

DESIGN AND DEMONSTRATION OF AN INERTIAL-STABILIZED
SINGLE-AXIS HEADLAMP FOR MOBILE SYSTEMS

by

Thomas Avery Allsup

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at

The University of Texas at Arlington
December, 2023

Arlington, Texas

Supervising Committee:

Dr. Robert L. Woods, Supervising Professor
Dr. Raul Fernandez
Dr. David Hullender
Dr. David Hunn
Dr. David Wetz

Copyright by

Thomas Avery Allsup

2023

 i

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Robert L. Woods for his many years of guidance and

support. The author would like to thank the entire staff of UTA MAE department who

all greatly assisted a returning aged student. A special thank you to Dr. Kamesh

Subbarao for assisting in an advanced Matlab programming task. Further, the author

would like to recognize and thank Drs. Raul Fernandez, David Hullender, David Hunn,

and David Wetz for serving on my committee.

November 30, 2023

 ii

DEDICATION

To my family, both blood and found, I dedicate this dissertation work. I am thankful for

all their continued support. This was a real team effort.

 iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ___ i

DEDICATION ___ ii

LIST OF FIGURES ___ iv

LIST OF TABLES, PROGRAM CODES, AND LISTS __________________________ vi

ABSTRACT ___ vii

CHAPTER 1: INTRODUCTION __ 1

CHAPTER 2: RESEARCH ___ 11

CHAPTER 3: DERIVATION OF SYSTEM EQUATIONS ______________________ 18

CHAPTER 4: DESIGN EMBODIMENT ___________________________________ 23

CHAPTER 5: CONCLUSION ___ 29

REFERENCES ___ 31

APPENDICES

1 ANIMATION OF HEADLAMP PROBLEM AND SOLUTION _______________ 33

2 PROOF-OF-CONCEPT MODEL ____________________________________ 36

3 DISASSEMBLY OF AN ADAPTIVE HEADLAMP _______________________ 42

4 VEHICLE MOVEMENT DATA ACQUISITION DEVICE __________________ 45

5 DESIGN AND CONSTRUCTION OF A HEADLAMP SIMULATOR __________ 53

6 ROADWAY DATA CREATOR ______________________________________ 67

7 MOTOR UNIT CONVERSIONS ____________________________________ 71

8 HEADLAMP FIXED ANGLE OFFSET CALCULATIONS _________________ 75

 iv

LIST OF FIGURES

Figure Page

1 Automatic Headlamp Leveling Control ________________________________ 2

2 Headlamp Angle Scenarios at 45 MPH ________________________________ 4

3 Bosch BNO055 Nine Axis Sensor ___________________________________ 11

4 Static Sine Plate Angle Measurement ________________________________ 13

5 Dynamic Triangular Wave Angle Measurement ________________________ 13

6 Sample Angle Measurement _______________________________________ 14

7 Proof-of-Concept Model Demonstration ______________________________ 15

8 Vehicle Data Measurement Device __________________________________ 16

9 Sample Drive for 2012 Ford Escape Pitch Angle________________________ 17

10 Angle Definitions __ 18

11 Multiport Diagram ___ 19

12 Roadway Elevation Based on PSD __________________________________ 25

13 Pitch Angle of Vehicle Based on PSD Generated Roadway _______________ 26

14 Simulation of Production System ____________________________________ 27

15 CAD Model for Animation ___ 33

16 Proof-of-Concept Model __ 36

17 Rocking Platform __ 37

18 Laser Mount__ 38

19 Proof-of-Concept Schematic _______________________________________ 39

20 Disassembled Headlight __ 42

21 Disassembled Headlight Backside __________________________________ 42

22 Disassembled Headlight with Linear Actuator Removed __________________ 43

 v

23 Linear Actuator ___ 43

24 Disassembled Headlight with Back of Light Shown ______________________ 44

25 Vehicle Data Acquisition Device ____________________________________ 45

26 Machined Aluminum Base Drawing __________________________________ 46

27 Custom Raspberry Pi Housing _____________________________________ 47

28 Custom Raspberry Pi Hat Schematic ________________________________ 48

29 Custom Raspberry Pi Printed Wiring Board ___________________________ 49

30 Block Diagram of Breadboard ______________________________________ 53

31 Mechanical Design of Breadboard ___________________________________ 54

32 System Photograph __ 55

33 Mechanical Breadboard Base ______________________________________ 55

34 Breadboard Laser Mount Clamshell Half ______________________________ 56

35 Breadboard Custom PCB Schematic ________________________________ 57

36 Breadboard Custom PCB Layout ___________________________________ 58

37 Headlamp Simulator Graphical User Interface _________________________ 59

38 Sample Angle of Road Plot __ 68

39 Motor Test Data ___ 73

40 L298N Motor Driver Specification (Partial) ____________________________ 74

41 Ideal Headlamp Fixed Angle Definition ______________________________ 75

42 Headlamp Height ___ 77

 vi

LIST OF TABLES, PROGRAM CODES, AND LISTS

Table / Code / List Page

1 Summary of Figure 2 Headlamp Angle Scenarios at 45 MPH _______________ 3

2 Matlab Simulation Code __ 24

3 Proof-of-Concept Arduino Code ____________________________________ 39

4 Raspberry Pi Python Code __ 50

5 Example Raspberry Pi Program Data Log File _________________________ 52

6 Headlamp Simulator Python Program Code __________________________ 59

7 Sample Roadway Input File __ 68

8 Roadway Data Creator Python Code ________________________________ 69

9 Motor Torque Conversions at 12VDC ________________________________ 71

 vii

ABSTRACT

DESIGN AND DEMONSTRATION OF AN INERTIAL-STABILIZED
SINGLE-AXIS HEADLAMP FOR MOBILE SYSTEMS

Thomas Avery Allsup, Ph.D.

The University of Texas at Arlington, 2023

Supervising Professor: Dr. Robert L. Woods

The introduction of adaptive headlamps has added left and right movement of the

headlamps to enhance the vision of the driver during a turn at night. Adaptive

headlamps also allow up and down motion of headlamps in either two discrete positions

with low and high beams based on vehicle speed and oncoming traffic lights or using

the vehicle suspension measurement to adjust headlamp beam angles in any angle

between low and high. Using the vehicle suspension ignores the roadway influence on

where the headlamps should be positioned to illuminate the roadway for the driver.

This dissertation develops governing equations and provides an electro-mechanical

breadboard design for a single-axis servo system that provides inertial stabilization of

headlamp angles such that the headlights are approximately always at the point in

space with respect to inertial space. Not only does this keep the headlights level to

optimally illuminate the road ahead for the driver, but it also prevents the headlights

from shining in the eyes of the oncoming traffic. The breadboard design includes

selection of the angular positioning sensor, mechanical embodiment, electrical circuitry

and control program. Included simulation and demonstration of the breadboard design

provides the foundation for future prototyping of vehicle systems.

 1

CHAPTER 1

INTRODUCTION

Adaptive headlamp systems started 100 years ago with left and right angular headlamp

movements corresponding to the mechanical linkage attached to the steering wheel and

have now progressed to electronic sensing oncoming traffic’s headlamps to control high

and low beams based on vehicle speed.

European countries currently allow vertical headlamp leveling that use sensors on

passenger vehicle suspensions to determine the angular pitch position (see Figure 1)

[1]. These current headlamp systems only partially reference the pitch of the chassis

and do not account for the roadway pitch [2]. United States has been slow to adopt

vertical headlamp leveling except for low and high beams but it is currently allowed. If

the vehicle is traveling along a roadway with little or no roadway angular pitch rate

change then the headlamp attached to the chassis is acceptable. The change of the

angular pitch rate of the roadway is negligible when the car is traveling on a flat

roadway or is driving up or down a long straight incline. This situation is not ideal for

roadways with changes in pitch, think short bumps, small hills, or train tracks, since the

headlamps will follow the vehicle path which moves the lights up and down.

 2

Figure 1 Automatic Headlamp Leveling Control [1]

This improvement of headlamp position can be further improved if an element of inertial

stabilization is added to the pitch of the chassis headlamp leveling when the angular

pitch of the road is variable. To further illustrate this point, an animation was created in

Onshape to explain of concept of leveling versus inertial stabilization (see Appendix 1).

Onshape is a cloud-based 3D parametric CAD program that provides design and

drafting tools for mechanical designers. This animation shows that the headlamp

following the vehicle path is not optimum for visibility.

Another method of conveying the optimum headlamp angle is to place a known vehicle

traveling at a constant velocity on various roadway surfaces and display the optimum

headlamp angle for braking distance, the fixed headlamp angle, and the inertially

stabilized headlamp angle. Figure 2 shows various headlamp angle scenarios for a

sample vehicle dimension and driving parameters described in Appendix 8. The dotted

line shows the optimum beam angle to show light at the current braking distance at 45

MPH if possible. This point along the roadway is shown in the figures with the vertical

bar indicator and the word “OPTIMUM”. This bar is not along the chord length of the

road but located at the horizontal braking distance from front of the vehicle because the

 3

models are easier to create and the chord length is within 0.3% of the horizontal

distance. There are two scenarios where the curvature of the road makes illumination

at the optimum distance impossible. The dashed line indicates the headlamp fixed to

the vehicle that follows only the pitch of the vehicle. The solid line is the inertially

stabilized headlamp angle. Table 1 summarizes the various scenarios. The two

difference columns each show the angle between either the stabilized or the fixed

headlamp angle and the optimum angle. The minimum absolute difference would be

the best angle choice. It is clear from these eleven examples that the inertially

stabilized headlamp is often the minimal value but in the four scenarios where the

inertially stabilized headlamp wasn’t the best choice it was off by less than a degree.

Table 1 Summary of Figure 2 Headlamp Angle Scenarios at 45 MPH

Figure Description

Best

Angle

Choice

Stabilized Angle

Difference

(Degrees)

Fixed Angle

Difference

(Degrees)

(a) Level Ground Same 0 0

(b) Bump Under Rear Tire Stabilized 0 -1.60

(c) Bump Under Front Tire Stabilized 0 +1.60

(d) Slight Decline Fixed +0.85 +0.72

(e) Large Decline Fixed +4.63 +3.84

(f) Slight Rise Fixed -1.00 -0.84

(g) Large Rise Fixed -5.07 -4.30

(h) Slight Crest Stabilized +0.44 +2.96

(i) Large Crest Stabilized -2.86 +10.52

(j) Slight Dip Stabilized -0.42 -3.00

(k) Large Dip Stabilized -2.12 -16.17

 4

(a) Level Ground

Figure 2 Headlamp Angle Scenarios at 45 MPH

 5

(b) Bump Under Rear Tire

(c) Bump Under Front Tire

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)

 6

(d) Slight Decline

(e) Large Decline

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)

 7

(f) Slight Rise

(g) Large Rise

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)

 8

(h) Slight Crest

(i) Large Crest

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)

 9

(j) Slight Dip

(k) Large Dip

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)

 10

The purpose of headlamps is to avoid oncoming obstacles at night. You can avoid

these obstacles by turning but the primary method is to stop the vehicle. The braking

distance is a function of several factors including the reaction time of the driver, the

roadway conditions, the speed of the vehicle, and the braking system employed. The

angle of the headlamps can decrease the reaction time of the driver by allowing the

obstacle to be observed sooner. This is known colloquially as “don’t overdrive your

headlights”. Appendix 8 provides a dimensional analysis of this braking distance and

the resulting optimum angle of the headlamps. The need for longer braking distances

at higher speeds is the reason that highway speed vehicles have low and high beam

settings [3].

A combination of headlamp leveling, headlamp inertial stabilization, and vehicle speed

will therefore provide the optimum headlamp angular pitch positions based on all these

conditions dynamically. This improved headlamp angle will improve driver safety while

reducing the blinding or “dazzling” of oncoming vehicle drivers. The vision of the driver

upcoming path based on your speed using a range of beam angles instead of just two

settings.

Finally, adding leveling and inertial stabilization of the headlamps will make up for the

loss of traditional headlamp adjustments during vehicle inspections that has occurred in

the past.

 11

CHAPTER 2

RESEARCH

The research for headlamp leveling and inertial stabilization has very little published

works on vehicle inertial stabilization [1][2][3].

Three commercially available angular rate sensors were explored. The InvenSense

MPU-6050 was easy to connect to electrically but only provided angular rates not

position and with noise that was comparable to the signal [4]. The Analog Devices

ADXRS800 was also easy to connect to electrically but also only provided angular rate

but with a little less noise [5]. Attempts to understand and filter this noise only

continued to expose these as flawed sensors. Finally, the Bosch BNO055 was

investigated (see Figure 3) as it provides angular pitch positions with almost zero

electrical noise along with pitch rate [6]. The Bosch BNO055 has nine internal single-

axis sensors so it is capable of providing an Euler’s angle output which is an inertial

positional angle.

Figure 3 Bosch BNO055 Nine Axis Sensor [6]

After the comprehensive exam but before the completion of the final draft of this

dissertation, a team of Korean engineers from Konkuk University and Hyundai

 12

published an IEEE research paper describing an inertial sensor-based headlamp angle

using road to vehicle pitch [7]. The team used the MPU-6050 inertial sensor with a

Kalman filter along with a vehicle wheel speed sensor. The angular acceleration is

integrated to calculate the angular pitch. The vehicle linear acceleration and

deceleration are also integrated along with the noise which creates a steadily increasing

pitch angle. The team uses the vehicle wheel speed sensor to determine when the

vehicle is stopped so the integration sum can be reset to zero. The system was

simulated and prototyped successfully in a city scenario. They did not test the device

over a long-haul trip. The authors described future work that would remove the vehicle

wheel speed sensor.

Three adaptive headlamps were dissected that provided left and right headlamp

positioning. It was obvious from the design of the motor drivers for all three headlamp

that it would easily be changed to provide up and down servo control as well as left and

right because the connection was a three dimensionally ball joint. These ball joints

allowed the motor servo to move the headlamp left and right in either the low or high

beam position. Photographs from one of the headlamp dissections is shown in

Appendix 3.

A stationary fixture based on a sine plate fixture for accurate static angle measurements

was created (see Figure 4). A series of gauge blocks, shown in the picture around the

sine plate, were inserted in the sine plate fixture to achieve very precise angles. The

angular pitch sensor is mounted on a machined white plastic base and placed on top of

the sine plate fixture. The angular pitch sensor can be rotated to achieve negative

angles or positive angles. The picture shows the Raspberry Pi housing in the

background that is recording the information.

 13

Figure 4 Static Sine Plate Angle Measurement

A slow speed sine wave rotating fixture to determine the noise and accuracy of the

sensor was also fabricated (see Figure 5). The picture shows the Arduino controller

that drives a small Remote Control vehicle DC servo. The Arduino and servo are both

mounted to a white plastic base. The servo has a 3D printed plate that allows for

mounting the angular pitch sensor. The wires connecting to the Raspberry Pi data

collection are not shown for clarity.

(a) Rotating CCW (b) Rotating CW (c) Middle Position

Figure 5 Dynamic Triangular Wave Angle Measurement

 14

A sample set of actual test data at increasing frequencies using a triangular pattern

shows very little noise (see Figure 6). This figure does show the data sampling rate

insufficient to capture the extremes of the amplitude at very fast speeds.

Figure 6 Sample Angle Measurement (Actual Data from Bosch Sensor)

This research also included creating a custom 3D printed manually activated rocking

device that demonstrated the proof-of-concept. A slow speed Arduino-based custom

PCB driving a remote-control servo with a laser cross hair was first developed that

evolved to a faster Raspberry Pi custom PCB driving a more responsive remote-control

servo. These custom-designed and fabricated proof-of-concept models based on

Arduino and Pi based are shown in Figure 7 and appear in Appendix 2. Figure 7 are

screen shots from a video. These screen shots show the laser cross hair pointing to

the same location in space as the base is rocked forward and backward.

 15

 (a) Rocking forward (b) Horizontal

 (c) Rocking backward (d) Rocking forward again

Figure 7 Proof-of-Concept Model Demonstration

The final research portion was designing a “coffee cup holder” structure with a

Raspberry Pi and a custom PCB to record any of the nine-axis of information as shown

in Figure 8 (details can be found in Appendix 4). The data collection device has thumb

screws that can take up the space in different vehicle coffee cup holders. The

Microswitch mounted on the side is used to start and stop the data collection. The

angular rate sensor is shown mounted on the end of the Raspberry Pi plastic enclosure.

 16

Figure 8 Vehicle Data Measurement Device

Angular position and rates from four vehicles driving the same roadway path were

collected that included train tracks and a hill including several sudden stops and starts.

The vehicles included a 2012 Ford Escape (see Figure 9), 2022 Ford Escape, 2017 Fiat

500e, and 2013 Ford C-Max. Figure 9 shows the magnitude of angular changes is

within 25 degrees and interestingly there is very little flat roadway in this sample.

 17

Figure 9 Sample Drive for 2012 Ford Escape Pitch Angle

 18

CHAPTER 3

DERIVATION OF SYSTEM EQUATIONS

The first step in deriving the system Equations for the inertial headlight servo is to define

the angles used. Figure 10 shows the five pitch direction angles of interest. The yaw

and roll angles can be ignored for this analysis.

Figure 10 Angle Definitions

These five angles are measured from the inertial reference or an axis fixed to the car

and their interactions are shown in Equations 1, 2, and 3.

  = 𝛉𝐑𝐎𝐀𝐃 + 𝐂𝐀𝐑

[1]

 𝛉𝐋𝐈𝐆𝐇𝐓 =  − 𝛉𝐒𝐄𝐑𝐕𝐎 + 𝛉𝐎𝐅𝐅𝐒𝐄𝐓 [2]

 𝛉𝐎𝐅𝐅𝐒𝐄𝐓 = 𝛉𝐟 + 𝛉𝐀𝐋𝐆𝐎𝐑𝐈𝐓𝐇𝐌 [3]

where:

 = Angle of headlamp with respect to inertial reference in degrees

ROAD = Angle of road with respect to inertial reference in degrees

 19

CAR = Angle of car with respect to the road in degrees

SERVO = Angle of headlight servo with respect to the car in degrees

LIGHT = Angle of headlight with respect to inertial reference in degrees (also known as

the inertial point angle)

OFFSET = Offset angle of headlight from the inertial reference in degrees

f = Fixed starting angle of headlight in degrees (see Appendix 8)

ALGORITHM = Angle correction in degrees

The algorithm angle is currently assumed to be zero for the purposes of this research.

In the future, this angle will be defined as either adding to or subtracting from the fixed

angle based on driving conditions, vehicle speed, pitch angle changes, pitch angle and

perhaps many other parameters.

The block diagram for the system is a traditional feedback system with the servo

mechanism located in the feedback loop the components interactions indicated with

multiport effort and flow graphics as shown in Figure 11[8]. The input, output, and

feedback angles were defined previously in Figure 10.

Figure 11 Multiport Diagram

 20

The H-Bridge Driver Amplifier is governed by Equation 4:

 EA = GALIGHT − RAIA [4]

The DC Motor with Integral Gearhead is governed by Equations 5 and 6:

 ω𝐺 = KVEA [5]

 IA = KTTG [6]

The load angle and required torque are shown in Equations 7 and 8:

SERVO =

1

D
ωG

[7]

TG =

2𝜋

360°
JωĠ

[8]

where:

SERVO = Angle of headlight servo with respect to the car in degrees

LIGHT = Angle of headlight with respect to inertial reference in degrees

EA = Voltage to H-Bridge Driver in Volts

GA = Amplifier gain in Volts per degree

RA = Resistance of the H-Bridge Driver in Ohms

IA = Current through H-Bridge Driver in Amperes

KV = Motor velocity constant in degrees per Volt - sec (see Appendix 7 for unit

conversions)

KT = Motor torque constant in Amp per ounce-inch (see Appendix 7 for unit

conversions)

ωG = Gearhead rotary speed in degrees per second

 21

TG = Torque out of gearhead in ounce-inches

D = Differential operator is one per second

J = Rotary inertia of the load in ounce – inch – second2 (see Appendix 7 for unit

conversions)

Substituting Equation 4 into Equation 5 yields Equation 9:

 ω𝐺 = KV(GALIGHT − RAIA) [9]

Substituting Equation 6 into Equation 9 and simplifying yields Equation 10:

 ωG = KVGALIGHT − KVRAKTTG [10]

Substituting Equation 8 into Equation 10 yields Equation 11:

ωG = KVGALIGHT −

2𝜋

360°
KVKTRAJωĠ

[11]

Solving Equation 11 in terms of ω𝐆 yields Equation 12:

 (KVKTRAJ D + 1)ωG = KVGALIGHT [12]

Substituting Equation 2 into Equation 12 yields Equation 13:

 (KVKTRAJ D2 + D)SERVO = KVGA( − θSERVO) [13]

Simplifying Equation 13 yields Equation 14:

 (KVKTRAJ D2 + D + KVGA)θSERVO = KVGA [14]

 22

Solving Equation 14 for  yields Equation 15:

(
KVKTRAJ

KVGA
 D2 +

D

KVGA
+ 1)θSERVO = 

[15]

For a second order system, the natural frequency, ωN, and damping ratio, ζ, can be

determined from the coefficients of the governing Equation 15 for Equation 16:

(

1

ωN
2

 D2 +
2ζ

ωN
D + 1)θSERVO = 

[16]

Therefore, from Equation 16, the natural frequency (rad/s) is found in Equation 17:

 ωN = √

GA

 KTRAJ

[17]

And also from Equation 16, the damping ratio (unitless) is found in Equation 18:

 ζ =
ωN

2𝐾𝑉𝐺𝐴
 [18]

 23

CHAPTER 4

DESIGN EMBODIMENT

The breadboard design is described in Appendix 5. The DC motor parameters can be

found in Appendix 7. For the breadboard device described in Appendix 5 and

Appendix 7, the parameters are:

GA = 120 Volts / degrees

KT = 174.8 Amp / oz-in

KV = 22.5 deg / V-s

RA = 22.2 Ohms

J = 0.0016 oz-in-s2

These parameters in Equation 17 yields a natural frequency, ωN, is 33.3 rads/s (5.3 Hz)

and from Equation 18 yields a damping ratio, ζ , of 0.06. The very low damping ratio

makes the system oscillate [8][9]. The damping ratio for the simulation is less than

ideal but it can be mitigated with a proportional-derivative controller with a low pass filter

so that input noise is not amplified. These factors lead to a more appropriate design

embodiment that would be a production design with a natural frequency target of 62.8

rad/s (10 Hz) and a damping ratio, ζ , closer to 0.7 [13][14].

For Matlab simulation purposes we will need the state equations in the form of matrix

which can be found in Equations 19 and 20:

𝑥̇ = [

0 1
−ωN

2 −2ζωN
] 𝑥 + [

0
ωN

2] 𝑢
[19]

 𝑦 = [1 0] 𝑥 + [0]𝑢 [20]

 24

The linear second-order program code is now ready to put into Matlab [10][11][12].

The input file for this simulation can be the actual data collected from the device

described in Appendix 4 or by the created roadway data described in Appendix 6.

Code 2 is the Matlab program used to simulate the system.

Code 2 Matlab Simulation Code

clear; close all; clc;

%--------------------

dt = 0.01;

time = 0:dt:20.30-dt; n = length(time);

% Read Excel File

uinp = readmatrix('R2-2.csv');

%Production

Wn = 62.8;

Z = .7;

%

X0 = [0; 0]; % Initial conditions at time t = 0 s

Ys = zeros(n,length(X0)); Ys(1,:) = X0';

for ct = 1:n-1

 [T, Y] = ode45(@eqn, [time(ct) time(ct+1)], X0, [], Wn, Z, uinp(ct,1));

 Ys(ct+1,:) = Y(end,:);

 X0 = Y(end,:)';

end

%

figure(1);

 plot(time,uinp,'r--', 'linewidth',2, 'DisplayName', 'Phi (Roadway Input)');

xlabel('Time (s)'); ylabel('Angle (deg)');

 hold on

 plot(time,Ys(:,1),'b', 'linewidth',1, 'DisplayName', 'Servo Output Angle');

 hold on

 plot(time, (Ys(:,1)-uinp),'k:', 'linewidth',2, 'DisplayName', 'Inertial

Pointing Angle');

 legend ('show');

 xlim ([0 20.30]);

 exportgraphics(gcf,"HighwayGravelResults.png",'resolution',300);

function [xd] = eqn(t,X,Wn,Z,u)

% simulates, xddot + 2*Z*Wn*xdot + Wn^2*x = u (Linear System)

x1 = X(1,1);

x2 = X(2,1);

xd(1,1) = x2;

xd(2,1) = -(Wn^2)*x1 - 2*Z*Wn*x2 + (Wn^2)*u;

end

 25

Figure 13 shows the random highway with gravel roadway and is based on a power

spectral density function [11]. This roadway represents elevation changes across a

distance of roadway at a particular speed. This roadway was created for a vehicle

moving 45 MPH (20.11 m/s).

Figure 12 Roadway Elevation Based On PSD

-20

-15

-10

-5

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

El
ev

at
io

n
(f

t)

Horizontal Distance Along Roadway (ft)

 26

Figure 13 shows the same roadway as Figure 12 but uses as 145-inch wheel base

vehicle (see Appendix 8). The pitch angle for the road at each point uses the arc

tangent of the difference of the elevations at the front and rear wheels over the length of

the vehicle wheelbase. This array of pitch angles will be the input file for angle  used

in the simulation.

Figure 13 Pitch Angle of Vehicle Based on PSD Generated Roadway

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200 1400

V
eh

ic
le

 A
n

gl
e

(d
eg

re
es

)

Horizontal Distance Along Roadway (ft)

 27

Using the input angles from Figure 13 in the Matlab Code 2, creates the target

production system simulation response shown in Figure 14 (a). This simulation is for

the entire range of roadway which is 20.3 seconds long (note the Matlab code xlim

([0 20.30]);). The curves in Figure 14 are changes in angles relative to a

reference angle of zero. Since the design objective is for the changes in the servo angle

to cancel the changes in the vehicle pitch angle, in a perfect design, the change in the

servo angle would be exactly equal but opposite in sign to the change in the vehicle

pitch angle; this difference is shown with a black dotted line.

Figure 14 (a) Simulation of Production System

 28

For clarity, one small portion of the response of the system is shown in Figure 14(b).

This simulation is for a two second section of the roadway starting at 16.6 seconds and

ending at 18.6 seconds (note the Matlab code line was changed to xlim ([16.6

18.6]);). As shown in Figure 14(b), the magnitude in the change in the servo angle

is almost exactly equal to the change in the vehicle pitch angle but with a slight phase

delay. The slight phase delay results in the changes in the light beam angle not being

zero but definitely smaller than the changes in the vehicle pitch angle. Hence, a

production design objective would be to increase the response time of the servo system

to minimize the delay and thus, reduce the changes in the light beam angle (inertial

pointing angle) to as small as possible.

Figure 14 (b) Portion of Simulation of Production System

 29

CHAPTER 5

CONCLUSION

The main question of this dissertation was the improvement of driver safety based on

adding inertially stabilized headlamp. The simulation, proof-of-concept, and

breadboard demonstration all show that a stable headlamp position is better for a

moving vehicle than a headlamp tied physically to the vehicle chassis.

As the research progressed for this dissertation there was a familiar three step process

used. Step one was to investigate prior art in the area of interest through reading

books and internet searches. Step two was to design a real or virtual engineering

apparatus to measure or demonstrate the area of interest. Finally, step three was to

reflect on the data collected and provide a summary to document the engineering

device and the data.

Other applications for this technology include other moving vehicles. Inertially

stabilized lights and cameras are commonplace for manned and unmanned aerial

vehicles. However, inertially stabilized marine vehicle lighting might improve safety

over rough water conditions and could certainly reduce motion sickness symptoms in

passengers because one of the mitigating methods of “sea sickness” is concentrating

on the horizon which is not visible at night as well as improve pilot vision.

This dissertation contribution to the literature is a unique combination of existing several

engineering concepts in a new and novel solution to vehicle headlamp pitch angle

control. In addition to this dissertation, the author and supervising professor have

prepared a provisional patent application.

This dissertation provides the solution for establishing inertially stabilized headlamp

angles. Continuing work in this subject should add digital logic components to an

electronic control unit (ECU) for the headlamps. The future headlamp system ECU

would take into consideration the weather (rain, snow, or fog), oncoming traffic

headlamps, vehicle speed, and roadway angular pitch rate change to provide an

 30

optimum headlamp angle over the entire driving experience. There would also be

continuing work to completely retrofit an adaptive headlamp with pitch angle control

motor.

 31

REFERENCES

[1] Bosch Automotive Handbook, Wiley, Hoboken, N.J. , Wiley , John Wiley, 2022, pgs

1337-1373.

[2] Nilsson, P. Master of Science Thesis in Automatic Control (2016) Automatic

Headlight Levelling Using Inertial Measurements (Unpublished Master of Science

Thesis in Automatic Control). Department of Electrical Engineering, Linköping

University, Sweden.

[3] Žaludová, L., The Headlamp Illuminance in Front of a Vehicle, Lambert Academic

Publishing, Saarbrücken, Germany, 2012.

[4] MPU-600 and MPU-6050 Product Specification Revision 3.4, Sunnyvale, CA,

InvenSense inc., 2013.

[5] ADXRS800 Datasheet for High Performance, SPI Digital Output, Angular Rate

Sensor, Norwood, MA, Analog Devices, 2015.

[6] BNO055 Intelligent 9-axis Absolute Orientation Sensor, Reutilingen, Germany,

Bosch Sensortec GmbH, 2021.

[7] Kim, C. Seok, J., Kim, S., Lee, K., Kim, J. Moon, I, Kang, J, and Jo, K., Embedded

Inertial Sensor-Based Road to Vehicle Pitch Estimation for Automatic Headlamp

Leveling, IEEE Vehicular Technology Society, 2003.

[8] Woods, R.L. and Lawrence, K.L., Modeling and Simulation of Dynamic Systems,

Prentice Hall, Eaglewood Cliffs, NJ, 1997, pgs. 203-211.

[9] D’Azzo, J.J. and Houpis,C.H., Feedback Control System Analysis and Synthesis,

McGraw-Hill, New York, NY, 1960, pgs 111-129.

[10] D’Azzo, J.J. and Houpis,C.H., Linear Control System Analysis and Design,

McGraw-Hill, New York, NY, 1988, pgs. 743-770.

 32

[11] Hullender, D., Dynamic Systems Modeling and Simulation: Theory and Examples,

24th Edition, Unpublished course notes, 2023, pgs. 2:27-2:30, 8:361

[12] Hossain, E., MATLAB and Simulink Crash Course for Engineers, Springer, Cham,

Switzerland, 2022, pgs. 19-45.

[13] Kuo, B.C., Digital Control Systems, Holt, Rinehart and Winston, Chicago, IL, 1980,

pgs. 303-338.

[14] Nasar,S.A. and Unnewehr,L.E., Electromechanics and Electric Machines –

Second Edition, Wiley, New York, NY, 1983, pgs 157-219.

[15] Bollinger, J.G. and Duffie, N.A. , Computer Control of Machines and Processes,

Addison-Wesley, Reading, MA, 1988, pgs 272-273.

 33

APPENDIX 1

ANIMATION OF HEADLAMP PROBLEM AND SOLUTION

An Onshape CAD model was created and animated to show both the headlamp

problem and the inertial-stabilized headlamp solution in a single video. The animation

required several custom 3D parts to be created including a track, a vehicle, a light

source, and a slider bar. These parts can be seen in Figure 15.

Figure 15 CAD Model for Animation

The track, part name “Land”, is a 3D model of a cross section of a road with various

bumps and hills based on a single sketch with fillets to create a contiguous and

continuous path. The entire track surface sketch is parameter driven so it can be

changed to show how a vehicle would move over a slightly exaggerated but reasonable

surface. There are two configurations of the track with the only difference being a text

label on the side stating “STANDARD” and “INERTIAL”.

 34

The vehicle chosen was a motorcycle model, part name “Motorcycle”, was available

online in the public domain. A motorcycle was chosen to show a singular headlamp

but the process could be repeated with a two-headlamp vehicle such as a car or track.

The motorcycle headlamp was modified to be a sphere so the model of the light beams

could be mated to a spherical surface as in a ball and joint connection.

The slightly transparent light beams were modeled as a physical 3D part, part name

“Headlamp”, and has two configurations with one being a solid cone of light and the one

with cross hairs. The solid cone of light better simulates an actual headlamp light

source but the cross-hairs more accurately show the movement of the light beam in the

animations.

The slide bar, part name “Slider”, is a simple small rectangular block. The slider was

used to allow both vehicles to move simultaneously without moving the cursor in the

visible area and to allow for a single animation parameter to be set for the position of

the slider bar.

The assembly of the 3D parts, assembly named “Comparison”, has two tracks arrayed

vertically. Each track has a vehicle mated to their respective track surfaces. The front

and rear wheels are both mated tangentially to the track surface so the motorcycle will

rock up and down as it moves along the track. The track is three dimensional but the

motorcycle is limited to travel down the midplane of the track. Both vehicles are also

mated tangentially to the single slider bar. The slider bar is also constrained to move

along the flat bottom of one of the tracks. The vehicle on one track will have the light

beam source constrained to be aligned to the vehicle as in current vehicles. This track

and assembly are identified with a label of “STANDARD” on the side. The vehicle on

the other track will have the light source constrained to the flat horizon to simulate

inertial stabilization. The track and assembly are identified with a label of “INERTIAL”

on the side.

The Windows 10 video capture routine is activated by touching WIN+ALT+R

simultaneously. Either by using the parameter animation or the user mouse

movement, the slide bar moving back and forth simulates the movement of the vehicles

 35

back and forth along the track path. The captured video animation shows the

difference in the current method of mounting headlamps and the inertially-stabilized

headlamp. Two animations were created for clarity. Animation one was a straight on

side view of the two tracks. Animation two was an anisometric view of the two tracks.

These animations are available for viewing along with the CAD models on the Onshape

website.

 36

APPENDIX 2

PROOF-OF-CONCEPT MODEL

A proof-of-concept model was designed to demonstrate how an angular position sensor

could be used with a microcontroller and a laser cross-hair generator on a small

manually operated rocking platform. The proof-of-concept model is shown in Figure

16.

Figure 16 Proof-of-Concept Model

The proof-of-concept has several off-the-shelf components and two custom 3D printed

parts. The larger custom designed part is the rocking platform that allows the user to

“rock” the system back and forth like a rocking chair. The rocking platform provides a

nine-volt battery holder underneath in the center of the mass. On the top of the rocking

platform is a mount for an Arduino Uno microcontroller. On one side of the rocking

 37

platform is a mount for the angular rate sensor module which measures two angles of

motion, part number BNO055. On the opposite side of the rocking platform is an

angular motion servo used primarily in remote-control vehicles, part number DS323SG.

Finally, the rocking platform has a switch at the “front” of the rocking platform. One

switch activates the inertial stabilization and one switch controls the cross-hair laser

generator. A detailed engineering drawing of the rocking platform is shown in Figure

17.

Figure 17 Rocking Platform

There is a smaller custom deigned part that attaches to the output shaft of the servo

and provides a mount for a cross-hair laser generator. A detailed engineering drawing

of the laser mount is shown in 18.

 38

Figure 18 Laser Mount

The Arduino Uno has a voltage regulator that takes the nine volts from the battery and

produces five volts for the Arduino controller, the angular rate sensor module, and the

servo. The Arduino Uno has headers so the proof-of-concept module can be spaced

wired without a custom printed wiring board. The schematic for the circuit is shown in

Figure 19.

 39

Figure 19 Proof-of-Concept Schematic

The Arduino Uno code runs in a single loop where the angular rate sensor is read. If

the inertial switch is not activated then nothing happens on that loop. If the inertial

switch is activated then the servo is driven opposite the angular sensor reading thus

maintaining the position of the laser cross hairs. This code can be found in Code 3.

Code 3 Proof-of-Concept Arduino Code

//

// Written: Thomas Allsup

// Revision Log

// 02/24/2022 Started

// 03/03/2022 Updated servo

// 06/28/2022 Added comments and lo/high beam

// 09/08/2022 Added laser output (removed lo-high beam)

// 01/02/2023 Added comments and corrected laser on / off

// Comments

// Takes inputs from angular rate sensor MPU-6050 through I2C

// Sends correction output to servo

// Momentary switch turns on and off laser

// On / Off switch turns on and off inertial stabilization

//

#include <Wire.h> //library allows communication with I2C / TWI devices

#include <math.h> //library includes mathematical functions

#include <Servo.h>

// UNO Pinout - Wiring

// SCL - GPS SCL Pin 3

// SDA - GPS SDA Pin 4

// AREF

// GND - GPS GND Pin 2

// NC D13

 40

// 5V - Servo P2/Switch/GPS P1 / Laser D12

// Res D11

// 3.3V D10

// 5V D9 - Servo Pin 3

// GND - Servo Pin 1 D8

// GND - Pull down resistors to D2/D3 D7

// Vin D6

// A0 D5

// A1 D4 Laser On/Off

// A2 D3 Switch Pos 2 - Mom

// A3 D2 Switch Pos 1 - On/Off

// A4 D1 TX

// A5 D0 RX

const int MPU=0x68; //I2C address of the MPU-6050

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; //16-bit integers

int AcXcal,AcYcal,AcZcal,GyXcal,GyYcal,GyZcal,tcal; //calibration variables

double t,tx,tf,pitch,roll;

Servo myservo; // create servo object to control a servo

int pos = 0;

int ButtonOnOff = 3; // turns inertial stabilization on and off

int ButtonMom = 2; // turns laser on and off

int Laser = 4;

int LaserState=0;

void setup()

{

 Wire.begin(); //initiate wire library and I2C

 Wire.beginTransmission(MPU); //begin transmission to I2C slave device

 Wire.write(0x6B); // PWR_MGMT_1 register

 Wire.write(0); // set to zero (wakes up the MPU-6050)

 Wire.endTransmission(true); //ends transmission to I2C slave device

 Serial.begin(9600); //serial communication at 9600 bauds

 myservo.attach(9); // servo can only attach to pins 9 or 10

 pinMode(ButtonOnOff,INPUT) ; // Switch Pos 1

 pinMode(ButtonMom,INPUT) ; // Switch pos 2

 pinMode(Laser,OUTPUT) ; // Laser On / Off

 digitalWrite(Laser,HIGH); // Laser off

}

void loop()

{

 if (digitalRead(ButtonMom)==HIGH){

 LaserState = 1 - LaserState; // toggle laser staate

 if (LaserState==LOW) {

 digitalWrite(Laser, HIGH);

 } else {

 digitalWrite(Laser,LOW);

 }

 delay(500);

 }

 if (digitalRead(ButtonOnOff)==HIGH){

 Wire.beginTransmission(MPU); //begin transmission to I2C slave device

 Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H)

 Wire.endTransmission(false); //restarts transmission to I2C slave device

 Wire.requestFrom(MPU,14,true); //request 14 registers in total

 //Acceleration data correction

 AcXcal = -950;

 AcYcal = -300;

 AcZcal = 0;

 41

 //Temperature correction

 tcal = -1600;

 //Gyro correction

 GyXcal = 480;

 GyYcal = 170;

 GyZcal = 210;

 //read accelerometer data

 AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) 0x3C

(ACCEL_XOUT_L)

 AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) 0x3E

(ACCEL_YOUT_L)

 AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) 0x40

(ACCEL_ZOUT_L)

 //read temperature data

 Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) 0x42 (TEMP_OUT_L)

 //read gyroscope data

 GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) 0x44 (GYRO_XOUT_L)

 GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) 0x46 (GYRO_YOUT_L)

 GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) 0x48 (GYRO_ZOUT_L)

 //temperature calculation

 //tx = Tmp + tcal;

 //t = tx/340 + 36.53; //Equation for temperature in degrees C from

datasheet

 //tf = (t * 9/5) + 32; //fahrenheit

 //get pitch/roll

 getAngle(AcX,AcY,AcZ);

 //printing values to serial port (screen)

 // Serial.print(" Roll = "); Serial.println(roll); //used for debug

 pos=90+roll; // angle of servo is 90 degrees from zero of PCB

 myservo.write(pos);

 delay(1);

 }

}

//function to convert accelerometer values into pitch and roll

void getAngle(int Ax,int Ay,int Az)

{

 double x = Ax;

 double y = Ay;

 double z = Az;

 // pitch = atan(x/sqrt((y*y) + (z*z))); //pitch calculation

 roll = atan(y/sqrt((x*x) + (z*z))); //roll calculation

 //converting radians into degrees

 // pitch = pitch * (180.0/3.14);

 roll = roll * (180.0/3.14) ;

}

 42

APPENDIX 3

DISASSEMBLY OF AN ADAPTIVE HEADLAMP

A defective Toyota adaptive headlamp was acquired for disassembly to determine how

it could be modified to accept an inertial-stabilized mechanism.

Figure 20 Disassembled Headlight

Figure 21 Disassembled Headlight Backside

 43

Figure 22 Disassembled Headlight with Linear Actuator Removed

Figure 23 Linear Actuator

 44

Figure 24 Disassembled Headlight with Back of Light Shown

 45

APPENDIX 4

VEHICLE MOVEMENT DATA ACQUISITION DEVICE

To determine the bandwidth required to compensate for a vehicle’s headlamp angular

movement, a custom data acquisition device was required. A Raspberry Pi 4 computer

was chosen as a data logging device since it could be operated in headless mode

(without keyboard or display) and could easily store data in readily accessible format.

Initial space wired components functioned but were not robust so a custom “Pi Hat” was

designed and fabricated to eliminate as many wires as possible. The “General

Purpose Input / Output” (GPIO) pins of the Raspberry Pi are routinely accessed with

custom daughter printed wiring boards known as “hats” since they “top off the projects”.

This completed data acquisition device is shown in Figure 25.

Figure 25 Vehicle Data Acquisition Device

 46

The data acquisition device needed to be placed in several different vehicles. The

device also needed to be as stable as possible so as not to introduce any additional

movement to the measurement. To ensure this stability, a large heavy thick-walled

aluminum custom tube was used as the base. A series of tapped screw holes were

machined around the base so that the plastic thumb screws could be moved in and out

to take secure to the base to the cup holder in each vehicle. On top of the tube were

two tapped screw holes to mount the custom Raspberry Pi enclosure. This base is

shown in Figure 26.

Figure 26 Machined Aluminum Base Drawing

 47

There are several off-the-shelf Raspberry Pi enclosures but many do not have two

features required for this application. First, the enclosure needed to mount to the end

of the tube. This mounting configuration might have been as easy as drilling and

countersinking holes into an existing enclosure. Second, the enclosure needed to

support a vertical Pi Hat board with the GPS and switch. Based on an already

designed two-piece Raspberry Pi enclosure for a camera project, the unique GPIO Pi

hat opening was added. The new custom design was then 3D printed as is shown in

Figure 27.

Figure 27 Custom Raspberry Pi Housing

The custom Raspberry Pi Hat was needed to allow the device to function without a

keyboard, mouse, or display. The keyboard and mouse were replaced with a single

momentary switch. The display was replaced with a series of colored LEDs. A small

buzzer was added to add some audible feedback during switch pushes. The simple

switch, LEDs, and buzzer have the added benefit of less distraction to the driver during

data logging. The hat also mounted the GPS module that collected the angular rate

data. The schematic of the custom Pi Hat is shown in Figure 28 and the component

side of the printed wiring board is shown in Figure 29. Both the schematic and board

layout were done in Eagle PCB.

 48

Figure 28 Custom Raspberry Pi Hat Schematic

 49

Figure 29 Custom Raspberry Pi Printed Wiring Board

There were five other areas of the hat that were not used or not populated during this

experiment but allow for future use of the hat for other applications:

1. Two tip jack connectors for +5 Volts and Ground to assist debugging.

2. Future 5V fan connector if the device was going to be used in a hot environment.

3. Four Dual Inline Package (DIP) switches were designed to allow for future

configuration changes even in “headless” operation.

4. Three pins terminated in pads to allow for additional future connections.

5. Prototype area for adding circuitry for future connections.

The custom data logging program was written in Python. The program automatically

starts after the Raspberry Pi is powered on which takes about thirty seconds to boot.

Once running, the yellow LED indicates the device is ready to record data. The

momentary switch is pushed and the red LED indicates the device is recording data.

Once the data is complete, the momentary switch is pressed again and the yellow LED

indicates the device is ready to records again. The listing of the program is presented

in Code 4.

 50

Code 4 Raspberry Pi Python Code

#!/usr/bin/env python

AngularDataLogger.py

Thomas Allsup 1/5/2023

Designed for "headless" operation without keyboard, mouse, or display

This program uses a custom PWB hat that has a GPS module, beeper,

four LEDs, and switch

This program reads in y axis angular data and saves to a datalog file

The green LED on the main hat and the small red LED on the GPS

are always on

Yellow LED lights up when waiting for switch

Red LED lights up when recording

Blue LED is for future use

Yellow, Red, and Blue LED's briefly light up prior to each

waiting for switch state

from mpu6050 import mpu6050

import time

from datetime import datetime

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM) # sets up how to number pins on Raspberry Pi

Pin Definitions

BUZZER=4

BLUE=18

YELLOW=14

RED=15

BUTTON=21

DIP1=24 # Not populated on this PWB

DIP2=25 # Not populated on this PWB

DIP3=8 # Not populated on this PWB

DIP4=7 # Not populated on this PWB

GPIO.setwarnings(False)

GPIO.setup(BUTTON,GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(BUZZER,GPIO.OUT)

GPIO.setup(BLUE,GPIO.OUT)

GPIO.setup(RED,GPIO.OUT)

GPIO.setup(YELLOW, GPIO.OUT)

GPIO.setup(DIP1,GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(DIP2,GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(DIP3,GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(DIP4,GPIO.IN, pull_up_down = GPIO.PUD_UP)

sensor = mpu6050(0x68)

while 1==True:

 # Flash all LEDs

 GPIO.output(BUZZER, False)

 GPIO.output(BLUE, False)

 GPIO.output(RED, False)

 GPIO.output(YELLOW, False)

 time.sleep(.5)

 GPIO.output(BUZZER, True)

 GPIO.output(BLUE, True)

 GPIO.output(RED, True)

 GPIO.output(YELLOW, True)

 51

 time.sleep(.5)

 GPIO.output(YELLOW, False) # turn on the Yellow Ready LED

 print("Waiting for Switch")

 while GPIO.input(BUTTON) == False:

 time.sleep(.01)

 GPIO.output(YELLOW, True) # turn off the Yellow Ready LED

 GPIO.output(RED, False) # turn on the Red Ready LED

 GPIO.output(BUZZER, False)

 nowfile = datetime.now()

 file=open("/home/pi/Desktop/log_number.dat","r")

 datalogcount=int(file.read()) # reads in the next datalog

 # number from a data file

 file.close()

 datalogcount=datalogcount+1

 file=open("/home/pi/Desktop/log_number.dat","w")

 file.write(str(datalogcount)+"\n") # writes the next datalog

 # number back to data file

 file.close()

 file=open("/home/pi/Desktop/datalog"+str(datalogcount)+".txt","w")

 print("Starting Datalog "+str(datalogcount))

 file.write(str(nowfile)+"\n")

 time.sleep(.5)

 while GPIO.input(BUTTON) == True:

 time.sleep(.1)

 while GPIO.input(BUTTON) == False:

 accelerometer_data = sensor.get_accel_data()

 now = datetime.now()

 #print (accelerometer_data)

 a=str(now)+">""{0:.3f}".format(accelerometer_data["y"])

 file.write(a+"\n")

 print (a)

 GPIO.output(BUZZER, True)

 file.close()

 print("File closed")

 GPIO.output(BUZZER, False)

 GPIO.output(RED, True) # turn off RED recording LED

 time.sleep(.5)

 GPIO.output(BUZZER, True)

 while GPIO.input(BUTTON) == True:

 time.sleep(.1)

The data log filename is a concatenation of the words “Datalog” and a string of

numbers. The data log numbers are an incremented counter that is saved in a

separate file called “log_number.dat” so that filenames are never repeated even if the

Raspberry Pi computer is rebooted. The data log file is a text file that has a single

header line that indicates the date and time that the file was created. Each entry has

the time that the data was collected followed by a “>” followed by the angular data. A

short example of a data log file is shown in List 5.

 52

List 5 Example Raspberry Pi Program Data Log File

2022-10-18 17:13:24.583664

2022-10-18 17:13:25.089593>-10.005

2022-10-18 17:13:25.092873>-10.125

2022-10-18 17:13:25.096060>-10.092

2022-10-18 17:13:25.099277>-10.101

2022-10-18 17:13:25.102563>-10.127

2022-10-18 17:13:25.105839>-9.967

2022-10-18 17:13:25.109117>-10.185

 53

APPENDIX 5

DESIGN AND CONSTRUCTION OF A HEADLAMP SIMULATOR

The demonstration of the inertially-stabilized headlamp was simulated with a combined

physical electrical and mechanical breadboard as shown in Figure 30. The

demonstrator simulator uses a Raspberry Pi with a custom PCB that receives angular

position data from the Bosch sensor and the potentiometer and outputs the motor

controls through an off-the-shelf full bridge motor driver as well as driving the laser

cross-hair.

Figure 30 Block Diagram of Breadboard

The mechanical portion of the system is shown as a CAD model in Figure 31 and a

photograph in Figure 32. The mechanical portion has a custom designed 3D printed

base that provides linear and angular alignment between the DC gearmotor and

potentiometer as is shown in Figure 33. Features to polarize the potentiometer and

motor are integral to the single piece base. The base also includes features so the

device can be mounted to a vehicle. The cross-hair laser mount must secure three

features; the motor output shaft, the cross-hair laser module, and the potentiometer

 54

shaft. Because the two shafts are rigidly attached to the base, a custom 3D printed

“clam shell” mounting component was required. The custom part was designed so that

the same component formed both halves of the laser mount as shown in Figure 34. The

part used the same “V” shape to capture both 6mm shafts of the gearmotor and the

potentiometer and ensure there was no misalignment. A larger “V” shape captures the

laser cross-hair module. The clamshells had hexagonal recesses to capture hex nuts

on one side and screws on the opposite side to “squeeze” the clamshell together.

Figure 31 Mechanical Design of Breadboard

 55

Figure 32 System Photograph

Figure 33 Mechanical Breadboard Base

 56

Figure 34 Breadboard Laser Mount Clamshell Half

The electrical portion of the simulator requires a Raspberry Pi 3 or 4 with a custom Hat

PCB and motor drive module. The custom Hat PCB attaches to the Raspberry Pi

GPIO pins as shown in the schematic in Figure 35 and the top side silkscreen in Figure

36. The Pi Hat has a buzzer to alert the user if used while driving and an integral LED

to indicate power status along with three programmable LEDs. There is a slider switch

and a push momentary button that can control any operation. The Pi Hat has

connections out to the L298N Motor Driver Module (H Bridge Driver) that is a full bridge

motor driver which allows up to two DC motors to be driven with a separate 12 Volt

power supply such as a car battery. Appendix 7 explores the DC motor and driver

parameters available for the proof-of-concept model. The Pi Hat has two separate 5V

laser driver connections. The Pi Hat also has two separate potentiometer connections

that feed into an eight channel Analog to Digital module. There is a future optional six

 57

button input connector that connects to the ADC. Finally, the Pi Hat also has a

connection for the Bosch Angular Rate Sensor BNO055 module as well.

The use of the rotary potentiometer for angular feedback has a major benefit. The

potentiometer provides an absolute encoder so the system knows the angle at all times

including at start-up. If a relative encoder was used for feedback there would need to

be limit or home switches and the motor would need to exercise the system every time

power was removed from the controller [15].

`

Figure 35 Breadboard Custom PCB Schematic

 58

Figure 36 Breadboard Custom PCB Layout

PCB Pinout Definitions

The following pins are connected to the Raspberry Pi:GPIO18 Laser P1

GPIO24 Laser P3

GPIO08 ADC - Shutdown

GPIO09 ADC-DOUT

GPIO10 ADC-DIN

GPIO11 ADC-Clock

GPIO13 Motor A En (PWM)

GPIO22 Motor A Dir

GPIO26 Motor A DIr

GPIO18 Motor B En (PWM)

GPIO06 Motor B Dir

GPIO05 Motor B Dir

GPIO25 Beeper

GPIO27 Slider Switch

GPIO17 Push Button

The following inputs are connected to the A2D Converter:

 A0 Pot P2 A1 Pot P4 A2 External Buttons (Optional) A3-A7 Solder Pads

 59

The Python Graphical User Interface uses a simple TKInter screen, shown in Figure 37,

that allows for virtual button inputs for functionality and text output for variables for the

motor, potentiometer, and other parameters. The program code is shown in Code 6.

Figure 37 Headlamp Simulator Graphical User Interface

Code 6 Headlamp Simulator Python Program Code

!/usr/bin/python3

from tkinter import *

import tkinter.ttk as ttk

import time

from datetime import datetime

from gpiozero import MCP3008

import RPi.GPIO as GPIO

import numpy as np

******************* CONSTANTS *********************

SWRevision="0.00"

resolution is for Raspberry Pi

RESOLUTION="1274x680+3+1" # +1,+1 is top left corner

#RESOLUTION="800x600+1+1"

LineDist=int(680/13)

LINE01 = LineDist*0+1

LINE02 = LineDist*1

LINE03 = LineDist*2

 60

LINE04 = LineDist*3

LINE05 = LineDist*4

LINE06 = LineDist*5

LINE07 = LineDist*6

LINE08 = LineDist*7

LINE09 = LineDist*8

LINE10 = LineDist*9

LINE11 = LineDist*10

LINE12 = LineDist*11

LINE13 = LineDist*12

CharWidth=8

ColDist = int(1274/(12*CharWidth))

COL01 = ColDist*0*CharWidth+1

COL02 = ColDist*1*CharWidth

COL03 = ColDist*2*CharWidth

COL04 = ColDist*3*CharWidth

COL05 = ColDist*4*CharWidth

COL06 = ColDist*5*CharWidth

COL07 = ColDist*6*CharWidth

COL08 = ColDist*7*CharWidth

COL09 = ColDist*8*CharWidth

COL10 = ColDist*9*CharWidth

COL11 = ColDist*10*CharWidth

COL12 = ColDist*11*CharWidth

BUTTON_WIDTH_SINGLE = int(ColDist*.6)

BUTTON_WIDTH_DOUBLE = int(BUTTON_WIDTH_SINGLE*1.9)

BUTTON_WIDTH_THIRD = int(BUTTON_WIDTH_SINGLE*3.6)

BUTTON_WIDTH_HALF = int(BUTTON_WIDTH_SINGLE*5.5)

BUTTON_WIDTH_FULL = int(BUTTON_WIDTH_SINGLE*11)

BUTTON_HEIGHT = 1

BUTTON_HEIGHT_DOUBLE = 4

ENTRY_WIDTH_SINGLE = ColDist

ENTRY_WIDTH_THIRD = ColDist

ENTRY_WIDTH_HALF = ColDist

ENTRY_WIDTH_FULL = ColDist

#GPIO

inA1 = 22

inA2 = 26

enA = 13

inB1 = 5

inB2 = 6

enB =18

Buzzer=25

Laser1=18

Laser2=24

Switch_Slider = 27

Switch_Button = 17

LED1 = 14

LED2 = 15

LED3 = 23

temp1=1

GPIO.setmode(GPIO.BCM)

GPIO.setup(Buzzer,GPIO.OUT)

GPIO.output(Buzzer, GPIO.LOW)

GPIO.setup(LED1,GPIO.OUT)

GPIO.output(LED1, GPIO.HIGH)

GPIO.setup(LED2,GPIO.OUT)

 61

GPIO.output(LED2, GPIO.HIGH)

GPIO.setup(LED3,GPIO.OUT)

GPIO.output(LED3, GPIO.HIGH)

GPIO.setup(Laser1,GPIO.OUT)

GPIO.output(Laser1, GPIO.HIGH)

GPIO.setup(Laser2,GPIO.OUT)

GPIO.output(Laser2, GPIO.HIGH)

GPIO.setup(inA1,GPIO.OUT)

GPIO.setup(inA2,GPIO.OUT)

GPIO.setup(enA,GPIO.OUT)

GPIO.output(inA1,GPIO.LOW)

GPIO.output(inA2,GPIO.HIGH)

p=GPIO.PWM(enA,50)

GPIO.setup(inB1,GPIO.OUT)

GPIO.setup(inB2,GPIO.OUT)

GPIO.setup(enB,GPIO.OUT)

GPIO.output(inB1,GPIO.LOW)

GPIO.output(inB2,GPIO.HIGH)

GPIO.output(enB,GPIO.HIGH)

GPIO.setup(Switch_Slider,GPIO.IN)

GPIO.setup(Switch_Button,GPIO.IN)

pot_cen=[.5,.2,.8,.3,.7,.4,.6,.5,.2,.8,.3,.7,.4,.6]

frame = Tk()

frame.title("Thomas Allsup PhD Defense Revision "+SWRevision)

frame.geometry(RESOLUTION)

frame.config(width=1280, height=720, bg="gray")

frame.resizable(width=False, height=False)

def ComBuzzer():

 GPIO.output(Buzzer,1)

 time.sleep(.25)

 GPIO.output(Buzzer,0)

 time.sleep(.15)

def ComExit():

 GPIO.cleanup()

 exit("Exited Program")

def ComLED1():

 GPIO.output(LED1,GPIO.LOW)

 time.sleep(.5)

 GPIO.output(LED1,GPIO.HIGH)

def ComLED2():

 GPIO.output(LED2,GPIO.LOW)

 time.sleep(.5)

 GPIO.output(LED2,GPIO.HIGH)

def ComLED3():

 GPIO.output(LED3,GPIO.LOW)

 time.sleep(.5)

 GPIO.output(LED3,GPIO.HIGH)

def ComPot1P60():

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[1]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE09)

def ComPot1P45():

 pot1v=MCP3008(7)

 62

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[2]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE10)

def ComPot1P30():

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[3]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE11)

def ComPot1M60():

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[4]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL04,y = LINE09)

def ComPot1M45():

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[5]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL04,y = LINE10)

def ComPot1M30():

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[6]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL04,y = LINE11)

def ComPot2P60():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[8]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE09)

def ComPot2P45():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[9]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE10)

def ComPot2P30():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[10]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE11)

def ComPot2M60():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 63

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[11]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL12,y = LINE09)

def ComPot2M45():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[12]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL12,y = LINE10)

def ComPot2M30():

 pot1v=MCP3008(6)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 pot_cen[13]=pot1s

 LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL12,y = LINE11)

def ComCenter1():

 Avg_Cen1=(pot_cen[1]+pot_cen[4])/2

 Avg_Cen2=(pot_cen[2]+pot_cen[5])/2

 Avg_Cen3=(pot_cen[3]+pot_cen[6])/2

 Avg_Cen=(Avg_Cen1+Avg_Cen2+Avg_Cen3)/3

 Avg_Cen_Str=str(int(Avg_Cen*10000+.5)/10000)

 LowerTitle16 = Label(frame, text = Avg_Cen_Str,

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE08)

 pot_cen[0]=Avg_Cen_Str

 file=open("PotCenters.bin","wb")

 np.save(file,pot_cen)

 file.close()

def ComCenter2():

 Avg_Cen1=(pot_cen[8]+pot_cen[11])/2

 Avg_Cen2=(pot_cen[9]+pot_cen[12])/2

 Avg_Cen3=(pot_cen[10]+pot_cen[13])/2

 Avg_Cen=(Avg_Cen1+Avg_Cen2+Avg_Cen3)/3

 Avg_Cen_Str=str(int(Avg_Cen*10000+.5)/10000)

 LowerTitle16 = Label(frame, text = Avg_Cen_Str,

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE08)

 pot_cen[7]=Avg_Cen_Str

 file=open("PotCenters.bin","wb")

 np.save(file,pot_cen)

 file.close()

def UnknownCommand():

 pass

def gui():

 Bit1=GPIO.input(Switch_Slider)

 Bit2=GPIO.input(Switch_Button)

 LowerTitle1A = Label(frame, text = "XXX", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL07,y = LINE01)

 if (Bit1==0):

 YesNo1="OFF"

 else:

 YesNo1="ON "

 if (Bit2==0):

 YesNo2="OFF"

 else:

 YesNo2="ON "

 64

 LowerTitle2A = Label(frame, text = YesNo1, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL07,y = LINE02)

 LowerTitle3A = Label(frame, text = YesNo2, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL07,y = LINE03)

 pot1v=MCP3008(7)

 pot1vv=pot1v.value

 pot1s=str(int(pot1vv*10000+.5)/10000)

 Pot1Title = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL03,y = LINE07)

 pot2v=MCP3008(6)

 pot2vv=pot2v.value

 pot2s=str(int(pot2vv*10000+.5)/10000)

 Pot2Title = Label(frame, text = pot2s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL11,y = LINE07)

 pot1ang=(pot_cen[0]-pot1vv)*268.3443

 pot2ang=(pot_cen[7]-pot2vv)*268.3443

 pot1s=str(int(pot1ang*10+.5)/10)

 pot2s=str(int(pot2ang*10+.5)/10)

 LowerTitle19 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL04,y = LINE07)

 LowerTitle29 = Label(frame, text = pot2s, width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL12,y = LINE07)

def updater():

 gui()

 frame.after(1000, updater)

LowerTitle1 = Label(frame, text = "APS", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL06,y = LINE01)

LowerTitle2 = Label(frame, text = "Slide", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL06,y = LINE02)

LowerTitle3 = Label(frame, text = "Pusher", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL06,y = LINE03)

LowerTitle4 = Label(frame, text = "Laser 1", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE04)

LowerTitle5 = Label(frame, text = "Servo", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE05)

LowerTitle6 = Label(frame, text = "Laser 2", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE04)

LowerTitle7 = Label(frame, text = "Servo", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE05)

LowerTitle4A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL03,y = LINE04)

LowerTitle5A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL03,y = LINE05)

LowerTitle6A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL11,y = LINE04)

LowerTitle7A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL11,y = LINE05)

LowerTitle17 = Label(frame, text = "Pot", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL02,y = LINE07)

LowerTitle27 = Label(frame, text = "Pot", width=BUTTON_WIDTH_SINGLE,

bg="gray").place(x = COL10,y = LINE07)

BUTTON10=Button(frame,text="+60",command=ComPot1P60,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE09)

BUTTON11=Button(frame,text="+45",command=ComPot1P45,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE10)

BUTTON12=Button(frame,text="+30",command=ComPot1P30,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE11)

 65

BUTTON13=Button(frame,text="-60",command=ComPot1M60,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE09)

BUTTON14=Button(frame,text="-45",command=ComPot1M45,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE10)

BUTTON15=Button(frame,text="-30",command=ComPot1M30,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE11)

BUTTON16=Button(frame,text="Center",command=ComCenter1,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL02,y=LINE08)

BUTTON17=Button(frame,text="LED 1 - Green",command=ComLED1,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE08)

BUTTON18=Button(frame,text="LED 2 - Yellow",command=ComLED2,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE09)

BUTTON19=Button(frame,text="LED 3 - Blue",command=ComLED3,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE10)

BUTTON20=Button(frame,text="+60",command=ComPot2P60,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE09)

BUTTON21=Button(frame,text="+45",command=ComPot2P45,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE10)

BUTTON22=Button(frame,text="+30",command=ComPot2P30,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE11)

BUTTON23=Button(frame,text="-60",command=ComPot2M60,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE09)

BUTTON24=Button(frame,text="-45",command=ComPot2M45,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE10)

BUTTON25=Button(frame,text="-30",command=ComPot2M30,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE11)

BUTTON26=Button(frame,text="Center",command=ComCenter2,

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL10,y=LINE08)

BUTTON27=Button(frame,text="Exercise Motor 1",command=ComBuzzer,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE13)

BUTTON28=Button(frame,text="Exercise Motor 2",command=ComBuzzer,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE13)

BUZZER_BUTTON=Button(frame,text="Buzzer",command=ComBuzzer,

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE06)

FrameExit=Button(frame,text="Exit",command=ComExit,width=BUTTON_WIDTH_THIRD,h

eight=BUTTON_HEIGHT_DOUBLE).place(x=COL05,y=LINE12)

file=open("PotCenters.bin","rb")

pot_cen = np.load(file)

file.close()

LowerTitle16 = Label(frame, text = str(pot_cen[0]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE08)

LowerTitle10 = Label(frame, text = str(pot_cen[1]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE09)

LowerTitle11 = Label(frame, text = str(pot_cen[2]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE10)

LowerTitle12 = Label(frame, text = str(pot_cen[3]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE11)

LowerTitle13 = Label(frame, text = str(pot_cen[4]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE09)

LowerTitle14 = Label(frame, text = str(pot_cen[5]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE10)

LowerTitle15 = Label(frame, text = str(pot_cen[6]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE11)

LowerTitle26 = Label(frame, text = str(pot_cen[7]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE08)

LowerTitle20 = Label(frame, text = str(pot_cen[8]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE09)

 66

LowerTitle21 = Label(frame, text = str(pot_cen[9]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE10)

LowerTitle22 = Label(frame, text = str(pot_cen[10]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE11)

LowerTitle23 = Label(frame, text = str(pot_cen[11]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE09)

LowerTitle24 = Label(frame, text = str(pot_cen[12]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE10)

LowerTitle25 = Label(frame, text = str(pot_cen[13]),

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE11)

gui()

logo=PhotoImage(file="MAE_Logo.gif")

HelpScreen=Button(frame,relief=RAISED,image=logo,command=UnknownCommand,

width=125, height=175).place(x=COL12,y=LINE02)

updater()

frame.mainloop()

 67

APPENDIX 6

ROADWAY DATA CREATOR

Despite collecting actual roadway data from various vehicles using the device described

in Appendix 4, it was desired to produce a specific data file that described an idealized

roadway instead of depending upon finding a series of actual roadways.

Drawing the desired roadway in CAD such as shown in Appendix 1 for the simulator

was the natural first step but it proved difficult to divide the roadway into equal length

line segments and export a comma separated data file. An attempt was made to

export the 3D data into a 2D cad system, adding equal distance data points, exporting a

DXF and then converting this to 2D data file. Automating any portion of this method

proved difficult or impossible so the method was abandoned.

The second attempt was to work inside completely in Excel®. It was difficult to make

the gradual pitch changes with a constant radius and ending pitch as desired.

Changes in one portion of the roadway were not propagated through the end of the

data. This method was not intuitive nor effective but did drive the third method that

proved successful.

The third and final method was to create a Python program, shown in Code 8, that takes

in a short datafile that describes the roadway and quickly produces a comma separate

value text file. Changing the input file allows for the output to be updated quickly. A

sample roadway file with several segments is shown in List 7 and a plot of the output

data which has 6000 data points is shown in Figure 38.

A future development would be to create a graphical user interface to enter segment

information and have the program create the roadway dynamically.

 68

List 7 Sample Roadway Input File

Roadway Test 1 6

275 0.000025 .005

600 -0.000015 -.006

750 0.00075 -.003

400 -0.0001 -.005

300 0.00002 0.003

400 -0.00003 0

600 0.0001 0.004

200 -0.0001 -0.002

300 -0.0002 -0.006

200 -0.0003 -0.002

100 0.0001 0

275 -0.00015 0

Figure 38 Sample Angle of Road Plot

 69

Code 8 Roadway Data Creator Python Code

Thomas Allsup 6/21/2023

Reads in a tab separated file that describes a roadway

changing slope and creates a CSV of the road with equal distances.

Input file starts with header line.

File name, spacing between each x position, and

length of car (not used)

Starting slope is always 0

Each line (after header) has three parameters:

How long do you do you continue current road slope (line)?

How much do you want to change slope per step after straight?

What is the new road slope after the curvature?

(where slope stops changing)

There is no error checking on the input file.

The output file is a true Comma Separated Value file and has distance

along road (x), elevation (y), slope and change in slope. The distance

between each x is uniform.

import csv

with open('C:\Roadway.txt') as csv_file:

 f=open('C:\Roadway_Out.csv', 'w')

 csv_reader = csv.reader(csv_file, delimiter='\t')

 line_count = 0

 slope=0

 distance=0

 height=0

 for row in csv_reader:

 if line_count == 0:

 print('Road file: {} Spacing:{} Vehicle Length :

{}'.format(row[0], row[1],row[2]))

 f.write("Road file: "+row[0]+" Spacing: "+row[1]+" Vehicle

Length: "+row[2]+"\n")

 f.write("X, Height, Slope, Slope Change\n")

 spacing = float(row[1])

 line_count += 1

 slope=0

 else:

 print(f'Length {row[0]} curvature {row[1]} until {row[2]}.')

 line_count += 1

 straight=float(row[0])

calculate the number of steps for straight

 straightcount = int(straight/spacing)

 for i in range(0, straightcount,1):

 distance = distance + spacing

 height = int(1000*(height + slope)+.5)/1000

 #road.append((distance,height, slope, 0))

 print(distance,height,slope,"0")

 f.write(str(distance)+","+str(height)+","+str(slope)+",0\n")

 curve=float(row[2])

 delta=float(row[1])

calculate the number of steps for curve

curvecount = int ((curve-slope)/delta)

 70

 for i in range(0, curvecount,1):

 distance = distance + spacing

 slope = slope + delta

 slopeout = int(1000*(slope)+.5)/1000

 height = int(1000*(height + slope)+.5)/1000

f.write(str(distance)+","+str(height)+","+str(slopeout)+","+str(delta)+"\n")

 slope = float(row[2])

 print(f'Processed {line_count} lines.')

 f.close()

 71

APPENDIX 7

MOTOR UNIT CONVERSIONS

The DC gearmotor was purchased with a motor test report, as seen in Figure 39. The

units included in this datasheet were in kg-cm so they were converted to English system

units for the purpose of this dissertation. Several other needed parameters needed to

be extracted to provide inputs to the simulation.

The gear ratio of the gearhead was listed in the filename and the part number as thirty-

five to one. This gear ratio was confirmed by other documentation and experiments.

Therefore, GG is equal to 35. It should be noted that this means the motor turns 35

degrees as the output only turns one degree. This analysis treats the DC motor and

the integral gearhead as a single unit so the gear ratio is irrelevant for the calculations.

The motor velocity constant, Kv, is the no-load speed divided by the motor voltage.

The text states the no-load speed is 44 RPM but the table states 45 RPM so with a 12V

power supply, the Kv is 3.67 to 3.75 RPM / V or 22.0 to 22.5 deg / V s.

The motor torque constant, KT, is the current divided by the stall torque (listed at locked

rotor on data sheet) is shown in Table 9. The value of KT is 174.8 A / oz in.

Table 9 Motor Torque Conversions at 12VDC

Scenario RPM Current, A
Torque,

Kg-cm

Torque,

oz-in

No Load 45 0.046 0.000 0.000

Locked Rotor

(Stalled)

0 0.845 10.000 139.0

The rotary inertia of the load at the motor, J, was determined by measuring the actual

weight of the fully assembled laser mount as 0.672 ounces and using the measured

linear dimensions of width of the load, 0.750 inches, and length of the load, 0.600

inches. The moment of inertia of the load, using Equation 21 is 0.0016 oz-in-s2.

 72

𝐽 =

𝑚 (𝑤2 + 𝑙2)

12𝑔

[21]

Where:

J is the moment of inertia at the load in oz-in sec2

m is mass of the rotary load in ounces

w is width of load in inches

h is height of load in inches

g is gravity as 32.2 ft/s2

The amplifier used on the proof-of-concept was an L298N Motor Driver Module (Full H

Bridge Driver). Part of the data sheet is shown in Figure 40. Technically this motor

driver is only used to drive the DC motor in both directions.

The gain of the L298N H Bridge Driver by itself is unity since it is a pure H Bridge but

there are Field Effect Transistors in each leg of the system which are operating at 12

Volts therefore there is an amplifier gain of at least 12 Volt per tenth of a degree of

motor rotation or GA is 120 V / deg.

The resistance of the L298N H Bridge Driver depends upon two things. First, the

resistance of any leg of the H Bridge is dependent upon he current running through the

device. The Total Voltage Drop, VCEsat, ranges from 3.2V to 4.9V at 1A and 2A

respectively. Using Ohm’s Law at 12 Volts operating voltage, the resistance of any leg

of the circuit is 11.1 Ohms. Second, the operation of the H Bridge is to reverse the

direction of the motor so the electrical circuit must always pass through two legs

therefore the RA=22.2 Ohms.

 73

Figure 39 Motor Test Data

 74

Figure 40 L298N Motor Driver Specification (Partial)

 75

APPENDIX 8

HEADLAMP FIXED ANGLE OFFSET CALCULATIONS

The ideal angle of the headlamp is based on the height of the headlamp and the braking

distance of the vehicle at the current linear speed. Figure 41 shows these two

parameters as well as the fixed angle offset on flat level ground.

Figure 41. Ideal Headlamp Fixed Angle Definition

The laws of motion state the change in velocity is equal to the deceleration multiplied by

time as shown in Equation 22.

 5280

3600
(𝑉𝑐 − 𝑉𝑓) = 𝑎𝑑𝑔 𝑡𝑏

[22]

Where:

Vc is the current vehicle speed in miles per hour

Vf is the final speed of the vehicle after braking in miles per hour

ad is the unitless braking deceleration in terms of g’s

g is gravity in feet per second squared

tb is the time to brake in seconds

 76

Knowing the final speed of the vehicle would be zero at full stop, Equation 22 can be

solved for the time to brake as shown in Equation 23.

𝑡𝑏 =

5280 𝑉𝑐

3600 𝑎𝑑𝑔

[23]

The laws of motion also state the braking distance can be calculated using the current

speed multiplied by the braking time minus half the acceleration multiplied by the square

of the braking time as shown in Equation 24.

𝑥𝑏 =

5280

3600
𝑉𝑐t𝑏 −

1

2
 𝑎𝑑𝑔 𝑡𝑏

2
[24]

Where:

xb is the braking distance in feet

Substituting Equation 24 into Equation 24 and simplifying yields Equation 25:

𝑥𝑏 = 1.075556

𝑉𝑐
2

𝑎𝑑𝑔

[25]

From Figure 41, the fixed angle offset is the arc tangent of the vertical height of the

headlamp over the braking distance which is shown in Equation 26.

f = tan−1 (

𝑥ℎ

12 𝑥𝑏
)

[26]

The vehicle shown in Figure 42 is traveling at 45 miles per hour on flat level ground.

Assuming the braking can occur at 0.7g, then Equation 25 yields a braking distance of

96.6 feet. The headlamp center is 40 inches vertically off the ground therefore from

Equation 26, the headlamp optimum fixed angle is 1.98 degrees downward.

 77

Figure 42 Headlamp Height

It should be noted that several factors affect this fixed headlamp angle. As the speed

of the vehicle increases, you must see further in front of the vehicle so this angle

decreases. The effective braking deceleration also affects this angle so worn tires or in

slick roadways can reduce the deceleration factor thus increasing the braking distance.

Additionally, if the vehicle loading front to back is changed then the front of the vehicle

will angle upward or downward with respect to the rear of the vehicle then this ideal

fixed angle is also affected.

