructures as indexing

units. A substructures is deemed frequent if its frequency surpasses a defined mini-
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mum support threshold. This enables frequent substructures to be directly retrieved

due to indexing. Additionally, leveraging the attribute of incremental updating, gIn-

dex can be created through a sole scan of a given database.

However, many graph indexing techniques entail a computationally intensive

index construction phase. It is essential to minimize the count of indexing features

to maintain a compact index structure that can fit within the main memory for

fast and efficient access. In cases where the graph size is large, the index size also

enlarges proportionally. This leads to an expensive and inefficient index construction

process and lead to an index structure that may be too large to fit into memory.

Considering these challenges, devising more efficient techniques becomes of paramount

importance.

2.1.3 Database-oriented Approaches

Disk-based algorithms tackle the challenge of handling portions of a graph

within available memory for processing. However, these algorithms require explicit

marshalling of data between the disk and the main memory. This requires careful

integration into the algorithm’s design and implementation. The effectiveness of disk-

based methods can be greatly influenced by the rate of data transfer between disk

and memory, buffer size, buffer management and the replacement policies, and hit

rates. An alternative approach involves leveraging efficient buffer management and

query optimization techniques that are already available in Database Management

Systems (DBMSs). This involves mapping graph mining algorithms to SQL queries

and utilizing a DBMS to store the data, taking advantage of the mature optimizations

available in the DBMS. [20,28] have indeed employed this approach and we shall take

a deeper look into their methodologies.
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2.1.3.1 HDB-Subdue

HDB-Subdue [20] is a modification on top of both DB-Subdue and EDB-

Subdue [29]. It can accommodate a more comprehensive array of graph structures,

including cycles and multiple edges between vertices. This is achieved by extend-

ing the graph representation through the introduction of connectivity attributes. In

addressing certain limitations of EDB-Subdue’s constrained substructure expansion,

HDB-Subdue allows for unconstrained expansion of substructures. However, this un-

constrained expansion can give rise to generation of pseudo duplicate instances of

the same substructure. This can happen when the same instance is expanded or

enumerated but in a different order. To counter this, HDB-Subdue employs an ap-

proach of identifying these pseudo-duplicates by sorting substructure instances based

on vertex numbers and connectivity maps, subsequently eliminating them. Similarly,

for counting the frequency of substructure instances, HDB-Subdue arranges instances

by vertex labels and connectivity attributes. Notably, HDB-Subdue also introduces

hierarchical reduction of graphs. After the best substructure is determined for a given

iteration, HDB-Subdue compresses the graph by replacing all instances of the best

substructures with a single vertex.

2.1.3.2 DB-FSG

DB-FSG [28] shifts the paradigm of frequent subgraph (FSG) mining from a

main memory-based approach to a database-oriented strategy while still operating

across a set of graphs. It expands upon the substructure representation proposed by

HDB-Subdue. A more efficient algorithm for the elimination of pseudo duplicates

is presented, surpassing the efficiency of the approach used in HDB-Subdue. It also

introduces a streamlined method for deducing structural relationships from relational
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data, aimed at facilitating graph mining, whether for identifying the best subgraph or

for extracting frequent subgraphs. This approach involves the inference of the entity-

relationship model from the database, utilizing instances of tables along with primary

and foreign key constraints to generate instances of graphs based on populated in-

stances of these relations. A key emphasis of this approach is its adaptability towards

various relational database platforms, coupled with efforts to minimize memory and

space requirements.

Although these database-oriented approaches were able to achieve scalability

with graphs containing well over a million nodes and edges, they also had some

notable challenges. The use of joins for substructure expansion is expensive and

independent expansion (unlike main-memory approaches) leads to the generation of

duplicate substructures. Removing these duplicate substructures necessitated the

sorting of columns. But in row-based Database Management Systems (DBMSs), this

leads to incurring significant costs in performance. As these DBMSs are optimized for

sorting rows, several joins had to be employed for column sorting, contributing to the

overall cost. Secondly, the performance of operations in DBMSs is constrained by the

number of columns present in a relation, imposing an upper limit on the size of the

largest substructure that could be represented using database-oriented approaches.

2.2 Distributed Approach to Graph Mining

As previously discussed, graph sizes can reach significant magnitudes, render-

ing traditional main memory-based systems ineffective. In response, alternative ap-

proaches store the graph on disk and load it into memory when required. Disk-based

strategies are suitable for managing graphs larger than what can be accommodated in

memory [30], but they introduce challenges related to customizing buffer management

and introducing I/O latency. With the proliferation of big data, conventional systems
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become inadequate, prompting the need for a shift to distributed approaches for data

management and processing. Several distributed graph databases are available for

large-scale processing, including Neo4J [1], ArangoDB [31], Dgraph [32]. However,

these databases primarily focus on enhancing the storage aspect of graph data and

do not prioritize optimizing graph mining within the database.

Certain graph mining algorithms [33–35] have demonstrated effectiveness when

deployed within a cloud architecture. Moreover, research has been done on finding

interesting patterns within large graphs using the MapReduce framework [33]. How-

ever, the pattern finding algorithm proposed in [33] needs a predefined pattern to

search for all instances of that specific pattern within the graph. But if we need

to identify a pattern that exhibits specific characteristics, like having the most com-

pressibility, we cannot provide the pattern beforehand. There is also ongoing research

into partitioning extensive graphs into manageable segments to enhance distributed

processing across computational resources [36].

2.3 Substructure discovery using MapReduce

M/R Subdue proposed in [18] implements the subdue algorithm using the

MapReduce Paradigm. It casts main memory approach (Subdue), along with its nu-

ances into a MapReduce distributed framework. This adaptation allows it to leverage

the distributed processing capabilities provided by the MapReduce framework. Con-

ventional main memory-based techniques have been extended to operate on graph

partitions, enabling parallel processing. By leveraging the MapReduce distributed

framework, the processing capacity is expanded across a cluster of commodity ma-

chines. This approach enhances the scalability of graph mining and enables more

efficient handling of large-scale graph data.
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The first step of substructure discovery is the partitioning of the input graph

into smaller segments, followed by the aggregation of results across these partitions.

It is an iterative algorithm that generates substructures of increasing sizes, starting

from a single edge (substructure of size 1). Duplicates are removed as necessary

and a metric (like MDL) is applied to rank the substructures. The expansion of

substructures by one edge is performed in each iteration using adjacency lists for

each partition. The algorithm continues until a specified substructure size is attained

or no further substructures can be generated. After each iteration, a subset of the best

substructures is selected for further consideration, updating substructure partitions

accordingly. All substructures existing within the constrained beam search are passed

on to the subsequent iteration for further expansion. This enables the efficient and

distributed exploration of meaningful substructures within large graphs.

During the MapReduce process, each input record is handled individually by

the Mapper. The input graph is represented as a sequence of graph edges, with each

edge represented by an edge label, source vertex ID and label, and destination vertex

ID and label. In the initial stages, substructure partitions are disjoint, ensuring

that the same edge is not duplicated across multiple partitions. The adjacency list

is partitioned according to the substructure partition as well. Following the initial

iteration, new edges are incorporated into the existing substructure partitions. This

necessitates the updating of the adjacency list for each partition that has gained a new

edge. Therefore, it is essential to carefully consider the approach used for generating

partitions and subsequently updating them.

2.4 Graph Partitioning using MapReduce

METIS [37] is one of the earliest and most effective graph partitioning schemes

available. METIS can produce partitions of high quality while minimizing the edge
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crossover (cut-set) between partitions. However, it does consume a notable amount

of time during the partition generation process. Another limitation of METIS is its

incompatibility with temporal graphs which possess the ability to add and remove

of vertices and edges over time. Therefore, M/R Subdue introduces two algorithms,

dynamic AL-SD and static AL-SD, based on the graph partitioning technique used -

Arbitrary Partitioning and Range Based Partitioning, respectively.

2.4.1 Arbitrary Partitioning

Here, the initial substructure partitions are generated through random grouping

of graph edges. These initial partitions are disjoint, but adjacency list partitions are

not. Each Mapper expands a given substructure using the corresponding adjacency

list partition, in parallel. In the reducer, counting is performed by grouping together

isomorphic substructures. Newly generated substructures are written to the same

partition and sent forwarded for subsequent iterations. Considering the possibility

of new substructure partitions containing edges that span multiple partitions, the

adjacency list is updated to contain all newly introduced vertices along with their

respective adjacency lists. The effectiveness of this type of partitioning is highly

reliant on having a small edge cut set.

2.4.2 Range Partitioning

This approach partitions the global adjacency list by evenly distributing ver-

tex IDs into distinct ranges, thereby establishing adjacency partitions. In contrast

to the prior method, these adjacency partitions are disjoint and share no vertices

between adjacency list partitions. The process employs two consecutive MapReduce

jobs: the first job handles substructure partitioning and expansion, while the second

one is responsible for substructure calculations. The adjacency list partitions remain
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the same across iterations, avoiding the expensive updates needed for arbitrary par-

titioning. This requires the routing of substructures to the correct partition which

has the corresponding adjacency list for expansion. The range information allows for

quick identification of the partitions to which a substructure belongs (a substructure

can belong to multiple partitions). However, the same substructure may have to be

expanded in multiple partitions due to disjoint nature of adjacency lists in the range

partitioning approach.

The experimental analysis of both partitioning methods showed that despite

Range partitioning incurring slightly higher shuffle costs, it outperforms Arbitrary

partitioning, which involves high I/O costs due to the updating of the adjacency lists

after each iteration. While traditional partitioning strategies like METIS aim to re-

duce edge crossover (cut-set) between partitions, they require multiple passes over the

graph to create the initial partitions. This renders them unsuitable for larger graphs.

Additionally, these partitioning approaches lack support for adjacency list partitions.

Furthermore, their emphasis on creating equally sized connected partitions (or par-

titions that are a power of 2) can lead to varying workloads across heterogeneous

machines, thereby impeding speedup. It is worth highlighting that the initial par-

titioning cost for the two aforementioned schemes is lower compared to traditional

alternatives, as they only perform a single pass over the graph. Finally, Range parti-

tioning is particularly well-suited for heterogeneous clusters due to its ability to align

the range divisions with the capacities of individual machines.

2.5 Substructure discovery in Multilayer Networks

The approaches discussed earlier have primarily focused on single graphs, but

real-world scenarios often involve enriched graphs with complex relationships. This

complexity is exemplified by vertices displaying multiple relationships, which can be
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viewed as distinct layers within an underlying graph. These layers can be represented

in a Multilayer Network (MLN), where distinct relationships are depicted as various

layers within the MLN.

MLN-Subdue [16] employs a decoupling-based strategy specifically designed

for Homogeneous Multilayer Networks (HoMLN). Inspired by substructure discovery

techniques for single graphs like M/R Subdue [18], this approach aims at uncovering

substructures within HoMLN wherein each layer is independently processed with-

out aggregating the layers into a single graph. This helps preserve the integrity of

the Multilayer modeling and its inherent structure. Additionally, the Decoupling

approach affords the flexibility to analyze specific subsets of layers within the Mul-

tilayer Network. This enables tailored analysis on selected layers without the need

to consider the entire combined structure. The algorithm is implemented using the

MapReduce framework and can handle any arbitrary number of layers in the Ho-

mogeneous Multilayer Network. Each layer is independently processed in parallel,

while the substructures generated for each layer are composed after each iteration

to identify substructures spanning within the layers of the MLN. The core elements

of graph mining, including substructure generation, the composing of substructures

across layers to generate structures spanning multiple layers, removal of duplicates,

and counting of isomorphic substructures, have all been integrated into the MapRe-

duce paradigm.

The MLN-Subdue approach employs a ”divide and conquer” methodology to

generate substructures within individual layers independently. The substructures

generated for each layer are composed after each iteration to identify those spanning

the entire MLN. The process involves independent discovery of substructures of size k

within each layer, starting with k equal to 1. Subsequently, a composition function is

applied to determine substructures of size k present across all layers. The composition
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function is applied after each iteration and not when substructures of all sizes within

each layer have been identified. The composition algorithm is based on the principle

that within a Homogeneous Multilayer Network, every connected substructure is as-

sociated with a shared vertex or node that acts as a link for edges originating from

various layers.

However, this approach had its limitations. There is no provision for partition-

ing the layers of the MLN in case they are very large. Also the composition is applied

in each iteration, the input to the composition function comes from the unconstrained

expansion of intra-layer edges. The composition function has no means to limit this

input. This can reduce performance when the expansion generates a large number of

substructures.

Drawing inspiration from previous research on graph mining, we aim to present

a two substructure discovery algorithm for a Homogeneous Multilayer Network (HoMLN)

tailored for a MapReduce distributed environment. We use range partitioning for the

creation of initial partitions. We propose two composition algorithms: i) after each

iteration (HoICA), and ii) after all iterations (HoSCA). Then we can compare the

trade-offs of these two approaches at the opposite ends of the composition spectrum.
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CHAPTER 3

PRELIMINARIES

In this chapter, we will introduce the definitions and concepts used in the rest

of the thesis. We will then discuss the prerequisites for substructure discovery and

the various aspects that are involved in this process.

3.1 The Graph Model

A graph is a data structure made up of two sets - nodes (or vertices) and edges.

The nodes represent entities or objects, and the edges represent the relationships

or connections between the nodes. Graphs are used to represent several types of

networks and model complex aspects of real-world data where relationships among

entities are presumed to be important. For example, in a social network each user

(entity) is represented by a node and the connections between users (relationships)

are represented by edges.

By modeling data as a graph, we can analyze and extract insights from the

relationships between the entities. Nodes and edges can have labels which are used to

assign attributes to the nodes and edges. The use of labels in graphs allows for more

complex and nuanced representations of data, enabling more sophisticated analysis

and insights to be derived from the graph.

3.1.1 Types of Graph Models

1. Simple graph: A simple graph (also called a single graph or monoplex) is

a type of graph that represents entities as nodes and relationships as edges.
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Generally, nodes have unique numbers, but labels of nodes and edges do not

need to be unique. This model of a graph does not allow loops or multiple

edges between nodes, making it easy to understand and analyze. Despite its

simplicity, this model is widely used as it is adequate for many purposes. But

by using this model, we cannot have multiple edges and labels to represent

multiple entity and relationship types. These limitations can be mitigated by

using an attributed graph.

2. Attributed graph: An attributed graph (also called a multigraph) can capture

multiple entity types and multiple relationships between entities as it allows

multiple edges between the same pair of nodes, as well as loops (same start

and end node). Multiple labels can also be associated with the same nodes and

edges. As a model it is more expressive than a simple graph but is also more

complex. This additional complexity can make it more difficult to analyze and

interpret the graph. Additionally, algorithms that work well on simple graphs

may not be applicable or efficient on multigraphs. This brings us to multilayer

networks

3. MultiLayer Network: AMultiLayer Network (or MLN) is a network of simple

graphs that consists of multiple layers, each representing a different relationship

between entities based on a specific feature. The layers may include entities of

the same or different types and can also be related to each other. The purpose

of using an MLN is to simplify the representation from an attributed multigraph

with multiple types of entities and relationships by separating them into distinct

layers with each layer being a simple graph. This approach can enhance clarity

in understanding and processing the data. Additionally, the algorithms that

already exist for simple graphs can be utilized for MLNs as well.

33



Figure 3.1: Different Types of Graph Models

Figure 3.1 shows the different types of graph models discussed above. Figure

3.1(a) shows a simple graph with only one type of nodes and edges without any la-

bels. Figure 3.1(b) shows an attributed graph with multiple node and edge types,

with different colors representing distinct types. It also has multiple edges between

two nodes (colored light green). Lastly, Figure 3.1(c) demonstrates a multilayer net-

work where the attributed graph in Figure 3.1(b) is separated into different layers.

Each layer becomes a simple graph and has information about a single type of entity

and relationship. As there were three types of relationships (represented through

orange, blue, and purple colored edges), the resulting MLN has three separate layers.

Additionally, note that a Hybrid MLN is generated as the first and third layers have

the same node types but different relationships.

3.2 Input Graph Representation

The choice of graph representation can have a significant impact on performance

of a substructure discovery algorithm, both in terms of memory usage and execution
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time. The characteristics of the graph such as its size, density of the edges, and the

types of attributes associated with the nodes and edges being processed need to be

considered before deciding the representation to be used.

Widely used graph representations in mining algorithms include adjacency ma-

trix, adjacency list and an edge list. The adjacency matrix representation, which is a

square matrix that depicts the connections between the vertices, offers a very efficient

way for checking whether two vertices are adjacent in constant time. However, when

dealing with sparse graphs, it can result in a significant waste of memory as most

entries in the matrix will be 0. On the other hand, the adjacency list representation

is more space-efficient compared to the adjacency matrix [38], making it a better

option for sparse graphs. Edge list representation represents the graph as a list of

edges and is easy to construct and manipulate. As most real-world datasets tend to

be sparse [39], we have used the adjacency list representation along with an edge list.

In this thesis, we will focus on labeled graphs with vertex and edge labels. Each

vertex has a vertex label and a unique vertex identifier (vertex id). Each edge has

an edge label and is directed. We can use either undirected or directed edges in our

approach, but we will only consider directed edges in this thesis. This is because

directed graphs represent relationships explicitly using directions. Undirected edges

can be accounted for by assuming them to have bidirectional directionality, meaning

they have a direction in both ways. This leads to the creation of multiple edges

between nodes. Vertex and edge labels are not assumed to be unique.

Figure 3.2 shows an example input graph relevant to this thesis. The 5 vertices

have 5 unique vertex id’s (1-5) and 3 non-unique vertex labels (A, B and C). The 6

edges have a direction (from source vertex to destination vertex) as denoted by the

arrow and 4 non-unique edge labels (i, x, y and z).
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Figure 3.2: Input Graph

3.2.1 Edge list

In our approach, the input graph is represented as an unordered list of edges

or 1-edge substructures. Each edge is represented by a 5-element tuple ⟨edge la-

bel, source vertex id, source vertex label, destination vertex id, destination vertex

label⟩ which captures the direction of the edge as well. Table 3.1 displays the 1-edge

substructures of the input graph shown in Figure 3.2.

Our representation is versatile and can be expanded to accommodate multiple

edges by including an edge identifier in the edge representation to differentiate be-

tween multiple edges connecting the same two nodes. In this representation, a k-edge

substructure, is represented as a list of k 1-edge substructures. The graph is stored as

a text (ASCII) file where each line corresponds to a 1-edge substructure and serves

as the input to our algorithm.

3.2.2 Adjacency List

An adjacency list is a way of representing a graph in which each vertex is

associated with a list of edges that contain that vertex. Given a vertex, its adjacency

list is the set of edges that connect that vertex to its neighbors. For each vertex,
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the number of edges is equal to the sum of the in and out degrees of that vertex.

The adjacency list representation allows us to lookup all the edges incident on a

chosen vertex and expand the substructure from that vertex by one edge. Table 3.2

demonstrates the adjacency list associated with all the vertices present in the input

graph shown in Figure 3.2.

Edge List

(x,1,A,2,B)
(z,1,A,3,A)
(i,1,A,4,C)
(y,2,B,4,C)
(i,3,A,4,C)
(y,5,c,4,c)

Table 3.1: Input
Graph

Representation

Vertex
ID

Adjacency List

1 (x,1,A,2,B), (z,1,A,3,A), (i,1,A,4,C)
2 (x,1,A,2,B), (y,2,B,4,C)
3 (z,1,A,3,A), (i,3,A,4,C)
4 (i,1,A,4,C), (y,2,B,4,C), (i,3,A,4,C), (y,5,c,4,c)
5 (y,5,c,4,c)

Table 3.2: Adjacency List

3.3 Graph Partitions

We may encounter a situation when the layer in a given MLN is too large to

fit into the main memory of a single machine. If need be, we can partition the layer

Li into p partitions (L1
i , L

2
i ,.., L

p
i ) such that each partition can fit within the main

memory.

The partitions are generated by using range-based partitioning [18]. Range info

is used to divide the adjacency list into partitions using a contiguous range of vertex

ids (range, by definition, has to be contiguous, but all vertex ids in the range may

not be present). The number of partitions and their size can be customized. With

range partitioning, the adjacency lists for partitions are disjoint, meaning that each

vertex id and its adjacency list belong to only one partition. Edges that connect

two partitions are replicated in all the adjacency list partitions. During expansion,
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the same substructure can be expanded by multiple adjacency partitions. However,

since adjacency list of partitions are disjoint on vertex ids, each substructure is only

expanded once on a given vertex id, using a single adjacency list. Figure 3.3 illustrates

adjacency list of partitions generated using range partitioning scheme on the input

graph shown in Figure 3.2. Here, vertex ids 1 to 3 are assigned to partition L1
i and

vertex ids 4 and 5 are assigned to partition L2
i . The red edges connect both partitions

and these edges are repeated in multiple adjacency lists of partitions. Adjacency list

of partitions are shown in Table 3.3. Edges (i,1,A,4,C), (y,2,B,4,C) and (i,3,A,4,C)

are present in both the adjacency lists of partitions.

Figure 3.3: Partitioned Input Graph

Vertex
ID

Adjacency List

1 (x,1,A,2,B), (z,1,A,3,A),
(i,1,A,4,C)

2 (x,1,A,2,B), (y,2,B,4,C)
3 (z,1,A,3,A), (i,3,A,4,C)

Vertex
ID

Adjacency List

4 (i,1,A,4,C), (y,2,B,4,C),
(i,3,A,4,C), (y,5,c,4,c)

5 (y,5,c,4,c)

Table 3.3: Adjacency List of Partitions
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3.4 Graph Expansion

The process of discovering the best substructures for compressing a graph in-

volves generating increasing-sized substructures and counting the isomorphic sub-

structures. We start from a 1-edge substructure and expand it by adding an edge on

each vertex in that substructure in an iteration. Each expansion becomes a separate

substructure. The above expansion is done without any constraints, so that each

substructure can grow into every possible larger substructures, independent of other

substructures. This ensures completeness of substructure generation process. How-

ever, this unconstrained expansion results in the generation of duplicate substructure

instances, which must be removed to prevent incorrect counting. Figure 3.4 shows

how expansion leads to duplicates. If two substructures have the same set of ver-

tices and edges and the exact connectivity, they are duplicates. To ensure accurate

identification of duplicates and differentiate them from isomorphic substructures, we

introduce the concept of a canonical substructure and a canonical instance.

Figure 3.4: Duplicate Generation
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3.4.1 Canonical Representation

We use lexicographic ordering on labels. Firstly, we order the edges on the

edge label. In case of the edges have the same edge labels, we order them based on

the source vertex label. If source vertex labels are also the same, then we further

order them based on the destination vertex label. If edge labels and vertex labels are

all identical, then we order them based on the source vertex ids. Finally, if source

vertex ids are also the same, then we order them based on the destination vertex

ids. Using this lexicographic order for each 1-edge, a substructure can be uniquely

represented, which is called a canonical k-edge instance. If two k-edge substructures

are duplicates, they must have the same ordering of their vertex ids and therefore,

will have the same canonical k-edge instance. If we convert the duplicates generated

in Figure 3.4 to canonical instances, they will be the same as illustrated in Figure

3.5.

Figure 3.5: Example of Canonical Instances

The canonical representation of instances is helpful in identifying and removing

duplicate instances. However, counting the frequency of isomorphic substructures

requires a canonical form that does not rely on vertex IDs. Therefore, we use a

canonical form of the substructure that excludes vertex IDs, derived from the canon-

ical instances.
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3.4.2 Graph Isomorphism

Graph isomorphism refers to the concept of two graphs being structurally iden-

tical, with a one-to-one mapping of their vertices, preserving edge connections and

edge labels, and edge orientations. Exact matching of substructures is needed to

compute frequent substructures accurately. Isomorphs have the same vertex labels

and edge labels but different vertex ids (as they are different instances). To iden-

tify them, we need to create a canonical substructure from the canonical instance.

For this vertex ids are changed from absolute to a relative ordering. Any two exact

substructures will have the same relative ordering of vertex ids [18]. This is used to

identify and compute the frequency of a substructure.

As the canonical instance already follows a lexicographic ordering, we can con-

struct a canonical k-edge substructure by ordering the unique vertex ids in the order

of their appearance in the canonical instance. Thus, the canonical substructure can

be derived by replacing every vertex id with their relative position in the instance.

The resulting canonical substructure allows us to identify isomorphs easily. Figure

3.6 provides an example of how a canonical substructure is created from the canonical

instance. Note that the isomorphs have different canonical instances, but their rela-

tive positions following the canonical instance are the same. The relative positioning

of vertex id (1, 4, 2) for the first instance and (3, 4, 2) for the second instance reduces

to (1, 2, 3). This leads to both having the exact same canonical substructure.

The process of canonical label generation is crucial in our approach, as it enables

us to identify duplicates and isomorphic instances. In this thesis, we rely on the

concept of a canonical instance and a canonical substructure to differentiate between

duplicates and isomorphic substructures, respectively.
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Figure 3.6: Example of Graph Isomorphism

3.5 Metrics for Ranking

In the context of substructure discovery, the definition of an interesting sub-

structure may vary based on the context and the goal of the analysis. The choice of

metric depends on how we define an interesting substructure. The goal may be to

find the most frequent substructure or the ability of a substructure to best compress

a given graph. Commonly used evaluation metrics to rank substructure and measure

their importance are compression and frequency. The Minimum Description Length

(MDL) [40] and frequency are popular ranking metrics for graph mining, with the

former emphasizing the substructure’s ability to compress the entire graph and the

latter focusing solely on the number of occurrences of its instances. Counting the

number of instances is required for both.

3.5.1 Minimum Description Length

Minimum Description Length (MDL) is a metric used in the context of graph

mining for ranking substructures. The MDL principle evaluates the importance of
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a substructure based on how well it can compress the entire graph. The descrip-

tion length of a graph G is the number of bits needed to encode the graph. For a

substructure S that occurs in graph G, MDL is computed using the formula:

MDL =
DL(G)

DL(S) +DL(G|S)

where DL(S) = description length of the substructure being evaluated

DL(G|S) = description length of the graph where every substructure S has been

replaced by a node in the graph

DL(G) = description length of the original graph

The graph is compressed by replacing each instance of the substructure by a

node. The substructure that minimizes DL(S) + DL(G|S) has the most ability to

compresses the graph and is considered the best substructure in the graph. Both the

size of the substructure and the number of instances have a bearing on compression.

Therefore, MDL can highlight the importance of a substructure based on its com-

pression abilities. Instead of bits, we compute MDL using the number of vertices and

edges called DMDL (Database Minimum Description Length) proposed in [20].

3.5.2 Overlap-independent Frequency

In this metric, all overlapping instances of substructures are considered as inde-

pendent occurrences and are taken into account for counting. For example in Figure

3.7, the frequency would be computed as 4 even though there is a significant amount

of overlap in the instances. In the top two substructures, vertex ids 1 and 4 over-
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lap, while in the bottom two substructures, vertex ids 3 and 4 overlap. Due to such

overlaps, the frequency count does not provide a true representation of frequency

when compared to disjoint substructures that have identical vertex and edge labels.

Therefore, this frequency measure is not typically used.

Figure 3.7: Example of Overlapping Instances

3.5.3 Overlap-cognizant Frequency

In this metric, overlapping instances of substructures are not considered as in-

dependent occurrences and thus are not counted. To count non-overlapping instances,

we adopt the Most Restrictive Node (MRN) metric proposed in the literature [41,42].

The MRN is the node in the substructure that has the least number of occur-

rences in the graph. The number of instances of a substructure is then computed as

the product of the number of occurrences of the MRN in the graph and the number
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of occurrences of the other nodes in the substructure that are not adjacent to the

MRN. Overlap-cognizant frequency is then computed using the maximal number of

non-overlapping instances for a canonical substructure. For example, in Figure 3.7,

we have F(A) = [1,3], F(C) = [4] and F(B) = [2,5]. As min(2,1,2)=1, the MRN is

node C and frequency of the substructure is 1.

However, overlapping instances may be important in certain contexts. Thus,

we also keep track of overlapping instances and utilize both sets of information to

compute the frequency and Minimum Description Length (MDL) for a given sub-

structure.

We have comprehensively reviewed the existing literature relevant to this thesis. We

discussed key concepts, methodologies, and findings from prior studies that contribute

to our understanding of the process of substructure discovery. In the next chapter,

we shall discuss the design of our composition algorithms.
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CHAPTER 4

DESIGN

Substructure discovery algorithms identify recurring patterns within larger,

more complex structures. In the context of a graph database, substructure discovery

involves searching for frequently occurring subgraphs or patterns within the dataset.

It should be able to find structures of a given size in an arbitrarily large graph. In this

chapter, we discuss the design of our substructure discovery algorithm for multilayer

networks focusing on our approach and the challenges faced.

4.1 Overview of Design

Our approach employs an iterative Decoupling-Based algorithm to identify the

substructures within a homogeneous multilayer network. We systematically gener-

ate substructures of increasing sizes within each layer (henceforth called intra-layer).

Since we are dealing with MLNs which can have multiple layers, we also need to find

substructures which exist across layers, called inter-layer substructures. Thus, we

need to use intra-layer substructures independently generated for each layer to gener-

ate inter-layer substructures that exist across the layers. Throughout this process, we

eliminate any generated duplicates, count the number of isomorphic substructures,

and apply a ranking metric. We then apply the beam (top-k) to restrict our search

space and only use these beam substructures as candidates for expansion in the next

iteration. This entire process iterates until either a designated substructure size is

achieved or no more substructures can be generated.
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Figure 4.1: Accuracy and Efficiency Trade-off using ‘k’

The primary emphasis of this thesis is on evaluating two extreme approaches

for substructure discovery in HoMLNs: i) applying composition function after each

iteration (multiple times) to generate inter-layer substructures and ii) applying the

composition function at the end (only once) with respect to accuracy and efficiency

trade-off. The substructure discovery algorithm follows an iterative process and gen-

erates substructures of increasing size in each iteration. The composition function can

thus be applied in each iteration or at the end of the substructure discovery process

for each layer. The decoupling approach also allows for the possibility of conducting

this composition at various iterations of the algorithm, offering a trade-off between

efficiency and accuracy. This trade-off is depicted in Figure 4.1, where the X-axis

represents iterations of the algorithm where we can apply the composition. Y axis

shows the expected accuracy and efficiency.
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For this thesis, we apply composition at the two extremes, composing in each

iteration(k= 1) and composing at end (k= n). We must discern and understand any

potential differences in the composition algorithm between these two approaches.

The first approach, called the Iterative Composition algorithm (Ho-ICA), in-

volves performing composition in each iteration. Here inter-layer substructures are

composed in every iteration. We believe that this approach should not have any ac-

curacy drop as all substructures (intra and inter) are evaluated using the metric and

carried to the next iteration. We will validate this conjecture experimentally. But

this comes at the cost of increased response time and computational resources due to

the frequent composition.

The second approach, called the Single Composition Algorithm (Ho-SCA), fo-

cuses on generating final intra-layer substructures for each layer. After completing all

layer-wise iterations for each layer, the results are used by the composition algorithm

for generating the inter-layer substructures. This approach only involves doing com-

position once, providing better response time and computational efficiency. However,

this efficiency comes at the cost of loss in accuracy, as certain information from pre-

vious iterations is missed. One of the challenges is to correlate layer characteristics

with accuracy drop.

The important aspects of our design are:

Correctness: The composition algorithm achieves completeness by generating all

possible inter-layer substructures. Simultaneously, for soundness of result, it focuses

on identifying only correct inter-layer substructures to prevent the introduction of

inaccuracies. The accuracy of the algorithm is then evaluated in relation to a ground

truth, which serves as a reference point for the correctness of the algorithm.
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Efficiency: Composition is done as efficiently as possible. The emphasis on efficiency

aims to optimize the computational resources and reduce processing time while main-

taining the accuracy and completeness of the generated inter-layer substructures.

Scalability: It is an outcome of the efficiency requirements in addition to using the

MapReduce framework for each layer. To achieve scalability, we utilize the ”Divide

and Conquer” strategy to partition large layers that may exceed the memory capacity

of a single machine. For an input Multilayer Network with n layers, each layer (Ln)

is partitioned into p smaller partitions (Ln
0 , L

n
1 , ..., L

n
P ).

Resource utilization: To harness parallel processing on layer partitions, we employ

k processors to handle them simultaneously. The value of k can range from 1 to np,

and it can be adjusted based on the availability of resources. For instance, if sufficient

resources are at hand, we can scale up k as needed, extending it up to np (number of

layers times number of partitions).

4.2 Challenges for Composing

The process of identifying substructures within a Multilayer Network (MLN)

differs significantly from finding substructures within a single graph. Substructures

in a Multilayer Network (MLN) can exist in several different ways, and it’s important

to consider various factors to accurately discover them.

1. Substructures can exist solely in one layer (intra-layer)

2. Substructures can exist across multiple layers (inter-layer)

In both of these scenarios, substructures can also extend across multiple layer-

wise partitions (intra-partition), and this aspect must be effectively managed.

The algorithms should be capable of handling all these scenarios effectively,

while also managing the elimination of duplicates during both the expansion and

composition phases.
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4.3 The Two Approaches

We propose two different approaches, both employing iterative Decoupling-

Based approaches to substructure discovery. The primary objective is to process each

layer of the Multilayer Network independently and in parallel. We use the decoupling-

based approach discussed in Chapter 1 for substructure discovery. Since our focus

is on large graphs, it is assumed that all the required information (layer data and

its adjacency list) cannot be stored in the memory of a single machine. Therefore,

partitioning the graph among multiple processors is essential. Our inspiration for

this partitioning strategy comes from earlier work on MapReduce-based substructure

discovery [18].

Now, we shall delve into the details of the two approaches.

4.3.1 HoICA: HoMLN Iterative Composition Algorithm

This approach generates substructures for layer in each iteration. Composition

algorithm is applied in each iteration to generate missing inter-layer substructures.

After each iteration, all substructures from the individual layers and composed sub-

structures spanning across layers are combined. A ranking metric (like MDL) and

beam are applied to generate the substructures for the next iteration. Each iteration

corresponds to a particular size of substructures. In each iteration, the substructures

are expanded by a single edge in their own layer, starting with size one substructures

for first iteration. This generates all the intra-layer substructures for that size. Also

in the first iteration, the composition function generates inter-layer substructures by

expanding each layer into every other layer. In the subsequent iterations, composi-

tion function will generate composed substructures of size k+1, using the composed

substructures from the previous iteration (size k).
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Figure 4.2: Overview of the Decoupling Approach for Iterative Composition

Following these two steps, all the substructure instances from both are counted

utilizing graph isomorphism and canonical labeling. Duplicates are also eliminated in

this step. These instances are subsequently ranked based on a selected metric, such

as Minimum Description Length (MDL) or frequency. To restrict the search space,

a beam metric is applied, delimiting the exploration to the top beam substructures,

which are used as candidates for expansion in the next iteration.

At the end of each iteration, the substructures from each layer and the inter-

layer substructures are separated for the next iteration. This is critical and is con-

sistent with the decoupling principle which stipulates that only layers are processed

independently and without using the knowledge of the other layers. In the next

iteration, substructures from each layer is expanded by an edge and in the next com-

position stage, inter-layer substructures are expanded with one edge and the process

repeats. Note that composition can make use of information from both layers.
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To illustrate this, consider we start with a k-edge substructure in each layer,

with k = 1 for the first iteration. In this iteration, we systematically expand all

vertices within the substructure independently (due to which duplicate instances are

generated) by adding a single edge to each. Also the composition function is called,

expanding the previously composed inter-layer instances using edges from each par-

ticipating layer. The purpose here is to generate substructures that span multiple

layers. Following these steps, we identify the beam substructures, which are then

segregated into layer-wise and inter-layer substructure instances. These substruc-

tures are then directed to their respective destinations for the next iteration. The

intra-layer substructures become inputs for our analysis function (Psi being the sub-

structure analysis in this case), while the inter-layer substructures are passed on to

the composition function (theta for substructure composition). This iterative process

continues until a termination condition is met. Figure 4.2 provides a comprehensive

visual overview of HoICA for substructure discovery for a Homogeneous Multilayer

Network.

4.3.2 HoSCA: HoMLN Single Composition Algorithm

In this approach, our initial focus is to understand what portion of the correct

inter-layer substructures can be generated as we are not doing it after each iteration.

For each layer during a particular iteration, we expand these substructures by one

edge, removing any duplicates that might be generated. Subsequently, we count the

substructure instances through the use of graph isomorphism and canonical labeling.

These substructures are then ranked based on a selected metric such as MDL or

frequency, followed by the application of a beam to restrict the search space.

This iterative process is executed for all layers independently, producing layer-

wise outputs of size k from each layer. Upon the completion of all layer-wise iterations,
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Figure 4.3: Overview of the Decoupling Approach for Single Composition

these outputs are directed to our composition algorithm. Its purpose is to identify

substructures that extend across multiple layers. This composition algorithm specif-

ically deals with substructures of size k and is responsible for generating inter-layer

substructures of the same size (k), which is elaborated upon as the Single Composition

algorithm in the following section.

The subsequent inter-layer substructures are then ranked using the same metric

and evaluated in comparison to the intra-layer substructures, with elimination of any

duplicates that may be generated. The key advantage of this approach lies in the

fact that the composition is only performed once, rather than in each iteration. This

leads to an efficient substructure discovery, although it does involve some trade-off

in accuracy due to information loss from previous iterations. Figure 4.3 provides a

comprehensive visual overview of HoSCA for substructure discovery within a Homo-

geneous Multilayer Network

Of the two approaches presented and analyzed in this thesis, it is important to

understand their difference. In the iterative approach , composition is applied after

each iteration to generate missing inter-layer substructures. As this is done after each

iteration, our hypothesis is that the accuracy is preserved and should be the same as
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the ground truth. However, composition cost is incurred in each iteration increasing

the overall cost of this approach as shown in Figure 4.1 red line. In contrast, the

other approach applies the composition function only once at the end incurring less

composition cost. This is illustrated in Figure 4.1 by the blue line. Again, our

conjecture is that the accuracy will suffer in this approach due to missed inter-layer

substructures at different iterations. This has better computation cost as composition

is applied only once. As can be seen from Figure 4.1, there is an efficiency-accuracy

trade-off between these two approaches.

The purpose of this analysis is to understand the accuracy/efficiency trade-off

based on layer characteristics and graph characteristics within each layer. Once this

is understood, it may be possible to determine which approach to use (and several

alternatives for the iterative approach as well) based on the accuracy needed for

the application. Our experimental results will validate the above points for a large

number of data sets with diverse characteristics.

4.4 Discussion of Composing Approaches

As previously emphasized, for MLNs, focusing solely on substructures within

layers is insufficient, as substructures spanning multiple layers will not be generated.

To ensure accuracy and completeness of our approach, we use the decoupling approach

by customizing a composition function that compensates for the missing (or not

generated) substructures and inserting that into the substructure discovery process.

This composition function needs to combine substructures from each layer to find

those that exist across different layers. In a homogeneous multilayer network, all layers

have the same set of nodes but different node connectivity. If there is a common node

present in substructures from different layers, it suggests that these substructures

can be connected to form substructures that exist in multiple layers. This insight
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forms the foundation of our combining algorithm. Consequently, by grouping all

substructures generated from each layer according to their vertex IDs (nodes), we

can effectively include all edges that traverse across different layers, allowing us to

compose edges that share a common vertex ID across different layers.

Now, lets take a detailed look at the two algorithms used for substructure

discovery in HoMLNs.

4.4.1 Single Composition Algorithm (HoSCA)

The primary objective of this algorithm is to understand whether all missing

substructures of size k that satisfy the metric can be generated at the end using

substructures of size k generated so far. As we have indicated, our conjecture is that

waiting until the last iteration may hinder the generation of all substructures of size

k that satisfy the metric and beam. of course, this composition can also be applied

after each iteration as discussed earlier incurring additional computation. The key

motivation for this approach is to study the accuracy-computation trade-off.

The underlying rationale for this composition is that when we join two con-

nected subgraphs, one each from two (or more) layers, that share a common vertex

id, the resulting subgraph would be connected and further will be a valid inter-layer

substructure instance. Figure 4.4 shows how two connected subgraphs from different

substructures joined on a common vertex id will lead to a connected substructure

instance. Thus, when we combine pairs of subgraph instances for two layers (and

more for greater than two layers), with their combined size adding up to k, we would

generate composed inter-layer substructures of size k.
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Figure 4.4: Joining subgraphs on a common vertex id

The input of the algorithm is a set of intra-layer substructures, each of size k,

where k can be any positive integer. The initial step involves generating connected

subgraphs of sizes ranging from 1 to k-1 from each of the participating intra-layer

substructures. This process is accomplished by iteratively breaking down each sub-

structure instance into different sized substructure instances as outlined in Algorithm

1. To achieve this, we begin by creating substructures of size 1 and subsequently

expand them up to a size of k-1, adding a single edge in each iteration. The resulting

output includes all possible connected subgraphs of the specified size range. This

approach allows us to circumvent the generation of disconnected subgraphs, avoiding

connectivity check adding additional computation.
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Algorithm 1 Algorithm to split connected subgraphs into smaller connected sub-
graphs

Input: Substructures of size k from N layers (SN
k ) represented as a sequence of edges

< E1; . . . ;Ek >, where Ei is < EL, V
s
id, V

s
L , V

d
id, V

d
L >

Output: resultSet containing Connected subgraphs of size 1 to k − 1
1: Initialize tempSet and resultSet to empty sets
2: for each substructure (SN

k ) do
3: Generate Size1 set by breaking the substructure (SL

k ) into single edges
4: SameSizeSubs← Size1
5: for i = 1 to k − 1 do
6: for each edge Ex in Size1 do
7: for each substructure Sy in SameSizeSubs do
8: if Ex ∈ Sy then ▷ Duplicate Edge
9: continue
10: end if
11: if V x

id ∩ V y
id ̸= ∅ then ▷ Vid is a set containing vertex ids

12: Snew ← Ex + Sy ▷ Append edge Ex to substructure Sy

13: Tag Snew with its layerID Ln
ID

14: tempSet← Snew

15: end if
16: end for
17: end for
18: resultSet← tempSet
19: SameSizeSubs← tempSet
20: clear tempSet
21: end for
22: end for

Furthermore, this strategy significantly restricts the number of generated sub-

graphs, as they typically amount to less than the total count of all possible subgraphs

of size 1 to k. In the case of a substructure of sizek, the number of potential subgraphs

is calculated as the sum of combinations, specifically: Ck
1 + Ck

2 + ... + Ck
k−1. A sub-

stantial portion of these potential subgraphs would be disconnected. Thus generating

only connected subgraphs would greatly reduce the number of subgraphs we generate.

The next phase of the algorithm involves combining the generated instances

based on their vertex ids by applying the Combine function for each vertex id. This
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recursive function examines all possible combinations of the connected subgraphs

originating from different layers that combine to a k-edge inter-layer substructure.

The composition process requires the grouping of subgraphs generated in the previous

step based on vertex IDs. This grouping ensures that the composition algorithm can

efficiently identify and combine subgraphs that will generate inter-layer composed

substructure instances. Thus the setup of input parameters for the Combine function

becomes essential. We utilize the MapReduce paradigm to bring subgraphs that share

a common vertex id together. The exact process is discussed in detail in the next

chapter.

The inputs to the combine function are:

1. Subgraphs: A collection comprising of sets where each set contains substructures

from one layer. In each set, the substructure size ranges from 1 to k-1.

2. Accumulator String: This is a string used as an accumulator to gradually build

the inter-layer substructure until it reaches the desired size k.

3. Combinations Set: This is a set used to store the composed substructures.

4. Size: This parameter denotes the target size of the substructures to be gener-

ated, which is k in this context.

As the input subgraphs are connected, the accumulator string, which generates

and stores the inter-layer substructure instances, will consistently maintain a valid

connected substructure. Furthermore, since the sets in the Subgraphs contain sub-

structures from different layers, we can be certain that the substructure generated is

inter-layer substructure, meaning it includes edges from different layers.

Algorithm 2 describes the recursive combine function.
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Algorithm 2 Combine Function for generating inter-layer substructures of size k

Input: Subgraphs: Collection of sets containing layer-wise substructures of sizeK−1
1 ;

accumulator: Initially an empty string, accumulates edges in each recursive call;
combinations: Set to store composed substructures; size: Size of substructures
to generate

Output: Composed substructures added to combinations set
1: Initialize combinations← ∅
2: for each vertexid in currentSet do
3: Generate Subgraphs List for vertex id
4: accumulator ← empty string
5: Call combine (Subgraphs, accumulator, combinations, size) ▷ size = k
6: end for

Recursive Combine Function
1: islast← Boolean(Subgraphs contains only one set)
2: currentSet← first set in Subgraphs
3: for each substructure in currentSet do
4: newSubstructure = accumulator + substructure
5: if islast is true then
6: if size of newSubstructure = size then
7: Add to combinations set
8: end if
9: else
10: newSubgraphs = Subgraphs− currentSet
11: combine (newSubgraphs, newSubstructure, combinations, size)
12: end if
13: end for

4.4.1.1 Duplicate Substructure Generation

A consequence of composition done independently on each vertex id of a sub-

structure is that it results in the generation of duplicates. We’ve discussed the process

of duplicate generation due to expansion, along with duplicate elimination in Chapter

3. Thus we shall now focus on duplicates generated during composition.

Duplicates Generated during Composition: Since the composition process op-

erates on all vertex ids, there’s a possibility that the same substructures may be

generated during composition multiple times if they share more than one common
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vertex identifier. Figure 4.5 shows how the same substructure instance is generated

by composing on vertex id 1 and on vertex id 3. Unfortunately, avoiding these du-

plicates is not possible since we apply composition for each vertex id independently.

Hence, we eliminate them to ensure correctness of the results. Failure to do so can

result in incorrect counting. We do this elimination before the substructure counting

step utilizing the same approach discussed in Chapter 3.

Figure 4.5: Duplicates Generated During Composition

4.4.2 Iterative Composition Algorithm (HoICA)

The main drawback with the Single Combination Algorithm (SCA) lies in the

loss of information between iterations. This is especially true for larger size sub-

structures (greater values of k), as we lose increasingly more information as more

iterations pass. Although we generate k-size substructures using all possible sizes of

substructures from each layer, it is not the same as doing it after each iteration. This
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is because some substructures of a specific size that should have come out at some

iteration may not come out in this process and we cannot regenerate them at the end.

An interesting question that comes up is whether we can use the single compo-

sition algorithm after each iteration. We cannot as there is a subtle difference in the

way composition is applied. For the SCA approach, two (or more) k-size substruc-

ture are used to create a k-size inter-layer substructure. In contrast, in the iterative

composition, (k-1)-size substructures from participating layers are used to compose

a k-size inter-layer substructure. The former one is expansion whereas the latter is

combining. Combining takes more effort as we need to first split the substructure

and then combine whereas expansion does not require splitting. The splitting was

necessary in single composition as we were composing at the end of all iterations and

no longer had the iteration-wise results. However, that is not the case for iterative

composition. Hence, combining is more computationally expensive than expanding

and should not be used for iterative composition. However, both generate duplicates

which need to be eliminated.

Composing after each iteration provides us access to the results from the previ-

ous iteration. This enables us to expand the size k-1 substructures from the previous

iteration, using adjacency lists from other layers to create composed substructures in

the current iteration. Thus, the iterative algorithm mimics the substructure discovery

algorithm by generating size k composed inter-layer substructure instances using size

k-1 composed instances from the previous iteration.

Moreover, having composed instances at the end of each iteration offers another

advantage. These composed instances can now be incorporated into the set of beam

substructures. This enhances our ability to prune the search space more effectively

without sacrificing any relevant substructures, enhancing the overall accuracy of the

process.
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The overall process for substructure discovery remains largely the same. We

start by expanding each layer to generate intra-layer substructures. However, instead

of proceeding to the next iteration, we’ve moved the composition phase inside each

iteration. As previously discussed, we will expand the composed substructures from

the previous iteration into other layers to generate size k intra-layer substructures. In

the first iteration we expand single-edge substructures from each layer into the other

layers. This provides us with the initial set of composed substructures. It is worth

noting that when expanding a substructure from layer N into layer M, the result is

the same as expanding a substructure from layer M into layer N. This insight can

be (and is being) used in preventing the generation of duplicate composed instances.

This operation only needs to be performed once, and the choice of which layer to

initiate the expansion from is arbitrary, as the composed instances are identical.

The input of the algorithm is a set of composed substructures from previous

iteration, each of size k-1, where k is at least 2. We then expand these substructures

using adjacency lists of other layers, to get inter-layer composed substructures of size

k. The inter-layer substructures, in addition to the intra-layer substructures generated

in the current iteration, are forwarded to the metric evaluation process followed by

beam application. Given that the beam substructures now consist of both intra-layer

and inter-layer substructures, they are appropriately seperated and directed to their

respective tasks in the subsequent iteration.

Algorithm 3 describes the composition function used to compose substructure

after each iteration.

4.5 Dealing with Large Layer Graphs

In both of our approaches, we employ range-based partitioning to divide a

single layer into multiple partitions. This partitioning strategy is essential because
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Algorithm 3 Iterative Approach Composition Function

Input: (Sk−1): Set of composed substructures of size k − 1 from previous iteration,
where k starts with 2, and each substructure is represented as a sequence of
edges < E1; . . . ;Ek >, where Ei is < ELabel, V

s
id, V

s
Label, V

d
id, V

d
Label >; ALm

p . . . ALn
p :

Adjacency List partitions for N layers
Output: Composed inter-layer substructures of size k
1: for each (k − 1)edge instance Ik−1 ∈ (Sk−1) do
2: for each vertex-id v ∈ Ik−1 do
3: ELv ← {v ∈ ALm

p

⋃
. . .

⋃
ALn

p} ▷ edge list of v from every layer
4: for each edge e ∈ ELv do
5: if e /∈ Ik−1 then
6: Icomposed

k ← Ik−1 + e ▷ Append edge e in lexicographical order

7: Scomposed
k ← Icomposed

k ▷ Add to composed set Scomposed
k

8: end if
9: end for
10: end for
11: end for

the adjacency list of a single layer may be too large to fit entirely into the main

memory. This is especially true for very large homogeneous MLNs. Consequently,

each layer is divided into p partitions, and the user has the flexibility to choose p

based on the layer size and the available computational resources.

It’s important to note that the number of partitions is based on the value of

p, which can be chosen by the user. For maximum parallelism, all p partitions can

be loaded and processed by individual processors simultaneously. However, when

resources are limited, processing all p partitions in parallel may not be feasible. In

such cases, multiple partitions may go to a single processor. Ideally, our goal is to have

the number of partitions equal to the number of available processors to maximally

optimize parallel processing. Another scenario favoring more partitions arises in the

case of uneven partitions. Range-based partitioning, with fixed ranges, may result

in some partitions being larger than others due to graph characteristics. Uneven

partitions can lead to load imbalance, where certain processors have more work to
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do than others, resulting in inefficient resource utilization. In this case, having more

partitions than the number of processors can prove beneficial for achieving better

load balancing.

4.6 Correctness

As previously discussed, we anticipate HoICA to have complete accuracy. To

prove its correctness, we shall employ induction to demonstrate that we consistently

generate identical substructure instances as the ground truth in each iteration. This

ensures that we do not overlook any instances. Given that the beam remains consis-

tent with the ground truth for every iteration, we can confidently assert that HoICA

attains full accuracy in substructure discovery.

In the case of HoSCA, where composition does not occur between iterations,

we lose some substructures between iterations that cannot be generated. Since com-

position takes place after all iterations, certain substructures may go unnoticed in

their individual layers. Notably, a subgraph may form part of a frequent substructure

in the Multilayer Network (MLN) but may be infrequent within its specific layer.

A counterexample is presented to show how a substructure may be overlooked in

HoSCA.

Additionally, we will verify these observations through experimental analysis in

Chapter 6, comparing our results with the ground truth to validate the accuracy and

completeness of our approach.

4.6.1 HoICA

Lemma Statement: For any substructure s in the input data, the iterative

algorithm HoICA generates s as an element of S, where S represents the set of sub-

structures generated by HoICA.
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We will use proof by induction. We can show that for any iteration k, HoICA

correctly generates all results for the next iteration (k + 1). Following is the :

Base Case:

For iteration 1, HoICA used the size 1 substructures (i.e. the edge list) of each

individual layer and generates size 2 composed inter-layer substructure instances using

the adjacency lists of the other layers. As it utilizes all edges in the MLN to generate

these instances, it will generate every size 2 composed inter-layer instance possible.

For two layers L1 and L2,

1. It generates all L1 intra-layer substructures by expanding L1 substructures using

L1 adjacency list.

2. It generates all L2 intra-layer substructures by expanding L2 substructures using

L2 adjacency list.

3. It generates inter-layer substructures using L1 substructures and expanding

them using L2 adjacency list.

4. It generates inter-layer substructures using L2 substructures and expanding

them using L1 adjacency list.

Thus HoICA correctly generates all size 2 substructure instances in the first

iteration (k = 1).

Inductive Step:

Lets assume that for some arbitrary iteration k, the algorithm correctly gener-

ates all instances.

HoICA will expand inter-layer substructure instances from the previous itera-

tion (iteration k) to generate expanded inter-layer substructure instances for iteration

k+1. Specifically, it employs the adjacency list for each layer to which the composed

instance belongs. Through an unconstrained expansion on every vertex ID of the
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instance using these adjacency lists, HoICA ensures the comprehensive generation of

all possible expanded inter-layer instances. For two layers L1 and L2,

1. It generates all intra-layer substructures by expanding L1 substructures using

L1 adjacency list and L2 substructures using L2 adjacency list.

2. It generates inter-layer substructures using composed substructures from previ-

ous iteration and expanding them using L1 adjacency list.

3. It generates inter-layer substructures using composed substructures from previ-

ous iteration and expanding them using L2 adjacency list.

The unconstrained nature of this expansion process guarantees that no instances

are overlooked. Thus, HoICA accurately generates all instances for the subsequent

iteration k + 1, given all instances from the previous iteration k.

Conclusion:

Based on the base case and the inductive step, we can confidently assert that

HoICA consistently generates substructures of all sizes in the input data for a given

iteration.
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4.6.2 HoSCA

Figure 4.6: Input MLN and Composed Substructure

We shall present a counterexample to illustrate how substructure instances are

missed in HoSCA. Figure 4.6(a) depicts an input Multilayer Network (MLN) for the

algorithm, comprising of two layers - Layer 1 (red) and Layer 2 (blue). To generate

a size 3 substructure, HoSCA requires size 3 substructures from both layers. Figure

4.6(b) shows the inter-layer instance we need to generate. Figures 4.7(a) and 4.7(b)

showcase all the substructure instances of size 3 which possess the required edges to

generate the instance shown in Figure 4.6(b).

To create the indicated instance, a single edge from Layer 1 and two edges

from Layer 2 are needed. However, the two edges required from Layer 2 are not

simultaneously present in any of the 3 edge substructure instances present in Layer

2. Instance 4.7(b)[i] contains one edge ⟨x,A,3,A,2⟩ , and instance 4.7(b)[ii] contains

the other edge ⟨x,C,5,C,4⟩ , but these two edges are never concurrently present in an

instance. Consequently, we would need to compose these two instances from Layer 2
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Figure 4.7: Size 3 Instances generated from MLN layers

first, which is not possible in the composition phase. Hence, the composed instance

shown is never generated by HoSCA.

Figure 4.8 illustrates the generation of the same missed substructure by HoICA.
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Figure 4.8: Missed Substructure generated by HoICA

In this chapter, we have explored the two approaches to composition and their re-

spective algorithms in HoMLNs. We have shown how the algorithms work and formal

proofs were constructed to demonstrate the correctness of the algorithm. In the next

chapter, we will focus on the implementation details of these algorithms within the

MapReduce framework.
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CHAPTER 5

IMPLEMENTATION

In this chapter, we will discuss the implementation of the two decoupling-based

substructure discovery algorithms discussed in Chapter 4. We use the MapReduce

framework to facilitate distributed and parallel processing. Both the range partition-

ing and substructure discovery are done inside the MapReduce framework. The driver

program which runs MapReduce jobs is implemented in java. The configuration file

passed to the driver program specifying the parameters is discussed at the end.

Input Graph Representation: Our input graph is represented as a sequence of

unordered edges (or 1-edge substructure). We have discussed the representation in

detail in Chapter 3. To recap, each edge is represented by a 5 element tuple ⟨edge

label, source vertex id, source vertex label, destination vertex id, destination vertex

label ⟩. A substructure instance is a sequence of canonical edge instances. A sub-

structure is a sequence of canonical edge instances represented using a relative vertex

id to identify exact subgraphs.

5.1 HoSCA using MapReduce

The single composition algorithm for substructure discovery in HoMLNs (HoSCA)

is divided into two distinct phases of the decoupling approach, Analysis phase and

Composition phase. Figure 5.1 shows the overall flow of HoSCA using the MapReduce

paradigm.
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Figure 5.1: HoSCA Architecture using MapReduce

5.1.1 Analysis Phase

The analysis phase (M/R job 1 and M/R job 2) will operate independently and

concurrently on all layers. Within each layer, it will identify all substructures of size

k. It also follows the range-based partition strategy discussed in Chapter 3.

Using a range based partitioning strategy, we can identify two distinct grouping

criteria that must be followed when handling substructures:

1. Routing Instances Across Processors: Instances across different processors need

to be routed to the appropriate adjacency partition for expansion.

2. Grouping Expanded Instances for Ranking: Once expanded, the instances need

to be grouped based on their canonical substructure for ranking purposes.

It’s crucial to note that these two processes are sequential, such that expansion

can only occur before ranking. Consequently, each iteration of the analysis phase

needs two consecutive MapReduce pairs. The first MapReduce pair facilitates the

routing of substructures to their correct partitions and expansion of substructures in
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those partitions. The second MapReduce pair eliminates duplicates and identifies the

beam substructures with the best rank using metrics such as frequency or Minimum

Description Length (MDL). Algorithms 4 and 5 further expand on the mapper and

reducer classes in detail. It’s important to note that both pairs constitute the analysis

phase of the decoupling approach, which is used to find intra-layer substructures.

They will be executed in parallel as separate jobs on each layer.

Algorithm 4 Analysis Phase: First MapReduce pair for Partitioning and Expansion

INPUT: Graph Layer edge list (or substructures of size 1), Layer Adjacency List
Partitions, Partition Range Information
OUTPUT: Substructures of Size k in Layer
Class Mapper

1: function SETUP
2: RangeInfo = load range information of adj partitions
3: end function
4: function MAP(key = Null, value = substructure instance)
5: PIds = Set for unique partition ids for an instance
6: get the source vertex id(sV id) and destination vertex id(dV id) from each edge
7: for each vertex–id v in value do
8: PIds.addPartitionId(v,RangeInfo)
9: end for
10: for each partition–id p in PIds do
11: emit(Key = p, value = substructure instance)
12: end for
13: end function

Class Reducer

14: function REDUCE(key = partition id, valueList = list of instances in partiton)
15: Load partition key from HDFS
16: for each k-edge canonical instance ks in values do
17: expand ks to (k+1)-edge canonical instance
18: emit(Key = partition id, value = expanded substructure instance)
19: end for
20: end function
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Algorithm 5 Analysis Phase: Second MapReduce pair for Substructure Evaluation

INPUT: Substructure Instances, beam size, metric (MDL in our case)
OUTPUT: Beam Substructures
Class Mapper

1: function MAP(key = Null, value = substructure instances)
2: vMap = hashtable to hold unique vertex info for an instance
3: get the source vertex id(sV id) and destination vertex id(dV id) from each edge
4: for each vertex–id v in value do
5: vMap.put(v,null)
6: end for
7: update vMap positions from the value
8: new key = generate Canonical substructures from value
9: emit(Key = Canonical substructure, value = substructure instance)
10: end function

Class Reducer

11: function SETUP
12: Beam Map = Null // To store best substructures
13: end function
14: function REDUCE(key = Canonical substructure, valueList = list of Isomor-

phic Instances)
15: C = Count(Instances in Values)
16: MDL = Calculate mdl of each key using count of Instances
17: Update Beam Map with MDL
18: end function
19: function CLEANUP
20: for each k-edge canonical instance ks in values do
21: emit (null, each instance in beamMap)
22: end for
23: end function

5.1.2 Composition Phase

After the completion of the analysis phase for each layer, the composition phase

is initiated. The output generated by each layer during the analysis phase serves as

the input for the composition phase. Similar to the analysis phase, the composition

phase comprises two consecutive MapReduce pairs, which are necessary for the same

reasons as in the analysis phase. However, unlike the analysis phase, the composition
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phase is no longer iterative. Both MapReduce pairs are executed exactly once. The

second MapReduce pair remains the same as algorithm 5. The first pair is discussed

in algorithm 6. The combine function called in line 31 is a recursive function, and it

was comprehensively explained in Algorithm 2 in Chapter 4.

Algorithm 6 Composition Phase: First MapReduce pair to Generate Inter-Layer
Substructures

INPUT: Intra-layer Substructure Instances of Size k from each Layer
OUTPUT: Composed Inter-layer Substructure Instances of Size k
Class Mapper

1: function MAP(key = layerID, value = Intra-layer Substructure Instances)
2: for each substructure instance (SN

k ) do
3: Generate connected instances of size 1 to k-1
4: Store all in instanceSet
5: end for
6: for each instance i in instanceSet do
7: for each edge e in i do
8: get source and destination vertex ids (sV id and dV id) in e
9: VIds.add(sV id,dV id)
10: end for
11: end for
12: for each vertex–id v in VIds do
13: emit(Key = v, value = layerID + ”:” + instance)
14: end for
15: end function

Class Combiner

16: function Combiner(key = vertex id, value = instance list)
17: add each instance in instance list to a set
18: for each instance I in the set do
19: emit(Key = vertex id, value = instance)
20: end for
21: end function
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Class Reducer

22: function REDUCE(key = vertex id, valueList = list of instances with layerID)
23: Initialize a hashmap layerMap ▷ to store layerwise substructures on this Vid

24: for each instance SN
x in instance list Vid do

25: Extract LayerId from tagged instance
26: Add instance to layerMap ▷ key ← layerID; value ← setofinstances
27: if layerMap has at least 2 layers then ▷ can generate inter-layer subs
28: Create an empty list called Subgraphs
29: Initialize an empty set called combinations
30: for each key-value pair in layerMap do
31: Add valueset to Subgraphs list
32: end for
33: Call combine (Subgraphs, accumulator, combinations, size) ▷ size =

k
34: end if
35: end for
36: for each composed instance c in combinations set do
37: emit(Key = Null, value = c)
38: end for
39: end function

5.2 HoICA using MapReduce

The iterative composition algorithm for substructure discovery in HoMLNs

(HoICA) follows the same two distinct phases of the decoupling approach, Analysis

phase and Composition phase. But in this approach, the composition is done as aprt

of each iteration. Figure 5.2 shows the overall flow of HoICA using the MapReduce

paradigm.

The algorithm now comprises of three MapReduce pairs for each iteration. The

first and third pair are the same as first pair and second pair of analysis phase of

HoSCA (Algorithms 4 and 5 ). The composition function and its MapReduce pair

undergoes a change. The composition function will now expand inter-layer composed

instances by using the adjacency list of each layer to which it belongs. The expansion
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Figure 5.2: HoICA Architecture using MapReduce

logic and implementation remain similar to the intra-layer substructure expansion

(Algorithm 4).

The reducer code remains unchanged. The modification takes place in the map-

per, where the input now includes inter-layer substructures with multiple layer IDs.

Consequently, the mapper emits the substructure for each layer and the correspond-

ing partition of the adjacency list. During the first iteration, there won’t be any

inter-layer substructures. Therefore, it is necessary to generate the initial inter-layer

substructures using the edge list for each graph layer (size 1 instances). In the sub-

sequent iterations, we will use the composed substructures from previous iterations.

Algorithm 7 shows the mapper and reducer classes in detail.

5.3 HoSCA and HoICA Implementation Differences

A key difference between the two implementations is that in HoSCA each layer

is processed independently in its own MapReduce Job whereas in HoICA every layer is

processed together inside the same MapReduce Job. Each edge is tagged with its layer
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Algorithm 7 Composition Phase: Second MapReduce pair to Generate Inter-Layer
Substructures for HoICA

INPUT: Inter-Layer Substructures, Graph Layers edge list, Layer Adjacency List
Partitions, Partition Range Information
OUTPUT: Inter-Layer Expanded Substructures
Class Mapper

1: function SETUP
2: RangeInfo = load range information of adj partitions
3: end function
4: function MAP(key = Null, value = inter-layer substructure instance OR Graph

Layers edge list)
5: LIds = Set for unique layer ids for an instance
6: PIds = Set for unique partition ids for an instance
7: if First Iteration then
8: value = layer-wise edge list
9: LIds = layers to which the instance does not belong
10: else
11: value = inter-layer substructure instance
12: LIds = each layerID from the substructure instance
13: end if
14: get every layerID from the substructure instance
15: get the source vertex id(sV id) and destination vertex id(dV id) from each edge
16: for each vertex–id v in value do
17: Find the PartitionId that v belongs to using Range Info
18: Add PartitionId to PIds
19: end for
20: for each partition–id pid in PIds do
21: for each layer–id lid in LIds do
22: emit(Key = lid+pid, value = substructure instance)
23: end for
24: end for
25: end function

Class Reducer

21: function REDUCE(key = layer id + partition id, valueList = list of instances
in partition)

22: Load partition adj list from HDFS
23: for each k-edge canonical instance ks in values do
24: expand ks to (k+1)-edge canonical instance
25: emit(Key = Null, value = expanded substructure instance)
26: end for
27: end function
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ID to differentiate between inter-layer and intra-layer instances. This tagging wasn’t

needed in HoSCA as each layer operated independently and in isolation from others.

The independence allowed smaller layers to progress through their own iterations

without waiting for larger layers. Thus a smaller layer could finish its analysis phase

and have all of its intra-layer substructures results ready even before the iterations of

larger layers are finished. This imbalance could be remedied by allocating different

number of partitions for each layer and different number of mappers.

However in HoICA, the composition function runs inside every iteration. Since

composition relies on the results from every layer, it acts like a blocking function.

Each layer has to wait on the completion of the composition function before they can

progress to the next iteration. Thus each layer has a dependence on the iteration wise

results of every other layer. Hence, there is no need to retain the independence of

layers in the analysis phase. Even the smaller layers need to wait for the substructures

from the larger layers in each iteration. Consequently, metric evaluation stage also

becomes a bottleneck, as only after its completion for a given iteration will a given

layer know which instances from that layer are present in the beam. To address

this, HoICA processes layers together. This decision was made because even if layers

were processed independently, smaller layers would still be blocked, leading to their

processors sitting idle. By implementing HoICA in this way, we can distribute the

load uniformly and achieve better load balancing.

It is important to note that the correctness is not affected by this implementa-

tion choice. Load balancing can be done in other ways by using appropriate number

of partitions and mapper/reducer nodes. Since we are using the same number of par-

titions and mapper/reducer numbers for experimentation, the above implementation

was chosen.
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5.4 Configuration Parameters

We configure various tasks by specifying parameters in a configuration file. The

configuration file includes different parameters, such as graph size, beam size, choice

of metric, range partitioning information, size of substructures to generate, among

others. Below is the list of configuration file options for various parameters.

1. USER: The username for the account running the jobs

2. BASE DIRECTORY: Base HDFS directory

3. BEAM SIZE: Number of substructures to store, ties are handled by keeping all

ties

4. SUPPORT: A substructure needs to have number of instances greater than the

support value to be considered for metric evaluation. Default value is 1. This

helps prevent the beam from being flooded with substructures with frequency

of 1.

5. GRAPH INPUT DIRECTORY: Directory in HDFS where the input MLN is

loaded.

6. FIXED ADJACENCY DIRECTORY: Directory in HDFS with the partitions

of the adjacency lists for each layer.

7. METRIC: Metric to be used for substructure evaluation. Values can be ”MDL”

or ”FREQUENCY”.

8. GRAPH VERTEX: Number of vertices in the graph.

9. GRAPH EDGE: Number of Edges in the graph.

10. NO OF LAYERS: Number of layers in the MLN

11. DISTRIBUTION: Distribution of edges among the layers

12. NO OF PARTITIONS: Number of partitions of the adjacency list. Used to

calculate the range information as Range = GRAPH VERTEX/NO OF PAR-

TITIONS
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13. NO OF MAPPERS: Number of Mappers to use for the MapReduce job.

14. NO OF REDUCERS: Number of Reducers to use for the MapReduce job.

15. MaxSize: Maximum size of substructures to be generated. Used to calculate

number of iterations to run. Number of iterations = MaxSize-1

16. MinSize: Minimum size of substructures to be generated.

17. nSubsOutput = Number of best substructures to print. This best substructure

list is updated every iteration. For example, if the parameter is set to ”5”, we

will write the top 5 substructures with the best MDL/Frequency value into a file

during the first iteration. In each subsequent iteration, if any substructure has

a better MDL/Frequency value compared to the current substructures, it will

overwrite the existing entries. This ensures that, irrespective of the number of

iterations executed, the top nSubsOutput file will contain the best substructure

offering best compression for the MLN.

Here is an example of the input parameter file used.

USER = "axs9120"

BASE_DIRECTORY = "/user/"

BEAM_SIZE = 4

SUPPORT = 1

GRAPH_INPUT_DIRECTORY = "input/"

FIXED_ADJACENCY_DIRECTORY = "fixed_test_adj/"

METRIC = "MDL" // "FREQUENCY", "MDL"

GRAPH_VERTEX = 800000

GRAPH_EDGE = 1600000

NO_OF_LAYERS = 2

DISTRIBUTION = 50,50

NO_OF_PARTITIONS = 4
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NO_OF_MAPPERS= 4

NO_OF_REDUCERS= 4

MaxSize = 5 // Max size of substructures generated

MinSize = 5 // Min size of substructures generated

nSubs_output = 5 // Best substructures to print

5.5 Implementing Job Counters

For evaluating the performance of our MapReduce jobs, we utilized both built-

in counters and implemented our own user-defined counters within our Mapper and

Reducer programs. Counters in Hadoop MapReduce serve as valuable tools for col-

lecting statistics related to the job, aiding in quality control and enabling analysis

of cost and space utilization. The following is a comprehensive list of all the job

counters employed. These counters are written to a file after the completion of each

MapReduce job.

• Setup time ( Mapper and Reducer): Creating a counter for setup time proves

beneficial in analyzing the setup cost associated with a Mapper/Reducer. In

our MapReduce job, we use the setup to set the values of parameters that would

be used in the main map or reduce functions. As we do not do any computation

here, these times are always negligible.

• Map time: The mapper invokes the map method for each key/value pair. The

map time for any mapper is the time it takes to process all key/value pairs

assigned to it.

The map time in HoICA algorithm consists of routing the substructures (inter-

layer and intra-layer) to the correct partitions and the creation of canonical

substructures from all instances.
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The map time in HoSCA algorithm consists of routing the substructures (intra-

layer), creation of connected subgraphs in composition and the creating canon-

ical substructures from all instances.

The map time is computed by finding the maximum among the map times of

all individual mappers. This allows us to capture the overall time spent on the

mapping phase. In both algorithms, when increasing the number of mappers for

the same graph size, we see a reduction in map time as each mapper processes

less data.

• Combiner time: We use the combiner to find and eliminate duplicates in the

mapper node during the metric evaluation job. This way, we reduce the amount

of data that needs to be sent to the reducers. As each mapper gets the instances

from one partition, the combiner will eliminate all intra-partition duplicated.

• Reduce time: The Reduce method is invoked for each ¡ key, (list of values) ¿

pair. This counter provides insight into the overall time taken by our Reduce

method.

The reducer time in HoICA involves expansion of substructures(inter-layer and

intra-layer) in each layer, counting isomorphic instances, and applying metrics

to constrain future expansion.

In HoSCA, the reducer time involves expansion of substructures(intra-layer),

combining substructures across layers to generate inter-layer, counting isomor-

phic instances, and applying metrics to constrain future expansion.

Utilizing a counter here is crucial since the majority of both the algorithm’s

work is done in the reduce phase. This counter allows us to track and analyze

the total time spent on these critical reduce phase operations.

• Cleanup time ( Mapper and Reducer): The cleanup function is not called in

the mapper in any of the jobs. Main cost of cleanup is incurred in reducer
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of the metric evalution job. The cleanup function is used to write the beam

substructures to the disk in hdfs. The cleanup time is calculated for each reduce

task and we store the maximum among all tasks in this counter to determine

the overall cleanup time.

• Duplicates Removed by combiner: We have implemented a counter to see how

many duplicates were removed by the combiner.

• Duplicates Removed by Reducer: We have implemented a counter to see how

many duplicates were removed by the reducer. These are mostly inter-partition

duplicates as those could not be removed by the combiner.

• Number of Substructures written: This counter stores the number of substruc-

tures that were written out to the disk. This provides valuable insights into

the number of substructure instances present in the beam for that iteration.

This counter helps in determining the size of the beam substructure set for each

iteration.

In the next chapter, we will explore the experimental analysis of our algorithms,

evaluating their correctness and scalability across different types of graph sizes and

distributions. Additionally, we will examine the impact of parameters such as beam

size and the number of partitions on each algorithm’s performance.
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CHAPTER 6

EXPERIMENTS

In this chapter, we will highlight the results and delve into an in-depth analy-

sis of various experiments conducted on a diverse range of synthetic and real-world

graphs. We aim to compare the effects of various MLN characteristics, including

layer sizes, layer distributions, the impact of partitions, and the scalability of the two

algorithms.

6.1 Experimental Environment:

All experiments were conducted on the Expanse cluster at SDSC (San Diego

Supercomputer Center). The Expanse cluster is structured into 13 SDSC Scalable

Compute Units (SSCUs), consisting of 728 standard nodes, 54 GPU nodes, and 4

large-memory nodes. We have used the standard nodes for running java with Hadoop

MapReduce. Expanse’s standard compute nodes are each equipped with two 64-core

AMD EPYC 7742 processors and have 256 GB of DDR4 memory. Each compute

node has access to a 12 PB parallel file system and 1 TB SSD for local scratch space.

Expanse uses the SLURM workload manager for job scheduling. Table 6.1 shows the

configuration for each compute node.

6.2 Dataset Generation:

In the context of our substructure discovery algorithm, when we model a dataset

as a Homogeneous Multilayer Network (HoMLN), each layer is considered as an in-

dependent graph. Consequently, we can transform a large single-attribute graph
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Compute Node Component Configuration

Node Count 728
Cores/Node 128 built on 2 processors (64 cores each)
Processor AMD EPYC 7742
Memory 256 GB DDR4 DRAM
Storage 1TB Intel P4510 NVMe PCIe SSD

Table 6.1: Expanse System Details

into MLNs by partitioning them into layers. This approach provides the flexibility

to assess the algorithm’s performance across MLNs of varying sizes while maintain-

ing control over other graph characteristics, such as the distribution of edges among

layers. Furthermore, for empirical validation, we can incorporate substructures with

known frequencies to ensure consistent identification whether the dataset is processed

as a single graph or as layers. Hence, our methodology involves generating substantial

single graphs with embedded substructures, followed by the creation of homogeneous

layers for the Multilayer Network (HoMLN).

6.2.1 Graph Generation:

The initial step involves generating a large single-attribute graph. We use a

synthetic graph generator -Subgen. Subgen enables us to create graphs of varying

sizes, with multiple embedded substructures of different sizes and frequencies. The

input parameters to Subgen include:

1. Graph output filename

2. Number of vertices in the graph

3. Number of edges in the graph

4. Number of unique vertex labels

5. Number of unique edge labels

6. Number of substructures to embed in the graph
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7. For each substructure

(a) Number of instances

(b) Number of vertices

(c) For each substructure vertex

i. The vertex label. It must be of the form v0, v1 etc..

(d) Number of edges

(e) For each substructure edge

i. The edge label. It must of the form e0, e1, etc.. .

ii. The first vertex to which this edge is attached.

iii. An integer ranging from 0 to (number of substructure vertices - 1)

iv. The second vertex to which this edge is attached.

v. An integer ranging from 0 to (number of substructure vertices - 1)

Here is an example input for the graph generator.

1MV4ME_embed_5E_100000_1000vl_4000el.g

1000000

4000000

1000

4000

1

100000

6

y1

y2

y3

y4

y5

y6

5

c1

0

1

c2
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1

2

c3

2

3

c4

2

4

c5

1

5

Each parameter is specified on a separate line. Here we are creating a graph with

1 million vertices and 4 million edges. There are 1000 unique vertex labels and 4000

unique edge labels. A substructure of size 5 is embedded in the graph with a frequency

of 100000. It has 6 vertices (labeled y1, y2, y3, y4, y5, y6) and 5 edges (labeled c1, c2,

c3, c4, c5). The generated graph file is called 1MV4ME embed 5E 100000 1000vl 4000el.g,

signifying its size (1MV4ME), embedded substructure size and its frequency (5E and

100000) and number of distinct vertex labels (1000vl) and edge labels (4000el). The

graph file generated has an extension of .g.

6.2.2 Layer Generation:

The output format of the graph generated by Subgen does not align with the

input format used by our algorithm (MR format). Thus, we need to convert the

graphs into MR format and also split it into layers. We have written a Python

program called LayerGen to achieve both these goals.

The first step is to create layers from the input graph. The script processes

each edge from the input (single graph) and distributes it into various files, with

the number of files determined by the required number of layers. Multiple layers

are created based on the specific needs of the experiment. Each edge is written to
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only one file, ensuring that the same edge does not appear in multiple layers. We

also use different distributions to split the edges between layers. We assign the edges

randomly to each layer such that we have the layer distribution we desire.

LayerGen also provides an option to generate connected layers. To establish

connections between various disconnected components within a layer, we utilize the

Python package NetworkX [43] to identify all the connected components. Subse-

quently, each connected component is connected to another connected component by

introducing an edge between them, distinguished by a unique edge label. This pro-

cess is iterated as necessary to create a fully connected layer. The newly added edges

are then reintegrated into the single aggregated graph, ensuring that our Multilayer

Network (MLN) remains consistent with the ground truth. Note that each connecting

edge is assigned a distinct label, preventing it from forming a frequent substructure,

as any substructure with a connecting edge will always have only one instance.

After the layers are generated, we convert the layers from the subgen format to

MR format which is a sequence of one-edge substructures as shown in Chapter 3. We

then proceed to generating the adjacency list and its range based partitions according

to the number of partitions needed. Generating the adjacency list for each layer is

essential since the expansion process in each layer operates independently. We create

the adjacency list in memory, although the MapReduce framework can be employed

if the graph size is too large.

The parameters passed to our LayerGen program are as follows:

[params]

# valid graph path in subgen or non-subgen format

INPUT_GRAPH_PATH = 1000KV4000KE.g

# number of layers to generate

NO_OF_LAYERS = 2

# Distribution ratio for layer generation

# (you can enter multiple distributions as colon separated )
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DISTRIBUTION_RATIOS = 50,50;70,30;90,10

# edgebased or random layer generation

LAYER_GENERATION = random

# if the layers generated should be connected or disconnected or both

CONNECTIVITY_OPTION = disconnected

# number of partitions to generate for each layer

# (you can enter multiple partitions as comma separated)

ALL_PARTITIONS = 8,16,32,64

# Used to calculate range information (number of vertices/number of partitions)

NO_OF_VERTICES = 1000000

# true if input is already in mr format, else false

MR_FORMAT = false

MLN_OPTION = homln # hemln or homln

6.2.3 Dataset Description:

Dataset Used For Beam Value M/R configs (per layer)
Synthetic Accuracy, Response Time 4,8,12 2M/2R, 4M/4R,

8M/8R
Synthetic Large Response Time, Scalability 4 4M/4R, 8M/8R,

16M/16R, 32M/32R

Amazon Response Time, Scalability 4 8M/8R, 16M/16R,
32M/32R, 64M/64R

LiveJournal Response Time, Scalability 4 8M/8R, 16M/16R,
32M/32R, 64M/64R

Table 6.2: Dataset description

We conducted experiments on various real-world and synthetic datasets to eval-

uate the effectiveness, correctness, speedup concerning different configurations of

mappers and reducers, and scalability of our approach. The datasets used for our

experiments are outlined in Table 6.2. We have utilized synthetic graphs of various

sizes with multiple embedded substructures with user-defined frequency. This helps
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GID base graph #nodes, #edges Edge L1 edges L2 edges
(both HoICA and HoSCA) Distribution

1 50KV, 100KE 50/50 49797 50203
2 70/30 69862 30138
3 90/10 89899 10101
4 100KV, 500KE 50/50 249953 250047
5 70/30 349722 150278
6 90/10 449691 50309
7 400KV, 1000KE 50/50 500006 499994
8 70/30 700077 299923
9 90/10 899994 1000006
10 1000KV, 4000KE 50/50 1998995 2001005
11 70/30 2799577 1200423
12 90/10 3599822 400178
13 Amazon (0.74MV2.6ME) 50/50 1305431 1305160
14 70/30 1827821 782770
15 90/10 2349423 261168
16 LiveJournal (4.9MV69ME) 50/50 34489570 34504203
17 70/30 48295818 20697955
18 90/10 62096307 6897466

Table 6.3: Dataset Distributions

us to verify our results with the known frequency and substructure. Additionally,

real-world datasets from Amazon and LiveJournal were also used for our experiments.

6.3 Empirical Correctness

While formal proofs offer a strong theoretical foundation, empirical validation is

essential to ensure that the algorithm’s behavior aligns with real-world expectations.

Extensive testing was conducted using diverse datasets and operational scenar-

ios, covering a spectrum of possible inputs and conditions. To verify the correct-

ness of our algorithms, we conducted tests on small synthetic graphs generated by

Subgen. Subgen was employed to generate small graphs with predefined embedded

substructures ranging from size 50KV/100KE to 1MV/4ME. Subdue [19], HoICA,
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Figure 6.1: Embedded substructure

and HoSCA, when run on these graphs, consistently discovered the same substruc-

tures. The frequency of substructures found by HoSCA was less than the embedded

frequency. In case, of HoICA

Furthermore, the correctness and efficiency of the algorithm were assessed by

comparing the results of SUBDUE and our algorithms on the same dataset, converted

into layers to generate the MLN. However, SUBDUE, being a main-memory approach,

encountered difficulties with increasing graph sizes beyond 100KV/500KE.

To verify correctness on large graphs, we embedded substructures with a user-

defined frequency, aiming to find the same substructures. Figure 6.1 illustrates the

5-edge substructure that we have embedded in the synthetic datasets.

6.4 Accuracy

As demonstrated earlier, HoICA consistently exhibits full accuracy, a validation

further supported by our experimental analyses. Across various synthetic datasets,

HoICA consistently identified all instances of the embedded substructure with exact
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frequencies. Figure 6.2 shows the algorithm’s accuracy on a 50KV100KE graph with

an embedded substructure of size 10 and frequency 5000.

In the case of HoSCA, the suspected loss of accuracy is evident, as depicted in

Figure 6.2, which illustrates the diminishing accuracy with increasing substructure

size. For this experiment we have used a dataset of 50K vertices and 100K edges with

an embedded substructure of size 10 with a frequency of 5000. The edges were evenly

distributed, with a 50/50 split between the layers. Additionally, the beam parameter

was set to a value of 4. Experiments were conducted from iterations 1 to 9, where

the result for size k was obtained by composing the output of size k from each layer.

In other words, to generate a size 4 substructure, the size 4 beam output from each

layer was utilized (which is the output of the k-1 iteration).

The accuracy significantly drops as the size of the substructure increases. This

decline is due to the extended delay before performing composition, resulting in the

loss of more information and substructure instances. For instance, if composition is

done at size 4 (i.e. using iteration 3 output), instances from 2 iterations are missed.

However, if composition is delayed until size 10, instances from 9 iterations are missed.

For each iteration that passes without applying composition, we lose increasingly more

information. This leads to an increased loss of substructure instances, as composition

was not done to regenerate the lost substructures. Consequently, the missed instances

accumulate, and by iteration 9, there is minimal information left to regenerate the

overlooked substructures.

6.5 Effect of various parameters on Accuracy

In the previous experiment, the beam parameter and layer distribution were

fixed at 4 and 50/50, respectively. Now, let’s examine how varying these parameters

affects our accuracy.
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Figure 6.2: Accuracy and size of substructure, 50KV100KE

6.5.1 Effect of Layer Distribution on Accuracy

HoICA consistently attains full accuracy regardless of the layer distribution,

displaying resilience to variations in the distribution ratio — be it 50/50, 70/30, or

90/10.

Conversely, for HoSCA, diverse layer distributions yield distinct baseline accu-

racies. However, these accuracies can be further increased by higher beam sizes, as

elaborated in the next section.

Notably, skewed layer distributions appear to yield higher accuracy. This can

be attributed to the larger size of a single layer, thus containing a greater number

of substructure instances. As these instances are intra-layer and not subjected to

loss between iterations, a skewed distribution mitigates the risk of losing instances

due to infrequent composition. In contrast, uniform distributions are more likely

to split instances across layers, generating higher number of inter-layer instances,

contributing to a lower baseline accuracy. Thus, the observed variation in accuracy
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Figure 6.3: Accuracy and Distribution, 50KV100KE

is more indicative of layer characteristics than the algorithm itself. Figure 6.3 shows

the increase in accuracy with respect to the layer distribution.

6.5.2 Effect of Beam on Accuracy

HoICA is able to consistently achieve full accuracy at a beam size of 4. Thus,

further examination of the beam size parameter in HoICA will not yield any substan-

tial insights due to the already attained optimal accuracy.

However, for HoSCA, which demonstrated a loss of accuracy with increasing

substructure size, an exploration of the beam size parameter becomes important. As

depicted in Figure 6.4, increasing the beam size contributes to an increase in accuracy.

The observed trend suggests that increasing the beam size increases the number

substructure instances as input to the composition. Notably, the rise in accuracy from

beam size 4 to 8 is more than the subsequent increase from beam size 8 to 12. This

pattern implies a limitation on the achievable accuracy associated with increasing the

beam size. The diminishing returns in accuracy suggest that there is a constraint on
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Figure 6.4: Accuracy and Beam Size, 50KV100KE

the algorithm’s capacity to regenerate missed instances. This constraint is attributed

to the permanent loss of certain substructure instances between the multiple iterations

that had passed before the composition was applied. Consequently, the algorithm is

unable to recover this missed instances, even with an increased beam size.

6.5.3 Effect of Layer Connectivity on Accuracy

The experiment was replicated with both connected and disconnected layers to

explore whether the connectivity of layers affects HoSCA’s accuracy. Surprisingly,

there was no discernible difference in accuracies between connected and disconnected

layers. This lack of discrepancy can be explained by considering the unique connecting

edge added, which does not form a frequent substructure. Therefore, it is improbable

for this connecting edge and the instance it generates to become part of the beam

substructures. This is because they have a frequency of one and thus possess the

lowest possible MDL value. In fact, the only scenario in which these instances could

be in the beam is when the entire graph is present in the beam. This is undesir-
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able, as having the entire graph in the beam is to be avoided. Hence, introducing

a connected layer does not yield a notable impact. Furthermore, as shown in the

correctness section of Chapter 4, HoSCA can lose instances even when the layer itself

is connected. Moving forward, we will refrain from explicitly generating connected

layers to maintain a more generic approach.

6.6 Response Time and Scalability

To gauge our response time, we will employ varying numbers of partitions along

with an equivalent number of mappers and reducers to maximize parallelization. The

objective is to observe a reduction in the time required to complete our experiments

as we increase resources. We aim to understand the speedup we can achieve, whether

it follows a linear trend or exhibits diminishing returns over time. Large synthetic and

real-world datasets were utilized to verify the speedup and scalability of our approach.

6.6.1 Synthetic Graphs

For the analysis of speedup achieved on synthetic datasets, we explored various

dataset sizes, including 50K vertices and 100K edges (50KV100KV), 100K vertices

and 500K edges (100KV500KE), 400K vertices and 1 million edges (400KV1ME), and

1 million vertices and 4 million edges (1MV4ME). Regardless of the layer size, each

layer was partitioned into the same number of partitions. We experimented with 8,

16, 32, and 64 partitions, maintaining an equivalent number of mappers and reducers.

We saw a similar trend in each dataset. Here, we have focused on the largest dataset,

1MV4ME. The results for all the datasets can be seen in Figure 6.11.

For HoICA, Figure 6.5 reveals an average speedup of 48.77% as we increased the

number of partitions and the count of mappers/reducers from 8 to 16. Subsequently, a

speedup of 43.7% was observed when further increasing them from 16 to 32. Finally, a
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Figure 6.5: Speedup: HoSCA vs HoICA (1MV4ME)

speedup of 36.33% was noticed when further increasing them from 32 to 64. However,

the speedup achieved was not linear; doubling the mappers and reducers does not

halve the time taken. As the number of partitions increases, the speedup diminishes.

In case of HoSCA, Figure 6.5 illustrates a significant fluctuation in time taken

based on layer distribution. There is an average speedup of 49.7% when going from

8 mappers and reducers to 16. Subsequently, a further average speedup of 39.5% is

observed when increasing them from 16 to 32. Finally, a speedup of 31.3% is noticed

when further increasing them from 32 to 64. Similar to HoICA, the speedup achieved

in this scenario is nonlinear and begins to taper off with continued increases in the

number of mappers and reducers.

This observed speedup can be attributed to the partitioning of the same dataset

into more partitions, processed by an increased number of processors in parallel.
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Smaller-sized partitions contribute to a reduced computational load on each proces-

sor, leading to the higher speedup. However, the diminishing speedup suggests that

the increase in the number of partitions does not endlessly improve performance.

Higher number of partitions allows more instances to belong to multiple partitions,

increases the potential for inter-partition duplication. This leads to redundant work

in different processors. Moreover, excessively small input splits can negatively impact

Hadoop performance, introducing overhead related to task setup, communication, and

coordination. Conversely, overly large input splits can result in an uneven distribution

of processing workload among nodes, leading to inefficient resource utilization. Hence,

determining the optimal number of input splits is crucial for optimizing Hadoop job

performance. If the objective is to maximize efficiency, employing 16 Mappers/Reduc-

ers appears to be the most effective choice as it provides the best speedup. However,

in case there is surplus processing power available, 64 Mappers/Reducers still yields

a respectable speedup of around 30% while taking the least amount of time.

Effect of Layer Distribution:

As evident from Figure 6.5, layer distribution does not significantly impact the

processing time in the case of HoICA. This behavior stems from the algorithm’s imple-

mentation, where all layers are processed within the same MapReduce job, enabling

effective load balancing and ensuring uniform load distribution among processors.

However, in HoSCA, each layer is processed in a separate MapReduce job. In

case of skewed layer distributions, where a smaller layer finishes processing earlier

than the larger one, its processors remaining idle while waiting for the larger job

to complete. Consequently, skewed distributions lead to increased processing time

compared to uniform distributions, where load distribution among processors is more

balanced. To mitigate this, alternative partitioning strategies based on layer size

could be explored for HoSCA.
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6.6.2 Real World Graphs

We have employed real-world graphs to demonstrate scalability and speedup.

Two real-world datasets, namely Amazon and LiveJournal, were utilized, featuring

sizes of 0.74MV2.6ME and 4.9MV69ME, respectively. These datasets were parti-

tioned into 8, 16, 32, and 64 partitions, ensuring equivalent number of mappers and

reducers for each partition configuration.

Amazon(0.74MV2.6ME): The notable change is the minimal difference between

the two approaches for this dataset. This is unexpected as we expect HoSCA to be

faster compared to HoICA due to less number of compositions applied. The consistent

trend in speedup as the number of mappers/reducers increases remains unchanged for

both approaches. Figure 6.6 reveals the time taken and the average speedup achieve

for different number of partitions and the count of mappers/reducers from 8 to 16 to

32 to 64.

The reason for the similarity in execution times between both approaches can

be explained knowing the fact that the most frequent substructures in the dataset

were of size 2. Given that real-world datasets may or may not contain frequent

substructures, and we have not embedded larger substructures in these datasets,

both approaches exhibit similar performance in capturing substructures of size 2. As

composition was minimal in this dataset, the disparity between the two approaches

diminishes. As shown in Figure 6.7, composition job for HoICA does much less work

after iteration 1. Thus in this case, HoICA effectively acts like a single composition,

eroding HoSCA advantage. Interestingly, HoSCA has slightly higher timings than

HoICA, which can be attributed to skewed distributions having uneven workload in

the HoSCA implementation.

We can contrast this with the composition job in the synthetic dataset (1MV4ME).

Figure 6.8 shows the composition job for the synthetic dataset. In this case, as there
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Figure 6.6: Speedup: Amazon Dataset

were still substructures to be found of size 3 and above, the time taken in the com-

position job keeps increasing as the number of substructures found and their size

increases. Larger substructures have more vertex ids that they can be expanded on,

requiring more computational work. This leads to the steady increase in the reduce

time from iteration 2 onwards as expansion is done in the reducer. The map time only

slightly increases, as the mapper solely handles the routing of substructures based on

vertex ids. This implies that the map time is solely dependent on the number of sub-

structure instances received by the mapper, irrespective of their size. It is essential to

note that the dip from iteration 1 to iteration two is due to the beam being applied

after the first iteration. In other words, all the edges in the graph are processed in

the first iteration, but only the top beam substructures are processed starting from
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Figure 6.7: Composition Job for Amazon Dataset: HoICA

the second iteration. This greatly reduces the number of substructures considered for

expansion. Thus, a significant dip is observed between iteration 1 and iteration 2.

LiveJournal(4.9MV69ME):

The LiveJournal dataset exhibits similar trends to those seen in the previ-

ous Amazon dataset, as depicted in Figure 6.9. This dataset is notably larger at

4.9 Million Vertices and 69 Million Edges compared to the previous datasets. Both

approaches were able to complete the substructure discovery process. The average

speedup while varying number of partitions and mappers/reducers is greater than

that observed in the Amazon dataset.

Specifically, a consistent decrease of nearly 50% is observed in transitions from

8 to 16 and 16 to 32 partitions. However, from 32 to 64 partitions, the speedup

diminishes to 39%, but it remains higher compared to other datasets. This can be

attributed to the larger size of the graph, which helps alleviate the added overhead

from adding more tasks/processors. Having a large overhead due to a higher number

of tasks for a small dataset would diminish the speedup, but for a sufficiently large
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Figure 6.8: Composition Job for 1MV4ME Dataset: HoICA

dataset like LiveJournal, doubling the processors results in nearly double speedup

(approximately 50% reduction in time).

Once again, both approaches exhibit similar execution times, a phenomenon also

observed in the Amazon dataset. This similarity can be attributed to the fact that,

as in the previous dataset, the most frequent substructures found in the LiveJournal

dataset are still of size 2, minimizing the necessity for composition.

6.7 Response Time for All Experiments Performed

We aim to analyze the variations in response time across different datasets

characterized by diverse sizes and features. For a comprehensive overview, we have

consolidated the results from various experiments into two graphs, one for real world

datasets and other for synthetic datasets.

In Figure 6.10 and Figure 6.11 show all the experiments ran on real world and

synthetic datasets respectively. Figure 6.11 also has the timing for Subdue which was

our ground truth.
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Figure 6.9: Speedup: LiveJournal Dataset

Figure 6.10: Speedup: Real World Datasets
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Figure 6.11: Speedup: Synthetic Datasets

In conclusion, we have presented thorough experiments conducted on a vari-

ety of datasets, highlighting the distinctions between the two proposed approaches.

The graphs utilized in these experiments exhibited diverse characteristics. Through

these experiments, we successfully validated both approaches across a range of graph

sizes and a wide spectrum of graph characteristics. The extensive experiments have

provided robust verification of the validity and efficacy of our approach.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis introduces two scalable approaches for substructure discovery within

a Homogeneous Multilayer Network (HoMLN), employing a decoupling-based strat-

egy. Two distinct approaches to composition were proposed and implemented us-

ing the MapReduce paradigm, emphasizing correctness and effectiveness. The al-

gorithm encompasses critical graph mining components, including subgraph gener-

ation, inter-layer substructure combination, duplicate elimination, and isomorphic

substructure counting. Through extensive experiments, we validated the efficiency

of our MapReduce-based approach, demonstrating its capacity to scale effectively to

large graphs with arbitrarily large layers. Experiments were conducted at a very large

scale, providing a thorough verification of our findings.

The domain of partitioned graph mining presents intriguing avenues for future

research. Further exploration of partitioning techniques for MLN layers, including

arbitrary partitioning, can help address challenges associated with uneven partitions

resulting from range-based partitioning. Additionally, future work may involve ex-

tending our approach to other distributed frameworks, such as Spark, to validate and

extend our findings.
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