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ABSTRACT

METHOD-OF-CHARACTERISTICS MODELS FOR FLOWFIELD

EVALUATION OF HYPERVELOCITY TEST FACILITIES

Ananthkumar Jayamani, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Frank K. Lu, Ph.D., P.E.

Ground test facilities are an imperative part of the design and development of

flying vehicles. In the case of high-enthalpy facilities, evaluating the gasdynamic and

thermochemical state of the test gas poses challenges due to high temperature effects.

This study aims to contribute to the development impulse facilities by developing

reduced-order models resolving the flowfields of such facilities. Developed as a part

of this study are various method-of-characteristics (MoC) algorithms which consider

gases under varying levels of thermochemical complexity. The algorithms span from

simple calorically perfect gases to full thermochemical nonequilibrium.

The first set of algorithms was limited to unsteady flow of calorically perfect

gases with no area variation. The effects of momentum and heat losses were in-

cluded as appropriate sink terms in the governing equations. Based on ordinary dif-

ferential equations from MoC, numerical algorithms were developed to solve various

gasdynamic phenomena such as weak compressions, rarefactions, shocks and contact

surfaces. The momentum losses in the governing equations were estimated using es-

tablished friction factors. Various empirical methods were explored to determine an
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appropriate heat-transfer model. In an effort to limit the scope of model development,

a detonation-driven shock tube was first modeled based on the expected ideal wave

processes utilizing various MoC algorithms.

Subsequently, experiments were carried out in a small-scale detonation-driven

shock tube to validate the results from the reduced-order model. The experiments

used nitrogen as the high-pressure driver gas, stoichiometric oxyhydrogen as the det-

onation driver gas and nitrogen or helium as the driven gas. Comparison with exper-

iments showed that the MoC model reasonably replicated detonation tube operation

for all the experimental cases. Specifically, the decaying incident shock trajectory in

the driven section was replicated well, and so was the peak pressure at the driven

endwall. The quasi-steady plateau pressure in the detonation driver was replicated

reasonably, with experimental pressure traces showing early decay than MoC pres-

sure traces. The wave system produced by the reflected shock wave–contact surface

interaction in the driven section was also predicted accurately by the MoC model.

The second set of algorithms pertained to unsteady, inviscid, quasi-one-

dimensional flow of a chemically reacting mixture of gases. Gaseous mixtures were

assumed to be in thermal equilibrium but finite-rate chemical reactions were per-

mitted. Initially, the variables associated with chemical composition were evaluated

using the open-source toolkit, Cantera. The final results reported here use a stand-

alone chemistry solver developed during this study, which evaluates rate constants

using Arrhenius equation. A new integration procedure was formulated for flows

with finite-rate chemistry. Simple gasdynamic models representing supersonic com-

bustion, normal shock wave and a quasi-one-dimensional flow were developed and

validated.

The third set of algorithms deal with thermally perfect gases. These were

primarily selected to investigate vectorization of the existing MoC algorithms for
vii



nonequilibrium flows. Vectorization was carried out for the interior point solver, which

yields the maximum computational impact through parallelization. Thermally perfect

algorithms were also developed for other MoC subroutines, but did not have the need

to be vectorized. The variation of specific heats (and their ratio) was captured using

curvefits constructed within the algorithm utilizing NASA polynomials and Cantera.

A thermally perfect expansion tube solver was developed based on these algorithms

and validated against analytical solution. Also developed along the thermally perfect

algorithms were equilibrium algorithms. These use the same vectorized approach as

thermally perfect algorithm, but the thermodynamic curvefits are, or course three-

dimensional. Equilibrium MoC subroutines were used to develop expansion tube

and detonation-driven shock tube algorithms. The results due to these models were

validated against theory and experimental data available in the literature.

The final set of algorithms simulate unsteady, inviscid, quasi-one-dimensional

flow gases in thermochemical nonequilibrium. These algorithms are based on the vec-

torized IMoC approach developed earlier in this work. Previously developed in-house

chemistry solver was modified to use Park’s two-temperature model for evaluating

finite-rate chemistry. While there is no (such) restriction on the chemistry solver,

vibrational relaxation is limited to diatomic gases currently. Vibrational relaxation

considers both vibration-translation and vibration-vibration exchanges. Validation

studies carried out with these subroutines include steady-state nozzle flowfield with

vibrational, thermochemical relaxation and an expansion tube flowfield. Comparison

of thermochemical nonequilibrium MoC results with state-to-state and computational

fluid dynamics results in the literature show that the MoC models can reliably esti-

mate the relevant nonequilibrium phenomena.
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CHAPTER 1

INTRODUCTION 1

Wind-tunnel testing has played a crucial role in the development of aircraft

since the days of the Wright brothers. Even with the advent of high-speed computing

and advanced methods for computational fluid dynamics, wind tunnel testing is yet

to be supplanted, as it provides invaluable data and insights into aircraft aerodynam-

ics. With a history even longer than powered flight itself, these test facilities have

seen their fair share of designs and iterations stemming from the requirements for

duplication (or simulation) of flight from incompressible to supersonic to hypersonic.

In the case of wind tunnels associated with low-flight velocities, the low power re-

quirements allow for long duration, or “continuous” facilities. However, wind tunnels

simulating high-speed flight are so often hampered by the enormous power require-

ments [1, 2] that a majority of the so-called hypervelocity test facilities have extremely

short duration, operating by impulsively accelerating the test gas, see Fig. 1.1.

The simplest design of these short-duration facilities called a shock tube is

shown schematically in Fig. 1.1a. This device traces its origins to the 1890s [3, 4],

when Vieille constructed a cylindrical tube with two sections separated by a break-

able partition. One of the sections was increasingly pressurized until the partition

ruptured, leading to the formation of a shock wave (SW) in the low-pressure section

which was the object of Vielle’s study. As the high-pressure section drives a shock
1Contains excerpts from the paper entitled ‘Method-of-Characteristics Model for a Low-Enthalpy,

Detonation-Driven Shock Tube’ by Jayamani, A., and Lu, F. K., Physics of Fluids, Vol. 34, No. 6,

2022. doi: 10.1063/5.0093888, reproduced with the permission of AIP Publishing
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wave in the low pressure section, the former is called the driver section, while the

latter is called the driven section. The ideal interface separating these two gases

is called a contact surface (CS). An idealized operation of the shock tube is shown

in Fig. 1.1b through the trajectories of the pertinent waves described above, known

in the literature as a wave diagram. Also shown in Fig. 1.1b are different regions

of interest from a gasdynamic perspective. Regions 4 and 1 represent the initial

gas states in the driver and driven sections respectively. Region 3 represents the

quasi-steady state achieved by the driver gas after expansion into the driven section.

Correspondingly, Region 2 represents the quasi-steady state achieved by the driven

gas behind the shock wave (SW) in the driven section.

(a) Schematic.

(b) Wave diagram.

Figure 1.1: Shock tube.
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Based on classical gasdynamics and the wave diagram shown in Fig. 1.1b, the

quasi-steady regions in a shock tube operation can be related [5]. Originally intro-

duced by Bernhard Riemann and primarily known in the current literature as the

shock tube equation, this relation is given by

p4
p1

=
p2
p1

{
1− (γ4 − 1)(a1/a4)(p2/p1 − 1)

√
2γ1

√
2γ1 + (γ1 + 1)(p2/p1 − 1)

}−2γ4/(γ4−1)
(1.1)

From Eq. 1.1, it can be inferred that a higher compression of the test gas can

be obtained by either using a light driver gas with high ratio of specific heats γ, or by

increasing the sonic velocity of the driver gas, or both. Trivially, this effect could also

be produced by increasing the initial fill pressure ratio across the diaphragm. From

gasdynamics, the test gas pressure ratio p2/p1 also represents the shock strength in

the driven section. As shock strength in turn determines the enthalpy of the test gas,

achieving a stronger shock wave results in a higher enthalpy test gas.

It took almost half a century after Vielle’s experiment for the role of shock tubes

in gasdynamic research to be recognized. This recognition spawned a widespread use

of shock tubes in studying shock waves and the uniform flow behind them [6, 7, 8, 4, 9].

Along with this research came the realization that the Mach number of the test gas is

practically limited to about 1.8 for an entirely air-filled shock tube [7, 10, 8]. As the

flight velocity simulation requirements surpassed the capabilities of shock tubes, new

design philosophies were implemented which extended the range of flight velocities

that short-duration facilities can simulate. Some of these design philosophies include

employing a low molecular weight driver gas such as helium or hydrogen and/or

heating them using conventional methods [8, 11, 12], or by an electric arc discharge

[13], compressing the driver gas using pistons [14, 15, 16], or combusting the driver
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gas either through deflagration [8, 17, 18, 19] or detonation [18, 4, 20]. While the

above philosophies improve the driver performance in a classical shock tube, another

method pertains to the driven section. An expansion tube [21], as it is known, adds a

lower pressure section after the driven section which serves as the nozzle equivalent for

transient facilities. The lower pressure section is generally known as the acceleration

section, as it serves to further accelerate the test gas in teh driven section. For this

case, the state of the driven gas after expansion can be obtained by modifying the

shock tube equation (1.1) to account for non-zero driven gas velocity as follows,

p4
p1

=
p2
p1

{
1 +

γ4 − 1

2a4
u4 −

(γ4 − 1)(a1/a4)(p2/p1 − 1)
√
2γ1

√
2γ1 + (γ1 + 1)(p2/p1 − 1)

}−2γ4/(γ4−1)
(1.2)

In the above equation, the driven gas properties are denoted by the subscript 4 and

the accelerant gas properties are denoted byt the subscript 1. Apart from the non-

zero initial velocity, it can be seen that the general observations discussed above for a

shock tube also hold for an expansion tube. A detailed discussion of expansion tube

operation is posponed to Chapter 2.

Given all the myriad options for hypervelocity facilities, this work focuses only

on two designs of impulse facilities, that is, detonation-driven shock tubes and expan-

sion tubes. These designs can also be used as a combination leading to a detonation-

expansion tube, which is not considered here. To provide a perspective of the contri-

butions due to this work, a preliminary historical background on these facilities, with

current literature are provided individually below.

1.1 Historical perspective—detonation tunnels

A detonation-driven shock tube, or a detonation tube for short, is a modification

to the classical shock tube, where the driver section is filled with a detonable gaseous

mixture instead of an inert gas. This mixture which is initially raised to a high
4



pressure and temperature by a detonation wave, is subsequently expanded unsteadily

to drive a shock wave in the driven section. As the strength of the shock wave in

the driven section depends on the pressure ratio and sonic velocity ratio between the

driver and driven sections, this modification outperforms the classical shock tube in

terms of the driven shock velocities achievable. In addition to its high performance,

the detonation tube also offers several other advantages as a hypervelocity test facility.

The construction and assembly of the core facility is quite simple compared

to a free-piston tunnel or facilities employing a statically heated driver gas. The

assembly is also versatile enough to be converted between different modes of detona-

tion tube operation or to be operated as an expansion/shock tube [22, 12]. A wide

variety of test gas conditions from low to high enthalpies can be easily achieved by

varying the detonable driver gas composition [23, 24, 12]. Since the pressure ratios

between the detonation driver and driven sections can be low, mylar diaphragms

which are easy to fabricate and install compared to thick metal diaphragms can be

used, thereby significantly reducing shock formation losses associated with the latter

diaphragms. Additionally, the use of a mylar diaphragm circumvents the potential

damage to instrumentation in case of inadvertent impact by high-velocity fragments

from diaphragm rupture. More important, since the gas state achieved behind a

detonation wave exhibits excellent repeatability, the test gas state simulated is sub-

sequently well repeatable [4, 12, 25]. The primary disadvantage of a detonation tube

is the high safety requirements for handling combustible gaseous mixtures. However,

careful planning and remote operation can ensure facility and personnel safety.

Despite the overall advantages, historical use of detonation tubes as a hyper-

velocity test facility seems sporadic. The concept of a simple detonation tube was

theoretically studied in detail as early as 1957 by Bird [18]. Subsequent analytical

and experimental studies were performed throughout the 1960s in North America
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focusing mostly on what will be called here as the downstream-mode detonation tube

[4, 26, 20, 27]. Around the same time, Yu conducted experiments on another de-

sign of detonation tubes, termed here as the upstream-mode detonation tube, at the

Institute of Mechanics, Chinese Academy of Sciences [28]. Yu’s experiments were

discontinued due to high mechanical loading on the facility produced by detonation

wave reflection on the driver endwall [29] .

The studies mentioned so far were primarily exploratory in nature. The estab-

lishment of detonation tubes as a viable means for hypervelocity testing in modern

days started in the 1990s with extensive contributions from the Chinese Academy

of Sciences, RWTH Aachen University and NASA’s HYPULSE Facility at GASL.2

Yu with Grönig and co-workers from RWTH Aachen University modified his original

setup by adding a damping section to the detonation driver endwall to reduce loads

on the facility [29, 30]. The studies at the HYPULSE Facility on the other hand con-

centrated on the downstream-mode of operation which exhibits superior performance

compared to upstream mode due to the added momentum of the downstream flowing

gas. This work resulted in modifications to HYPULSE, paving way for the devel-

opment of detonation–expansion tunnels [31, 24]. Further, collaboration with GASL

led to the development of a downstream-mode detonation tunnel at the University of

Texas at Arlington’s Aerodynamics Research Center (ARC) [32, 33].

1.2 Historical perspective—expansion tubes

The expansion tube, as mentioned earlier, is similar in construction to a shock

tube, but consists of an additional section trailing the driven section. As the addi-

tional section is filled to lower pressures than the driven section and helps accelerate

the test gas, it is termed the acceleration section. An expansion tube contrasts other
2The HYPULSE facility is being installed at Purdue University as of date.
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high–enthalpy impulse facilities in the way energy is added to the test gas. While

other designs employ high–performance drivers and add energy to the test gas pri-

marily by a shock wave, an expansion tube adds energy in two stages, initially by a

shock wave and thereafter by an unsteady expansion wave. Such an approach was

developed to circumvent the undesirable high temperature effects on the test gas

brought forth by adding a predominant share of energy through shock waves.

The expansion tube was introduced theoretically by Trimpi in the 1960s [21],

which was followed by extensive experimental studies by NASA [34, 35]. Coinciden-

tally, the HYPULSE facility discussed above was employed as an expansion tube in

NASA Langley, which was subsequently modified by GASL into a detonation tunnel

and expansion tube. The studies at NASA revealed that the theoretical performance

map of the expansion tube was not always achievable due to viscous effects and high-

frequency disturbances in the test gas. However, use of expansion tubes at NASA

still continued based on experimental determination of useable test gas conditions.

In the early 1990s, Paull and Stalker theoretically resolved the reason behind the

large disturbances in the expansion tube test gas [36]. They showed mathematically

that some disturbances present in the compressed test gas can be amplified during

unsteady expansion and suggested attenuation criteria based on sound speed ratios

across the expanded driver and test gas. This led to an increased use of expansion

tube as a hypervelocity facility subsequently. Some of the expansion tube facilities

currently in operation in the USA includes LENS facilities at CUBRC [37], HEX at

Texas A&M University [38], HET at CalTech [39], and MHExT at The University of

Michigan [40].
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1.3 Current research scope and plan

The recent revival of interest in hypersonic flight has spawned a wide range of

efforts to repurpose and/or construct new hypervelocity facilities for ground testing.

Due to the relative ease of construction and tractable power requirements, a majority

of these facilities are short duration, also known as impulse facilities. Despite these

advantages, the short duration, unsteady operation invites problems during the design

phase in terms of reliably estimating the facility performance/simulation envelope.

With maximum possible facility flow timescales τf ∼ O(10−3)s, errors in estimating

an impulse facility flowfield may result in severe performance penalties and test-time

reduction. For instance, an improperly designed shock tunnel nozzle may have an

unacceptably long starting time, which in turn may result in no useful test time at all!

Perhaps a sub-optimal length selection for various sections in a shock/expansion tube

may result in early disruption of quasi-steady state available for testing. Moreover,

hypervelocity facilities are generally susceptible to high temperature effects, as a

significant amount of energy is deposited into the test gas in an effort to meet various

simulation enthalpy requirements. This energy deposition results in marked changes

to the test gas composition and internal energy distribution, which in turn affects the

facility gasdynamics.

An illustrative scenario for the occurrence of thermochemical non-equilibrium

in an impulse facility is the gasdynamic expansion through a reflected shock tunnel

nozzle. Consider the quasi-steady state operation of a nozzle post shock reflection at

the driven section endwall. Due to the high pressure and temperature caused by the

reflected shock, the reservoir test gas (that is, air) will generally be in thermochem-

ical equilibrium at the endwall. But a significant portion of its internal energy will

be locked in higher energy modes, in addition to a significant fraction of dissociated

oxygen. As the gas expands through the nozzle, the internal energy is redistributed
8



to the lower energy modes and recombination of atomic species occurs. Simultane-

ously, the expansion process also accelerates the test gas and its static pressure drops

throughout the nozzle. Thus, the thermochemical time scales outpace the flow time

scale near the nozzle inlet, but the former pair starts to slow down as the gas expands.

Given the qualitative thermodynamic information about the expansion process, this

trend is clearly evident from the Millikan–White correlation and from the standard

form of the Arrhenius rate law for chemical rate constants. The opposite trend oc-

curs for the gasdynamic time scales where the flow rates are slow at the reservoir and

increase throughout the expansion process. So, in a hypervelocity nozzle, the entire

range of conditions from thermochemical equilibrium to non-equilibrium to frozen

state is present. Thus, to appropriately model hypervelocity flows in test facilities,

the underlying thermochemical non-equilibrium processes should be accounted for.

From a gasdynamic perspective, a detonation-driven shock tube presents a com-

plex problem. The facility relies on the establishment of a detonation wave in the

combustible driver gas to provide a high performance driver. But, the presence of

a detonation wave in the driver is practically tied to a trailing rarefaction wave in

the driver (see Taylor rarefaction in Chapter 2 for more discussion on this aspect).

Thus, when the detonation wave reaches the end of the driver section, it transmits

as a shock wave into the adjacent inert section and subsequently decays in strength

due to the transmitted trailing rarefaction wave. If the transmitted rarefaction wave

is strong, then the shock wave decay occurs even as it reaches the facility endwall.

These scenarios in a detonation tube often involve interaction of complex gasdynamic

wave systems, the resolution of which is laborious at best and inaccurate at worst.

Still, these unsteady phenomena determine the test gas state, available test time and

structural loads on the facility. Even for an inviscid flow, these phenomena result

in laborious calculations, which make simple parametric analyses at the design stage
9



almost impossible for a detonation tube. Further, the typical facility lengths are such

that the effects of frictional and heat losses on the gasdynamics is non-negligible,

thus inviscid calculations can be rendered inaccurate [23, 22, 25]. Recognizing these

difficulties early, RWTH Aachen University developed an inviscid Riemann solver

with the working gases assumed to be in thermochemical equilibrium [41]. This code,

called KASIMIR, was used predominantly around the world for detonation tube de-

velopment [23, 22, 42].

With the rapid advancements in computational fluid dynamics (CFD), later

developments in the Chinese Academy of Sciences and GASL utilized CFD to aid in

the development of new detonation driver techniques [43, 12]. Nowadays, quasi-one-

dimensional CFD analyses seem to be the norm in aiding new facility development [43,

44, 45]. At the most, these analyses incorporate a one-dimensional thermochemical

equilibrium solver accounting for heat and frictional losses, or use simplified chemical

reactions with no heat or frictional losses. For a detonation tube, the former is

expected to give reasonable results, as the only way energy is added to the test

gas is through a shock wave and, oxyhydrogen detonation can be well approximated

through equilibrium analyses. However, the latter model can be seen to overestimate

driven shock speed in Li et al. [45], underscoring the need to account for heat and

frictional losses. Further, if the simulations need to be extended to detonation–

expansion tubes or, if the detonation tubes additionally incorporate a nozzle where

gasdynamic expansion takes place, the effect of thermochemical non-equilibrium can

become important. Under such circumstances, thermochemical equilibrium analysis

will no longer be appropriate, while thermochemical non-equilibrium CFD analyses

would be expensive to conduct parametric studies at the design stage, even for shock

tubes [46]. Thus, it is necessary to explore alternative techniques to CFD which are

more efficient and still reliable for high-enthalpy simulations.
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Historically, unsteady quasi-one-dimensional flows have been resolved theoreti-

cally using the method of characteristics (MoC) due to the hyperbolic nature of the

problem. This method reduces the governing partial differential equations to ordinary

differential equations (ODEs), thereby providing an easier route to the solutions of

relevant physical phenomena. Barring the trivial case of a simple region where self-

similarity holds [47], non-simple regions have generally been solved using MoC. Such

early efforts applicable to perfect gas flows were assisted either by hand calculations

or a hand-drawn graphical approach [48, 18]. These methods involve projecting the

simplified ODEs from known initial value locations to a later point in time to obtain

their location of intersection, followed by calculation of the required flowfield prop-

erties. Applied over an extensive initial value line, this method results in a mesh of

points at which the integral curves of the ODEs intersect and where the flowfield solu-

tion is also calculated. Alternatively, the solution procedure can utilize a pre-defined

grid of points in the space–time domain where the intersecting ODEs and thereby

the flowfield properties are determined, provided that the grid points are within the

domain of influence of the initial value line [47]. The former approach is now known

as direct MoC and the latter as inverse MoC [49].

In the case of expansion tubes, direct MoC based methods have been commonly

used to design and supplant the operation of various facilities [39, 40, 50]. These

methods only resolve simple regions in the flowfield and neglected frictional and heat

losses. (LENS-X facilities have also shown to be supplanted by non-equilibrium CFD

analyses [50, 51].) For detonation-driven shock tubes, apart from Bird’s work [18], the

author is unaware of an MoC-based model in the literature. An interesting parallel

to the detonation-driven shock tube can be found in a propulsive device called a

pulse detonation engine. One of the designs, called a partially-filled pulse detonation

engine, provides the closest match to a detonation-driven shock tube described above.
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A review of pulse detonation engine literature shows extensive use of MoC models.

Skinner [52] modeled a partially-filled pulse detonation engine using the direct MoC

method and considered the effects of frictional and heat losses. Skinner’s method was

later adapted by other authors to model fully-filled pulse detonation engines with

heat losses alone [53] or both heat and frictional losses [54]. Morris [55] used an

inverse MoC-based model to study pulse detonation engine without considering the

influence of losses. Peace and Lu used a similar approach and extended the analysis

to partially-filled detonation tubes incorporating a nozzle [56]. Though all of these

models were limited to perfect gas MoC, the method itself is not limited to perfect

gases.

A literature survey showed that direct MoC methods have been used to resolve

both unsteady one-dimensional and steady two-dimensional nonequilibrium flows.

For instance, chemical nonequilibrium in steady nozzle flows was resolved by Quan et

al.[57], thermal nonequilibrium in steady expanding jets was resolved by Palmer and

Hanson[58], thermochemical nonequilibrium in unsteady centered expansion fan was

resolved by Connor [59]. Direct MoC has been favored over inverse MoC for chemical

nonequilibrium flows as it specifically tracks pathlines. Early on, Quan et al. [57]

reported that using the inverse MoC for chemically reacting flows leads to large errors

in massfractions (discussed further in Chapter 4) and algorithm stability problems.

However, for steady two-dimensional flows under thermal non-equilibrium, inverse

MoC has been successfully applied by Palmer and Hanson [58]. For an excellent trea-

tise on nonequilibirum MoC, refer to Sedney [60]. Thus, MoC algorithms can be an

excellent option to model hypervelocity flowfields, both for efficient parametric anal-

yses at the design phase and also for identifying new operational points in an existing

facility. However, the literature listed above either simulate thermal, or chemical

nonequilibrium, but not both. Also, a survey of the recent literature surprisingly
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shows no MoC based models for simulating nonequilibrium flows in impulse facilities.

Thus, this work sets out to develop MoC algorithms for thermochemical nonequilib-

rium flows, to model high enthalpy flowfields in hypervelocity facilities. But before

embarking on a full nonequilibrium MoC model, it is advantageous to verify that per-

fect gas MoC can still capture the complex gasdynamics of a detonation-driven shock

tube, for instance. Therefore, a multi-step approach has been taken in developing

increasingly complex MoC algorithms by isolating various perceived bottlenecks, as

detailed below.

1.3.1 Phase 1

In this phase, the reliability of MoC models in resolving complex flow phenom-

ena in a detonation tube consisting of multiple gas slugs suffering heat and frictional

losses is studied. As a first step to simplify the problem, high-temperature effects

were neglected, thus the MoC algorithms developed were for a calorically perfect gas.

Also, only one mode of detonation tube operation, namely, the downstream mode

(see §2.2.1) was investigated. This was deemed acceptable, as the generic algorithm

used to resolve a detonation tube is very similar to that required for an expansion

tube. Thus, validating the detonation tube algorithm, with significantly more com-

plex gasdynamics than an expansion tube was also expected to mean that an MoC

expansion tube algorithm was reliable.

In the initial detonation tube studies, of particular interest was the deceleration

of shock waves in the driven section. This occurs due to the inherent nature of a

detonation wave propagation outlined earlier, combined with the effect of frictional

losses in the test gas behind the shock wave [61, 62]. Studies have also shown that heat

and frictional losses in a single-shot, fully-filled pulse detonation engine influence its

gasdynamics significantly [53, 54, 56] and, thus, the effect of these driver gas losses on
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the driven gas state in detonation tunnels also need to be captured. Moreover, for a

detonation tube operating in the reflected shock tunnel mode, the reservoir condition

which is the state of the driven gas at the endwall is of primary importance, as

this determines the flow expansion through the nozzle and subsequently the test gas

properties at the test section. The reservoir state itself is governed by the driven shock

dynamics as it moves towards the endwall and after its reflection from the endwall.

As the reflected shock moves away from the endwall, it also interacts with the contact

surface in the driven section. The outcome of this interaction as detailed in §2.2.3,

influences the reservoir state and the test time available for reflected shock tunnel

operation. All these phenomena were considered in the numerical and experimental

facets of the first phase of this work, to ensure that the MoC model is reliable as a

simulation tool. This initial model which is based on inverse MoC, incorporates heat

and frictional losses through various empirical approaches available in the literature.

A simpler version of the model which used a constant friction factor approach was

reported by the author previously [63]. To validate the results from the MoC model,

a small-scale detonation tube was constructed and experiments were carried out using

stoichiometric oxyhydrogen driver and different driven gases. The work carried out

during this phase is detailed in Chapter 3.

1.3.2 Phase 2

As Phase 1 proved that MoC models can resolve low-enthalpy detonation tube

flowfields, Phase 2 was aimed at extending the IMoC algorithms to nonequilibrium

flows. Therefore, Phase 2 investigated the feasibility of using IMoC models for flows

under chemical nonequilibrium. To simplify the problem again, the flow was assumed

to be always in thermal equilibrium. While the effect of area variation was added

to the governing equations, frictional and heat losses to the walls were neglected for
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simplicity. Due to the exploratory nature of this phase, only two continuous wave al-

gorithms (discussed further in Chapters 3 and 4) were developed. For aiding the MoC

algorithms in direct evaluation of finite-rate chemical kinetics and for computational

efficiency, stand-alone chemistry subroutines were developed. Using the MoC algo-

rithms, three validation cases were modeled and simulated. The first two cases were

simplified to be chemically reacting steady flows in a one-dimensional duct. These in-

clude supersonic combustion in a duct and chemical relaxation behind a normal shock

wave. These results were compared against direct ODE based solvers available in the

literature. As these studies showed that inverse MoC was both reliable and stable,

a steady nozzle flow with chemical nonequilibrium was then simulated using MoC.

To validate the MoC nozzle results, an ODE solver representing chemical nonequi-

librium occurring in a quasi-one-dimensional nozzle was also developed. Chapter 4

summarizes the work carried out in Phase 2.

1.3.3 Phase 3

Experience from Phase 2 showed that existing IMoC algorithms applied to

nonequilibrium flows may not be highly accurate, as the subroutines rely on linear

interpolation of all dependent variables along the initial value line. Additionally, the

original inverse MoC algorithms were developed about half a century ago primarily for

perfect gas flows and do not effectively utilize the existing computational power and

architecture. Thus, in Phase 3 the existing IMoC algorithm was optimized through

vectorization. Also, improved interpolation procedure was introduced to increase the

solver accuracy. Considering easier extension to nonequilibrium algorithms, this phase

developed thermally perfect and thermochemical equilibrium MoC subroutines. Thus,

all the improvements to the original IMoC algorithms were carried out in thermally

perfect and thermochemical equilibrium algorithms. These subroutines were used to
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develop reduced-order models for expansion tubes and upstream detonation drivers.

The thermally perfect expansion tube model ignored losses, so that the MoC results

could be validated against analytical solutions. The thermochemical equilibrium al-

gorithms also considered the effect of frictional and heat losses. These results were

compared to the experimental data available in the literature. These developments

are discussed in Chapters 5 and 6.

1.3.4 Phase 4

Finally, in Phase 4, the IMoC algorithm was extended to flows in thermochemi-

cal nonequilibrium. MoC subroutines representing shock waves, contact surfaces and

weak compression and expansion waves were developed. The integration approach

in these subroutines were based on the vectorized skeleton algorithms developed in

Phase 3. Stand-alone chemistry solver developed in Phase 2 was modified to account

for thermochemical nonequilibrium. The MoC subroutines so developed were used

to simulate three validation cases. The first two cases represented thermal and ther-

mochemical nonequilibrium occurring in a steady state quasi-one-dimensional nozzle

flow. The final model resolved an expansion tube flowfield under thermochemical

nonequilibrium. The validation data for these cases were obtained from state-to-

state and CFD results existing in the literature. These efforts are detailed in Chapter

7.
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1.4 Contributions

The scientific contributions from this work at various phases are outlined below,

• Phase 1 of this work which extended the work of Peace and Lu [56] showed that

inverse MoC models can be used to estimate the operation of a low enthalpy

detonation-driven shock tube with momentum and heat losses. It also showed

that the MoC model can be used to estimate the endwall conditions even for a

downstream detonation tube operating in an under-driven mode.

• Phase 2 showed that IMoC algorithms can be used to resolve flows in chemical

nonequilibrium, which was earlier deemed impractical [57].

• Phase 3 introduced thermally perfect and equilibrium IMoC algorithms incor-

porating simplified losses models. Notably, the original IMoC approach was vec-

torized, which significantly increased the computational efficiency of the IMoC

algorithm.

• Phase 4 introduced IMoC algorithms for flows under thermochemical nonequi-

libirum. An expansion tube model developed through this algorithm resolves a

large scale expansion tube flowfield in approximately 1.5 hours, on a personal

laptop.

As of writing, the findings from this work have been published as four AIAA

conference papers and one ISSW conference paper. The information about these

papers are below,

1. Jayamani, A., Lu, F.K., “A Study of Detonation Driven Shock Tube Using the

Method of Characteristics”, 23rd AIAA International Space Planes and Hyper-

sonic Systems and Technologies Conference, AIAA 2020 -2454, March 24 -26,

2020, Montréal, Québec, Canada (virtual event) (doi: 10.2514/6.2020-2454).
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2. Jayamani, A., Lu, F.K., “A Method of Characteristics Solver for Unsteady

Quasi-One-Dimensional Chemically Reacting Gas Flows”, AIAA SciTech 2021

Forum (virtual event), AIAA 2021 -0315, January 11 -15, 2021, (doi: 10.2514/-

6.2021-0315).

3. Jayamani, A., Lu, F.K., “Method of Characteristics Modeling of Non-equilibrium

Flow in an Impulse Facility”, AIAA SciTech 2023 Forum, AIAA 2023-2088,

January 23-27, 2023, National Harbor, Maryland, USA (doi: 10.2514/6.2023-

2088)

4. Jayamani, A., Lu, F.K., “Inverse Method-of-Characteristics Algorithms for Un-

steady Gas Flows with Shifting Thermochemical Equilibrium”, 25th AIAA Inter-

national Space Planes and Hypersonic Systems and Technologies Conference,

AIAA 2023 -3021, May 28 June 1, 2023, Bengaluru, Karnataka, India (doi:

10.2514/6.2023-3021).

5. Jayamani, A., Lu, F.K., “Vectorization of Inverse Method-of-Characteristics Al-

gorithms for Quasi-One-Dimensional Unsteady Flows”, The 34th International

Symposium on Shock Waves, 16-21 July 2023, Daegu, Korea.

Additionally, one archival journal publication has been published through Physics of

Fluids.

1. Jayamani, A., Lu, F.K., “Method-of-Characteristics Model for a Low-Enthalpy,

Detonation-Driven Shock Tube”, Physics of Fluids, Vol. 34, No. 6, 2022. doi:

10.1063/5.0093888.

All the remaining conference papers are to be prepared for archival journal publica-

tions in Spring-Summer 2024.
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CHAPTER 2

IDEAL WAVE PROCESSES IN IMPULSE FACILITIES 1

The first formal chapter in this work is devoted to the gasdynamics of impulse fa-

cilities. The need for this discussion will become apparent in the subsequent chapters

because the MoC algorithms developed here represent various possible gasdynamic

phenomena. Development of a meaningful model using these MoC algorithms relies

heavily on a precise understanding of gasdynamic processes to ensure that MoC can

be appropriately applied. Additionally, the governing equations considered in these

algorithms are either one-dimensional or quasi-one-dimensional. Thus, the modeling

approach considered here represents a simplified version of the actual facility gasdy-

namics, commonly known in the literature as reduced-order models.

Since this work considers several impulse facilities which are characterized by

complex gasdynamics, identifying the salient gasdynamic features that must be mod-

eled represents the first step. For unsteady facility flowfields, this task can be ac-

complished by the use of wave diagrams, which represent the propagation of various

gasdynamic waves throughout a given facility in both spatial and temporal coordi-

nates. To maintain focus on ideal wave systems that are to be expected in these

facilities’ operation, the following discussions in this chapter assume that the flow is

inviscid and one-dimensional.
1Contains excerpts from the paper entitled ‘Method-of-Characteristics Model for a Low-Enthalpy,

Detonation-Driven Shock Tube’ by Jayamani, A., and Lu, F. K., Physics of Fluids, Vol. 34, No. 6,

2022. doi: 10.1063/5.0093888, reproduced with the permission of AIP Publishing
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2.1 Expansion Tube

The expansion tube contains the simplest wave processes amongst the facilities

considered here. As mentioned earlier, an expansion tube consists of three sections

namely, a driver, a driven and an acceleration section, see Fig. 2.1a. The nomen-

clature of regions resembling the sections in a classical shock tube remains the same.

Thus, the initial driver gas state is denoted 4 and the corresponding driven gas state

is denoted 1 . The initial gas state in the additional section, i.e., the acceleration

section is denoted 5 . During filling and prior to facility operation, all these initial gas

states are separated by partitions called diaphragms. The diaphragm which separates

the driver and driven gas is termed the primary diaphragm, as it is the first partition

to rupture. A secondary diaphragm separates the driven and acceleration sections.

Similar to the classical shock tube, the driven gas in an expansion tube serves as the

test gas.

The ideal wave processes related to the operation of an expansion tube are

shown in the x–t diagram in Fig. 2.1b, albeit, at a later time than the waves shown

in the schematic, Fig. 2.1a. The facility operation begins when the primary di-

aphragm is ruptured. Similar to the classical shock tube, the diaphragm rupture

triggers the driver gas to expand into the lower pressure driver section. In the ideal

situation considered here, the primary diaphragm is assumed to vanish and the sub-

sequent driver expansion wave is idealized to be centered, which is marked as primary

rarefaction (PR) in the x–t diagram. The expanded driver gas state is denoted 3 . As

the driver gas expands into the driven section, the originally quiescent driven gas is

set into motion through a shock wave, due to the supersonic velocities achieved by the

expanding driver gas. The shock compressed driven gas state is denoted 2 . Associ-

ated with the primary diaphragm, the contact surface between the driver and driven
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gas is called the primary contact surface (CS1). Following a similar nomenclature,

the shock wave in the driven section is called the primary shock wave (SW1).

(a) Schematic.

(b) Wave diagram.

Figure 2.1: Expansion tube.

When the primary shock wave reaches the end of the driven section, the sec-

ondary diaphragm is similarly assumed to vanish instantaneously. Thus, the primary

shock wave transmits across the contact surface between driven and acceleration

sections. The resulting transmitted shock wave in the acceleration section is the sec-

ondary shock wave (SW2) shown in Fig. 2.1b. The interface between the test gas

and the accelerant gas becomes the secondary contact surface (CS2). Generally, the

acceleration section is pressurized to substantially lower pressures than the driven

section. Thus, the reflected wave from the primary shock wave–secondary contact
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surface interaction is always an expansion wave, which is depicted in Fig. 2.1b as

secondary rarefaction (SR). Since the test gas in region 2 travels at supersonic ve-

locities, the leading characteristic of the secondary rarefaction is of positive slope.

The secondary rarefaction accelerates the test gas to state 7 , which represents the

simulated freestream conditions. In the simplest expansion tube design, a model is

placed at the end of the acceleration section. Thus, test time ideally begins when the

secondary contact surface arrives at the end of the acceleration section and is termi-

nated by the arrival of the reflected secondary rarefaction (as shown in Fig. 2.1b).

In off-design scenarios or when the secondary rarefaction is strong, the test time

might also be terminated by the arrival of the trailing characteristic of the secondary

rarefaction wave.

2.2 Detonation Tube

Detonation tube (or tunnel) facilities are found under two general designs, the

upstream and the downstream modes [64]. Prior to the discussion of the upstream

or downstream modes, preliminary terminologies for a detonation driver are briefly

reviewed. Consider the assembly shown in Fig. 2.2a, which is similar to the classical

shock tube in construction, with the only difference being the presence of an igniter at

the driver endwall. The driver section is now filled with a detonable gaseous mixture

and is separated from the inert gas-filled driven section by a diaphragm. To further

simplify the discussion, assume that the driven gas has a lower acoustic impedance

than the driver gas, for reasons to be explained later.

The operation of this simple detonation tube begins when the igniter ignites

the detonable mixture. Usually, a deflagration-to-detonation transition follows the

ignition but this is ignored in the current analysis. Once a stable detonation wave

forms, it propagates into the driver section solely propelled by the chemical energy
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(a) Schematic.

(b) Wave diagram.

Figure 2.2: Simple detonation tube.

released by the processed gaseous mixture. For a given initial gas state, such a

detonation wave, called the freely propagating detonation wave, has a unique velocity

based on the Chapman–Jouguet (CJ) condition, that is, chemical reactions behind the

detonation wave reach completion when the expanding gas velocity reaches the local

sonic velocity [65]. Naturally, this final state of the chemically reacting gas is called the

Chapman–Jouguet state. The gas at the CJ state possesses a finite velocity and is at a

higher pressure than the gas at the driver endwall which forms the leftmost boundary

condition. Thus, the burnt gas expands unsteadily to zero velocity preserving the

endwall velocity and pressure. This unsteady expansion which can be seen trailing

the detonation wave in Fig. 2.2b is called the Taylor rarefaction. Eventually, as the
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detonation wave reaches the diaphragm, assume that the diaphragm instantaneously

disappears, leaving only an immiscible gaseous interface, the contact surface. Since

the driven gas is inert, the impacting detonation wave will transform into a shock

wave across the contact surface resulting in a reflected wave at the interface, which

travels back into the driver gas. This reflected wave will always be an expansion

wave if the acoustic impedance of the driven gas is less than that of the driver gas,

which is the already assumed initial condition. Now, as the reflected expansion wave,

denoted driver rarefaction in Fig. 2.2b, travels into the driver gas, it interacts with the

Taylor rarefaction and a non-simple region ensues behind the contact surface. The

Taylor rarefaction, which emerges after this interaction reaches and transmits across

the contact surface only to reach and decelerate the transmitted shock wave in the

driven section. This adverse effect prevents the attainment of a constant region of

test gas behind the transmitted shock wave in impulse facilities of reasonable length.

To circumvent this problem, two different detonation tube operations were developed

historically, the downstream mode and the upstream mode.

2.2.1 Downstream mode

A detonation tube operating in the downstream mode is similar in design and

operation to the simple detonation tube discussed above. The primary problem in the

simple detonation tube is the decelerating driven shock wave caused by the Taylor

rarefaction in the driver section. The downstream mode of operation tackles this

problem by eliminating or attenuating the Taylor rarefaction through adding a high-

pressure driver to the aft of the detonation driver. A schematic of the downstream

mode is shown in Fig. 2.3a, along with a wave diagram in Fig. 2.3b to show all the

relevant processes. Figure 2.3a shows the assembly of the downstream detonation

tube consisting of three sections, with each isolated from the subsequent section by a
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diaphragm. The first section which generally contains a light gas under high pressure

is simply called the high-pressure driver. The second section which serves as the

actual driver for the test gas contains a detonable gaseous mixture and is called

the detonation driver. The last section called the driven section contains the test

gas. For clarity, these diaphragms are respectively called primary and secondary

diaphragms. Similarly, the gaseous interface between the high-pressure driver and

detonation driver is called the primary contact surface (CS1), while that between the

detonation driver and the driven section is called the secondary contact surface (CS2).

The wave diagram in Fig. 2.3b corresponds to all the expected gasdynamic processes,

while the schematic in Fig. 2.3a shows a particular instant in the detonation tube

operation.

Figure 2.3a shows that the detonation driver in the downstream detonation tube

does not contain an igniter. This aspect directly ties in with the operation of this type

of facility. Previous studies [31, 66] have shown that, for high-enthalpy detonation

drivers, the rupture of metallic primary diaphragm accompanied by the strength of

the initial shock wave are sufficient to provoke a detonation wave in the gaseous

mixture . Thus, an igniter is employed for supplementary reasons, for instance,

to aid direct initiation. Regardless, only the initiation mechanism differs, with the

remainder of the processes described being the same. Consider the former design,

where all the sections have been filled to the required pressures and composition.

This detonation tube operation begins when the primary diaphragm ruptures, rapidly

creating a detonation wave (DW) in the detonation driver. As the high-pressure

gas expands into the detonation driver, a gasdynamic equilibrium occurs between

the expanding high-pressure driver gas and the detonated gaseous products, in turn

determining the strength of the Taylor rarefaction (TR). Based on the extent of the

high-pressure driver gas expansion, identified as primary rarefaction, three different
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(a) Schematic.

(b) Wave diagram.

Figure 2.3: Downstream mode detonation tube.

operating scenarios are possible in a downstream detonation tube, as depicted in Fig.

2.4 in a pressure–velocity plot.

The lowest value that p4 can assume for the downstream mode is denoted as

location b in the ordinate. Below this value, the high-pressure gas behind the detona-

tion wave will cause a shock wave in the high-pressure driver, negating its purpose.

Increasing p4 from b causes a relatively weak primary rarefaction PR to form, as

shown in the x–t diagram of Fig. 2.3b. Note that the trailing characteristic in region

300 is shown to be subsonic here, which will not necessarily be the case for a strong

primary rarefaction. Thus, for a weak primary rarefaction, the high pressure driver

gas expands to pressures and velocities lower than the CJ state. This operating con-
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Figure 2.4: Effect of driver pressure in the downstream mode.

dition, called the under-driven mode, is represented in Fig. 2.4 by the sample curve

de. As the value of p4 increases from b to a, the strength of the primary rarefaction

increases, in turn reducing the strength of Taylor rarefaction behind the detonation

wave. Correspondingly, the locus of possible final states at the trailing characteristic

of the Taylor rarefaction, that is, state 200 in Fig. 2.3b is given by the curve bc. The

second scenario, where p4 is such that the driver gas expands exactly to the CJ state

pressure and velocity is called the perfectly-driven mode. In Fig. 2.4 the correspond-

ing driver state is denoted as a and, obviously, the final state in driver rarefaction is

given by c.

While the Taylor rarefaction is seen to be completely annihilated for the perfectly-

driven mode, in Fig. 2.4, chemical reactions still proceed to reach the CJ state behind

the freely propagating detonation wave. If p4 is increased above a, the driver gas ex-

pands to pressures and velocities above the CJ state and, thus, the detonation wave
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velocity will be higher than the freely propagating detonation wave for a given gaseous

mixture. This mode is which is rarely realized in practice is called the over-driven

mode.

When the detonation wave reaches the secondary diaphragm and ruptures it,

a shock wave SW is transmitted into the driven section and a secondary rarefaction

wave SR travels back into the detonation driver. Note the orientation of the leading

characteristic, which is shown to be subsonic. This is typical of a detonation driver

in the under-driven mode, as the flow is subsonic throughout the Taylor rarefaction.

However, the trailing characteristic of the secondary rarefaction may or may not be

supersonic depending upon p100/p1. In the case of a perfectly-driven mode, due to

the CJ condition, the detonation driver velocity is sonic in state 200 . Hence, the

leading characteristic of the secondary rarefaction is perpendicular to the abscissa,

and the trailing characteristic always turns supersonic. While the perfectly-driven

mode exhibits no driven shock attenuation, for the under-driven mode, the strength

of the Taylor rarefaction and the acoustic impedance ratio across the detonation driver

and the driven section determine the driven shock wave attenuation. Nonetheless, the

literature for downstream detonation tubes/tunnels shows that a carefully selected

under-driven mode of operation can still provide useful test time for high-enthalpy

testing [22, 66]. Finally, the terminology for this design, that is, the downstream mode

is derived from the direction of the detonation wave propagation in the detonation

driver. Though the terms upstream and downstream can be easier to define in a

steady-state flow, a transient flow with omnidirectional waves and fluid motion can

present a dilemma. In this case, as the test gas is of prime significance, the direction

of initial motion of the test gas is taken to be downstream, from which the naming

convention follows directly.
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2.2.2 Upstream mode

A detonation tube operating in the upstream mode is similar in construction to

the downstream detonation tube except that an igniter is present in the detonation

driver. A schematic of the assembly is shown in Fig. 2.5a with the wave diagram

shown in Fig. 2.5b corresponding to a later time than the schematic. The naming

convention for this design may be obvious from Fig. 2.5b, where the detonation wave

is seen traveling upstream relative to the test gas. The deceleration of the driven

shock wave is eliminated in this design by utilizing the Taylor rarefaction as the

driver rarefaction in a manner detailed below.

The upstream detonation tube schematic shown in Fig. 2.5a contains three sec-

tions, namely, the damping section, the detonation driver and the driven section, each

separated by a diaphragm. The detonation driver and driven section are respectively

filled with a detonable gaseous mixture and the test gas. The diaphragm between

the detonation driver and the driven section is called the primary diaphragm, as it

ruptures first. The detonation driver in this design houses an igniter near the primary

diaphragm, as there is no implicit mechanism that can be used to produce a detona-

tion wave. If the upstream-mode design were to consist only of a detonation driver

and a driven section, the detonation wave on reaching the endwall of the detonation

driver will reflect as a shock wave. This results in very high structural loads on the

endwall and has been linked to damaged facilities [29]. To circumvent this complica-

tion, an additional section is added to the end of the detonation driver, but is now

filled with a low-pressure inert gas. Thus, the detonation wave transitions into a shock

wave in this inert section. Eventually the transmitted shock wave reaches and reflects

off the endwall resulting in stagnation pressures significantly lower than that caused

by an incident detonation wave. Since this section damps the overall structural loads
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on a detonation tube, it is called the damping section. The diaphragm between the

detonation driver and the damping section is called the secondary diaphragm.

(a) Schematic.

(b) Wave diagram.

Figure 2.5: Upstream mode detonation tube.

For simplicity, the process of detonation wave formation is neglected and instead

the detonation wave is assumed to form instantaneously at the primary diaphragm.

The detonation wave then propagates in the upstream direction to consume the det-

onable mixture. Now, if the primary diaphragm were a rigid wall, the burnt gas

behind the detonation wave can be expected to expand through the Taylor rarefac-

tion to zero velocity at the wall. It is assumed that the primary diaphragm disappears
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at the moment the detonation wave forms in the detonation driver. Thus, the final

velocity and pressure at the end of Taylor rarefaction are determined by the veloc-

ity and pressure the test gas acquires as a result of the primary shock wave in the

driven section. This way, the Taylor rarefaction becomes the driver rarefaction in the

upstream detonation tube. Moreover, as a freely propagating detonation wave has a

unique CJ state, the driver gas is essentially excited to the same “initial condition”

prior to unsteady expansion. The resulting primary shock wave that is caused by

the expanding driver gas is also of a constant velocity. Eventually, the propagating

detonation wave reaches the end of the detonation driver and ruptures the secondary

diaphragm.

Since the damping section is of significantly lower pressure than the detonation

driver, a secondary shock wave SW2 is formed in the damping section with a reflected

rarefaction wave traveling back into the detonation driver. This reflected, secondary

rarefaction wave SR interacts with the incoming Taylor rarefaction, resulting in a

non-simple region. At the end of this interaction, the secondary rarefaction emerges

in the driven section, while the Taylor rarefaction is transmitted into the damping

section. The transmitted Taylor rarefaction refracts across the secondary contact

surface and then decelerates the secondary shock wave as seen in Fig. 2.5b. The

facility gasdynamics discussed so far only describe the wave processes before various

shock waves reach the endwalls. The reflection of shock waves at the endwalls and

their subsequent interactions with the contact surfaces are described next.

2.2.3 Driven section endwall phenomena

The temporal evolution of the driven gas state at the endwall represents an im-

portant aspect of reflected-shock tunnel operation. In a reflected-shock tunnel, where

a nozzle is attached to the endwall of the driven section, the stagnated driven gas at
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the endwall becomes the reservoir for the nozzle. It is desirable to achieve a constant

reservoir condition and sustain this gas state for as long as possible during facility

operation. While this study does not account for a nozzle at the driven endwall, it

is still possible to evaluate the maximum available time for nozzle operation, with

a completely closed endwall. In fact, at the initial parametric study stage, it would

be logical to simply base all calculations on a detonation tube with closed endwall

as a nozzle design may not yet be available. However, appropriately chosen reservoir

conditions from the parametric analysis can be used to design a nozzle, which in turn

can be used for further simulations to understand the nozzle starting transients and,

subsequently, the available test time. It is expected that the following discussion on

endwall phenomena will throw light on the statements above.

Consider the wave processes in the driven section of the upstream-propagating

detonation tube shown in Fig. 2.5a. When the primary diaphragm ruptures, the

primary shock wave (SW1) forms instantaneously and starts traveling down in the

driven section, compressing an ever increasing volume of the test gas. The primary

shock wave is trailed by the test gas slug, denoted as region 2 , which ends at the

contact surface (CS1). In the upstream mode, region 2 is of constant properties

because the primary shock wave strength is constant. After traversing the entire

driven section, the primary shock reaches the endwall. The incoming test gas in

region 2 must then come to rest. This occurs through the reflection of the incident

primary shock wave at the endwall. The reflected shock wave (RSW) stagnates the

incoming test gas which also increases its static pressure and temperature. This

stagnant region behind the reflected shock wave denoted as 5 in Fig. 2.5b is the

reservoir gas for nozzle operation. In this case, as region 2 is of constant properties,

so is region 5 , which is processed by the reflected shock wave. These phenomena are

shown schematically in Fig. 2.6.
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Figure 2.6: Reflected shock tunnel endwall phenomena.

On further traveling into the driven section, the reflected shock wave encounters

and interacts with the oncoming contact surface, resulting in a transmitted shock wave

into the driver gas. Despite this interaction, the contact surface remains intact due

to the inviscid flow assumption. The static pressure and velocity must be continuous

across the contact surface even after this interaction. Therefore, a reflected wave is

simultaneously formed in region 5 , with the shock wave transmitted into region 3 .

The nature of this reflected wave is determined by the change of acoustic impedance

across the contact surface [67, 68].

In the special case when the there is no change in acoustic impedance between

gases in region 2 and region 3 , the shock wave essentially perceives no change in

medium, as the pressure rise brought about by the shock waves on either sides of

the contact surface is the same. This situation results in a degenerate reflected wave

at the interface, a Mach wave that does not alter the test gas in region 3 . Since

the acoustic impedances of the expanded driver gas and compressed driven gas are

matched across the contact surface, this situation is called tailored operation, which

results in the desired prolonged steady-state reservoir condition, until waves from

the driver expansion reach region 5 . This is shown schematically in Fig. 2.7a and

depicted in the wave diagram in Fig. 2.5b.
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(a) Tailored operation. (b) Overtailored operation.

(c) Undertailored operation.

Figure 2.7: Reflected shock wave–contact surface interactions.

If the acoustic impedances of regions 2 and 3 do not match, two types of

reflected waves are possible during the shock wave–contact surface interaction. When

the expanded driver gas in region 3 has higher acoustic impedance than the test

gas in region 2 , the incident shock wave perceives a heavier gas across the contact

surface. Thus, a reflected shock wave propagates into region 5 , as seen in Fig. 2.7b.

A reflected shock tunnel operating under such a condition is said to be overtailored.

On the other hand, if the driver gas in region 3 has lower acoustic impedance than

the test gas in region 2 , the incident shock wave perceives a lighter gas across the

contact surface. In this case, a reflected rarefaction wave propagates into region 5 as

seen in Fig. 2.7c and the shock tunnel is now undertailored. Schematics of these wave

processes are shown in Figs. 2.2b and 2.3b respectively. Clearly, both these situations

result in earlier disruption of the steady-state reservoir properties and, in turn, limit

the overall time available for nozzle operation.
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Though the above discussion assumed that the incident shock wave strength is

constant, in the case of an under-driven downstream detonation tube, the primary

shock wave will decelerate due to the transmitted Taylor rarefaction. In the worst

case scenario, the Taylor rarefaction affects even the reflected shock wave as it travels

back from the driven endwall. As this means that region 2 is also affected by the

Taylor rarefaction, neither region 2 nor 5 possesses constant properties. Therefore,

for the shock wave–contact surface interface, local values of acoustic impedances

across the contact surface will determine the reflected wave type, still following the

transmission criteria discussed above. These considerations may also illustrate the

difficulty in estimating the wave processes for an under-driven downstream detonation

tube operation, for instance. The gasdynamic processes described so far represent

the dominant flow physics in all the impulse facilities. Thus, in subsequent chapters

relevant features for a specific facility will be reiterated briefly to reinforce the reduced-

order model development.
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CHAPTER 3

DEVELOPMENT AND VALIDATION OF A CALORICALLY PERFECT

DETONATION TUBE MODEL 1

This chapter reports the preliminary feasiblity studies investigating the effec-

tiveness of inverse MoC algorithms in resolving detonation-tube flowfields with non-

negligible momentum and heat losses. Since this represents the initial phase of the

overall research, the MoC subroutines utilized in the reduced-order model develop-

ment here are based on existing algorithms available in the literature [49]. The

modifications to these original algorithms are minimal, in that they are restricted

to the investigation of simplified approaches that can capture losses in the a given

flowfield. The development of a global detonation tube algorithm however, has been

attempted from scratch here. As it may be obvious from the discussions so far, the

development of such a detonation tube model requires more tools than just the MoC

subroutines. Simplified calculations to capture the detonation wave dynamics, inter-

actions between various discontinuities and endwall calculations are to be carried out

alongside MoC subroutines. These approaches are detailed further in this chapter.

Additionally, experiments were designed and carried out using a low enthalpy oxy-

hydrogen detonation tube to validate the MoC model. This experimental campaign

and the validation studies are also described in detail here.
1Includes excerpts from the paper entitled ‘Method-of-Characteristics Model for a Low-Enthalpy,

Detonation-Driven Shock Tube’ by Jayamani, A., and Lu, F. K., Physics of Fluids, Vol. 34, No. 6,

2022. doi: 10.1063/5.0093888
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3.1 Description of the theoretical model

This section details the theoretical considerations behind the MoC model for a

downstream detonation tube. Briefly, the governing equations for a one-dimensional

gas flow are simplified using MoC and the simplified equations are in turn used to

develop various algorithms representing fundamental gasdynamic phenomena. These

generic algorithms which are called unit processes, similar to the nomenclature of

Zucrow and Hoffman [49] are then used to build a theoretical detonation tube model.

Apart from the overall detonation tube algorithm, individual subsections are also

devoted to the interactions not covered by MoC, for methods calculating sink terms

associated with losses and about the applicability of the detonation tube model. Most

of the underlying MoC analyses and algorithms detailed here are based on Zucrow

and Hoffman [69, 49] and Gale [70].

3.1.1 Governing equations and method of characteristics formulation

The governing equations of continuity, momentum and energy for an unsteady,

one-dimensional flow of a perfect gas in differential form are

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (3.1a)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
=
δFf
V

≡ β (3.1b)

ρ

(
∂h

∂t
+ u

∂h

∂x

)
−
(
∂p

∂t
+ u

∂p

∂x

)
=
δq̇

V
− uβ ≡ Ψ (3.1c)

In the above, the static pressure p, velocity u, density ρ and enthalpy h are

functions of time t and one-dimensional space x. Since the effects of momentum and

heat losses are of interest here, appropriate volumetric sink terms denoting such losses

are added to the momentum and energy equations as δFf/V and δq̇/V respectively.

More details about these sink terms will be discussed in §3.1.3. The continuity equa-
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tion, on the other hand, contains no sink term since the effect of mass addition or

removal is not considered.

To make the system of equations tractable, the number of dependent variables

are reduced by introducing the caloric equation of state. Assuming the fluid to be

calorically perfect, the static enthalpy can be expressed as

dh = cpdT (3.2)

where cp is the specific heat at constant pressure and T is the temperature. From the

perfect gas law

p = ρRT (3.3)

where R is the gas constant, the energy equation is rewritten as

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= (γ − 1)Ψ ≡ ψ (3.4)

where γ is the specific heat ratio. With the above simplification, the governing equa-

tions now have three dependent variables p, ρ and u. Also, in Eq. (3.4), γ is a constant

due to the calorically perfect gas assumption. However, a thermally perfect gas model

can be incorporated by letting cp vary as a function of temperature in Eq. (3.2). The

only practical difference this will introduce into the energy equation and thereby the

remainder of this method is that γ will not be a constant but a function of temper-

ature. Obviously, T can be evaluated from the calculated dependent variables and

perfect gas law.

Equations (5.1a), (5.1b) and (3.4) are first-order, quasi-linear partial differential

equations with two independent variables x and t. The method of characteristics is

applied on these equations reducing them to ODEs along certain curves called charac-

teristic curves. However, the existence of the characteristic curves is not guaranteed.

For instance, the governing equations for an irrotational, two-dimensional flow of a
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compressible fluid admit real and distinct characteristics only when the flow is super-

sonic, whereas the characteristics are imaginary when the flow is subsonic [69]. Thus,

it is first desirable to establish the existence of characteristic curves for this system.

Following Zucrow and Hoffman [49], application of the MoC to the above equations

results in the following characteristic curves[
dt

dx

]
o

= λo =
1

u
(3.5a)[

dt

dx

]
±
= λ± =

1

u± a
(3.5b)

Therefore, unlike for the steady two-dimensional flow mentioned above, the char-

acteristic curves for a one-dimensional unsteady flow are distinct and real for both

subsonic and supersonic flows making the system hyperbolic.

From Eqs. (5.3a) and (5.3b), the physical interpretation of the characteristic

curves, denoted as characteristics for short, are obtained. The first characteristic

Co, given by Eq. (5.3a), represents the motion of the gas and so is a pathline. The

remaining characteristics C±, given by Eq. (5.3b), are acoustic disturbances that

propagate along and against the local fluid velocity, respectively. Analogous to the

disturbances in a two-dimensional steady flow, these characteristics are called Mach

lines. Further, as these three characteristics must pass through every point in a

flowfield [49], it is deduced that every gas parcel adjusts to its surroundings based

on the information it receives from the corresponding Mach lines reaching it at a

specific time. Conversely, information about any perturbation that is caused by a

gas parcel propagates in the form of Mach lines on either sides of the gas parcel. In

the physical flow, these characteristics are merely two planar waves propagating in

opposite directions from the source of the disturbance, namely, the gas parcel.
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With the existence of the characteristic curves confirmed, the method of char-

acteristics can further be carried out to reduce the governing equations to the form

[
dp

dx

]
o

− a2
[
dρ

dx

]
o

=
ψ

u
(3.6a)[

dp

dt

]
±
± ρa

[
du

dt

]
±
= ψ ± aβ (3.6b)

The above equations, called the compatibility equations, are valid along the char-

acteristics noted in their subscripts. Thus, Eq. (5.2a) is valid along pathlines and

Eq. (5.2b) is valid along Mach lines. Since the changes in a gas state can only hap-

pen across these characteristics, the variation of gas properties in a flowfield can be

evaluated by integrating Eqs. (5.3a) and (5.2b) from a known initial condition. The

only restrictions for using this method are that the dependent variables be continu-

ous everywhere in the flowfield and that the prescribed initial value line itself is not

a characteristic. While the latter condition is satisfied on the initial value line for

an impulse facility, the former condition restricts this method to continuous regions.

For a detonation tube where discontinuities are an inherent part of the gasdynamic

processes, the above equations can still be utilized with supplementary considerations

as detailed in the next section.

As a supplementary note, the compatibility equation for the pathline can be

used to make an interesting observation for a downstream detonation tube flowfield.

First, it is observed that the compatibility equation for the pathline, Eq. (5.2a), is

the conservation of energy for every continuum parcel in the flowfield. This can be

conveniently written as [
dp

dt

]
o

− a2
[
dρ

dt

]
o

= ψ (3.7)
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In its original form (see Eq. (3.4)), the above equation can be simplified for negligible

momentum and heat losses as [
dh

dt

]
o

−
[
1

ρ

dp

dt

]
o

= 0 (3.8)

The above equation can again be re-interpreted based on the combined first and

second laws of thermodynamics, which is given by[
dh

dt

]
o

=

[
T
ds

dt

]
o

+

[
1

ρ

dp

dt

]
o

(3.9)

Comparing Eq. (3.8) and Eq. (3.9), it is seen that the compatibility equation for the

pathline also represents the conservation of its entropy for this case.

Consider the case of a downstream detonation tube operating in the underdriven

mode. Once the secondary diaphragm ruptures, the burnt driver gas expands into the

driven section, resulting in the formation of a shock wave (SW1) in the driven section

(see Fig. 2.3b). Since the detonation driver is underdriven, the Taylor rarefaction has

not been completely annihilated by the expanding high pressure driver gas. In other

words, the burnt gas in the detonation driver is not of a constant gasdynamic state.

Thus, shock wave (SW1) decays as it travels in the driven section, due to the positive

pressure and velocity gradient in the driver gas at a given instant. This process is

shown in the wave diagrams as transmission of the Taylor rarefaction into the driven

section. Since the energy acquired by the driven gas is dictated by the velocity of

shock wave (SW1), a decaying driven shock will impart lesser energy to the testgas

as it travels in the driven section. Additionally, from normal shock relations [5],

the change in entropy across a normal shock increases with its velocity. Thus, every

testgas pathline must have a different entropy behind the decaying shock wave (SW1).

But, from Eq. (3.9) , for a flowfield with no losses, the entropy must be conserved

along every pathline. Thus, in an underdriven detonation tube flowfield with no losses,
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testgas pathlines behind the decaying shock wave (SW1) will have differing entropies

between themselves. But, the entropy along a given testgas pathline is conserved from

the time it was compressed by the shock wave until its re-compression by the reflected

shock wave. In this work, such a flowfield will be referred to as a multi-isentropic

flowfield.

3.1.2 Unit processes for fundamental gasdynamic phenomena

The ODEs derived in the last section through the method of characteristics

can be integrated by a time-marching scheme typical of hyperbolic equations. The

scheme employed in this work is known as the inverse-marching method, named after

the way the characteristic curves are projected from a later point in time to an initial

value line during the integration. An alternative scheme, called the direct-marching

method of characteristics, or direct MoC for short, involves projecting two charac-

teristics forward in time, while the remaining characteristic is projected backward in

time. The inverse marching method of characteristics scheme, or IMoC, utilizes a

predefined x–t grid where the solution to the ODEs is obtained. On the other hand,

the solution grid-space for direct MoC is determined as a part of the iteration proce-

dure itself. Therefore, based on the sparsity of characteristics in a locality, additional

grid points will have to be introduced or removed from the x–t space. Between these

methods, direct MoC is expected to be more accurate than inverse MoC due to the

way backward projected characteristics are resolved [49]. However, in the author’s

opinion, compared to direct MoC, IMoC is easier to implement for a variety of prob-

lems. Additionally, previous studies show [55, 56] that despite the theoretical claims

of reduced accuracy, IMoC schemes still model experiments reliably.

Within the direct MoC scheme, specific integration procedure depends on the

fundamental gasdynamic phenomena considered, as different independent algorithms
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are developed by incorporating appropriate flow physics into the general ODEs.

Though the current work utilizes such individual algorithms to model impulse fa-

cilities, by no means are these algorithms restricted to the application shown here.

Subsequent chapters will exemplify the previous statement by utilizing IMoC algo-

rithms to model supersonic combustion in a one-dimensional duct, chemical non-

equilibrium in a hypersonic nozzle expansion and behind a steady normal shock wave

or thermochemical non-equilibrium in an expansion tube. Thus, the individual algo-

rithms reported in this section are generic flow solvers which can be called to solve a

particular gasdynamic problem. These IMoC algorithms, called unit processes [49],

can be grouped under two categories: continuous waves and discontinuous waves.

Continuous wave unit processes discussed here can model rarefaction and weak com-

pression waves, and continuous waves reaching an endwall. Discontinuous wave unit

processes account for shock waves and contact surfaces. The selection of unit pro-

cesses for algorithm development in this study reflects the expected wave processes in

a detonation tube (see §2.2), with the exclusion of the detonation wave. Obviously, a

calorically perfect gas model cannot be expected to capture the chemical reactions be-

hind a shock wave, which represents the simplest interpretation of a detonation wave.

The incorporation of a detonation wave into the detonation tube model is discussed

in §3.1.5, while this section discusses the algorithms for various unit processes.

3.1.2.1 Continuous waves

Continuous waves which represent the largest component of waves in an im-

pulse facility operation can be modeled through the interior point and wall point

solvers. The characteristics for both these processes are shown schematically in Fig.

3.1. In all the unit processes described here, the coordinates of all the grid points

are assumed to be known. Additionally, along the grid points in the initial value
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(a) Interior point (b) Wall point.

Figure 3.1: Discretization methodology for continuous waves.

line marked t-line in Fig. 3.1a, all the dependent variables are also assumed to be

known. Linear interpolation is used when the initial values of the dependent vari-

ables are required at regions in between the grid points. For this linear interpolation

to be meaningful, the characteristic curves projected from location 4 must intercept

the t-line between grid points 1 and 3, see Fig. 3.1a. This is ensured if the spatial

and temporal grid spacing are governed by the Courant–Friedrichs–Lewy criterion

[49], that is, ∆t(u±a)max < ∆x. Even though the unit process schematics depict the

characteristics as straight lines, these are approximations to the actual characteristics

that may not be straight, for instance, in non-simple regions. Still, for a sufficiently

small grid spacing the straight line approximation should approach such curvilinear

characteristics. Finally, the integration along these characteristic curves is carried

out using the Euler predictor–corrector method for all the unit processes discussed

hereafter.

A relatively straight forward implementation of this integration method is the

interior point solver which is discussed first. Since the integration is carried out
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numerically, the finite-difference formulation of the simplified ODEs is given below to

aid the discussion:

(x4 − xo) =
1

λo
∆t (3.10a)

(x4 − x±) =
1

λ±
∆t (3.10b)

(p4 − po)− a2(ρ4 − ρo) =
ψ

u
(x4 − xo) (3.10c)

(p4 − p±)± ρa (u4 − u±) = (ψ ± aβ)∆t (3.10d)

The subscripts for ∆t in the above equations have been removed as unnecessary since

∆to = ∆t± = ∆t due to the way the x–t grid is defined. The integration procedure

for the above equations starts with the predictor step. Referring to Fig. 3.1a, let the

initial value line span across points 1, 2 and 3, and let grid point 4 be the location

at which the flow properties need to be computed. Assuming that the local region is

devoid of discontinuities, all three types of characteristics can be expected to intersect

at location 4 as shown in Fig. 3.1a. Thus, the first step of the integration procedure

is to identify these characteristics intersecting at location 4. Once these are identified

and their origin located on the initial value line, simultaneous integration of the

compatibility equations yields the dependent variables at location 4.

To illustrate the procedure, consider integrating along the C+ characteristic

seen in Fig. 3.1a. This requires information about its slope λ+, as inferred from the

characteristic equation given by Eq. (5.4b). However, since this characteristic itself

is unknown initially, assume that the slope of the C+ characteristic at location 4 is

the same as that at grid point 1. Now, utilizing Eq. (5.4b), the C+ characteristic can

be projected back in time from location 4 to the initial value line 1–2, intersecting it

at x+. With the new origin identified, the slope of the C+ characteristic is updated

and the characteristic is projected back to the initial value line until the location of
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x+ converges. Note again that the dependent variables are assumed to be known

only at the grid points 1, 2 and 3. Thus, the values of all the dependent variables

at the location x+ are determined by linear interpolation between grid points 1 and

2 during every iteration. In Eqs. (5.4a)–(5.4d), these interpolated initial values are

denoted by adding relevant subscripts to the dependent variables. Once the value of

C+ is determined, a similar procedure is undertaken for identifying relevant Co and

C− characteristics intersecting at location 4. Of course, appropriate characteristic

equations need to be used for integrating along Co and C− characteristics, along with

the interpolating grid changing between 1–2 and 2–3 based on their origins, xo and

x− respectively. Finally, to complete the predictor step, the information obtained

about all the characteristic curves are utilized to solve the compatibility equations

(5.4c) and (5.4d), producing the values of all dependent variables at location 4.

The following corrector step is similar in procedure to the predictor step. The

only difference in the scheme is that the slope of the characteristic curves are evalu-

ated based on average flow properties on the characteristic curves, as the dependent

variables are known at location 4 now. Similarly, the sink terms and the coefficients

of the derivatives in the compatibility equations are also evaluated using averaged

properties along the characteristic curves. Subsequently, the corrector step is re-

peated until all the dependent variables reach a specified tolerance, upon which the

algorithm returns the values at location 4.

The unit process for the interior point discussed above represents the generic

algorithm for continuous regions. Likewise, other unit processes can be obtained by

either simplifying or adding additional criteria to the interior point algorithm. In

the case of the unit process for a wall point, simplifications as discussed further are

employed. The schematic of characteristics for a left wall point is shown in Fig. 3.1b.

Due to the no-flow condition, the gas parcel which was on the wall initially stays on the
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wall as shown by the pathline; its velocity remains zero. Further, as the domain ends

with the gas parcel that is in contact with the left wall, the C+ characteristic vanishes.

This removes the characteristic and compatibility equations corresponding to the C+

characteristic. Also, since the velocity of the gas parcel is already known at location

4, only the C− characteristic in Eq. (5.4b) needs to be evaluated. The remaining

dependent variables p and ρ can merely be evaluated by solving the compatibility

equations for Co and C− characteristics. Again, to integrate these reduced governing

equations, the iterative Euler predictor–corrector method described for the interior

point solver is followed. For a right endwall, the C− characteristic vanishes instead of

the C+ seen above, while the remaining arguments and integration procedure remain

the same as a left endwall.

3.1.2.2 Discontinuous waves

In contrast to the the continuous waves discussed so far, discontinuous wave

processes cannot be directly modeled through MoC alone, as at least one of the

dependent variables experiences a jump across discontinuities. However, the regions

on either sides of a discontinuity can be treated through MoC separately and both

the regions can be connected through supplementary criteria, described subsequently.

Additionally, even though the discontinuities are again solved on a predetermined x–t

grid, their motion cannot be expected to coincide with the grid points. Thus, the

algorithms for discontinuities differ slightly from the continuous unit processes.

The simplest discontinuous wave process that can be modeled through MoC

is the contact surface. By definition, a contact surface is an ideal interface between

two different gas states across which static pressure and velocity are continuous, but

other thermodynamic properties may be discontinuous. For inviscid flow, the effect of

diffusion and mixing is neglected, resulting in a planar interface, across which no mass
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flows. Thus, the contact surface itself becomes a pathline, as shown in the schematic

for the contact surface unit process in Fig. 3.2a. At any given time in the x–t grid, the

contact surface has two sides marked by subscripts l and r signifying left and right

sides of the contact surface. The supplementary criteria in this case are provided by

the definition pl = pr = p and ul = ur = u. Clearly, the remaining properties on

either side of the contact surface can be different and therefore retain their subscripts.

It is assumed that the initial values of the gas properties are known at locations 1, 2

and 3. While locations 1 and 3 are predefined grid points, location 2 represents the

initial position of the contact surface. Similar to the convention for continuous waves,

the location of contact surface at the next time line (t-line) is denoted as 4. But, as

opposed to continuous wave unit processes, x4 is initially unknown here and must

be determined as a part of the contact surface unit process. For convenience, the

finite-difference formulation of the simplified ODEs is rewritten for a contact surface

(x4 − x2) =
1

λo
∆t (3.11a)

(x4 − x±) =
1

λ±
∆t (3.11b)

(p4 − p2)− a2l (ρ4l − ρ2l) =
ψl

u
(x4 − x2) (3.11c)

(p4 − p2)− a2r(ρ4r − ρ2r) =
ψr

u
(x4 − x2) (3.11d)

(p4 − p±)± ρa (u4 − u±) = (ψ ± aβ)∆t (3.11e)

The compatibility equation for a pathline has been split into the left and right

sides, as seen in Eqs. (3.11c) and (3.11d), which is unlike that for the continuous

wave, Eq. (5.4c). With the condition that pressure and velocity be continuous across

the contact surface, the other equations are essentially the same as that of the interior

point unit process. For the predictor step, location 4 is first identified by projecting
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(a) Contact surface. (b) Shock wave.

Figure 3.2: Discretization methodology for discontinuous waves.

the contact surface to the next t-line using Eq. (3.11a) and assuming that u2 = u4.

With location 4 identified, the algorithm for Mach lines can now follow the same

procedure discussed for an interior point unit process. The only additional procedure

for the Mach lines is that while determining their origin, the interpolation procedures

must take into account the distinct gas properties at 2l and 2r.

As seen from the above, the method of identifying various characteristics in the

contact surface unit process differs slightly from the interior point unit process. In

this case, the pathline, that is, the contact surface is projected forward in time, but

the Mach lines are projected backward in time from the new location of the contact

surface. On the other hand, in the interior point algorithm, all the characteristics are

projected backward in time. After identifying all the characteristics, the compatibility

equations for Mach lines given by Eq. (3.11e) are used to solve for p4 and u4. These

values in turn are used to solve for ρ4l and ρ4r with the aid of compatibility equations

(3.11c) and (3.11d). This completes the predictor step and leads to the iterative

corrector steps. Similar to the interior point unit process, the corrector algorithm here

uses average properties for various terms in the finite difference equations, namely,
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the slopes of the characteristics, sink terms and coefficients of the difference terms.

Again, the calculations for these average properties must also appropriately consider

the differing properties across the contact surface at locations 2 and 4. Since the final

location of the contact surface x4 was initially unknown, the convergence criteria in

this case also include x4, in addition to the dependent variables.

The unit process for a shock wave is similar to that of a contact surface. Figure

3.2b is a schematic of the shock wave unit process, showing the continuous waves

ahead and aft of the propagating shock wave. The wave system depicted follows

the general rules for a propagating shock wave, that is, the shock will overtake all

continuous waves ahead of it and will be overtaken by the characteristic that travels

along its direction of motion. To emphasize that the waves ahead and aft of the shock

wave are treated as separate wave systems, the subscripts f and a are added to the

respective characteristic systems. Ahead of the shock wave, three grid points define

the required initial value line, given by points 3, 5 and 6. The shock wave itself is

at location 2 on the initial t-line, but the discontinuous flow properties across the

shock wave necessitate the nomenclature 2f and 2a to denote the appropriate fluid

properties on either side. As with the previous algorithms, the new location of the

shock wave is marked as x4.

Behind the shock wave, the initial value line is extended to include another

grid point, location 1, to account for the overtaking C+ characteristic. The algorithm

begins by estimating x4 using the initial values of the shock wave velocity and position.

Since the shock wave overtakes all the characteristics ahead of it at the next t-line,

the state of the fluid immediately ahead of the shock wave 4f is merely obtained

by using the interior point unit process. The inputs required for the interior point

unit process which are the fluid properties at grid points 3, 5 and 6, along with the

location of final solution point, 4 are all known. The results from the interior point
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(a) (b)

Figure 3.3: Unit process for a grid point with (a) a nearby discontinuity, (b) sur-
rounding discontinuities.

unit process along with the shock velocity at location 4 are then used to obtain post-

shock fluid properties 4a using the Galilean transformation and the Rankine–Hugoniot

conditions.

The Ca+ characteristic that meets the shock wave at location 4 must now be

identified. As before, the initial guess for the origin of the Ca+ characteristic is taken

to be the adjacent grid point, location 1. However, the slope of the Ca+ characteristic

can employ average properties of fluid and sonic velocities along the characteristic

from the first integration step since the fluid properties at 4a are already known.

Further, using the calculated slope, the Ca+ characteristic is projected from location

4a, to the initial value line to find its updated origin. This process of inverse marching

is repeated until the origin of the Ca+ characteristic converges. Finally, based on the

flow properties at the origin of the Ca+ characteristic and using the post-shock fluid

velocity at 4a, the compatibility Eq. (5.4d) is solved to obtain the static pressure

at location 4a. From physical reasoning, the Ca+ characteristic carries information

about the flowfield behind the shock wave, to which the shock wave must adapt.
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Therefore, as the shock wave adapts to this information, the post-shock static pressure

must match the value of static pressure computed through the Ca+ compatibility

equation. Hence, the static pressures p4a obtained through both these methods are

compared and the shock velocity is in turn adjusted, so that the next iteration may

begin. For subsequent iterations, the entire process described above is repeated using

updated shock velocities until the static pressures from the Rankine–Hugonoit and

Ca+ compatibility equations converge. Obviously, the convergence of static pressures

between both these methods provides the supplementary criterion bridging either side

of the shock wave.

The procedure described above and the schematic in Fig. 3.2b correspond to a

right-running shock wave. For a left-running shock wave, the regions ahead and aft

of the shock wave in Fig. 3.2b are interchanged. While the wave system ahead of the

left-running shock wave is identical to the forward region in Fig. 3.2b, the associated

trailing characteristic will be Ca− instead of the Ca+ characteristic shown in Fig. 3.2b.

Hence, the unit process for a left-running shock wave follows the same algorithm as

a right-running shock wave, but with the relevant characteristic and compatibility

equations for the trailing Ca− characteristic.

The IMoC algorithms discussed so far were developed with the intent of repre-

senting various gasdynamic processes. The implementation of these algorithms over

a predefined grid, however, results in a specific scenario which cannot be solved by

these algorithms. Consider the scenario in Fig. 3.3a, where a contact surface is mov-

ing through the predefined x–t grid. If there are no discontinuities in the nearby grid

points, the movement of the contact surface can be modeled by the contact surface

unit process described above. However, the grid point marked 4 may not be repre-

sented by the interior point solver because the C− characteristic may not originate

on the initial value line, but instead on the nearby contact surface. To account for
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this possibility, a modified interior point solver has been developed, which is depicted

in Fig. 3.3a. Prior to calling this algorithm, the nearby contact surface motion must

be resolved for this time-step, so that the contact surface’s final location xdf along

with the fluid properties at this final location are known. For the scenario shown in

Fig. 3.3a, the gas velocity is positive and the region to the left of the contact surface

is subsonic. Thus, the calculations for the C+ and Co characteristics are identical to

the interior point solver because their origin is expected to be on the line segment

1–2, similar to the interior point solver.

Due to the ambiguity in identifying the origin of the C− characteristic, the

interior point solver is modified as follows. Noting that the C− characteristic may

originate from either of the two line segments 2–xdi or xdi–xdf , the initial guess for λ−

is based on the gas properties at 6l. Subsequently, using Eq. 5.4b the C− characteristic

is projected back from location 4. If the projected origin x− lies between locations 2

and xdi , then the interpolation procedure for fluid properties is similar to the interior

point solver. However, if x− > xdi , then the intersection of C− characteristic and the

contact surface can be solved using rudimentary geometry, as both λ− and uCS are

known. Once the coordinates of the intersection (x−,t−) are calculated, the gas prop-

erties at this location can be obtained through interpolation along the trajectory of

the contact surface xdi − xdf . Finally, the compatibility Eq. (5.4d) can be populated

using the characteristic origin (x−,t−) and the corresponding gas properties obtained

during interpolation. The remaining procedure to solve the compatibility equations

as well as the subsequent iterative procedure follows the predictor–corrector algorithm

outlined for the interior point solver. Though Fig. 3.3a shows the discontinuity as a

contact surface, the same unit process can also be applied to a shock wave. Addition-

ally, a similar algorithm can developed to resolve a grid point which lies to the right of

a discontinuity. In this case, the C+ characteristic may be expected to originate from
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the discontinuity and thus its integration procedure employs the modified method

described above.

Another scenario to be considered in a detonation tube model is that a grid

point may lie in between two discontinuities as shown in Fig. 3.3b. This can be

expected when a contact surface interacts with a shock wave or when two shock waves

interact. When such a scenario is encountered, the modified integration procedure

discussed above can be used for multiple characteristics in a manner shown in Fig.

3.3b. The type of discontinuities shown and their direction of propagation in Fig. 3.3b

are representative. Either of the discontinuities may be of a different type and/or they

might move in a different direction. As long as the trajectory of the discontinuities

have been resolved and therefore appropriate gas properties along the sides facing

location 4 are known, the unit process described above can be employed to calculate

the gas properties at location 4.

As a side note, it may be recognized that this algorithm violates one of the

initial assumptions, that is, the initial value line must not be a characteristic. Such

a restriction allowed the initial value data for any unit process to be specified arbi-

trarily. However, if the initial value data are specified on a characteristic, then the

data cannot be arbitrary. Instead, the data must satisfy the corresponding compat-

ibility equations on the characteristic [71]. This requirement is always satisfied here

since the trajectories for the discontinuities themselves are resolved using the required

compatibility equations.

3.1.3 Momentum and heat losses

The treatment of sink terms declared in the momentum and energy equations

in §3.1 brings in unavoidable empiricism into the MoC model. For the detonation

tube model considered here, these losses are expected to be driven by wall friction
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and convective heat transfer at the tube walls. Given that the current model is

one-dimensional, the physical mechanisms that cause these losses cannot be modeled

physically. Moreover, some of the mechanisms such as the unsteady growth of the

boundary layer and its interaction with the detonation cells are still subjects of current

research [72]. Thus, the effect of these loss mechanisms are included in the model

through empirical methods as described below.

In the order of the governing equations, consider the sink term in the momentum

Eq. (5.1b). From the definition of the coefficient of friction Cf, the tangential force

that retards the local fluid motion is given by

δFf = −
Cf
2
ρu|u|Apdx (3.12)

where Ap is the wetted perimeter. Thus, the volumetric momentum sink term in Eq.

(5.1b) becomes

β = −1

2
ρu|u|

4Cf
D

(3.13)

where D is the diameter of the tube.

Noting that Eq. (3.12) is also the standard Fanning equation used in hydraulic

engineering [69], experimental friction factor curvefits can be used to account for

this sink term. Though the literature shows that similar impulse facility models use

different curves to calculate the friction factor for different flow regimes [73, 74, 75,

76, 44], this work uses an integrated friction factor equation for concise programming.

The equation below is due to Cheng [77], whose work uses Nikuradse’s experimental

data [78]:

1

4Cf
=

(
Re
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)α(
1.8 log Re

6.8

)2(1−α)β (
2 log 3.7D

ε

)2(1−α)(1−β)

(3.14)
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where Re is the Reynolds number based on pipe diameter, ε is the equivalent sand

grain roughness and

α =
1

1 + (Re/2720)9
and β =

1

1 + [Re/(160D/ε)]2

Cheng’s [77] original equation, which was written for the Darcy friction factor, has

been adjusted for the Fanning friction factor considered in Eq. (3.12). Additionally,

as Nikuradse’s [78] experiments were performed with water, to account for compress-

ibility effects, Cf obtained through the above equation is multiplied by a correction

factor utilized by Liepmann and Goddard [79] and Goddard [80] expressed as

Γ =

[
1 + r

(γ − 1)

2
M2

]−1
(3.15)

The recovery factor r in the above equation is approximated based on the solutions

for compressible boundary layer on a flate plate [81, 82].

r =


√
PrL Re < 2000

3
√
PrL Re ≥ 2000

(3.16)

where PrL = µcp/k is the laminar Prandtl number. Despite the use of the laminar

Prandtl number, the above approximation for the turbulent recovery factor represents

experimental data to a reasonable accuracy [82] and is accepted practice [83, 74, 75,

76].

Consider next the heat loss term in the energy Eq. (5.1c). Using Reynolds

analogy and the modified Newton’s law of cooling, the local heat loss rate from the

hot gas to the cold tube wall can be written as

δq̇ = Chρucp(Tw − T0) (3.17)

where the heat transfer coefficient is given by

Ch =
Cf
2S

(3.18)
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and where S is the Reynolds analogy factor. The subscripts w and 0 represent wall and

stagnation conditions respectively. The heat transfer coefficient can be approximated

in two different ways which lead to two different heat loss models. If the original

Reynolds analogy is to be followed, then, S = 1. However, if the modified Reynolds

analogy proposed by Colburn is considered, then S = Pr
2/3
L [81, 82]. The heat loss

term in the energy equation can be written as

δq̇

V
=

4Ch

D
ρucp(Tw − T0) (3.19)

The stagnation temperature in the above equation also takes into account the recovery

factor r. Thus,

T0 = T

(
1 + r

γ − 1

2
M2

)
(3.20)

As an additional option, Eckert’s reference temperature method can be incor-

porated into the frictional and heat losses calculations described above [83]. To do so,

the local gas density and transport properties for the loss calculations are evaluated

at a reference temperature

T ∗ = T + 0.5(Tw − T ) + 0.22(T0 − T ) (3.21)

Note that these updated values are only applicable specifically to the losses calcu-

lation, whereas the origins of the characteristic and compatibility equations employ

appropriate local properties obtained through the interpolation procedure described

previously.

The empirical methods discussed above for approximating heat losses were ini-

tially derived for laminar boundary layers on a flat plate, under zero pressure gradient.

Still, these have been reliably used to model losses suffered by unsteady gas flows.

Wilson et al. successfully modeled several operational conditions of a magnetohydro-

dynamic generator using a hybrid Lax-Wendroff/MoC model [73]. In their model, fric-

tion factor, and thereby frictional losses, was evaluated through Hagen–Poiseuille and
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Colebrook–White equations, while heat losses were approximated through Reynolds

analogy. Groth et al. modeled frictional losses in a piston tunnel based on fric-

tion factors from the Hagen–Poiseuille relation and an explicit approximation to the

Colebrook–White equation [74]. Heat losses were modeled using modified Reynolds

analogy. To account for the losses due to obstructions in the flow path, pressure

head losses were also included. Jacobs used a similar losses model to that of Groth

et al. in the L1d code to model shock tubes and free piston tunnels [75, 76]. As

opposed to Groth et al., L1d assumes a smooth wall in the friction factor equations

for turbulent flow regime. Additionally, L1d also incorporates Eckert’s reference tem-

perature method into the calculations for heat losses. Luo et al. modeled heat losses

in an upstream-mode detonation tube using an approach similar to L1d [44]. They

reported that the frictional losses model, when approximated through a smooth wall

friction factor, did not replicate the shock velocities observed in their experiments.

Thus, they corrected the sink term in the momentum equation using an arbitrary

factor, adjusting which produced shock velocities closer to experiments. In this work,

instead of utilizing an additional correction factor to the momentum sink term, the

pipe wall roughness ε has been used as the free parameter to aid replication of ex-

perimental shock velocities. Moreover, as the literature points to a variety of heat

losses models providing reasonable results, any of the above described models can be

selected independently in this code (See §3.3).

3.1.4 Non-MoC analyses

Though a majority of the detonation tube gasdynamics can be accounted for

through the MoC unit processes, certain isolated situations exist which require sup-

plementary analyses. The first of these exceptions is to determine the properties of

a freely propagating detonation wave. As the MoC unit processes are limited to a
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calorically perfect gas, the Shock and Detonation Toolbox (SDT) [84] (which itself

requires the Cantera package [85]) is used to calculate the detonation wave velocity

and the associated CJ state properties. Subsequently, Cantera is used to generate

curvefits of the dynamic viscosity of the burnt gas, with the composition held fixed at

the CJ state. A previous version [63] of this model utilized the NASA CEA [86, 87] for

calculating CJ detonation wave properties; however, this was replaced by the SDT

due to the relative ease of Cantera’s MATLAB integration and also for obtaining

thermochemically frozen gas properties at the CJ state.

(a) (b)

Figure 3.4: Representation of interacting discontinuities – (a) Wave polar, (b) Space-
time.

Further analyses described here are in regard to the interaction between discon-

tinuities. These situations may be the interaction between two shock waves or that

between a shock wave and a contact surface. All these interactions can be solved

graphically in the pressure–velocity diagram shown previously in Fig. 2.4. In view
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of its similarity to the shock polar diagram, the pressure–velocity diagram will be

subsequently called the wave polar diagram, as it depicts the loci pertaining to the

gasdynamics of normal shocks as well as rarefaction waves.

For numerical implementation of the wave polar diagram, algebraic equations

representing the loci for shock waves or rarefaction waves are utilized to resolve the

outcome of a typical interaction. The approach presented here closely follows Courant

and Friedrichs [47]. As a prequisite, consider the schematic of wave propagation in a

duct shown in Fig. 3.4a. The waves marked by l and r represent generic left and right

traveling waves respectively, which can be either shock or rarefaction waves. For a

left traveling wave, the locus curves of all possible states achievable from an initial

state i are represented by the curve LR. To differentiate between the wave types, the

shock wave locus is shown in red, while the locus for a rarefaction wave is shown in

blue. The locus curves LR are written as

u = ui − ξi(p), p > pi (S←) (3.22a)

u = ui − ζi(p), p < pi (R←) (3.22b)

where

ξi(p) = (p− pi)

√
2

ρi[(γ + 1)p+ (γ − 1)pi]
(3.22c)

and

ζi(p) =
2ai
γ − 1

[(
p

pi

)(γ−1)/2γ

− 1

]
(3.22d)

Similarly, the locus RR, which represents the possible states achievable behind a right

traveling wave, is written as

u = ui + ξi(p), p > pi (S→) (3.23a)

u = ui + ζi(p), p < pi (R→) (3.23b)
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Obviously, post-shock pressures are always higher than the initial pressures, while

post-expansion pressures are lower, as seen in the different branches of the curves

LR and RR. Additionally, if the initial gas velocity is zero, a gas processed by a

shock wave travels in the same direction as the shock wave. On the other hand, a

gas processed by a rarefaction wave travels in the opposite direction to that of the

rarefaction wave.

As a first example, consider the rupture of the primary diaphragm discussed in

§2.2.1 and shown in Fig. 2.3b. As the diaphragm ruptures, the primary rarefaction

which is a left running wave processes the driver gas, while the Taylor rarefaction

which is a right running wave, processes the burnt gas from the CJ state. When

the gases on either side of the primary contact surface reach gasdynamic equilibrium,

uCS1 = u300 = u200. Thus, the wave polar analysis results in the following condition

at the primary contact surface

uCS1 = u4 − ζ4(pCS1) = uCJ + ζCJ(pCS1) (3.24)

The above condition can be solved using a root finding algorithm to obtain pCS1 ,

which in turn can be used to find all the other gasdynamic properties using isentropic

relations.

Consider the interaction between the reflected shock wave and the secondary

contact surface in the driven section, shown in Fig. 2.3b. In the vicinity of the

interaction, let the gas behind the reflected shock wave be represented by state 5,

while the gas on either side of the contact surface be represented by states 2 and 3,

as shown in Fig. 2.3b. The outcome of this interaction as discussed before causes a

transmitted shock wave into the detonation driver and a reflected rarefaction wave

into the driven gas. Thus, the burnt gas in state 3 is processed by a left-moving shock

wave, while the driven gas in state 5 is processed by a right-moving rarefaction wave,
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finally achieving local gasdynamic equilibrium across the secondary contact surface

uCS2 = u6 = u7. In the wave polar analysis, this outcome is expressed as

uCS2 = u3 − ξ3(pCS2) = u5 + ζ5(pCS2) (3.25)

Once the above equation is solved for the local values of static pressure and gas

velocity, state 6 can be calculated using normal shock relations on state 3. Properties

for state 7, on the other hand, are obtained from state 5 using isentropic relations. It

was discussed before (see Fig. 2.2b and §2.2.3) that the shock wave–contact surface

interaction can also result in a situation where both the transmitted and reflected

waves are shock waves. Such an outcome is governed by the following condition

uCS2 = u3 − ξ3(pCS2) = u5 + ξ5(pCS2) (3.26)

The above shock wave–contact surface analysis can also be applied to the transmission

of a detonation wave into a shock wave in the driven section. Since the detonation

wave is treated as a planar discontinuity in this study, the CJ condition is used to set

up the function ζi(p) representing the initial state from which the burnt gas expands

and drives the initial shock wave into the driven section.

Finally, consider the interaction between shock waves as shown Fig. 3.4b. First,

when two colliding shock waves are of opposing directions, transmitted shock waves

emerge on either side and a contact surface originates at the location of collision,

emphasizing the discontinuous entropy change due to differing shock strengths. This

interaction marked by regions 0–3–6–7–5 in Fig. 3.4b is again given by Eq. (3.26).

Note that the wave polar for the shock wave–contact surface interaction might have

differing specific heat ratios across the contact surface, while the wave polar for the

case of interacting shock waves in the same medium will have the same specific heat

ratio. In the second case where the colliding shock waves are of the same direction,
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with γ ≤ 5/3, a transmitted shock and a reflected weak rarefaction occurs [47]. Again,

to separate regions of differing entropies, a contact surface originates at the location

of interaction. From the appropriate wave polar analysis, this interaction is described

by

uCS1 = u2 − ζ2(pCS1) = u0 + ξ0(pCS1) (3.27)

3.1.5 Detonation tube model

The MoC unit processes and the supplementary analyses described in the pre-

vious sections are now used to develop a detonation-tube model, Fig. 3.5a. The

algorithm used for the MoC model is shown diagrammatically in Fig. 3.5b, with each

line representing an MoC unit process, while the numbered locations indicate wave

polar analysis. Additionally, the regions displayed as white space, which may con-

tain continuous waves, employ the interior point algorithm. The detonation tube

algorithm begins by reading the input file from the user, which contains the initial

conditions for the high-pressure driver, detonation driver and driven sections along

with the geometry of the facility. First, the ZND subroutine in Shock and Detonation

Toolbox [85] is called to obtain the CJ state where chemical reactions reach comple-

tion behind the detonation wave. For subsequent MoC calculations of the burnt gas,

its chemical composition and vibrational excitation levels are frozen at their corre-

sponding CJ state properties. Thus, the burnt gas γ and specific gas constant also

remain fixed at their respective CJ state values for calorically perfect MoC unit pro-

cesses. Further, the evaluated CJ state along with the high-pressure driver initial

conditions are utilized in the wave polar analysis to obtain gas properties on either

side of the primary contact surface. This serves as the starting solution to the overall

MoC procedure, as represented by the wave polar analysis marked 1 in Fig. 3.5b. At
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this point, the entire flowfield contains two discontinuities, the detonation wave and

the primary contact surface, which are dealt with first for a given t-line.

Based on the ideal wave processes described in §2.2.1, the detonation wave

is assumed to instantaneously originate from the primary diaphragm and propagate

with constant velocity. Thus, for every new t-line, it is convected through the x–t grid

with constant velocity and the burnt gas immediately behind the detonation wave is

assumed to be at the CJ state. Meanwhile, the primary contact surface is advanced

through the MoC unit process for a contact surface. For grid points immediately

surrounding these discontinuities, the modified interior point solver is employed, as

represented by the blue lines in Fig. 3.5b. Now the remaining continuous regions in

the flowfield are solved. The gas properties at the high-pressure driver endwall is

calculated using the wall point unit process. Finally, flow properties in the remaining

white space at that t-line are solved using the interior point solver. This process is

repeated until the detonation wave reaches the end of the detonation-driver section.

Once the detonation wave reaches the end of the detonation driver, the sec-

ondary diaphragm vanishes and the detonation wave transmits into the driven section

as a shock wave. This phenomenon is resolved by the wave polar analysis, marked as

location 2 in Fig. 3.5b, with the CJ state and the driven section as initial conditions

on either side of the secondary contact surface. Thus, the post-transmission state

of the gases on either side of secondary contact surface is now known, essentially

providing the initial velocity of the transmitted shock wave in the driven section.

At this stage in the algorithm, three discontinuities are present in the flowfield,

namely, the shock wave, and the primary and secondary contact surfaces. For a

given t-line, the solution procedure is similar to the method described above. The

discontinuities are resolved first by using the contact surface and shock wave unit

processes. As opposed to the constant velocity detonation wave, the strength of
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(a) Schematic.

(b) Diagrammatic algorithm.

Figure 3.5: Model for a downstream detonation tube.

the transmitted shock wave in the driven section will decay due to the transmitted

Taylor rarefaction and losses in the driven gas due to heat and friction. Clearly, these

effects are accounted for in the shock wave unit process, which resolves the shock

wave dynamics in the driven section. The grid points behind the shock wave and on

either side of the contact surfaces are resolved using the modified interior point solver

as shown in Fig. 3.5b. Subsequently, the wall point solver is invoked to resolve the

driver end wall condition, while the interior point solver computes the fluid states at

all the other grid points. This procedure is repeated until the shock wave reaches and

reflects off the driven endwall.
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Generally, shock wave reflection at an endwall occurs in between the predefined

t-lines, which can be determined based on the local incident shock wave velocity. Sub-

sequently, the reflected shock properties are calculated using standard shock reflection

relations and the location of the reflected shock wave is updated for the current t-line.

For every t-line after this event, the solution algorithm scans for intersection between

different discontinuities. If no interactions are found, then the calculation procedure

for every t-line is essentially as described before, but with the added calculation of

driven endwall conditions.

If two discontinuities indeed interact, for instance, the reflected shock wave and

the secondary contact surface, marked by location 3 in Fig. 3.5b, wave polar analysis

is used to determine the outcome. At location 3 specifically, a reflected shock wave is

depicted to form. Therefore, the algorithm creates a new shock wave for the current

t-line. In the event of a shock wave overtaking another shock wave, a new contact

surface is created based on the results from the wave polar analysis and the slower

shock wave is removed from the flowfield, representing its disappearance. In this

situation and likewise in that marked as location 4, the modified interior point unit

process is used to capture the effect of a reflected rarefaction wave. Based on the

new state of the discontinuities obtained from the wave polar analysis, grid points

that lie in between the transmitted discontinuities are populated. This procedure

is repeated as necessary for a given t-line, when multiple interacting discontinuities

are found. Once all such interactions are resolved, the remaining discontinuities

are advanced using the appropriate discontinuous wave unit process. Finally, the

continuous regions for the current t-line are resolved using interior point, modified

interior point (if necessary) and wall point unit processes. The abovementioned steps

for resolving continuous regions and interacting discontinuities are then repeated for

every subsequent t-line to calculate the complete flowfield of a downstream detonation
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tube. It is noted that the primary complexity of an MoC-based flowfield algorithm lies

in the treatment of interacting discontinuities. For the detonation tube algorithm,

identifying interacting discontinuities and populating grid points adjacent to these

interactions takes up more than 50 percent of the overall algorithm.

3.1.6 Remarks on actual detonation tube gasdynamics and thermochemistry

The wave processes discussed in §2.2 are idealized and invite further comments

regarding the validity of the detonation tube model. The first idealization one may

note is the diaphragm rupture process. The model considered here assumes that the

diaphragms disappear instantaneously in the detonation tube operation. In reality,

the rupture of the diaphragm is a complex, almost unpredictable, three-dimensional

phenomenon. As the diaphragm deforms and ruptures, the driver gas which ac-

celerates through the partially ruptured diaphragm drives a curved shock wave of

increasing strength near the diaphragm. After multiple shock reflections from the

wall, the curved shock transforms into a planar shock wave some distance from the

diaphragm [88, 89]. It is known that the “formation distance” can be reduced to a

length of few diameters (2–8) by either loading the diaphragm near its limits [88] or

using a thin diaphragm [90]. Note that the former method when used for diaphragms

separating sections with a large pressure difference also results in a very high acceler-

ation of the contact surface, thus mimicking the infinite acceleration assumed in the

numerical model.

For the primary diaphragm, the experiments reported here ensured that the

diaphragm was loaded to at least 90 percent of the rupture pressure to minimize the

rupture time. However, the ruptured diaphragm fragments remain in the flowpath,

the effect of which has been neglected. The secondary diaphragm, on the other hand,

utilized a thin mylar film which was completely incinerated by the detonation wave
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on incidence, a better representation of the model idealization. Hence, the actual

wave system in a detonation tube does not have a single “origin” as shown in Figs.

2.2b, 2.3b and 2.5b.

Following diaphragm rupture, a planar contact surface is assumed to form in-

stantaneously at the origin and remain as a planar discontinuity throughout the det-

onation tube operation. In experiments, following a diaphragm rupture, the interface

quickly transitions into a contact region, which in turn thickens with the square root

of time due to viscous effects [91]. Therefore, the reflected shock wave from the driven

endwall does not interact with a contact surface but with a wide contact region. Due

to this phenomenon, the validation experiments also serve to verify the ability of the

detonation tube model to resolve the reflected shock wave–contact surface interaction.

As will be seen in the subsequent section, the maximum L/D of the driven section

employed in the experiments was around 66, which is less than typical impulse facility

driven section lengths (L/D ≈ 100) [12]. In the latter, the impact of an ever-growing

contact region is more pronounced, in the form of a marked reduction in the useful

test gas slug length. In the experiments carried out in this study, this effect can be

expected to be significantly reduced due to the driven section L/D. Therefore, the

validity of this model is limited to detonation tubes with relatively low driven section

L/Ds, similar to the validation experiments reported here.

The detonation tube model does not physically account for the unsteady bound-

ary layers that develop in various gas slugs. Therefore, the model cannot provide

direct information on some of the design aspects that are tied-in with boundary layer

growth. For instance, an optimal length of the driven section will correspond to that

where the driven gas boundary layer does not grow so large as to merge onto itself

from opposite walls. When such boundary layer closure occurs, the remaining gas slug

resembles a turbulent pipe flow and therefore the useful test gas slug length is short-
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ened or nonexistent [8]. However, the detonation tube model will always consider the

useful gas slug to span from the secondary contact surface to the incident shock wave

in the driven section, which may be untrue. Similarly, the model cannot account for

the interaction of the reflected shock wave with the incoming boundary layer system

in different gas slugs. In light of this latter uncertainty, the endwall phenomena are

given importance in the model validation experiments. In these experiments, the

endwall transducer was mounted along the axis of the tube and therefore would be

immersed in the core inviscid gas behind the reflected shock wave. Thus, the end-

wall static pressure measurements will not be affected significantly by the reflected

shock wave-boundary layer interaction. However, the reflected shock wave-contact

surface interaction in the experiments also leads to a contamination of the test gas by

the detonation driver gas, which can change the test gas composition at the endwall

[12, 2]. But, since the detonation tube model and the experiments are limited to low

enthalpy operation, the resulting weakly compressed test gas slug is relatively longer

and therefore, the effect of endwall contamination can also be expected to be weak.

In the detonation driver, the model assumes that the detonation wave instan-

taneously reaches CJ velocity upon primary diaphragm rupture. In practice, rapid

detonation wave formation in a combustible mixture bypassing typical flame acceler-

ation mechanisms is referred to as direct initiation [92]. While flame acceleration is

bypassed, a freely propagating CJ detonation wave might still be attained far away

from the initiation source due to an initially unstable, stronger detonation wave.

There are different practical methods with strong ignition sources to cause direct

or nearly-direct initiation [92]. For upstream detonation tubes, direct initiation by a

pre-detonator tube has been reliably carried out in TH2-D [12] and the JF tunnels [25].

For downstream detonation tubes, shock-induced detonation has been demonstrated

in GASL [93] and UTA/ARC [33]. GASL reported that direct initiation occurs in
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a 150 mm diameter tube, even for highly diluted oxyhydrogen mixtures (up to 65

percent Ar or He), as long as p4/p100 > 20. Experience with downstream detonation

tubes at the UTA/ARC also confirms GASL’s observation that in a similar diameter

tube, a fully-formed detonation wave is attained at a length-to-diameter ratio of

L/D ≈ 2.6 from the diaphragm. Thus, in carefully designed facilities, the effect of

run-up distance for CJ detonation wave formation can be neglected in the detonation

driver, regardless of the mode of operation. The measures taken in this study to reduce

detonation wave run-up distance are detailed in the experimental setup section.

Further comments about the detonation driver deal with modeling of the det-

onation wave itself. Despite the use of the ZND theory to calculate the final CJ

state behind the detonation wave, the model assumes that the detonation wave is a

planar discontinuity. Given that the ZND reaction zone thickness for typical oxyhy-

drogen detonation is orders of magnitude lesser than the grid size considered here, the

treatment of a detonation wave as a planar discontinuity is justified. While the deto-

nation tube model considers losses in all the working gases, the effect of losses on the

detonation wave itself is generally neglected. It can be noted that the steady-state

detonation wave velocity, even for ZND theory, is typically obtained using the CJ

condition which assumes thermochemical equilibrium and neglects heat transfer and

frictional losses. Thus, if the effect of losses are included in the detonation wave front

propagation, the leading shock wave velocity can be expected to be slower. But,

accounting for the effect of gasdynamic losses, even at the simplest level, requires

consideration of the structure of the detonation wave.

For instance, if the ZND view is adopted, then, the effect of losses on the

chemically reacting gases trailing the leading shock wave must be considered. Clearly,

this will require an unsteady finite-rate-chemistry solver, which is beyond the scope

of this phase of work. However, for the L/D ratios of interest for impulse facilities,
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the effect of losses on detonation wave propagation can be neglected following the

arguments of Zeldovich. For the oxyhydrogen mixture and the tube diameters used

here, the reaction zone thickness is sufficiently small that the information about wall

losses is communicated to a negligible cross section within the reaction zone. Since

the detonation wave is inferred to be propelled by the chemical energy released in the

reaction zone, negligible losses suffered by the latter also holds for the former. It may

now be reconciled that the shock wave module similarly discards the effect of losses

on the shock wave front by using inviscid Rankine–Hugoniot relations. This does

not restrict the model applicability, as the shock wave, being a few mean free paths

thick, is a true discontinuity from the continuum perspective. However, any pathline

that traverses the shock wave, by the continuum postulate, possesses dimensions

orders of magnitude higher than the shock wave thickness. Therefore, the losses on

the particle paths immediately behind the shock wave are accounted for by using

appropriate compatibility relations, as discussed earlier.

The working gases in turn are restricted to a calorically perfect assumption

based on the governing equations considered in §3.1. Since the predominant gas-

dynamic phenomenon differs across different gas slugs, the appropriateness of the

perfect gas assumption on different gas slugs can be evaluated separately. First, the

high-pressure driver gas primarily undergoes expansion to lower pressures throughout

the detonation tube operation. Consequently, the temperature of the driver gas drops

as it expands to lower pressures, initially through the primary rarefaction and later

by a transmitted secondary rarefaction wave. At sufficiently long duration into the

detonation tube operation, the reflected shock wave from the driven endwall will be

transmitted into the high-pressure driver gas. For the low-enthalpy operation con-

sidered here, the transmitted shock wave reaching an expanded high-pressure driver
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gas is expected to be of lower strength to induce high-temperature effects. Thus, the

perfect gas assumption should hold for the high-pressure driver gas.

In contrast to the high-pressure driver, the 2-γ model used for the burnt gas

behind the detonation wave needs clarification. Since the burnt gas state behind the

detonation wave is calculated from the ZND model, subsequent gasdynamics of the

burnt gas during detonation tube operation is the focus of this analysis. As the burnt

gas expands through the Taylor rarefaction, its temperature drops and the gas may

undergo recombination, at least immediately near the CJ state. A quantitative evalu-

ation of this phenomenon will require a full unsteady finite-rate chemistry solution of

the Taylor rarefaction. However, a qualitative understanding of the associated ther-

mochemistry can still be obtained by investigating its limiting solutions neglecting

gasdynamic losses. One of the limits, a thermochemically frozen primary and Taylor

rarefaction can be obtained easily using the methods described in §3.1.4. The other

limit, a thermochemically equilibrated rarefaction utilizes (thermochemical) equilib-

rium Riemann invariants given by

dp± ρeaedu = 0 (3.28)

where the positive sign represents the C+ characteristic traveling through a simple

expansion and the negative sign corresponds to the C− characteristic. The subscript

e is appended to emphasize that the gas state is calculated under a thermochemical

equilibrium assumption.

Equation (3.28) is derived by simplifying the lossless finite-rate chemistry MoC

under infinite rate processes and thus vanishing source terms [94]. The solution to the

above Riemann invariants can be obtained through direct numerical integration, aided

by equilibrium gas state calculations from CEA or Cantera. The final state of the

Taylor rarefaction is determined by the attainment of gasdynamic equilibrium across
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the primary contact surface, that is, continuity of pressure and velocity. Knowing the

initial state of the driver gas and the CJ state behind the detonation wave, numerical

integration of appropriate C+ and C− characteristics can be carried out repetitively

until the matching solution is found. Additionally, the effect of secondary rarefaction

on the burnt gas needs to be considered. This is rendered difficult, even for the frozen

limit, due to the non-simple interaction between the secondary rarefaction and the

incoming Taylor rarefaction, as was discussed in §2.2. Nevertheless, an estimate of

the limiting effect of thermochemistry can be obtained by assuming that the final

state of the Taylor rarefaction drives a shock wave into the driven section. Thus,

the equilibrium Riemann invariant can be used again, in conjunction with governing

equations for a shock wave in the driven section, to obtain the matching solution

across the secondary contact surface. The frozen solution for this scenario is again

based on §3.1.4.

The MoC model was validated by experiment, which will be described later

in §3.2. For now, it suffices that Case 2 (see Table 3.1) with a nitrogen driver and

a helium driven gas is selected for the analysis, as it represents the strongest rar-

efaction waves the burnt gas will experience in the series of experiments that was

performed. Moreover, as both helium and nitrogen are calorically perfect, the effect

of thermochemistry in the expanding burnt gas can be isolated. The results of these

calculations are plotted in a wave polar diagram in Fig. 3.6a and the gaseous mixture

state throughout the rarefaction waves is plotted in Fig. 3.6b.

In Fig. 3.6a, the Taylor rarefaction is marked as ‘Taylor RW’ and the matching

high pressure driver rarefaction is marked as ‘HP RW’. The limiting estimate of sec-

ondary rarefaction is marked as ‘DD RW2’. Clearly, this will originate from the final

state of appropriate Taylor rarefaction. The matching condition in this case depends

upon the transmitted shock wave in the driven section, which is marked as ‘Driven
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SW’. Besides, the typical initial solution used for shock transmission into the driven

section is also plotted in Fig. 3.6a and marked as ‘DD RW1’. In Fig. 3.6b, the ordinate

is nondimensionalized against the initial conditions for a given rarefaction wave with

the CJ state marked as i1 and the final state of Taylor rarefaction marked as i2. The

abscissa utilizes absolute values so that Taylor and secondary rarefaction waves can

be observed individually. In Fig. 3.6, the equilibrium solutions are shown as chained

curves, while the continuous curves represent frozen solutions.

The remarks about perfect gas behavior of driver and driven gases are further

validated in Fig. 3.6a, where the equilibrium wave polars of driver (HP RW) and

driven (Driven SW) gases are coincident with their frozen counterparts. For the

Taylor rarefaction, the wave polar shows that even between the limiting solutions, the

final state varies little, namely, both pressure and velocity differ only by about three

percent. This is attributed to the weak recombination that occurs throughout the

Taylor rarefaction, which causes mass fractions to change weakly as the gas expands.

The net effect is that the final state density, static pressure and γ and subsequently

the sonic velocity differ by about three percent at most, between equilibrium and

frozen solutions.

Note that the temperature calculated by the frozen gas expansion differs by

about eight percent from the equilibrium solution, as the former does not account

for the energy released due to recombining molecules. The same trend is seen in the

representative secondary rarefaction but the difference between the frozen and equi-

librium solutions worsens. This may be expected, as the differing initial conditions

between the frozen and equilibrium expansions compound the effect of thermochem-

istry. Quantitatively, the density, static pressure and sonic velocity at the end of

secondary rarefaction differ by about eight percent between the full equilibrium and

frozen solutions, while the gas velocity differs by about five percent. Though these
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differences seem non-negligible, it is expected that the non-simple interaction of the

secondary rarefaction with the Taylor rarefaction will result in a weaker expansion

than these calculations. Thus, the effect of thermochemistry on the final gas state

is expected to be lesser than the differences the values quoted above. Note that the

observations on thermochemistry are specific to the experiments carried out here. In

the case of gaseous mixtures which undergo considerable recombination throughout

the rarefaction waves, the effect of thermochemistry will cause even larger differences

between the frozen and equilibrium solutions; this MoC model may not be adequate.

Instead of helium which has been used in the discussion above, the typical driven

gas employed in an impulse facility is air. Even for a detonation tube operating in

the underdriven mode, this will inevitably cause deviation from the calorically perfect

gas assumption. Estimates for the effect of thermochemistry on the driven gas were

calculated based on the initial conditions for Case 1 shown in Table 3.1. Preliminary

estimates show that the reflected shock wave at the endwall could induce about a ten

percent reduction of molecular oxygen mass fraction, while nitrogen shows negligible

dissociation. Thus, to avoid the effect of dissociation, pure nitrogen was used as the

driven gas in the experimental studies. Still, the incident shock velocities will induce

vibrational excitation in the compressed driven gas, with the value of γ expected to

vary by at most six percent, as obtained via an equilibrium normal shock solution.

Even under thermochemical equilibrium, it is known that the static pressure and

fluid velocities behind a strong normal shock wave are roughly independent of the

gas state behind the shock [95]. Thus, where thermally perfect behavior is expected,

the experimental data from static pressure transducers can still provide meaningful

comparison against the static pressure and shock velocities estimated by the MoC

model. The most significant deviation to the calorically perfect gas assumption occurs

at the endwall, where the reflected shock wave is estimated to cause a reduction in γ
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of about eight percent. Given the higher uncertainty in the capability of the simple

MoC model to capture complex endwall gasdynamics, this deviation is a necessary

sacrifice in the present study.

3.2 Experimental campaign

For validating the MoC model, experiments were designed and carried out in

a small detonation tube. The final test matrix of the experiments, which reflects

some of the model validation goals, is shown in Table 3.1. In addition to the infor-

mation in Table 3.1, the initial fill pressure ratios were the same for all three cases.

While the detonation driver was filled to atmospheric pressure, the high pressure

driver and driven sections respectively had initial fill pressure ratios of 22.4± 0.2 and

3.7± 0.03 relative to the detonation driver. Since the experiments were performed in

an environment-controlled facility, the detonable mixture was assumed to be at the

facility’s room temperature of 293 K.

Table 3.1: Test matrix (all sections have an ID of 3/4 in).

Case
High-Pressure Driver Detonation Driver Driven

Objective
Length (m) Gas Length (m) Gas Length (m) Gas

1 0.24 N2 1.092 H2 +
1
2O2 0.742 N2

Reflected
rarefaction wave

2 0.24 N2 1.092 H2 +
1
2O2 0.742 He Reflected

shock wave
3 0.24 N2 0.584 H2 +

1
2O2 1.25 N2 Long driven

Table 3.1 shows that the overall L/D ≈ 100 as is in the typical range of impulse

facilities [96]. As discussed above, facilities with such a length-to-diameter ratio can

be expected to incur non-negligible heat and frictional losses on their gasdynamics.

The use of an oxyhydrogen mixture in the detonation driver is typical, due to hydro-
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gen’s high enthalpy of formation, which results in excellent driver performance. The

detonable mixture tends to be maintained at stoichiometric proportions for optimum

chemical energy release and effective detonation initiation. Despite the possibility

of shock-induced detonation, an igniter was added to the detonation driver to cause

rapid initiation or, at least, reduce the run-up distance associated with the detona-

tion wave formation. Besides, the igniter would also serve to weaken and rupture the

polyethylene diaphragms separating the high pressure driver and detonation driver.

Finally, the driven gases used in all the cases were inert. Nitrogen was used instead

of air, to avoid dissociation of oxygen and thereby remain closer to the calorically

perfect gas assumption.

It is impossible to avoid vibrational excitation, as the required acoustic impedance

ratio (see §2.2.1) across the detonation driver and driven sections will always result in

shock velocities inducing vibrational excitation in nitrogen. Though argon as a driven

gas would have been a better option for a heavy gas without vibrational excitation

under similar initial pressure ratios, nitrogen was chosen to retain closer similarity

to air, the typical test gas. Preliminary calculations for Case 1 showed that the in-

teraction between the driven shock wave and secondary contact surface resulted in a

reflected rarefaction wave, as the shock-processed nitrogen is a heavy gas compared

to the expanding driver gas. Thus, a set of experiments with a light driven gas, he-

lium, was performed, which was expected to result in a reflected shock wave as the

driven shock wave crossed the secondary contact surface. These expected outcomes

are identified for each case in the objective column in Table 3.1.

3.2.1 Experimental setup

A schematic of the setup assembly is shown in Fig. 3.7 along with the piping and

instrumentation used for the experiments. The detonation tube setup consisted of
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multiple steel tubes with a constant internal diameter of 3/4 in and a cumulative facility

length of 83.5 in. The high-pressure driver section, denoted as HP in the schematic

and shown as a single section, comprised of two carbon steel tubes of lengths 5 and 4

in. The detonation driver which was of different lengths is shown in the schematic by

the sections identified as DD. The first section marked DD comprised of three carbon

steel tubes of lengths 6 in, 11 in and 5 in. The following section, which is marked

DD/DR was a single stainless steel tube of length 20 in. This section was either an

extension of the detonation driver or a part of the driven section, as specified in Table

3.1. The final section marked DR was a single stainless steel tube of length 28 in,

used as the driven section in all experiments.

Figure 3.7: Schematic of the detonation tube setup. VG: vacuum gauge, PT: pressure
transducer, 1, . . . , 12: PCB dynamic pressure transducers

The high-pressure driver, detonation driver and driven sections were separated

from each other by primary and secondary diaphragms. The primary diaphragm was

always sandwiched between the high pressure driver and the following diaphragm

holder marked in Fig. 3.7. The primary diaphragm consisted of three polyethylene

sheets of thicknesses 76.2, 25.4 and 12.7 µm stacked together. The secondary di-
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aphragm was a single 6 µm thick polyethylene film. The location of this diaphragm

varied between the experiments as marked in Fig. 3.7. Though the diaphragm hold-

ers and tube flanges contained O-ring seals, the diaphragms were enclosed between

rubber gaskets spanning the entire flange diameter. These gaskets were either in turn

sandwiched between the tube flanges or in between a tube flange and a diaphragm

holder. The working gases used in the setup were all supplied by high-pressure bot-

tles. The inert gases were routed directly to the setup, while the hydrogen and oxygen

supply lines were routed through a gas supply cart. This cart controlled the gas sup-

ply through pneumatic valves actuated by solenoid valves and contained flashback

arrestors for safety. Due to the low gaseous volume and fill pressures, the detonation

driver and driven sections were filled and vented using ball valves. The high-pressure

driver, on the other hand, employed solenoid valves for remote filling and venting.

A detailed view of the igniter assembly used for direct initiation is shown

schematically in Fig. 3.8. The aluminum housing for an automobile spark plug had a

dimension of 3 in × 1.5 in × 1.5 in. The spark plug was connected to an ignition coil

which in turn was connected to the data acquisition system but powered indepen-

dently by a 12 VDC battery. The aluminum housing was connected to the diaphragm

holder through two stainless steel tubes, each having an L/D ≈ 70. Further, the tubes

also housed an Omega PX313-200G5V static pressure transducer which was used to

record and aid in filling the detonation section to stoichiometric proportions. Before

a run, a pin valve was closed to protect the transducer from the detonation wave.

The high-pressure driver endwall was equipped with an Omega PX313-500G5V

static pressure transducer, (marked as PT), to monitor the filling process. Since

the reflected shocks from the endwall were expected to be weak when they reached

the driver endwall, this transducer remained connected to the high pressure driver

and unprotected throughout the detonation tube operation. In addition to the static
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Figure 3.8: Close-up view of igniter assembly (not to scale)

pressure transducer, the detonation driver also housed an analog, industrial vacuum

gauge (US Gauge), with a range of 0–0.3 MPa and minimum resolution of 3.4 kPa.

This was used in tandem with the static pressure transducer to monitor the filling

and venting of the detonable gaseous mixture. The driven section was fitted with a

Dwyer DPGA-00 digital vacuum gauge to independently monitor its filling. Both the

vacuum gauges were protected from the sharp pressure jumps during the detonation

tube operation by isolating them using ball valves. Since all the vacuum gauges

and pressure transducers measured gauge pressures, a mercury barometer located

in the same work environment was used to track the room’s atmospheric pressure

during each run. Additionally, twelve PCB 111A24 high-frequency dynamic pressure

transducers were installed across the setup to capture the wave processes during

detonation-tube operation.
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Table 3.2: Locations of dynamic pressure transducers from primary diaphragm, refer
to Fig. 3.7.

1 2 3 4 5 6 7 8 9 10 11 12

−3.5 10.25 14.25 16.25 20.5 27 39 48.5 60.5 64.5 68.5 72.5

The transducer positions in inches with respect to the primary diaphragm are

shown in Table 3.2. It can be noted that transducers labeled 1, 5 and 12 were

flush-mounted, whereas transducers 2, 3 and 4 had a recess of approximately 2 mm.

Transducers labeled 6–11 were mounted in recess ports designed with an aperture

and a cavity. The opening aperture at the detonation tube inner wall was of ∼ φ3

mm and depth of 3 mm, and the cavity was of ≈ φ6 mm and depth of 8 mm.

Data from the dynamic pressure transducers were routed through a National

Instruments PCB Model 483A ICP signal conditioner, which in turn was connected

to a National Instruments PXI-6133 S series multifunction DAQ using a TB-2709 ter-

minal base. The static pressure transducers, however, were connected to the terminal

base directly, and excited independently by a 10 VDC power supply. The data from

the PCB transducers were collected at a rate of 2.5 MHz, which was initiated by a

LabVIEW program immediately following the trigger signal sent to the spark plug in

the igniter via the host computer.

The experimental procedure for all three cases can be outlined as follows. As a

preliminary step to every run, the entire tube was purged. Since all the diaphragms

would have been ruptured, one of the vacuum ports was used to evacuate the entire

setup to < 0.69 kPa, followed by filling the setup with the appropriate driven gas to

the atmospheric pressure. All pressures were absolute unless noted otherwise. The

setup was then disassembled to install the primary diaphragm stack and the secondary

diaphragm. Before the working gases were filled in the detonation driver, the power
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supply to the spark plug was disconnected to prevent accidental spark discharge.

Since the secondary diaphragm was very delicate and prone to easy rupture under

a large pressure difference, the detonation driver and driven sections were purged

and filled in tandem. First, the detonation driver and driven sections were evacuated

simultaneously to ≈ 48 kPa. Then, the driven section was further evacuated to < 0.39

kPa and filled with the appropriate driven gas to a pressure of 48 kPa.

Next, the detonation driver was evacuated to < 0.69 kPa and the detonation

driver section was filled with hydrogen up to half of its calculated stoichiometric

partial pressure. This was followed by filling the detonation driver with oxygen to

its stoichiometric partial pressure. Finally, the remaining volume of hydrogen was

injected into the detonation driver. This procedure was expected to promote mixing

between the hydrogen and oxygen gases.

The driven section was next topped up to atmospheric pressure and evacuated

to the required static pressure. The detonable mixture was then allowed to mix

inside the setup for approximately 10 minutes and the power supply to the spark

plug was reconnected. All the valves to the vacuum gauges and the igniter pressure

transducer were closed and, at last, the high-pressure driver gas was remotely filled

to the required static pressure. Once the supply to the high-pressure driver was

cut-off, the LabVIEW program was executed which triggered the signal to the spark

plug. This resulted in the rupture of the primary diaphragm stack and thereby began

the detonation tube operation, the data of which were acquired by the LabVIEW

program. Following this procedure, every case was performed thrice to demonstrate

repeatability.
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3.3 Results and discussion

Data obtained from the detonation-tube experiments were used for validating

the MoC model. This validation effort was prefaced with a grid independence study

for the MoC model, so that the numerical accuracy of the finite-difference formulation

was first ascertained. An appropriate model to account for heat and momentum

losses was identified for a sample experimental case. Further, the identified model

was used to analyze the remaining experimental cases. Based on these analyses,

experimental results were further scrutinized to reconcile any differences between

MoC and experiments, detailed discussions of which follow.

3.3.1 Grid study and roughness estimation

The first step of the model validation effort, the grid independence study, de-

termined the spatial grid sizing to be used for MoC model calculations. Since the

experimental studies to be reproduced by MoC consist of three different cases, to

minimize computational effort and still retain relevance to all cases, one limiting case

is utilized for the grid study. Determination of this limiting case itself depended on

the parameters of interest for a specific problem. For the detonation-tube operation

considered here, the incident shock trajectory in the driven section predominantly

determined the gas state at the endwall and was naturally the parameter of interest.

Thus, the limiting case of the validation experiments trivially became that with the

largest shock velocity which is Case 2 in Table 3.1. Further, for Case 2, the maxi-

mum shock velocity attainable in the MoC model occurred when the effect of losses

was neglected, which was advantageous since the yet unknown parameter, the pipe

roughness, was not required for this grid study.

For a preliminary coarse mesh, the entire detonation tube was divided into 200

‘cells’ and the fill conditions for Case 2 were set as the initial condition. The resulting
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MoC solution of the shock trajectory in the driven section is plotted in Fig. 3.9a. As

denoted in the plot, the initial constant velocity region represented the detonation

driver and the decaying velocity region represented the driven section.
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Figure 3.9: Grid independence study.
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The corresponding endwall pressure ratio variation throughout the detonation

tube operation is shown in Fig. 3.9b. Initially, the number of cells was increased

by a factor of about two. As the incident shock trajectory seemed to converge, this

factor was reduced to about 1.5 and finally to 1.15. The resulting shock velocities for

all these simulations are plotted in Fig. 3.9a and the corresponding endwall pressure

ratios in Fig. 3.9b. The maximum difference in incident shock velocity between two

successive grid sizes reduced from about 1.5 to 0.3 percent with increasing mesh sizes.

Additionally, the corresponding maximum difference between the coarsest and finest

grids was about 3.5 percent. Since the finest grid required a computational time of

about 20 minutes on a single CPU personal tablet, a grid size of 1 213 was chosen for

the validation studies, which reduced the computational time to about 10 minutes.

The maximum difference in incident shock velocities between this chosen grid size

and the finest grid size was about one percent, while that corresponding to endwall

pressure ratios was about 1.5 percent. Note that the ideal cases simulated here are

only for theoretical consideration and the actual validation cases are expected to

have significant reduction in shock velocity from the values shown in Fig. 3.9a. Thus,

similar to the results of a previous study [63], the grid size chosen here was expected

to be conservative and of sufficient numerical accuracy.

The grid size selected in the previous step was used to identify the best momen-

tum and heat loss model to replicate experimental results. From §3.1.3, it may be

obvious that the only unknown parameter in the MoC model is the absolute rough-

ness of the tube walls ε in the experimental setup. The absolute roughness in Eq.

(3.14) represents equivalent sand grain roughness as defined by Nikuradse’s exper-

iments, where finely sorted sand grains were affixed to various pipes using lacquer

[78]. Considering this fact and the non-availability of surface roughness data for the

tubes in the experimental setup, the value of ε was determined as a part of this study.
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This effort merely amounted to varying the absolute roughness values in the MoC

model and comparing the resulting incident driven shock velocities to the experi-

mental time-of-flight (ToF) velocities at all locations. The best loss model, it was

surmised, should display minimal deviation from experimental ToF velocites for an

appropriate wall roughness. As an initial guess, all the tubes were assumed to be

smooth with ε = 0, followed by increasing sand grain roughness values until a reason-

able match was obtained for the incident shock velocities in the driven section. The

final roughness values for the calibrated model consisted of two different values for the

tubes, 0.15 mm for the sections detailed HP and DD in Fig. 3.7 and 0.01 mm for the

remaining sections. This was qualitatively based on the assembly of the experimental

setup, which utilized a combination of carbon and stainless steel tubes. The carbon

steel tubes used for the HP and DD sections had rough walls, while the remainder

of the setup assembled of stainless tubes had smoother walls. Interestingly, these

estimated roughness values are of the same order of equivalent sand roughness values

recommended for poor and good steel tubes in hydraulic engineering [97]. Finally,

it is noted that the above process was only carried out for Case 1, in an effort to

gauge the versatility and universal effectiveness of roughness values obtained from a

representative case in a given setup.

Using the final estimated roughness values from Case 1, all three cases were

simulated. Figure 3.10 shows the results of these simulations through plots of driven

shock velocities due to all the models and for all the cases. The regions of detona-

tion driver and driven sections are marked in each plot and the experimental shock

velocities based on ToF calculations are shown as triangular and circular markers for

comparison. Note that the axial locations corresponding to the experimental ToF

calculations are assumed to be the midpoints between the relevant transducers. The

results for the model with no momentum or heat losses are depicted by the curves
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marked MI. This aligns with the observation that the flow in a continuous region

is multi-isentropic, that is, the entropy along a pathline remains constant, but it

may differ between different pathlines. The curves with markers RA signify that the

losses have been calculated through Reynolds analogy approach discussed in §3.1.3.

The curves marked MRA signify a model incorporating losses based on the modified

Reynolds analogy. For any model, when the reference temperature method is addi-

tionally employed, the appropriate legend conveys this by the addition of +RT to the

already noted model nomenclature. Figure 3.10 shows that a multi-isentropic model

will overestimate the incident shock velocities in the detonation tube driven section.

Also plotted for every case are the estimated reflected shock velocities for differ-

ent models, even though the reflected shock was not used as a benchmarking reference

during calibration. From Fig. 3.10, it is seen that the Reynolds analogy adds the least

amount of losses to the fluid flow for a given roughness value. The modified Reynolds

analogy accounts for higher losses due to the inclusion of the effect of a non-unity

Prandtl number. Further, for a given method, the addition of reference temperature

based calculations increase the losses suffered by the gas. The plots for cases 1 and 2

indicate that the Reynolds analogy incorporating the reference temperature method

provides the best match for the incident shock trajectories. However, it is suspected

that the curves that lie above this case, that is, the Reynolds and modified Reynolds

analogies should also be able to provide better matches than shown in Fig. 3.10 with

higher roughness values, for instance, refer to the previous version of this work based

on modified Reynolds analogy [63]. But, this has not been attempted here since

a reasonable match was already obtained through one of the losses models. Figure

3.10b shows that the shock velocities from the final estimated roughness values differs

appreciably from that observed in the experiments for Case 2. A detailed discussion

of this mismatch is postponed to a subsequent section.
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Figure 3.10: Estimation of equivalent sand roughness (Experimental velocities shown
as triangular and circular markers, MI: Multi-isentropic, RA: Reynolds analogy,
MRA: Modified Reynolds analogy, RT: Reference temperature). Comparison of shock
velocities for (a) Case 1, (b) Case 2, (c) Case 3.

3.3.2 Typical features of experimental results

The ToF-based detonation/shock velocities shown in Fig. 3.10 indicate a pattern

of wave velocities in all experiments which is discussed first. Figure 3.10 shows that

the detonation wave velocities at three locations are well below the theoretical CJ

wave velocity. Refer to Table 3.3 for the average percent deviation of detonation
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velocities to CJ theory at various locations. The lower detonation velocities at the

first two ToF values are reasoned to be caused by a single artifact, the vacuum port

between pressure transducers 2 and 3, shown in Fig. 3.7. The piping leading up

to the vacuum pump consisted of a φ6.35 mm steel tube extending 0.33 m from

the detonation driver, after which the ball valve was located. This is suspected to

locally weaken the detonation wave. Given that the second ToF velocity is about nine

percent lower than the first ToF velocity and the first transducer is located upstream

of the vacuum port, it may be inferred that the actual detonation wave velocity near

the first transducer is higher than the ToF calculated value. Note that the peak

pressures behind the detonation wave at all the transducers in the detonation driver

were always above CJ pressures. These observations led to the conclusion that a

fully-formed detonation wave was always achieved at the first transducer location.

Moreover, the third ToF detonation velocity was on an average 2.5 percent

higher the theoretical CJ velocity, further justifying the locally weakened detonation

wave around transducer 2. Finally, for the longer detonation driver cases, the last ToF

detonation velocity was on an average 3.2 percent below the theoretical CJ velocity.

Since both these transducers were highly recessed as detailed in §3.2.1, in addition to

being ≈ 30 mm away, it can be concluded that the detonation wave at these locations

was also a CJ wave. Hence, a freely propagating detonation wave was achieved in the

detonation driver in the experiments.

Figure 3.10 and Table 3.3 show that the fourth ToF detonation velocity was

far below the theoretical CJ wave velocity and thus an outlier. Similarly, the ToF

value between the final set of transducers in the driven section seemed to be an

outlier in comparison with the trend of incident shock wave velocities. Though not

obvious from the experimental data, the calculated reflected shock velocity between

the last set of transducers also turned out to be an outlier when superposed on the
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Table 3.3: Percentage deviation of average experimental detonation wave velocity
from CJ theory.

Case
ToF Locations

1 2 3 4 5

1 −7.3 −14.2 +1.2 −21.3 −3.4
2 −7.1 −15.9 +2.9 −20.3 −3.1
3 −7.9 −15.8 +3.6 NA NA

calculated MoC shock velocities. These three outliers could again be traced to a

single experimental artifact, that is, ToF calculations carried out over a combination

of flush and recessed transducer data. It may be recalled that transducers 5 and 12

in Fig. 3.7 were flush mounted, while transducers 6 and 11 were recess mounted. For

the outlying detonation wave velocity, transducer 5 was flush mounted, while 6 was

recessed. Thus, the actual distance traversed by the detonation wave consisted of the

spacing between these transducers to which was added the recess depth of transducer

6. But, the ToF calculations only consider the transducer spacing, which combined

with the true traverse time resulted in a slower perceived detonation wave velocity.

For the incident shock wave in the driven section, the opposite mounting ar-

rangement was encountered. Transducer 11 was recessed, while the endwall trans-

ducer 12 was flushed. In this case, it was necessary to consider the propagation of the

shock wave near the transducer recess in more detail. When the shock wave began to

traverse the transducer port’s aperture, diffraction of the shock wave front occurs near

the wall corner of the aperture port. As the shock wave traveled further and reached

the opposite wall of the aperture, a curved shock front ensued, which bifurcated into

a transmitted shock wave into the recess and a locally weakened primary shock wave

propagated further into the driven section. In this case, since the aperture diame-

ter was considerably smaller than the detonation tube’s inner diameter, the primary
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shock wave can be considered to propagate further with negligible attenuation. Note

that the curved shock front coupled with the bifurcation process resulted in multiple

wave reflections on the recess side walls [67], which are seen as high-frequency oscil-

lations immediately behind the transmitted shock wave in all the recessed pressure

transducer traces (see Figs. 3.12, 3.15 and 3.18). When the transmitted shock wave

traversed the recess depth and reached the pressure transducer, the primary shock

wave had already propagated further into the driven section. But, in the ToF cal-

culations, the arrival of the transmitted shock wave at the recessed transducer was

instead considered to be the first time-stamp for primary shock wave arrival. Clearly,

this is untrue, and will be perceived as the delayed arrival of the incident shock wave

at transducer 11. However, as transducer 12 was flushed, its pressure trace provided

an accurate representation of primary shock wave arrival at this location. Therefore,

the combination of recessed and flushed transducers resulted in a perceived shorter

time interval for the primary shock wave to traverse the distance between them. This

in turn resulted in a perceived higher shock velocity, since the axial distance between

these transducers was the true distance. For a reflected shock wave travelling between

these transducers, the opposite occurred, as the shock wave travels from a flushed to a

recessed transducer. The trend in such a case may be expected to follow the reasoning

for the outlying detonation wave velocity discussed before.

The above reasoning for outlying wave velocities can be further substantiated

through ToF calculations based on MoC shock trajectories aided by estimates of

transmitted shock velocities into the recess ports. The true geometry of the recess

ports can be substituted by an idealized constant area geometry. Since the recess

port aperture diameter was considerably smaller than the spacing between succes-

sive transducers, the transmitted shock was assumed to form instantaneously at the

aperture for the high shock velocities considered here. Further, an estimate of the
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transmitted shock velocity can be obtained from Whitham’s theory of shock dynamics

[98].

It is reiterated that this method is a heavy simplification intended to provide a

qualitative estimate of the perceived experimental ToF calculations. Nevertheless, the

approximate ToF method described here can be seen to estimate the experimental

shock ToF calculations remarkably well for all cases, as shown in the subsequent

sections. Whitham developed a simplified theory for the evolution of shock fronts

primarily driven by changes in driving streamtube area, neglecting the effects of

gasdynamic flow evolution further behind the shock front. Geometric shock dynamics,

as this method has come to be known, can specifically resolve the evolution of an

initially planar shock front as it moves around a sharp corner in a two-dimensional

flow. One of the simplifications of this theory provides an algebraic solution for the

local Mach number of the diffracting shock front at the wall for high initial shock

velocities and arbitrary corner angles. Experimentally, this algebraic solution has

been shown to be an excellent match at lower corner angles and a fair match for higher

corner angles [99]. Considering the overall gasdynamics of incident shock diffraction

discussed above, the transmitted shock into the recess port can be approximated by

the wall shock Mach number from Whitham’s theory. For an initially planar shock

wave with a Mach number Mo, diffracting around a wall with a corner angle θw, the

transmitted wall shock Mach number Mw is given by

Mw =Mo exp (θw/
√
n) (3.29)

where

n = 1 +
2

γ
+

√
2γ

γ − 1

Implicitly, this approach neglects the effect of transmitted shock curvature and

reflections from the opposite corner of the aperture. Further, this result was derived
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by Whitham for inert shock diffraction. More recent analyses have extended this ap-

proach to sustained and/or quenched detonation diffraction, for instance, Radulescu

et al. [100]. The primary difference these methods bring is the change in the value

of the exponent term n. For the current case, these changes resulted in negligible

difference to the overall calculation and, thus, the value of n used for detonation

diffraction was simply that for inert shocks as given above.

From Eq. (3.29), transmitted shock velocity and thereby the delay in the arrival

of a shock/detonation wave at the transducer diaphragm was evaluated for a given

recess depth and for a sharp right-angled corner. Finally, adjusting the traditional

ToF calculations for this time delay produced the experimental ToF values. For the

detonation wave velocity ToF 4 in Table 3.3, these calculations indicated a perceived

reduction of about 12 percent from CJ velocity (See Figs. 3.11, 3.14 and 3.17), as

opposed to about 21 percent observed experimentally. The estimated results for

shock ToF calculations are discussed separately for each case in the next section.

Note that this estimate was not carried out for the reflected shock wave considering

the reflected shock wave-boundary layer interaction.

In addition to the above effect, it is known that a recessed transducer exposed

to pressure transients will produce a damped and delayed response from the original

transients [101, 102]. Methods to estimate the response of recessed transducer are

either too simplified resulting in high percent errors, or, require experimental estima-

tion of transducer response [102]. Further, the mixing of different gas slugs in the

recess ports during a detonation tube operation adds considerable uncertainty to these

methods derived for a homogeneous gas occupying the recess port. To limit the scope

this work, these approaches have not been attempted here. Therefore, the pressure

traces from recessed transducers shown in the subsequent sections cannot be reli-

ably used for quantitative comparison. Still, it can be seen that the recessed mounts
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affected the ToF shock velocities negligibly, resulting in meaningful quantitative com-

parison. Moreover, the driven endwall transducer, which is of prime importance in

the validation study was flush-mounted thus providing the true reservoir pressure for

shock tunnel operation.

3.3.3 MoC model validation

Following the general discussion above, each case is now compared in more

detail to the experimental results. The shock traces for individual cases are plotted

again, but the MoC curves include results only for the multi-isentropic and Reynolds

analogy with reference temperature methods. Since the inclusion of losses means

that the entropy varies even along a pathline, the latter model will hereafter be called

nonisentropic. Added to these shock trace plots are theoretical calculations that

account for the effect of recess-mounted transducers, which utilize the best calibrated

MoC model result. Further, the pressure trace from each available transducer is also

plotted against MoC pressure trace at the corresponding location. These plots are

also supplemented by a pressure contour plot in the x–t plane to show the detonation

tube wave processes and thereby flowfield evolution as resolved by the MoC.

3.3.3.1 Case 1

Figure 3.11 shows the MoC shock and detonation wave traces for Case 1 de-

scribed in Table 3.1. The incident and reflected shock velocities are plotted along

different ordinates for clarity and the axial locations of the experimental values cor-

respond to the midpoints between the relevant transducers. The experimental ToF

values also include the associated uncertainties calculated by simple error propagation

[101]. As discussed earlier, the theoretical ToF estimates accommodating for recess

mounts are only calculated and plotted for incident shock velocities. To show the
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effect of incorporating recess depth into theoretical ToF calculations, the plot also

contains theoretical ToF values based only on MoC shock/detonation wave trajecto-

ries. These theoretical ToF values can be seen to coincide with the detonation/shock

wave trajectories throughout the detonation tube. The adjusted theoretical ToF can

be seen to coincide with the theoretical ToF for the detonation wave for the first,

second and fourth ToF values. For the first and second values, this occurs due to

the flush-mounted transducers as approximated in the calculations. For the fourth

location, this coincidence occurs as the detonation wave is assumed to travel with

a constant velocity. Under this condition, Eq. (3.29) can be expected to produce

identical transmitted shock velocities into the recess mounts for both the transducers

in the ToF calculation and, thus, there is no net delay due to the recess mounts.

Therefore, the adjusted theoretical ToF values coincide with the actual theoretical

ToF values. This trend is also seen in the experimental ToF values at this location,

where the calculated detonation wave velocity matches closely with theoretical CJ

velocity, despite both the relevant transducers being recessed.

At the third ToF location, the adjusted theoretical ToF value qualitatively

predicts the perceived reduction in detonation wave velocity, but is about 12 per-

cent higher than the experimental ToF value. This is reasoned due to the complex

gasdynamics associated with detonation wave propagation. As the detonation wave

diffracts around the corner of the recess port, the reaction front which drives the

initial shock could potentially decouple from the shock wave. As opposed to an un-

steady shock wave, which is driven by a piston motion behind it, a detonation wave is

driven by the energy released by the trailing reaction front. Thus, when the reaction

front decouples from the initial shock wave, the latter could decay significantly in

strength. Therefore, the transmitted shock wave calculated by Whitham’s rule may

be stronger than the actual decaying shock wave front. Now, if the same ToF cal-
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Figure 3.11: Shock/detonation wave velocity comparison: Case 1 (MI: Multi-
isentropic, NI: nonisentropic)

culations as above were repeated assuming that the wave transmitted into the recess

port is a Mach wave, then the perceived detonation wave velocity is about 2100 m/s.

Since the experimental ToF is between the transmitted Mach wave and shock wave

solutions, it is inferred that wave transmitted into the recess port is a weak shock

wave. Such a scenario will also be seen at this ToF location for Cases 2 and 3.

For the incident shock velocities in the driven section, the adjusted theoretical

ToF values are about one percent lower than the true theoretical ToF values, if both

the transducers involved are recess mounted. Again, from Eq. (3.29), if the incident

shock Mach number does not vary drastically between the two transducer locations,

the corresponding transmitted shock Mach numbers vary even less, with negligible

difference in the ToF calculations. Thus for mildly varying incident shock Mach num-

bers, identically recessed transducers can be expected to have a negligible influence
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on ToF calculations. In contrast, for the last ToF value, the adjusted theoretical ToF

is overestimated by about 27 percent from the true ToF due to the combination of re-

cessed and flushed transducers used in the calculation. Also, the adjusted theoretical

ToF matches well with experimental ToF values, implying that the true shock wave

velocity at this location maybe better represented by the MoC curve, rather than the

outlying experimental ToF values.

For the reflected shock wave, the last (location) ToF value is similarly unreliable.

The subsequent experimental ToF value which is seen to match well with the MoC

transmitted shock wave velocity is suspected to be an average of the local reflected and

transmitted shock velocities across the secondary contact surface. This can be seen

in the MoC-generated x–t plot, Fig. 3.13, where the ‘inviscid’ contact surface–shock

wave interaction occurs around 1.74 m. Therefore, the quantitative accuracy of the

MoC-estimated reflected shock wave cannot be ascertained from Fig. 3.11. However,

from the reflected shock trace, it is seen that the shock wave is amplified as it is

transmitted across the secondary contact surface, as exhibited by the discontinuous

jump in the shock wave velocity around 1.74 m. Finally, the influence of losses on

the detonation tube gasdynamics can be appreciated by observing that the multi-

isentropic model overestimates the incident shock velocity at the endwall by about

27 percent.

For further comparison, experimental pressure traces at individual transducer

locations are compared to their MoC counterparts. The transducer data in the deto-

nation driver and driven sections are split respectively into two plots in Fig. 3.12. The

time of arrival of the incident shock wave at the driven section endwall was chosen

as the origin for both experimental and MoC results. By this method, a coincidence

of the initial pressure rise at different flush transducer locations also indicates how

well the MoC reproduces the detonation and shock wave velocities. For the pressure
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traces, relevant transducer locations are marked on the plot individually with each

trace shifted vertically by −20 units in the detonation driver and +30 units in the

driven section. The ordinate in this case represents the local static pressure nondi-

mensionalized by the initial static pressure at that transducer location. In Fig. 3.12a,

the recessed transducers marked XDR3, XDR6 and XDR7 exhibit large oscillations

in the pressure trace, due to multiple shock reflections into the recess port that are

driven by the transverse oblique shock structure of a detonation wave. The initial rise

of the pressure traces coincides well with MoC traces near the secondary diaphragm.

But this coincidence worsens with increasing distance from the secondary diaphragm.

This is expected because the experimental ToF for the detonation wave in Fig. 3.11

shows lower detonation wave velocities than the theoretical CJ velocity.

Individual pressure traces in the detonation driver show that the plateau pres-

sures of transducers marked XDR2 and XDR5 agree with each other. While XDR5

was flush mounted, XDR2 had a slight recess of about 2 mm. Surprisingly, XDR3

and XDR4 which are also slightly recess mounted display a lesser plateau pressure

compared to the surrounding transducers. A comparison of the amplitude response of

XDR6 and XDR7 to the nearby flushed transducer also reveals that these responses

are attenuated. While the latter attenuation is clearly due to the highly recessed

transducer mounting, the former difference in the plateau pressure is attributed to

the locally weakened detonation wave recorded between XDR3 and XDR4. Further

examination of XDR2 shows that the experimental plateau pressure decays and de-

viates from the MoC estimated values after t ≈ −0.2 ms. This can be attributed

to a combination of the detonation wave run-up distance and burnt gas leakage into

the extended vacuum piping discussed in previous sections. Notably, the secondary

rarefaction wave from the end of detonation driver reaches XDR2 at t ≈ 0.2 ms (see

Fig. 3.13) and is unrelated to the earlier plateau pressure decay discussed here.
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Driven section phenomena can be examined from the pressure traces plotted in

Fig. 3.12b. Despite the initial experimental pressure rises closely trailing the MoC

pressure rises, the amplitude response of the transducers can be seen to lag signifi-

cantly. Such a lagging response can be attributed to the lower initial sonic velocity of

the driven gas filling the recess ports and lower incident shock velocity in the driven

section. Though the pressure traces in the driven section seem to match well with the

MoC trace, further evaluation of the recessed transducer response is necessary to draw

quantitative conclusions. Qualitatively, the MoC traces at XDR8 and XDR9 show

a nearly constant plateau pressure, while the experimental traces show continuously

decaying pressure. As the detonation driver pressure itself showed earlier decay in the

plateau pressure compared to the MoC, the same trend observed in the driven section

plateau pressure seems appropriate. From a comparison of the endwall pressure trace

in Fig. 3.12b, the MoC seems to capture the peak pressure in the detonation tube.

Moreover, the decay in stagnation pressure at the endwall is well replicated up to

t ≈ 0.15 ms. The immediate difference in pressure trace after this time is suspected

to be due to the waves communicating early decay in the detonation driver. The

higher difference in magnitude can be explained by the amplification of MoC pres-

sure rise due to the reflected shock wave. From the endwall trace comparison, it can

at least be inferred that the reflected shock velocity in the vicinity of driven endwall

is well replicated by the nonisentropic model. Also, endwall peak pressure from the

multi-isentropic model is about 81 percent higher than the endwall peak pressure

shown in Fig. 3.12b.

More information about the overall flowfield evolution for Case 1 can be ex-

tracted from an x–t diagram, plotted in Fig. 3.13. Contours of static pressure are

plotted in the x–t plane to portray the dominant wave processes. Trajectories of

contact surfaces are added to this plot to aid in demarcating different gas slugs. The
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Figure 3.12: Comparison of MoC and experimental pressure traces for Case 1
.
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nomenclature used in this plot follows Fig. 2.3b. Since the MoC model also includes

the effect of losses, waves in addition to the ideal wave processes described before

can be seen in Fig. 3.13, communicating the effect of losses to different regions in the

flowfield. The temporal origin here is also adjusted to be the time incident shock wave

reaches the driven endwall, so that this plot can be used in tandem with Fig. 3.12

for validating the MoC model. As the detonation tube algorithm was based on the

wave processes in Fig. 2.3b, the MoC generated x–t diagram can be seen to success-

fully replicate the dominant wave processes in Fig. 2.3b. Primarily, the non-simple

interaction between the Taylor rarefaction and the secondary rarefaction can be seen

to accelerate the Taylor rarefaction into the driven section. Clearly, the velocity of

the shock wave transmitted into the driven section is lower than the detonation wave

velocity, evident from its larger slope. Further, this shock wave is continuously atten-

uated by the transmitted Taylor rarefaction through the secondary contact surface, an

effect which was also seen in Fig. 3.11. From the transmitted waves in the driven sec-

tion, it can be seen that the information about the detonation driver plateau pressure

reaches the secondary contact surface just prior to the reflected shock wave–contact

surface interaction. This information along with the experimentally observed decay

in detonation driver plateau pressure, leads to the inference that the sudden drop in

experimental pressure trace in Fig. 3.12b, around t ≈ 0.15 ms must be due to the

decaying plateau pressure in the detonation driver. Thus, the ability of the MoC

detonation tube algorithm to quantitatively capture the reflected shock wave–contact

surface interaction is deemed inconclusive for this validation case. Still, the qualita-

tive aspect of this phenomenon is clearly well replicated by the MoC model as marked

by the local wave process surrounding this CS–SW interaction labeled Fig. 3.13.

102



Figure 3.13: MoC generated flowfield evolution for Case 1 (also see Fig. 2.3b).

3.3.3.2 Case 2

Next, the MoC results for Case 2 are compared with experiments. Table 3.1

shows that Case 2 closely resembles Case 1 but for the use of helium as the driven

gas. Apart from the objective mentioned in Table 3.1, this case may also be repre-

sentative of a high-enthalpy detonation tube operation in that the transmitted shock

velocity in the driven section is higher than the detonation wave velocity. This ampli-

fied transmitted shock velocity is evident from the detonation/shock wave velocities

plotted in Fig. 3.14. Since the high-pressure/detonation driver assembly and initial

fill conditions are the same as Case 1, the experimental and MoC detonation wave

velocities in Fig. 3.14 resemble Case 1.
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In contrast to Case 1, the incident shock velocity for the MoC/nonisentropic

model is about 15 percent higher than the experimentally observed shock velocities.

This discrepancy cannot merely be attributed to incorrectly estimated roughness val-

ues. While the setup wall roughness used in the nonisentropic model was estimated by

comparing MoC and experimental results for Case 1, these values are expected to hold

universally for this setup regardless of the working gases used. This may be further

understood by realizing that the nonisentropic model utilizes relevant thermophysical

properties for different gases and that the wall roughness is the only variable parame-

ter. For Case 2, it turns out that the mismatch in experimental and MoC shock trace

was instead due to gaseous contamination in the driven section. Detailed analysis of

this experimental anomaly is performed in a following subsection. But, it will be seen

that the contamination only affects the magnitude of the plots shown here, while the

qualitative flowfield observed in the contaminated driven gas still matches that of a

pure driven gas scenario. Therefore, the MoC flowfield obtained here for pure helium

can still be used to qualitatively discuss the flowfield evolution for Case 2.

Figure 3.14 shows that the multi-isentropic model overestimates the incident

shock velocity at the endwall by about 21 percent compared to the nonisentropic

model. The adjusted ToF calculated for the nonisentropic model shows that the

effect of recess ports is negligible when the calculations are carried out over two

equally recessed transducers. For the combination of recessed and flushed transducers,

the adjusted ToF severely overestimates the experimentally observed shock velocity,

clearly due to the overestimated incident shock velocities from the MoC model. Figure

3.14 further shows that the reflected shock wave from the endwall accelerates into the

oncoming secondary contact surface. The abrupt attenuation of this shock wave as a

result of its interaction with the contact surface indicates that a reflected shock wave

forms due to this interaction, as opposed to the reflected rarefaction wave that was
104
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Figure 3.14: Shock/detonation wave velocity comparison: Case 2 (MI: Multi-
isentropic, NI: nonisentropic).

observed in Case 1. Additionally, after this interaction, the velocity of the transmitted

shock wave can be seen to increase suddenly around x ≈ 1.5 m, due to an overtaking

weak shock wave, see Fig. 3.16.

Figure 3.15 contains the experimental and MoC pressure traces at various trans-

ducer locations in the detonation driver and driven sections. Individual pressure

traces in the detonation driver and driven sections are displaced vertically by the

same units as Case 1. From Fig. 3.15a, the mismatch in the arrival of the detonation

wave at all the transducer locations is obvious, even for XDR6 and XDR7, which dis-

play almost CJ detonation wave velocity in Fig. 3.14. Since the incident shock wave

velocity in the driven section is overestimated by MoC, the time interval between the

chosen origin and the arrival of detonation wave at various transducers is shortened,

which is seen as the mismatch described above. However, it is seen that the initial
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plateau pressure at XDR2 still matches well between experiments and MoC, as the

effect of driven gas contamination will only be communicated to the detonation driver

gas by the arrival of secondary rarefaction wave.

Similar to Case 1, the experimental plateau pressure at XDR2 starts to decay

about 0.55 ms after the arrival of detonation wave at this location and similar atten-

uation of plateau pressure amplitude is seen in XDR3 and XDR4. In the pressure

traces for the driven section in Fig. 3.15b, the mismatch in the location of the initial

pressure rise can again be seen between MoC and experiments. Further, similar to

Case 1, the experimental pressure trace for XDR8 is higher than the MoC values,

despite the subsequent transducer locations showing lower pressure rise compared to

MoC. This is attributed to the close proximity of XDR8 (L/D ≈ 8) to the secondary

diaphragm, which results in the recessed transducer capturing the initial stronger

shock wave that is formed during diaphragm rupture. At XDR11, the experimental

pressure trace can be seen to lag to an extent that the reflected shock wave reaches

this location before a steady, nearly plateau pressure is attained. At the endwall,

the MoC pressure trace is lower that the experimental pressure trace, despite the

MoC overestimating the incident shock wave velocity in the driven section, as seen in

Fig. 3.14. However, similar to the experiment, a weak reflected shock from the shock

wave–contact surface interaction can be seen to reach the endwall at around 0.1 ms in

the MoC pressure trace. Further, as the secondary contact surface nearly stagnates

before XDR11, the MoC pressure trace for XDR11 shows the initial reflected shock

wave from the endwall, followed by the right traveling weak reflected shock wave

from the shock wave–contact surface interaction and finally, the return of this weak

reflected shock wave from the endwall. This re-reflected weak shock wave can further

be traced to the MoC pressure traces at XDR10 and XDR9.
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Figure 3.15: Comparison of MoC and experimental pressure traces for Case 2.
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Figure 3.16: MoC generated flowfield evolution: Case 2 (also see Fig. 2.3b).

The overall flowfield for Case 2 as resolved by MoC is shown in the x–t plane

in Fig. 3.16. The high-pressure driver and detonation driver flowfield can be seen to

match Case 1, until the secondary rarefaction reaches the primary contact surface

around t ≈ 0.5 ms. (Note the change in ordinate scale compared to Case 1.) Since

the driven gas is accelerated to high velocities, the secondary rarefaction for Case 2 is

significantly stronger than Case 1, as observed in Fig. 3.16. The higher incident shock

wave velocity is again obvious from its lower slope compared to the detonation wave

in the detonation driver section. However, this higher shock velocity also results in a

shorter time interval between the rupture of secondary diaphragm and the eventual

reflected shock wave–contact surface interaction. Thus, the Taylor rarefaction can

still be seen overtaking the secondary contact surface while the shock wave–contact

surface interaction takes place. While this scenario is not expected for an optimally
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designed detonation tube, parametric analyses to reach such a design may encounter

it. Despite the overtaking trailing characteristics of the Taylor rarefaction wave,

the shock wave–contact surface interaction almost stagnates the secondary contact

surface resulting in a weak reflected shock wave into the driven gas. From the spatial

extent of the weak reflected shock wave at a given t-line, its Mach number is inferred

to be nearly unity, as such shock waves are merely resolved as compression waves by

the detonation tube algorithm. This weak reflected shock wave is further reflected

back from the endwall and reaches the secondary contact surface, resulting in a weak

transmitted shock wave and a weak reflected rarefaction wave at the interface around

t ≈ 0.16 ms. Furthermore, this transmitted weak shock wave merges with the original

transmitted shock wave around t ≈ 0.3 ms. As has been seen already, the dynamics

of this weak reflected shock can also be traced in the pressure traces at various driven

transducers in Fig. 3.15b.

3.3.3.3 Case 3

Lastly, MoC results for Case 3 are compared with experimental results. The

shock/detonation wave velocities are again compared initially, as shown in Fig. 3.17.

Despite the shorter detonation driver than Cases 1 and 2, the detonation wave ve-

locities in the available section resemble Cases 1 and 2 as expected. Since the initial

fill condition is the same as Case 1, the initial transmitted shock wave velocity in the

driven section is also the same as Case 1. However, the longer driven section results

in higher attenuation of the incident shock wave compared to Case 1. Quantitatively,

MoC shock velocities differ from experimental ToF values by a maximum of about

three percent, except for the last ToF value. At the last ToF location, MoC underes-

timates the experimental shock velocity by an average of 27 percent. However, when

the MoC ToF calculation accounts for the combination of recessed and flushed trans-
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ducers, the accuracy improves, with the resulting shock velocity at this location being

overestimated on an average by 5 percent. In this case, the multi-isentropic model

overestimates the incident shock wave velocity at the endwall by about 32 percent

compared to the nonisentropic model. Thus, the effect of heat and frictional losses

is increasingly observed on the incident shock wave velocity as its total traveling dis-

tance increases. Naturally, this also leads to a lower velocity reflected shock wave

from the endwall, as seen in Fig. 3.17.

Moreover, the location of shock wave–contact surface interaction moves further

into the driven section compared to Case 1, as the attenuated contact surface trails

farther behind the incident shock wave. But similar to Case 1, the shock wave–

contact surface interaction amplifies the reflected shock wave from the endwall. As

this transmitted shock wave moves further into the burnt gas slug, the MoC trace

depicts a decelerating shock wave, while the experiments indicate that it accelerates

instead. Subsequent discussions on the detonation driver gasdynamics are expected

to reconcile this discrepancy, as the MoC pressure traces will be seen to deviate from

experiments further into the detonation tube operation, see Figs. 3.18 and 3.19.

The pressure traces at individual transducer locations from both experiments

and MoC are shown in Fig. 3.18. The magnitude of plateau pressures at XDR2 is

identical between Case 3, shown in Fig. 3.18a and the previous cases, Figs. 3.15a and

3.12a. Due to the shorter detonation driver length, the secondary rarefaction wave

can be seen to reach XDR2 significantly earlier as evident by the temporally shorter

plateau pressure. Interestingly, here, the MoC model accurately estimates not only

the arrival of the secondary rarefaction wave, but also the associated magnitude of

pressure decay. At XDR2, the MoC model indicates an increase in static pressure

after t ≈ −0.25 ms, while the experimental pressure trace still shows a decay.

110



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Length, m

900

1300

1700

2100

2500

2900

3300

In
ci

d
en

t 
w

a
ve

 v
el

o
ci

ty
, 

m
/s

-2300

-1900

-1500

-1100

-700

-300

100

R
ef

le
ct

ed
 w

a
ve

 v
el

o
ci

ty
, 

m
/s

Detonation Driver Driven

MI MoC

NI MoC

ToF- MoC

ToF- MoC+Recess

ToF- Experiments

Figure 3.17: Shock/detonation wave velocity comparison: Case 3 (MI: Multi-
isentropic, NI: nonisentropic).

The abovementioned traits are also observed qualitatively at XDR3. The ex-

perimental pressure trace at XDR4 shows a more rapid decay of plateau pressure

than MoC, yet, the arrival of the secondary rarefaction wave at this location is co-

incident with that of MoC. XDR5 on the other hand shows significant difference in

the magnitudes of pressure traces between experiments and MoC. Closer inspection

of the experimental pressure trace at XDR5 reveals a sudden pressure spike around

t ≈ −0.96 ms, indicative of a reflected shock wave from the rupture of secondary

diaphragm. This, in addition to the idealized centered secondary rarefaction wave

considered in the MoC, is inferred to produce the pressure trace deviation observed

at XDR5.

The corresponding pressure traces for the driven section are shown in Fig. 3.18b.

In this case, the first transducer in the driven section XDR6 is even closer to the
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Figure 3.18: Comparison of MoC and experimental pressure traces for Case 3.
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secondary diaphragm than the previous cases (L/D ≈ 5). Hence, the experimental

pressure trace at XDR6 is again higher than the MoC pressure trace. For transducers

XDR6-XDR11, the arrival of the incident shock wave and thus the initial pressure

rise in MoC pressure traces can be seen to occur earlier than the experiments, despite

the close match in shock velocities seen in Fig. 3.17. This contradiction can be traced

to the recessed transducers, which would clearly experience a delay in the arrival of

the incident shock wave compared to a flushed transducer, which the MoC traces

represent. Finally, the MoC pressure trace at the endwall, XDR12, captures the

experimental peak pressure due to the reflected shock wave. But, the decay of the

endwall stagnation pressure due to MoC is slower than experimentally observed.

The unsteady pressure contours for Case 3 are shown in Fig. 3.19 to elicit

the dominant wave processes. Due to the heavily attenuated incident shock wave

in the long driven section, the overall detonation tube operation time can be seen

to increase significantly from Cases 1 and 2. In the short detonation driver, the

secondary rarefaction can be seen to reach the primary contact surface at around

t ≈ −0.6 ms and accelerate it subsequently. Further, the secondary rarefaction wave

is transmitted into the high-pressure driver gas, which also undergoes an expansion.

Since the sonic velocity in the high-pressure driver gas is significantly lower than

the burnt detonation driver gas, the transmitted secondary rarefaction can be seen to

travel at much lower velocities in the former slug. Thus, the increase in static pressure

in XDR2 displayed in Fig. 3.18a marks the arrival of the primary contact surface

followed by the transmitted secondary rarefaction, which expands the high-pressure

driver gas at slower rate than the burnt gas from where it originated. Note that the

detonation tube algorithm considers instantaneous detonation wave formation and

centered Taylor/primary rarefaction waves, neither of which are expected to occur

in the experiments. This deviation in the initial condition for the primary contact
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Figure 3.19: MoC generated flowfield evolution for Case 3 (also see Fig. 2.3b).

surface in addition to contact surface mixing is suspected to be the primary reason

behind the mismatch surrounding the arrival of primary contact surface at XDR2 in

Fig. 3.18a.

From the wave processes in the driven section, Taylor rarefaction is seen to be

completely transmitted into the driven section even before the incident shock wave

arrives at the endwall. Thus, the attenuation of the incident shock wave is due to

a combination of the transmitted Taylor rarefaction and gasdynamic losses. The re-

flected secondary rarefaction wave also travels the entire driven section, is transmitted

across the secondary contact surface and reaches the reflected shock wave seemingly

decelerating it. The information brought in by this wave is reasoned to be the source

of endwall stagnation pressure mismatch between MoC and experiments. Also, the
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reflected shock wave–contact surface interaction observed in Case 3 is qualitatively

similar to that of Case 1.

3.3.4 Effect of driven gas contamination

The noticeable deviation in shock velocities and pressure traces observed for

Case 2 was also observed in an earlier version of this MoC model which utilized

a constant Cf for all gases [63]. Such an approach was undertaken, as it had been

successfully used to replicate experimental endwall pressure traces in pulse detonation

engines with homogeneously filled propellant mixtures [53, 54]. Since the detonation

tube considered here utilized multiple gas slugs instead of a homogeneous gaseous

mixture, a variable Cf model incorporating individual gas thermophysical properties

was expected to improve upon the MoC model. While this modification did improve

the nonisentropic model results in terms of shock velocities and individual pressure

traces, the results still overestimated the experimental incident shock velocities in

the driven section by 15 percent, as seen earlier. Thus, supplemental reasons for this

discrepancy were investigated to understand if the MoC model can resolve flowfields

involving helium, which is an indispensable option as the driver and/or accelerator

gas in impulse facilities.

Note that the detonation driver plateau pressures were estimated reasonably

well by the MoC model for all cases; hence, the anomaly was restricted to helium

as the driven gas. For a simple shock tube, the gasdynamic equilibrium which oc-

curs between a driver and driven gas is also determined by the compressibility of the

driven gas, which can be interpreted in terms of the pressure jump brought forth by

the incident shock wave. For a given initial gas state, the Rankine–Hugoniot jump

condition (see §3.1.4, for instance) shows that the pressure rise due to a normal shock

wave is dependent on the gas density and γ. For a driven gas with known initial

115



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Length ,m

1200

1600

2000

2400

2800

3200

3600

4000

4400

In
ci

d
en

t 
w

a
ve

 v
el

o
ci

ty
, 

m
/s

-3900

-3500

-3100

-2700

-2300

-1900

-1500

-1100

-700

R
ef

le
ct

ed
 w

a
ve

 v
el

o
ci

ty
, 

m
/s

Detonation Driver Driven

MI MoC, 100% He

NI MoC, 100% He

MI MoC, 96% He+4% Air

NI MoC, 96% He+4% Air

ToF - MoC+Recess

ToF - Experiments

Figure 3.20: Shock/detonation wave velocity comparison: Case 2.

static pressure and temperature, both density and γ are dependent on its molecular

weight which in turn depends on the mixture composition. Thus, driven gas con-

tamination was suspected to cause the discrepancy between MoC and experimental

results. Cross contamination between the detonation driver and driven sections were

ruled out, since the experimental procedure ensured that the secondary diaphragm

was intact immediately before each run. Thus, it was suspected that the contaminant

was residual air that had entered the driven section during diaphragm replacement.

As an arbitrary initial guess for air contamination, the manufacturer provided uncer-

tainty for driven pressure gauge readings (Dwyer DPGA-00, 1 percent fullscale) was

assumed, which already resulted in a good match between MoC and experimental

results. Clearly, the overall results could also be tuned further by varying the amount

of air contamination in the driven section. But, this has not been attempted here to

restrict the scope of this phase of work.
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Figure 3.20 contains the shock velocities for Case 2 with pure and contami-

nated helium for multi-isentropic and nonisentropic models. From the uncertainty in

driven pressure gauge readings, the contaminant partial pressure can be determined,

which in this case was four percent air consisting of nitrogen (78 percent), oxygen

(21 percent) and argon (one percent). Note that the detonation-tube algorithm can

resolve gaseous mixtures of arbitrary composition, utilizing Cantera to derive curve-

fits for thermophysical properties of gaseous mixtures, which serve as the inputs for

individual MoC subroutines. Here, a mere four percent air contamination causes the

molecular weight of the driven gas to increase by 25 percent due to the significant

difference in molecular weights between helium and air. Figure 3.20 shows that for

contaminated helium, the initial incident shock velocity is lower than that for the pure

helium case by about six percent. When gasdynamic losses are taken into account,

the incident shock wave at the first ToF is overestimated by about 6 percent in the

contaminated helium case, as opposed to 15 percent in the pure helium case. At the

subsequent ToF locations, shock velocities due to contaminated helium can be seen

to lie within experimental uncertainties of individual ToF values. At the last ToF

location, MoC shock velocity accounting for recessed transducer again lies at one of

the limits of experimental ToF uncertainty. Thus, it is seen that the adjusted ToF

calculations based on geomteric shock dynamics estimate the effect of recess mounts

remarkably well for different gases. Similar to previous cases, quantitative comparison

cannot be drawn here for the reflected shock wave trajectory based on experimental

ToF values.

Comparison of individual pressure traces between MoC accounting for contam-

inated helium and experimental results are shown in Fig. 3.21. From Fig. 3.21a, it

is seen that the arrival of detonation wave at individual transducer is resolved more

accurately by MoC compared to pure helium, Fig. 3.15a. Since the MoC model
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Figure 3.21: Comparison of MoC and experimental pressure traces for Case 2.
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still overestimates the incident shock wave velocity, arrival of the detonation wave

at various transducers in the detonation driver still shows a mismatch, albeit, lesser

than that of a pure helium case. But, as expected, the initial plateau pressures be-

hind the detonation wave are similar to the pure helium case, as the effect of helium

contamination is only communicated by the arrival of secondary rarefaction wave.

In the driven section pressure traces shown in Fig. 3.21b, the initial pressure rise

for contaminated helium is always higher than the pure helium case. This is expected

as the performance of a driver gas increases with the ratio of initial sonic velocities

between driver and driven gases. With contaminated helium, as the gaseous mixture

molecular weight increases, its sonic velocity decreases and thereby leads to higher

pressure rise due to incident shock waves. Comparatively, the amplified pressure rise

behind the incident shock wave decreases from about 9.5 percent at XDR8 to about

eight percent at XDR11 between contaminated and pure helium. At the endwall,

contaminated helium experiences about eleven percent higher pressure rise than pure

helium. Clearly, the MoC stagnation pressure due to contaminated helium matches

very well with experiments until the arrival of the reflected shock wave from shock

wave–contact surface interaction in the driven section. Additionally, the strength of

this reflected shock which reaches the endwall at t ≈ 0.12 ms is weaker than that

observed in the pure helium case, but can be seen to agree well with experiments.

As was remarked in the discussion earlier, despite the observed differences in

magnitude in the gasdynamic quantities, the flowfield phenomena are qualitatively

similar between contaminated and pure helium cases. However, when the driven gas

is pure nitrogen, the effect of contamination will not be pronounced in the experi-

mental data reported here, due to the similarity in molecular weights of nitrogen and

air. Additionally, in the case of the detonation driver, reasonable match in plateau

pressures behind the detonation wave was obtained between experiments and MoC
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for all cases. Moreover, higher fill pressures and the simultaneous use of a pressure

gauge and a pressure transducer are also expected to mitigate the possibility and

effect of contamination in the detonation driver.
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CHAPTER 4

PRELIMINARY METHOD-OF-CHARACTERISTICS MODELS FOR FLOWS IN

CHEMICAL NONEQUILIBRIUM1

Chapter 3 showed that IMoC algorithms can reliably estimate the gasdynamic

flowfield in a low enthalpy, detonation-driven shock tube. This chapter investigates

the feasibility of extending the IMoC approach to flows experiencing finite-rate chem-

ical reactions. Despite the inclusion of chemical source terms in the governing equa-

tions, the final MoC form will be shown to be similar to the calorically perfect form

seen earlier. Thus, the original IMoC algorithm can be modified to account for the

chemical reactions occurring in the flowfield.

Before introducing the modified governing equations for nonequilibrium flows,

some aspects of high-temperature gasdynamics need to be outlined. As opposed to

low-enthalpy flows, which can afford a standalone macroscopic treatment, it will be

seen in Chapters 4 through 7, that high-enthalpy flows generally require a hybrid

macroscopic–microscopic approach. Such a treatment is due to the fact that the

laws governing the redistribution of internal energy, for instance, are built from an

understanding of the underlying microscopic processes. From a molecular viewpoint,

any change in the state of a gas is assumed to be purely driven by particle collisions,

be it thermal or chemical. The magnitude of particle collisions required for various
1Contains excerpts from the paper entitled ‘A Method of Characteristics Solver for Unsteady

Quasi-One-Dimensional Chemically Reacting Gas Flows’ by Jayamani, A., and Lu, F. K., AIAA

Paper No: 2021-0315
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state changes to occur vary appreciably which inevitably leads to orders of magnitude

difference in time scales between these phenomena.

Based on the dominant processes of interest, two different time scales can be

defined, for the ease of discussion and for solving the appropriate governing equa-

tions. First defined is the faster of the rate processes [95]—redistribution of internal

energy, called thermal time scale and denoted by τr,t. (In the scope of this chapter,

the primary thermal state change that can occur at a finite rate is the vibrational

excitation/relaxation of the molecular species.) The second time scale concerns the

chemical rate processes—dissociation, or recombination and will be denoted by τr,c.

Finally, for any gasdynamic flow process, a unit flow time scale can be defined as τg.

The abovementioned time scales should be considered local and so, at various

locations in a flowfield, they can assume different values. Thus, for any gasdynamic

flow, the thermal and chemical rate processes can be categorized under three groups,

based on the competition between these time scales. When the flow time scale vastly

outpaces the relaxation time scale τg � τr, the gaseous molecules/atoms do not

undergo enough collisions to bring about the relevant state change. Therefore, the

gas can be assumed to be “frozen” in its initial state, which is called frozen flow.

On the other end of the spectrum is equilibrium flow. In this case, the relaxation

time scale vastly outpaces the flow time scale τr � τg; thus, the gas state can be

assumed to adapt instantaneously to any flow change. Between these two extremes

is a region where the relaxation time scale is of the same magnitude as the flow time

scale τr ≈ τg. Since both gasdynamic and thermochemical perturbations require time

to adapt to each other, flows exhibiting this nature are known as a nonequilibrium

flows.

In the discussions so far, a general notion τr has been maintained for the relax-

ation time scale. As discussed in Chapter 1, thermal and chemical nonequilibrium
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can be treated separately from a theoretical standpoint. Further, flows involving

finite-rate chemical reactions may at times be simplified by assuming that the rate

processes for thermal relaxation occur at infinite speeds [95]. This simplification is

assumed to hold in all the discussions in this chapter with further justifications pro-

vided in subsequent discussions. Therefore, it is underscored that the term chemical

nonequilibrium in this chapter carries with it the assumption of thermal equilib-

rium. Such a simplification is also advantageous for algorithm development due to

the reduction in computational complexity compared to simultaneous thermochemical

nonequilibrium.

This chapter reports the initial investigation into the feasibility of extending

IMoC algorithms to accommodate chemical nonequilibrium. The governing equations

discussed in Chapter 3 were modified to account for finite-rate chemical reactions and

were simplified again using MoC. Sample inverse marching algorithms were developed

with which validation studies were carried out. To check for generality, two different

reaction mechanisms available in the literature were used in the validation studies.

It is stressed that the reliability of the chemical mechanism files themselves have not

been studied here. Instead, assuming a sample mechanism file to be appropriate,

IMoC algorithms are used to solve a representative problem. Corresponding analytic

solutions are also solved using the same mechanism file to test the validity of MoC

algorithms. Since the algorithms developed here can utilize an arbitrary chemical

mechanism file, it is assumed that this approach is acceptable. Finally, the results

from these validation studies show that IMoC algorithms can be successfully extended

to chemically reacting flows.
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4.1 Governing equations

In this theory section, assumptions pertaining to thermochemistry are presented

initially, following which the overall governing equations for a chemically reacting gas

flow are presented. Consider a gaseous mixture which contains n species. Each species

is assumed to be thermally perfect, obeying its respective perfect gas law. Thus, for

a gaseous mixture containing n species

pi = ρiRiT (i = 1, 2, . . . , n) (4.1)

In the above equation, the assumption of thermal equilibrium reduces the static tem-

perature of the gaseous mixture to a single value. By definition, a perfect gas does

not experience intermolecular forces. When a perfect gas is in thermal equilibrium,

it may be argued on molecular kinetic grounds that every gaseous particle behaves as

though the remaining particles were absent [95]. Thus, the static pressure exerted on

any control surface in the system is purely based on the momentum of particles in-

teracting with the surface. For such a gaseous mixture of perfect gases, the net static

pressure exerted by the random molecular motion of the mixture on any surface is

merely the addition of the individual species pressures, given in Eq. (4.1). This is

generally known as Dalton’s law of partial pressures, where pi is the partial static

pressure exerted by a gaseous species i.

p =
n∑

i=1

pi (4.2)

Combining Eqs. (4.1) and (4.2) and using the definition for mass fraction ci , ρi/ρ a

global gas law can written as

p = ρ

n∑
i=1

ciRiT (4.3)
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where the subscript denotes individual species. From the above equation, the mix-

ture’s gas constant becomes

Rmix =
n∑

i=1

ciRi (4.4)

Assume that the considered gaseous mixture is chemically reactive with various

species denoted by Ai. Let all the j possible elementary reactions occurring in the

mixture be given by

n∑
i=1

ν ′ijAi

kfj


kbj

n∑
i=1

ν ′′ijAi (j = 1, 2, . . . ,m) (4.5)

where the number of moles of the reacting species are denoted ν ′ and that of the

products as ν ′′. At any given time, the reactions shown above proceed in both the

forward, that is, left-to-right, and in the backward, right-to-left directions. Asso-

ciated with the progress of these reactions are forward and backward reaction rate

constants denoted by kf and kb respectively. Based on the local thermodynamic state

of the mixture, the reactions in forward or backward direction may dominate. It is

also possible that the forward and backward rates balance each other, in which case

thermochemical equilibrium holds. Clearly, when the mixture is in thermochemical

equilibrium, no spontaneous change of state should occur, thus the state of the mix-

ture is independent of time. However, if the reactions are not in equilibrium, then

the concentration of species [Ai] in the mixture would vary with time. The rate of

production (or depletion) of species in the mixture is given by the species source

function σi,N

σi =
d[Ai]

dt
(4.6)

where σi denotes molar species source function for gaseous species i. This term can

be evaluated based on the law of mass action, which states that “the rate at which an

elementary reaction proceeds is proportional to the product of the molar concentration
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of the reactants raised to the power of their respective stoichiometric coefficients in

he reaction equation” [49]. The proportionality constant is the reaction rate constant

kf when a forward reaction is considered. Thus,

Reaction Rate = kf

n∏
i=1

[Ai]
ν′i (4.7)

Hence, the change in species concentration due to the forward reaction in an elemen-

tary reaction is given as,

d[Ai]

dt
= (ν ′′i − ν ′i)× Reaction Rate (4.8)

which then becomes
d[Ai]

dt
= (ν ′′i − ν ′i)kf

n∏
i=1

[Ai]
ν′i (4.9)

A similar equation holds for the backward reaction so the net change in the concen-

tration of species Ai due to a single elementary reaction becomes

d[Ai]

dt
= (ν ′′i − ν ′i)

[
kf

n∏
i=1

[Ai]
ν′i − kb

n∏
i=1

[Ai]
ν′′i

]
(4.10)

Finally, when all j possible reactions are considered, the overall change in species

concentration of Ai becomes

σi =
d[Ai]

dt

∣∣∣∣
net

=
m∑
j=1

(ν ′′ij − ν ′ij)

[
kfj

n∏
i=1

(
ρci
Mi

)ν′ij

− kbj

n∏
i=1

(
ρci
Mi

)ν′′ij
]

(4.11)

where the molar concentration [Ai] is rewritten for ease of calculations. Since the

gasdynamic governing equations are generally written on a mass basis, the species

source function is likewise rewritten using its molecular weight Mi, namely,

σi = Miσi (4.12)

Equation (4.11), in its current form, requires that the rate constants for both

forward and backward reactions be known. This is often impractical and/or redun-

dant since the rate constants are generally obtained through experiments as will be
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discussed shortly. Fortunately, an expression can be obtained for the relation be-

tween these rate constants when equilibrium holds. It is then assumed that the same

relation also holds at nonequilibrium conditions [95, 103]. At equilibrium with the

forward and backward reaction rates balancing each other, the species source function

is null and Eq. (4.11) simplifies to

kfj
kbj

=
n∏

i=1

(
ρci
Mi

)∆νij

(j = 1, 2, . . . ,m) (4.13)

where ∆ν = ν ′′ij − ν ′ij. At equilibrium, chemical thermodynamics stipulates that the

species concentration of a gaseous mixture be related to the equilibrium constant

through

Kpj = (RT )∆νj

n∏
i=1

(
ρci
Mi

)∆νij

(j = 1, 2, . . . ,m) (4.14)

From Eqs. (4.13) and (4.14), the relation between forward and backward rate con-

stants becomes

kfj
kbj

= Kpj(RT )(ν
′
ij−ν′′ij) (j = 1, 2, . . . ,m) (4.15)

The equilibrium constant Kpj in the above equation is calculated based on the molar

Gibbs free energy at thermochemical equilibrium as

lnKpj = −∆µ

RT
= − 1

RT

[
n∑

i=1

∆νi(hi − Tsi)

]
(j = 1, 2, . . . ,m) (4.16)

where the overline again indicates properties written on a molar basis. Additionally,

hi and si are evaluated at a reference pressure of one bar [104] and the molar enthalpy

hi in the above equation also includes the enthalpy of formation of a given species i.

The reaction rate constants utilized in Eq. (4.11) are obtained from experiments

and fit into the Arrhenius form

kf = Ae(−Ea/RT ) (4.17)
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where A = BTα and is known as the frequency factor which represents the number

of collisions occurring between the reacting particles. The parameter Ea is called

the activation energy which is the minimum energy required for a colliding particle

to enter a chemical reaction. Thus, the exponential term represents the fraction of

particles with energies higher than the activation energy. As seen from Eq. (4.17),

the reaction rate constants only depend on the temperature of the gaseous mixture.

Finally, the governing equations for a frictionless, quasi-one-dimensional gas

flow with no heat and mass transfer are given by

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

1

A

dA

dx
= 0 (4.18a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0 (4.18b)

ρ
∂h

∂t
+ ρu

∂h

∂x
− ∂p

∂t
− u

∂p

∂x
= 0 (4.18c)

where Eq. (4.18c) represents the combined energy and momentum equations. To

obtain an energy equation similar in form to the perfect gas modules developed in

Chapter 3, where the primary dependent variables were p, ρ and u, Eq. (4.18c) is

modified using Eqs. (4.4) and (4.21), and the identity for global enthalpy h ≡
n∑

i=1

cihi

to yield
∂p

∂t
+ u

∂p

∂x
− a2f

(
∂ρ

∂t
+ u

∂ρ

∂x

)
=

n∑
i=1

(γfRiT − (γf − 1)hi)σi (4.19)

In Eq. (4.19), hi includes both the heat of formation and the sensible enthalpy of

species i. For dimensional consistency, the specific enthalpy hi in this case is written

on a mass basis as opposed to the molar basis form hi used in Eq. 4.16.

Similar to the global continuity equation, Eq. (4.18a), in a chemically reacting

gas flow, the rate of change of mass fraction of a species i can be related to its species

source function as

∂ρi
∂t

+u
∂ρi
∂x

+ρi
∂u

∂x
+ρiu

1

A

dA

dx
= σi (i = 1, 2, . . . , n) (4.20)
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Utilizing the global continuity equation Eq. (4.18a) and the definition of mass fraction,

Eq. (4.20) can written as

ρ

(
∂ci
∂t

+ u
∂ci
∂x

)
= σi (i = 1, 2, . . . , n) (4.21)

The gasdynamic conservation equations (4.18a), (4.18b) and (4.19) along with

species continuity equation (4.21) represent the governing equations for an invis-

cid quasi-one-dimensional chemically reacting flow. Similar to the approach used in

Chapter 3, these partial differential equations can be reduced to ordinary differential

equations along the paths of disturbance propagation in the flowfield. Obviously,

these paths and the variation of properties along them are given by characteristic

and compatibility equations respectively. The characteristic equations in this case

become (
dt

dx

)
o

= λo =
1

u
(4.22a)(

dt

dx

)
±
= λ± =

1

u± af
(4.22b)

Equation (4.22a) shows that the pathline denoted by Co is identical to the

calorically perfect MoC form. The remaining two characteristics in this case employ

chemically frozen sonic speed and are denoted by C+ and C−. It is again iterated that

the flow is implicitly assumed to be in thermal equilibrium. For a flow in the positive

direction, C+ represents the propagation of information along the flow, while C−

represents the propagation of information against the flow direction. Additionally,

from Eq. (4.21), it can be seen that the species continuity equation is already in

characteristic form as it represents the material derivative of a fluid parcel traveling

in space and time. The characteristic curve which represents its convection is simply

the pathline, which is again intuitive, as the variation in gas chemistry can only
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happen along its pathline. The compatibility equations valid on a pathline are given

by

dpo − a2fdρo =
n∑

i=1

(γfRiT − (γf − 1)hi)σidto (4.23)

dci =
σi
ρ
dto (i = 1, 2, . . . , n) (4.24)

Equation (4.24) can alternatively be written as

cidpo−a2fdρi = a2fσidto+ci

n∑
i=1

(γfRiT−(γf −1)hi)σidto (i = 1, 2, . . . , n) (4.25)

Equation (4.25) can be obtained either from Eqs. (4.24) and (4.23) or by following

the MoC procedure in Zucrow and Hoffman [49] for a pathline. Obviously, Eq. (4.23)

represents the variation of global mixture properties while Eq. (4.25) represents the

evolution of species, both on a pathline. Note that the compatibility equations for a

pathline have been rewritten with temporal derivative for the ease of numerical inte-

gration. Finally, the compatibility equations valid on the C+ and C− characteristics

are given by

dp± ± ρafdu± =
n∑

i=1

(γfRiT − (γf − 1)hi)σidt± − ρu
1

A

dA

dx
a2fdt± (4.26)

Though the governing equations were derived assuming finite-rate chemistry,

the species continuity equation can be simplified for analysis in the case of chemically

frozen or equilibrium flows. For a frozen flow, the species production term is zero

as τr → ∞ and thus the chemical composition remains fixed. In this case, the

compatibility equations simply reduce to those representing an inviscid flow case in

Chapter 3 and can be solved using the modules reported there, if the gas is calorically

perfect. For a flow in chemical equilibrium, σ → 0 identically as τr → 0, in which

case a simpler chemical equilibrium analysis would provide the gas composition at
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any thermodynamic state. It can be noted that flows in chemical equilibrium can

still be solved numerically using the compatibility equations derived here as τr → 0 is

physically impossible due to the finite number of molecular/atomic collisions required

for chemical reactions. Moreover, the required time steps to capture species evolution

near chemical equilibrium are extremely small, which results in higher computational

cost. For such a case, supplemental chemical equilibrium calculations to predict

species composition change can provide improved accuracy and lesser computational

cost.

4.2 Numerical implementation

The solution algorithm utilizes the characteristic and compatibility equations

developed in Section 4.1 with the inverse marching method detailed in Zucrow and

Hoffman [49]. Briefly, the method calculates flowfield variables at a predefined grid

point based on the properties of the characteristic curves that meet at that grid point.

The characteristics themselves are found by iterative projection from the predefined

grid point to an initial value line. Further simplifications can be applied to these char-

acteristic and compatibility equations depending on the phenomena being involved,

thereby resulting in different solution procedures. For this preliminary study, two

such procedures were developed, which can be called to solve an appropriate prob-

lem. Staying true to Zucrow and Hoffman’s terminology, these modules are called the

interior point module and open-end point module, the description of which follows.

4.2.1 Interior point module

The interior point module reported here is similar to the unit process developed

in Chapter 3. The algorithm reported here is modified from the calorically perfect

modules to account for the chemical source terms in the compatibility equations.
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The overall integration algorithm is split into two steps where the gasdynamic evolu-

tion and chemical evolution are calculated separately. Integration of the gasdynamic

equations is still carried out using the modified Euler predictor–corrector method, but

integration of the chemical rate equations is carried out using MATLAB™’s built-in

stiff ordinary differential equations solver ode15s [105].

To calculate the gas dynamic evolution of a fluid parcel over a time step ∆t,

the characteristic curves in Eqs. (4.22a) and (4.22b) are discretized as

∆to = λo∆xo (4.27a)

∆t± = λ±∆x± (4.27b)

The corresponding compatibility equations on these characteristic curves are dis-

cretized as

∆po − a2f∆ρo = Ω∆to (4.28a)

∆p± ± ρaf ∆u± = Ω∆t± − ρu
1

A

∆A

∆x
a2f∆t± (4.28b)

where

Ω =
n∑

i=1

(γfRiT − (γf − 1)hi)σi (4.29)

Discretization of the chemical rate Eqs. (4.23) and (4.24) is not provided, as they are

integrated using ode15s as detailed later.

The overall solution methodology for an interior point module is illustrated in

Fig. 4.1a. Note that the origins of the C+, C− and Co characteristics are denoted as x+,

x− and xo respectively. Provided with an initial value line 1–3, this module calculates

various flow properties at grid point 4 (x4). As the grid size is user determined, the

values of ∆x and ∆t are known; thus, the location of x4 is known. Further, in an

unsteady, continuous quasi-one-dimensional flow, all three characteristics (Eqs. 4.22a
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and 4.22b) must pass through every point in the space–time continuum [49]. Thus,

the flow properties at x4 can be calculated once the characteristics that intersect at

this grid point are identified.

The algorithm begins with the integration of gasdynamic Eqns. (4.27a)–(4.28b)

assuming thermochemically frozen properties on the characteristics. For the predic-

tor step of a subsonic flow, consider the procedure for a Co characteristic. An initial

estimate for the origin of this characteristic, xo, can be obtained by using the flow

properties at grid point 2 to calculate the slope of Co followed by projecting it back-

ward in time to the line 1–2 from x4. With the new location of xo, flow properties at

the origin of Co are recalculated using linear interpolation between the encompassing

points 1 and 2. Using the new properties obtained at xo, Co is reconstructed and

the procedure is repeated to obtain better approximations for the slope of Co. The

iterations are finally terminated on convergence of the value of xo. Note that for

this case, only gasdynamic properties need to be interpolated since Eq. (4.27a) only

requires values of u and a. At the final step, all the flow properties at the origin of

Co characteristic will be obtained. The same procedure is carried out for the C+ and

C− characteristics, with the initial guesses for x+ and x− being grid points 1 and

3 for a subsonic flow. For a supersonic flow in the positive direction, the origin of

the C− characteristic shifts to the region between grid points 1 and 2, thus changing

the initial guess and interpolating points. But the remaining characteristics and the

overall calculation procedure remain the same as subsonic flow.

Once the locations and thereby the flow properties at the origins of all three

characteristics have been determined, Eqs. (4.28a) and (4.28b) are utilized to solve for

the flow properties at x4, as these equations represent the variation of properties along

the characteristics. In this case, however, interpolation of the chemical source terms

in the compatibility equations is required. Quan et al. [57] report that the variation
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of the source term Ω is generally not drastic even for rocket nozzles; thus, to solve

Eqs. (4.28a) and (4.28b), the value of Ω is simply linearly interpolated based on data

from adjacent grid points. This step would mark completion of the predictor step

for an inert interior point module, as the gas dynamic properties at x4 are obtained

after solving the compatibility equations. For MoC of a chemically reacting mixture

of gases, further integration of the chemical rate equation is necessary to obtain the

species composition at x4.

(a) Interior point module. (b) Open-end point module.

Figure 4.1: MoC solution algorithm.

Once the thermochemically frozen gasdynamic evolution of the fluid parcel has

been calculated, initial information on the evolution of properties along the pathline

are obtained. This information is necessary for solving the chemical rate equations,

as will be apparent further. The compatibility equations representing chemical and

gasdynamic evolution of a fluid parcel are Eqs. (4.23) and (4.24), which are n+ 1 in

number. However, to fix the state of a fluid, two state properties are necessary, in

addition to the gas composition, thus totaling n + 2 variables. To close the number
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equations required to solve the problem, we can either use the density variation or

static pressure variation calculated on the pathline from the frozen calculations. Since

static pressure generally would be the least affected parameter in high temperature

flows, the variation of pressure calculated from gasdynamic evolution is chosen over

density variation. Essentially, we assume that the variation of pressure is linear over

the time step, as we only know the values at the initial and end points. The initial

values of mass fractions on the pathline to be integrated are obtained again by linear

interpolation. Once the material derivative of static pressure and initial mass fractions

on the pathline are fixed, Eqs. (4.23) and (4.24) can be integrated using ode15s to

obtain the updated gas state properties at x4.

The state properties of the gas mixture were evaluated using the Chemistry Sub-

routine described in Appendix B, both during integration of chemical rate equations

and to obtain Ω at grid points 1, 2 and 3 for thermochemically frozen gasdynamic

calculations. This procedure completes the predictor step for the finite–rate chem-

istry interior point solver. Subsequently, the corrector step involves repeating the

same procedure as the predictor step, but using average flow properties for the coeffi-

cients of the exact/total derivatives in the compatibility equations and for the slopes

of the characteristic curves. Repetitive application of the modified Euler predictor–

corrector method along with the integration of chemical rate equations result in the

convergence of required flow properties at x4.

4.2.2 Open end point module

The open end point module, as the name suggests, deals with flow at the bound-

ary of the domain being modeled. For simplicity, only the outflow condition is con-

sidered here. The characteristic curves for this module with a subsonic outflow are

illustrated in Fig. 4.1b, from which it is seen that the C− characteristic does not lie
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within the flow domain. This complicates the solution procedure since the flowfield

surrounding the outlet is necessary to close the number of required compatibility

equations. This could be solved, however, if the flow at the exit is assumed to ad-

just itself immediately to the static pressure imposed by the surroundings, that is,

p4 = pexit. With the value of p4 known, the relations for C+ and Co characteristics

can be used as detailed in the interior point module to calculate the density, velocity

and mass fractions at the exit. For a supersonic flow on the other hand, all three

characteristics originate within the domain and so the exit conditions do not influence

the solution at x4. Thus, the interior point solver could simply be used to solve such

a scenario.

4.3 Validation studies

Validation of the modules discussed in Section 4.2 was carried out by modeling

three different cases and comparing the results to existing methods in the literature.

As the primary aim for developing these modules is to aid in parametric analyses

of shock tubes and tunnels, only reduced chemical mechanism files were used since

these require significantly fewer Jacobian evaluations during integration of the chemi-

cal rate equations. All the mechanism files use modified Arrhenius rate expressions to

represent the rate constants for various elementary reactions. Thermodynamic prop-

erties for individual elements in these mechanism files were modeled based on NASA

Glenn curvefits developed by McBride et al. [104]. With the equations in §4.1, the

NASA Glenn curvefits were used to calculate equilibrium reaction constants, when

the forward reaction rates alone were known in a chemical mechanism.

Though the modules could solve both steady and unsteady flows, current stud-

ies were limited to cases of finite-rate chemistry in steady flows, due to the ready

availability of data and methods for validation of steady-state scenarios. Thus, the
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final solutions were obtained by setting up a domain with initial values followed by

marching forward in time until a specific convergence criteria were met. For the first

two cases described in this section which are one-dimensional, the flowfield was said

to have converged when all the axial static pressure values varied by less than 1 Pa for

two consecutive steps. For the nozzle simulations, flowfield convergence criterion was

said to be achieved when all the mass fractions in the domain converged to within

10−5 over successive time steps and the associated temperatures converged to within

0.1 percent (absolute error was less than 1.5 K). Experience showed that this was

more stringent than the static pressure convergence criterion used in the previous

cases.

4.3.1 One-dimensional supersonic combustor

The first flowfield that was resolved using the new MoC subroutines represented

the simple scenario of supersonic combustion in a one-dimensional duct. The inlet

conditions were specifically chosen to ensure that the gas velocities remained super-

sonic when the reactions go to completion. As the simulated flowfield of interest

spans across the region undergoing chemically reactions, the supersonic flow condi-

tion simplified the development of the MoC combustor model as detailed later. A

fully premixed, stoichiometric hydrogen–air mixture was assumed to be continuously

injected at the inlet. This gaseous mixture was also set to a static temperature signifi-

cantly above the autoignition temperature of hydrogen. With high inlet velocities and

mixture temperatures, the chemical reactions occurring the gaseous mixture can be

studied in the flowfield, as the gas flows through the computational domain. Specific

details about the boundary conditions and the domain are provided in Table 4.1. A

reduced mechanism for H2–O2–N2 combustion based on Shang et al. [106] was used.

This mechanism contains six reacting species and one inert species with a seven-step
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reaction kinetics. The rate data for all the reactions considered in this mechanism

are provided in Appendix A.

Table 4.1: Boundary conditions for supersonic combustor simulation

Case Minlet P1 [Pa] T1 [K] u1 [m/s] Pe [Pa] L [m] Gas

1c 2.25 101 325 1 500 1 996 N/A 0.1 2H2 + O2 + 3.76N2
2c 3 101 325 1 500 2 661 N/A 0.2 2H2 + O2 + 3.76N2

Since the flow through the entire combustor is expected to remain supersonic,

the exit conditions do not influence the flowfield inside the combustor and so this

case could be entirely modeled using the interior point module. Thus, to simulate the

reaction zone, the length of the domain was fixed at 99 percent of the length required

to reach equilibrium temperature. Additionally, in this case, as mentioned above,

information propagation happens only in the downstream direction; thus, conditions

at the inlet completely define the flowfield in the domain. Therefore, the global

algorithm consisted of applying interior point module repetitively from the inlet to

the outlet.

The algorithm was initiated by assuming that the entire domain was in the

same condition as the inlet and the solution was marched forward in time to achieve

steady state. A grid study was performed for Case 1c, as the overall reaction length

was shorter for this case. To fix the grid size, four different cases were run with cell

sizes of 2.00, 1.00, 0.50 and 0.33 mm. The resulting temperatures were compared to

the benchmark solution (discussed below). The maximum deviation in temperature

over the entire domain was found to be ∼ 15.6, 6.3, 2.4 and 1.6 percent respectively

for the cell sizes. An accuracy of 2.4 percent was deemed acceptable for the purpose

of this preliminary study and a grid size of 0.5 mm was chosen to simulate both the
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cases. The temperature profiles in the combustor due to various grid sizes considered

are shown in Fig. 4.2.

Figure 4.2: Temperature profile variation with grid size.

Finally, results obtained here were compared to the those obtained using the

zndsolve module in the Shock and Detonation Toolbox (SDT) [107], which was

equivalent to the steady-state case modeled here. A comparison of temperature and

Mach number for Case 1c is given in Fig. 4.3a, with the corresponding comparison of

molefractions given in Fig. 4.3b. A similar comparison for Case 2c is given in Figs.

4.4a and 4.4b, for which the maximum deviation in temperature was found to be

∼ 1.5 percent. The effect of smearing of the solution could be seen as an early onset

of ignition in both the cases. This also caused the plots of temperature, Mach number

and mass fractions to be offset from the values calculated by SDT in the region of

rapid chemical reactions. However, the final state at the exit of the combustor was

still found to match within 0.1 percent of SDT results for both the cases.
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(a) Mach number and temperature

(b) Molefractions

Figure 4.3: Comparison of MoC and SDT results for supersonic combustion, Case 1c.

4.3.2 Chemical non-equilibrium behind a normal shock

This case simulated finite-rate chemistry behind a high velocity normal shock

wave traveling in air. The domain simulated was essentially the same as that of the

supersonic combustor, that is, a one-dimensional duct, but the solution procedure and
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(a) Mach number and temperature

(b) Molefractions

Figure 4.4: Comparison of MoC and SDT results for supersonic combustion, Case 2c.

boundary conditions differ from the previous case as detailed further. For the ease

of simulation, the flow behind a normal shock was simulated in the shock frame of

reference as discussed further. Consider a constant velocity normal shock traveling in

a duct as shown in Fig. 4.5a. Through Galilean transformation, this can be converted
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into a steady shock wave as shown in Fig. 4.5b. In the shock frame of reference, the

flow behind the shock front can be treated as one-dimensional duct flow.

(a) Unsteady shock wave. (b) Transformed steady shock wave.

Figure 4.5: Galilean transformation of an unsteady normal shock wave.

In the transformed frame of reference, the inlet conditions to the duct are the

post-shock gas properties. When the incoming gas stream is in thermochemical equi-

librium, the finite-rate relaxation behind the shock wave (and thereby the duct) can

be assumed to occur in two stages, that is, thermal and chemical relaxation [95]. As

discussed earlier in this chapter, the flowfields considered here are always assumed

to be in thermal equilibrium. Thus, all the modes of molecular internal energy such

as translational, rotational and vibrational modes equilibrate instantaneously at the

post-shock conditions across the shock front. Since the timescales associated this

phase are negligible, the incoming gas stream can be assumed to be chemically frozen

in composition across the shock front. Behind the shock front, the flow then expe-

riences a relatively larger, second region where the chemical reactions proceed in a

finite-rate towards equilibrium.

The process described above was used to define the boundary conditions of

the computational domain shown in Fig. 4.6. Additionally, the flow behind a shock

wave is subsonic in the shock frame of reference. Therefore, the entire computational
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Figure 4.6: Boundary conditions for the normal shock simulation

domain is also subsonic, which results in information being propagated both upstream

and downstream in the flowfield. Thus, the exit boundary condition of the “duct”

will influence the entire flowfield in the domain. Though the flow at the exit could

be modeled using the open-end point module, correct exit boundary conditions must

be chosen, as any error in the imposed pressure at the exit plane would cause errors

in the solution of the entire flowfield. It was assumed that if the duct length was

chosen far away from the “inlet”, where equilibrium conditions would be achieved,

then the exit pressure would simply be the equilibrium post-shock pressure. This

could be calculated based on the iterative procedure outlined in Vincenti and Kruger

[95] for a normal shock under thermochemical equilibrium. The “inlet” conditions,

on the other hand, were the thermally equilibrated, but chemically frozen post-shock

conditions as described earlier. These were calculated again using the same iterative

method as that for the equilibrium shock, but the chemical composition was frozen

at the pre-shock state, while seeking convergence of static enthalpy.

Table 4.2: Boundary conditions for stationary normal shock

usl [m/s] P0 [Pa] T0 [K] P1 [kPa] T1 [K] u1,sw [m/s] Pe [kPa] L [m] Gas Composition

3 754 1 773.19 223.9 337.85 5 688.7 500.58 350.17 0.0250 0.22O2 + 0.78N2
3 754 1 773.19 223.9 337.85 5 688.7 500.58 350.17 0.017 5 0.22O2 + 0.78N2
3 754 1 773.19 223.9 337.85 5 688.7 500.58 350.17 0.015 0 0.22O2 + 0.78N2
3 600 1 773.19 223.9 310.37 5 278.3 484.90 321.20 0.017 5 0.22O2 + 0.78N2

143



Two validation cases have been simulated with normal shock velocities of 3 754

m/s (Case 1s) and 3 600 m/s (Case 2s). Further information on the boundary condi-

tions are shown in Table 4.2. The reaction mechanism used here is the five species,

six-step reduced Dunn–Kang model developed by Shuen et al. [108]. The rate con-

stants used in this chemical mechanism are provided in Appendix A.

Validation for this case was again performed against SDT, using the integra-

tion procedure included for the reaction zone behind a Zeldovich–von Neumann–

Doring detonation model, which represents similar finite-rate chemistry behind a

steady chemically frozen normal shock wave front. Since a different working gas was

used for this case compared to the supersonic combustor case, the grid study was

repeated to ensure that the final results were independent of grid size. For the grid

study, a domain length of 0.027 m was chosen, as the static pressure behind the nor-

mal shock changes less than 1 Pa after this location. Again, the temperatures due

to different grid sizes were compared to that simulated through SDT and are shown

in Fig. 4.7a. For grid sizes of 2.00, 1.00, 0.50, 0.25 and 0.125 mm, the maximum

deviation in static temperatures from SDT were ∼ 9.2, 5.1, 3, 1.8 and 1.0 percent

respectively. Thus, further simulations discussed here used a grid size of 0.25 mm.

First, the sensitivity of the numerical solution to the domain length was studied. Two

additional cases with the domain lengths listed in Table 4.2 were simulated to ensure

that the domain length chosen was appropriate. The results of this study are shown

through the temperature profiles in Fig. 4.7b. It was seen that all three cases ex-

hibited temperatures that were within 0.01 percent of each other. Thus, the original

domain length of 0.027 m was deemed appropriate for these simulations.

As opposed to the supersonic combustor case where thermal ignition occurred

after an ignition delay, the flow behind a normal shock wave contains an immediate

region of rapid relaxation. Even under these conditions, MoC results for all the
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(a) Effect of grid size on temperature profile.

(b) Effect of domain length on temperature profile.

Figure 4.7: Preliminary studies for determining grid size and domain length: normal
shock wave case.

state properties differ from SDT results by a maximum of 1.8 percent for Case 1s.

Additionally, for Case 1s, it is observed that all the state properties at exit differ by

less than one percent from SDT predictions, with the molefractions for molecular and

atomic oxygen differing by about three and two percent respectively. Comparison of
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MoC results against SDT results for case 1s is shown in Fig. 4.8, while that for case

2s is shown in Fig. 4.9.

(a) Temperature and density.

(b) Molefractions.

Figure 4.8: Comparison of results from MoC and SDT for normal shock wave in air,
Case 1s.
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(a) Temperature and density

(b) Mass fractions

Figure 4.9: Comparison of results from MoC and SDT for normal shock wave in air,
Case 2s.

The mole fractions of all reacting species have been plotted in Figs. 4.8b and

4.9b. It is seen that the model captured the continuous dissociation of molecular

oxygen into atomic oxygen, which is expected since the temperature was significantly

above 2 000 K (and the static pressure was still comparable to 1 atm). In the case
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of nitrogen, from Fig. 4.8b, it can be seen that dissociation occurred until the tem-

perature dropped to ∼4 300 K, after which the concentration of molecular nitrogen

began to approach equilibrium around ∼4 000 K. For Case 2s, maximum deviation

of all state properties and molefractions were less than about one percent from SDT

results. Since the post-shock temperature was significantly lesser than Case 1s, re-

laxation occurred less rapidly compared to Case 1s, which resulted in a better match

against SDT results, as seen in Fig. 4.9.

4.3.3 Chemical non-equilibrium flow in a nozzle

The cases simulated above were constant area duct flows with small pressure

ratios across the inlet to exit, as the effect of finite-rate chemistry was the primary

phenomenon of interest. Additionally, in both the cases, the gas state approached

equilibrium values at the exit of the domain and the MoC modules were able to

capture that phenomenon accurately. This case in contrast models the gasdynamic

expansion of the reservoir gas in a hypervelocity nozzle, where the chemical compo-

sition may not always reach equilibrium state. The nozzle geometry utilized here is

based on the nominal geometry reported in Gu et al. [109]. The converging section of

the nozzle is conical with a 10°half angle. The inlet has an area-ratio of 21.78, with

the throat radius being 15 mm. The diverging section of the nozzle is also conical,

but with a smaller half angle of 6°. The region near the throat joins smoothly with

the converging and diverging sections with a radius of curvature twice the throat

radius. The reservoir conditions also mirror those used by Gu et al. [109], which will

later be compared here with the thermochemical nonequilibrium simulations. The

test gas is air, represented by a mixture of 78 percent molecular nitrogen and 22

percent molecular oxygen by volume. The reservoir condition assumes the test gas to

be in thermochemical equilibrium at 1 MPa and 4 000 K. The chemical mechanism
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file used to capture finite-rate chemistry is again the five species, eleven reaction,

Reduced Dunn–Kang mechanism (see Appendix A).

Figure 4.10: Schematic of the nozzle boundary conditions and mesh.

A schematic of the computational domain is shown in Fig. 4.10. At design

operation where the nozzle exit flow is supersonic, the entire nozzle flowfield can still

be simulated using the interior point module, as the compatibility equations were

written for a quasi-one-dimensional domain. Thus, overall nozzle algorithm is similar

to that of supersonic combustor. The flowfield however differs, as the nozzle consists

of a combination of subsonic and supersonic regions. Since the outflow is still super-

sonic, the surrounding atmosphere and the backpressure do not influence the nozzle

flowfield and once again, the interior point solver can be used as before. For the ease

of simulation, the entire flowfield is initiated to the calorically perfect gas solution,

after which the interior point algorithm marches in time over the computational do-

main to achieve steady state. The boundary conditions for this simulation are shown

schematically in Fig. 4.10. Since the converging section of the nozzle experiences

near equilibrium flow, the inlet properties are calculated from typical equilibrium

nozzle relations [49, 103, 95] based on the reservoir gas state and inlet geometry. In

addition to the MoC simulation, an ODE solver was developed to resolve the finite-

rate chemistry occurring in a quasi-one-dimensional (Q1D) flow. The results from
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Figure 4.11: Nozzle temperature profile variation with grid size.

these calculations were used to validate the Q1D time-marching MoC solution. For

a description of the ODE solver, see Appendix C.

First, a grid study was carried out to ensure grid convergence in the compu-

tational domain. As the steady nozzle flowfield turns supersonic near the throat, in

addition to drastic variation of flow properties, careful discretization of the domain is

necessary to avoid numerical instabilities. Thus, the grid structure in this simulation,

as shown schematically in Fig. 4.10 was non-uniform, as opposed to the previous cases.

The throat was taken to be the origin of discretization in all the cases discussed here.

From the initial point at the throat, a growth factor of 1.005 was used to create the

grid along either direction in the nozzle. Thus, if the dimension of the initial spatial

grid is fixed, then the entire nozzle can be discretized (along one spatial dimension)

based on the growth factor and the converging-diverging section axial dimensions.

This initial grid size, shown in Fig. 4.11 as ∆x was varied from 10.00 mm to 1.00

mm. As the grid size was reduced, the difference between the MoC and ODE solu-

tions reduced from ∼ 28.9 through 14.9, 7.35 to 4.0 percent finally. Given that the

150



1.00 mm grid size was already computationally intensive and the MoC temperatures

seem to approach the ODE solution, the 1.00 mm grid size was deemed acceptable for

this preliminary study. Thus, further comparisons with the ODE solutions employ

the results from 1.00 mm case.

Figure 4.12 shows the comparison of various gasdynamic properties in the noz-

zle due to MoC and the ODE solver. Quantitatively, the molefractions and velocities

calculated by MoC are within one percent of the ODE solution. The maximum differ-

ence in densities and temperatures throughout the nozzle due to the MoC and ODE

solvers are within 4 percent. The static pressure on the other hand varies by about

8 percent at the nozzle exit between these models. Note that the gasdynamic ex-

pansion results in a static pressure drop of ∼ O(10−4) throughout the nozzle. Thus,

the actual difference in static pressures at the exit is ∼ 20 Pa. Given the drastic

variation of gasdynamic properties throughout the nozzle and the interior point algo-

rithm linearly interpolating the gasdynamic properties between two grid points, the

accuracies obtained here are satisfactory. Qualitatively, it can be seen that all the

properties vary gradually in the converging section, followed by steep gradients near

the throat. The molefractions of molecular nitrogen and oxygen increase from their

reservoir state due to chemical recombination until a location slightly downstream of

the nozzle throat. In the same region, the molefraction of atomic oxygen can be seen

to decline correspondingly. As is known generally, the chemical composition of the

test gas freezes slightly downstream of the nozzle throat due to falling reaction rates

and higher test gas velocities [110].
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(a) Mach number and temperature.

(b) Velocity and static pressure.

(c) Species Molefractions.

Figure 4.12: Comparison of nozzle flow properties between MoC and ODE Solver, see
Appendix C
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CHAPTER 5

VECTORIZATION OF INVERSE METHOD-OF-CHARACTERISTICS

ALGORITHMS 1

It is evident from the previous chapter that IMoC can resolve nonequilibrium

flowfields. However, it is also evident that flowfields with steep gradients were not

reproduced with great accuracy and that a large numerical grid would be required to

reproduce solutions in such flowfields. This can be attributed to two primary aspects

discussed further.

The original IMoC algorithm as described in the previous chapters integrates

all the characteristics from an initial value line to a pre-determined grid point. This

procedure requires that the characteristics of interest be identified first, which in

turn requires that the gasdynamic properties be known everywhere on the initial

value line. Since this is impossible to construct, the gasdynamic properties are only

logged on at the pre-determined grid points. These locations can then be used for

interpolation of various properties at intermediate locations. Additionally, the original

IMoC algorithms were developed for calorically perfect gas flows where gasdynamic

properties could be reasonably interpolated linearly between these grid points. In the

case of flows with finite rate processes with steep gradients in thermochemical state,

the accuracy of the solution may degrade under linear interpolation as seen earlier.
1This material was presented at the 34th International Symposium on Shock Waves Symposium

as a paper entitled ‘Vectorization of Inverse Method-of-Characteristics Algorithms for Quasi-One-

Dimensional Unsteady Flows’ by A. Jayamani, and F. K. Lu.

153



Secondly, the overall algorithm performance is limited by the MoC subroutines,

as every grid point must be individually solved by repetitively invoking the interior

point algorithm. A reduced-order model employing these MoC subroutines incurs a

rapidly increasing computational cost as the number of grids employed in a domain

increases. Thus, for the overall reduced-order models to improve in efficiency, the

MoC algorithm itself needs optimization. On further scrutiny of the inverse marching

algorithms discussed so far, it is seen that the hyperbolic nature of the governing

equations along with the numerical integration carried over a known x−−t grid, de-

couples the flowfield evaluation for all the grid points at a given time step. Since the

solution algorithm for a continuous region remains the same, these repetitive calcula-

tions can be optimized through vectorization. With modern programming tools and

increased computational power, such an optimization of the MoC algorithms could

vastly improve their computational efficiency and thereby help in building efficient

reduced-order models.

To solely focus on revising and optimizing the original IMoC algorithms, the

complexity of accounting for finite-rate processes is forsaken for the time-being. In-

stead of utilizing the calorically perfect model discussed in Chapter 3, a thermally

perfect gas model is chosen. This model provides some relevance to the finite-rate

algorithms in terms of evaluating various thermochemical properties, as will be seen

throughout the remainder of this work. Thus, this chapter discusses the extension of

original calorically perfect IMoC approach to thermally perfect gases, in addition to

their optimization through vectorization.
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5.1 Governing equations

Similar to the approach in Section 3.1, the governing equations for a quasi-one-

dimensional unsteady flow of a thermally perfect gas can be written as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

1

A

dA

dx
= 0 (5.1a)
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− uβ

]
≡ ψ (5.1c)

As the above equations apply for a thermally perfect gas flow, γ = f(cp) = f(T ). In

the momentum (5.1b) and energy (5.1c) equations, the volumetric sink terms repre-

sent momentum and heat losses respectively. While these terms have been retained in

all the equations and in the MoC subroutines, the effect of losses are not considered

here for brevity. Thus, in the MoC models discussed here, these sink terms have been

set to zero (ψ = 0, β = 0).

The MoC is used to reduce Eqs. (5.1a–5.1c) to ordinary differential equations

called compatibility equations as given by[
dp

dx

]
o

− a2
[
dρ
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]
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]
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The subscripts added to the above equations as before denote the characteristic curves

along which these compatibility equations are valid. These characteristic curves them-

selves are given by [
dt

dx

]
o

= λo =
1

u
(5.3a)[

dt

dx

]
±
= λ± =

1

u± a
(5.3b)
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The characteristic curve given by Eq. (5.3a) represents the trajectory of a fluid parcel

and is the pathline. The characteristics given by Eq. (5.3b) represent acoustic waves

which carry the information about perturbations in a given flowfield. Thus, these are

the unsteady Mach lines that propagate on either side of a fluid parcel. Together,

the characteristic and compatibility equations describe a given continuum flowfield

evolution and therefore are again the basis of the numerical procedure to determine

a given flowfield.

Typical numerical methods employed to solve the characteristic and compatibil-

ity equations fall under two categories—direct marching and inverse marching meth-

ods. Since the problem is hyperbolic, both these methods require that all the gasdy-

namic and thermochemical properties be known along an initial value line. Thereon,

direct marching methods, as the name implies project multiple characteristics for-

ward in time to identify their intersecting point. Depending on the nature of the

problem, another characteristic may be projected back from the intersection to the

initial value line. Since the properties at the intersecting location are not known

initially, the slopes of the characteristics are guessed at first, which results in an iter-

ative procedure to determine the intersecting point and thereby the properties at that

location. When this procedure is repeated for a sufficient number of characteristics, a

‘characteristic net’ is produced where the flowfield properties are known at the inter-

section points. The inverse marching method in contrast, resolves the flowfield on a

predefined space-time grid where the flowfield properties are sought. With the initial

value line and a defined solution point in space-time co-ordinates, this method firstly

guesses the required properties at the solution point and then iteratively projects

all the characteristics back to the initial value line. As the iterations progress, the

estimated characteristics better approximate the actual characteristics and so the

gasdynamic and thermodynamic properties converge at the solution point. In this
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study, the numerical approach utilizes inverse marching algorithm, which has lent

itself to vectorization readily. When equilibrium or non-equilibrium calculations are

performed, vectorized algorithms provide significant improvement in computational

efficiency, which is desirable for reduced-order models.

5.2 MoC unit processes

In the quasi-one-dimensional, unsteady flowfield considered here, the expected

gasdynamic waves are shock waves, contact surfaces, weak compression and rarefac-

tion waves. Each of these waves can be resolved by utilizing the characteristic and

compatibility equations developed in the previous section directly or with the aid

of supplementary conditions. These individual MoC algorithms representing specific

gasdynamic waves are called unit processes. When the wave mechanics of a given

gasdynamic flowfield are known, representative unit processes can be assembled to

build a reduced-order model and resolve the overall flowfield. Typically, disconti-

nuities such as shock waves and contact surfaces represent a negligible portion of a

given flowfield. Almost the entirety of the flowfield is thus made up of continuous

waves, which are primarily weak compression and rarefaction waves. The unit process

associated with these continuous waves, the interior point solver naturally becomes

the prime candidate for vectorization. For better comparison, the original interior

point solver is briefly discussed again, followed by a description of the new vectorized

approach.

A schematic for the interior point solver algorithm is shown in Fig. 5.1. As this

MoC scheme uses the inverse marching method, calculations are carried out over a

pre-defined space–time (x–t) grid. Figure 5.1, for instance will be a small region in the

overall flowfield and the coordinates of grid points 1–4 will be known. Additionally,

all the flow properties will be known at locations 1, 2 and 3, which is the initial value
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Figure 5.1: Interior point algorithm.

line. For obtaining flow properties in between these points linear interpolation is

used. The solution procedure to calculate all flow properties at location 4 is based on

the Euler predictor–corrector method utilizing discretized forms of Eqs. (5.2a–5.3b)

shown below,

(x4 − xo) = u∆t (5.4a)

(x4 − x±) = (u± a)∆t (5.4b)

(p4 − po)− a2(ρ4 − ρo) =
ψ

u
(x4 − xo) (5.4c)

(p4 − p±)± ρa (u4 − u±) = (ψ ± aβ − ρua2
1

A

dA

dx
)∆t (5.4d)

The first step in this procedure identifies all the characteristics that pass through

location 4. Assuming that the CFL condition is satisfied [49], all these characteristics

must originate in between locations 1 and 3. Thus, the flowfield data along the initial

value line and Eqs. (5.4a)–(5.4b) can be utilized to identify all the characteristics

arriving at location 4. Since the MoC algorithm to identify these characteristics is

similar, the general procedure can be illustrated through that for the λ+ characteristic.

For the initial calculation, the values of various properties at location 4 are not known.
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Thus, the initial guess for these properties is taken to be those at location 1. Using

these flow properties and the coordinates of location 4, Eq. (5.4b) can be solved to

identify x+ on the initial value line. Then, all the flow properties at x+ are evaluated

through linear interpolation utilizing the known flow properties at locations 1 and

2. Now, the slope of the λ+ characteristic can be updated based on the average

flow properties at locations x+ and x4, and the process repeated until the value of

x+ converges. Thereafter, the remaining characteristics must be identified using a

similar procedure, but depending on the expected locations of x− and xo, the initial

guesses and interpolation data differ.

Care was exercised when choosing the initial guesses and locations for inter-

polation, as the origin of all of the characteristics can differ between supersonic and

subsonic flows moving in the positive and negative directions. Depending on the

specific problem, an aphysical initial guess in a supersonic flowfield may lead to in-

stabilities. Consider a supersonic flow spanning across locations 1, 2 and 3. The λ−

now will originate from the region between locations 1 and 2. If an initial guess is

chosen between locations 2 and 3, the solution may become unstable. The situation

is even worse if the interpolation for λ− is carried out between locations 2 – 3 instead

of 1 – 2.

Once all the characteristics have been identified, Eqs. (5.4c) and (5.4d) are

simultaneously solved to identify the properties at location 4. In the finite difference

equations (5.4a–5.4d), properties without a subscript represent average values on the

characteristic. Finally, the entire process described above is repeated with the newly

calculated values for location 4 and iterations are carried out until the flow properties

at location 4 converge.

An implementation of the above-described interior point solver in a hypothetical

flowfield is shown in the first row of Fig. 5.2. When grid points I–IV are solved by this
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Figure 5.2: Implementation of vectorized interior point solver.

method, the same process is repeated for every location, which is computationally

inefficient. Given that the characteristics passing through all the grid points in a

continuous region (locations I–IV in this case) can be determined independently, Eqs.

(5.4c) and (5.4d) can be efficiently solved using vectorization as described below.

Similar to the original algorithm, the characteristics passing through all the

grid points are identified first. To identify the λ+ characteristics passing through

every desired grid point, Eq. (5.4b) is again used. In this case, the initial guesses

for the solution points I–IV are taken to be the values at the same physical location,

but at the previous time step. For instance, if Fig. 5.1 represents a specific grid

point in the vectorized algorithm, the initial guesses for various flow proerties at

x4 are those at x2. For simplicity, these values are also used as the initial guesses

to calculate the slopes of all the other characteristics in the Euler predictor step.

Additionally, piecewise cubic curvefits are provided for the distribution of all the

required properties along the initial value line to circumvent interpolation issues. In

a global algorithm, these curvefits can be created for the entire continuous region I–IV

at a given time-step for better accuracy and efficiency. With these modifications, Eq.

(5.4b) can be simultaneously solved for locations I–IV, similar to the original interior
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point algorithm. Such a vectorized integration procedure is schematically shown in

the second row of Fig. 5.2. As depicted in Fig. 5.2, with this approach every iteration

of Eq. (5.4b) provides the x+ values for all the λ+ characteristics. When all the x+

values and thus the λ+ characteristics converge, the same approach is repeated for

the remaining characteristics, but with appropriate characteristic equations. Finally,

the compatibility relations, Eqs. (5.4c) and (5.4d) are also simultaneously solved for

all the locations at once. This procedure is then repeated until all the flow properties

converge at all the desired solution points. Using this approach, an entire continuous

region in a flowfield can be simultaneously evaluated with a single function call to the

interior point algorithm.

The description above provides a generic vectorized algorithm for the interior

point solver. Clearly, the calculations for a thermally perfect gas must accommodate

the variation of specific heats and their ratio γ with respect to static temperature. In

the MoC algorithm reported in this chapter, curvefits of these properties were created

during every simulation. For a given initial gas composition, the NASA Glenn ther-

modynamic data library [104] was imported into Cantera [85] to calculate chemically

frozen mixture properties at a temperature range of interest. These data were then

utilized to create piecewise cubic curvefits in MATLAB® as a function of tempera-

ture. Note that the overall simulation run times reported in §5.3 include that required

to construct these curvefits. Though the characteristic and compatibility equations

shown here and Chapter 3 look identical, the key difference lies in the calculation

of sonic velocity (within the scope of this chapter). For a thermally perfect gas, the

static pressure and density calculations are similar to that of a calorically perfect MoC

algorithm. Thereafter, instead of using a constant γ, the thermally perfect algorithm

uses the local static temperature to determine γ using the thermodynamic curvefits,

which in turn is used to calculate the local sonic velocity.
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In addition to the interior point solver, the calorically perfect MoC algorithms

for shock waves, contact surfaces and wall points [49] were also extended to accom-

modate a thermally perfect gas. But these algorithms were not vectorized and are

only discussed briefly here. The thermally perfect contact surface algorithm shown

schematically in Fig. 5.3a closely resembles the calorically perfect algorithm from

Chapter 3. This may be seen from both Fig. 5.3a and the discretized characteristic

and compatibility equations for the contact surface algorithm, Eqs. (5.5a)–(5.5e).

The only practical difference between these two algorithms is the use of curvefits in

sonic velocity calculations and in the interpolation procedure to evaluate the depen-

dent variables along the initial value line.

(a) Contact surface. (b) Shock wave.

Figure 5.3: Algorithms for discontinuous waves.

The contact surface algorithm differs from the interior point algorithm, as the

location the contact surface at the end of the time-step, x4, is not known a priori

and must be determined as a part of the solution. Thus, for the initial step of the
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algorithm x4 is approximated by projecting the contact surface over the current time-

step using its velocity at x2 and Eq. 5.5a.

(x4 − x2) = u∆t (5.5a)

(x4 − x±) = (u± a)∆t (5.5b)

(p4 − p2)− a2l (ρ4l − ρ2l) =
ψl

u
(x4 − x2) (5.5c)

(p4 − p2)− a2r(ρ4r − ρ2r) =
ψr

u
(x4 − x2) (5.5d)

(p4 − p±)± ρa (u4 − u±) = (ψ ± aβ)∆t (5.5e)

Based on the value of x4 and Eq. 5.5b, both λ+ and λ− characteristics can be re-

solved using the typical IMoC algorithm. For the thermally perfect case, the modified

IMoC algorithm requires curvefits for thermally perfect gas properties and initial value

curvefits for all the dependent variables on either side of the contact surface. Thus,

in Fig. 5.3a, the grid points 1 and 3 are merely placeholders for the initial value line.

The available curvefits and therefore the known initial value line would typically span

between 2l, or 22r and another boundary which may be a discontinuity or the domain

wall. Thus, the initial value curvefits supplied to the contact surface algorithm en-

compass more information than necessary, as the time-step calculated based on the

CFL criterion ensures that x2 − x+ < ∆x. But, these curvefits have still been used

to retain consistent interpolation accuracy between all the MoC algorithms and for

simplicity in the expansion tube algorithm. Also, given the possibility that the gas

on either side of the contact surface may be different, appropriate thermodynamic

curvefits must be used in evaluating γ on the left and right sides of the contact sur-

face. Once all the characteristics have been identified, the compatibility equations,

Eqs. (5.5c)–(5.5e) can be solved similar to Chapter 3 to identify all the properties on

both the sides of the contact surface, which completes the predictor step. Now, the
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corrector step can be carried out for Eqs. (5.5a)–(5.5e), as all the flowfield values at

x4 are known from the predictor step. Subsequently, the corrector step is iteratively

applied until the location x4 and all the dependent variables at x4 converge.

The thermally perfect shock wave algorithm, shown in Fig. 5.3b incorporates

concepts from both the contact surface and interior point algorithms. The overall

approach again treats the flowfield ahead and aft of the shock wave separately. The

shock speed is simultaneously varied so that the post-shock properties match those

across the trailing characteristic that overtakes the shock wave. Similar to the above

contact surface algorithm, initial value curvefits on either side of the shock wave are

supplied to the algorithm. The shock wave is projected over the current time-step

to identify x41. Using this location and the initial value curvefits, the interior point

solver is invoked to identify the flowfield properties ahead of the shock wave. With

the pre-shock gas state known, thermally perfect shock wave relations are utilized

to calculate post-shock properties denoted 41l in Fig. 5.3b. Then, the trailing char-

acteristic λa+ can be identified based on x41 and u41 using Eq. (5.4b). Finally, the

compatibility relation, Eq. (5.4d) is used to obtain the static pressure, p41 across the

trailing characteristic. Comparing the value of p41 between the λa+ characteristic and

the post-shock properties, the shock speed is adjusted for the next iteration. The

above procedure is repeated until the post-shock properties match those across the

trailing characteristic.

5.3 Expansion tube model

The expansion tube is a high-enthalpy impulse facility which can generate test

gas flows with negligible dissociation. As shown in the schematic of Fig. 5.4, the

facility essentially consists of three sections isolated by diaphragms and filled with
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different gases. The driver section is filled with a light gas at a high pressure. In some

cases, this section may be heated to achieve higher driver performance. The driven

section contains the test gas. The acceleration section or simply the accelerator

is nearly at vacuum regardless of the fill gas. The test section, not shown in the

schematic, may follow the accelerator immediately or after a non-reflected nozzle.

Figure 5.4: Expansion tube operation and algorithm (nomenclature in the text)

An idealized wave diagram depicting typical expansion tube gasdynamics is also

shown in Fig. 5.4. The facility operation begins when the diaphragm separating the

driver and driven sections is ruptured. The high-pressure driver gas then expands into

the driven section creating a shock wave instantaneously. This process is idealized

as a centered rarefaction wave (RW1) in the driver and as the shock wave (SW1) in

the driven section. The interface between the driver and driven gases is idealized
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as impermeable and massless membrane, the contact surface (CS1), which travels at

the local fluid velocity and thus is also a pathline. By design, the fill pressure ratio

between the driver and driven sections is limited to prevent dissociation in the test

gas behind (SW1). As the driven shock wave (SW1) reaches the end of the test gas

slug, the diaphragm separating the driven and acceleration sections is assumed to

disappear instantaneously. Thus, the shock processed test gas between the driven

shock wave (SW1) and the contact surface (CS1) now expands into the acceleration

section through a rarefaction wave (RW2) resulting in a shock wave (SW2) in the

accelerant gas. Thus, wave system across the driven and accelerant gases resembles

that across the driver and driven gases. From Fig. 5.4, it also seen that the leading

characteristic of the test gas rarefaction wave (RW2) has a positive slope, which is

caused by the supersonic gas velocity of the driven gas in region 2 . This is in contrast

to the negative slope of the leading characteristic in (RW1), due to the quiescent driver

gas. As discussed in Chapter 2, the driven gas which has been finally accelerated to

state 7 forms the test gas. Therefore, if a test article placed at the end of the

acceleration section, the test time would begin with the arrival of contact surface

(CS2) and end with either the trailing or reflected characteristic of the rarefaction

wave (RW2).

Each of the wave processes in the expansion tube operation shown in Fig. 5.4 can

be resolved using MoC algorithms similar to the detonation tube algorithm in Chapter

3. The expansion tube algorithm similarly requires that the facility geometry and

initial fill conditions be known. Then, the unsteady facility flowfield can be solved over

an x–t grid, which is shown partially in Fig. 5.4. The actual grid would spatially span

across the entire facility and temporally span from the instant of primary diaphragm

rupture to some user-specified time. The overall expansion algorithm can be briefly

summarized as follows.
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From the facility fill conditions, the initial values for the driven shock wave

(SW1) and contact surface (CS1) can be found using the pressure-velocity diagram

described in Chapter 3. These values along with the CFL criterion provide the con-

straints for constructing the x–t grid on which the facility flowfield will be resolved,

see Fig. 5.4. Thereon for every timestep different MoC algorithms are called to re-

solve the flowfield evolution. Discontinuities are appropriately resolved by the shock

wave or contact surface MoC algorithms. The flowfield at the left wall is solved by

the wall point algorithm. The interior point solver is then called twice to resolve

the continuous regions—first, for the region between the wall and (CS1) and then for

that between (CS1) and (SW1). Typical of IMoC algorithms, the grid points near

discontinuities are populated by interpolation. In this case, the interpolation data is

obtained from piecewise cubic curvefits created for the vectorized interior point solver.

As observed earlier in Chapter 3, there should be negligible difference in the results

due to interpolation and a dedicated MoC algorithm that resolves near-discontinuity

grid points. During the initial few steps of the expansion tube algorithm, the analyt-

ical solution is used (instead of the interior point solver) for resolving (RW1) to avoid

interpolation errors. Clearly, a centered rarefaction wave spanning two grid-points at

the most cannot be used to construct a piecewise cubic curvefit solely based on the

gasdynamic properties at those grid points. Thus, resorting to the use of analytical

solution for describing the properties of (RW1) results in fewer numerical problems

caused by IMoC smearing and therefore higher accuracy. This procedure for a single

time-step is then repeated until (SW1) reaches the secondary diaphragm at the end

of driven section.

Based on the wave diagram discussion above, the secondary diaphragm is as-

sumed to instantaneously disappear once the driven shock wave (SW1) reaches its

location. Subsequently, the transmission of (SW1) into the acceleration section can
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solved by the pressure-velocity diagram, but now the “driver” gas is also traveling

at supersonic velocities. Since the pressure-velocity diagram can take into account

non-zero driver gas conditions, this can be easily accounted for. Typically, the driven

shock wave (SW1) crosses the secondary diaphragm in between a time-step. In this

case, the trajectory of the accelerant (SW2) as it arrives at the end of the time-step can

be determined based on the time of diaphragm rupture. Similar to the driver-driven

wave system, the properties across (RW2) for the initial few steps after secondary di-

aphragm rupture are based on the analytical Riemann solution. At this point in the

algorithm, the expansion tube wave system contains four discontinuities separating

the flowfield into three continuous regions spanning from the driver endwall to the

accelerator exit. Still, the time-marching procedure described for the driver-driven

wave system can be used to resolve the entire expansion tube flowfield, but the pro-

cedure now includes more subroutine calls to account for the increased number of

discontinuities and continuous regions.

Table 5.1: Expansion tube simulation parameters (based on LENS-X[50])

Driver Driven Acceleration

Length, m 6.2 14.8 26.45
Gas He Air Air
Composition, % mole He:1 N2:0.79, O2:0.21 N2:0.79, O2:0.21
Pressure, kPa 8271.429 20.679 0.331
Temperature, K 427 298 298

The expansion tube solver described above was used to solve the equilibrium

expansion tube case from LENS-X [51, 50]. The facility geometry and initial fill

conditions are provided in Table 5.1. For this test-run, the LENS-X driver was filled

with heated helium, while the driven and accelerant gases were air. The composition
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of air shown for this case is slightly different than the simulations in Chapter 4, so

that in a later part of this work, comparisons can be made to existing results using

the above composition.

A grid study carried out with 962, 1603 and 1924 spatial nodes showed that

the velocities of shock waves SW1 and SW2 converged to within one percent between

these cases. Fig. 5.5 shows the results from the expansion tube algorithm along

with the analytical solution at two different instants in the driver-driven and driven-

accelerator wave systems. It is seen that the MoC algorithm accurately resolves all

the gasdynamic properties in both the instants. Quantitatively, all these properties

are within one percent of the analytical solution. The MoC algorithm, compiled on

a tablet having Intel i5-4300U processor with 8 gigabyte memory, takes less than 50

seconds to construct the entire flowfield even for the 1924 nodes case.

Further, Fig. 5.5 shows that the driven gas temperatures behind SW1 is below

2000 K, at nearly half an atmosphere. This is in line with the comments made

earlier regarding the limitation on SW1 velocity to prevent dissociation of air. Thus,

the thermally perfect algorithm maybe selectively employed in the driven section of

expansion tubes. In this simulation, as reported in Table 5.1, heated helium driver

was used. Thus, a thermally perfect simulation is unnecessary. However, given that

the computational cost of these thermally perfect MoC algorithms is almost negligible,

thermally perfect MoC can still be used for expansion tube drivers at all times. This

would also be beneficial in situations where heated molecular driver gases are used,

which may be better approximated by a thermally perfect rarefaction wave.

In the case of the driven-accelerator wave system shown in Fig. 5.6, the tem-

perature of the shock compressed accelerant gas (air) exceeds the limits of thermally

perfect gas assumption. While it is clear that the MoC algorithm reproduces the an-

alytical solution, the considered thermochemical model in itself is unreliable. Thus,
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this simulation will be re-visited in subsequent chapters to model this case more ac-

curately from a thermochemical viewpoint. Also seen in Fig. 5.6 is the fact that an

expansion tube may pose problems for numerical simulations due to the extreme vari-

ation in various state properties. For instance, the fill pressures between the driver

and the accelerator vary by ∼ O(104). This reasoning was a catalyst in the use of

analytical solution to resolve the initial flowfield across the centered rarefaction wave

systems after shock transmission. Figs. 5.5 and 5.6 show that the MoC model ac-

curately resolves the strong rarefaction waves in the expansion tube and replicates

the analytical solution in both the driver-driven and driven-accelerator wave systems

even when the flowfield properties vary drastically during the facility operation.
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(a) Static pressure distribution

(b) Static temperature distribution

(c) Velocity distribution

Figure 5.5: Comparison of driver-driven wave system due to MoC model and analyt-
ical solution
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(a) Static pressure distribution

(b) Static temperature distribution

(c) Velocity distribution

Figure 5.6: Comparison of driven-accelerator wave system due to MoC model and
analytical solution
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CHAPTER 6

INVERSE METHOD-OF-CHARACTERISTICS ALGORITHMS FOR FLOWS IN

THERMOCHEMICAL EQUILIBRIUM1

The thermally perfect MoC algorithms developed in Chapter 5 were intended

to provide the baseline approach for vectorization of MoC algorithms. The effective-

ness of vectorizing MoC algorithms will be truly noticeable when flows experiencing

high temperature effects such as chemical reactions are modeled using MoC. For nu-

merical simulations, the simplest model that accounts for chemical reactions is the

thermochemical equilibrium model. The primary reason for its simplification is owed

to the fact that the gas state at thermochemical equilibrium is determined if two

thermodynamic state variables are known. In comparison, a thermally perfect gas

(and thereby the MoC algorithm) only requires the static temperature to account

for high temperature effects, as the chemical composition is fixed. Because of this

similarity, extending the vectorized thermally perfect MoC algorithms to account for

equilibrium thermochemistry is also relatively straightforward. Despite the ease of

such an implementation, equilibrium algorithms are far more useful practically in

hypervelocity models than thermally perfect algorithms.

Some high enthalpy facilities can be entirely modeled using equilibrium algo-

rithms, while some other facilities others will selectively employ equilibrium algo-

rithms in specific regions of their overall flowfields. An inspection of representative
1This material was presented at the 25th International Space Planes and Hypersonic Systems

and Technologies Conference as a paper entitled ‘Inverse Method-of-Characteristics Algorithms for

Unsteady Gas Flows with Shifting Thermochemical Equilibrium’ by A. Jayamani, and F. K. Lu.
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hypervelocity flowfields such as expansion tubes and hypervelocity nozzles leads to

the observation that if at all thermochemical non-equilibrium occurs in a facility, it

often spans a rather narrow region in the entire flowfield. Thus, it would be more

efficient to selectively employ non-equilibrium subroutines in reduced-order models,

perhaps based on a comparison of the relevant local time scales in a flowfield. But

such an approach assumes the availability of other simplified MoC subroutines for

thermally perfect and thermochemical equilibrium regimes. Having already devel-

oped thermally perfect gas MoC subroutines in Chapter 5, this chapter develops

thermochemical equilibrium MoC subroutines. Similar in approach to the earlier

chapters, IMoC subroutines were developed for shock waves, contact surfaces and

rarefaction waves occurring in flows under shifting thermochemical equilibrium, here-

after referred to simply as thermochemical equilibrium flows. The vectorized MoC

approach developed earlier is further extended to include simplified sink terms rep-

resenting the effect of momentum and heat losses. This will aid in developing useful

reduced-order models which can replicate flowfields of typical impulse facilities with

large length-to-diameter ratios. Also demonstrated in this chapter are two practical

reduced-order models developed using these MoC subroutines to resolve the flowfields

in high enthalpy expansion and detonation tubes.

6.1 Governing equations

In view of the flow phenomena of interest here, consider the unsteady flow

of a gaseous mixture in a quasi-one-dimensional duct. The governing equations for

such a gaseous flow are the continuity, momentum and energy equations. Further, the

gaseous system to be modeled is expected to be a closed system with no mass addition,

or removal. Thus the mass continuity equation contains no sink terms. However,

as the effect of losses on the gaseous mixture is to be considered, the momentum
174



and energy equations contain appropriate sink terms to accommodate for frictional

and heat transfer effects. With all these considerations, the differential form of the

gasdynamic governing equations for an unsteady quasi-one-dimensional flowfield can

be written as

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

1

A

dA

dx
= 0 (6.1a)
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(
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∂t
+ u

∂u

∂x

)
+
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=
δFf
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≡ β (6.1b)
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(
∂h

∂t
+ u

∂h

∂x

)
−
(
∂p

∂t
+ u

∂p

∂x

)
=
δq̇

V
− uβ ≡ Ψ (6.1c)

In the momentum equation above (6.1b), the volumetric sink term can be rewritten

using the definition of skin friction coefficient as

β = −1

2
ρu|u|

4Cf
D

(6.2)

While there are empirical methods available to estimate the value of Cf based on

pipe flow correlations (see Chapter 3), this chapter assumes that the skin friction

coefficient can be approximated as a constant throughout the control volume. It may

also be worthwhile to recall the approach from Chapter 3, where the value of Cf was

estimated using pipe flow correlations for a calorically perfect detonation tube model.

This variable Cf approach has not been attempted here for simplicity.

In the energy equation (6.1c), the volumetric heat flux term can be modeled

using modified Newton’s law of cooling. Since the gaseous mixture is assumed to

be in thermochemical equilibrium, it is desirable to evaluate the heat flux based on

enthalpy difference. Assuming a heat transfer coefficient Ch, the volumetric heat flux

term can be written as
δq̇

V
=

4Ch

D
ρ|u|(hw − h0) (6.3)
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The heat transfer coefficient can again be modeled using different empirical methods.

In this chapter, Reynolds analogy is chosen for its simplicity, which results in the

following relation connecting friction and heat transfer coefficients

Ch =
Cf
2

(6.4)

The wall enthalpy term in (6.3) can be evaluated at the facility’s cold wall temperature

using thermodynamic curvefits as will be discussed shortly. With the use of Reynolds

analogy, the recovery factor term becomes unity and the local stagnation enthalpy is

evaluated based on the core flow properties as

h0 = h+
1

2
u2 (6.5)

The gasdynamic governing equations above (6.1a-6.1c) will have to be supplemented

by equations describing the constituent gas thermochemistry. To this end, consider a

gaseous mixture of n thermally perfect species with the massfraction of species i in the

gaseous mixture given by ci = ρi/ρ. (As before, any thermodynamic property with

the subscript i represents the individual gas species and those without a subscript

denote global mixture properties.) Under thermochemical equilibrium, the internal

energy composition of all the species in the gaseous mixture can be defined using

a single value of static temperature. For such a mixture, the arguments made in

Chapter 4 about the behavior of an individual species in a mixture still hold. Thus,

each species i in the mixture can be individually expected to satisfy its own perfect

gas law given by

pi = ρiRiT (i = 1, 2, . . . , n) (6.6)
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Similarly, a gaseous mixture in thermochemical equilibrium also obeys Dalton’s law

of partial pressures. Therefore, the mixture static pressure is simply the sum of the

individual species partial pressures pi.

p =
n∑

i=1

pi (6.7)

Then, Eqs. (6.6) and (6.7) can be combined to write a global equation of state for

the entire gaseous mixture as

p = ρ

n∑
i=1

ciRiT (6.8)

Further, under thermochemical equilibrium, the state of a given gaseous mixture

is uniquely defined if two thermodynamic properties are fixed. For instance, given

an initial mixture of various gaseous species, the mass fractions of its constituent

species are readily determined if two state properties of the gaseous mixture are

known, viz., ci = f(p, ρ). Thus, it is beneficial to reformulate the governing equations

(6.1a)–(6.1c) so that the dependent variables are p, ρ and u, similar to the other MoC

models developed before. This can be achieved by utilizing the global equation of

state (Eq. 6.8) and the definition of global enthalpy, h =
∑n

i=1 cihi, to re-write the

energy equation (Eq. 6.1c) as

∂p

∂t
+ u

∂p

∂x
− a2

(
∂ρ

∂t
+ u

∂ρ

∂x

)
= (γ − 1)Ψ ≡ ψ (6.9)

It emphasized that the thermodynamic properties in the above equations are

evaluated under equilibrium thermochemistry. Thus, the sonic velocity for instance

is a = aeq and the ratio of specific heats is γ = γeq. This emphasis is added, as the

above equation is identical to the calorically perfect energy equation, for instance, by

notation. Clearly the underlying thermochemistry differs between these two scenarios.

When the gas is in thermochemical equilibrium, its chemical and internal (vibrational)

energy composition can change throughout a flowfield, while for a calorically perfect
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gas, they are frozen at their initial values. Thus, the method of calculating various

thermodynamic properties clearly differs between these models.

In this work, equilibrium thermochemistry is primarily incorporated into the

reduced-order models using curvefits. To construct these curvefits for a given species

mixture, a desired range of temperatures and pressures is selected and equilibrium

calculations are initially carried out using the open-source toolkit Cantera [85]. The

necessary thermodynamic properties are then extracted from these calculations and

curve-fits are created in terms of the state variables p and ρ, which form a part of the

dependent variables in the MoC algorithms. As will be described in the subsequent

sections, the use of curvefits is also advantageous, as they are readily amenable to

vectorization. The working gases used in this chapter are helium, oxyhydrogen mix-

tures and air. Thus, the constituents used to create various gaseous mixtures are He,

N2, O2, N, O, NO, H2, H, OH, and H2O. The thermodynamic data for these species

were obtained from the NASA Glenn thermodynamic properties library [104].

6.2 MoC formulation and algorithms

The governing equations (Eqs. 6.1a,6.1b,6.9) introduced in the previous section

are similar to those derived for a perfect gas, and thus are quasilinear hyperbolic

partial differential equations. Therefore, the MoC procedure can be used to reduce

these partial differential equations to ordinary differential equations. The validity of

these ordinary differential equations is limited to certain curves called characteristic

curves, which in this case will turn out to be three in number. Following the procedure

of Zucrow and Hoffman [49], the characteristic curves for a quasi-one-dimensional,

unsteady flow of a gaseous mixture in thermochemical equilibrium are given by
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[
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dx
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= λo =
1

u
(6.10a)[
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]
±
= λ± =

1

u± a
(6.10b)

The first of these characteristic curves given by Eq. (6.10a) denotes a particle path-

line. The subsequent equation, Eq. (6.10b) represents acoustic disturbances that

travel along and opposed to the local continuum fluid velocity and thus are the Mach

lines of unsteady flow. As mentioned earlier, the sonic velocity in Eq. (6.10b) rep-

resents equilibrium sound speed. All three of these characteristic curves pervade the

entire flowfield and are the waves which “communicate” any changes in the gasdy-

namic properties occurring in the flowfield. The variation of properties themselves

are governed by the reduced governing equations given by[
dp

dx

]
o

− a2
[
dρ

dx

]
o

=
ψ

u
(6.11a)[

dp

dt

]
±
± ρa

[
du

dt

]
±
= ψ ± aβ − ρua2

dA

dx
(6.11b)

These reduced equations called compatibility equations are associated with the char-

acteristics denoted in their subscripts. Thus, together the characteristic and compat-

ibility equations (6.10a)–(6.11b) determine the unsteady flowfield evolution in any

given continuous domain. Where discontinuities are encountered, it will be seen that

with the aid of supplementary conditions these equations can be applied to either side

of the discontinuity. Finally, these simplified equations can be numerically integrated

using the vectorized inverse marching approach developed in Chapter 5 as described

in the following paragraphs.

As has been mentioned earlier, four different MoC subroutines representing

various fundamental gasdynamic phenomena were developed in this study. Two of
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these subroutines resolve gasdynamics of continuous regions, while the remainder

resolve discontinuities. The salient features of all these algorithms are contained in

the subroutine which resolves weak compression and rarefaction waves. Named the

interior point solver, this algorithm is discussed first aptly. The solution procedure for

the interior point solver is depicted in Fig. 6.1a through the characteristics involved.

The grid points 1-2-3 represent the initial value line while grid point 4 is the location

where the flow properties are to be calculated. In the original Zucrow and Hoffman

[49] algorithms, the known flowfield variables at the grid points 1, 2 and 3 were used

to create linearly varying curves of the dependent properties. In the current study,

the initial value line is assumed to be provided in the form of a polynomial curvefit,

which in this case was a piecewise-cubic function. Thus, similar to Chapter 5, the

grid points 1, 2 and 3 are simplified representation of the true initial value line.

The characteristic and compatibility equations above are integrated using the

Euler predictor-corrector algorithm. Firstly, (Eqs. 6.10a–6.11b) are discretized as

follows

(x4 − xo) =
1

λo
∆t (6.12a)

(x4 − x±) =
1

λ±
∆t (6.12b)

(p4 − po)− a2(ρ4 − ρo) =
ψ

u
(x4 − xo) (6.12c)

(p4 − p±)± ρa (u4 − u±) = (ψ ± aβ − ρua2
dA

dx
)∆t (6.12d)

As an illustration, consider the procedure to identify the λ+ characteristic shown in

Fig. 6.1a. To identify this characteristic using the inverse marching method, various

gasdynamic properties at grid point 4 are initially assumed to be the same as that

at grid point 2. Using these properties and the location of x4 the characteristic

equation (Eq. 6.12b) is solved to identify the origin of λ+ characteristic, x+. With
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(a) Interior point. (b) Wall point.

(c) Contact surface.

Figure 6.1: Schematics for MoC algorithms.

the newly identified characteristic origin, better estimates for λ+ can be made, which

in turn results in better estimates for the origin x+. This iterative procedure is

continued until the value of x+ converges to a specified tolerance. With the vectorized

MoC and a polynomial curvefit spanning the entire continuous region, all the λ+

characteristics that reach various grid points in the continuous region can be identified

at once. Therefore, the use of grid point 4 alone, as shown in Fig. 6.1a is merely for

illustration (see Chapter 5). This procedure is similarly repeated for the pathline and

the remaining Mach line. Once the origins of all three characteristics are identified,

the compatibility equations (Eqs. 6.12c-6.12d) can be solved to identify the dependent

variables p, ρ and u at location 4. This constitutes the predictor step. The corrector

181



Figure 6.2: MoC algorithm for a shock wave.

step is similar to the predictor, but with the difference that all the coefficients in

the characteristic and compatibility equations utilize average properties between the

origin of the characteristic and location 4. Further, the corrector step is repeated

until all the dependent properties converge at location 4. Once this occurs, the

massfractions at location 4 can be estimated using the equilibrium curvefits supplied

to the algorithm.

Next, the wall point algorithm shown in Fig. 6.1b is briefly discussed. This

case represents the left-bounding wall point in a given domain. Based on symmetry

arguments, this procedure can be adapted to the right-bounding wall point as well.

From Fig. 6.1b, it can be seen that the pathline on the wall point remains stationary

on the wall. Thus, the number of unknown variables reduces by one. Further, the λ−

characteristic disappears, as there is no fluid domain to the left of the wall. Thus,

the integration procedure described for the interior point algorithm can be modified

based on the above discussion to evaluate various properties at location 4.

The algorithms representing discontinuities can also be obtained through mod-

ifying the interior point solver. The discontinuities such as shock waves and contact

surfaces represent boundaries of a continuum domain. But, the conditions governing

their existence can be used in tandem with the methods developed for the interior
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point solver to connect various flow properties on either sides of the discontinuity. For

instance, consider the algorithm for contact surface shown in Fig. 6.1c. By definition,

the static pressure and fluid velocity are continuous across the contact surface. Thus,

u2l = u2r and p2l = p2r . Therefore the contact surface itself is a pathline. However,

since the contact surface represents the boundary between two different fluid states,

the density and/or species composition may not be the same on either sides of the

contact surface. Thus, the compatibility equation (Eq. 6.12c) for the pathline is

individually written for either sides of the contact surface, despite the pathline being

represented by the same characteristic curve. Clearly, the λ+ and λ− characteristics

represent waves in two different fluid media and must be solved appropriately using

the fluid thermochemical properties on the relevant side of the contact surface. While

the integration procedure for the λ+ and λ− characteristics utilizes inverse marching,

the contact surface is always projected forward in time, as the contact surface is in-

dividually tracked and its initial conditions are always known. Finally, due to the

pressure and velocity continuity condition, the compatibility equations (Eq. 6.12d)

can be solved readily to find the p and u at location 4. The predictor-corrector

algorithm is again utilized iteratively to ensure convergence of all the gasdynamic

properties at location 4 on either sides of the contact surface.

Finally, the algorithm for a right-running shock wave is shown in Fig. 6.2. A

propagating shock wave always overtakes all the characteristics ahead of it and is

overtaken by the characteristic that travels in the same direction as the shock wave.

Thus, with an estimated shock location x4l, the values of various flow properties

immediately before the shock wave can be identified using the interior point algo-

rithm as shown in Fig. 6.2. Across the shock wave, the discontinuity in various state

properties are governed by the equilibrium Rankine-Hugoniot conditions. But, as

the shock wave is itself overtaken by the trailing λa+ , the fluid state properties at
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the aft of the shock wave computed through the Rankine-Hugoniot conditions must

match with those computed through the compatibility equations for the overtaking

λa+ . To achieve this, the shock velocity in location 4 is varied until the post-shock

conditions match between the Rankine-Hugoniot and compatibility relations. In the

case of a left running shock wave, the trailing characteristic becomes λa− , while the

other procedures remain the same.

6.3 Application of equilibrium MoC to unsteady problems

The MoC algorithms developed in the previous section are utilized to develop

reduced order models for two pertinent high enthalpy impulse facilities, viz., an expan-

sion tube and a detonation-driven shock tube. Eventhough an expansion tube may

be expected to have a lesser degree of thermochemical excitation in its operation,

the algorithm was primarily developed to address an anomaly previously observed in

a thermochemical non-equilibrium MoC solver [111]. Thus, the expansion tube dis-

cussions here do not account for momentum and heat losses. The detonation-driven

shock tube on the other hand, is a relevant problem in terms of both thermochemistry

and losses. The former is more pronounced due to the recombination that may occur

as the burnt driver gas is expanded to very low pressures, while the latter is noticeable

due to the large L/D ratios employed in these facilities. There are two general modes

of operation for a detonation-driven shock tube, or simply a detonation tube. Based

on the relative propagation of the detonation wave in the driver compared to the test

gas, these are classified as upstream or downstream modes. This chapter models an

upstream mode detonation tube and compares the estimated pressure loads in the

damping section to experimental results.
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6.3.1 Expansion tube flowfield

Expansion tubes were introduced to alleviate the problem of test gas dissocia-

tion, which occurs when large energies are added to the gas primarily through a shock

wave. A simplified operation of an expansion tube is shown in the form of a wave

diagram in Fig. 6.3. From the illustration, it can be seen that an expansion tube

is similar in construction to the classical shock tube, but it contains an additional

section variously called the acceleration, or expansion section. The design philosophy

is that the energy is added to a test gas in two stages - firstly through a shock wave

and then followed by an expansion wave. As the goal is to circumvent dissociation in

the test gas, the initial shock wave strength is limited by the onset of dissociation in

the driven gas.

Figure 6.3: Schematic and wave diagram of an expansion tube operation (RW1 -
primary rarefaction, CS1 - primary contact surface, SW1 - primary shock wave, RW2
- secondary rarefaction, CS2 - secondary contact surface, SW2 - secondary shock
wave).

185



The operation of an expansion tube can be further explained through the wave

processes in Fig. 6.3 (also see Fig. 6.4). The expansion tube consists of three sections

named driver, driven and acceleration sections, which are initially isolated from each

other using breakable diaphragms. The driven section contains the test gas, while the

driver and acceleration sections contain high pressure and low pressure gases which

add energy to the test gas in two different ways. From Fig. 6.3, it can be inferred

that various quasi-steady regions, identified by circled numbers, exist throughout the

expansion tube flowfield. Since the driver and driven sections are identical to the

classical shock tube, their section nomenclature is likewise similar. At the beginning

of the expansion tube operation, the driver, driven and acceleration gases are at

rest in regions denoted 4 , 1 and 5 respectively. The facility operation begins as

the diaphragm between the driver and driven sections rupture, idealized here as an

instantaneous disappearance. This causes the high pressure driver gas to expand into

the lower pressure driven gas, which is idealized as a centered rarefaction wave (RW1).

Due to the large pressure difference, the centered rarefaction wave instantaneously

causes a shock wave (SW1) to form in the driven gas. The shock compressed test gas

occupies the quasi-steady region 2 , while the expanded driver gas occupies another

quasi-steady region 3 .

Since there are two wave systems in an expansion tube operation, the waves

associated with the driver-driven system are denoted primary waves, for instance the

primary shock wave, as identified in Fig. 6.3. Now, as the primary shock wave reaches

the end of the driven section, the diaphragm separating the driven and acceleration

sections is assumed to disappear. This in turn causes the quasi-steady driven gas to

expand into the acceleration section. Similar to the driver-driven wave system, the

driven gas is assumed to expand through a centered rarefaction wave, which causes

an instantaneous shock wave in the acceleration section. All the corresponding waves
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in this system are denoted secondary waves, as shown in Fig. 6.3. The useable test

gas slug is the expanded driven gas in region 7 . Ideally, this region is bounded by

the secondary contact surface at the front and either the trailing characteristic, or

the leading reflected characteristic from the secondary rarefaction wave.

The above discussion of an expansion tube flowfield forms the basis of the

MoC model developed in this study. As such, Fig. 6.3 also serves as a diagrammatic

representation of the algorithm behind the MoC model. The required inputs for the

algorithm which form the domain geometry and initial conditions are detailed in Table

6.1. In addition to these, curvefits for equilibrium properties of individual gas slugs are

also a necessary input. Once all the inputs are provided, the overall expansion tube

algorithm proceeds in the following manner. From the inputs file provided, the initial

gas states at regions 4 , 1 and 5 are known. Since the integration scheme utilizes

inverse marching approach a space-time grid needs to be constructed first. Then,

various subroutines developed in the previous section can be employed over this is x-t

grid to calculate the unsteady flow evolution. As the stability of underlying inverse

marching method depends on the Courant–Friedrichs–Levy condition, that is, ∆t(u±

a)max < ∆x, the algorithm must first obtain the maximum possible wave speeds in

the driver-driven wave system. This is evaluated based on the analytical equilibrium

shock tube solution, which assumes that centered rarefaction wave in thermochemical

equilibrium is formed in the driver gas and subsequently drives a thermochemical

equilibrium normal shock wave in the driven section. As opposed to the calorically

perfect shock tube, which permits an analytical solution, the equilibrium shock tube

solution must be iteratively solved where the static pressure and velocity after the

equilibrium driver expansion is matched to that behind an equilibrium normal shock

in the driven section. The solution so obtained also forms the initial conditions for

the primary wave system in this algorithm. With known maximum wave speeds,
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Table 6.1: Expansion tube simulation parameters (based on LENS-X[50], repeated
from Chapter 5)

Driver Driven Acceleration

Length, m 6.2 14.8 26.45
Gas He Air Air
Composition, % mole He:1 N2:0.79, O2:0.21 N2:0.79, O2:0.21
Pressure, kPa 8271.429 20.679 0.331
Temperature, K 427 298 298

an x-t grid is constructed for the entire domain length and up to a user-specified

time. Then, the solution procedure marches forward in time by resolving the flow

properties for every subsequent time-step. As almost the entirety of the flowfield

is made up of regions with continuous waves, which in this case is either expansion

waves, or quasi-steady regions, vectorized interior point algorithm is simultaneously

applied over all the grid points in a given continuous region. For instance, when

the driver-driven wave system is resolved, the entire region between the wall and

the primary contact surface is resolved at once. Then, region 2 is resolved at once.

Finally, the wall point, contact surface and shock wave solvers are individually called

to advance over a given time-step. With the inverse marching method, the grid points

nearby discontinuities need a special procedure for flowfield evaluation (see Chapter

3). In this case, the dependent variable polynomial fits created at every time-step for

the MoC initial value line provide enough accuracy to evaluate the flowfield at these

points by interpolation. This entire procedure is repeated for every time-step until

the primary shock wave reaches the end of the driven section, when the diaphragm

separating the driven and accelerator gases is assumed to disappear. The equilibrium

shock tube solution is again employed to calculate the initial waves in the driven-

accelerator wave system. Finally, the same algorithm detailed above is repeated over
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the entire expansion tube domain to resolve the continuous regions and discontinuities

at every subsequent time-step, until the specified final time.

With the above algorithm, a sample case for an expansion tube flowfield was

resolved. With the new equilibrium expansion tube algorithm, the LENS-X simula-

tion carried out in Chapter 5 was revisited here. The initial and boundary conditions

for this case are again provided in Table 6.1. At first, a grid study was carried out to

ensure convergence. Three cases were studied with the number of spatial grid points

selected to be 962, 1603 and 1924. Though not shown here, this study showed that

both the primary and secondary shock speeds differed by less than 1 percent between

these three cases. Since these shock waves essentially determine (and are also influ-

enced by) the quasi-steady state properties in various regions in the expansion tube,

a convergence in shock speeds indicates that the overall has indeed converged. Thus,

the results shown here correspond to the case with 1603 spatial grid points.

The overall unsteady flowfield evolution as resolved by the expansion tube al-

gorithm is shown in Fig. 6.4. As the plot shows pressure contours, the trajectories of

primary and secondary contact surfaces have been explicitly overlaid here for illustra-

tion. It can be seen that the resolved wave system is similar to the ideal wave system

depicted in Fig. 6.3. Further evaluation of the results can be carried out by inspecting

various flowfield property variation in the entire domain at arbitrary times. A simple

way of validation is to compare the quasi-steady state properties that are resolved

by the expansion tube algorithm against analytical Riemann invariants. This can be

done individually for the driver-driven and driven-accelerator waves systems. Fig.

6.5 provides the spatial distributions of pressure, velocity, temperature and species

composition in the driver and driven sections. At regions 2 and 3 , all these values

are within 1 percent of the analytical Riemann solution. Of specific interest is Fig.

6.5b, which shows a static temperature distribution in regions 2 and 3 that is nearly
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Figure 6.4: MoC generated ideal expansion tube flowfield (see Fig. 6.3 for nomencla-
ture).

the same as the analytical solution and is devoid of any unrealistic overshoots as seen

in an earlier work [111]. From the same plot, species distribution in the shock com-

pressed test gas in region 2 can also be seen to show negligible dissociation. Now, a

similar instantaneous spatial distribution of various flow properties can be obtained

after the establishment of the driven-accelerator wave system, as shown in Fig. 6.6.

With a stronger secondary shock wave in the accelerator gas, the true capability the

equilibrium solver is displayed, where the dissociation occurring in the accelerator air

is clearly seen in the oxygen and nitrogen species fractions. Comparing Figs. 6.6a and

6.6b the test gas can still be seen to retain its near original composition as intended.

Again, all the flow properties in regions 6 and 7 as resolved by the expansion tube
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algorithm are within 1 percent of the analytical Riemann solution, which validates

the expansion tube algorithm.

6.3.2 Damping Section Loading in a Detonation-driven Shock Tube

Detonation-driven shock tubes were developed in an effort to increase the en-

thalpy simulation capabilities of the classical shock tube [64, 12]. These facilities

replace the high pressure inert driver gas in a classical shock tube with a reactive

mixture and explosively release the energy in the driver gas using a detonation wave.

The burnt gas, which is at high pressures and temperatures is then expanded un-

steadily to drive a shock wave in the test gas. This chapter focuses on a specific mode

of detonation tube operation, the upstream mode. The operation of this facility is

illustrated in Fig. 6.7 using an idealized wave diagram. Similar to the expansion tube,

the detonation tube also consists of three different gaseous slugs initially at rest and

isolated from each other using diaphragms. Accordingly, Fig. 6.7 shows three different

sections named damper, detonation driver and the driven section. The driven section

contains the test gas as earlier. The detonation driver, as the name implies contains

the chemically reacting mixture which will be ignited. In this mode of operation,

the igniter is installed near the diaphragm between detonation driver and driven sec-

tions. Finally, the damping section, or the damper contains an inert gas at very low

pressures for reasons to be explained later.

The operation of the detonation tube begins when a sufficiently high amount of

energy is deposited into the detonation driver using an igniter. This causes a detona-

tion wave to form in the driver gas, which can be approximated as an instantaneous

detonation wave formation (experimentally, this limit is approached under conditions

known as direct initiation). Simultaneously, the driver-driven diaphragm ruptures

due to the high pressure and temperature gas behind the detonation wave. Due to
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(a) Pressure and velocity distribution.

(b) Temperature and species distribution.

Figure 6.5: Instantaneous spatial properties in the driver-driven wave system (Regions
1 - 3 ).
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(a) Pressure and velocity distribution.

(b) Temperature and species distribution.

Figure 6.6: Instantaneous spatial properties in the driven-accelerator wave system
(Regions 5 - 7 and 2 ).
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Figure 6.7: Schematic and wave diagram of a detonation tube operation (DW -
detonation wave, RW - rarefaction wave, CS1 - primary contact surface, SW1 - primary
shock wave, CS2 - secondary contact surface, SW2 - secondary shock wave).

the lower pressure test gas in the driven section, the burnt driver gas expands into

the driven section, in turn driving a shock wave into the test gas.

In a classical shock tube, the leading wave propagating into the driver after

diaphragm rupture is at local acoustic velocity, which merely initiates the acceleration

of the driver gas into the driven section through the driver rarefaction. In the case

of an upstream detonation tube, the leading wave that processes the driver gas is the

detonation wave, traveling into the unburnt driver gas. When a freely propagating

detonation wave, such as the one shown in Fig. 6.7, is achieved, the end-state of

the burnt gas known as the Chapman-Jouguet (CJ) state is a unique property of

the initial state of the gaseous mixture. Thus, every pathline in the driver gas is

excited to a constant state, resulting in quasi-steady driver condition. This in turn
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ensures that the primary shock wave (SW1), see Fig. 6.7, is of constant strength

under ideal conditions. Now, as the detonation wave reaches the end of the driver

section, it transitions into a shock wave (SW2) in the inert damping section. If this

section were to be replaced by an endwall, the reflection of the detonation wave

imposes a tremendous load on the endwall, which may damage the facility [12]. To

avert this situation, a damping section is added and is usually maintained at near-

vacuum conditions. Still, due to the high fill pressures in the detonation driver,

the transmitted shock strength in the damping section is quite high. Thus, as the

transmitted shock wave travels upstream and reflects off the damping section endwall,

the pressure loads imposed on the facility are still quite high, which require careful

consideration during the design phase. Therefore, this section primarily focuses on

modeling this endwall loading using the MoC subroutines developed earlier in this

chapter.

The detonation tube algorithm is similar to the expansion tube algorithm de-

scribed earlier, but is adapted to the ideal detonation tube wave processes shown in

Fig. 6.7 (also see Fig. 6.8). For simplicity, the detonation wave was resolved using the

Shock and Detonation Toolbox (SDT) [84] and was merely propagated with the same

properties over every time-step. Thus, the effect of losses on the detonation wave itself

was not considered. Similar to the initial calculations for driven-acceleration wave

system in the expansion tube, the secondary shock wave in the damping section is

calculated using the equilibrium shock tube solution, with the CJ state as the driver

state. While the driven section endwall conditions were not considered here, the

damping section endwall was modeled for shock wave reflection and its subsequent

interaction with the trailing secondary contact surface. Practically, the enormous

temperatures experienced by the damper gas near the endwall in turn cause, at most,

a weak shock wave reflection at the interface, as the reflected secondary shock wave
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encounters the oncoming secondary contact surface. Therefore, the current algorithm

only tracks the transmitted shock wave at the contact surface-shock wave interaction

in the damping section, as the interior point solver can resolve weak shock waves.

The interaction between the shock wave and contact surface is modeled using an ap-

proach similar to the shock tube solution discussed earlier. The type of interaction

can be identified based on the acoustic impedance approach implemented earlier for

calorically perfect gases in Chapter 3.

Figure 6.8: MoC generated ideal flowfield evolution for TH2-D (see Fig. 6.7 for
nomenclature).

The detonation tube algorithm was used to model the static pressure history

in the damping section of TH2-D in the Shock Wave Laboratory (SWL) in RWTH

Aachen University reported in Olivier et al. [112]. The initial and boundary condi-
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tions for the simulation are shown in Table 6.2 below. Note that the driven section

length and fill conditions were chosen so that the driven section endwall phenomena

did not require modeling. Also, to ascertain that such a simplified approach is appro-

priate, the monitored locations in the damping section were confirmed to be outside

the domain of influence of the driven section endwall phenomena. This can also be

inferred from the MoC results in Fig. 6.8 based on the facility geometry provided in

Table 6.2. Additionally, various fill conditions in TH2-D show that the [12] detonation

driver gas always expands to supersonic velocities and, the waves from driven section

endwall do not reach even the end of detonation driver at least for about 10 ms into

the detonation tube operation. Thus the simplified MoC model provides meaningful

endwall loading results to be compared with the experimental pressure traces.

Table 6.2: TH2-D simulation parameters (based on Fig. 11 in Olivier et al. [112])

Damper Detonation Driver Driven

Length, m 6.4 9.4 18.6
Diameter, m 0.140 0.140 0.140
Gas Nitrogen Oxy-hydrogen mixture Air
Composition, % mole N2:1 H2:0.6, O2:0.4 N2:0.79, O2:0.21
Pressure, kPa 3 4000 366
Temperature, K 298 298 298

For the described fill conditions, the ideal flowfield evolution in TH2-D without

the effect of losses as estimated by the MoC algorithm is shown in Fig. 6.8. As it can

be inferred, the driven section endwall phenomena have not been modeled here, but

the driven section conditions do not influence the damping section endwall phenomena

in the time-frame considered. As the facility operation begins, the MoC generated

x-t diagram shows an upstream running detonation (DW) propagating in the driver
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section. The high pressure burnt gas behind the detonation wave expands into the

driven section to drive the primary shock wave (SW1). The expanded driver gas and

the compressed driven gas are separated by the primary contact surface (CS1). At

a later time, the detonation wave reaches the driver endwall and transmits into the

damping section as the secondary shock wave (SW2). The extremely high strength of

the secondary shock wave can be observed in the x-t diagram in the form of a closely

trailing secondary contact surface (CS2) in the damping section. Subsequently, the

secondary shock wave travels to the end of the damping section and reflects off the

endwall (SW2) at ∼ 4.5 ms. After this time, it can be seen that the secondary contact

surface (CS2) remains almost coincident with the damping section endwall due to the

high pressure and momentum of the expanding driver gas. Closer inspection also

reveals that the right-traveling reflected shock wave is pushed upstream after the

shock-wave contact surface interaction, due to the relatively high momentum and

acoustic impedance of the burnt driver gas.

Finally, the damping section results from MoC are compared against numerical

simulation results from KASIMIR and experimental results from TH2-D, both from

Shock Wave Laboratory (SWL) in Aachen, see Fig. 6.9. All these results represent

pressure traces recorded at a distance of 2 m from the damping section endwall. Two

simulations from the MoC model are shown here, one without the effect of losses and

one accounting for losses using a constant Cf of 0.01. Note that the time of initial

pressure raise from the lossless MoC was adjusted to be coincident with that from

KASIMIR and the same ∆t was then applied to the MoC result with losses shown

in Fig. 6.9. It is seen that the lossless MoC results are similar to the results from

KASIMIR, which models the detonation tube using equilibrium thermochemistry

with no losses. When the effect of frictional and heat losses is considered in the

MoC model, the plateau pressure, peak loading and the pressure decay behind the
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transmitted secondary shock wave in the driver gas are comparable to experiments.

Figure 6.9: Comparison of wall static pressure estimates in the damping section (SWL
Aachen data digitized from [112] using WebPlotDigitizer [113]).
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CHAPTER 7

METHOD-OF-CHARACTERISTICS MODELS FOR FLOWS IN

THERMOCHEMICAL NONEQUILIBRIUM 1

The final chapter of this work discusses the MoC algorithms developed to re-

solve gas flows under thermochemical nonequilibrium. As mentioned throughout this

work, thermochemical nonequilibrium models are imperative in modeling hyperve-

locity facility flowfields. When these facilities are used to simulate high-enthalpy

flows, the associated high velocities in the test gas induce and also vibrational freez-

ing. Thus, merely utilizing chemical nonequilibrium models to numerically simulate

these facilities’ operation may not provide an accurate estimate of all the test gas

state properties. But, any effort to model thermochemical nonequilibrium occur-

ring in a hypervelocity facility adds significant complexity in terms of computational

modeling, and invites a marked increase in computational cost. The latter can be

addressed through the use of reduced-order models, similar to the ones shown later

in this chapter. This may also have been observed already in the vectorized MoC

algorithms discussed in Chapter 6, for instance. Unfortunately, the complexities as-

sociated with modeling a thermochemical nonequilibrium gas state are unavoidable.

Thus, this chapter builds on the work reported in Chapters 4, 5 and 6 to introduce

MoC algorithms for thermochemical nonequilibrium flows.

First, the applicability of thermal nonequilibrium considered in this chapter is

limited to diatomic molecules, for the ease of modeling. But, instead of the simplest
1Contains excerpts from the AIAA paper entitled ‘Method of Characteristics Modeling of

Nonequilibrium Flow in an Impulse Facility’ by Jayamani, A., and Lu, F. K., AIAA Paper 2023-2088
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Landau-Teller model, where only vibration–translation exchanges are considered, this

chapter also considers the vibration–vibration exchange in diatomic molecules for

better accuracy. The standalone chemistry solver used in Chapter 4 was improved

to accommodate for thermal nonequilibrium and utilized here. Finally, the MoC

subroutines developed in this chapter are based on the vectorized IMoC algorithms

introduced in Chapter 5 and 6. Thus, the MoC subroutines developed in this chapter

incorporate methods from all the previous chapters in this work, which were carried

out to eventually build the thermochemical nonequilibrium algorithm reported here.

Then, these MoC algorithms were used to simulate the flowfields in hypervelocity

nozzles and expansion tubes in an effort to validate the newly developed algorithms.

7.1 Theory

The gasdynamic laws governing a generic flow are conservation of mass, mo-

mentum and energy. For brevity, the discussions below start directly from their

respective differential formulations. Consider an adiabatic unsteady gas flow through

a one-dimensional conduit of differentially varying area. Additionally assume that the

effects of friction and heat transfer can be neglected and that the control volume has

neither mass addition nor removal. Under such assumptions, the gasdynamic laws

for area averaged properties across the cross-section of the conduit simplify to

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+ ρu

1

A

dA

dx
= 0 (7.1a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+
∂p

∂x
= 0 (7.1b)

ρ
∂h

∂t
+ ρu

∂h

∂x
− ∂p

∂t
− u

∂p

∂x
= 0 (7.1c)

The above equations need information about the thermochemical gas state for closure.

In the simplest case of a homogeneous monoatomic gas flow where the atoms remain
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intact, the composition of the gas remains constant and the entirety of its sensible

internal energy is stored in the random translational motion of the atoms. This model

is classically known as the calorically perfect gas (scope limited to atoms here), where

the specific heats and chemical composition of a gas are constants. In the calorically

perfect gas models used in classical gasdynamics, it is also assumed that the thermal

state of the gas adjusts instantaneously to any changes in bulk properties brought

about by the gasdynamic evolution. In other words, it is assumed that the internal

energy is rapidly redistributed within the gas as the flow evolves. However, in the case

of flows of interest in this chapter—diatomic molecules under high temperatures and

high flow velocities—neither the chemical composition nor the specific heats remain

constant. To complicate matters, the evolution of this thermochemical state happens

in tandem with the flow evolution at a finite-rate, a situation known as thermochem-

ical nonequilibrium. Thus, the following subsections contain the methodology used

to account for thermal and chemical nonequilibrium in the gas state.

7.1.1 Thermal nonequilibrium

In contrast to atoms, the internal energy of a diatomic molecule can be stored in

multiple modes other than its random translational motion, which will be discussed

shortly. From the quantum state description, it transpires that these internal energy

modes are permitted to exist only at certain discrete states or energy levels. As

the internal energy of a molecule varies, its transition to a different energy state

happens only through successive transitions between adjacent energy levels. It is

further assumed that this variation of internal energy occurs as a result of direct

collisions between different constituent molecules and atoms, an assumption which is

generally valid up to 8000 K [95].
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For simplicity, ignoring the contribution due to the internal structure of the

atoms, that is, electronic excitation and the contributions due to the nucleus, the

specific internal energy of a diatomic molecule can be simplified to

eint = etran + erot + evib (7.2)

where etran is the energy associated with the translational motion of the molecules,

erot is the component due to molecular rotation and evib is the component due to

the structure and dynamics of the molecular bond. Assuming that a Boltzmann

distribution of the energy states exists in all the categories, each of the above terms

will have an associated temperature, that is, Ttran, Trot and Tvib. However, if all the

energy modes are in equilibrium with each other, a single temperature defines the

internal energy of all the groups.

The internal energy corresponding to the rotational and translational modes

can be evaluated by assuming the molecules to be rigid dumbbells which possess

independent translational velocity and constants moment of inertia. Evaluating the

appropriate molecular partition functions yield [95]

etran =
3

2
RTtran (7.3a)

erot = RTrot (7.3b)

The vibrational energy of diatomic molecule can be evaluated based on a harmonic

oscillator model of its constituent atoms, which leads

evib =
RΘv

eΘv/Tvib − 1
(7.4)

So far, the internal energy of a pure diatomic species has been considered. In

the case of a gaseous mixture consisting of n number of monoatomic and diatomic

species, with individual mass fractions given by ci, the total specific internal energy is
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simply provided by emix =
∑n

i=1 ciei. Obviously, when the gaseous mixture consists of

atoms, the only active component of internal energy in Eq. (7.2) is the translational

mode.

In developing Eqs. (7.3a)–(7.4) it was assumed that none of the energy groups

are in equilibrium with each other. However, even for the high-enthalpy air flows

considered here, translational and rotational energies can be considered to be in equi-

librium with each other. Thus, Ttran and Trot can be replaced by a single tempera-

ture, Trt. This is based on the observation that the number of molecular collisions

required for translational and rotational energies to reach equilibrium is less than 10

[114, 95, 115], a number which is achieved in a nanosecond in air, even at standard

atmospheric conditions. Thus, the only source of thermal nonequilibrium considered

here is due to the variation of vibrational energy.

In modeling the vibrational relaxation/excitation of a harmonic oscillator, the

simplest applicable theory is that of Landau and Teller [95]. The theory considers

the vibrational excitation of a harmonic oscillator through energy exchange with the

translational–rotational modes which themselves are assumed to be in equilibrium

throughout the process. The Landau–Teller model assumes that the rate of vibra-

tional energy excitation is linearly proportional to the deviation of the instantaneous

vibrational energy from its local equilibrium value. Though this theory has been

shown to replicate vibrational excitation behind normal shock waves, Landau–Teller

results for relaxing flows in nozzles have not been able to replicate the population

distribution in lower vibrational levels. While original experiments led to a conclu-

sion that the observed relaxation rates were faster by about a factor of 1 000, it is

believed that the true multiplication factor may not be greater than 5 [116, 117].

(For a discussion on the systematic errors that may lead to such faster relaxation,

refer to [117]). Reasons attributed to the true relaxation rate discrepancy include
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the anharmonic nature of interatomic forces between molecules, multiple quantum

jump transitions, non-resonant energy transfer between colliding partners and non-

Boltzmann distributions during relaxation processes.

To reconcile these differences, Bray [118, 116] studied the relaxation of ho-

mogeneous anharmonic Morse-type oscillators under isothermal and non-isothermal

conditions. Bray concluded that qualitatively, when vibrational excitation occurs

in an isothermal heat bath, the effects of anharmonicity are expected to be minor.

Therefore, the Landau–Teller model seems appropriate behind shock waves, as is

known. For vibrational relaxation in a non-isothermal heat bath, multiple factors in-

cluding anharmonicity, vibration–vibration (VV) energy exchange and rate of change

of the heat bath’s translational temperature seem to influence the relaxation behav-

ior. Collectively, it was shown that these effects indeed cause a faster relaxation rate

than the Landau–Teller model and may lead to non-Boltzmann distribution of the

vibrational population. As the current paper aims to model vibrational relaxation

through unsteady expansion fans and nozzles, a simple Landau–Teller relaxation will

not adequately represent the underlying physical phenomena. While it is desirable to

employ an anharmonic oscillator model, uncertainty in their VV transition rate data

and computational complexities associated with state-to-state models point towards

a simpler model for vibrational relaxation.

With the intent of capturing the dominant VV exchange and yet retaining a sim-

plistic model for a quasi-one-dimensional analysis, the vibrational relaxation model

described by Taylor et al. [119] is used here. Though the current work uses this model

to represent vibrational relaxation of a chemically reacting diatomic gaseous mixture,

Palmer and Hanson [58], for instance, have used this model to calculate vibrational

relaxation of a steady, two-dimensional chemically frozen polyatomic gaseous mixture.

205



For a gaseous mixture containing a total of n species amongst which m are

vibrationally active, the rate of change of specific vibrational energy of species i is

given by

−DEv,i

Dt
=

n∑
i′=1

Ni′

τV T
i−i′

Ev,i +
m∑

i′=1,
i′ 6=i

Ni′

τV V
i−i′

[
Ev,i(1− Ev,i′)

1− e−Θv,i/T

1− e−Θv,i′/T
− Ev,i′(1− Ev,i)

]
(7.5)

where

Ev =
e∗ − evib

e∗

and where evib represents the local specific vibrational energy of the species in con-

sideration and e∗ represents the specific vibrational energy of a harmonic oscillator

in equilibrium with the local transational-rotational temperature. Thus, this model

again considers vibrational relaxation of a harmonic oscillator through VV energy

exchange with other harmonic oscillators in addition to VT energy exchange with self

and all the other species. In the simplest of the cases, which is self relaxation of a

pure diatomic species, Eq. (7.5) simplifies to the Landau–Teller model.

The rate constants for appropriate VV and VT processes are required for solving

Eq. (7.5). Since air is the primary medium of interest here, VT relaxation times are

calculated based on Millikan–White’s formula

pτV T = exp
[
a
(
T
−1/3
rt − b

)
− 18.42

]
atm · s (7.6)

The values of a and b are taken from Park [120]. It is noted that the relaxation times

used here do not contain the high-temperature correction term detailed in Park [120]

since the maximum temperatures of interest here is around the 5 000 K limit [121]

which, when far exceeded, results in the Millikan–White formula predicting faster

relaxation times. For VV, the rate constants can be obtained from Taylor et al.

[119] using the probabilities of collision between various diatomic molecules reported
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therein. Based on digitization of the plots in [119], the probabilities of collision

between N2 and O2 and N2 and NO are approximated to be

P (
10

N2,O2
01
) = 3.5(Trt/1000)

3.1716 × 10−6

P (
10

N2,NO
01

) = 7.35(Trt/1000)
2.4371 × 10−5

The relaxation times for the reverse processes mentioned above are obtained using the

principle of detailed balancing [95, 119]. For completeness, the VV exchange between

O2 and NO is assumed to have the same probability as N2 and NO collisions, similar

to the approach of Park and Lee [122]. This assumption was not made on physical

reasoning, but merely because of the uncertainty in possibly obtaining experimental

VV rate data between molecular oxygen and nitric oxide.

7.1.2 Chemical nonequilibrium

Consider a chemically reacting gaseous mixture with a total of n species. If

the flow process considered is indeed in chemical nonequilibrium at the given point

in time, there would be a net change in the species population from the previous

instant of time. This section details the procedure used in this work to calculate the

chemical species production term. Noting that a chemically reacting gaseous mixture

in thermal nonequilibrium can still be considered to be a mixture of perfect gases

[95], individual species can be expected to obey the perfect gas law. Thus,

pi = ρiRiTrt (i = 1, 2, . . . , n) (7.7)

The static temperature used in the above equation is the translational–rotational

temperature. From the discussions in Chapter 4, the static pressure of a perfect gas

is a function of its molecular momentum. When finite-rate vibrational excitation/re-

laxation of these molecules are taken into account through the harmonic oscillator
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model, it is assumed that the constituent atoms are oscillating about an equilibrium

point. Thus, the effect of molecular vibration does not contribute to the bulk momen-

tum of the molecules [95] and the use of Trt in Eq. (7.7) is justified. Therefore, similar

to that of a gaseous mixture in chemical nonequilibrium (see Chapter 4), the global

static pressure of a gaseous mixture in thermochemical nonequilibrium can also be

obtained using Dalton’s law of partial pressures. Defining mass fractions of various

species as ci = ρi/ρ, the global gas law becomes

p = ρ

n∑
i=1

ciRiTrt (i = 1, 2, . . . , n) (7.8)

where the global properties contain no subscripts. Thus, all the species in the gaseous

mixture are assumed to have the same translational–rotational temperature, as the

translational and rotational modes are always expected to be in equilibrium based on

the arguments made in the last subsection.

If there exist l elementary reactions which represent the underlying chemical

processes of all the reacting species,
n∑

i=1

ν ′ijAi

kfj


kbj

n∑
i=1

ν ′′ijAi (j = 1, 2, . . . , l) (7.9)

then, under chemical nonequilibrium, a net production or depletion of various species

occurs over time. Similar to Chapter 4, this rate change in molar species concentra-

tion, accounted by the species source function for a unit volume is given by

σi =
l∑

j=1

(ν ′′ij − ν ′ij)

[
kfj

n∏
i=1

(
ρci
Mi

)ν′ij

− kbj

n∏
i=1

(
ρci
Mi

)ν′′ij
]

(7.10)

As was mentioned before, for every elementary reaction j, the forward and backward

reaction rates can be related through their respective equilibrium gas constant kp via

kfj

kbj
= kpj(RT )(ν

′
ij−ν′′ij ) (j = 1, 2, . . . , l) (7.11)
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For flows in chemical nonequilibrium, but thermal equilibrium, the temperature used

to evaluate the reaction rates in Eqs. (7.10) and (7.11) does not pose a dilemma, as

a single temperature defines all the internal energy modes. However, for flows under

thermochemical nonequilibrium, as the temperature can be multi-valued, the reac-

tion rate calculation can either use Trt, or, a combination of Trt and Tv. Given the

influence of vibrational energy on dissociation, Park [123] proposed a semi-empirical,

two-temperature model, where the rate constants for dissociation reactions employ

a geometric average of Trt and Tv of the respective species. The recombination

rates however, are calculated using Trt alone, as this process is merely dependent

on the molecular kinetic energy of the colliding particles. Thus, for an elementary

dissociation-recombination reaction j, the temperature at which the forward reaction

rates, that is, the dissociation rates are evaluated is defined as

Tav,j =
√
TrtTv,i (7.12)

where the dissociating species is ’i’. Subsequently, the Arrhenius rate equation dis-

cussed in Chapter 4 becomes,

kf,j = BTα
ave

(−Ea/RTav) (7.13)

As the backward reactions represent recombination kinetics, kb,j retains the same

form as before in the Arrhenius equation. However, if the calculations involve finding

kb,j as a function of kf,j, then

kb,j =
kf,j(Trt)

Kpj(Trt)
(7.14)

To evaluate the chemical rate constants in Eq. (7.10) taking into account two-temperature

model, the chemistry subroutine developed in Appendix B was modified. The mod-

ified chemistry subroutine can calculate rate constants when both the forward and

backward rate constant data are available, or, if only the dissociation rate contants
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are available. See Appendix D for specific details on the formulation utilized in this

chapter to evaluate reaction rate constants.

Finally, similar to Vincenti and Kruger [95], the species continuity equation

accounting for the rate change of mass fractions of a chemically reacting gas flow can

be written as

ρ

(
∂ci
∂t

+ u
∂ci
∂x

)
= Miσi = σi (i = 1, 2, . . . , n) (7.15)

Again, since the only reacting species of concern here is air, the only chemical reaction

mechanism used here is the reduced Dunn–Kang mechanism introduced by Shuen et

al. [108]. This mechanism considers air to be made up of five constituent species—N2,

O2, NO, N and O—with six elementary reactions and was used previously in Chapter

4 to model chemical nonequilibrium behind a normal shock wave and dissociating air

flow through a nozzle. Further information on the chemical kinetics mechanism used

in the MoC calculations here are given in Appendix D.

7.2 MoC formulation and numerical implementation

The governing equations discussed in the previous section represent a set of

quasi-linear hyperbolic partial differential equations. MoC provides a way to reduce

these equations to ordinary differential equations so that they can be solved with

ease. Before the MoC procedure is carried out, all the governing equations have to

be expressed in terms of the primary dependent variables of interest — p, ρ, u, ci

and ev. Thus, the energy equation (7.1c) is rewritten using the definition of global

enthalpy h =
∑n

i=1 ci(ei +RiTrt) as

∂p

∂t
+u

∂p

∂x
−a2f

(
∂ρ

∂t
+ u

∂ρ

∂x

)
=

n∑
i=1

(γfRiTrt−(γf−1)hi,f )σi−ρ(γf−1)
m∑
i=1

ciζi (7.16)
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where ζi represents the thermal source function, obtained from Eq. (7.5) but rewritten

as
Dev,i
Dt

=
∂ev,i
∂t

+ u
∂ev,i
∂x

= ζi (7.17)

Note that the sonic velocity in Eq. (7.16) is the thermochemically frozen value which

arises naturally during the derivation. Additionally, if the flow is assumed to be in

thermal equilibrium, then thermal rate equation vanishes, which results in Eq. (7.16)

simplifying to that of a chemically reacting flow, reported previously in Chapter 4.

Finally, for a thermochemically frozen flow, all the source terms in Eq. (7.16) vanish,

resulting in the energy equation for a perfect gas flow reported in Chapter 3.

Thus, the complete set of governing equations for an inviscid, quasi-one-

dimensional thermochemically relaxing gas flow comprises of Eqs. (7.1a),(7.1b), (7.16),

(7.15) and (7.17). These partial differential equations are converted to ordinary dif-

ferential equations on certain curves called characteristic curves. While the resulting

ordinary differential equations provide the variation of the dependent variables in the

flowfield, the characteristic curves themselves represent the propagation of distur-

bances in the flowfield. Close observation will reveal that the equations representing

species continuity (7.15) and variation of vibrational energy (7.17) are already in

the characteristic form, with the fluid velocity representing both their characteris-

tic curves. Utilizing the MoC procedure detailed in Zucrow and Hoffman [49], the

characteristic curves for the system of governing equations become(
dt

dx

)
o

= λo =
1

u
(7.18a)(

dt

dx

)
±
= λ± =

1

u± af
(7.18b)

In the above equations, the characteristic curve λo represents the pathline, while

the curves λ± represent the sonic disturbances that propagate along and against the
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flow direction. It is seen that the characteristic equations are in the same form as

that obtained for a calorically perfect gas in Chapter 3 and that for a chemically

reacting mixture of gases in Chapter 4. However, the definition of “frozen” sonic

velocity differs between these three models. Overlooking the trivial case of a calor-

ically perfect gas flow, the sonic velocity calculation for a chemically reacting flow

assumes that the species composition is frozen at the local values, but the internal

energy is always in equilibrium. However, for a thermochemical nonequilibrium flow,

the sonic velocity calculation utilizes the species composition and internal energy at

locally frozen values.

The compatibility equations that are valid on the characteristic curves repre-

sented by Eqs. (7.18a) and (7.18b) are

dpo − a2fdρo =
n∑

i=1

(γfRiTrt − (γf − 1)hi)σidto − ρ(γf − 1)
m∑
i=1

ciζidto (7.19a)

(dci)o =
σi
ρ
dto (i = 1, 2, . . . , n) (7.19b)

(dev,i)o = ζidto (i = 1, 2, . . . ,m) (7.19c)

dp± ± ρafdu± =
n∑

i=1

(γfRiTrt − (γf − 1)hi)σidt± − ρ(γf − 1)
m∑
i=1

ciζidt±

− ρu
1

A

dA

dx
a2fdt±

(7.19d)

where the subscripts of the total derivatives in the compatibility equations denote the

appropriate characteristic curves on which they are are valid. Equations (7.18a)–(7.19d)

provide the fundamental set of equations which can be manipulated based on a spe-

cific flow scenario to solve for the unknowns, which are the dependent variables here.

The current work has resulted in the development of three subroutines which are

capable of resolving a thermochemically relaxing flowfield comprising compression

and/or expansion waves, contact surfaces and shock waves. All three subroutines
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employ the inverse marching method employed previously in Chapters 4 and 5 with

modifications as will be discussed.

The inverse marching method can be explained as follows. Every point in the

continuum x–t space contains three intersecting characteristic curves, to be called

characteristics hereafter. Associated with these characteristics are the compatibility

equations that describe the flow properties variation in the flowfield. Since the prob-

lem is hyperbolic, flow perturbations originating on an initial value line will propagate

along these characteristics, thereby allowing the flow properties at the intersection to

be determined. Based on an initial guess for the unknown properties at the location

of interest, all three characteristics are projected back to the initial value line, fol-

lowed by integration of the compatibility equations to obtain improved estimates of

the flow properties at the point of interest. This procedure is repeated until all the

calculated flow properties converge to a specified error tolerance.

The subroutine which resolves continuous regions of compression or expansion

waves is now discussed, as it utilizes all the characteristic and compatibility equations

described above. Similar to the nomenclature used in all the chapters so far, this

subroutine is called the interior point module. The algorithm for the interior point

module utilizes a predefined grid in the x–t plane, as shown in Fig. 7.1a. The initial

value line is again schematically represented by the region between grid points 1 and

3, with grid point 4 representing the location at which unknown flowfield variables

are to be calculated. Also shown in Fig. 7.1a are the characteristics that intersect at

grid point 4, with the same nomenclature as Eqs. (7.18a) and (7.18b).

The solution procedure is carried out in two steps, with the gasdynamic and

thermochemical integration procedures carried out separately. During the first step

which is the gasdynamic integration, Eqs. (7.18a–7.19a) and (7.19d) are solved using

the vectorized Euler predictor–corrector method as described in Chapter 5. Here, the
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themochemical state of the gas is assumed to be frozen at its initial value. To solve the

compatibility equations along the characteristics, values of all the dependent variables

at the origin of the characteristics need to be evaluated. The current method utilizes

piecewise cubic interpolation to determine these properties, as opposed to linear in-

terpolation used by Zucrow and Hoffman [49]. Further, in the case of a calorically

perfect gas flow, the source terms, for instance, the friction and heat loss terms are

evaluated based on the local state properties at the origin of the characteristics. In the

current case however, similar to Chapter 4, the thermochemical source terms during

the gasdynamic integration are also obtained through interpolation, as evaluation of

these terms based on local state properties significantly increases the computational

time.

Once the gasdynamic integration is complete the pathline of the particle that

passes through grid point 4 at the current time is known. Thus, all the required state

properties of the particle is known at the initial value line. Additionally, because of

the gasdynamic integration, the frozen state properties are now known at grid point

4. Assuming a linear variation of the static pressure on the pathline, the thermo-

chemical state equations (7.19b and (7.19c) are evaluated using ode15s. As noted

previously, the chemical-state source terms are evaluated using Cantera [124], while

the thermal-state properties are directly evaluated based on the equations developed

in Section 7.1.1. With the completion of thermochemical integration, all the state

properties of the fluid are obtained at grid point 4, which completes the first iteration.

This alternating integration procedure to account for gasdynamic and thermochemi-

cal state variation is carried out until various flow properties at grid point 4 converge

to a specified tolerance. The interior point module can be repeated over an array of

predefined grid points to obtain a complete description of the flowfield of interest.
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(a) Interior point module. (b) Contact surface module.

Figure 7.1: MoC sub-routine algorithms.

The next subroutine to be discussed represents the gasdynamics of a contact

surface. By definition, the contact surface is an impermeable, massless membrane sep-

arating two fluids in an inviscid flow. Then, mass continuity and momentum balance

equations necessitate that the fluid velocity and static pressure be continuous across a

contact surface [47], but other state properties such density, temperature and species

composition may be discontinuous. The contact surface is hence a discontinuity and

the differential equations developed above cannot be directly applied. However, the

conditions imposed by its definition show that the contact surface itself represents a

pathline. Thus, the characteristic and compatibility equations can be separately ap-

plied to either side of the contact surface. With the additional condition of continuity

of pressure and velocity, the total derivatives of pressure and velocity are the same

for species representing either side of the contact surface. Utilizing these observations

along with the characteristic and compatibility equations developed above, the relax-

ation process of a contact surface can be solved. A representation of the algorithm

for a contact surface is given in Fig. 7.1b, with different fluids represented by different
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Figure 7.2: Shock wave (SW) module.

colors. The properties on the left and right sides of the contact surface are denoted

by subscripts l and r, respectively. In contrast to the interior point solver, the loca-

tion of a contact surface at the end of the current time-step is not known in advance

and must be solved as a part of the integration procedure as detailed in Chapters 5

and 6. The overall integration procedure is again similar to the interior point solver

with gasdynamic and thermochemical integration steps carried out separately until

convergence of various dependent variables. Since either side of the contact surface

represents a different fluid parcel, the integration to account for their thermochemical

relaxation is carried out separately for each side. Also, as the relaxation of a con-

tact surface is solved at every time-step, the initial values for thermochemical state

evolution are always known, and therefore interpolation for the initial gas state is

circumvented.

The final subroutine discussed here represents another discontinuity, a shock

wave. Similar to the contact surface, the algorithm for resolving a shock wave eval-

uates the regions ahead and aft of the shock wave separately as all the gasdynamic
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properties are discontinuous across a shock wave. A general representation of the al-

gorithm for a right running shock wave is shown in Fig. 7.2. The properties ahead and

aft of the shock wave are subscripted as f and a respectively. It is seen that the shock

wave overtakes all characteristics ahead of it, and is overtaken by the characteristic

that travels in the direction of the shock wave. The overtaking characteristic brings

in information about the flowfield aft of the shock wave, which in this case is the

thermochemical relaxation of the shock processed gas. As the shock wave is a discon-

tinuity, it is assumed that the thermochemical state of the gas has not had the time to

adjust to the change brought about by the impulsive compression. Though the static

pressure, density, velocity and translational–rotational temperature are discontinu-

ous across the shock wave, the vibrational energy of various species and the chemical

composition of the gas processed by the shock wave remain at their respective initial

values.

Note that the description of a shock wave as a discontinuity is from the con-

tinuum perspective. The true structure of a shock wave is a few mean free paths

thick [5], which based on the discussions previously in §7.1.1) represents the order of

collisions required for the translational–rotational temperature to reach equilibrium.

Thus, it is appropriate to consider the translational–rotational temperature to be in

equilibrium immediately behind the shock wave from a continuum perspective. Since

the thermochemical state of the shock wave is fixed at its initial value, by defini-

tion, the shock wave is calorically perfect. Thus, the appropriate jump conditions

that describe the gasdynamic process are given by the Rankine–Hugoniot equations

[69, 49, 47]. The solution algorithm for the shock wave module essentially probes

for a shock wave velocity where the post shock conditions due to Rankine-Hugoniot

equations match the gasdynamic conditions obtained by solving the compatibility

equation on the overtaking λ+ characteristic. The iterative variation of the shock
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wave velocity is terminated once the static pressure and velocity behind the shock

wave and those calculated on the λ+ characteristic converge to a specified tolerance.

7.3 Validation

The algorithms described in the previous section were validated against existing

experimental and numerical results. As a salient part of all the algorithms is obtained

through modification of the interior point module, initial validation efforts were di-

rected towards verifying the interior point solver. Additionally, since the algorithm

for chemical nonequilibrium was already validated in Chapter 4, the ability of the

new algorithm to account for thermal nonequilibrium was investigated initially. For

ease of modeling, steady, quasi-one-dimensional nozzle flows were considered first.

The first section of the validation studies reports two cases of steady, hyperve-

locity nozzle flows representing a self relaxing nitrogen flow and that of dissociating

air flowing through a hypervelocity nozzle. With satisfactory results obtained for

both these cases, final validation studies for unsteady one-dimensional flows were

conducted. The unsteady case considered here is that of LENS-X simulated previ-

ously in Chapters 5 and 6, which requires the use of all the subroutines described

above. Two operating conditions of the facility representing thermochemical equilib-

rium and nonequilibrium flows were solved and the validation results are presented.

All the comparison data plotted were extracted using Webplot digitizer software [113]

from the plots in the sources quoted appropriately.

7.3.1 Hypervelocity nozzle flows

The first set of validation cases, as mentioned previously, involve thermochem-

ically relaxing nozzle flows. Such flows lend themselves to easy modeling, as the flow

through the entire domain can be modeled solely using the interior point algorithm.
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This simplification is applicable to a hypervelocity nozzle operating in its design con-

dition, where the flow properties through the entire nozzle vary smoothly, that is, no

discontinuities are present. Further, the exit velocity in these scenarios is supersonic;

thus, the surrounding ambient conditions at the nozzle exit do not affect the flow in-

side. The solver algorithm used for both these cases employs predefined grid points in

the x–t space with the time-step limited by the Courant–Friedrichs–Levy condition,

for a given spatial grid size. The steady-state solution is obtained as the asymptotic

limiting solution of a time-marching scheme. In this scheme, the initial guess for the

variation of flow properties throughout the nozzle is taken to be the thermochemical

equilibrium solution, which is readily calculated as the nozzle geometry and reservoir

conditions are known. Then, the axial variation of flow properties at the next time-

step can be obtained by using the interior point module across all the grid points

at that time-step. This procedure is repeated for successive time-steps until the ax-

ial distribution of vibrational temperatures of all the molecular species vary by less

than 0.01 percent between two steps. A grid independence study with three different

spatial discretization, namely, 250, 350 and 600 nodes was conducted for the thermal

nonequilibrium simulation. A comparison of the vibrational temperature distribution

showed that the maximum difference in the temperature profiles between 350 and

600 grid size cases was less than 0.01 percent. Thus, the results provided below were

obtained using 350 spatial nodes.

7.3.1.1 Self-Relaxing Nitrogen

This section details the preliminary validation case, which approximates a self-

relaxing nitrogen flow. Under such an approximation, the only relaxation effect to

occur is thermal. Additionally, for a self-relaxing diatomic harmonic oscillator, the

only thermal relaxation process will be VT exchange with same species. Appropri-
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ately, the thermal relaxation model used here simplifies to the classic Landau–Teller

model representing VT relaxation. The reference benchmark article considered here

is by Sharma et al. [125], where an expanding nitrogen flow in a hypervelocity nozzle

was studied numerically and experimentally. The experimental studies were carried

out in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center.

To simulate a hypervelocity nozzle flow, a two-dimensional nozzle plug insert with

optical access windows was installed near the end of the driven section. The hyper-

bolic nozzle with a smaller inlet area compared to the driven section inner diameter

resembled a reflected shock tunnel operation. Vibrational temperatures shown in

Fig. 7.3 were obtained through spontaneous Raman scattering (SRS) measurements

at seven locations along the nozzle. Note that the Raman measurements at different

locations were obtained over a series of runs and the variation in reservoir conditions

were taken into account in the measurements reported. For further information about

the methodology and the setup, the interested reader is referred to [125], as only the

key information about the experiment is discussed here. The driven section of the

shock tube was filled with prepurified grade nitrogen at 150 Torr. Once the shock

tube was fired and the driven diaphragm ruptured, a shock wave of 2 600 m/s velocity

was sent into the driven section, which reflected on the face of the nozzle insert to

produce a stagnant reservoir condition of approximately 100 atm and 5 600 K. This

condition is used as the steady-state reservoir condition in the nozzle flow modeled

here and the stagnant gas is assumed to be in thermochemical equilibrium. Ther-

mochemical equilibrium calculations at the conditions mentioned above show that

the reservoir gas consists of 99.46 % molecular nitrogen by mass, with the remainder

being atomic nitrogen. The reason for describing this validation study as an approxi-

mation to a self-relaxing nitrogen flow may be apparent from the calculated reservoir

gas composition.
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Figure 7.3: Thermal relaxation of nitrogen: comparison of equivalent MoC results
with computations and experiments.

Sharma et al. [125] also performed numerical analysis to supplement the exper-

iments. Two models were considered, with the first one being a Navier–Stokes model

considering finite-rate chemistry with vibrational relaxation in accordance with the

Landau–Teller model. An equivalent inviscid nozzle geometry was obtained from

the Navier–Stokes solution which was then used in a quasi-one-dimensional analysis

utilizing a state-to-state vibrational relaxation model. The current work utilizes this

equivalent inviscid nozzle profile and the results obtained through the MoC model are

compared to the Navier–Stokes results as well as the experiments reported by Sharma

et al., see Fig. 7.3. It is seen that the MoC model closely agrees with the experimental

and numerical results. Thus, for a self-relaxing diatomic gas flow, MoC captures the

essential vibrational energy freezing occurring in the nozzle as the gas expands to low

densities. The phenomenon of vibrational freezing in turn can be attributed to the

dwindling energy exchange process due to the gasdynamic expansion. From a molec-
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ular view, the continuously reducing density results in fewer particle collisions as the

gas expands, which directly reduces the energy transfer from the vibrational mode

to the translational mode. Once the gas density has fell significantly, this energy

exchange ceases, as there are insufficient number of efficient collisions between the

molecules. This causes the vibrational energy of the expanding gas to freeze during

the expansion, seen in the form of a nearly constant vibrational temperature towards

the exit of the nozzle in Fig. 7.3.

7.3.1.2 Dissociating air

With the successful validation of self-relaxing nitrogen flow, a test case for cou-

pled thermochemical relaxation was studied next. Practical flows of this nature are

prevalent in hypervelocity nozzle operation where typical modeling interest leans to-

wards nonequilibrium effects occurring in air as it expands through the nozzle. In

this regard, existing literature for computational models of hypervelocity nozzles was

reviewed and reflected shock tunnel nozzle computations from Gu et al. [109] were

used for validation of the dissociating air MoC model. This was also the geometry

and reservoir conditions used in Chapter 4. Gu et al. [109] modeled the steady-state

quasi-one-dimensional flow through a hypothetical reflected shock tunnel nozzle to

study the nonequilibrium aspects associated with the converging section of hyperve-

locity facility nozzles. A state-to-state approach was used to model the evolution of

vibrational energies of various species based on forced harmonic oscillators and QCT

assumption. Similar to the approach in this work, Gu et al. also considered air to be

a gaseous mixture with five possible species and an initial composition of 78 percent

nitrogen and 22 percent oxygen by volume. For the purpose of validation studies,

two cases simulated by Gu et al., with 1 MPa stagnation pressure and 4 000 K/7 000

K stagnation temperatures were replicated here. A comparison of the pertinent mass
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fractions and Trt due to MoC and state-to-state results from Gu et al. [109] is shown

below in Fig. 7.4,

(a) Mass fractions.

(b) Temperatures.

Figure 7.4: Dissociating air flow: comparison of MoC results (lines) with Gu et al.
[109].
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It is seen that the static temperatures Trt from the MoC results throughout

the nozzle agree well with that of the state-to-state model for both the 4 000 K

and 7 000 K cases. However, the mass fraction distributions of atomic oxygen and

nitrogen in the nozzle due to MoC seems to differ noticeably from that of the state-

to-state model. This can be attributed primarily to the thermochemical equilibrium

calculations used in the MoC model for the reservoir, as opposed to the state-to-

state calculations by Gu et al. Considering the differences in the considered chemical

kinetics and the vibrational relaxation models, a difference in mass fractions of ∼

0.01 seems acceptable for validation of the MoC algorithm developed here.

Now, the above results from thermochemical nonequilibrium MoC are compared

with that from the chemically reacting nozzle ODE solver developed in Appendix

C. The results for various state properties are interest are shown in Fig. 7.5 for

the 4 000 K case and in Fig. 7.6 for the 7 000 K case. It is seen that the static

temperature distribution due to the chemical nonequilibrium model lies slightly above

the thermochemical nonequilibrium results. This is due to the thermal equilibrium

assumption in the former, which results in the release of additional energy from the

vibrational modes, as the gas expands.

The thermochemical nonequilibrium plots in Figs. 7.6a, 7.6b, Figs. 7.5a and 7.5b

warrant further scrutiny. In both the cases, it is seen that the chemical composition

freezes earlier than vibrational energy during the expansion. This may be expected,

as the time scales associated with chemical reactions are larger than that required

for vibrational relaxation. Thus, as the gas expands and accelerates the finite-rate

process with larger time scale freezes first. Additionally, both chemical recombination

and vibrational relaxation are dependent on molecular collisions, which are in turn

dependent upon the gas density.
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(a) Temperatures.

(b) Mass fractions.

(c) Velocities.

Figure 7.5: Comparison of chemical and thermochemical nonequilibrium (TCNE)
results for T0 = 4 000K (upfacing triangles are TCNE).
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(a) Temperatures.

(b) Massfractions.

(c) Velocities.

Figure 7.6: Comparison of chemical and thermochemical nonequilibrium (TCNE)
results for T0 = 7 000K (upfacing triangles are TCNE).
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Vibrational relaxation is a two-body mechanism while chemical recombination

is a three-body mechanism. Thus the reduction in gas density due to its expansion

affects chemical recombination significantly more than vibrational relaxation and in-

duces chemical freezing earlier in the nozzle compared to vibrational freezing. A

remarkable practical implication due this effect is that the test gas chemical com-

position calculated by chemical and thermochemical nonequilibrium models should

provide very similar results, as is seen in Fig. 7.5b and 7.6b. Subsequently, it is also

seen that the exit velocities calculated by these two models closely match. There-

fore, a chemical nonequilibrium model offers a significantly easier way to accurately

calculate test gas velocity and composition at the exit of a hypervelocity nozzle.

7.3.2 Expansion tube

The final validation study explores the effectiveness of all the subroutines de-

veloped in this chapter (shock wave, contact surface and interior point modules) in

evaluating the unsteady flowfield of an expansion tube. The overall flowfield for an

expansion tube operation is shown schematically in Fig. 7.7 in the form of expected

ideal wave processes. These wave processes were used to develop the nonequilibrium

expansion tube model, similar to the approach in Chapters 5 and 6. The starting

solution for this algorithm was based on the analytical solution from the classical

Riemann equation. Based on this initial solution, the spatial grid and CFL condi-

tion, the time-step for the x–t grid was calculated. Thereafter, for every subsequent

time-step different MoC modules were called to solve for the flowfield evolution in

entire axial length of the facility, as was done in Chapters 5 and 6.

To increase the efficiency of the expansion tube model, different gas slugs in the

expansion tube were modeled using different MoC algorithms as shown in Fig. 7.7.

The high-pressure driver gas expands to lower temperatures and pressures. Therefore,
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Figure 7.7: Expansion tube model.

this expansion can be represented by a calorically perfect interior point module. In

this case, the thermally perfect model reported in Chapter 5 was used to model the

driver gas, for computational efficiency and ease of implementation. However, to

simulate the calorically perfect expansion of helium, the specific heat (and thereby

γ) was held constant in the curvefits supplied to the thermally perfect interior point

solver. The compressed test gas, that is, the region between the primary contact

surface CS1 and the primary shock wave SW1 is more appropriately modeled using a

thermochemical equilibrium solution. Since the governing equations neglect frictional

and heat losses, it can be expected that the test gas in region 2 will be the same as

the analytical solution calculated earlier. Thus, for simplicity the growth of region 2

was merely obtained by convecting the Riemann solution over subsequent time steps.

Once the primary shock wave SW1 reaches and ruptures the secondary diaphragm,
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the calorically perfect p–u solution developed previously in Chapter 3 was used to

calculate the shock transmission into the acceleration section.

With the rupture of the secondary diaphragm, the nonequilibrium calculations

begin. Since the nonequilibrium expansion of the test gas begins with the leading

characteristic of the secondary rarefaction wave (see Fig. 7.7), the nonequilibrium

interior point module was initiated from this location at every subsequent time-step.

The regions behind this leading characteristic were treated in the same way prior to

secondary diaphragm rupture. Ahead of this leading characteristic, the nonequilib-

rium interior point module was used to resolve the regions between the secondary

contact surface CS2 and the secondary shock wave SW2, and the region between the

leading characteristic and the secondary contact surface CS2. The advancement of

shock wave and contact surface modules were treated appropriately by their MoC

modules. Similar to the thermally perfect and thermochemical equilibrium models

discussed in Chapters 5 and 6, the grid points surrounding these discontinuities were

obtained through piecewise cubic interpolation.

The benchmark cases for the expansion tube model were based on two opera-

tional conditions reported by the LENS-X facility [50, 51]. In the current case, the

MoC results are compared to CFD results due to Nompelis et al. [51]. Fill conditions

for both these runs are provided in Table 7.1 below. In both these simulations, similar

to Nompelis et al. [51], air was assumed to be composed of 74.03 percent nitrogen

and 25.97 percent oxygen by mass.

Case A in Table 7.1 corresponds to a lower enthalpy simulation of 5 MJ/kg,

which was previously simulated in Chapters 5 and 6. MoC results associated with

the driven-accelerator wave system of this simulation are shown in Fig. 7.9. In the

subsequent discussions in this chapter, only the results for the driven-accelerator wave

systems are shown, as the nonequilibrium phenomena occur only here.
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(a) Initial nonequilibrium phase.

(b) Near equilibrium phase.

Figure 7.8: Evolution of thermochemical and gasdynamic properties for Case A.
feqlens1)
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Table 7.1: Expansion tube fill conditions reported for LENS-X [51].

Section Gas
Case A Case B

T , °R p, psi T , °R p, psi

Driver He 770.0 1 200 630.0 2 000
Driven Air 529.3 3.000 630.0 1.4700
Acceleration Air 529.3 0.048 630.0 0.0059

The evolution of internal energy in the test gas as it expands and travels the

acceleration section is evident from Figs. 7.8a and 7.8b. Figure 7.8a, which represents

an earlier time in the driven-accelerator wave system shows that the gaseous mixture’s

translational–rotational temperature is about 110 K lower than the vibrational tem-

peratures of nitrogen and oxygen. But, the vibrational temperature of nitric oxide

is almost coincident with the gas translational–rotational temperature. Figure 7.8b

representing a later time in the expansion tube operation shows in contrast that the

test gas immediately trailing the secondary contact surface is almost in thermal equi-

librium. Thus, in this case, gasdynamic expansion accommodates sufficient molecular

collisions in the test gas to drive the vibrational energy distributions to thermal equi-

librium. From the species composition shown in this plot, it is also obvious that the

composition of air remains intact in the test gas slug, while the accelerant slug under-

goes significant dissociation. Further, the temperatures observed in the accelerant gas

slug show rapid relaxation. Thus, it may be computationally efficient to simulate this

region through an equilibrium MoC model. The final temperatures obtained through

MoC shown for Case A are within two percent of those reported in Nompelis et al.

[51].

Figure 7.9 shows all the species considered in the MoC model corresponding to

the time shown in Fig. 7.8b. The mass fractions show significant amounts of atomic
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Figure 7.9: Test gas composition and velocity near equilibrium for Case A.

oxygen and nitric oxide in the accelerant gas, as may be expected. Combining the

velocity and mass fractions plot, the locations of various discontinuities are inferred,

namely, secondary shock wave at ≈ 35 m, secondary contact surface at ≈ 32 m and

primary contact surface at ≈ 21 m. The driver gas, which is helium, can be seen

immediately behind the secondary contact surface in Fig. 7.9. Nompelis et al. [51]

report a test gas velocity of ≈ 2 918 m/s, whereas MoC results show a test gas velocity

of ≈ 2 887 m/s which is about one percent lower.

The results from the MoC simulation of Case B in Table 7.1 are shown in Figs.

7.10 and 7.11 in a format similar to that of Case A. This simulation corresponds to a

high enthalpy test gas at 10 MJ/kg and thus the test gas velocities can be expected

to be significantly higher than Case A. Given that the primary shock wave velocity is

limited in an expansion tube, higher enthalpy simulations are only possible by adding

more energy to the test gas through the secondary rarefaction wave. This in turn
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(a) Initial nonequilibrium phase.

(b) Final frozen phase.

Figure 7.10: Evolution of thermochemical and gasdynamic properties for Case B.
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Figure 7.11: Eventual test gas composition and velocity for Case B.

causes vibrational energy freezing in the test gas, as the gasdynamic time scales be-

come increasingly shorter. This is seen in Fig. 7.10, where the evolution of vibrational

and translational–rotational temperatures are shown. In this case, Fig. 7.10a which

depicts the driven-acceleration wave system at an earlier time shows that the temper-

ature difference between the vibrational and translational–rotational temperatures is

about 300 K. As the test gas slug travels further into the acceleration section, the

vibrational energies freeze due to high test gas velocities and lower densities, with the

temperature difference still being about 150 K, as seen in Fig. 7.10b. Nompelis et

al. also report a similar thermal nonequilibrium for this case, with the translational–

rotational temperature of the test gas being ≈ 770 K at the acceleration section exit.

Corresponding MoC arrived temperature of the test gas at the same location during

secondary contact surface exit is ≈ 740 K.
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Figure 7.11 shows the species composition and fluid velocity corresponding to

Fig. 7.10b. Due to stronger shock velocity, significant atomic oxygen is present in the

accelerant gas. However, the test gas still remains predominantly intact in terms of

the gaseous composition. The test gas velocity reported by Nompelis et al. [51] for

this case was ≈ 3 777 m/s, while current MoC shows ≈ 3 750 m/s.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Overall this work has extended the classical inverse MoC algorithms to flows

in thermochemical nonequilibrium. The conclusions from various phases of this work

are below,

8.1 Phase 1

The unsteady flowfield evolution in a downstream-mode detonation tube was

resolved using an algorithm based on MoC subroutines. These subroutines directly re-

solved the evolution of continuous and discontinuous waves. The interaction between

discontinuities, namely, detonation/shock waves and contact surfaces was locally

treated by classical wave polar analysis. Validation experiments for the MoC model

were carried out in a downstream-mode detonation tube facility with L/D ≈ 100.

The experiments used nitrogen and helium as the driven gas to tailor the shock

wave–contact surface interaction in the driven section. It was shown that the setup

wall roughness to estimate friction factor in arbitrary gases could be determined

using a simple experiment. Comparison of non-isentropic MoC results with experi-

ments showed that the MoC model resonably replicates the detonation driver plateau

pressure even in the under-driven mode. The trajectory of the decelerating incident

shock wave in the driven section is captured well for different driven gases. Similarly,

the driven endwall pressure history immediately after incident shock wave reflection

matches well between the MoC model and experiments. The MoC model also reliably

determines the transmitted and reflected waves due to shock wave–contact surface in-
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teraction in the driven section. Experimental results indicate that downstream-mode

detonation tubes with strong Taylor rarefaction may experience non-ideal effects in

the detonation driver, resulting in deviations from the MoC model results at prolonged

times.

The effect of recessed transducers in time-of-flight measurements could be re-

liably accommodated using geometric shock dynamics. The shock wave in the main

flow path can be assumed to be transmitted into the recess cavity and the trans-

mitted shock wave can be approximated using geometric shock dynamics. Simple

kinematic calculations using such a method show that for moderately decaying in-

ert shock waves, the effect of transducer recess is negligible if they are of the same

height. For time-of-flight measurements across two transducers with different recess

cavity heights, the geometric shock dynamics based calculations show good agree-

ments with theoretical estimates. The agreement is poor for detonation waves, which

is expected due to the chemical reactions trailing the detonation wave.

8.2 Phase 2

An inverse marching, MoC-based numerical method was developed for modeling

inviscid quasi-one-dimensional flows under chemical nonequilibrium. Additionally, a

stand-alone chemistry solver was developed to be incorporated into the MoC subrou-

tines. Two MoC algorithms were developed to resolve exit outflow and weak com-

pression/rarefaction waves in a quasi-one-dimensional continuum flowfield. Further,

validation of the subroutines was carried out by modeling three different steady-state

cases, namely, one-dimensional supersonic combustion, flow behind a normal shock

wave and a hypervelocity nozzle flow. Additionally, an ODE solver was developed

to validate the hypervelocity nozzle flow results obtained from the MoC analyses.

These cases employed two different working gas mixtures with their chemical kinetics
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represented by two different reduced mechanisms. Comparison of MoC results with

the ODE results from the Shock and Detonation Toolbox and with nozzle ODE solver

showed that the developed MoC model is capable of predicting inviscid, quasi-one-

dimensional steady nonequilibrium flows with good accuracy.

8.3 Phase 3

Calorically perfect MoC algorithms were extended to accommodate thermally

perfect gases and the interior point solver was vectorized. Using these MoC algorithms

a computationally efficient expansion tube model was developed. Results from this

model have been successfully validated against analytical solutions. Additionally,

equilibrium MoC algorithms were developed for quasi-one dimensional unsteady gas-

dynamics, considering the effect of momentum and heat losses. Calculations pertain-

ing to thermochemistry evolution were incorporated into the solver using equilibrium

chemistry curvefits. Individual MoC subroutines were developed for predominant un-

steady waves such as weak compression/rarefaction waves, shock waves and contact

surfaces. Utilizing these subroutines, two different reduced-order models were devel-

oped to resolve equilibrium flowfields in an expansion and a detonation tube. The

expansion tube algorithm was validated against equilibrium Riemann solution. Det-

onation tube results primarily focused on unsteady wave dynamics in the damping

section. To account for the effect of losses, experimental results were used to cali-

brate the MoC model and thereby reliably estimate the peak loads observed in the

detonation tube damping section.
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8.4 Phase 4

MoC algorithms capable of resolving a thermochemically relaxing flowfield were

developed. These algorithms individually resolve some of the predominant unsteady

flow phenomena namely shock waves, contact surfaces and compression and rarefac-

tion waves. Thermal relaxation phenomena considered in these algorithms account

for both VT and VV transfer occurring in diatomic molecules. The coupling between

chemical and vibrational nonequilibrium was modeled using a Park’s two-temperature

model. To ensure that the newly developed algorithms provide acceptable results,

validation studies were carried out for different nonequilibrium flow scenarios. Sim-

plest of the validation cases studied the ability of the MoC algorithms to resolve

steady-state quasi-one-dimensional nozzle flows. Results showed that the developed

algorithm was capable of replicating the existing results for thermal relaxation of ni-

trogen and thermochemical relaxation of air through hypervelocity nozzles. Finally,

as a practical application of the algorithms developed, a high enthalpy expansion tube

flowfield was resolved and the results again showed that the MoC algorithms reliably

reproduce a set of validated computational fluid dynamics simulations of the impulse

facility.
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8.5 Future Work

The IMoC algorithms developed in this work can be further improved with the

following suggestions,

• The IMoC approach discussed in this work predominantly uses a structured

grid. It was seen in Chapter 4 that the use of adaptive grid in the steady

state nozzle simulation increased the accuracy and computational efficiency of

the overall algorithm. Thus, the use of adaptive grids in the unsteady IMoC

approach may similarly improve the computational efficiency and accuracy of

the algorithm. This may be very beneficial in flows under severe thermochemical

nonequilibrium, where regions of rapid relaxation may employ a finer mesh

compared to quasi-steady regions.

• The chemistry subroutine developed in this work can also be modified to ac-

count for thermochemical equilibrium calculations. Thus, the use of curvefits

in thermochemical equilibrium MoC model can be circumvented. It may be

known that obtaining accurate curvefits for equilibrium properties of a gaseous

mixture accommodating a large range of pressures and temperatures is labori-

ous. Thus, equilibrium chemistry calculations will render the MoC subroutines

more robust and versatile.

• The thermochemical nonequilibrium algorithms developed here are limited to

quasi-one-dimensional unsteady flows. The same approach can be easily modi-

fied to resolve steady two-dimensional flows, enabling better resolution of nozzle

flows, for instance.

• The chemical nonequilibrium algorithm developed here can be used to fully

model a detoantion-driven shock tube, thereby directly resolving the detonation

wave propagation.
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• The thermochemical nonequilibrium algorithm developed here can be extended

to account for polyatomic molecules, similar to the approach of Palmer and

Hanson [58].
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APPENDIX A

RATE DATA FOR FINITE RATE CHEMISTRY
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This Appendix provides the finite-rate chemistry data used in Chapter 4. The

nomenclature here follows the Arrhenius rate equation detailed in Section 4.1. The

first mechanism provided in Table A.1 below represents a simplified kinetic model for

combustion of hydrogen in air. The mechanism consists of six reacting species, H2,

O2, H2O, OH, H and O. The inert species is N2. In total, the combustion of hydrogen

is modeled to proceed in 7 steps, with reactions 6 through 8 and 9 through 11 each

representing a single reaction with different collision partners. This is a simplified

mechanism introduced by Shang et al. [106] based on the original mechanism of

Drummond et al. [126]. The units for various parameters below are in kg, m3, kmol,

J and K.

Table A.1: Drummond mechanism

No. Reaction
Forward Rate Constant

Third Body M
Af Bf Ef/R× 103

1 H2 + O2 
 OH + OH 1.700× 1010 0.0 24.233

2 H + O2 
 OH + O 1.420× 1011 0.0 8.254

3 OH + H2 
 H + H2O 3.160× 104 1.8 1.525

4 O + H2 
 H + OH 2.070× 1011 0.0 6.920

5 OH + OH 
 H2O + O 5.500× 1010 0.0 3.523

6 OH + H + H2 
 H2O + H2 8.840× 1016 −2.0 0.000

7 OH + H + M 
 H2O + M 3.315× 1016 −2.0 0.000 N2, O2

8 OH + H + H2O 
 H2O + H2O 2.652× 1017 −2.0 0.000

9 H + H + H2 
 H2 + H2 2.612× 1012 −1.0 0.000

10 H + H + M 
 H2 + M 1.306× 1012 −1.0 0.000 N2, O2

11 H + H + H2O 
 H2 + H2O 6.530× 1012 −1.0 0.000
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The second mechanism shown in Table A.2 is a simplified chemistry model for

high temperature air consisting of 5 reacting species N2, O2, NO, N and O. This

is a reduced form of the Dunn–Kang mechanism [127] introduced by Shuen et al.

[108] with eleven elementary reactions. In Table A.2, Reactions 4 and 5 represent

the shuffle reactions involving NO, while the remaining reactions represent neutral

dissociation–recombination reactions. The units for various parameters below are

again in kg, m3, kmol, J and K.
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APPENDIX B

VALIDATION OF CHEMISTRY SOLVER
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To improve the performance of MoC subroutines, a standalone chemistry sub-

routine (CS) was developed. Currently, Arrhenius-type reaction rates can be evalu-

ated using CS. In this type of rate calculations, almost always, the forward reaction

rate constants are known. The backward rate constants are either explicitly known or

must be calculated using the appropriate reaction equilibrium constants as described

in §4.1. Examples for both these cases can be seen in Appendix A, where the reaction

mechanism for high temperature air, i.e., the reduced Dunn–Kang mechanism (Table

A.2) has rate data for both forward and backward reactions, while the Drummond

mechanism for hydrogen–air combustion (Table A.1) only provides the data for for-

ward reactions. Both of these calculations can be carried out in CS as necessary.

Additionally, from Chapter 4 and Appendix C, it can be seen that supplementary

chemical source terms need to be calculated. These terms are also evaluated using

CS. A flowchart of this calculation procedure is shown in Fig. B.1. Note that the

procedure also assumes that the molecular weights of all the constituent species are

known.
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Figure B.1: Flowchart of Chemistry Subroutine (CS).
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The rate constants as evaluated by the Chemistry Subroutine with known Ar-

rhenius parameters are shown in this section. Validation of supplementary chemical

source terms is shown in Appendix C. Figures B.2–B.5 only show the forward reaction

rates for two-body reactions as evaluated by CS, with the results compared against

those from Cantera [124].

Figure B.2: kf comparison between Cantera and CS, Reaction: O2 + M 
 2O + M.
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Figure B.3: kf comparison between Cantera and CS, Reaction: N2 + M 
 2N + M.

Figure B.4: kf comparison between Cantera and CS, Reaction: O + NO 
 N + O2.

250



Figure B.5: kf comparison between Cantera and CS, Reaction: O + N2 
 N + NO.

Figures B.6–B.9 validate CS calculations when backward rate constants are

evaluated based on equilibrium constants and forward reaction rates. In this case,

Gibbs free energy is evaluated based on the NASA Glenn polynomial curvefits as

discussed in Chapter 4. For comparison of the evaluated results due to CS, both

forward and backward rates are shown in the plots. Figsures B.6 and B.7 show

reaction rates for two-body reactions, while Figs. B.8 and B.9 show three body

reactions. In both these scenarios, CS provides results nearly identical to Cantera.
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Figure B.6: kf , kb comparison between Cantera and CS, Reaction: H2 + O2 

OH + OH.

Figure B.7: kf , kb comparison between Cantera and CS, Reaction: H+O2 
 OH+O.
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Figure B.8: kf , kb comparison between Cantera and CS, Reaction: OH + H + H2 

H2O + H2.

Figure B.9: kf , kb comparison between Cantera and CS, Reaction: OH + H + O2 

H2O + O2.
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APPENDIX C

ODE SOLVER FOR CHEMICAL NON-EQUILIBRIUM IN A

QUASI-ONE-DIMENSIONAL NOZZLE
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This section describes an ODE solver for an adiabatic, inviscid, chemically

reacting nozzle flow field in a steady-state scenario. The results obtained in this

section were used to validate the MoC results for the quasi-one-dimensional (Q1D)

chemically reacting nozzle flow case discussed in Chapter 4. The approach detailed

here is that of Zucrow and Hoffman [49] and thus a brief overview of the constitutive

equations and the integration method is provided below.

The governing equations for a Q1D unsteady chemically reacting flowfield al-

ready derived in Chapter 4 can be simplified to obtain those for a steady flow scenario

(for a different approach to arrive at these equations, see Zucrow and Hoffman [49]).

Dropping the temporal derivative and manipulating the global continuity equation,

Eq. (4.18a) results in,
1

ρ

∂ρ

∂x
+

1

u

∂u

∂x
+

1

A

dA

dx
= 0 (C.1)

Since the gasdynamic properties only vary in the spatial direction, the above equation

becomes,
1

ρ

dρ

dx
+

1

u

du

dx
+

1

A

dA

dx
= 0 (C.2)

The momentum equation, Eq. (4.18b) similarly re-written for the steady state case

becomes,

ρu
du

dx
+
dp

dx
= 0 (C.3)

Finally, the steady-state, combined energy and momentum equation is given by,

dp

dx
− a2f

dρ

dx
=

1

u

n∑
i=1

(γfRiT − (γf − 1)hi)σi (C.4)

where γf in the above equation is calculated assuming that the gaseous mixture is

chemically frozen, but thermally in equilibrium. For a steady-state Q1D nozzle flow,
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the flowfield is essentially represented by a single traversing streamline, which is the

steady pathline. Thus, the species continuity equation is similar to Eq. (4.23),

ρu
dci
dx

= σi (i = 1, 2, . . . , n) (C.5)

In addition to the above equations, the equation of state for a mixture of perfect gases

can be re-written to obtain an expression for static temperature as,

dT

dx
=
T

p

dp

dx
− T

ρ

dρ

dx
− T

Rmix

n∑
i=1

Ri
dci
dx

(C.6)

Given the boundary condition at the inlet to a Q1D nozzle and the nozzle area

distribution, the above equations re-written as follows can be integrated using ode15s

in MATLAB.

1

u

du

dx
=

1

M2
f − 1

[
1

A

dA

dx
− β

ρua2f

]
(C.7)

1

ρ

dρ

dx
= −

M2
f

M2
f − 1

[
1

A

dA

dx
− β

ρua2f

]
+

β

ρua2f
(C.8)

1

T

dT

dx
= −

(γf − 1)M2
f

M2
f − 1

[
1

A

dA

dx
− β

ρua2f

]
+

(γf − 1)

γfpu

n∑
i=1

hiσi (C.9)

dci
dx

=
σi
ρu

(i = 1, 2, . . . , n) (C.10)

If the nozzle is a choked de Laval nozzle, integration of Eqs. (C.8)–(C.10) around

the transonic region results in numerical instabilities, as the above equations exhibit

a singularity at the throat. Thus, instead of using the nozzle’s area variation as an
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integration parameter, the governing equations can be rewritten in terms of a known

pressure distribution as follows,

du

dx
= − 1

ρu

dp

dx
(C.11)

dρ

dx
=

1

a2f

[
dp

dx
− β

u

]
(C.12)

dT

dx
=

(γf − 1)T

γfp

[
dp

dx
− 1

u

n∑
i=1

hiσi

]
(C.13)

dci
dx

=
σi
ρu

(i = 1, 2, . . . , n) (C.14)

The above equations are indeed of use in simulating a chemically reacting nozzle flow,

as the expanding gas in the converging section of the de Laval nozzle is nearly in

thermochemical equilibrium. Thus, the entire nozzle flowfield is first solved assuming

thermochemical equilibrium using Q1D nozzle relations [49, 103]. Then, the pressure

distribution from these equilibrium calculations are used to integrate Eqs. (C.11–C.14)

from the inlet to a location slightly downstream of the throat. Thereafter, integrating

Eqs. (C.7–C.10) solves the remainder of the flowfield. This procedure was used to

solve the nozzle flowfield described in Chapter 4.

Additionally, to validate the chemistry subroutine described in Appendix B, the

above equations were also integrated with Cantera [124] evaluated chemical source

terms. A comparison of the results due to the use of Cantera and chemistry subroutine

is shown in Fig. C.1. As seen again, the results due to chemistry subroutine and

Cantera calculations are nearly identical, which validates the former.
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(a) Static pressure and velocity

(b) Temperature and Mach number

(c) Molefractions

Figure C.1: Comparison of Nozzle ODE Solver employing Chemistry Subroutine and
Cantera
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APPENDIX D

RATE DATA FOR FINITE RATE THERMOCHEMISTRY
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This section provides the rate data used in Chapter 7. Firstly, the parameters

used in Millikan–White’s formula for VT rate calculations are provided. As mentioned

earlier, these data were reported by Park [128].

Table D.1: VT Rate Data for Millikan–White Formula

Species Collision Partner a b

N2

N2 221 0.0290
O2 229 0.0295
NO 225 0.0293
N 180 0.0262
O 72.4 0.0150

O2

N2 134 0.0295
O2 138 0.300
NO 136 0.0298
N 72.4 0.015
O 47.7 0.059

NO

N2 49.5 0.042
O2 49.5 0.042
NO 49.5 0.042
N 49.5 0.042
O 49.5 0.042
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The second mechanism shown in Table D.2 is a modified form of Dunn–Kang

mechanism [127] from Appendix A. In Table D.2, all the dissociation reactions con-

sider preferential dissociation through the use of Park’s two-temperature approxima-

tion. As seen in the reaction mechanism, the dissociation reaction temperatures now

include the vibrational temperature in the rate constant calculations. The units for

various parameters below are again in kg, m3, kmol, J and K.
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