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ABSTRACT 

DESIGN AND DEMONSTRATION OF AN INERTIAL-STABILIZED 
SINGLE-AXIS HEADLAMP FOR MOBILE SYSTEMS 

 

Thomas Avery Allsup, Ph.D. 

The University of Texas at Arlington, 2023 

 

Supervising Professor: Dr. Robert L. Woods 

 

The introduction of adaptive headlamps has added left and right movement of the 

headlamps to enhance the vision of the driver during a turn at night.  Adaptive 

headlamps also allow up and down motion of headlamps in either two discrete positions 

with low and high beams based on vehicle speed and oncoming traffic lights or using 

the vehicle suspension measurement to adjust headlamp beam angles in any angle 

between low and high.  Using the vehicle suspension ignores the roadway influence on 

where the headlamps should be positioned to illuminate the roadway for the driver.  

This dissertation develops governing equations and provides an electro-mechanical 

breadboard design for a single-axis servo system that provides inertial stabilization of 

headlamp angles such that the headlights are approximately always at the point in 

space with respect to inertial space.  Not only does this keep the headlights level to 

optimally illuminate the road ahead for the driver, but it also prevents the headlights 

from shining in the eyes of the oncoming traffic.  The breadboard design includes 

selection of the angular positioning sensor, mechanical embodiment, electrical circuitry 

and control program.  Included simulation and demonstration of the breadboard design 

provides the foundation for future prototyping of vehicle systems.           
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CHAPTER 1 

INTRODUCTION 

 

Adaptive headlamp systems started 100 years ago with left and right angular headlamp 

movements corresponding to the mechanical linkage attached to the steering wheel and 

have now progressed to electronic sensing oncoming traffic’s headlamps to control high 

and low beams based on vehicle speed.   

European countries currently allow vertical headlamp leveling that use sensors on 

passenger vehicle suspensions to determine the angular pitch position (see Figure 1) 

[1].  These current headlamp systems only partially reference the pitch of the chassis 

and do not account for the roadway pitch [2].  United States has been slow to adopt 

vertical headlamp leveling except for low and high beams but it is currently allowed.  If 

the vehicle is traveling along a roadway with little or no roadway angular pitch rate 

change then the headlamp attached to the chassis is acceptable.  The change of the 

angular pitch rate of the roadway is negligible when the car is traveling on a flat 

roadway or is driving up or down a long straight incline.  This situation is not ideal for 

roadways with changes in pitch, think short bumps, small hills, or train tracks, since the 

headlamps will follow the vehicle path which moves the lights up and down.     
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Figure 1  Automatic Headlamp Leveling Control [1] 

This improvement of headlamp position can be further improved if an element of inertial 

stabilization is added to the pitch of the chassis headlamp leveling when the angular 

pitch of the road is variable.  To further illustrate this point, an animation was created in 

Onshape to explain of concept of leveling versus inertial stabilization (see Appendix 1).  

Onshape is a cloud-based 3D parametric CAD program that provides design and 

drafting tools for mechanical designers.  This animation shows that the headlamp 

following the vehicle path is not optimum for visibility. 

Another method of conveying the optimum headlamp angle is to place a known vehicle 

traveling at a constant velocity on various roadway surfaces and display the optimum 

headlamp angle for braking distance, the fixed headlamp angle, and the inertially 

stabilized headlamp angle.  Figure 2 shows various headlamp angle scenarios for a 

sample vehicle dimension and driving parameters described in Appendix 8.  The dotted 

line shows the optimum beam angle to show light at the current braking distance at 45 

MPH if possible.  This point along the roadway is shown in the figures with the vertical 

bar indicator and the word “OPTIMUM”.  This bar is not along the chord length of the 

road but located at the horizontal braking distance from front of the vehicle because the 
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models are easier to create and the chord length is within 0.3% of the horizontal 

distance.  There are two scenarios where the curvature of the road makes illumination 

at the optimum distance impossible.  The dashed line indicates the headlamp fixed to 

the vehicle that follows only the pitch of the vehicle.  The solid line is the inertially 

stabilized headlamp angle.  Table 1 summarizes the various scenarios.  The two 

difference columns each show the angle between either the stabilized or the fixed 

headlamp angle and the optimum angle.  The minimum absolute difference would be 

the best angle choice.  It is clear from these eleven examples that the inertially 

stabilized headlamp is often the minimal value but in the four scenarios where the 

inertially stabilized headlamp wasn’t the best choice it was off by less than a degree.   

 

Table 1 Summary of Figure 2 Headlamp Angle Scenarios at 45 MPH   

Figure Description 

Best 

Angle 

Choice 

Stabilized Angle 

Difference 

(Degrees) 

Fixed Angle 

Difference 

(Degrees) 

(a) Level Ground Same 0 0 

(b) Bump Under Rear Tire Stabilized 0 -1.60 

(c) Bump Under Front Tire Stabilized 0 +1.60 

(d) Slight Decline Fixed +0.85 +0.72 

(e) Large Decline Fixed +4.63 +3.84 

(f) Slight Rise Fixed -1.00 -0.84 

(g) Large Rise Fixed -5.07 -4.30 

(h) Slight Crest Stabilized +0.44 +2.96 

(i) Large Crest Stabilized -2.86 +10.52 

(j) Slight Dip Stabilized -0.42 -3.00 

(k) Large Dip Stabilized -2.12 -16.17 
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(a) Level Ground 

 

Figure 2 Headlamp Angle Scenarios at 45 MPH 
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(b) Bump Under Rear Tire 

 

 

 

(c) Bump Under Front Tire 

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued) 
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(d) Slight Decline 

 

 

(e) Large Decline 

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued) 
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(f) Slight Rise 

 

 

(g) Large Rise 

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued) 
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(h) Slight Crest 

 

(i) Large Crest 

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued) 



 

      9 

 

(j) Slight Dip 

 

 

(k) Large Dip 

Figure 2 Headlamp Angle Scenarios at 45 MPH (Continued)   
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The purpose of headlamps is to avoid oncoming obstacles at night.  You can avoid 

these obstacles by turning but the primary method is to stop the vehicle.  The braking 

distance is a function of several factors including the reaction time of the driver, the 

roadway conditions, the speed of the vehicle, and the braking system employed.  The 

angle of the headlamps can decrease the reaction time of the driver by allowing the 

obstacle to be observed sooner.  This is known colloquially as “don’t overdrive your 

headlights”.  Appendix 8 provides a dimensional analysis of this braking distance and 

the resulting optimum angle of the headlamps.  The need for longer braking distances 

at higher speeds is the reason that highway speed vehicles have low and high beam 

settings [3]. 

A combination of headlamp leveling, headlamp inertial stabilization, and vehicle speed 

will therefore provide the optimum headlamp angular pitch positions based on all these 

conditions dynamically.  This improved headlamp angle will improve driver safety while 

reducing the blinding or “dazzling” of oncoming vehicle drivers.  The vision of the driver 

upcoming path based on your speed using a range of beam angles instead of just two 

settings. 

Finally, adding leveling and inertial stabilization of the headlamps will make up for the 

loss of traditional headlamp adjustments during vehicle inspections that has occurred in 

the past. 
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CHAPTER 2 

RESEARCH 

The research for headlamp leveling and inertial stabilization has very little published 

works on vehicle inertial stabilization [1][2][3].   

Three commercially available angular rate sensors were explored.  The InvenSense 

MPU-6050 was easy to connect to electrically but only provided angular rates not 

position and with noise that was comparable to the signal [4].  The Analog Devices 

ADXRS800 was also easy to connect to electrically but also only provided angular rate 

but with a little less noise [5].  Attempts to understand and filter this noise only 

continued to expose these as flawed sensors.  Finally, the Bosch BNO055 was 

investigated (see Figure 3) as it provides angular pitch positions with almost zero 

electrical noise along with pitch rate [6].  The Bosch BNO055 has nine internal single-

axis sensors so it is capable of providing an Euler’s angle output which is an inertial 

positional angle.   

 

 

Figure 3 Bosch BNO055 Nine Axis Sensor [6] 

After the comprehensive exam but before the completion of the final draft of this 

dissertation, a team of Korean engineers from Konkuk University and Hyundai 
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published an IEEE research paper describing an inertial sensor-based headlamp angle 

using road to vehicle pitch [7]. The team used the MPU-6050 inertial sensor with a 

Kalman filter along with a vehicle wheel speed sensor.  The angular acceleration is 

integrated to calculate the angular pitch.  The vehicle linear acceleration and 

deceleration are also integrated along with the noise which creates a steadily increasing 

pitch angle.  The team uses the vehicle wheel speed sensor to determine when the 

vehicle is stopped so the integration sum can be reset to zero.  The system was 

simulated and prototyped successfully in a city scenario.  They did not test the device 

over a long-haul trip.  The authors described future work that would remove the vehicle 

wheel speed sensor.    

Three adaptive headlamps were dissected that provided left and right headlamp 

positioning.  It was obvious from the design of the motor drivers for all three headlamp 

that it would easily be changed to provide up and down servo control as well as left and 

right because the connection was a three dimensionally ball joint.   These ball joints 

allowed the motor servo to move the headlamp left and right in either the low or high 

beam position.  Photographs from one of the headlamp dissections is shown in 

Appendix 3.  

A stationary fixture based on a sine plate fixture for accurate static angle measurements 

was created (see Figure 4).  A series of gauge blocks, shown in the picture around the 

sine plate, were inserted in the sine plate fixture to achieve very precise angles.  The 

angular pitch sensor is mounted on a machined white plastic base and placed on top of 

the sine plate fixture.  The angular pitch sensor can be rotated to achieve negative 

angles or positive angles.  The picture shows the Raspberry Pi housing in the 

background that is recording the information.   
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Figure 4 Static Sine Plate Angle Measurement 

A slow speed sine wave rotating fixture to determine the noise and accuracy of the 

sensor was also fabricated (see Figure 5).  The picture shows the Arduino controller 

that drives a small Remote Control vehicle DC servo.  The Arduino and servo are both 

mounted to a white plastic base.  The servo has a 3D printed plate that allows for 

mounting the angular pitch sensor.  The wires connecting to the Raspberry Pi data 

collection are not shown for clarity.   

 

   

(a) Rotating CCW            (b) Rotating CW            (c) Middle Position 

Figure 5 Dynamic Triangular Wave Angle Measurement 
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A sample set of actual test data at increasing frequencies using a triangular pattern 

shows very little noise (see Figure 6).  This figure does show the data sampling rate 

insufficient to capture the extremes of the amplitude at very fast speeds.   

 

Figure 6 Sample Angle Measurement (Actual Data from Bosch Sensor) 

This research also included creating a custom 3D printed manually activated rocking 

device that demonstrated the proof-of-concept.  A slow speed Arduino-based custom 

PCB driving a remote-control servo with a laser cross hair was first developed that 

evolved to a faster Raspberry Pi custom PCB driving a more responsive remote-control 

servo.  These custom-designed and fabricated proof-of-concept models based on 

Arduino and Pi based are shown in Figure 7 and appear in Appendix 2.  Figure 7 are 

screen shots from a video.  These screen shots show the laser cross hair pointing to 

the same location in space as the base is rocked forward and backward.  
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        (a) Rocking forward                       (b) Horizontal 

  

        (c) Rocking backward                  (d) Rocking forward again 

 

Figure 7 Proof-of-Concept Model Demonstration 

The final research portion was designing a “coffee cup holder” structure with a 

Raspberry Pi and a custom PCB to record any of the nine-axis of information as shown 

in Figure 8 (details can be found in Appendix 4).  The data collection device has thumb 

screws that can take up the space in different vehicle coffee cup holders.  The 

Microswitch mounted on the side is used to start and stop the data collection.  The 

angular rate sensor is shown mounted on the end of the Raspberry Pi plastic enclosure.  



 

  16 

 

Figure 8 Vehicle Data Measurement Device 

Angular position and rates from four vehicles driving the same roadway path were 

collected that included train tracks and a hill including several sudden stops and starts.  

The vehicles included a 2012 Ford Escape (see Figure 9), 2022 Ford Escape, 2017 Fiat 

500e, and 2013 Ford C-Max.  Figure 9 shows the magnitude of angular changes is 

within 25 degrees and interestingly there is very little flat roadway in this sample. 
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Figure 9 Sample Drive for 2012 Ford Escape Pitch Angle 



 

  18 

CHAPTER 3 

DERIVATION OF SYSTEM EQUATIONS 

The first step in deriving the system Equations for the inertial headlight servo is to define 

the angles used.  Figure 10 shows the five pitch direction angles of interest.  The yaw 

and roll angles can be ignored for this analysis. 

 

Figure 10 Angle Definitions 

These five angles are measured from the inertial reference or an axis fixed to the car 

and their interactions are shown in Equations 1, 2, and 3.   

  =  𝛉𝐑𝐎𝐀𝐃 +  𝐂𝐀𝐑 

 

[1] 

   

 𝛉𝐋𝐈𝐆𝐇𝐓  =   −  𝛉𝐒𝐄𝐑𝐕𝐎 +  𝛉𝐎𝐅𝐅𝐒𝐄𝐓   [2] 

 

   

 𝛉𝐎𝐅𝐅𝐒𝐄𝐓  =  𝛉𝐟 +  𝛉𝐀𝐋𝐆𝐎𝐑𝐈𝐓𝐇𝐌   [3] 

 

where: 

 = Angle of headlamp with respect to inertial reference in degrees  

ROAD = Angle of road with respect to inertial reference in degrees 
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CAR = Angle of car with respect to the road in degrees 

SERVO = Angle of headlight servo with respect to the car in degrees 

LIGHT = Angle of headlight with respect to inertial reference in degrees (also known as 

the inertial point angle) 

OFFSET = Offset angle of headlight from the inertial reference in degrees 

f = Fixed starting angle of headlight in degrees (see Appendix 8) 

ALGORITHM = Angle correction in degrees 

The algorithm angle is currently assumed to be zero for the purposes of this research.  

In the future, this angle will be defined as either adding to or subtracting from the fixed 

angle based on driving conditions, vehicle speed, pitch angle changes, pitch angle and 

perhaps many other parameters. 

The block diagram for the system is a traditional feedback system with the servo 

mechanism located in the feedback loop the components interactions indicated with 

multiport effort and flow graphics as shown in Figure 11[8].  The input, output, and 

feedback angles were defined previously in Figure 10.  

 

Figure 11 Multiport Diagram 
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The H-Bridge Driver Amplifier is governed by Equation 4: 

 EA = GALIGHT  − RAIA [4] 

 

The DC Motor with Integral Gearhead is governed by Equations 5 and 6: 

 ω𝐺 = KVEA [5] 

 

 IA = KTTG [6] 

The load angle and required torque are shown in Equations 7 and 8: 

 
SERVO =

1

D
ωG 

[7] 

 

 
TG =

2𝜋

360°
JωĠ 

[8] 

where: 

SERVO = Angle of headlight servo with respect to the car in degrees 

LIGHT = Angle of headlight with respect to inertial reference in degrees 

EA = Voltage to H-Bridge Driver in Volts 

GA = Amplifier gain in Volts per degree 

RA = Resistance of the H-Bridge Driver in Ohms 

IA = Current through H-Bridge Driver in Amperes 

KV = Motor velocity constant in degrees per Volt - sec (see Appendix 7 for unit 

conversions) 

KT = Motor torque constant in Amp per ounce-inch (see Appendix 7 for unit 

conversions) 

ωG = Gearhead rotary speed in degrees per second  
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TG = Torque out of gearhead in ounce-inches 

D = Differential operator is one per second 

J = Rotary inertia of the load in ounce – inch – second2 (see Appendix 7 for unit 

conversions) 

Substituting Equation 4 into Equation 5 yields Equation 9: 

 ω𝐺 = KV(GALIGHT − RAIA) [9] 

 

Substituting Equation 6 into Equation 9 and simplifying yields Equation 10: 

 ωG = KVGALIGHT − KVRAKTTG [10] 

 

Substituting Equation 8 into Equation 10 yields Equation 11: 

 
ωG = KVGALIGHT −

2𝜋

360°
KVKTRAJωĠ 

[11] 

 

Solving Equation 11 in terms of ω𝐆 yields Equation 12: 

 (KVKTRAJ D + 1)ωG = KVGALIGHT [12] 

 

Substituting Equation 2 into Equation 12 yields Equation 13:  

 (KVKTRAJ D2 + D)SERVO = KVGA( −  θSERVO) [13] 

 

Simplifying Equation 13 yields Equation 14: 

 (KVKTRAJ D2 +  D + KVGA )θSERVO = KVGA [14] 
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Solving Equation 14 for  yields Equation 15: 

 
(
KVKTRAJ 

KVGA
 D2  +

D 

KVGA
+  1 )θSERVO =  

[15] 

 

For a second order system, the natural frequency, ωN, and damping ratio, ζ, can be 

determined from the coefficients of the governing Equation 15 for Equation 16: 

 
(

1 

ωN
2

 D2  +
2ζ 

ωN
D +  1 )θSERVO =  

[16] 

 

Therefore, from Equation 16, the natural frequency (rad/s) is found in Equation 17: 

 
 ωN = √

GA 

 KTRAJ
   

[17] 

 

And also from Equation 16, the damping ratio (unitless) is found in Equation 18: 

 ζ =  
ωN

2𝐾𝑉𝐺𝐴
 [18] 
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CHAPTER 4 

DESIGN EMBODIMENT 

The breadboard design is described in Appendix 5.  The DC motor parameters can be 

found in Appendix 7.  For the breadboard device described in Appendix 5 and 

Appendix 7, the parameters are: 

GA = 120 Volts / degrees 

KT = 174.8 Amp / oz-in  

KV = 22.5 deg / V-s 

RA = 22.2 Ohms 

J = 0.0016 oz-in-s2 

These parameters in Equation 17 yields a natural frequency, ωN, is 33.3 rads/s (5.3 Hz) 

and from Equation 18 yields a damping ratio, ζ , of 0.06.  The very low damping ratio 

makes the system oscillate [8][9].  The damping ratio for the simulation is less than 

ideal but it can be mitigated with a proportional-derivative controller with a low pass filter 

so that input noise is not amplified.  These factors lead to a more appropriate design 

embodiment that would be a production design with a natural frequency target of 62.8 

rad/s (10 Hz) and a damping ratio, ζ , closer to 0.7 [13][14].     

For Matlab simulation purposes we will need the state equations in the form of matrix 

which can be found in Equations 19 and 20: 

 
𝑥̇ = [

0 1
−ωN

2 −2ζωN 
]  𝑥 +  [

0
ωN

2] 𝑢 
[19] 

 

 𝑦 =  [1 0] 𝑥 + [0]𝑢  [20] 



 

  24 

 

The linear second-order program code is now ready to put into Matlab [10][11][12].  

The input file for this simulation can be the actual data collected from the device 

described in Appendix 4 or by the created roadway data described in Appendix 6.  

Code 2 is the Matlab program used to simulate the system.   

Code 2 Matlab Simulation Code 

clear; close all; clc; 

%-------------------- 

dt   = 0.01; 

time = 0:dt:20.30-dt; n = length(time); 

% Read Excel File 

uinp = readmatrix('R2-2.csv'); 

%Production 

Wn = 62.8; 

Z = .7; 

% 

X0 = [0; 0]; % Initial conditions at time t = 0 s 

Ys = zeros(n,length(X0)); Ys(1,:) = X0'; 

for ct = 1:n-1 

    [T, Y] = ode45(@eqn, [time(ct) time(ct+1)], X0, [], Wn, Z, uinp(ct,1)); 

    Ys(ct+1,:) = Y(end,:); 

    X0         = Y(end,:)'; 

end 

% 

figure(1);  

  plot(time,uinp,'r--', 'linewidth',2, 'DisplayName', 'Phi (Roadway Input)'); 

xlabel('Time (s)'); ylabel('Angle (deg)'); 

  hold on 

  plot(time,Ys(:,1),'b', 'linewidth',1, 'DisplayName', 'Servo Output Angle'); 

  hold on 

  plot(time, (Ys(:,1)-uinp),'k:', 'linewidth',2, 'DisplayName', 'Inertial 

Pointing Angle'); 

  legend ('show'); 

  xlim ([0 20.30]); 

  exportgraphics(gcf,"HighwayGravelResults.png",'resolution',300); 

function [xd] = eqn(t,X,Wn,Z,u) 

% simulates, xddot + 2*Z*Wn*xdot + Wn^2*x = u (Linear System) 

x1 = X(1,1); 

x2 = X(2,1); 

xd(1,1) = x2; 

xd(2,1) = -(Wn^2)*x1 - 2*Z*Wn*x2 + (Wn^2)*u; 

end  
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Figure 13 shows the random highway with gravel roadway and is based on a power 

spectral density function [11].  This roadway represents elevation changes across a 

distance of roadway at a particular speed.  This roadway was created for a vehicle 

moving 45 MPH (20.11 m/s).    

 
 

Figure 12 Roadway Elevation Based On PSD  
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Figure 13 shows the same roadway as Figure 12 but uses as 145-inch wheel base 

vehicle (see Appendix 8). The pitch angle for the road at each point uses the arc 

tangent of the difference of the elevations at the front and rear wheels over the length of 

the vehicle wheelbase.  This array of pitch angles will be the input file for angle  used 

in the simulation.   

 

Figure 13 Pitch Angle of Vehicle Based on PSD Generated Roadway 
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Using the input angles from Figure 13 in the Matlab Code 2, creates the target 

production system simulation response shown in Figure 14 (a).  This simulation is for 

the entire range of roadway which is 20.3 seconds long (note the Matlab code xlim 

([0 20.30]);).  The curves in Figure 14 are changes in angles relative to a 

reference angle of zero. Since the design objective is for the changes in the servo angle 

to cancel the changes in the vehicle pitch angle, in a perfect design, the change in the 

servo angle would be exactly equal but opposite in sign to the change in the vehicle 

pitch angle; this difference is shown with a black dotted line.   

 

 

Figure 14 (a) Simulation of Production System  
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For clarity, one small portion of the response of the system is shown in Figure 14(b).  

This simulation is for a two second section of the roadway starting at 16.6 seconds and 

ending at 18.6 seconds (note the Matlab code line was changed to xlim ([16.6 

18.6]);).  As shown in Figure 14(b), the magnitude in the change in the servo angle 

is almost exactly equal to the change in the vehicle pitch angle but with a slight phase 

delay. The slight phase delay results in the changes in the light beam angle not being 

zero but definitely smaller than the changes in the vehicle pitch angle.  Hence, a 

production design objective would be to increase the response time of the servo system 

to minimize the delay and thus, reduce the changes in the light beam angle (inertial 

pointing angle) to as small as possible. 

 

Figure 14 (b) Portion of Simulation of Production System 
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CHAPTER 5 

CONCLUSION 

The main question of this dissertation was the improvement of driver safety based on 

adding inertially stabilized headlamp.  The simulation, proof-of-concept, and 

breadboard demonstration all show that a stable headlamp position is better for a 

moving vehicle than a headlamp tied physically to the vehicle chassis.    

As the research progressed for this dissertation there was a familiar three step process 

used.  Step one was to investigate prior art in the area of interest through reading 

books and internet searches.  Step two was to design a real or virtual engineering 

apparatus to measure or demonstrate the area of interest.  Finally, step three was to 

reflect on the data collected and provide a summary to document the engineering 

device and the data. 

Other applications for this technology include other moving vehicles.  Inertially 

stabilized lights and cameras are commonplace for manned and unmanned aerial 

vehicles.  However, inertially stabilized marine vehicle lighting might improve safety 

over rough water conditions and could certainly reduce motion sickness symptoms in 

passengers because one of the mitigating methods of “sea sickness” is concentrating 

on the horizon which is not visible at night as well as improve pilot vision.       

This dissertation contribution to the literature is a unique combination of existing several 

engineering concepts in a new and novel solution to vehicle headlamp pitch angle 

control.  In addition to this dissertation, the author and supervising professor have 

prepared a provisional patent application. 

This dissertation provides the solution for establishing inertially stabilized headlamp 

angles.  Continuing work in this subject should add digital logic components to an 

electronic control unit (ECU) for the headlamps.  The future headlamp system ECU 

would take into consideration the weather (rain, snow, or fog), oncoming traffic 

headlamps, vehicle speed, and roadway angular pitch rate change to provide an 
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optimum headlamp angle over the entire driving experience.  There would also be 

continuing work to completely retrofit an adaptive headlamp with pitch angle control 

motor.      
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APPENDIX 1 

ANIMATION OF HEADLAMP PROBLEM AND SOLUTION 

An Onshape CAD model was created and animated to show both the headlamp 

problem and the inertial-stabilized headlamp solution in a single video.  The animation 

required several custom 3D parts to be created including a track, a vehicle, a light 

source, and a slider bar.  These parts can be seen in Figure 15. 

 

Figure 15 CAD Model for Animation 

The track, part name “Land”, is a 3D model of a cross section of a road with various 

bumps and hills based on a single sketch with fillets to create a contiguous and 

continuous path.  The entire track surface sketch is parameter driven so it can be 

changed to show how a vehicle would move over a slightly exaggerated but reasonable 

surface.  There are two configurations of the track with the only difference being a text 

label on the side stating “STANDARD” and “INERTIAL”. 
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The vehicle chosen was a motorcycle model, part name “Motorcycle”, was available 

online in the public domain.  A motorcycle was chosen to show a singular headlamp 

but the process could be repeated with a two-headlamp vehicle such as a car or track.  

The motorcycle headlamp was modified to be a sphere so the model of the light beams 

could be mated to a spherical surface as in a ball and joint connection. 

The slightly transparent light beams were modeled as a physical 3D part, part name 

“Headlamp”, and has two configurations with one being a solid cone of light and the one 

with cross hairs.  The solid cone of light better simulates an actual headlamp light 

source but the cross-hairs more accurately show the movement of the light beam in the 

animations.  

The slide bar, part name “Slider”, is a simple small rectangular block.  The slider was 

used to allow both vehicles to move simultaneously without moving the cursor in the 

visible area and to allow for a single animation parameter to be set for the position of 

the slider bar. 

The assembly of the 3D parts, assembly named “Comparison”, has two tracks arrayed 

vertically.  Each track has a vehicle mated to their respective track surfaces.  The front 

and rear wheels are both mated tangentially to the track surface so the motorcycle will 

rock up and down as it moves along the track.  The track is three dimensional but the 

motorcycle is limited to travel down the midplane of the track.  Both vehicles are also 

mated tangentially to the single slider bar.  The slider bar is also constrained to move 

along the flat bottom of one of the tracks.  The vehicle on one track will have the light 

beam source constrained to be aligned to the vehicle as in current vehicles.  This track 

and assembly are identified with a label of “STANDARD” on the side.  The vehicle on 

the other track will have the light source constrained to the flat horizon to simulate 

inertial stabilization.  The track and assembly are identified with a label of “INERTIAL” 

on the side.   

The Windows 10 video capture routine is activated by touching WIN+ALT+R 

simultaneously.  Either by using the parameter animation or the user mouse 

movement, the slide bar moving back and forth simulates the movement of the vehicles 
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back and forth along the track path.  The captured video animation shows the 

difference in the current method of mounting headlamps and the inertially-stabilized 

headlamp.  Two animations were created for clarity.  Animation one was a straight on 

side view of the two tracks.  Animation two was an anisometric view of the two tracks.  

These animations are available for viewing along with the CAD models on the Onshape 

website.   
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APPENDIX 2 

PROOF-OF-CONCEPT MODEL 

A proof-of-concept model was designed to demonstrate how an angular position sensor 

could be used with a microcontroller and a laser cross-hair generator on a small 

manually operated rocking platform.  The proof-of-concept model is shown in Figure 

16. 

 

Figure 16 Proof-of-Concept Model 

The proof-of-concept has several off-the-shelf components and two custom 3D printed 

parts.  The larger custom designed part is the rocking platform that allows the user to 

“rock” the system back and forth like a rocking chair.   The rocking platform provides a 

nine-volt battery holder underneath in the center of the mass.  On the top of the rocking 

platform is a mount for an Arduino Uno microcontroller.  On one side of the rocking 
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platform is a mount for the angular rate sensor module which measures two angles of 

motion, part number BNO055.  On the opposite side of the rocking platform is an 

angular motion servo used primarily in remote-control vehicles, part number DS323SG.  

Finally, the rocking platform has a switch at the “front” of the rocking platform.  One 

switch activates the inertial stabilization and one switch controls the cross-hair laser 

generator.  A detailed engineering drawing of the rocking platform is shown in Figure 

17. 

 

Figure 17 Rocking Platform 

There is a smaller custom deigned part that attaches to the output shaft of the servo 

and provides a mount for a cross-hair laser generator.   A detailed engineering drawing 

of the laser mount is shown in 18. 
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Figure 18 Laser Mount 

The Arduino Uno has a voltage regulator that takes the nine volts from the battery and 

produces five volts for the Arduino controller, the angular rate sensor module, and the 

servo.  The Arduino Uno has headers so the proof-of-concept module can be spaced 

wired without a custom printed wiring board.  The schematic for the circuit is shown in 

Figure 19. 
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Figure 19 Proof-of-Concept Schematic 

The Arduino Uno code runs in a single loop where the angular rate sensor is read.  If 

the inertial switch is not activated then nothing happens on that loop.  If the inertial 

switch is activated then the servo is driven opposite the angular sensor reading thus 

maintaining the position of the laser cross hairs.  This code can be found in Code 3. 

Code 3 Proof-of-Concept Arduino Code 

// 

// Written: Thomas Allsup 

// Revision Log 

// 02/24/2022 Started  

// 03/03/2022 Updated servo 

// 06/28/2022 Added comments and lo/high beam 

// 09/08/2022 Added laser output (removed lo-high beam) 

// 01/02/2023 Added comments and corrected laser on / off 

// Comments 

// Takes inputs from angular rate sensor MPU-6050 through I2C 

// Sends correction output to servo 

// Momentary switch turns on and off laser 

// On / Off switch turns on and off inertial stabilization 

// 

#include <Wire.h> //library allows communication with I2C / TWI devices 

#include <math.h> //library includes mathematical functions 

#include <Servo.h> 

// UNO Pinout - Wiring 

//                                        SCL - GPS SCL Pin 3  

//                                        SDA - GPS SDA Pin 4 

//                                        AREF 

//                                        GND - GPS GND Pin 2 

// NC                                     D13 
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// 5V - Servo P2/Switch/GPS P1 / Laser    D12 

// Res                                    D11 

// 3.3V                                   D10 

// 5V                                     D9 - Servo Pin 3            

// GND - Servo Pin 1                      D8 

// GND - Pull down resistors to D2/D3     D7 

// Vin                                    D6 

// A0                                     D5   

// A1                                     D4 Laser On/Off 

// A2                                     D3 Switch Pos 2 - Mom  

// A3                                     D2 Switch Pos 1 - On/Off 

// A4                                     D1 TX 

// A5                                     D0 RX 

const int MPU=0x68; //I2C address of the MPU-6050 

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; //16-bit integers 

int AcXcal,AcYcal,AcZcal,GyXcal,GyYcal,GyZcal,tcal; //calibration variables 

double t,tx,tf,pitch,roll; 

Servo myservo;  // create servo object to control a servo 

int pos = 0; 

int ButtonOnOff = 3; // turns inertial stabilization on and off 

int ButtonMom = 2; // turns laser on and off 

int Laser = 4; 

int LaserState=0; 

void setup() 

{ 

    Wire.begin(); //initiate wire library and I2C 

    Wire.beginTransmission(MPU); //begin transmission to I2C slave device 

    Wire.write(0x6B); // PWR_MGMT_1 register 

    Wire.write(0); // set to zero (wakes up the MPU-6050)   

    Wire.endTransmission(true); //ends transmission to I2C slave device 

    Serial.begin(9600); //serial communication at 9600 bauds 

    myservo.attach(9); // servo can only attach to pins 9 or 10 

    pinMode(ButtonOnOff,INPUT) ; // Switch Pos 1 

    pinMode(ButtonMom,INPUT) ; // Switch pos 2 

    pinMode(Laser,OUTPUT) ; // Laser On / Off 

    digitalWrite(Laser,HIGH); // Laser off      

} 

void loop() 

{ 

  if (digitalRead(ButtonMom)==HIGH){ 

    LaserState = 1 - LaserState; // toggle laser staate 

    if (LaserState==LOW) { 

      digitalWrite(Laser, HIGH); 

    } else { 

      digitalWrite(Laser,LOW);       

    } 

    delay(500); 

    } 

  if (digitalRead(ButtonOnOff)==HIGH){ 

    Wire.beginTransmission(MPU); //begin transmission to I2C slave device 

    Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H) 

    Wire.endTransmission(false); //restarts transmission to I2C slave device 

    Wire.requestFrom(MPU,14,true); //request 14 registers in total   

    //Acceleration data correction 

    AcXcal = -950; 

    AcYcal = -300; 

    AcZcal = 0; 
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    //Temperature correction 

    tcal = -1600; 

    //Gyro correction 

    GyXcal = 480; 

    GyYcal = 170; 

    GyZcal = 210; 

    //read accelerometer data 

    AcX=Wire.read()<<8|Wire.read(); // 0x3B (ACCEL_XOUT_H) 0x3C 

(ACCEL_XOUT_L)   

    AcY=Wire.read()<<8|Wire.read(); // 0x3D (ACCEL_YOUT_H) 0x3E 

(ACCEL_YOUT_L)  

    AcZ=Wire.read()<<8|Wire.read(); // 0x3F (ACCEL_ZOUT_H) 0x40 

(ACCEL_ZOUT_L) 

    //read temperature data  

    Tmp=Wire.read()<<8|Wire.read(); // 0x41 (TEMP_OUT_H) 0x42 (TEMP_OUT_L)  

    //read gyroscope data 

    GyX=Wire.read()<<8|Wire.read(); // 0x43 (GYRO_XOUT_H) 0x44 (GYRO_XOUT_L) 

    GyY=Wire.read()<<8|Wire.read(); // 0x45 (GYRO_YOUT_H) 0x46 (GYRO_YOUT_L) 

    GyZ=Wire.read()<<8|Wire.read(); // 0x47 (GYRO_ZOUT_H) 0x48 (GYRO_ZOUT_L)  

    //temperature calculation 

    //tx = Tmp + tcal; 

    //t = tx/340 + 36.53; //Equation for temperature in degrees C from 

datasheet 

    //tf = (t * 9/5) + 32; //fahrenheit 

    //get pitch/roll 

    getAngle(AcX,AcY,AcZ); 

    //printing values to serial port (screen) 

    // Serial.print(" Roll = "); Serial.println(roll); //used for debug 

    pos=90+roll; // angle of servo is 90 degrees from zero of PCB 

    myservo.write(pos);       

    delay(1); 

  } 

} 

 

//function to convert accelerometer values into pitch and roll 

void getAngle(int Ax,int Ay,int Az)  

{ 

    double x = Ax; 

    double y = Ay; 

    double z = Az; 

    // pitch = atan(x/sqrt((y*y) + (z*z))); //pitch calculation 

    roll = atan(y/sqrt((x*x) + (z*z))); //roll calculation 

    //converting radians into degrees 

    // pitch = pitch * (180.0/3.14); 

    roll = roll * (180.0/3.14) ; 

} 
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APPENDIX 3 

DISASSEMBLY OF AN ADAPTIVE HEADLAMP 

A defective Toyota adaptive headlamp was acquired for disassembly to determine how 

it could be modified to accept an inertial-stabilized mechanism. 

 

Figure 20 Disassembled Headlight 

 

Figure 21 Disassembled Headlight Backside 
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Figure 22 Disassembled Headlight with Linear Actuator Removed 

 

Figure 23 Linear Actuator 
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Figure 24 Disassembled Headlight with Back of Light Shown 
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APPENDIX 4 

VEHICLE MOVEMENT DATA ACQUISITION DEVICE 

To determine the bandwidth required to compensate for a vehicle’s headlamp angular 

movement, a custom data acquisition device was required.  A Raspberry Pi 4 computer 

was chosen as a data logging device since it could be operated in headless mode 

(without keyboard or display) and could easily store data in readily accessible format.  

Initial space wired components functioned but were not robust so a custom “Pi Hat” was 

designed and fabricated to eliminate as many wires as possible.  The “General 

Purpose Input / Output” (GPIO) pins of the Raspberry Pi are routinely accessed with 

custom daughter printed wiring boards known as “hats” since they “top off the projects”.  

This completed data acquisition device is shown in Figure 25.      

 

Figure 25 Vehicle Data Acquisition Device 
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The data acquisition device needed to be placed in several different vehicles. The 

device also needed to be as stable as possible so as not to introduce any additional 

movement to the measurement.  To ensure this stability, a large heavy thick-walled 

aluminum custom tube was used as the base.  A series of tapped screw holes were 

machined around the base so that the plastic thumb screws could be moved in and out 

to take secure to the base to the cup holder in each vehicle.  On top of the tube were 

two tapped screw holes to mount the custom Raspberry Pi enclosure.  This base is 

shown in Figure 26.      

 

Figure 26 Machined Aluminum Base Drawing 
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There are several off-the-shelf Raspberry Pi enclosures but many do not have two 

features required for this application.  First, the enclosure needed to mount to the end 

of the tube.  This mounting configuration might have been as easy as drilling and 

countersinking holes into an existing enclosure.  Second, the enclosure needed to 

support a vertical Pi Hat board with the GPS and switch.  Based on an already 

designed two-piece Raspberry Pi enclosure for a camera project, the unique GPIO Pi 

hat opening was added.  The new custom design was then 3D printed as is shown in 

Figure 27.       

 

Figure 27 Custom Raspberry Pi Housing 

The custom Raspberry Pi Hat was needed to allow the device to function without a 

keyboard, mouse, or display.  The keyboard and mouse were replaced with a single 

momentary switch.  The display was replaced with a series of colored LEDs.  A small 

buzzer was added to add some audible feedback during switch pushes.    The simple 

switch, LEDs, and buzzer have the added benefit of less distraction to the driver during 

data logging.  The hat also mounted the GPS module that collected the angular rate 

data.  The schematic of the custom Pi Hat is shown in Figure 28 and the component 

side of the printed wiring board is shown in Figure 29.  Both the schematic and board 

layout were done in Eagle PCB. 
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Figure 28 Custom Raspberry Pi Hat Schematic 
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Figure 29 Custom Raspberry Pi Printed Wiring Board 

There were five other areas of the hat that were not used or not populated during this 

experiment but allow for future use of the hat for other applications: 

1. Two tip jack connectors for +5 Volts and Ground to assist debugging.  

2. Future 5V fan connector if the device was going to be used in a hot environment. 

3. Four Dual Inline Package (DIP) switches were designed to allow for future 

configuration changes even in “headless” operation. 

4. Three pins terminated in pads to allow for additional future connections.  

5. Prototype area for adding circuitry for future connections. 

  

The custom data logging program was written in Python.  The program automatically 

starts after the Raspberry Pi is powered on which takes about thirty seconds to boot.  

Once running, the yellow LED indicates the device is ready to record data.  The 

momentary switch is pushed and the red LED indicates the device is recording data.  

Once the data is complete, the momentary switch is pressed again and the yellow LED 

indicates the device is ready to records again.  The listing of the program is presented 

in Code 4. 
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Code 4 Raspberry Pi Python Code 

#!/usr/bin/env python 

# AngularDataLogger.py 

# Thomas Allsup 1/5/2023 

# Designed for "headless" operation without keyboard, mouse, or display 

# This program uses a custom PWB hat that has a GPS module, beeper, 

# four LEDs, and switch 

# This program reads in y axis angular data and saves to a datalog file 

# The green LED on the main hat and the small red LED on the GPS 

# are always on 

# Yellow LED lights up when waiting for switch 

# Red LED lights up when recording 

# Blue LED is for future use 

# Yellow, Red, and Blue LED's briefly light up prior to each 

# waiting for switch state 

 

from mpu6050 import mpu6050 

import time 

from datetime import datetime 

import RPi.GPIO as GPIO 

 

GPIO.setmode(GPIO.BCM) # sets up how to number pins on Raspberry Pi 

 

# Pin Definitions 

BUZZER=4 

BLUE=18 

YELLOW=14 

RED=15 

BUTTON=21 

DIP1=24 # Not populated on this PWB 

DIP2=25 # Not populated on this PWB 

DIP3=8 # Not populated on this PWB 

DIP4=7 # Not populated on this PWB 

 

GPIO.setwarnings(False) 

GPIO.setup(BUTTON,GPIO.IN, pull_up_down = GPIO.PUD_UP) 

GPIO.setup(BUZZER,GPIO.OUT) 

GPIO.setup(BLUE,GPIO.OUT) 

GPIO.setup(RED,GPIO.OUT) 

GPIO.setup(YELLOW, GPIO.OUT) 

GPIO.setup(DIP1,GPIO.IN, pull_up_down = GPIO.PUD_UP) 

GPIO.setup(DIP2,GPIO.IN, pull_up_down = GPIO.PUD_UP) 

GPIO.setup(DIP3,GPIO.IN, pull_up_down = GPIO.PUD_UP) 

GPIO.setup(DIP4,GPIO.IN, pull_up_down = GPIO.PUD_UP) 

sensor = mpu6050(0x68) 

while 1==True: 

    # Flash all LEDs 

    GPIO.output(BUZZER, False) 

    GPIO.output(BLUE, False) 

    GPIO.output(RED, False) 

    GPIO.output(YELLOW, False) 

    time.sleep(.5) 

    GPIO.output(BUZZER, True) 

    GPIO.output(BLUE, True) 

    GPIO.output(RED, True) 

    GPIO.output(YELLOW, True) 
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    time.sleep(.5) 

    GPIO.output(YELLOW, False) # turn on the Yellow Ready LED 

    print("Waiting for Switch") 

    while GPIO.input(BUTTON) == False: 

        time.sleep(.01) 

    GPIO.output(YELLOW, True) # turn off the Yellow Ready LED 

    GPIO.output(RED, False) # turn on the Red Ready LED 

    GPIO.output(BUZZER, False) 

    nowfile = datetime.now() 

    file=open("/home/pi/Desktop/log_number.dat","r") 

    datalogcount=int(file.read()) # reads in the next datalog 

                                  # number from a data file 

    file.close() 

    datalogcount=datalogcount+1 

    file=open("/home/pi/Desktop/log_number.dat","w") 

    file.write(str(datalogcount)+"\n") # writes the next datalog 

        # number back to data file 

    file.close() 

    file=open("/home/pi/Desktop/datalog"+str(datalogcount)+".txt","w") 

    print("Starting Datalog "+str(datalogcount)) 

    file.write(str(nowfile)+"\n") 

    time.sleep(.5) 

    while GPIO.input(BUTTON) == True: 

        time.sleep(.1) 

    while GPIO.input(BUTTON) == False: 

        accelerometer_data = sensor.get_accel_data() 

        now = datetime.now() 

        #print (accelerometer_data) 

        a=str(now)+">""{0:.3f}".format(accelerometer_data["y"]) 

        file.write(a+"\n") 

        print (a) 

    GPIO.output(BUZZER, True) 

    file.close() 

    print("File closed") 

    GPIO.output(BUZZER, False) 

    GPIO.output(RED, True) # turn off RED recording LED 

    time.sleep(.5) 

    GPIO.output(BUZZER, True) 

    while GPIO.input(BUTTON) == True: 

        time.sleep(.1) 

 

The data log filename is a concatenation of the words “Datalog” and a string of 

numbers.  The data log numbers are an incremented counter that is saved in a 

separate file called “log_number.dat” so that filenames are never repeated even if the 

Raspberry Pi computer is rebooted.  The data log file is a text file that has a single 

header line that indicates the date and time that the file was created.  Each entry has 

the time that the data was collected followed by a “>” followed by the angular data.  A 

short example of a data log file is shown in List 5.  
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List 5 Example Raspberry Pi Program Data Log File 

2022-10-18 17:13:24.583664 

2022-10-18 17:13:25.089593>-10.005 

2022-10-18 17:13:25.092873>-10.125 

2022-10-18 17:13:25.096060>-10.092 

2022-10-18 17:13:25.099277>-10.101 

2022-10-18 17:13:25.102563>-10.127 

2022-10-18 17:13:25.105839>-9.967 

2022-10-18 17:13:25.109117>-10.185 
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APPENDIX 5 

DESIGN AND CONSTRUCTION OF A HEADLAMP SIMULATOR  

The demonstration of the inertially-stabilized headlamp was simulated with a combined 

physical electrical and mechanical breadboard as shown in Figure 30.  The 

demonstrator simulator uses a Raspberry Pi with a custom PCB that receives angular 

position data from the Bosch sensor and the potentiometer and outputs the motor 

controls through an off-the-shelf full bridge motor driver as well as driving the laser 

cross-hair. 

 

Figure 30 Block Diagram of Breadboard 

The mechanical portion of the system is shown as a CAD model in Figure 31 and a 

photograph in Figure 32.  The mechanical portion has a custom designed 3D printed 

base that provides linear and angular alignment between the DC gearmotor and 

potentiometer as is shown in Figure 33.  Features to polarize the potentiometer and 

motor are integral to the single piece base.  The base also includes features so the 

device can be mounted to a vehicle.  The cross-hair laser mount must secure three 

features; the motor output shaft, the cross-hair laser module, and the potentiometer 
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shaft.  Because the two shafts are rigidly attached to the base, a custom 3D printed 

“clam shell” mounting component was required.  The custom part was designed so that 

the same component formed both halves of the laser mount as shown in Figure 34. The 

part used the same “V” shape to capture both 6mm shafts of the gearmotor and the 

potentiometer and ensure there was no misalignment.  A larger “V” shape captures the 

laser cross-hair module.  The clamshells had hexagonal recesses to capture hex nuts 

on one side and screws on the opposite side to “squeeze” the clamshell together.      

 

 

 

Figure 31 Mechanical Design of Breadboard 
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Figure 32 System Photograph 

 

 

Figure 33 Mechanical Breadboard Base 
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Figure 34 Breadboard Laser Mount Clamshell Half 

The electrical portion of the simulator requires a Raspberry Pi 3 or 4 with a custom Hat 

PCB and motor drive module.  The custom Hat PCB attaches to the Raspberry Pi 

GPIO pins as shown in the schematic in Figure 35 and the top side silkscreen in Figure 

36.  The Pi Hat has a buzzer to alert the user if used while driving and an integral LED 

to indicate power status along with three programmable LEDs.  There is a slider switch 

and a push momentary button that can control any operation.  The Pi Hat has 

connections out to the L298N Motor Driver Module (H Bridge Driver) that is a full bridge 

motor driver which allows up to two DC motors to be driven with a separate 12 Volt 

power supply such as a car battery.  Appendix 7 explores the DC motor and driver 

parameters available for the proof-of-concept model.  The Pi Hat has two separate 5V 

laser driver connections.  The Pi Hat also has two separate potentiometer connections 

that feed into an eight channel Analog to Digital module.  There is a future optional six 
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button input connector that connects to the ADC.  Finally, the Pi Hat also has a 

connection for the Bosch Angular Rate Sensor BNO055 module as well. 

The use of the rotary potentiometer for angular feedback has a major benefit.  The 

potentiometer provides an absolute encoder so the system knows the angle at all times 

including at start-up.  If a relative encoder was used for feedback there would need to 

be limit or home switches and the motor would need to exercise the system every time 

power was removed from the controller [15]. 

`  

Figure 35 Breadboard Custom PCB Schematic 
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Figure 36 Breadboard Custom PCB Layout 

 

PCB Pinout Definitions 

The following pins are connected to the Raspberry Pi:GPIO18 Laser P1 

GPIO24 Laser P3 

GPIO08 ADC - Shutdown 

GPIO09 ADC-DOUT 

GPIO10 ADC-DIN 

GPIO11 ADC-Clock 

GPIO13 Motor A En (PWM) 

GPIO22 Motor A Dir 

GPIO26 Motor A DIr 

GPIO18 Motor B En (PWM) 

 

GPIO06 Motor B Dir 

GPIO05 Motor B Dir 

GPIO25 Beeper 

GPIO27 Slider Switch 

GPIO17 Push Button 

 

The following inputs are connected to the A2D Converter: 

 A0 Pot P2 A1 Pot P4 A2 External Buttons (Optional) A3-A7 Solder Pads 
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The Python Graphical User Interface uses a simple TKInter screen, shown in Figure 37, 

that allows for virtual button inputs for functionality and text output for variables for the 

motor, potentiometer, and other parameters.  The program code is shown in Code 6. 

 

Figure 37 Headlamp Simulator Graphical User Interface  

Code 6 Headlamp Simulator Python Program Code  

# !/usr/bin/python3 

from tkinter import * 

import tkinter.ttk as ttk 

import time 

from datetime import datetime 

from gpiozero import MCP3008 

import RPi.GPIO as GPIO 

import numpy as np 

 

# ******************* CONSTANTS ********************* 

SWRevision="0.00" 

# resolution is for Raspberry Pi 

RESOLUTION="1274x680+3+1" # +1,+1 is top left corner 

#RESOLUTION="800x600+1+1" 

LineDist=int(680/13) 

LINE01 = LineDist*0+1 

LINE02 = LineDist*1 

LINE03 = LineDist*2 
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LINE04 = LineDist*3 

LINE05 = LineDist*4 

LINE06 = LineDist*5 

LINE07 = LineDist*6 

LINE08 = LineDist*7 

LINE09 = LineDist*8 

LINE10 = LineDist*9 

LINE11 = LineDist*10 

LINE12 = LineDist*11 

LINE13 = LineDist*12 

CharWidth=8 

ColDist = int(1274/(12*CharWidth)) 

COL01 = ColDist*0*CharWidth+1 

COL02 = ColDist*1*CharWidth 

COL03 = ColDist*2*CharWidth 

COL04 = ColDist*3*CharWidth 

COL05 = ColDist*4*CharWidth 

COL06 = ColDist*5*CharWidth 

COL07 = ColDist*6*CharWidth 

COL08 = ColDist*7*CharWidth 

COL09 = ColDist*8*CharWidth 

COL10 = ColDist*9*CharWidth 

COL11 = ColDist*10*CharWidth 

COL12 = ColDist*11*CharWidth 

BUTTON_WIDTH_SINGLE = int(ColDist*.6) 

BUTTON_WIDTH_DOUBLE = int(BUTTON_WIDTH_SINGLE*1.9) 

BUTTON_WIDTH_THIRD = int(BUTTON_WIDTH_SINGLE*3.6) 

BUTTON_WIDTH_HALF = int(BUTTON_WIDTH_SINGLE*5.5) 

BUTTON_WIDTH_FULL = int(BUTTON_WIDTH_SINGLE*11) 

BUTTON_HEIGHT = 1 

BUTTON_HEIGHT_DOUBLE = 4 

ENTRY_WIDTH_SINGLE = ColDist           

ENTRY_WIDTH_THIRD = ColDist 

ENTRY_WIDTH_HALF = ColDist 

ENTRY_WIDTH_FULL = ColDist 

#GPIO 

inA1 = 22 

inA2 = 26 

enA = 13     

inB1 = 5 

inB2 = 6 

enB =18 

Buzzer=25 

Laser1=18 

Laser2=24 

Switch_Slider = 27 

Switch_Button = 17 

LED1 = 14 

LED2 = 15 

LED3 = 23 

temp1=1 

GPIO.setmode(GPIO.BCM) 

GPIO.setup(Buzzer,GPIO.OUT) 

GPIO.output(Buzzer, GPIO.LOW) 

GPIO.setup(LED1,GPIO.OUT) 

GPIO.output(LED1, GPIO.HIGH) 

GPIO.setup(LED2,GPIO.OUT) 
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GPIO.output(LED2, GPIO.HIGH) 

GPIO.setup(LED3,GPIO.OUT) 

GPIO.output(LED3, GPIO.HIGH) 

GPIO.setup(Laser1,GPIO.OUT) 

GPIO.output(Laser1, GPIO.HIGH) 

GPIO.setup(Laser2,GPIO.OUT) 

GPIO.output(Laser2, GPIO.HIGH) 

GPIO.setup(inA1,GPIO.OUT) 

GPIO.setup(inA2,GPIO.OUT) 

GPIO.setup(enA,GPIO.OUT) 

GPIO.output(inA1,GPIO.LOW) 

GPIO.output(inA2,GPIO.HIGH) 

p=GPIO.PWM(enA,50) 

GPIO.setup(inB1,GPIO.OUT) 

GPIO.setup(inB2,GPIO.OUT) 

GPIO.setup(enB,GPIO.OUT) 

GPIO.output(inB1,GPIO.LOW) 

GPIO.output(inB2,GPIO.HIGH) 

GPIO.output(enB,GPIO.HIGH) 

GPIO.setup(Switch_Slider,GPIO.IN) 

GPIO.setup(Switch_Button,GPIO.IN) 

pot_cen=[.5,.2,.8,.3,.7,.4,.6,.5,.2,.8,.3,.7,.4,.6] 

# ***************************************************** 

frame = Tk() 

frame.title("Thomas Allsup PhD Defense      Revision "+SWRevision)  

frame.geometry(RESOLUTION) 

frame.config(width=1280, height=720, bg="gray") 

frame.resizable(width=False, height=False) 

def ComBuzzer(): 

    GPIO.output(Buzzer,1) 

    time.sleep(.25) 

    GPIO.output(Buzzer,0) 

    time.sleep(.15) 

def ComExit(): 

    GPIO.cleanup() 

    exit("Exited Program")  

def ComLED1(): 

    GPIO.output(LED1,GPIO.LOW) 

    time.sleep(.5) 

    GPIO.output(LED1,GPIO.HIGH) 

def ComLED2(): 

    GPIO.output(LED2,GPIO.LOW) 

    time.sleep(.5) 

    GPIO.output(LED2,GPIO.HIGH) 

def ComLED3(): 

    GPIO.output(LED3,GPIO.LOW) 

    time.sleep(.5) 

    GPIO.output(LED3,GPIO.HIGH) 

def ComPot1P60(): 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[1]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE09) 

def ComPot1P45(): 

    pot1v=MCP3008(7) 
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    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[2]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE10) 

def ComPot1P30(): 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[3]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE11) 

def ComPot1M60(): 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[4]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL04,y = LINE09) 

def ComPot1M45(): 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[5]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL04,y = LINE10) 

def ComPot1M30(): 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[6]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL04,y = LINE11) 

def ComPot2P60(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[8]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE09) 

def ComPot2P45(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[9]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE10) 

def ComPot2P30(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[10]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE11) 

def ComPot2M60(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 
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    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[11]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL12,y = LINE09) 

def ComPot2M45(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[12]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL12,y = LINE10) 

def ComPot2M30(): 

    pot1v=MCP3008(6) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    pot_cen[13]=pot1s 

    LowerTitle10 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL12,y = LINE11) 

def ComCenter1(): 

    Avg_Cen1=(pot_cen[1]+pot_cen[4])/2 

    Avg_Cen2=(pot_cen[2]+pot_cen[5])/2 

    Avg_Cen3=(pot_cen[3]+pot_cen[6])/2 

    Avg_Cen=(Avg_Cen1+Avg_Cen2+Avg_Cen3)/3 

    Avg_Cen_Str=str(int(Avg_Cen*10000+.5)/10000) 

    LowerTitle16 = Label(frame, text = Avg_Cen_Str, 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE08) 

    pot_cen[0]=Avg_Cen_Str 

    file=open("PotCenters.bin","wb") 

    np.save(file,pot_cen) 

    file.close() 

def ComCenter2(): 

    Avg_Cen1=(pot_cen[8]+pot_cen[11])/2 

    Avg_Cen2=(pot_cen[9]+pot_cen[12])/2 

    Avg_Cen3=(pot_cen[10]+pot_cen[13])/2 

    Avg_Cen=(Avg_Cen1+Avg_Cen2+Avg_Cen3)/3 

    Avg_Cen_Str=str(int(Avg_Cen*10000+.5)/10000) 

    LowerTitle16 = Label(frame, text = Avg_Cen_Str, 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE08) 

    pot_cen[7]=Avg_Cen_Str 

    file=open("PotCenters.bin","wb") 

    np.save(file,pot_cen) 

    file.close() 

def UnknownCommand(): 

    pass 

def gui(): 

    Bit1=GPIO.input(Switch_Slider) 

    Bit2=GPIO.input(Switch_Button) 

    LowerTitle1A = Label(frame, text = "XXX", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL07,y = LINE01) 

    if (Bit1==0): 

        YesNo1="OFF" 

    else: 

        YesNo1="ON " 

    if (Bit2==0): 

        YesNo2="OFF" 

    else: 

        YesNo2="ON " 
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    LowerTitle2A = Label(frame, text = YesNo1, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL07,y = LINE02) 

    LowerTitle3A = Label(frame, text = YesNo2, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL07,y = LINE03) 

    pot1v=MCP3008(7) 

    pot1vv=pot1v.value 

    pot1s=str(int(pot1vv*10000+.5)/10000) 

    Pot1Title = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL03,y = LINE07)    

    pot2v=MCP3008(6) 

    pot2vv=pot2v.value 

    pot2s=str(int(pot2vv*10000+.5)/10000) 

    Pot2Title = Label(frame, text = pot2s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL11,y = LINE07) 

    pot1ang=(pot_cen[0]-pot1vv)*268.3443 

    pot2ang=(pot_cen[7]-pot2vv)*268.3443 

    pot1s=str(int(pot1ang*10+.5)/10) 

    pot2s=str(int(pot2ang*10+.5)/10) 

    LowerTitle19 = Label(frame, text = pot1s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL04,y = LINE07) 

    LowerTitle29 = Label(frame, text = pot2s, width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL12,y = LINE07) 

def updater(): 

    gui() 

    frame.after(1000, updater) 

LowerTitle1 = Label(frame, text = "APS", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL06,y = LINE01) 

LowerTitle2 = Label(frame, text = "Slide", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL06,y = LINE02) 

LowerTitle3 = Label(frame, text = "Pusher", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL06,y = LINE03) 

LowerTitle4 = Label(frame, text = "Laser 1", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE04) 

LowerTitle5 = Label(frame, text = "Servo", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE05) 

LowerTitle6 = Label(frame, text = "Laser 2", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE04) 

LowerTitle7 = Label(frame, text = "Servo", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE05) 

LowerTitle4A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL03,y = LINE04) 

LowerTitle5A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL03,y = LINE05) 

LowerTitle6A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL11,y = LINE04) 

LowerTitle7A = Label(frame, text = "OFF", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL11,y = LINE05) 

LowerTitle17 = Label(frame, text = "Pot", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL02,y = LINE07) 

LowerTitle27 = Label(frame, text = "Pot", width=BUTTON_WIDTH_SINGLE, 

bg="gray").place(x = COL10,y = LINE07) 

BUTTON10=Button(frame,text="+60",command=ComPot1P60, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE09) 

BUTTON11=Button(frame,text="+45",command=ComPot1P45, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE10) 

BUTTON12=Button(frame,text="+30",command=ComPot1P30, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE11) 
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BUTTON13=Button(frame,text="-60",command=ComPot1M60, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE09) 

BUTTON14=Button(frame,text="-45",command=ComPot1M45, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE10) 

BUTTON15=Button(frame,text="-30",command=ComPot1M30, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL03,y=LINE11) 

BUTTON16=Button(frame,text="Center",command=ComCenter1, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL02,y=LINE08) 

BUTTON17=Button(frame,text="LED 1 - Green",command=ComLED1, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE08) 

BUTTON18=Button(frame,text="LED 2 - Yellow",command=ComLED2, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE09) 

BUTTON19=Button(frame,text="LED 3 - Blue",command=ComLED3, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE10) 

BUTTON20=Button(frame,text="+60",command=ComPot2P60, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE09) 

BUTTON21=Button(frame,text="+45",command=ComPot2P45, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE10) 

BUTTON22=Button(frame,text="+30",command=ComPot2P30, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL09,y=LINE11) 

BUTTON23=Button(frame,text="-60",command=ComPot2M60, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE09) 

BUTTON24=Button(frame,text="-45",command=ComPot2M45, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE10) 

BUTTON25=Button(frame,text="-30",command=ComPot2M30, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE11) 

BUTTON26=Button(frame,text="Center",command=ComCenter2, 

width=BUTTON_WIDTH_SINGLE,height=BUTTON_HEIGHT).place(x=COL10,y=LINE08) 

BUTTON27=Button(frame,text="Exercise Motor 1",command=ComBuzzer, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL01,y=LINE13) 

BUTTON28=Button(frame,text="Exercise Motor 2",command=ComBuzzer, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL11,y=LINE13) 

BUZZER_BUTTON=Button(frame,text="Buzzer",command=ComBuzzer, 

width=BUTTON_WIDTH_DOUBLE,height=BUTTON_HEIGHT).place(x=COL06,y=LINE06) 

FrameExit=Button(frame,text="Exit",command=ComExit,width=BUTTON_WIDTH_THIRD,h

eight=BUTTON_HEIGHT_DOUBLE).place(x=COL05,y=LINE12) 

file=open("PotCenters.bin","rb") 

pot_cen = np.load(file) 

file.close() 

LowerTitle16 = Label(frame, text = str(pot_cen[0]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE08) 

LowerTitle10 = Label(frame, text = str(pot_cen[1]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE09) 

LowerTitle11 = Label(frame, text = str(pot_cen[2]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE10) 

LowerTitle12 = Label(frame, text = str(pot_cen[3]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL02,y = LINE11) 

LowerTitle13 = Label(frame, text = str(pot_cen[4]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE09) 

LowerTitle14 = Label(frame, text = str(pot_cen[5]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE10) 

LowerTitle15 = Label(frame, text = str(pot_cen[6]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL04,y = LINE11) 

LowerTitle26 = Label(frame, text = str(pot_cen[7]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE08) 

LowerTitle20 = Label(frame, text = str(pot_cen[8]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE09) 
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LowerTitle21 = Label(frame, text = str(pot_cen[9]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE10) 

LowerTitle22 = Label(frame, text = str(pot_cen[10]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL10,y = LINE11) 

LowerTitle23 = Label(frame, text = str(pot_cen[11]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE09) 

LowerTitle24 = Label(frame, text = str(pot_cen[12]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE10) 

LowerTitle25 = Label(frame, text = str(pot_cen[13]), 

width=BUTTON_WIDTH_SINGLE, bg="gray").place(x = COL12,y = LINE11) 

gui() 

logo=PhotoImage(file="MAE_Logo.gif") 

HelpScreen=Button(frame,relief=RAISED,image=logo,command=UnknownCommand, 

width=125, height=175).place(x=COL12,y=LINE02) 

updater() 

frame.mainloop() 
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APPENDIX 6 

ROADWAY DATA CREATOR   

Despite collecting actual roadway data from various vehicles using the device described 

in Appendix 4, it was desired to produce a specific data file that described an idealized 

roadway instead of depending upon finding a series of actual roadways.   

Drawing the desired roadway in CAD such as shown in Appendix 1 for the simulator 

was the natural first step but it proved difficult to divide the roadway into equal length 

line segments and export a comma separated data file.  An attempt was made to 

export the 3D data into a 2D cad system, adding equal distance data points, exporting a 

DXF and then converting this to 2D data file.  Automating any portion of this method 

proved difficult or impossible so the method was abandoned. 

The second attempt was to work inside completely in Excel®.  It was difficult to make 

the gradual pitch changes with a constant radius and ending pitch as desired.  

Changes in one portion of the roadway were not propagated through the end of the 

data.  This method was not intuitive nor effective but did drive the third method that 

proved successful. 

The third and final method was to create a Python program, shown in Code 8, that takes 

in a short datafile that describes the roadway and quickly produces a comma separate 

value text file.  Changing the input file allows for the output to be updated quickly.  A 

sample roadway file with several segments is shown in List 7 and a plot of the output 

data which has 6000 data points is shown in Figure 38. 

A future development would be to create a graphical user interface to enter segment 

information and have the program create the roadway dynamically.    
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List 7 Sample Roadway Input File 

Roadway Test 1 6 

275 0.000025 .005 

600 -0.000015 -.006 

750 0.00075 -.003 

400 -0.0001 -.005 

300 0.00002 0.003 

400 -0.00003 0 

600 0.0001 0.004 

200 -0.0001 -0.002 

300 -0.0002 -0.006 

200 -0.0003 -0.002 

100 0.0001 0 

275 -0.00015 0 

 

 

Figure 38 Sample Angle of Road Plot 
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Code 8 Roadway Data Creator Python Code 

# Thomas Allsup 6/21/2023 

# 

# Reads in a tab separated file that describes a roadway 

# changing slope and creates a CSV of the road with equal distances. 

# 

# Input file starts with header line. 

# File name, spacing between each x position, and 

#        length of car (not used) 

#  Starting slope is always 0 

#   Each line (after header) has three parameters:  

# How long do you do you continue current road slope (line)?   

#       How much do you want to change slope per step after straight? 

#       What is the new road slope after the curvature? 

#                 (where slope stops changing)   

# 

# There is no error checking on the input file. 

# 

# The output file is a true Comma Separated Value file and has distance 

# along road (x), elevation (y), slope and change in slope.  The distance 

# between each x is uniform. 

# 

import csv 

with open('C:\Roadway.txt') as csv_file: 

    f=open('C:\Roadway_Out.csv', 'w') 

    csv_reader = csv.reader(csv_file, delimiter='\t') 

    line_count = 0 

    slope=0 

    distance=0 

    height=0 

    for row in csv_reader: 

        if line_count == 0: 

            print('Road file: {}     Spacing:{}       Vehicle Length : 

{}'.format(row[0], row[1],row[2])) 

            f.write("Road file: "+row[0]+"   Spacing: "+row[1]+"   Vehicle 

Length: "+row[2]+"\n") 

            f.write("X, Height, Slope, Slope Change\n") 

            spacing = float(row[1]) 

            line_count += 1 

            slope=0 

        else: 

            print(f'Length {row[0]} curvature {row[1]} until {row[2]}.') 

            line_count += 1 

            straight=float(row[0]) 

# calculate the number of steps for straight 

            straightcount = int(straight/spacing)  

            for i in range(0, straightcount,1): 

                distance = distance + spacing 

                height = int(1000*(height + slope)+.5)/1000 

                #road.append((distance,height, slope, 0)) 

                print(distance,height,slope,"0") 

                f.write(str(distance)+","+str(height)+","+str(slope)+",0\n") 

                curve=float(row[2]) 

                delta=float(row[1]) 

# calculate the number of steps for curve 

curvecount = int ((curve-slope)/delta)   
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            for i in range(0, curvecount,1): 

                distance = distance + spacing 

                slope = slope + delta 

                slopeout = int(1000*(slope)+.5)/1000 

                height = int(1000*(height + slope)+.5)/1000 

f.write(str(distance)+","+str(height)+","+str(slopeout)+","+str(delta)+"\n") 

            slope = float(row[2]) 

    print(f'Processed {line_count} lines.') 

    f.close() 
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APPENDIX 7 

MOTOR UNIT CONVERSIONS 

The DC gearmotor was purchased with a motor test report, as seen in Figure 39.  The 

units included in this datasheet were in kg-cm so they were converted to English system 

units for the purpose of this dissertation.  Several other needed parameters needed to 

be extracted to provide inputs to the simulation. 

The gear ratio of the gearhead was listed in the filename and the part number as thirty-

five to one.  This gear ratio was confirmed by other documentation and experiments.  

Therefore, GG is equal to 35.  It should be noted that this means the motor turns 35 

degrees as the output only turns one degree.  This analysis treats the DC motor and 

the integral gearhead as a single unit so the gear ratio is irrelevant for the calculations.  

The motor velocity constant, Kv, is the no-load speed divided by the motor voltage.  

The text states the no-load speed is 44 RPM but the table states 45 RPM so with a 12V 

power supply, the Kv is 3.67 to 3.75 RPM / V or 22.0 to 22.5 deg / V s.   

The motor torque constant, KT, is the current divided by the stall torque (listed at locked 

rotor on data sheet) is shown in Table 9.  The value of KT is 174.8 A / oz in. 

Table 9 Motor Torque Conversions at 12VDC 

Scenario RPM Current, A 
Torque, 

Kg-cm 

Torque, 

oz-in 

No Load 45 0.046 0.000 0.000 

Locked Rotor 

(Stalled) 

0 0.845 10.000 139.0 

 

The rotary inertia of the load at the motor, J, was determined by measuring the actual 

weight of the fully assembled laser mount as 0.672 ounces and using the measured 

linear dimensions of width of the load, 0.750 inches, and length of the load, 0.600 

inches.  The moment of inertia of the load, using Equation 21 is 0.0016 oz-in-s2. 
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𝐽 =  

𝑚 (𝑤2 + 𝑙2)

12𝑔
  

[21] 

Where: 

J is the moment of inertia at the load in oz-in sec2 

m is mass of the rotary load in ounces 

w is width of load in inches 

h is height of load in inches 

g is gravity as 32.2 ft/s2 

The amplifier used on the proof-of-concept was an L298N Motor Driver Module (Full H 

Bridge Driver).  Part of the data sheet is shown in Figure 40.  Technically this motor 

driver is only used to drive the DC motor in both directions. 

The gain of the L298N H Bridge Driver by itself is unity since it is a pure H Bridge but 

there are Field Effect Transistors in each leg of the system which are operating at 12 

Volts therefore there is an amplifier gain of at least 12 Volt per tenth of a degree of 

motor rotation or GA is 120 V / deg. 

The resistance of the L298N H Bridge Driver depends upon two things.  First, the 

resistance of any leg of the H Bridge is dependent upon he current running through the 

device.  The Total Voltage Drop, VCEsat, ranges from 3.2V to 4.9V at 1A and 2A 

respectively.  Using Ohm’s Law at 12 Volts operating voltage, the resistance of any leg 

of the circuit is 11.1 Ohms. Second, the operation of the H Bridge is to reverse the 

direction of the motor so the electrical circuit must always pass through two legs 

therefore the RA=22.2 Ohms.   
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Figure 39 Motor Test Data 
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Figure 40 L298N Motor Driver Specification (Partial) 
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APPENDIX 8 

HEADLAMP FIXED ANGLE OFFSET CALCULATIONS 

The ideal angle of the headlamp is based on the height of the headlamp and the braking 

distance of the vehicle at the current linear speed.  Figure 41 shows these two 

parameters as well as the fixed angle offset on flat level ground. 

 

Figure 41.  Ideal Headlamp Fixed Angle Definition 

 

The laws of motion state the change in velocity is equal to the deceleration multiplied by 

time as shown in Equation 22.  

 5280

3600
(𝑉𝑐 −  𝑉𝑓) =  𝑎𝑑𝑔 𝑡𝑏   

[22] 

Where: 

Vc is the current vehicle speed in miles per hour 

Vf is the final speed of the vehicle after braking in miles per hour 

ad is the unitless braking deceleration in terms of g’s 

g is gravity in feet per second squared 

tb is the time to brake in seconds 
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Knowing the final speed of the vehicle would be zero at full stop, Equation 22 can be 

solved for the time to brake as shown in Equation 23. 

 
𝑡𝑏 =  

5280 𝑉𝑐

3600 𝑎𝑑𝑔
    

[23] 

The laws of motion also state the braking distance can be calculated using the current 

speed multiplied by the braking time minus half the acceleration multiplied by the square 

of the braking time as shown in Equation 24. 

 
𝑥𝑏 =  

5280

3600
𝑉𝑐t𝑏 −

1

2
 𝑎𝑑𝑔 𝑡𝑏

2   
[24] 

Where: 

xb is the braking distance in feet 

Substituting Equation 24 into Equation 24 and simplifying yields Equation 25: 

 
𝑥𝑏 = 1.075556 

𝑉𝑐
2

𝑎𝑑𝑔
  

[25] 

From Figure 41, the fixed angle offset is the arc tangent of the vertical height of the 

headlamp over the braking distance which is shown in Equation 26. 

 
f = tan−1 (

𝑥ℎ

12 𝑥𝑏
) 

[26] 

 

The vehicle shown in Figure 42 is traveling at 45 miles per hour on flat level ground.  

Assuming the braking can occur at 0.7g, then Equation 25 yields a braking distance of 

96.6 feet.  The headlamp center is 40 inches vertically off the ground therefore from 

Equation 26, the headlamp optimum fixed angle is 1.98 degrees downward. 
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Figure 42 Headlamp Height 

 

It should be noted that several factors affect this fixed headlamp angle.  As the speed 

of the vehicle increases, you must see further in front of the vehicle so this angle 

decreases.  The effective braking deceleration also affects this angle so worn tires or in 

slick roadways can reduce the deceleration factor thus increasing the braking distance.  

Additionally, if the vehicle loading front to back is changed then the front of the vehicle 

will angle upward or downward with respect to the rear of the vehicle then this ideal 

fixed angle is also affected. 


