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Abstract

Cooperative Rendezvous in Multi-vehicle systems

Rajeev Shobhit Voleti, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Kamesh Subbarao

The field of cooperative, multi-vehicle systems has witnessed a significant ex-

pansion and evolution, yielding considerable opportunities for improved autonomy,

resilience, and robustness. Despite these promising developments, complex challenges

persist in ensuring secure and efficient rendezvous among cooperative peers. The term

”rendezvous,” within the realm of cooperative control, refers to the simultaneous con-

vergence of multi-vehicle systems to a designated target location. In missile guidance,

the problem of multiple pursuer missiles achieving rendezvous with a target is termed

as a salvo attack. Current methodologies often grapple with issues related to synchro-

nization, high latency and network security, all of which can adversely impact system

performance and reliability. Furthermore, traditional consensus protocols tend to

fall short in mitigating threats within such complex environments, leaving the sys-

tem susceptible to a range of potential attacks. For example, traditional flocking

or cooperative rendezvous methods utilise a shared network of position and velocity

measurements to synchronize and achieve rendezvous. Malicious agents with access

to the information in this network would lead to compromised strategy and poten-
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tially interrupt the interception of the pursuers with the target. These predicaments

highlight an urgent need for the development of robust and innovative solutions.

Our research aims to bridge these gaps by proposing a pioneering solution: the

orchestration of multi-vehicle secure rendezvous within a finite time period through

the use of a shared network time-to-go consensus protocol. The essence of this ap-

proach lies in its utilization of a finite time, time-dependent control input. For the case

of the multiple pursuer salvo problem, the guidance law proposed effects same time

position convergence of these multiple missiles to their target location. This unique

methodology is brought to life through a variety of simulation scenarios, highlighting

its potential in addressing the complexities of secure rendezvous.

The scope of the research further extends to incorporate a terminal phase guid-

ance law designed to enhance target acquisition. This is achieved by enabling more

practical position convergence through state estimation of the target vehicle. A crit-

ical comparison of this approach with the nonlinear estimators extensively used in

current literature affirms the viability of the proposed framework.

Building on this, the research explores the application of this convergence frame-

work to accommodate an array of protocols within multi-agent systems. An in-depth

analysis of the decentralized, leaderless network of agents, focusing on the conditions

necessary for rendezvous, further reinforces the versatility and applicability of this

framework.

In pursuit of an optimal solution to the secure rendezvous problem, a novel

collocation-based control optimization scheme has been proposed. This strategy ex-

hibits significant potential to extend the rendezvous framework, enabling it to cater

to higher-order, centralized, objective-based requirements. The framework developed

has been shown to be effective for heterogeneous, networked teams of agents. The

realization of this approach would mark a significant step forward in overcoming

v



the challenges inherent to secure rendezvous in cooperative, multi-vehicle systems,

thereby bringing us closer to the ultimate goal of enhanced system autonomy, re-

silience, and robustness.
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Chapter 1

Introduction

In the landscape of modern cooperative systems, the task of effectively manag-

ing multi-vehicle networks has emerged as an area of profound interest and research.

These systems, characterized by their cooperative nature and complexity, provide

significant prospects for improving autonomy, resilience, and robustness. Neverthe-

less, several challenges remain, especially when it comes to the efficient and secure

rendezvous of these cooperative entities. The term “rendezvous” in this context is

described as the act of simultaneous convergence of multi-vehicle systems to a spe-

cific target location. The key here being that the approach towards the target by

the vehicles must happen at the same time. This problem is also posed as the salvo

problem in missile dynamics. In existing literature, the majority of methods address-

ing rendezvous or flocking primarily rely on shared position and velocity information.

However, this approach has inherent vulnerabilities. It could, for instance, expose

the system to a man-in-the-middle attack, whereby a malicious agent intercepting

communications may gain access to sensitive information about the vehicles. Such a

security breach could have potentially catastrophic consequences, especially in criti-

cal applications such as missile target engagement. As such, there is an urgent need

to address these security vulnerabilities in the design and execution of rendezvous or

flocking methods for multi-vehicle systems.

1.1 Goals and Objectives

Outlined below are the specific goals and objectives that will steer this research:
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• Develop and refine a framework that enables finite-time, dynamic solutions for

the rendezvous problem in multi-agent systems, with a focus on:

– Establishing secure information sharing protocols between agents.

– Utilizing leaderless communication systems to enhance security.

– Analyzing the impact of different consensus protocols on security and effi-

ciency during rendezvous.

– Investigating the influence of sparse communication networks on successful

rendezvous.

• Explore the practical application of the proposed framework to the complex

scenario of multiple missile-target engagements, aiming to:

– Extend the solution to include state estimation for greater resilience against

uncertainties.

– Assess the robustness of the proposed solutions in dynamic and uncertain

environments.

• Propose an optimal solution to the secure rendezvous problem by:

– Conducting a multifaceted analysis of various numerical implementation

methods.

– Incorporating heterogeneous multi-vehicle systems into the framework.

– Adapting the results to centralized communication networks for broader

applicability.

– Applying the framework to specific objectives and practical scenarios in

the field.

These goals and objectives are carefully crafted to ensure a thorough explo-

ration of the secure rendezvous problem in multi-agent systems, offering a blend of

theoretical innovation and practical application.
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1.2 Background and Motivation

In order to provide a comprehensive foundation for our work, this section offers

a detailed examination of the relevant background information, the existing literature

in the field, and the key motivations guiding our research objectives.

Leaderless Protocols for Same-Time Consensus

The cooperative rendezvous of several agents to a target has been well docu-

mented as a solution to the rendezvous problem [1] and the salvo problem in missile

dynamics. It is defined as the simultaneous or same-time position consensus of numer-

ous agents to a target location. In modern combat with targets being more resilient

and secure than ever before, a simultaneous attack has major advantages in pacifying

defenses and ensuring a target is intercepted. Strategic targets may also be guarded

by defending agents to subdue pursuer attacks in which case through salvo, even if

some of the pursuing agents are neutralized, the remaining agents can intercept and

overwhelm the target. Certain targets such as battleships may be resilient to intercep-

tion by a single pursuer missile in which case it becomes necessary to execute a salvo

attack to pacify the target. Rendezvous has also been studied from a game theoretic

perspective [2]. Lindsay and Givigi [2] have proposed position consensus as a cooper-

ative game with the players attempting to maximize their utility functions which is

determined by the total number of players, the greatest possible distance between any

two players in the game and their respective distances from each other. The location

of consensus is determined based on a normalized remainder vector generated from

the weighted difference in the players’ utility functions. It is assumed that the players

have information about the utility function and thereby locations of all the players

in the game at all times and not just their neighbors and the rendezvous location is

determined based on the state of each player.
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Motivation: Rendezvous is effected in literature by sharing the location of

each agent with their connected neighbors [3] which leaves the location of the agents

and the target vulnerable to interception by an outsider tapping into communica-

tions. Secure rendezvous is a spin on the existing problem with an added element

of resistance to information interception. The rendezvous for drones or unmanned

aerial vehicles (UAVs) to a secure location can be subject to a man in the middle

attack leaving the location of the secure target vulnerable. Second order consensus

in position and velocity for multi-agent systems with double-integrator dynamics has

been posed as a modified rendezvous problem by Yu et al. [4] and has been shown

to achieve consensus in position and velocity asymptotically in strongly connected

graph communication topologies leveraging shared position and velocity information

of the agents. Qin et al. [5] have extended second order consensus for systems with

separate graph communication topologies modeling position and velocity information

exchange and proposed necessary and sufficient conditions on double-integrator sys-

tems achieving second order consensus asymptotically. Similarly, Liu et al. [6] have

recently proposed consensus under a communication topology. Zhang et al. [7] have

extended a secure rendezvous framework to be resilient to a DoS (Denial of Service)

attack. However, neither of these proposed methods discuss the resiliency of the net-

worked system if a malicious outsider hacks into the information being shared among

the nodes. The hacker can supply spurious disturbance signals to the nodes with

the highest out-degree and lead to a spurious consensus. The use of shared position

and velocity leaves the agents in rendezvous doubly vulnerable to having their indi-

vidual locations and the location of consensus along with their velocity information

intercepted through their shared communication by an outsider. The use of shared

time-to-go or expected time to arrival (ETA) prevents any location or velocity in-

4



formation about the agents or the target from being discovered even for an outsider

intercepting communications.

In the existing literature, planar same-time consensus has been posed in the

context of fixed terminal time or finite terminal time. Fixed terminal time solutions

to the missile salvo problem [8] have been proposed to achieve simultaneous consensus

to the location of a target with the convergence time specified a priori. This has been

shown to work in a leader-follower framework by Tian et al. [9]. But, as with [3],

these works also assume agent positions are shared among connected neighbors. Due

to the time independent nature of fixed time consensus, a break in consensus of

any agent can cause failure of consensus at the target. The salvo problem has also

been solved by cost function minimization in a stationary target chase scenario [10]

or maximizing the damage expected by minimizing the time to impact [11]. Kang

et al. [12] have leveraged a model predictive controller to drive the position states

to their target subject to acceleration and field-of-view constraints. Alternatively,

a sliding mode controller effected by a super twisting algorithm has been proposed

in [13]. Finite-time consensus is a more general approach to the fixed time consensus

problem. Using a combination of artificial potential field and sliding mode control,

a finite-time stabilizing controller for tracking or consensus of second-order leader-

follower systems augmented by disturbance rejection is evidenced as robust in [14].

Hu et al. [15] have proposed consensus in linear multi-agent systems through

the use of event triggered strategies. A consensus event is triggered based on an error

function of the agent’s position. This framework is shown to achieve consensus asymp-

totically through shared positional information. Dong and Xu [16] have extended this

framework for consensus in leader-follower systems with linear systems modeled by

single-integrator and double-integrator systems. The event trigger depends solely on

the information gathered in the previous consensus evaluation as opposed to having

5



the measurement errors being monitored and has been extended to leaderless consen-

sus in multi-agent systems with nonlinear dynamics in [17]. However, convergence for

these methods is still asymptotic and the corresponding control designs do not involve

minimization of a suitable cost function to induce optimal performance. Leaderless

consensus in finite time among multi-agent systems has been shown to be achieved

by Du et al. [18] through the use of shared positional information. While the agents

use local information, the agents are not stealthy and the target location is vulner-

able to interception. The use of shared ETA implies unavailability of shared vehicle

location or velocity which imparts a degree of resilience to the system. Since time-

to-go information is the sole information shared, a malicious agent cannot estimate

the consensus value, the positions of the vehicles, or their speeds without knowledge

of the communication protocol despite having access to the shared communication

data. Zadka et al. [19] have proposed geometric rules for simultaneous target inter-

ception through the use of shared time-to-go using a max-time consensus protocol in

a leader-follower framework.

Finite Time Consensus Guidance Laws for Salvo Engagement

We further explore the rendezvous problem in context of missile salvo. Soren et

al. [3] have proposed a controller based on the graph weighted difference in positions of

the agents. However, the convergence is asymptotic in nature and does not ascertain

consensus at the same time and position being the shared variable is insecure and

vulnerable to an outside entity being aware of their position at times when information

is shared between the agents. Planar same time consensus is also posed in the context

of fixed terminal time as a solution to the missile salvo problem [8] and as with [3],

this work also assumes agent positions are shared among connected neighbors. Tian

et al. [9] have also proposed consensus through the use of shared positions under a
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leader-follower framework. However, being fixed time, an unexpected deviation of one

of the agents can cause consensus to fail at the target because of the time independent

nature of the solution. It is also important to examine a scenario where the target is

maneuvering to account for deviations in the solution and rendezvous time.

In literature, the salvo problem (multiple agents released to ‘overwhelm’ a tar-

get) has been addressed by minimising a cost function comprising of the control effort

and reciprocal of the time-to-go for a group of missiles chasing a stationary target [10]

or minimising the time consumption and maximising the damage expected [11]. Kang

et al. have proposed driving the position states to the target subject to field of view

and acceleration constraints through the use of a model predictive controller [12].

Alternatively, a super twisting algorithm has been used to effect a sliding mode con-

troller [13]. Obtaining consensus in finite time is a more general solution to the fixed

time consensus problem i.e the time taken to reach consensus is defined ahead of time.

Through the use of a combination of sliding mode control and artificial potential field,

a modified finite time stabilizing controller for consensus or tracking of second order

leader follower systems with disturbance rejection is shown to be robust [14]. The

time to converge for these methods is still asymptotic and as is common with such

consensus algorithms, the time to converge, even when accounting for the initial con-

ditions is not optimal. All of these methods are applicable to a stationary target.

Situations may arise when the target is maneuverable; hence, a need to account for

the maneuverability of the target. Yucelen et al. have proposed a finite-time con-

trol law for cooperative pursuer target engagement utilizing time transformations to

achieve finite-time consensus [20]. Though, the time to convergence is an apriori user

defined parameter and the control law is time independent

Due to the unavailability of vehicle location or velocity measurements, the use of

time-to-go, or expected time to arrival (ETA), on the other hand provides a degree of

7



resilience to the system. Given the fact that the time-to-go information is exchanged,

an outsider who is ignorant of the consensus protocol cannot estimate the locations

of the vehicles, their velocities, or the consensus value.

Further, Zadka et al. have proposed geometric consensus based control laws for

rendezvous utilizing the max time-to-go protocol in a leader follower framework [19].

Sen et al. have explored max-tracking in multi-agent systems with single integra-

tor dynamics in a distributed network. However, the protocols developed are for

consensus to a stationary target assuming perfect information about the states of

the pursuers. There has been extensive research in estimation and rendezvous with

a non-cooperating target. However, the dynamics of the pursuer is assumed to be

linear continuous time [21]. In situations where non linear dynamics have been con-

sidered,the engagement is studied between a single pursuer and target [22] [23].

Optimal Finite Time Cooperative Rendezvous

The coordination and cooperation of multiple vehicles to perform collective

tasks is a dynamic and complex problem that poses a myriad of challenges. The

problem of multi-vehicle coordination has transitioned from a largely theoretical con-

cern to a practical challenge of considerable complexity and urgency. This transition

has been driven, in large part, by the surging demand for autonomous vehicles in

a range of sectors and applications, including but not limited to defense, logistics,

surveillance, and exploration missions [24]. In each of these domains, the ability

to coordinate the movements of multiple vehicles – whether terrestrial, aerial, or

marine – can yield significant improvements in efficiency, effectiveness, and safety.

One particularly salient aspect of this challenge is the problem of cooperative ren-

dezvous, whereby multiple vehicles are tasked with arriving at a common destination

at the same time. The intrinsic difficulty of this task is compounded by its critical
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importance to a variety of mission scenarios, from landing and docking missions to

precision salvo strikes in military contexts [19]. Given this confluence of challenge

and importance, to address this problem, this paper presents an innovative approach

that leverages advancements in finite-time optimal control. By harnessing the power

of shared network information, specifically time-to-go values, our approach aims to

coordinate multi-vehicle systems with precision and security. Through the use of time-

to-go as the only shared network state, an intruder intercepting communications can

neither locate the vehicles nor estimate their path or speed of motion. At a time

when autonomous vehicles are becoming increasingly ubiquitous and indispensable,

the development of such coordination mechanisms holds great promise.

Motivation: Solving the multi-vehicle rendezvous problem has spurred the de-

velopment of many varied approaches. Cooper’s research, for instance, has made use

of artificial potential fields to accomplish multi-vehicle search and rescue [25]. How-

ever, it has been observed that the more recent approaches have gravitated towards

strategies that deploy Model Predictive Control (MPC). Taner and Subbarao have, in

this vein, proposed a model predictive framework for cooperative systems specifically

tackling the quadrotor docking problem [26]. Furthermore, Persson et al. have devel-

oped an MPC solution for cooperative rendezvous involving a fixed-wing UAV and

a ground vehicle [27]. Meanwhile, Earnhardt et al. have demonstrated the potential

of a discrete optimal control in facilitating platooning using predicted fuel-optimal

operation. While these aforementioned methods have indeed proven to be effective in

many scenarios, they have also revealed their inherent limitations when applied to the

multi-agent rendezvous problem. To elaborate, traditional MPC primarily focuses on

minimizing a cost function over a control horizon, however, it gives no due consid-

eration for the primary goal of rendezvous. Additionally, the optimality of MPC is

constrained within a finite predictive horizon and is subject to the precision of the
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model and the optimization algorithm used to solve the control problem. Further-

more, the solution provided by MPC does not cater to finite time control, and the

quality of the solution depends largely on how accurately the objective function and

constraints depict the system’s desired behavior. Turning our attention to the finite-

time consensus problem, it is viewed as a broader interpretation of the fixed time

consensus problem, with consensus being achieved in finite time as opposed to a pre-

determined fixed time. Wang et al. have developed a finite time consensus algorithm

that can be applied to nonlinear agents with switching communication topologies and

constrained states [28]. In our previous works, we have drawn attention to the benefits

of employing a leaderless, distributed framework of time-to-go consensus and simul-

taneous positional convergence [29] [30]. However, it is important to note that these

methods did not guarantee optimality. Given the inherent challenges associated with

cooperative rendezvous, particularly its time-dependent and gain-free nature, there is

significant research being undertaken across various disciplines. Traditional method-

ologies such as Model Predictive Control (MPC), despite being useful tools, often lack

the flexibility required to effectively manage a broad spectrum of vehicle capabilities

and dynamic environments. To address these limitations, we propose an innovative

approach. Our approach utilizes the power of collocation in generating and solving

a finite-time optimal control problem, potentially offering a path to overcome the

challenges of traditional methods.

1.3 Contributions

Leaderless Protocols for Same-Time Consensus

We develop a foundational framework for achieving consensus on time-to-go

and positional convergence in leaderless multi-agent systems.
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This has been initiated by establishing time-to-go consensus protocols for sys-

tems modeled by double integrators. The aim being to further extend these results

to integrate with a communication framework characterized by sparsity yet ensuring

connectivity among the agents. The study analyzes the behaviors manifested by the

multi-agent systems when subject to various communication protocols, assessing their

efficacy and potential compromises during rendezvous operations.

The publication based on this research is as follows:

• Voleti, R.S., Bhattacharjee, D. and Subbarao, K., 2023. Leaderless Time-To-Go

Protocols for Same-Time Position Consensus. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, doi:10.1109/tsmc.2023.3234563

Finite Time Consensus Guidance Laws for Salvo Engagement

We introduce the ’max time protocol’ as a strategic approach to address the

challenge of multiple missile-target engagements. This protocol is designed to op-

timize the use of finite time and dynamic aspects, thus offering a robust solution

to engagement scenarios. It incorporates state estimation techniques to predict the

target’s trajectory and expand the protocol’s applicability to systems with sparsely

connected communication graphs.

The valuable contributions of this research have led to the following academic

publications:

• Voleti, R.S., Bhattacharjee, D. and Subbarao, K., 2022. Finite same-time con-

sensus guidance laws for unmanned aerial systems. In AIAA SCITECH 2022

Forum (p. 1845), Jan. 03, 2022. doi: 10.2514/6.2022-1845.

• Voleti, R.S., Bhattacharjee, D. and Subbarao, K., 2022. Finite same-time con-

sensus guidance laws for missile-target salvo engagement. currently under re-

view in the AIAA Journal of Guidance, Control, and Dynamics, 2023.
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Optimal Finite Time Cooperative Rendezvous

We scrutinize the established framework for its optimality. The intent is to tran-

scend from feasible solutions to the most advantageous one for any given scenario.

This will be achieved through the application of numerical collocation methods and

a centralized approach towards optimal rendezvous problem-solving. This is par-

ticularly relevant in situations where the security of the agents’ positions is not of

paramount importance, thereby allowing the exploitation of established finite time

optimal control methods. We implement a more generalized framework to incorporate

wider range of systems with heterogeneous dynamics and make extensions to systems

with sparser yet connected graph communication topologies.

The publication based on this research is as follows:

• Voleti, R.S. and Subbarao, K., Optimal Finite Time Cooperative Rendezvous

for Multiple Vehicles., AIAA SCITECH 2024 Forum, Jan 8-12, Orlando, FL.
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Chapter 2

Leaderless Time-to-go Protocols for Same-Time Position Consensus

2.1 Problem Statement

Let us consider a group of N agents and let I = {1, 2, ..., N}. We consider

planar motion of the agents, with a scenario wherein the agents are oriented such that

their paths intersect at a point. The agents share solely their time-to-go information

among themselves with the information exchange being modeled as a communication

graph G. The relative separation between this intersection point and an agent i ∈ I

is denoted by ri(t). The dynamics of agent i is given by

ṙi(t) = ui(t)

u̇i(t) = ai

(2.1)

where ui < 0 is the radial speed and ai is the corresponding acceleration input. The

discrete-time equivalent of the above dynamics, assuming a sample time of ∆T , is

given by

ri(k + 1) = ri(k) + ui(k)∆T

ui(k + 1) = ui(k) + ai(k)∆T

where k ∈ Z? with Z? denoting the set of non-negative integers. The orientation

or heading angle of an agent is given by θi. However, note that we do not consider

any variation in θi. The agents share a dynamical estimate of time-to-go denoted by

tgo,i. These agents, at regular intervals of ∆Tc follow a protocol dictated consensus

value of time-to-go given by tgo,C In this setting, we investigate protocols that would

make the agents reach the intersection point at the same time. In other words, we

are interested in formulating protocols for same-time position consensus defined as:
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Definition 2.1.1. [30] Same-time consensus is said to be achieved if the all the

agents converge to within a specified tolerance of the target simultaneously, i.e., the

agents satisfy ri(tf ) ≤ ε,∀i ∈ P at some tf > 0.

Figure 2.1. A schematic of the same-time consensus.

This is schematically depicted in Fig. 2.1. Our objective is to achieve these

different types of consensus only through use of the shared time-to-go values following

(a) min-time, (b) max-time, and (c) achievable-time. Utilizing a method similar to

that stated by Kumar et al. [31], the time-to-go commanded is formulated as

tgo,C(t) = Tf (kc)− te,∀t ∈ [kc∆Tc, (kc + 1)∆Tc] (2.2)

where te ∈ [0,∆Tc] is the time elapsed after the consensus evaluation at kc. The value

of Tf is dependent on the choice of consensus protocol.We perform a comprehensive

analysis of the different protocols. These protocols delineate the behavioral character-

istics of the multi-vehicle system, more specifically, their modus operandi in achieving

their operational objectives. However, the choice of one protocol over another is not

arbitrary. It is influenced by a multitude of factors such as system constraints, op-

erational requirements, and mission objectives. A judicious choice of protocol can

contribute significantly to the efficiency of the operation, making it a critical area of
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study. Having established the crucial role of the protocol in the system’s operation,

we further explore the effect of the graph communication architecture adopted be-

tween the vehicles within the system. The intent here is to study its impact on the

consensus framework and position convergence.

2.2 Mathematical Preliminaries

This section introduces the mathematical foundations that are crucial for the

development of the control strategies discussed later in this chapter.

2.2.1 Finite-time control

We introduce the dynamical equations governing finite-time error convergence,

a concept pivotal to the design of control laws that guarantee the state of a system

reaches a desired value in a finite amount of time.

Lemma 2.2.1 (Finite-time Convergence [32]). Consider a dynamical system governed

by the following equation:

ẋ = −cx(t)
1
q − dx(t)

p
q (2.3)

where x ∈ R represents the state of the system, α = p
q
∈ (0, 1) with p and q being

positive odd integers such that q > p, and c, d > 0 are positive system parameters.

Under these conditions, the finite time ts required for the state x to converge to zero

is given by:

ts =
1

c(1− α)
ln

[
c(x(0))1−α + d

d

]
(2.4)

In the above lemma, the term ẋ denotes the time derivative of the state x, and

x(0) denotes the initial condition of the state. The significance of this lemma lies in

its ability to predict the exact time at which the system’s state will reach zero, which

is of particular importance in control applications where timing is critical.
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2.2.2 Graphs

We will extensively refer to graphs as a means of representing the network of

agents sharing their time-to-go information. We will stick to the notation used in

literature [33] with G representing the graph communication network of our agents

and A representing the adjacency matrix of the graph.

Let G = (V,E) be a graph with n vertices. Then the adjacency matrix A of G

is an n× n matrix where A[i, j] = 1 if there is an edge from vertex i to vertex j, and

A[i, j] = 0 otherwise. Formally, the adjacency matrix A is defined as:

Aij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E

where Aij denotes the element of A in the ith row and jth column.

Transitioning from the foundational concepts of graph theory to the more spe-

cialized domain of max-plus algebra, we acknowledge the complexity and necessity

of robust mathematical tools to analyze and optimize the communication networks

represented by G and A. As we have established the notations and interpretations

of graphs that will represent the intricate agent networks, it becomes imperative

to introduce a suitable algebraic structure that can handle the operations within

these networks efficiently. Max-plus algebra emerges as a fitting candidate, offering

a unique computational framework that aligns well with the problems inherent in

network communications and consensus algorithms. This algebraic system, detailed

in the subsequent section, provides the operations and elements that enable a more

profound analysis of the temporal dynamics and convergence properties within agent

interactions, fundamental to achieving a unified consensus under the constraints of

limited communication.
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2.2.3 Max-plus algebra

To prove consensus under limited communication, max-plus algebra is utilized

[34]. The two operations of particular interest to this work are a ⊕ b = max(a, b)

and a ⊗ b = a + b. Neutral elements in max plus algebra are −∞ for addition

(denoted by ε) and 0 for multiplication (denoted by e). These are also referred to as

zero and one elements of max plus algebra, respectively. Let us consider two matrices

B = [bij] ∈ Rm×n and C = [cij] ∈ Rn×q. Matrix multiplication in the max plus algebra

framework is defined as (C⊗B)i,j =
⊕n

k=1(cik ⊗ bkj) = max
k
{cik + bkj} ∈ Rm×q. We

define the matrix E using the neutral elements of max-plus algebra as a matrix with

all elements equal to e.

The adjacency matrix A is modified for max-plus algebra as

Ā = [āij] =


e for i = j and (i, j) have an edge

ε otherwise

(2.5)

This is assuming each agent has information of it’s own states. With this we

have the tools to transform the non-linear problem of max time consensus to a linear

problem in max plus algebra.

2.2.4 Min-plus algebra

Similar to the max-time protocol, we begin by defining the elementary oper-

ations in min-plus algebra [35]. Addition in min-plus algebra is defined as b ⊕ c =

min(b, c) and multiplication as b⊗ c = b+ c. It is inferred that the neutral elements

in min plus algebra are +∞ for addition and 0 for multiplication, denoted by εm and

em respectively. To illustrate matrix multiplication under min-plus algebra, we define

matrices B = [bij] ∈ Rm×n and C = [cij] ∈ Rn×q. Matrix multiplication is defined as
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(C⊗B)i,j =
⊕n

k=1(cik⊗ bkj) = min
k
{cik + bkj} ∈ Rm×q. Em is used to define a matrix

of the neutral elements of min-plus algebra, with all its elements equal to em.

To perform equivalent operations in min-plus algebra, we define the modified

adjacency matrix as

Āmin = [āij] =


em for i = j and (i, j) connected

εm otherwise

(2.6)

Again, this is assuming each agent has self information of its own state. With this in

place, the nonlinear problem of min-time consensus is transformed to a linear one in

min-plus algebra.

2.3 Speed Modulation

We begin by examining consensus in time-to-go for single integrator agents.

In this section, three different protocols for achieving same-time consensus in max-

time, min-time, and achievable-time are established through speed modulation . It is

assumed that the agents communicate over a complete graph for the results in this

section.

Max-time protocol

We start our discussion with the max-time protocol for the single-integrator

dynamics. The single-integrator dynamics of each agent is given as

ṙi(t) = ui(t) (2.7)

which can be expressed equivalently in discrete-time as

ri(k + 1) = ri(k) + ui(k)∆T (2.8)
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where k ∈ Z? (with Z? denoting the set of non-negative integers), ∆T is the dis-

cretization time step, and ui(k) < 0 denotes the commanded control speed of agent i

at time step k in the radial direction. The position disagreement error δi(k) for agent

i at time step k is equal to ri(k), i.e., δi(k) = ri(k). Thus, we have

δi(k + 1) = δi(k) + ui(k)∆T (2.9)

We define the shared time-to-go estimate for agent i as

tgo,i(k) =
−δi(k)∆T

δi(k)− δi(k − 1)
(2.10)

The control speeds, for all the agents i ∈ P and at each time step k ∈ Z?, are assumed

to be constrained as

umin ≤ |ui(k)| ≤ umax ⇒ −umax ≤ ui(k) ≤ −umin

where umin > 0 and umax > 0 are known bounds.

Remark 2.3.1. Note that we only need to guarantee δi(kf ) = ε for all i at some

kf ∈ Z?. This would suffice for the same-time consensus as any ui(kf ) < 0 will make

δi(k) < ε for any k > kf .

To achieve same-time consensus, the control input for agent i is proposed as

ui(k) =
−δi(k)

max{tgo,i(k) : i ∈ P}
(2.11)

Next, we state a result that provides an estimate of time to convergence for a specified

error tolerance of the final consensus position.

Lemma 2.3.2. Under the max-time protocol and a given ε > 0, there exists a kf ∈ Z?

such that δi(kf ) = ε,∀i ∈ P, with kf satisfying

log(1−z)

(
ε

δi(0)

)
< kf
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where

z =
umin∆T

δmax(0)

and δmax(0) = max{δi(0) : i ∈ P} with δmax(0) > umin∆T .

Proof. Proof given in Appendix A

Min-time protocol

The min-time protocol proposes the consensus time-to-go to be set as

tgo,C(k) = min{tgo,i(k) : i ∈ I}

Next, we state a result similar to the one in Lemma 2.3.2.

Lemma 2.3.3. Under the min-time protocol and for a specified ε > 0 and sampling

time ∆T , there exists a kf ∈ Z? such that δi(kf ) = ε,∀i ∈ I, with kf satisfying

log(1−z)

(
ε

δi(0)

)
> kf

where

z =
umax∆T

δmin(0)

and δmin(0) = min{δi(0) : i ∈ I} with δmin(0) > umin∆T .

Proof. Proof is given in Appendix A

Remark 2.3.4. Similar to the max-time protocol, a group of agents dictated by the

min-time protocol might not achieve same-time consensus if all of the agents move at

their maximum constrained velocities. To illustrate this, let us consider the scenario

wherein all agents are traveling at ui(k) = −umax. Then, the time-to-go consensus

value evaluated at time step k is given by

tgo,C(k) = min{tgo,i(k) : i ∈ I} =
δmin(k)

umax
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where δmin(k) denotes the relative separation of the agent closest to the destination at

k. Then, the commanded control (speed) for agent i at the time step k is given by

ui(k) = − δi(k)

δmin(k)
umax

where we have δi(k) ≥ δmin(k),∀i ∈ I. Clearly, the commanded control violates the

constraint placed on it for any of the agents traveling at their constrained maximum

speeds except the one closest to the destination. Thus, if the agents move at their

maximum constrained speed, then same-time consensus can not be achieved.

Achievable-time Protocol

The analysis of the min-time protocol reveals a limitation: if agents operate

at their maximum constrained speeds, the protocol may fail to achieve same-time

consensus. This is due to the stringent synchronization requirements which may not

be met under certain speed constraints. Conversely, an analogous issue arises with the

max-time protocol when agents travel at their minimum constrained speeds. In such

cases, the protocol’s conservative approach can preclude the realization of same-time

consensus. These observations underscore the necessity for a protocol that can adapt

to the varying speed limitations of agents to ensure consensus is attainable.

This can be inferred from observing both protocols applied to identical agents

initialized randomly. The max-time protocol when applied uninterruptedly converges

to the estimate of time-to-go for the agent that takes longest to rendezvous whereas

the min time-to-go protocol converges to the time-to-go estimate of the agent that

has the shortest estimate of time-to-go.

To find a trade off between achieving consensus faster and ensure consensus

to the target is achieved among the agents, we propose the achievable-time protocol

in this paper. Towards this end, we first need to define critical time-to-go values
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for the agents. Critical time-to-go values are defined as the estimated time-to-go for

an agent assuming they travel at their constrained speeds. For an agent i ∈ I, the

critical time-to-go value at time step k is defined as

tmincr,i (k) =
δi(k)

umax

To execute the protocol, the agents in I share not only their time-to-go estimates,

but also a Boolean flag. When the time-to-go estimate for an agent i ∈ I is equal

to tmincr,i (k), the flag is set to 1 or ‘True’. Based on the information being shared, the

agents will follow the min-time protocol unless there is an agent or a group of agents

with their shared flag equal to ‘True’, i.e., agents only appear inM iff their time-to-go

is equal to the critical time-to-go value. Let M ⊆ I be the subset of agents with

their shared flag set to True. If or when M 6= ∅, the consensus value for the entire

group is set to the maximum time-to-go value of the agents in M.

The protocol is initialized similar to the min-time protocol. For the latter part

of the protocol, it can be shown that consensus can be achieved among the agents

in M. Then, the remaining task is to ensure that all the other agents in I achieve

consensus with the agents in M. Let M 6= ∅ and let L = I\M.

Assumption 2.3.1. The commanded speeds for the agents in L satisfy |ui(k)| ≥

umin,∀i ∈ L, k ∈ Z? andδmin > umin∆Tc.

Theorem 2.3.5. Achievable Time Consensus: Under Assumption 2.3.1, all the

agents in I implementing the achievable-time protocol will achieve same-time con-

sensus.

Proof. See the Appendix.

Remark 2.3.6. It is important to note that same-time consensus may not be possible

if the commanded speed |uiL(k)| < umin for some k ∈ Z?. However, this can be

mitigated by having the default protocol when M = ∅ being the min-time protocol
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which speeds up the agents. Also, it should be noted that the achievable-time protocol

will not work if the communication graph between the agents is incomplete.

2.4 Main Results

To obtain the chief results pertaining to the same-time consensus problem posed

for systems with double integrator dynamics, we utilize the following developments.

We assume that speed can be changed at discrete instances in time, which we refer to

as speed modulation in this research. In a manner similar to the backstepping control

strategy [36], our solution methodology consists of following two parts:

1. Speed modulation: We use discrete-time protocols for evaluating the consensus

time-to-go among the agents for speed modulation.

2. Continuous-time error convergence: Control is synthesized to ensure the errors

between protocol-dependent consensus time-to-go and the dynamic local agent

time-to-go estimate converge to zero. We also require that the error converges

to zero between any two successive consensus evaluations. To achieve that, we

use a finite-time approach for the control synthesis.

The speed modulation is obtained through formulating the problem using single

integrator dynamics.

Let the successive evaluations of consensus occur at time intervals of ∆Tc.

Further, let kc ∈ Z? denote the time steps at which consensus evaluation occurs.

We define the position disagreement error for an agent i as in Section 2.3, i.e.,

δi(t) = ri(t). Additionally, a time-to-go estimate for an agent is chosen, similar to

the one in (2.10), as

tgo,i(t) = − δi(t)
ui(t)

(2.12)
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Now, the error in time-to-go for agent i ∈ I is defined as

ηi(t) = tgo,i(t)− tgo,C(t) (2.13)

For a successful same-time consensus, we need to satisfy ηi(t) = 0, ∀i ∈ I in

finite time, and we do so by designing the acceleration inputs appropriately. Moreover,

along with the update in consensus time-to-go estimate at every kc ∈ Z? (i.e., t =

kc∆Tc), we update the speeds of all the agents based on the results in Section 2.3,

depending upon the particular protocol implemented.

Now, upon differentiating the estimate of time-to-go with respect to time, we

derive

ṫgo,i(t) =

(
ri
u2
i

)
ai − 1

For successful same-time consensus, we need to satisfy ηi(t) = 0,∀i ∈ I in finite

time, and we do so by designing the acceleration inputs appropriately. Moreover,

along with the update in consensus time-to-go estimate at every kc ∈ Z? (i.e., t =

kc∆Tc), we update the speeds of all the agents based on the results in Section 2.3,

depending upon the particular protocol implemented. We define the error in time-to-

go as

ηi(t) = tgo,i(t)− tgo,C(t) (2.14)

Hence, the error dynamics in time-to-go is observed to be [31]

η̇i(t) = 1 + ṫgo,i(t) =

(
ri
u2
i

)
ai (2.15)

For synthesizing ai such that ηi is driven to zero in finite time, let us consider the

following positive definite candidate Lyapunov function for agent i ∈ I

Vi =
1

2
η2
i
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First derivative of Vi with respect to time gives us

V̇i = ηiη̇i = ηi(t)

(
ri
u2
i

)
ai (2.16)

To cancel nonlinear terms and effect finite time convergence, control (the acceleration

term) is chosen as

ai = −u
2
i

ri
(κi,1ηi(t) + κi,2 (ηi(t))

α) (2.17)

where κi,1, κi,2 > 0 are the control gains and α = p
q
∈ (0, 1) (p, q(q > p) are positive

odd integers) is a control parameter which induces finite time convergence [32]. Using

the above expression of ai, (2.16) can be expressed as

V̇i = −2κi,1Vi − 2(1+α)/2κi,2V
(1+α)/2
i (2.18)

Clearly, we have V̇i < 0. Hence, Vi is a Lyapunov function for the error dynamics of

agent i ∈ I, and the error dynamics of the closed loop system is globally asymptoti-

cally stable (since Vi is radially unbounded).

We notice that through the use of ai, we obtain the error dynamics in time-to-go

to be of the form described in 2.2.1. Hence, with a choice of ∆Tc we can ascertain that

the time-to-go estimates will converge to the consensus value of time-to-go thereby

modulating their speeds.

Substituting ai in (2.15), we obtain

η̇i(t) = −κi,1ηi(t)− κi,2 (ηi(t))
α (2.19)

which is clearly in the form given in (2.3) and the above result can be utilized to

conclude that ηi goes to zero in finite time. Now, we require the error in time-to-go

estimate to be zero in at most ∆Tc. This would require ts ≤ ∆Tc which can be

achieved by a proper selection of the parameters κi,1 and κi,2 as described next. For
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a desired maximum value of ts (≤ ∆Tc) and an arbitrary value of κi,1 > 0, κi,2 can

be determined using

κi,2 = κi,1|ηmax(0)|(1−α)(eκi,1(1−α)ts − 1)−1 (2.20)

where |ηmax(0)| = max{|ηi(0)| : i ∈ I} to account for the limiting value of the time of

convergence among the agents. For a detailed discussion on how the parameters κi,1,

κi,2, α affect convergence, see [32].

Remark 2.4.1. Since the error in time-to-go converges to zero in at most ∆Tc, at

every consensus evaluation time step kc the agents’ speeds are set equal to

ui(kc∆Tc) =
−δi(kc∆Tc)
Tf (kc)

=
−δi(kc∆Tc)
tgo,C(kc∆Tc)

(2.21)

which is the same as the expression in for the single integrator speed modulated system

described in Section 2.3. Hence, the group of agents governed by the double-integrator

dynamics would achieve same-time consensus using the proposed protocols.

Remark 2.4.2. Under any specified protocol, consensus in time-to-go estimates is

said to be achieved for a network of N double integrator agents if the error between

time-to-go estimates (tgo,i) and the protocol dependent time-to-go consensus value

(tgo,C) is zero for all agents , i.e

ηi(t) = tgo,i(t)− tgo,C(t) = 0 ∀i ∈ {1, 2, ..N}

Control synthesized using (2.17) gives us that for a complete graph network of con-

nected vehicles, ηi → in at most ∆Tc which can be verified using Lemma 2.2.1.

Corollary 2.4.2.1. For time-to-go consensus achieved at time step ks, the time-

to-go estimates(tgo,i) have converged to the protocol dependent time-to-go consensus

value(tgo,C). Using the definition (2.2),

tgo,i[(ks + 1)∆Tc] = tgo,C(ks∆Tc)−∆Tc = tgo,i(ks∆Tc)−∆Tc (2.22)
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The consensus in time-to-go does not break until position convergence with the inter-

section point is achieved.

Corollary 2.4.2.2. On application of these protocols, it is evident that there must be

at least two consensus evaluation time steps before any of the agents achieve position

consensus with the intersection point. One interval for the consensus time to go

values to be established and another for the time-to-go estimates to converge to the

established consensus value of time-to-go. This gives us that

∆Tc ≤
1

2
min{tgo,i(0) : i ∈ I}

We illustrate our framework of consensus and convergence in Fig. 2.2

Figure 2.2. Continuous-discrete framework of consensus.

Algorithm 1 Max-Time Protocol

Initialization: κi,1, κi,2 are chosen based on (2.20)

while ri(k) > ε,∀i ∈ I do

Calculate tgo,i(k) for all agents

tgo,C(k) = max{tgo,i(k)},∀i ∈ I

Control Term ai is calculated for each agent

k ← k + 1

end while
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2.4.1 Max-time protocol

Under the max-time protocol, the consensus value of time-to-go at any consen-

sus time step kc ∈ Z? (or at t = kc∆Tc) is given by

Tf (kc) = max{tgo,i(kc∆Tc) : i ∈ I}

The number of consensus evaluations required may be calculated using Lemma 2.3.2.

Implementation of the max-time protocol is summarized in Algorithm 1.

Algorithm 2 Min-Time Protocol

Initialization: κi,1, κi,2 are chosen based on (2.20).

while ri(k) > ε,∀i ∈ I do

Calculate tgo,i(k) and tmincr,i (k) for all agents

if tgo,i(k) = tmincr,i (k) then

flag = 1 . convergence may not be achieved

end if

tgo,C(k) = min{tgo,i(k)},∀i ∈ I

Control Term ai is calculated for each agent

k ← k + 1

end while

2.4.2 Min-time Protocol

Under the max-time protocol, the consensus value of time-to-go at any consen-

sus time step kc ∈ Z? (or at t = kc∆Tc) is given by

Tf (kc) = min{tgo,i(kc∆Tc) : i ∈ I}
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The number of consensus evaluations required may be calculated using Lemma

2.3.3. Implementation of the min-time protocol is summarized in Algorithm 2.

2.4.3 Achievable-time Protocol

We have shown consensus to occur in both the min-time and max-time proto-

cols. The achievable-time protocol can be shown to achieve consensus through The-

orem 2.3.5. The algorithm to synthesize control ai to achieve same-time consensus

using the achievable-time protocol is shown in Algorithm 3.
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Algorithm 3 Achievable-Time Protocol

Initialization: κi,1, κi,2 are chosen based on (2.20)

while ri(k) > ε,∀i ∈ I do

Calculate tgo,i(k) and tmincr,i (k) for all agents

if tgo,i(k) = tmincr,i (k) then

flag(i)← 1

else

flag(i)← 0

end if

if any(flag) = 1 then

if flag(i) = 1 then

M← (I)i

end if

tgo,C(k) = max{tgo,i(k)},∀i ∈M

else

tgo,C(k) = min{tgo,i(k)},∀i ∈ I

end if

Control Term ai(k) is calculated for each agent

k ← k + 1

end while
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2.5 Consensus Under Limited Communication

2.5.1 Max time protocol

It has been assumed until now that time-to-go estimates are communicated

directly between any two agents in the network. Similar to our approach in [29],

let ∆Tc denote the interval of time between successive consensus evaluations. We

utilize directed graphs to represent the communication in the network of agents.

Let G = (I, E) represent the communication graph for the N agents’ network with

I = {1, 2, . . . , N} being the non empty set of nodes representing the N agents and

E being the set of ordered pairs termed as edges. Their adjacency matrix is given

by A = [aij] ∈ RN×N . Under this assumption, the consensus value of time-to-go of

each agent is contingent on the nodes connected to the agent. We define a matrix of

time-to-go values of all the agents at time t as

Tgo(t) =


diag(tgo,i(t)) for i = j

0 for i 6= j

The time-to-go information available to an agent i in the network is given by the ith

row of the matrix product ATgo. Hence, the consensus value of time-to-go will vary

locally. From graph theory [37], we know that a connected graph topology is one

where a path or sequence of edges in E exists between any two agents in the graph.

We also define a simple path of a graph as a sequence of edges where no node repeats

twice. It is evident from the definition of connected graphs that a simple path exists

in a connected graph.

The vector of time-to-go consensus values, tgo,C(k∆Tc), for this protocol is given

by

tgo,C(k∆Tc) = max
i ∈ RS(ATgo)

[ATgo(k∆Tc)]ij (2.23)
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where [·]i,j stands for the (i, j) element of a matrix and RS(·) denotes the row space

of a matrix. The commanded speed of agent i for the system to achieve same-time

consensus using the max-time protocol is given as

ui(k∆Tc) =
−δi(k∆Tc)

[tgo,C(k∆Tc)]i
(2.24)

where δi(k∆Tc) is the disagreement error at consensus evaluation time step k for

agent i and [tgo,C(k∆Tc)]i is the ith element of the vector tgo,C(k∆Tc).

Theorem 2.5.1. Consider a group of N agents with double integrator dynamics and

a communication graph G with ‘p’ as the maximum length of a simple path of the

graph. If the group executes the max-time protocol, the following holds:

1. Sufficient conditions for time-to-go consensus are:

(a) The graph G must be connected,

(b) max
i∈I

([tgo(0)]i) ≥ p∆Tc, where tgo(·) is the vector of time-to-go estimates

of the agents .

2. Consensus values of time-to-go estimates are given by

[tgo,C(kc∆Tc)]i

= max
j∈I

([tgo(kc∆Tc)]j) ∀i ∈ I, kc ≥ p
(2.25)

where I = {1, 2, . . . , N}.

Proof is given in AppendixA.4.

With the error ηi between tgo,i and tgo,C being driven to zero through the con-

trol acceleration given by (2.17), Theorem 2.5.1 gives us that the max-time protocol

applied to a connected graph commands that the speed modulated by an agent at

the consensus evaluation time step k ≥ N is given as

ui(k∆Tc) =
−δi(k∆Tc)

max
j∈I

([tgo(kc∆Tc)]j)
(2.26)
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Using the equivalence of (2.26), (2.21), and (2.24), we conclude that the system of

double integrators employing the max-time protocol achieves same-time consensus.

Thus, Lemma 2.3.2 can be used to calculate the number of time-to-go consensus

time steps until position convergence. With this we extend the max time protocol

to be applicable to a connected graph topology as opposed to a complete graph

communication topology.

2.5.2 Min time protocol

The control law that leverages consensus to the minimum value of the time-to-

go shared between agents is studied. To model the network connections, we re-define

the adjacency matrix for the min-time protocol as Am = [aij] ∈ RN×N with aij

denoting the weight of the edge from agent j to agent i. This value is ∞ if no such

edge exists. For practical purposes, this is modeled as a very large positive number.

The consensus values of time-to-go can be expressed as a vector tgo,C ∈ RN×1

given by

tgo,C(k∆Tc) = min
i ∈ RS(AmTgo)

[AmTgo(k∆Tc)]ij (2.27)

The commanded speed of agent i for the system to achieve same-time consensus

through the min-time protocol is obtained using (2.24).

Theorem 2.5.2. Consider a group of N agents with double integrator dynamics and

a communication graph G. If the group executes the min-time protocol, the following

holds:

1. Sufficient conditions for time-to-go consensus are:

(a) The graph G must be connected,

(b) min
i∈I

([tgo(0)]i) ≥ N∆Tc, where tgo(·) is the vector of time-to-go estimates

of the agents.
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2. Consensus values of time-to-go estimates are given by

[tgo,C(kc∆Tc)]i

= min
j∈I

([tgo(kc∆Tc)]j) ∀i ∈ I, kc ≥ N
(2.28)

where I = {1, 2, . . . , N}.

Proof is given in Appendix A.5.

Using Theorem 2.5.2 and (2.2) for a connected graph, we obtain

[tgo,C(k∆Tc +m)]i

= min
i∈I

([tgo(k∆Tc)]i)−m ∀k ≥ N,m ∈ [0,∆Tc)

The consensus value of time-to-go at the consensus evaluation time step k is the

minimum of all the time-to-go estimates for the agents in I. With the error ηi

between tgo,i and tgo,C being driven to zero through the control acceleration given by

(2.17), the commanded speed can now be written as

ui(k∆Tc) =
−δi(k∆Tc)

min
j∈I

([tgo(kc∆Tc)]j)
(2.29)

Using the equivalence of (2.29), (2.21) and (2.24), we conclude that the system of

double integrators employing the min-time protocol achieves same-time consensus

and, therefore, we can use Lemma 2.3.3 to calculate the number of consensus time

steps until position convergence. Next we look at a modification to the achievable

time protocol.

2.5.3 Tokenized achievable-time protocol

The achievable-time protocol achieves same-time position consensus only if the

graph communication between the agents is a complete graph. The protocol has been

modified to achieve consensus for cyclic connected graphs through a passable distress
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token. The achievable-time protocol is characterized by a Boolean flag and tmincr,i , given

by

tmincr,i (k∆Tc) =
−δi(k∆Tc)

umax

(2.30)

Instead of a Boolean flag, for cyclic graphs, we generate a passable distress ‘token’. If

the time-to-go consensus value of an agent i is less than the critical time-to-go value

for an agent, a distress token is generated and broadcast along the cycle. The value

of the token is set to the critical time-to-go value of agent i. This token is then passed

to the next agent in the cycle i+ 1. The agent i+ 1 now uses this token to determine

an achievable consensus value of time-to-go as

[tgo,C(k∆Tc + p)]i+1 = max{tokeni, [tgo,C(k∆Tc)]i+1} − p

where p ∈ [0,∆Tc]. The value of the token must now be determined based on which

of the consensus time-to-go values between agent i and i + 1 is achievable for both

before being passed to the next agent in cycle. The value of the token is determined

as

tokeni+1 = max{tokeni, [tgo,C(k∆Tc)]i}

It is evident that the token needs to be passed around the cycle once for the consensus

value of time-to-go for an agent in I to be equal to the maximum of the time-to-go

consensus values ([tgo,C]j) of the agents j ∈ M. This would ensure that the agents

set their consensus value of time-to-go to the fastest achievable time-to-go as opposed

to the largest or a possibly unattainable smallest value of the consensus time-to-go.

Remark 2.5.3. This protocol can be extended to any connected graph by passing the

token from one end of its spanning tree to the other and cycling the token back to the

initial node, thereby obtaining a sufficient condition as min
i∈I

([tgo(0)]i) ≥ 2N∆Tc.
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Similar to the regular achievable-time protocol, whenM = ∅, the agents execute

the min-time protocol which can be shown to achieve same-time consensus using

Theorem 2.5.2.

Now, consider a time step k whenM 6= ∅, i.e., the min-time protocol has been

applied till some arbitrary time step k at which point M 6= ∅. Hence, at this time

step k, a tokeni is circulated from agent i. The consensus value of time-to-go becomes

max{[tgo,C(k∆Tc)]i, tokeni} =
−δiM (k∆Tc)

umax

where the subscript iM denotes the agent in M with the token.

Now, for any arbitrary agent iL ∈ L, the commanded control is given by

uiL(k∆Tc) =
−δiL(k∆Tc)

δiM (k∆Tc)
umax

If the token is circulated throughout the network, it is evident that iM denotes the

agent in M with the largest value of estimated time-to-go in M (in other words,

largest δi(k) among all the agents in M). Since the group was initialized with the

min-time protocol, we can conclude that δiL(k) < δiM(k). This gives us that

|uiL(k)| = δiL(k)

δiM (k)
umax < umax

Also, under Assumption 2.3.1, we have |uiL(k)| ≥ umin. This would imply that all

agents in L can achieve convergence to the target through the tokenized achievable-

time protocol. Further, using Lemma 2.3.2 it can be shown that all agents inM and

hence all agents in I achieve same-time consensus through the tokenized achievable-

time protocol. Implementation of the tokenized achievable-time protocol is summa-

rized in Algorithm 4.
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Algorithm 4 Tokenized Achievable-Time Protocol

Initialization: Choose κi,1, κi,2 based on (2.20). Communication network is char-

acterized by the adjacency matrix A.

while ri(k) > ε,∀i ∈ I do

Calculate tgo,i(k) and tmincr,i (k) for all agents.

if tgo,i(k) = tmincr,i (k) then

tokeni = tgo,i

else

tokeni = 0

end if

if token > 0 then

Tf,i = max{tokeni, [tgo,C ]i}

i← i+ 1, i ∈ I

else

tgo,C(k) = min
i ∈ RS(ATgo)

[ATgo(k)]ij

end if

Calculate the control term ai(k) for each agent.

k ← k + 1

end while
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2.6 Simulation Results

The simulation results for the proposed protocols are described in this section.

Note that the acceleration is assumed to be 0 m/s2 for the first time step for all the

simulation results. Also, for the same-time consensus in the sense of Definition 2.1.1,

we have selected ε = 1 m. Unless otherwise specified, we have used sampling time

∆Ts = 0.1 s and ∆Tc = 1 s for all the results.
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Figure 2.3. Max-time protocol results.

2.6.1 Agents with a complete communication graph

First, we illustrate application of the proposed protocols for the rendezvous of

multiple UAVs and consider three agents having initial conditions as follows:

δ(0) =


δ1(0)

δ2(0)

δ3(0)

 =


20 m

30 m

48 m

 , u(0) =


u1(0)

u2(0)

u3(0)

 =


4 m/s

4 m/s

4 m/s


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The time interval between successive consensus evaluations is ∆Tc = 1 s. The

control gains are chosen as: κi,1 = 5 and κi,2 = 1.125 (calculated using (2.20) with

ts = ∆Tc).

2.6.1.1 Max-time protocol

The simulation results for this scenario are shown in Figs. 2.3(a), 2.3(b). We

notice that the agents converge their time-to-go to the slowest agent (Fig. 2.3(b)).

The agents achieve convergence to within ε = 1m of the target at the same time which

is ascertained from Figs. 2.3(a). On inspecting Fig. 2.3(a) further, we notice that

the agent furthest away does not show as much control activity as the other agents.

The other agents slow down significantly to ensure consensus through the max-time

protocol. This is due to the agent furthest away having the largest time-to-go estimate

among the agents.
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Figure 2.4. Min-time protocol results.
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Figure 2.5. Achievable-time protocol results.

2.6.1.2 Min-time protocol

The simulation results are shown in Figs. 2.4(a), 2.4(b). The agents converge

their time-to-go with the fastest agent as shown in Fig. 2.4(b). Consensus is ascer-

tained as the states converge to within ε = 1 m of the target at the same time as

inferred from Figs. 2.4(a). We also notice that the agent closest to the target does

not show much control activity, instead has the other agents speed up significantly

to ensure consensus through the min-time protocol. This is due to the closest agent

having the smallest value of time-to-go estimates among the agents.

2.6.1.3 Achievable-time protocol

From Remark 2.3.4 we infer that if the commanded speed from control is greater

than the constrained speed, the min-time protocol might not be successful. To illus-

trate the advantage of the achievable-time protocol, we impose a constraint on the

maximum commanded speed to be umax = 6 m/s. The agents converge to within

ε = 1 m of the target at the same time despite the constraint, as shown in Figs.
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2.5(a), 2.5(b). Since the constraint specified is lesser than the speed commanded by

the min-time protocol, the consensus value of time-to-go when using the achievable-

time protocol converges to the agent with the most achievable time-to-go of the agents

traveling at their constrained speeds as shown in Fig. 2.5(a),2.5(b).

Remark 2.6.1. From the Lemmas 2.3.2 and 2.3.3, we notice that the time interval

between successive consensus evaluations of time-to-go ∆Tc must be less than the

minimum of the initial time-to-go values. In other words, there must be at least one

consensus evaluation before any of the agents reach the target location.

For the more general case of a connected graph as opposed to a complete graph

discussed in Section 2.5, the lower bound on the time interval between consensus

evaluations is increased by a factor of the number of agents (N). We must analyze

the sensitivity of these algorithms to a change in ∆Tc. Immediately it is easy to see

that due to the nature of our framework, since the errors in time-to-go require at least

∆Tc to settle to 0, this would imply

∆Tc ≤
1

2
min{tgo,i(0) : i ∈ I} (2.31)

To illustrate this, we choose ∆Tc equal to 0.5, 1, 2.5 and 3 s, and simulate the

various protocols for the rendezvous problem under consideration. The results of this

study are summarized in Table 2.1. For a choice of ∆Tc > 2.5 s, we notice that the

protocols fail.

From initial conditions chosen with ∆Tc = 3 s, agent 1 at the first evaluation

would have a time-to-go estimate of 2 s. This would not be enough time for both a

time-to-go consensus and speed modulation for same-time consensus, and hence the

protocols fail at this choice of ∆Tc.
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Table 2.1. Effect of choice of ∆Tc on same-time consensus

Protocol ∆Tc Consensus

Max-
time

0.5 Achieved
1 Achieved

2.5 Achieved
3 Failed

Min-
time

0.5 Achieved
1 Achieved

2.5 Achieved
3 Failed

Achievable-
time

0.5 Achieved
1 Achieved

2.5 Achieved
3 Failed

2.6.2 Three agents over a directed cycle

We simulate the max-time and the min-time protocols for three agents con-

nected in a directed cycle. The graph communication topology is as shown in Fig.

2.6. We notice that the graph communication is indeed connected and a simple path

exists between the three nodes. Here we consider the salvo problem, and the initial

Figure 2.6. Graph connectivity (three agents).
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conditions of the agents are given by

δ(0) =


δ1(0)

δ2(0)

δ3(0)

 =


10 km

12 km

14 km

 , u(0) =


u1(0)

u2(0)

u3(0)

 =


200 m/s

200 m/s

200 m/s


We choose κi,1 = 2, and κi,2 = 0.61 (again calculated using (2.20) with ts = ∆Tc).

The time to go consensus interval(∆Tc) is 5 sec.
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Figure 2.7. Max-time protocol results (three agents).

2.6.2.1 Max-time protocol

The agents achieve position consensus with the max-time protocol, as evidenced

by the results shown in Fig. 2.7(a). Despite the lack of a directed edge from agent 1

to agent 3, from Fig. 2.7(b) we notice that the consensus value of time-to-go for each

agent eventually converges to the maximum of the time-to-go estimates of the agents
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and individually, each of these estimates converge to zero at the same time implying

that same time position consensus with the target is achieved.

2.6.2.2 Min-time protocol

It is evident from Fig. 2.8(a) that the agents achieve position consensus with the

target through the use of the min-time protocol. We notice that the agents move faster

and achieve consensus in position quicker than the max-time protocol. From Fig.

2.8(b), we notice that the time-to-go consensus value for each agent converges to the

minimum of the time-to-go estimates of all the agents which eventually converges to

zero for every agent at the same time, thereby showing same-time position consensus

for agents executing the min-time protocol. Figure 2.8(a) also illustrates how the

min-time protocol commands large values of commanded speed and uses significantly

larger control effort to make consensus happen which helps highlight the need for

the ‘slower’ max-time protocol and more importantly the tokenized achievable-time

protocol to achieve same-time consensus in constrained systems.

2.6.3 Six agents over a directed cycle

Next, we simulate six agents with their communication graph modeled as a

directed six cycle as shown in Fig. 2.9. Similar to the graph communication topology

shown previously, the graph is connected and a simple path between the six nodes

exists. The initial conditions of the agents are given by

δ(0) =

[
10 km, 15 km, 25 km, 20 km, 12 km, 17 km

]T
,

u(0) =

[
25 m/s, 25 m/s, 25 m/s, 25 m/s, 25 m/s, 25 m/s

]T
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Figure 2.8. Min-time protocol results (three agents).

Figure 2.9. Graph connectivity (six agents).

which are chosen to represent a rendezvous problem in multiple fixed-wing UAVs.

The proposed protocols are applied with κi,1 = 10 and κi,2 = 0.2.

45



2.6.3.1 Max-time protocol

The agents achieve position consensus with the max-time protocol as evidenced

by Fig. 2.10(a). We notice that the consensus value of time-to-go for each agent

eventually converges to the maximum of the time-to-go estimates of the agents and

individually, each of these estimates converge to zero at the same time (Fig. 2.10(b))

implying that same-time position consensus with the target is achieved.
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Figure 2.10. Max-time protocol results (six agents).

2.6.3.2 Min-time protocol

Through the use of the min-time protocol, it is evident from Fig. 2.11(a) that

the agents achieve position consensus with the target. We notice that the agents move

faster and achieve consensus in position quicker than the max-time protocol. From

Fig. 2.11(b), we notice that the time-to-go consensus value for each agent converges to

the minimum of the time-to-go estimates of all the agents, which eventually converges
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to zero for every agent at the same time. This shows that the same-time position

consensus for the agents executing the min-time protocol has been achieved.
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Figure 2.11. Min-time protocol results (six agents).

2.6.3.3 Tokenized achievable-time protocol

The simulation results are as shown in Figs. 2.12(a), 2.12(b), and it is evident

from Fig. 2.12(a) that the agents achieve position consensus with the target. The

critical value of speed is chosen as umax = 50 m/s. We notice that the agents achieve

consensus in position quicker than the max-time protocol (similar to the min-time

protocol). From Fig. 2.12(b) we notice that the time-to-go consensus value for each

agent converges to the most achievable time-to-go estimate of all the agents which

eventually converges to zero for every agent at the same time thereby showing same

time position consensus for the agents.

From Fig. 2.11(a), we notice that the commanded value of speed from the

default min-time protocol is greater than the critical value (umax = 50 m/s) for
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Figure 2.12. Tokenized achievable-time protocol results (six agents).

agents in the network. Based on the adjacency matrix, the value of the token is

eventually set to the critical time-to-go of agent 3 (Fig. 2.13) which has the largest

value of time-to-go of the agents that are traveling at their critical speeds similar to

the complete graph achievable-time protocol.
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2.7 Summary

In this chapter, a consensus framework is developed that estimates the number

of consensus evaluations required to achieve consensus on the time-to-go estimates

and, ultimately, same-time position consensus with a target. The framework intro-

duces and utilizes max-time, min-time, and achievable-time protocols to synchronize

the positions of agents with a target at the same time. It addresses scenarios where

min-time protocols may fail due to speed constraints, proposing the achievable-time

protocol as an alternative to ensure consensus.

Simulations demonstrate the application of these protocols in secure rendezvous

or salvo engagements involving multiple pursuers and a target. It is observed that

the framework’s applicability extends to any pursuer agents modeled within a con-

nected communication graph, provided that the agents carry out at least N consensus

evaluations and that the time between these evaluations is no less than N times the

system’s sampling interval.

Furthermore, the achievable-time protocol can be enhanced by introducing a

distress token that circulates within the agent network, facilitating same-time position

consensus even among agents with merely connected communication graphs. This

foundational framework is also adaptable to an event-triggered consensus evaluation

mechanism.

The chapter culminates by applying the discussed protocols to a planar multiple

pursuer-target engagement scenario. By integrating state estimation, this framework

is poised to offer a comprehensive solution to the challenges of simultaneous target

tracking, state estimation, and same-time target position rendezvous.
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Chapter 3

Same-time consensus for Missile Target Salvo Engagement

3.1 Prerequisites

In this section we introduce the estimation framework utilized further in this

chapter. Chiefly we summarize the Extended Kalman Filter and the Unscented

Kalman Filter.

3.1.1 Extended Kalman Filter(EKF)

The Extended Kalman Filter (EKF) is an advanced estimation method used

for target state estimation in dynamic systems, as detailed in Table 3.1.

Table 3.1. Extended Kalman Filter for Target State Estimation

Model
ẋi = f(xi, am,i) + Gwi, wi ∼ N(0, Q)
ỹi = Hxi + vi, vi ∼ N(0,Ri)

Initialize
x̂i(0) = x̂i,0
Pi,0 = E{x̃i,0 x̃Ti,0}

Gain Ki = P−i HT
[
HPiH

T + Ri

]−1

Update
x̂+
i = x̂−i + Ki

[
ỹi −Hx̂−i

]
P+
i = [I−KiH] P−i

Propagation
˙̂xi = f(x̂i, am,i)

Ṗi = F(t)Pi + PiF
T (t) + GQGT

For an extensive discussion on the EKF refer to [38], [39]. In summary, the

EKF operates through the following steps:
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1. Modeling: The state-space model is defined by

ẋi = f(xi, am,i) + Gwi, wi ∼ N(0, Q),

representing the system dynamics with process noise. The observation model is

ỹi = Hxi + vi, vi ∼ N(0,Ri),

representing how the system states are observed with measurement noise.

2. Initialization: The initial state estimate x̂i(0) and the initial error covariance

Pi,0 are established, representing the initial knowledge about the system.

3. Kalman Gain Computation: The Kalman gain Ki is calculated as

Ki = P−i HT
[
HP−i HT + Ri

]−1
,

balancing the estimates from the model and the measurements.

4. State Update: The state estimate is updated using the Kalman gain:

x̂+
i = x̂−i + Ki

[
ỹi −Hx̂−i

]
,

integrating new measurement information.

5. Error Covariance Update: The error covariance is updated to reflect the

reduced uncertainty:

P+
i = [I−KiH] P−i .

6. Propagation: Between measurements, the EKF propagates the state and error

covariance:

˙̂xi = f(x̂i, am,i), Ṗi = F(t)Pi + PiF
T (t) + GQGT ,

predicting future states and uncertainties.

The EKF provides an effective means to track and predict the state of a dynamic

system by continuously updating its estimates based on new measurements and the

system’s inherent uncertainties.
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3.1.2 Unscented Kalman Filter(UKF)

The Unscented Kalman Filter (UKF) is an estimation technique used for target

state estimation in nonlinear systems. The UKF approach is summarized in Table

3.2,

Table 3.2. Unscented Kalman Filter for Target State Estimation

Model
xk+1 = f(xk,uk) + wk, wk ∼ N (0,Qk)
zk = h(xk) + vk, vk ∼ N (0,Rk)

Initialize
x̂0 = x̂0|0
P0 = P0|0

Sigma Points Xk = SigmaPoints(x̂k|k,Pk|k, κ)

Predict

Xk|k−1 = f(Xk)
x̂k+1|k =

∑2L
i=0W

(m)
i X

(i)
k|k−1

Pk+1|k =
∑2L

i=0W
(c)
i (X (i)

k|k−1 − x̂k+1|k)(X (i)
k|k−1 − x̂k+1|k)

T + Qk

Update

Yk = h(Xk|k−1)

ẑk =
∑2L

i=0 W
(m)
i Y

(i)
k

Sk =
∑2L

i=0W
(c)
i (Y(i)

k − ẑk)(Y(i)
k − ẑk)

T + Rk

Ck =
∑2L

i=0W
(c)
i (X (i)

k|k−1 − x̂k+1|k)(Y(i)
k − ẑk)

T

Kk = CkS
−1
k

x̂k+1|k+1 = x̂k+1|k + Kk(zk − ẑk)
Pk+1|k+1 = Pk+1|k −KkSkK

T
k

Further details on the UKF may be found in the work done by Julier et al. [40].

In summary, the UKF involves the following key steps:

1. Model: The system and observation models are defined as

xk+1 = f(xk,uk) + wk, wk ∼ N (0,Qk), (3.1)

zk = h(xk) + vk, vk ∼ N (0,Rk). (3.2)

2. Initialization: The initial state estimate x̂0 and the initial error covariance P0

are set based on prior knowledge.
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3. Sigma Points: Sigma points Xk are generated to capture the mean and co-

variance of the state estimate accurately.

4. Predict: The UKF predicts the state at the next time step and updates the

error covariance using the sigma points, as given by

Xk|k−1 = f(Xk), (3.3)

x̂k+1|k =
2L∑
i=0

W
(m)
i X

(i)
k|k−1, (3.4)

Pk+1|k =
2L∑
i=0

W
(c)
i (X (i)

k|k−1 − x̂k+1|k)(X (i)
k|k−1 − x̂k+1|k)

T + Qk. (3.5)

5. Update: The filter updates the state estimate and error covariance based on

the new measurement:

Yk = h(Xk|k−1), (3.6)

ẑk =
2L∑
i=0

W
(m)
i Y

(i)
k , (3.7)

Sk =
2L∑
i=0

W
(c)
i (Y(i)

k − ẑk)(Y(i)
k − ẑk)

T + Rk, (3.8)

Ck =
2L∑
i=0

W
(c)
i (X (i)

k|k−1 − x̂k+1|k)(Y(i)
k − ẑk)

T , (3.9)

Kk = CkS
−1
k , (3.10)

x̂k+1|k+1 = x̂k+1|k + Kk(zk − ẑk), (3.11)

Pk+1|k+1 = Pk+1|k −KkSkK
T
k . (3.12)

These steps enable the UKF to effectively estimate the state of a nonlinear

system, accurately capturing its uncertainty and adapting to new measurements.
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3.2 Problem Setup

Let us consider a group of N pursuers and let P = {1, 2, . . . N} denote the set

of pursuer agents. These pursuers are in planar engagement with a target and the

engagement is assumed to continue for the entire duration of the same-time consensus

scenario. We are interested in formulating lateral acceleration commands for the

pursuers to achieve same-time consensus with a target in finite time, using only a

shared time-to-go estimate.

The engagement between a pursuer agent i ∈ P and the target (T ) is schemat-

ically shown in Fig. 3.1 where x − O − y is an inertial frame of reference and LOS

stands for line of sight. Also in Fig. 3.1, the target velocity and heading angle are

denoted by VT and αT , respectively, and the target accelerates with a lateral accel-

eration aT (which is perpendicular to VT ). Note that agent i applies its acceleration

(am,i) at an angle ηi w.r.t its velocity vector (Vm,i), as shown in Fig. 3.1.

Figure 3.1. The planar engagement geometry.
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The engagement kinematics between a pursuer agent i ∈ P and the target can

be expressed as

ṙi

θ̇i

V̇i,r

V̇i,θ

α̇m,i

V̇m,i

α̇T



=



Vi,r

Vi,θ
ri

V 2
i,θ

ri

−Vi,θVi,r
ri

0

0

0



+



0

0

− cos(ηi + αm,i − θi)

− sin(ηi + αm,i − θi)
sin(ηi)
Vm,i

cos(η)

0



am,i +



0

0

− sin(αT − θi)

cos(αT − θi)

0

0

1
VT



aT (3.13)

where ri is the relative separation between agent i and the target, θi is the LOS angle

(or bearing angle to the target), Vi,r is the component of relative velocity along the

radial direction, and Vi,θ is the component of relative velocity along the tangential

direction. Additionally, αm,i is the heading angle of agent i. We define the position

disagreement error for an agent i as δi(t) = ri(t). An estimate of the time-to-go for

each agent is selected as

tgo,i(t) = − δi(t)

Vi,r(t)
(3.14)

Let the consensus value of time-to-go at any consensus time step kc ∈ Z? (or at

t = kc∆Tc) be denoted by Tf (kc) (which, under the max-time protocol, is equal to

max{tgo,i(kc∆Tc) : i ∈ P}).

Remark 3.2.1. In our other work [30], we showcase the utility of various time-to-go

consensus protocols. In our application to the pursuer target engagement problem,

requiring the pursuer agent to increase their speed is often not possible especially if

the control input to the pursuer is a lateral acceleration. However, a pursuer can

take a longer path to achieve same time consensus with another pursuer with a larger
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time-to-go estimate. Hence, the max time protocol has been chosen to be implemented

in the solution framework

Note that Tf (kc) is updated every ∆Tc and remains constant between two suc-

cessive consensus evaluations. Adopting an approach similar to the one outlined in

Kumar et al. [31], we specify the commanded value of time-to-go as

tgo,C(t) = Tf (kc)− te,∀t ∈ [kc∆Tc, (kc + 1)∆Tc] (3.15)

where te ∈ [0,∆Tc] is the time elapsed after the consensus evaluation at kc. In this

setting, we are interested in the same-time consensus defined previously in Section

2.1.1.

3.3 Main Result: Finite-time Engagement Kinematics

In this section, we examine same-time consensus of the pursuers in planar en-

gagement with their common target as shown in Fig. 3.1. This happens in 2 stages:

Time-to-go convergence and Terminal interception. Let us assume that the sampling

time of the system is ∆Ts and the time interval between successive consensus eval-

uations is ∆Tc. Without loss of generality, we assume ∆Tc > ∆Ts. In our current

setting, let kc ∈ Z be the time steps of consensus evaluations.

The error in time-to-go for agent i ∈ P is defined as previously in Eq. (2.13)

3.3.1 Time-to-go Convergence

It is crucial to have εi(t) = 0, ∀i ∈ P in finite time for the same-time consensus

to occur. In a manner similar to Section 2.4, we synthesize the acceleration input in

the following such that this is achieved.

56



The dynamics of error in estimate of time-to-go is obtained by differentiating

the above as

ε̇i =
riV̇i,r
V 2
i,r

=
V 2
i,θ

V 2
i,r

− riam,i cos(ηi + αm,i − θi)
V 2
i,r

− riaT sin(αT − θi)
V 2
i,r

(3.16)

Consider the positive definite candidate Lyapunov function

Li =
1

2
ε2
i (3.17)

The derivative of Li with respect to time along the dynamics given in Eq. (3.16)

yields

L̇i = εiε̇i = εi(t)

(
V 2
i,θ

V 2
i,r

− riam,i cos(ηi + αm,i − θi)
V 2
i,r

− riaT sin(αT − θi)
V 2
i,r

)
To effect finite time convergence, the control input (acceleration) is chosen as

am,i =
[V 2
i,θ + V 2

i,r(κi,1εi + κi,2ε
α
i )]

ri cos(ηi + αm,i − θi)
− aT sin(αT − θi)

cos(ηi + αm,i − θi)
(3.18)

The derivative of the candidate Lyapunov function after substituting the chosen

control input with the max-time protocol is given by

L̇i = −2κi,1Li − 2(1+α)/2κi,2L
(1+α)/2
i (3.19)

If α = p
q

is such that p and q are both are odd numbers and p ≤ q, L̇i < 0 and hence,

Li is a Lyapunov function for the error dynamics of agent i ∈ P , and it is globally

asymptotically stable (since Li is radially unbounded). Next, we recall an important

result from the Prerequisites Section 2.2.1

Substituting am,i from Eq. (3.18) in Eq. (3.16), we observe that the error

dynamics is in the form shown in Eq. (2.3). Thus, from Lemma 2.2.1, the error

terms εi for all agents can be driven to zero between any two consecutive consensus

evaluations by selecting the time to drive εi to zero to be tεi ≤ ∆Tc. Also, based on
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the estimate of time-to-go, the agents’ velocity state at the consensus evaluation time

step is given as

Vi,r(kc∆Tc) =
−δi(kc∆Tc)
Tf (kc∆Tc)

(3.20)

The control gain κi,2 can be chosen for an arbitrary value of κi,1 as

κi,2 =
κi,1[|εmax(0)|(1−α)](
eκi,1(1−α)∆Tc − 1

) (3.21)

where |εmax(0)| = max{|εi(0)| : i ∈ P} to account for the limiting value of the time

of convergence among the agents. For a detailed discussion on how the parameters

κi,1, κi,2, α affect convergence, see [32].

Remark 3.3.1. Since these equations have been stated to be true at every ∆Tc s, on

discretizing the states at the consensus evaluation time step we may write the closed

loop modulated radial speed as

Vi,r(kc∆Tc) =
−δi(kc∆Tc)

max{tgo,i(kc∆Tc) : i ∈ P}
(3.22)

which is the same as the expression in Eq. (2.11).

Since the speed has been modulated for the agents, The convergence in position

of the pursuer agents to their target can now be analyzed equivalently with the results

shown for the single integrator system shown in Appendix 2.3 in order to ascertain

same time position convergence.

3.3.2 Terminal Approach

In traditional PN guidance laws, the impact is head on or a tail-chase. For ter-

minal modulation of Vθ, we consider the following modified error function definitions.

Error in time to go is denoted as εi,t = tgo,i − tgo,C similar to εi above and error in

component of relative velocity along the tangential direction as εi,θ = Vi,θ − Vi,θ,d,

where Vi,θ,d is some desired Vθ. Since our analysis is reliant on time-to-go estimates
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on a communication graph, the terminal approach is set in when the time to go

consensus value of the network of agents is within N∆Tc of position convergence i.e

∆Tc ≤ N∆Tc. With this we propose a modified candidate Lyapunov function

V (εi,t, εi,θ) =
1

2
(εi,t + λεi,θ)

2 =
1

2
ε2
i,v (3.23)

where εi,v = εi,t + λεi,θ and 0 < λ < 1. The time derivative of V in Eq.3.23 along the

trajectories given by engagement dynamics can be obtained as,

V̇ (εt, εθ) = εi,v

[(
V 2
i,θ

V 2
i,r

− λVi,θVi,r
ri

)
−am,i Ri cos(ξi)−aT Ri sin(αT −θi−Ψi)

]
(3.24)

where, Ψi = tan−1
(
λV 2

i,r

ri

)
, ξi = ηi + αm,i − θi − Ψi. Let Ri =

√(
ri
V 2
i,r

)2

+ λ2.

Similar to the analysis used to obtain Eq. 3.18, we obtain an expression for the

control acceleration required as

am,i =
1

cos(ξi)

[
−aT sin(αT − θi −Ψi) +

1

Ri

(
V 2
i,θ

V 2
i,r

− Vi,θVi,r
ri

)
+

(κi,1εi,v + κi,2ε
α
i,v)

Ri

]
(3.25)

On utilizing this control acceleration, the derivative of the candidate Lyapunov

function is given as

V̇i = −2κi,1Vi − 2(1+α)/2κi,2V
(1+α)/2
i

This is similar to the result obtained in Eq. (3.19). Through this result we find

that the Lyapunov function decays to zero in finite time.(ts) For our framework of

same time consensus, we choose ts = ∆Tc. The gains for the terminal interception

acceleration i.e κi,1 and κi,2 can be obtained using Lemma 2.2.1 and our choice of ts.
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On examining the error described in Eq. (3.23), we can see that on having the

error εi,v → 0 causes some of the agents to arrive at the target quicker. This effect

causes a scheduled interception with the target with one of the agents intercepting the

target within a small duration of one another. The scheduled interception is a direct

consequence of the lock-in terminal target approach and depends on the consensus

time interval(∆Tc) and the number of pursuer agents.

3.4 Extension to Connected Communication Graphs

In the presented framework, the communication graph for the multi-agent sys-

tem is assumed to be complete, meaning that every agent has access to the time-to-go

information of all other agents. While this assumption simplifies the analysis, it may

not be practical in some applications due to communication constraints, security con-

cerns or the need to reduce information sharing overhead. Therefore, it is crucial to

consider the extension of the results to scenarios where the communication between

agents is modeled by a connected graph instead of a complete graph.

Utilizing max-plus algebra in a manner similar to Theorem 2.5.1, we can extend

the results to connected graphs. To make such an extension, we analyze the path

length of connected graphs, which is an essential property to consider in the context of

multi-agent consensus algorithms. As described in [33], the path length in a connected

graph refers to the number of edges between any two vertices. In a connected graph

with Ns pursuer nodes, the maximum path length is at most Ns − 1.

Taking into account the maximum path length, we can establish the initial

consensus time-to-go for the pursuers to ensure proper information dissemination

in a connected communication graph. Specifically, the initial consensus time-to-go

should be greater than or equal to p∆Tc seconds, where p represents the maximum
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length of a simple path in the connected graph and ∆Tc is the time interval between

consensus updates.

By adhering to this condition, we can guarantee that the agents will reach

consensus on the time-to-go information even in the presence of a connected commu-

nication graph, thus ensuring the applicability of our proposed algorithms to more

scenarios.

3.5 Performance

In this section, we evaluate the performance of the proposed guidance law.Unlike

traditional missile guidance systems, the unique nature of our problem setup means

that conventional performance metrics, such as miss distance, are not applicable. The

derived control law ensures rendezvous of all pursuers with the target in a finite time

frame.

To effectively characterize the performance of our guidance law, we primarily

focus on pivotal criteria:

1. The average latax of each pursuer.

2. The distance between the nearest pursuer and the target when the estimated

time-to-go approaches 1 second.

3. The overall acceleration profiles of both pursuers.

4. Robustness to disturbances

With the use of the Extended Kalman Filter or the Unscented Kalman filter,

we establish the robustness of our framework to disturbances. A salient observation

from our results is the behavior of the guidance law with respect to time. The law

demonstrates finite-time convergence of the dynamic time-to-go estimates towards

the protocol maximum values. This tendency is further exemplified by the decay of
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tgo,C to zero. We break down this behavior for a more granular understanding in two

primary stages.

Convergence of tgo,i to tgo,C : The consensus of the time-to-go estimates,

converging to their protocol value, is primarily influenced by several parameters.

These include ∆TC , which represents the time interval between successive consensus

evaluations, and α and κi,1. The influence of ∆Tc has been discussed in detail. We

begin by examining the role of κi,1 on the decay of error between time to go estimate

and consensus value of time to go within the chosen ∆TC .
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Figure 3.2. tgo,C convergence plots.

To have the time-to-go estimate coverage, we establish a relationship between

κi,1 and κi,2 which is visualised in Fig.3.2(a). On choosing the gains depicted on the

curve, we examine the effect of tuning these gains on the performance of the guidance

law.

In Fig. 3.2(b) we notice that as long as the gains lie on the curve described in

Fig. 3.2(a), changing α or κi,1 does not change the nature of convergence of time-to-
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Figure 3.3. Performance sensitivity to κi,1.

go estimates to their consensus value. With this observation we discuss the effect on

the performance of the guidance law

Performance sensitivity: To investigate the sensitivity of the guidance law

performance with respect to parameter tuning, we simulate a scenario where the
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target travels at an elevated speed of VT = 200 m/s, executing a maneuver with an

acceleration of aT = 5g m/s2. The effects of varying the gain κi,1 can be observed in

Fig. 3.3(a) and Fig. 3.3(b). From the simulations, it becomes evident that choosing

a value of κi,1 < 1 induces high-frequency oscillatory peaks in the acceleration profile,

a behavior deemed undesirable for our application. While the gain does not appear

to directly influence the average acceleration, a higher gain facilitates the missile in

achieving closer proximity to the target in a shorter timeframe.

From Fig. 3.4(a) and 3.4(b), it can be observed that variations in α exert a min-

imal impact on the selected performance parameters. Given the analyses conducted,

we opt for κi,1 = 3 and α = 1/3 as the appropriate gains for our control law.

To demonstrate robustness of our control law to disturbances, we estimate the

state of the target and use this estimate to implement our control law.
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Figure 3.4. Performance sensitivity to α.

3.6 Target Estimation and Consensus

For same time consensus with a maneuvering target, we notice that the control

term in Eq. (3.18) requires knowledge of the target acceleration, heading and velocity

which must be estimated. For this purpose, an extended Kalman filter (EKF) has

been proposed to effect the proposed control law.
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We define the state vector for the filter (of agent i) as

xi = [ri, θi, Vi,r, Vi,θ, αm,i, Vi,m αT , VT , aT ]T which includes the target states

(heading, velocity and acceleration). Thus, the truth model is given by

ẋi =



Vi,r

Vi,θ
ri

V 2
i,θ

ri
− aT sin(αT − θi)

−Vi,θVi,r
ri

+ aT cos(αT − θi)

0

0

aT
VT

0

0



+



0

0

− cos(ηi + αm,i − θi)

− sin(ηi + αm,i − θi)
sin(ηi)
Vm,i

cos(ηi)

0

0

0



am,i +



0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1



wi

(3.26)

where wi is zero mean Gaussian noise with variance Q. The measurement equation

is given as

ỹi = Hxi + vi (3.27)

where vi is assumed to be zero mean Gaussian white noise with variance given

by Ri.

We can utilize the Extended Kalman Filter(EKF) or the Unscented Kalman

Filter(UKF) to estimate the states of the dynamic planar engagement.

• The EKF leverages the gradient of the dynamics to estimate the state of the

system based on measurements. The Jacobian needed to compute estimates

using the EKF has been provided in Appendix B.1.
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• In certain situations where computation of the gradient is infeasible or tedious,

we utilize the Unscented Kalman Filter(UKF) which leverages the Unscented

Transform. [41].

Remark 3.6.1. The control input is computed at intervals of ∆Tu = m∆Ts. For

effective convergence of the estimates, m ≈ 10. The EKF or UKF can be utilized

for a connected graph communication topology if the time interval between consensus

evaluations ∆TC ≥ p∆Tu where ‘p ’ is the maximum length of a simple path in the

graph communication network of the pursuer agents.
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Figure 3.5. Stationary target: Trajectory, time-to-go estimates, vs time and control
inputs.

3.7 Simulation Results

The illustrative simulation results are described in this section. First, we de-

scribe pursuer engagement with a stationary target. Subsequently, the scenarios

wherein the agents communicate using a connected graph and utilize EKF estimates

have been included.
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Stationary Target

The engagement has been simulated for the stationary target scenario. The

communication graph of information sharing G is assumed to be complete, i.e., any

agent in the network can exchange information about time-to-go with every other

agent. The initial positions of the agents are given by

r0 =



r1

r2

r3

r4


=



5000 m

6000 m

5500 m

6200 m


, θ0 =



θ1

θ2

θ3

θ4


=



180◦

150◦

0◦

60◦


Two of the agents are traveling with identical initial velocities Vm,i = 320 m/s

and the other two agents travel with Vm,i = 330 m/s the acceleration is applied at

an angle ηi = π/3 rad w.r.t the velocity vector. The control acceleration is applied

perpendicular to the velocity of the missile(ηi = 90◦). In order to minimize control

effort, the consensus evaluations are done every ∆Tc = 3 s.

The agents achieve consensus to a stationary destination (the origin, as shown in

Fig. 3.5(a)). We notice that the time-to-go estimates converge to the consensus value

in finite time, and, in fact, they approach zero as they reach the target (Fig. 3.5(b)).

Figures 3.5(a), 3.5(b) imply that the agents achieve rendezvous with their target at

the same time. The control accelerations for each agent are shown in Fig. 3.5(d) and

are observed to be bounded. We notice that during the terminal interception phase,

the vehicles speed up and due to the decay of the Vθ component of velocity observed

in Fig. 3.5(c), the pursuers are ‘locked’ in and achieve same time consensus at a time

faster than the anticipated initial time-to-go due to the velocity being directed along

the LOS radially towards the target
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Constant Velocity Target

The communication graph of information sharing G is assumed to be connected

which means every agent need not share time-to-go information with every other

agent but there must be a path between any two agent nodes in the graph. We

consider a N = 4 pursuer system chasing a single evader target. The communication

between these pursuers is modeled as shown in Fig.4.3. The initial conditions of the

pursuers are identical to the stationary target case discussed previously. The target

moves at VT = 60m/s

Complete graph

To begin with, we analyze the results for the case of a complete graph which is

a connected graph where all agents can exchange communication with one another.

In this scenario, every agent has the time-to-go information of the entire network.

1 2

34

Figure 3.6. Graph Connectivity: Complete.

As is evident in Fig. 3.7(b), all the agents have the same time-to-go consensus

value which is the maximum time-to-go of all the agents in the network. Same time

consensus here is straightforward and is evidenced by the position of the agents in Fig.

3.7(a). The lateral acceleration of the pursuers is bounded as shown in Fig.3.7(d).

In agreement with our framework, the pursuers lock in to the moving target as their

consensus time-to-go approaches 10 sec. which results in a drastic lowering of the

relative velocity in the tangential direction as evidenced by Fig.3.7(c).
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Figure 3.7. Directed cycle Constant Velocity target: Trajectory, time-to-go estimates,
Vθ vs time and control inputs.

Directed cycle

1 2

34

Figure 3.8. Graph Connectivity: Directed Cycle.
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During terminal interception, pursuer agents successfully lock on to the moving

target despite its motion. A decay in the Vθ component of the velocity is observed, as

illustrated in Fig. 3.9(c). Same time consensus with the target is ultimately achieved,

as depicted in Fig. 3.9(a). The impact of scarce communication among the pursuers

is significant. In line with findings from our prior research [29], agents require 4

consensus evaluation intervals to achieve time-to-go consensus, consistent with the

max time protocol. This can be inferred from Fig. 3.9(b).

Reducing communication between pursuers has both advantages and draw-

backs. While it offers increased security, it also affects the initial consensus of their

time-to-go values. It is crucial to consider that all the pursuers are at least Ns + 1

consensus evaluation intervals away from the target initially, where Ns denotes the

maximum path length of the connected graph communication network. In the case

of the directed cycle presented, this value is 3.

Undirected cycle

In Fig. 3.10, it can be observed that for an undirected cycle, the maximum path

length is reduced, leading to a faster time-to-go consensus among the pursuers, as sug-

gested by Fig. 3.11(b). Nonetheless, the terminal convergence bears resemblance to

the directed cycle, as illustrated in Fig. 3.11(a), considering that the time-to-go con-

sensus has already been reached and the initial conditions remain unchanged. The

control law transition towards the end effectively locks in the pursuers, as demon-

strated in Fig. 3.11(c), by providing bounded lateral acceleration inputs, as shown in

Fig. 3.11(d). This observation highlights the impact of a denser communication graph

structure on the consensus process and the subsequent performance of the proposed

multi-agent control algorithm.
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Figure 3.9. Directed cycle Constant Velocity target: Trajectory, time-to-go estimates,
Vθ vs time and control inputs.
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Figure 3.10. Graph Connectivity: Undirected cycle.

Maneuvering Target: No lock in

The consequence of using the lock-in terminal approach can be studied by ob-

serving same-time consensus without using the terminal approach control law. The
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Figure 3.11. Undirected cycle Constant Velocity target: Trajectory, time-to-go esti-
mates, Vθ vs time and control inputs.

results are shown in Fig. 3.12(a) - 3.12(d).As noted in the Vr plot shown in Fig.

3.12(d), the speeds are perfectly modulated however the terminal Vθ is quite large.

On requiring the agents to lock-in for the terminal approach, we notice in Fig. 3.13(c)

compared to 3.12(c) that the terminal Vθ is much lower which is essential for inter-

ception. As an artifact of this and due to the fact that we are utilizing a leaderless

protocol, on observing the pursuer agent that does not set the value of tgo,C i.e the

agents with tgo,i(tsw) 6= tgo,C(tsw), where tsw is the time at which we switch to the
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Figure 3.12. No lock in: Trajectory, time-to-go estimates, Vθ and Vr vs time.

terminal approach control law, the agents intercept the target at a time-to-go lower

than the consensus value of time-to-go. This causes a “scheduling” effect for the

intercepting agents. When the terminal approach is engaged, the Vθ → ∆TC for the

agents because of how Vθ appears in Eq. (3.23). This causes the time-to-go of the

agents to be lower than the tgo,C hence causing interception quicker than anticipated.

The additional change in the εi,v for the pursuers requires additional time to converge

to zero compared to the agent that sets tgo,C and since this occurs as the agents ap-

proach the target, the time-to-go values of the agents are comparable to the value of

t. An estimate for the scheduled decrease in time-to-go can be obtained using Lemma

2.2.1.
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Maneuvering Target: Perfect information

The engagement has been simulated for a maneuvering target and N = 2 agents

assuming information about all the states is known. The target is moving at VT =

60 m/s with a constant lateral acceleration aT = 0.1g (g = 9.8 m/s2). The initial

positions of the agents are chosen as

r0 =

r1

r2

 =

5 km

6 km

 , θ0 =

θ1

θ2

 =

180◦

150◦


Agents are traveling at Vm,i = 320 m/s. The control acceleration is acting at

ηi = 90◦ for all the agents. In order to minimize control effort, consensus is evaluated

every ∆Tc = 3 s. The agents achieve consensus to a target initially at the origin, as

shown in Fig. 3.13(a)).

From Fig. 3.13(a) and Fig. 3.13(b), we can conclude that the agents intercept

the maneuvering target at the same time. Fig. 3.13(d) is illustrative of the framework

of consensus through speed modulation, it is important to note that the agents slow

down to accommodate the agent with the largest time-to-go to rendezvous with the

target. The ‘slowest’ agent or agent with the largest value of time-to-go (which is

Pursuer 1 in this case) dictates the consensus time-to-go value. The control accelera-

tions for each agent remain bounded. The upward trend in commanded acceleration

as the agents arrive close to the destination is due to the definition of time-to-go.

The Vi,r term increases for a decreasing value of ri which leads to an increase in the

commanded control compounded by the appearance of ri in the denominator of Eq.

(3.18). During the terminal phase, due to the modulation of the Vθ, the Vr term

increases causes faster interception. However, this occurs with a tradeoff. Due to

residuals in the modulation of Vθ, the speed modulation for time to go consensus

suffers causing same time consensus with a greater ε radius of convergence.
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Figure 3.13. Maneuvering target: Trajectory, time-to-go estimates, Vθ and Vr vs time.

EKF for Maneuvering Target

To show consensus, two agents and a target have been simulated. The initial

conditions for the agents are

r0 =

r1

r2

 =

5 km

6 km

 , θ0 =

θ1

θ2

 =

180◦

150◦


The pursuer agents are initially traveling at velocities equal to 320m/s and the

accelerations are applied laterally, i.e., η1 = η2 = 90◦. The Target is traveling at an
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initial velocity of VT = 60m/s and applies acceleration aT = 0.1g laterally, where g

is the acceleration due to gravity. The estimates are initialized arbitrarily close to

the actual values. The process noise is modeled with process noise covariance matrix

given by

Q = diag([0, (
π

6
)2, 1, 1, (

π

6
)2, (

π

6
)2, 1, 1]) (3.28)

We consider the following measurement model

ỹi =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


xi + vi = H1xi + vi

where vi is assumed to be zero mean Gaussian white noise with variance given by Ri.

The variance Ri is given as

Ri =



σ2
r 0 0 0 0 0

0 σ2
θ 0 0 0 0

0 0 σ2
αm 0 0 0

0 0 0 σ2
αT

0 0

0 0 0 0 σ2
VT

0

0 0 0 0 0 σ2
aT


Here σr is the standard deviation in the range measurements, σθ is the standard de-

viation in the measurements of the LOS angle, σαm is the standard deviation in the

measurements of the pursuer heading, σαT is the standard deviation in the measure-

ments of the target heading, σVT is the standard deviation in the measurements of the
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target velocity and σaT is the standard deviation in the measurements of the target

acceleration.

The radar has a sensor measurement standard deviation of σr = 0.1 km and

the seeker has a sensor measurement standard deviation of σθ = 0.01 rad. The

target heading, speed and lateral acceleration is obtained through measurements with

covariances of σαT = 0.01, σVT = 0.1 and σaT = 0.1 respectively. The initial covariance

matrix is chosen as Pi,0 = I for each agent. The communication between the agents

is undirected i.e both the agents can exchange information with each other. The

sampling time of the system is 10 ms. The time between control computation is 100

ms and consensus evaluation occurs every 2 seconds. 100 Monte Carlo simulations

have been run and the averaged results are shown in Fig. 3.14. Due to the magnitude

of velocities and control being computed every 100 ms, the agents arrive to within a

distance of 100 m for same time consensus to be achieved. The error in the pursuer

states converge to within bounds and same time consensus is indeed achieved.

EKF vs UKF for Maneuvering Target

The initial conditions for the agents are

r0 =

r1

r2

 =

 2 km

2.5 km

 , θ0 =

θ1

θ2

 =

 0◦

40◦


The pursuer agents are initially traveling at velocities equal to 320m/s and the

accelerations are applied laterally, i.e., η1 = η2 = 90◦. The Target is traveling at an

initial velocity of VT = 200m/s and applies acceleration aT = 5 g laterally, where g

is the acceleration due to gravity. The estimates are initialized arbitrarily close to

the actual values. The process noise is modeled with process noise covariance matrix

given by

Q = diag([0, (
π

6
)2, 1, 1, (

π

6
)2, (

π

6
)2, 1, 1]) (3.29)
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Measurement model is given by

ỹi =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0


xi + vi

with the covariance of vi as follows

Ri = diag
(
σ2
r , σ

2
θ , σ

2
Vr , σ

2
Vθ
, σ2

αm

)
where σ(·)s denote standard deviation in the respective measurements.

The measurements are obtained with standard deviations of σr = 1m, σθ =

0.01◦, σVr = 0.1 m/s, σVθ = 0.1 m/s and σαm = 0.01◦. The initial covariance matrices

for the filters are chosen as Pi,0 = I for each agent. For the modified problem we

notice the pursuers intercept the target and due to the nature of the terminal guidance

law, lock into the target as is evident from Fig. 3.16. 100 Monte Carlo simulations

have been run and the averaged results are shown in Fig. 3.16

We notice in Fig. 3.15 that same time consensus with the target is achieved

with both estimation methods. Time-to-go consensus is achieved among the pursuer

agents and the estimates of time-to-go decay to zero.

The target state errors are within the 3 σ bounds for both estimation frame-

works as evident in Fig. 3.16(a),3.16(b) and Fig. 3.16(c),3.16(d).

Estimation errors, specifically mean squared error (MSE) and root mean squared

error (RMSE), are evaluated under varying measurement noise magnitudes, as illus-

trated in Fig. 3.17. If eres,i = xi − x̃ denotes the residual error between true state

(xi) and estimated state (x̃i) for the ith Monte Carlo run, we define MSE as
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eres,mc =
100∑
i=1

eres,i

100

MSE =
∑ ‖(eres,i − eres,mc)‖2

100

Both EKF and UKF estimates exhibit similar errors. The EKF slightly outper-

forms, likely due to the accessible gradient of the dynamics. Conversely, the engage-

ment’s nonlinear characteristics and control contribute to increased UKF estimate

errors.

The estimation errors – namely, mean squared error (MSE) and root mean

squared error (RSME) – are computed for varying order of magnitudes of measure-

ment noise.

The results are shown in Fig. 3.17. We notice that the errors in the EKF and

UKF estimates are comparable. The EKF overall does a little better at estimating

the states presumably due to the availability of the gradient of the dynamics while the

nonlinear nature of the engagement geometry and the control, causes greater errors

in the UKF estimates. However, as the magnitude of measurement error increases,

the UKf performance starts to become more comparable and in some cases better

than the EKF which is presumably due to the measurement Jacobian generated in

the EKF update process being more inaccurate.

Remark 3.7.1. It should be noted that discrepancies in estimation accuracy between

the pursuers are observed. One pursuer achieves more accurate estimations by setting

the protocol value of time-to-go, whereas the other, which aligns its time-to-go to this

protocol value, exhibits higher estimation errors.
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Figure 3.14. EKF for maneuvering target: Trajectory, errors in state estimation.
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Figure 3.15. Estimation performance: Trajectories and time-to-go.
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(d) EKF target state errors: Pursuer 2

Figure 3.16. State Estimation performance.
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Figure 3.17. Error in estimation vs measurement noise.
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3.8 Summary

The control acceleration proposed effects consensus of multiple pursuer vehicles

to a target at the same time, through the use of a shared estimate to each of the

vehicles’ time-to-go. This consensus is reached by integrating a shared estimate of

each vehicle’s time-to-go. The time-to-go estimation method provides a synchronized

solution, ensuring the effective coordination of multiple pursuers to the target, a task

that is especially challenging in dynamic environments.

As the group of pursuer vehicles nears the target during the terminal phase of

the operation, we introduce a refined control law. This law is meticulously designed to

achieve same-time consensus while concurrently minimizing the rotational component

of relative velocity. By managing both these aspects, our approach ensures precision in

target acquisition while retaining same time consensus within the multi-agent system.

The versatility of our consensus and estimation framework is highlighted by its

compatibility with agent communication models represented by any connected graph.

Given its time-dependent nature, our methodology is resilient to course alterations

by individual agents, preserving the consensus among the pursuer vehicles. This

adaptability brings about a level of robustness that is highly advantageous in complex,

real-world scenarios where system parameters may vary over time.

Our research demonstrates that the proposed framework facilitates the achieve-

ment of consensus within a finite time frame, regardless of whether the targets are

stationary or maneuvering. This represents a significant leap forward in the field,

providing a viable solution to one of the most challenging aspects of multi-agent

systems.

Additionally, our work includes a comparative analysis on the selection of non-

linear filtering techniques. Specifically, we assess these techniques for their efficacy

in simultaneously tracking and achieving consensus to a maneuvering target. This
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comparison provides insights into the optimal filtering techniques for ensuring reliable

tracking and target acquisition in dynamic contexts.
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Chapter 4

Optimal Finite Time Cooperative Rendezvous for Multiple Vehicles

4.1 Problem Statement

Consider ‘N ’ vehicles and let P denote the set of agents that achieve same-time

consensus with a target. Let G denote the communication network among the vehicles.

The agents exchange their time-to-go information every ‘∆Tc sec. The rendezvous is

presented for a network of agents. The dynamics of each agent is given as a modified

form of the Dubin’s car model with speed as an additional control variable.

ẋi =


ṗx,i

ṗy,i

θ̇i

 =


Vi cos θi

Vi sin θi

ωi

 (4.1)

here, subscript ‘i’ denotes the ith agent, (px, py) denote the (x,y) Cartesian

coordinates of the agent, θ denotes the steering angle of the agent and V, ω denote

the velocity control input and the angular velocity control input respectively.

We also consider an additional differential drive model for the vehicles with

dynamics given as

ẋi =


ṗx,i

ṗy,i

θ̇i

 =


(ul,i+ur,i)

2
cos θi

(ul,i+ur,i)

2
sin θi

(ul,i−ur,i)
b

 (4.2)

here ul and ur denote the speeds of the left and right wheels respectively and b denotes

the wheelbase. The goal is to compute the optimal control commands to minimize

the performance index J
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J =

∫ Tf

t0

L(x, u, t)dt =
1

2

∫ Tf

t0

(u(t)Tu(t))dt (4.3)

By minimizing the above performance index, we find the control inputs required

to achieve same time consensus with the target location requiring least amount of

control effort. If ri denotes the distance between agent ‘i’ and the target, we define

same time consensus as Section 2.1.1

4.2 Solution Methodology

The solution methodology consists of two parts:

• Utilising the exchange in time-to-go information to formulate a protocol based

consensus time-to-go.

• Leverage this consensus value of time-to-go obtained to synthesize finite-time

optimal control commands calculated for a control horizon based on computa-

tional restrictions.

Each agent calculates the time necessary for position convergence with the tar-

get. We choose the max time protocol from [30] as our choice for the time-dependent

optimal control parameter Tf (t) for each agent. Based on this consensus time-to-go

value, optimal control commands u(Tf , t,xi,0) are synthesized. Among the computed

optimal control commands, those for t = ∆Thor are utilized, where ∆Thor represents

the local optimal controller’s horizon.

Since ∆Thor is related to the agents’ hardware and computational capabilities,

it is reasonable to evaluate consensus in time-to-go at intervals of ∆Tc = ∆Thor for

optimal adaptation of the time-dependent trajectories. If consensus is assessed at

a rate much slower than the controller horizon, the agents’ hardware capabilities

would be underutilized. On the other hand, if time-to-go consensus is evaluated more
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quickly, the agents’ computational capabilities might struggle to keep up with the

trajectory adaptation demands.

As vehicles approach the target and their time-to-go estimates become compa-

rable to the controller horizon’s value, trajectory adaptation may introduce errors.

Consequently, agents cease sharing their time-to-go estimates and rely on the optimal

controller’s commands to achieve positional consensus with the target.

An important detail of our framework is the local Tf for each agent. In a

manner similar to Kumar et al. [31], between successive consensus evaluations t ∈

[k∆TC(k + 1)∆Tc], we define the protocol consensus time-to-go as

Tf (t) = Tf (k∆Tc)− te (4.4)

where te denotes the time elapsed since the last consensus evaluation. This causes the

eventual decay of the time-to-go to effect same-time consensus. In order to illustrate

the framework of time-to-go consensus and optimization, we consider a motivating

example of same-time consensus of multiple vehicles with double integrator dynamics

to a target.

4.2.1 Motivating Example

Let us consider ‘N’ double integrator agents. The dynamics are described as

ẋi =

0 1

0 0

xi +

0

1

ui (4.5)

where xi = [x1 x2]T denotes the state of the agent comprising of the position and

velocity of the ith agent. For convenience, we assume that the state is relative to

the stationary target at the origin. The gain free optimal control solution is well

documented in literature. We utilize the finite-time analytical solution from Lewis et
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al. [42]. The optimal control input obtained for minimizing the control effort subject

to having the agent arrive at the target location in finite time Tf is given as

u(Tf , t,xi) =

[
(6Tf−12t)

T 3
f

(−2Tf+6t)

T 2
f

]
(xtarget −

1 Tf

0 1

xi) (4.6)

Since we can obtain an analytical expression for the optimal control in this case, it is

easy to see that the solution can be parameterized in terms of the target position and

the finite time required to reach the target. On doing this, for a given target position

and finite time-to-go, it is possible to obtain an optimal set of control inputs. Lever-

aging this we observe the same-time consensus problem of multiple ground vehicle

agents to a target location while may not have an analytical solution to the optimal

control problem, can be parameterized similarly to obtain the optimal control inputs

to achieve same-time consensus.

4.2.2 Boundary value problem

The optimal rendezvous of agents to a target location can also be posed as

a boundary value problem. For Dubin’s car dynamics presented in Eq.(4.1), the

Hamiltonian would be defined as

H =
1

2
(ω2

i + V 2
i ) + λ1Vi cos(θi) + λ2Vi sin(θi) + λ3ωi (4.7)

where λj j = 1, 2, 3 denote the costates for an agent ‘i′. The costate equations

when using Pontryagin’s Maximum Principle are given as
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λ̇1 = − ∂H

∂px,i
= 0 (4.8)

λ̇2 = − ∂H

∂py,i
= 0 (4.9)

λ̇3 = −∂H
∂θi

= −λ1Vi sin(θi) + λ2Vi cos(θi) (4.10)

The optimal control inputs are derived in terms of the costate as

ω∗i = −λ3 (4.11)

V ∗i = −(λ1 cos(θi) + λ2 sin(θi)) (4.12)

We now substitute the optimal control into the dynamics and pose a boundary

value problem over the combined state and costate equations with boundary condi-

tions

pi(t = 0) = pi,0 (4.13)

pi(t = tf ) = pi,f (4.14)

where pi = [pi,x pi,y]
T denotes the position vector of an agent. For the Dubin’s

car, we notice that the solution to the BVP problem is highly sensitive to the initial

guess required. In order to obtain an initial guess sufficiently close to the required

optimal solution, we leverage the collocation method. We rollout a trajectory based on

collocation and use the rolled out trajectory as an initial guess to find a BVP solution.

Even this method of solving the optimal rendezvous is highly sensitive to the initial

conditions, the mesh points for the initial collocation problem, the mesh points for

the BVP solver. There needs to be better solvers and advances in solving boundary

value problems to make the framework more robust and usable. The boundary value

problem also requires a much larger number of mesh points for an accurate solution
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and higher computational resources. For these reasons we choose to implement the

cooperative framework using collocation alone.

4.3 Main Results

4.3.1 Optimal control problem

For our network of vehicles at an instance of time t, the optimal control inputs

are obtained as a solution to the cost function minimization problem subject to dy-

namical and end point constraints. The optimal control problem can be formulated

as

min
u

J =

∫ Tf

t0

L(x, , u, t)dt (4.15a)

Hamiltonian H(x, u, t) = L(x, u, t) + λTf(x, u, t), (4.15b)

State Equation ẋ = f(x, u, t) (4.15c)

Costate Equation − λ̇ =
∂H

∂x
(4.15d)

Stationarity
∂H

∂u
= 0 (4.15e)

Boundary Conditions x(t0) = given,x(Tf ) = target (4.15f)

Although the optimization problem does not permit the derivation of an analyt-

ical solution, optimal control inputs can be acquired by employing a direct collocation

method to solve Eq. (4.15a)-(4.15f). Subsequently, this solution can be parameterized

for a required Tf using the knowledge of the current state vector. From our previous

work in decentralized leaderless protocols [30], in a manner similar to Theorem 5.1

we stipulate that the communication graph G must be connected, the consensus eval-

uation time interval, initial separation between the agents must be such that at least

p consensus evaluations must occur where (p− 1) is the largest path length between

agents in G. This can be done through the use of max-plus algebra.
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Theorem 4.3.1. For ‘N ’ agents connected by a graph G with maximum path length

(p− 1), at time t > p∆Tc, the policy u∗i (t, Tf ,x) is optimal ∀t > p∆Tc for same time

position consensus.

Proof. Proof given in Appendix C.1

Remark 4.3.2. It is important to note that if the communication graph G of the

agents is connected but not complete, Tf is better understood as a local consensus

parameter. This can be more accurately represented as [tf ]i, where the ith element of

tf denotes the local consensus value of the protocol, based on the limited information

shared among agents.

4.3.2 Collocation method

In order to obtain a solution to the optimal control problem, we employ a collo-

cation method. This is a direct method because it transcribes the continuous optimal

control problem into a finite-dimensional nonlinear programming (NLP) problem. We

begin by choosing an appropriate discretization time interval T . For our framework,

we utilize the current time-to-go information of an agent ‘i’ to calculate the number

of discrete time intervals till same time position consensus is achieved given by Nt,i.

This is given as

Nt,i = round

(
tgo,i
T

)
(4.16)

here round(.) denotes the rounding operation, which adjusts its argument to the

nearest integer. Due to the nature of our framework we introduce two new parameters:

the discrete controller horizon Nhor and the number of samples between successive

consensus evaluations Nc. From our previous analysis, these two quantities are set
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equal by design and will be used interchangeably in the analysis that follows. We

obtain the value of these quantities as

Nhor,i = Nc,i = round

(
∆Thor
T

)
(4.17)

To proceed, we leverage the aforementioned discretization values to derive dis-

crete states and controls, based on a piecewise polynomial assumption over each time

interval. An initial estimation of the state trajectory and control input sequence is

rolled out. Subsequently, for each time interval, a set of collocation points is selected.

These are strategically positioned within the interval to enforce the adherence of sys-

tem dynamics. The selection of these points is strongly dependent on the specific

attributes of the problem at hand. In cases where systems exhibit high nonlinearity,

these points may be determined using Legendre or Radau collocation roots [43], both

of which are frequently employed in the literature on optimal control due to their

effectiveness in such scenarios.

Figure 4.1. Framework timeline.

We illustrate the timeline of our framework in Fig. 4.1. The effectiveness and

equivalence of solving NLPs using collocation as a solution to an optimal control

problem is well documented in literature [44].
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Theorem 4.3.3. The solution to the optimal control problem described in Eq. (4.15a)-

(4.15f) and the optimal control inputs obtained through the method of collocation are

equivalent.

Proof. Proof is given in Appendix C.2

The objective function and constraints of the optimal control problem are then

transcribed into the form required for an NLP problem. The constraints are the

algebraic equations obtained from enforcing the system dynamics, as well as any

other constraints on the state or control variables. In our case we enforce constraints

on the initial and final position of the vehicles. Finally, we solve the resulting NLP

problem using an NLP solver. The solution to the NLP problem gives us the optimal

control inputs. In a manner similar to model predictive control, to preserve the time

dependent nature of our consensus, we utilize the optimal control solution for Nhor

discrete time intervals. Once the controller horizon is reached, we recompute the

optimal trajectory based on the protocol time-to-go consensus value and the state of

the vehicle at that time for the next Nhor discrete time steps. This approach ensures

an optimal, gain free, finite time, time dependent solution to the same time position

consensus problem.

Remark 4.3.4. As the Nt,i approaches the value of Nhor,i, we initiate a terminal

approach. we use the state information and final Nt,i value to synthesize the optimal

control inputs putting a pause to our time-to-go evaluation and using the computed

optimal controls to achieve same time position consensus with a target

We present our framework in the form of an algorithm5 for an agent vehicle

in a complete graph communication network where information can be exchanged

between any 2 agents in the network
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Algorithm 5 Optimal same-time position consensus

Require: x(0) = known,xT = known, [T,Nhor, Nc] = chosen

Tf ← protocol(tgo(0))

i = 1, j = 1

while r(t) ≤ ε do . From Definition2.1.1

Uc(1 : Nt) = Solve Optimization Problem(Tf , Nt,x, t)

while j < Nhor do

U = Uc(j)

x(j + 1)← f(x(j), U, t)

j ← j + 1

end while

i← i+ 1

Tf ← protocol(tgo,i(NcT ))

Nt ← round(tgo,i(Nc)/T )

end while

4.3.3 Choice of Protocol

The max time protocol is defined by setting the Tf of the framework to the

maximum of all time-to-go values of agents in the network i.e

Tf (k∆Tc) = max(tgo,i(k∆Tc)) ∀i ∈ I (4.18)

where I denotes the set of all agents.

Similarly the min time protocol is defined by setting the Tf of the framework

to the minimum of all time-to-go values of agents in the network i.e

Tf (k∆Tc) = min(tgo,i(k∆Tc)) ∀i ∈ I (4.19)
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Remark 4.3.5. As discussed in Section 2.5, for a connected but not complete graph

communication network, the max time protocol time-to-go tf is defined as:

tf (k∆Tc) = max
i∈RS(ATgo)

[ATgo(k∆Tc)]ij (4.20)

Similarly, the min time protocol time-to-go is given by:

tf (k∆Tc) = min
i∈RS(ATgo)

[ATgo(k∆Tc)]ij (4.21)

An extensive discussion on transforming the nonlinear problem of protocol time-

to-go consensus into a linear one, along with its subsequent analysis, is presented in

Section 2.5. A key result we utilize is that for a maximum path length p in graph G,

the [tf ]i equals the maximum time-to-go of all agents in I when using the max time

protocol and the minimum of all the agents in I when using the min time protocol

after (p− 1) consensus evaluation intervals or p∆Tc seconds. This insight is crucial

for the results derived in Theorem 4.3.1.

The consensus and positional convergence frameworks may exhibit variations

within an optimal context; however, our interest lies in discerning the emergent be-

haviors predicated on the chosen protocols. From our findings in prior works, the max

time protocol, albeit slower, demonstrates a more reliable consensus process under

velocity constraints. In contrast, the min time protocol facilitates a quicker consensus

in position but is susceptible to breaking down when faced with speed limitations. We

primarily advocate for the implementation of the min time to go and max time-to-go

protocols within an optimal, leaderless, decentralized consensus framework.

Remark 4.3.6. Traditional dynamical time-to-go estimates, based on linear motion

assumptions, can yield inaccuracies and singularities within optimal control frame-

works. Hence, we employ ‘objective time’ or ‘mission time’ in complex dynamical

systems, which is derived from multiple factors, including the vehicle’s state.
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4.3.4 Objective based optimal rendezvous

In our analysis thus far, we have primarily focused on decentralized, leaderless

approaches to the problem of achieving simultaneous position consensus. However,

the proposed framework of time-to-go consensus and position convergence is versatile,

permitting extension to encompass objective-based requirements. To illustrate this

augmentation to our framework, let’s consider a scenario involving the rendezvous of

multiple ground vehicles with a descending quadrotor. In this particular situation,

the protocol time-to-go consensus value is not dictated by the states of the ground

vehicles within the network. Instead, it is determined by the quadrotor, an external

entity that remains unaffected by the vehicles’ approach to the target location.

Given this context, we initially delineate the feasible set of vehicles. This set

is defined based on the intended landing location of the quadrotor and its time-to-go

value. Specifically, the feasible set comprises those vehicles that have the capability

to reach the target location in time for the rendezvous. This feasibility is influenced

by a variety of factors, such as available fuel or battery power, speed limits, and

other physical constraints. Our analysis proceeds by assuming that simultaneous

rendezvous is performed with vehicles from this feasible set. This scenario demon-

strates the adaptability of our framework to cater to specific mission objectives. We

utilize a quadrotor model using a nonlinear geometric controller that tracks an op-

timal polynomial trajectory similar to the design presented by Mellinger et al. [45].

These quadrotors are used for survey and reconnaissance and designed with a geomet-

ric controller to make aggressive maneuvers to get into difficult to reach spots. For

our objective based optimal rendezvous, we set the value of Tf based on the descent

of the quadrotor and use this to generate optimal control for the ground vehicles to

rendezvous.
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4.4 Simulation Results

4.4.1 Double Integrator Agents

We consider optimal rendezvous of multiple double integrator agents to a target

location to illustrate our framework.
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Figure 4.2. Double integrator network.
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34

Figure 4.3. Graph Connectivity: Directed Cycle.
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The vehicles are initialised with positions and velocities given in Eq. 4.22 and

connected to each other through a directed cycle shown in Fig. 4.3. They exchange

time to go information every 2 sec.

xT1

xT2

xT3

xT4


=



20 1

30 1

25 1

32 1


(4.22)

The results are consolidated in Fig. 4.2. As Fig. 4.2(a) indicates, same time

position consensus is successfully attained. Nevertheless, an analysis of Fig. 4.2(b)

reveals inaccuracies in the time-to-go estimates, which are derived from the vehicles’

states.

In generating these estimates, the assumption made was that the agents would

persist at the same velocity until consensus was reached. This premise, within an

optimal control framework, results in agents reaching their destination considerably

faster than anticipated. This phenomenon becomes apparent upon scrutinizing the

analytical expression derived in Eq. (4.6). Although agents achieve xi(Tf ) = xtarget,

they exhibit non-zero acceleration at t = 0. Consequently, the nature of our optimal

control solution inherently accelerates or decelerates the vehicles. During subsequent

time-to-go consensus evaluations, this exerts a compounding influence, adjusting the

time-to-go estimates either below or above the protocol’s designated value for all

agents.

This discrepancy underscores the necessity for objective time or mission time

in such frameworks. The topology of the network graph clearly indicates a maximum

path length of three. In concert with this observation, Fig. 4.2(b) illustrates that

four consensus time intervals are required to achieve a uniform protocol-based Tf

value across the network vehicles. This outcome aligns with our established theory
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regarding connected graph communication topologies in the context of simultaneous

consensus problems.

4.4.2 Dubin’s car rendezvous

We consider a homogeneous system of 3 agents with modified Dubin’s car dy-

namics given by Eq.(4.1) executing the max time protocol. The agents use a dynamic

time-to-go estimate given as

tgo,i = − ri
Vi,r

here ri is the distance of agent ‘i’ to the target and Vi,r denotes the closing velocity.

The horizon of the controller is 5 sec and the time-to-go consensus occurs at this

interval i.e ∆Tc = 5sec.

The initial states are given in Eq.4.23
xT1

xT2

xT3

 =


5 5 0

−15 10 0

−10 −5 0

 (4.23)

As observed in Fig. 4.4(d), the agents require only a single consensus interval,

approximately 5 seconds, to establish a time-to-go consensus. Following this period,

as corroborated by Fig. 4.4(a), the agents reach the target location at the same time

at the origin. This coordinated arrival is facilitated by the optimization of control

inputs, as illustrated in Fig. 4.4(b). Furthermore, Fig. 4.4(d) reveals that our

terminal approach is initiated when the time-to-go for the agents approximates ∆TC .

At this juncture, the consensus evaluations are temporarily halted, as indicated by a

constant value of Tf , and the computed optimal control is employed to ensure same-

time consensus. However, constructing a finite dynamic time-to-go estimate may not
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Figure 4.4. Dubin’s car multi vehicle optimal rendezvous.

always be feasible, particularly with a moving target. In such scenarios, we pivot to

using mission time, which will be illustrated in the subsequent section.

4.4.3 Heterogeneous moving target rendezvous

Three vehicles with complete graph communication are simulated. Two of these

vehicles have modified Dubin’s car dynamics given by Eq.(4.1). Vehicle 3 has differ-

ential drive dynamics given by Eq. (4.2). The time-to-go estimates are determined
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based on requirements and are hence classified as mission time rather than a dynamic

time-to-go estimate.

The initial states are given in Eq.(4.24)
xT1

xT2

xT3

 =


5 5 0

10 −10 0

−5 −5 0

 (4.24)
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Figure 4.5. Max time: Heterogeneous multi vehicle optimal rendezvous.

104



Max time protocol

The simulation results are summarized in Fig.4.5. The framework is applied

after the first consensus time interval (∆Tc = 5sec) We notice in Fig. 4.5(a) that

the vehicles achieve same time position consensus with a moving target. The target

moves at velocity (vx, vy) = (0.25, 0.25) for the first consensus time interval, then

switches to a velocity of (vx, vy) = (0.1, 0.25). Despite the heterogeneous nature of

consensus, the time-to go, while initially in disagreement, converge to the protocol

based maximum time to go in one consensus time interval as shown in Fig.4.5(d)

while all the control inputs are bounded and minimized.

Min time protocol

For this example we next, look at the results using the min time protocol. We

notice that the control effort required in Fig. 4.6(b) is higher compared to the max

time protocol. Similar to the max time protocol the dynamic estimate of time-to-go

is unreliable but the agents arrive at the target location simultaneously as seen in

Fig. 4.6(d) and Fig. 4.6(a).

4.4.4 Objective based optimal rendezvous

We illustrate the objective based rendezvous by looking at the same time posi-

tion consensus between a quadrotor, a ground vehicle with differential drive dynamics

and another ground vehicle with modified Dubin’s car dynamics. The quadrotor ex-

ecutes an optimal minimum snap descent as described by Liu et al. [46] to a target

location at (10m, 10m, 0m). The ground vehicles utilise the time-to-go information

from the quadrotor to calculate the optimal control required to achieve rendezvous

with the target. We observe the trajectory plot shown in Fig. 4.7(a). Heterogeneous,
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Figure 4.6. Min time: Heterogeneous multi vehicle optimal rendezvous.

same time position consensus is achieved among the two vehicles to the landing loca-

tion of the quadrotor.
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Figure 4.7. Objective based optimal rendezvous.

4.5 Summary

The primary contributions of this chapter are outlined as follows:

1. We have developed a novel framework for generating and solving finite-time

optimal control problems using collocation, specifically designed for cooperative
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rendezvous scenarios. This framework effectively addresses the complexities

inherent in these situations.

2. A key feature of our approach is the implementation of a reevaluation process

activated at the end of each time-to-go consensus interval. This process allows

for a dynamic and adaptable control strategy, incorporating real-time updates

from agents, enhancing the resilience and flexibility of our framework in response

to rapid state changes and evolving conditions.

3. Our research presents an extensive analysis of an optimization problem with

endpoint boundary conditions. This approach, diverging from traditional Model

Predictive Control methods, ensures simultaneous position convergence and

unites optimal control principles with consensus protocols, yielding a more ver-

satile and efficient solution.

4. We extend our framework to include objective-based optimal rendezvous sce-

narios, adopting a leader-follower strategy focused on achieving finite-time ob-

jectives. This adaptability enables the application of our model to a wide range

of scenarios, further enhancing its operational versatility.

Together, these innovations highlight the adaptability and real-time response

capabilities of our solution. The model’s precision and efficiency markedly improve

its performance in managing diverse vehicle capabilities and dynamic operational en-

vironments, paving the way for robust and efficient cooperative multi-vehicle systems.
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Chapter 5

Summary and Closing Remarks

5.1 Summary

This dissertation has successfully developed and implemented a cooperative

framework for secure rendezvous, leveraging time-to-go consensus to achieve posi-

tional rendezvous within finite time frames. The approach is designed to be secure

against malicious external entities, preventing them from deducing the agents’ lo-

cations or speeds from shared communications. We have thoroughly explored and

implemented max time, min time, and achievable time protocols, analyzing consen-

sus and emergent behavior in leaderless multi-agent systems across various connected

graph communication topologies.

Furthermore, the application of the max time protocol has been extended to

address the secure missile target salvo problem for both stationary and maneuvering

targets. This includes a novel terminal approach mechanism to modulate relative

velocities during engagement. The methodology also caters to sparser connected

graph communications among the pursuers.

A comprehensive performance evaluation of this framework was conducted, in-

corporating target estimation methods like the Extended Kalman Filter and the Un-

scented Kalman Filter. Through extensive comparative studies, the most effective

estimation framework was identified.

Additionally, an optimal solution for secure, finite-time rendezvous was achieved,

utilizing max time and min time protocols within a leaderless framework, imple-

mented using a collocation method. This was extended to include connected graph
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communication topologies, and a centralized, objective-based rendezvous method was

developed, aligning with existing literature and leader-follower methods.

5.2 Closing Remarks

As this dissertation reaches its conclusion, it’s crucial to recognize the signif-

icant progress achieved in the realm of cooperative secure finite-time rendezvous in

multi-agent systems, along with the numerous challenges and prospects for future

exploration.

The research journey has been both demanding and fulfilling, fostering the hope

that the insights gleaned will contribute significantly to future advancements in the

cooperative control of multi-agent systems.

The findings from this study highlight the critical role of finite-time, time-

dependent methods in cooperative control, especially when employing leaderless,

sparse communication networks for optimal secure rendezvous. Future research is

expected to build upon these findings, exploring the reachability aspects of the pro-

posed optimal cooperative framework, examining scenarios with non-connected graph

communication to identify agent subsets capable of achieving rendezvous, and extend-

ing these results to even sparser communication networks. Additionally, the potential

for tokenizing other protocols and analyzing the impact of weighted communication

on consensus protocols presents exciting avenues for further study.
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relentless guidance and support throughout my research journey. I am also thankful
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my dissertation committee members, and the faculty of the Mechanical and Aerospace
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A.1 Proof of Lemma 2.3.2

Proof. Under the max-time protocol, we have

δi(k + 1) = δi(k)

(
1− ∆T

tgo,C(k)

)
,∀i ∈ P

where tgo,C(k) = max{tgo,i(k)}. At time step k, let

tgo,C(k) = tgo,ik(k) =
−δik(k)∆T

δik(k)− δik(k − 1)
.

for some ik ∈ P . Hence,

δi(k + 1) = δi(k)

(
1 +

δik(k)− δik(k − 1)

δik(k)

)
However, we have

δik(k) = δik(k − 1) + uik(k − 1)∆T ≤ δik(k − 1)− umin∆T

due to the constraint on the control speed. This leads to

δi(k + 1) ≤ δi(k)

(
1− umin∆T

δik(k)

)
Proceeding in this manner, we derive

δi(k + 1) ≤ δi(0)

(
1− umin∆T

δi0(0)

)(
1− umin∆T

δi1(1)

)
· · ·
(

1− umin∆T

δik(k)

)
The above inequality can be further simplified by using the following fact:(

1− umin∆T

δi0(0)

)(
1− umin∆T

δi1(1)

)
· · ·
(

1− umin∆T

δik(k)

)
<

(
1− umin∆T

δmax(0)

)k+1

where δmax(0) is the maximum initial separation among the agents, satisfying δmax(0) ≥

δi0(0) and δmax(0) > δi(k),∀i ∈ P , k ∈ Z?\{0}. Combining these, we have

δi(k + 1)

δi(0)
<

(
1− umin∆T

δmax(0)

)k+1
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which can be equivalently expressed as

δi(k)

δi(0)
<

(
1− umin∆T

δmax(0)

)k
Now, substituting k = kf and δi(kf ) = ε, we have

ε

δi(0)
<

(
1− umin∆T

δmax(0)

)k
Now, setting z = umin∆T

δmax(0)
, we can rewrite the above inequality as

log(1−z)

(
ε

δi(0)

)
< kf

Also, we need z < 1 for the above to hold. It leads to

δmax(0) > umin∆T

A.2 Proof of Lemma 2.3.3

Proof. Under the min-time protocol, we have

δi(k + 1) = δi(k)

(
1− ∆T

tgo,C(k)

)
, ∀i ∈ I

where tgo,C(k) = min{tgo,i(k)}. At time step k, let

tgo,C(k) = tgo,ik(k) =
−δik(k)∆T

δik(k)− δik(k − 1)
.

for some ik ∈ I. Hence,

δi(k + 1) = δi(k)

(
1 +

δik(k)− δik(k − 1)

δik(k)

)
.

However, we have

δik(k) = δik(k − 1) + uik(k − 1)∆T ≥ δik(k − 1)− umax∆T
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due to the constraint on the control speed. This leads to

δi(k + 1) ≥ δi(k)

(
1− umax∆T

δik(k)

)
.

Proceeding in this manner, we derive

δi(k + 1) ≥ δi(0)

(
1− umin∆T

δi0(0)

)(
1− umin∆T

δi1(1)

)
· · ·
(

1− umin∆T

δik(k)

)
.

The above inequality can be further simplified by using the following fact:(
1− umax∆T

δi0(0)

)(
1− umax∆T

δi1(1)

)
· · ·
(

1− umax∆T

δik(k)

)
>

(
1− umax∆T

δmin(0)

)k+1

where δmin(0) is the minimum initial separation among the agents, satisfying δmin(0) ≤

δi0(0) and δmin(0) < δi(k),∀i ∈ I, k ∈ Z?\{0}. Combining these, we have

δi(k + 1)

δi(0)
>

(
1− umax∆T

δmin(0)

)k+1

which can be equivalently expressed as

δi(k)

δi(0)
>

(
1− umax∆T

δmin(0)

)k
.

Now, substituting k = kf and δi(kf ) = ε, we have

ε

δi(0)
>

(
1− umax∆T

δmin(0)

)k
.

Now, setting z = umax∆T
δmin(0)

, we can rewrite the above inequality as

log(1−z)

(
ε

δi(0)

)
> kf .

Also, we need z < 1 for the above to hold. It leads to

δmin(0) > umax∆T

which completes the proof.
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A.3 Proof of Theorem 2.3.5

Proof. IfM = ∅ for the entire duration of consensus, the min-time protocol has been

employed and none of the agents are traveling with their time-to-go equal to their

corresponding critical time-to-go (tmincr,i (k)) value. Thus, the agents achieve same-time

consensus (cf. Lemma 2.3.3).

Now, consider a time step k whenM 6= ∅, i.e., the min-time protocol has been

applied till some arbitrary time step k at which point M 6= ∅. Hence, at this time

step k, the consensus value of time-to-go becomes

tgo,C(k∆Tc) =
δiM (k∆Tc)

umax

where the subscript iM denotes the agent in M with the largest value of estimated

time-to-go inM (in other words, largest δi(k) among all the agents inM). Now, for

any arbitrary agent iL ∈ L, the commanded control is given by

uiL(k∆Tc) =
−δiL(k∆Tc)

δiM (k∆Tc)
umax

Since the group was initialized with the min-time protocol, we can conclude that

δiL(k∆Tc) < δiM (k∆Tc). Therefore, the commanded control for any agent iL ∈ L

satisfies the following:

|uiL(k∆Tc)| =
δiL(k∆Tc)

δiM (k∆Tc)
umax < umax

Also, under Assumption 2.3.1, we have |uiL(k∆Tc)| ≥ umin. This would imply that

all agents in L can achieve convergence to the target through the achievable-time

protocol. Further, using Lemma 2.3.2 it can be shown that all agents inM and hence

all agents in I achieve same-time consensus through the achievable-time protocol.
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A.4 Proof of Theorem 2.5.1

Proof. On utilizing the definition of matrix multiplication in max-plus algebra from

Section 2.2.3, we recall an important property of the modified adjacency matrix. If a

path of length l exists between two nodes i and j in the graph G(Ā),

[Āl]i,j = e (A.1)

where [·]i,j denotes the (i, j) element of the matrix. It is also noted that for m > 1,

[Āl+m]i,j = e considering the addition and multiplication operations in max-plus

algebra. This implies that for a simple path of length p in graph G, using (A.1), we

have

Ā[p+b] = E ∀b > 0 (A.2)

where E is the neutral element for matrix multiplication in max-plus algebra. The

minimum length of a path between nodes i and j is denoted by |i, j|min. Using

Corollary 4.2 from the work done by Nejad et al. [47], a proof by contradiction yields

p = max
i,j∈I
|i, j|min (A.3)

The value p is the maximum of all lengths of simple paths in the graph G.

The time-to-go consensus vector tgo,C for some time step kc > 0 given by (2.23)

can be written in max-plus algebra as

tgo,C(kc∆Tc) = Ā⊗ tgo(kc∆Tc) (A.4)

Let 1 ∈ RN×1 denote a vector of ones. Using the control acceleration (2.17),

we know that the error in time-to-go ηi(t) converges to zero in at most ∆Tc seconds,

leading to a consensus in time-to-go estimates. This results in
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tgo,C(k∆Tc) = Ā⊗ {Ā⊗ tgo[(k − 1)∆Tc]− 1∆Tc}

Applying this recursively for some k ≥ p we obtain

tgo,C(k∆Tc) = Ā⊗ {Ā[k−1] ⊗ tgo(0)− 1(k)∆Tc} (A.5)

In order to use (A.2), a simple path must exist within the graph.

Part-1.a)

Since a simple path must exist, the graph G must be connected to ensure that

a path exists between any two nodes. Under this condition, for max-time consensus

to occur, there must be at least q consensus evaluations where q is the length of the

simple path. From the properties of connected graphs, if the maximum length of a

simple path in the graph is known, we have q = p. This gives us the first sufficient

condition.

Part-1.b)

For consensus to occur among all agents, we require p consensus evaluations.

This is sufficient to state that consensus will occur in the time-to-go estimates of the

agents, leading to our second condition:

max{tgo(0)} ≥ p∆Tc

Part-2)

For a time step k ≥ p, using (A.2), (A.5) modifies to

tgo,C(k∆Tc) = E⊗ tgo(k∆Tc) (A.6)
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This equation can also be expressed as

[tgo,C(kc∆Tc)]i = max
j∈I

([tgo(kc∆Tc)]j) ∀i ∈ I, kc ≥ p (A.7)

where I denotes the set of all N agents.

A.5 Proof of Theorem 2.5.2

Proof. Utilizing the definition of matrix multiplication in min-plus algebra, as detailed

in Section 2.2.4, we recall a critical property of the modified adjacency matrix Āmin

in the graph G(Āmin). If a path of length l exists between two nodes i and j,

[Āl
min]i,j = em (A.8)

where [·]i,j represents the (i, j) element of the matrix. For a simple path of length p

in G, we have:

Ā
[p+b]
min = Em ∀b > 0 (A.9)

where Em is the neutral element in min-plus algebra.

Similar to the max-time case in Theorem 2.5.1, the time-to-go consensus vector

tgo,C for a time step kc > 0 can be expressed in min-plus algebra as:

tgo,C(kc∆Tc) = Āmin ⊗ tgo(kc∆Tc) (A.10)

Let 1 ∈ RN×1 denote a vector of ones. From the control acceleration (2.17), the

error in time-to-go ηi(t) converges to zero in at most ∆Tc seconds. Hence,

tgo,C(k∆Tc) = Āmin ⊗ {Āmin ⊗ tgo[(k − 1)∆Tc]− 1∆Tc}

Applying this recursively for k ≥ p, we get:
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tgo,C(k∆Tc) = Āmin ⊗ {Ā[k−1]
min tgo(0)− 1(k)∆Tc} (A.11)

Part-1.a)

For the min-time consensus, given that G is connected, a path exists between

any two nodes. This necessitates at least q consensus evaluations, but as we know

from the properties of connected graphs, q = p − 1 where p is the maximum path

length.

Part-1.b)

For consensus among all agents, p consensus evaluations are required, ensuring

that consensus occurs in the time-to-go estimates. Thus, we have:

min{tgo(0)} ≥ p∆Tc

Part-2)

For kc > p− 1, using (A.9), (A.11) simplifies to:

tgo,C(kc∆Tc) = Em ⊗ tgo(kc∆Tc) (A.12)

This can be equivalently expressed as:

[tgo,C(kc∆Tc)]i = min
j∈I
{[tgo(kc∆Tc)]j} ∀i ∈ I, kc ≥ p

where I denotes the set of all agents.

120



APPENDIX B

Appendix B

121



B.1 Jacobian for Engagement Dynamics

The Jacobian of the nonlinear system with respect to the state vector is given

as follows

F =



0 0 1 0 0 0 0 0 0

f21 0 0 f24 0 0 0 0 0

f31 f32 0 f34 f35 0 f37 0 f39

f41 f42 f43 f44 f45 0 f47 0 f49

0 f52 f53 f54 0 0 f57 f58 0

0 0 0 0 0 f66 0 0 0

0 0 0 0 0 0 0 f78 f79

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



(B.1)

where

f21 =
−Vi,θ
r2
i

f24 =
1

ri

f31 =
−V 2

i,θ

r2
i

f32 = am,i sin(ηi + γi − θi)− aT cos(αT − θi)

f34 = 2
Vi,θ
ri

f35 = −am,i sin(ηi + γi − θi)

f37 = −aT cos(αT − θi)

f39 = sin(αT − θi)
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f41 =
Vi,rVi,θ
r2
i

f42 = am,i cos(ηi + γi − θi) + aT sin(αT − θi)

f43 = −Vi,θ
ri

f44 = −Vi,r
ri

f45 = −am,i cos(ηi + γi − θi)

f47 = −aT sin(αT − θi)

f49 = cos(αT − θi)

f521 = [VT cos(αT − θi)− Vi,r]2 + [VT sin(αT − θi)− Vi,θ]2

f522 = −am,i sin(ηi)

f
3/2
521

f52 = f522{[VT cos(αT − θi)− Vi,r]VT sin(αT − θi)

− [VT sin(αT − θi)− Vi,θ]VT cos(αT − θi)}

f53 = −f522[VT cos(αT − θi)− Vi,r]

f54 = f522[VT sin(αT − θi)− Vi,θ]

f57 = −f52

f58 = f522{[VT cos(αT − θi)− Vi,r] cos(αT − θi)

+ [VT sin(αT − θi)− Vi,θ] sin(αT − θi)}

f66 = cos(ηi)

f77 = − aT
V 2
T

f78 =
1

VT
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C.1 Proof of Theorem 4.3.1

Proof. We initiate our analysis with the assumption that the agents in the network

have reached a consensus on time-to-go, correlated to a protocol-determined value. As

demonstrated in our previous work, this event is expected to occur at t = N∆Tc [30].

Using results from [47], we can further state that for G having a maximum path

length of (p − 1), the event occurs at t = p∆Tc Following this, for the interval

t ∈ [k∆Tc, (k + 1)∆Tc], the control u∗i (t, Tf ,x) is ascertained via the resolution of

Eq.(4.15a)-(4.15f). The obtained solution maintains its optimality throughout the

horizon of the controller ∆Thor. Given our decision to set ∆Tc = ∆Thor, the solution

retains its optimality for the duration of this interval.

We then proceed to apply Bellman’s optimality principle [48]. According to

this principle, an optimal policy possesses the characteristic that, irrespective of the

initial state and decision, the subsequent decisions must comprise an optimal policy

concerning the state resulting from the first decision.

Assuming u∗i (t, Tf ,x) is optimal for each ∆Tc interval implies that, even sub-

sequent to the initial decision at t = k∆Tc, the residual control policy u∗i (t, Tf ,x)

for t ∈ [(k + 1)∆Tc, (k + 2)∆Tc] remains optimal. By recurrent application of Bell-

man’s optimality principle, the control u∗i (t, Tf ,x) continues to be optimal for every

ensuing ∆Tc interval. Hence, we infer that if u∗i (t, Tf ,x) is optimal for each discrete

∆Tc interval, it will be optimal for the entire operational framework until same time

position consensus is achieved.

This analysis concludes the proof under the defined assumptions and conditions.
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C.2 Proof of Theorem 4.3.3

Proof. The proof is well documented in literature. The equivalent Nonlinear Pro-

gramming(NLP) problem is formulated as

min
X,U

J =
1

2

N∑
i=1

mu∑
j=1

u2
ij

s.t. Xk+1 = Xk + T · f(Xk,Uk), ∀k ∈ {1, . . . , N}

X1 = x0

XN+1 = xdes

Here, X ∈ Rms×(N+1) represents the states and U ∈ Rmu×N the control inputs for a

system with ms states and mu control inputs. The function f denotes the dynamics

of the Dubin’s car. The indices i and j iterate over the control inputs and time steps,

respectively. The states at the first and last time steps must comply with X1 = x0

and XN+1 = xdes, where x0 is the initial state and xdes is the desired final state. The

equivalence of this NLP with the original optimal control problem can be examined

through the Pontryagin’s Maximum Principle [49].
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