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ABSTRACT 

 

SQL-BASED APPROACH TO SIGNIFICANT INTERVAL  

DISCOVERY IN TIME-SERIES DATA  

 

 

Publication No. ______ 

 

Sunit Shrestha, M.S. 

 

The University of Texas at Arlington, 2005 

 

Supervising Professor:  Dr. Sharma Chakravarthy 

With time-series data, events (like turning off a light, opening garage door, 

turning on TV) occur with a high degree of certainty not at specific time points but 

within time intervals (sequence of time points). So, it is useful for applications to 

consider data as contiguous time points. The smallest interval that satisfies the criteria 

of interval-confidence (i.e., ratio of total support of participating time points and the 

number of days) is termed as Significant Interval (SI). Significant Interval Discovery 

(SID) algorithm finds SIs from time-series data.  



 v

The main focus of this thesis is on the improvement of existing SID algorithms 

and the design and development of new SQL-based algorithms which work directly on 

Relational Database Management System (RDBMS). The experiments compare the 

performance of the main memory SID against SQL-based SID. The larger goal of this 

thesis is to achieve scalability. 
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CHAPTER 1 

INTRODUCTION 

Dwindling cost of storage and advances in data warehousing technology have 

allowed corporations to collect huge amounts of data, and hence data mining has 

become important to extract useful knowledge from the data collected and to leverage it 

for business purposes. Large data sources suitable for mining are growing in number 

and size literally every passing moment. The initial work in the field of data mining was 

primarily focused on developing algorithms for new mining techniques (e.g., 

association rules) and to scale existing mining techniques (e.g., classification, 

clustering) to large data sets. Most early works were developed for data stored in file 

systems and specialized data structures and buffer management strategies were devised 

for each algorithm. Recently, a lot of work [15, 18, 17, 16, and 19] has been done for 

scaling data mining techniques to very large data sets. Integrating mining with 

databases is an important research effort in this direction. The authors in [14] have 

classified research on database integration of mining into two categories- one which 

proposes new mining operators and the other which leverages the query processing 

capabilities of current RDBMS. In the former category, there have been language 

proposals to extend SQL with specialized mining operators. A few examples are 

DMQL, M-SQL and the Mine rule operator. These proposals do not address processing 

techniques for these operators inside a database engine. In the second category, 
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researchers have addressed the issue of exploiting the capabilities of conventional 

RDBMS to execute mining operations. This entails transforming the mining operations 

into database queries and in some cases developing newer techniques that are more 

appropriate in the database context. SETM algorithm, the formulation of association 

rule mining as “query flocks” and SQL queries for mining all aim at tighter database 

integration. The focus of this thesis is to achieve tighter database integration for SID 

algorithm. 

Roddick et al. in [11] explain that the mounting recognition of temporal data has 

resulted in the prospect of temporal data mining. It is an important extension of data 

mining as it has the capability of mining activity rather than states and thus, inferring 

relationships of contextual and temporal proximity, some of which may also indicate a 

cause-effect association. In particular, the accommodation of time into mining 

techniques provides a window into the temporal arrangement of events. Thus, it 

provides an ability to suggest cause and effect that are overlooked when the temporal 

component is ignored or treated as a simple numerical attribute. Mover over, it has the 

ability to mine the behavioral aspects of (communities of) objects as opposed to simply 

mining rules that describe their states at a point in time. In other words, there is the 

promise of understanding why rather than merely what. Consider an association rule 

stating that gloves and coffee are bought together during winter. This is a temporal 

association rule - the static equivalent would simply associate the two products. The 

temporal aspect “during winter” is important. The association may be rare during the 
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rest of the year, so the association between the two products may go undetected if the 

analysis concentrates on static association rules only. 

A number of algorithms have been developed [11] to process time-series data. 

Time-series is a sequence of values of a given variable ordered by time.  Existing 

mining techniques treat these values as unique events (i.e., events are considered to 

occur at particular time points). With time-series data, events occur with a high degree 

of certainty not at specific time points but within intervals (set of time points). So, 

events are better understood in terms of intervals rather than time points for many 

applications as explained in [4]. Some work has been done to find association rules over 

ranges of values, which are explained in [20, 21]. For example, it is useful to extract 

information from telephone logs in terms of time periods of high activity to understand 

the network use. For Smart Home [2], it is useful to consider periods of high activity of 

the devices rather than their actual usage at a particular time, to infer the usage patterns 

of each device as well as interactions between different devices. Several numerical 

domains, such as a magazine subscription company wanting to mine information about 

its subscribers with highest subscriptions, can use intervals of age groups, instead of 

processing for each and every subscription. Representing events with intervals has 

several advantages: First, it provides an opportunity to explore and identify significant 

intervals, and in the process provides a better understanding of the underlying data. 

Second, it reduces the size of the data to be used for discovering sequential patterns by 

mining algorithms [3].  



 4

Time-series data is known for its volume and discovering useful segments of 

information from them is a challenging task. Most of the traditional sequential mining 

algorithms [1, 22] deal with events occurring at a point in time and they process the 

entire dataset repeatedly. For time-series or numerical data, the sheer size of the dataset 

makes running an algorithm that makes repeated passes on the entire dataset time 

consuming. The efficiency of these algorithms can be improved by reducing the dataset 

that these algorithms work with. Time-series point values can be compressed by using 

the notion of intervals. 

1.1 Significant Interval Discovery Algorithm 

Srinivasan [3] has laid out the foundation work for the detection of significant 

intervals. Intervals are represented as [T1, T2, s, l, d, ic] where T1 and T2 represent the 

start and end time of an interval, s represents the support of the interval, l denotes the 

length of the interval (T2-T1+1), d indicates the density and ic represents the interval-

confidence. Let N be the number of units (days, weeks, months, etc.) of the time-series 

data. In a numerical domain, let S be the sum of the supports at all the points in the 

dataset. 

• Support (s): event count for a time point or sum of event count for an interval 

• Length (l): T2-T1+1 

• Density (d): s/l  

• Interval-Confidence (ic): s/N (for time-series data) Or s/S (for numerical data) 

Significant Interval (SI) is defined as an interval that satisfies the user-specified 

criteria of maximum Interval-length (max-Len) and minimum Interval-confidence (min-
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Conf). The author has explained how significant intervals can be identified from time-

series data for a given max-Len and min-Conf. The author has proposed Significant 

Interval Discovery (SID) algorithm, which is a time-series data mining algorithm and 

uses the concept of intervals to find significant intervals. SID is a level-wise iterative 

algorithm and have three important phases. They are: 

• Preprocessing: In this phase, support of the distinct time points are obtained by 

folding the data over the periodicity specified by the user. Currently, the 

algorithm processes each distinct event sequentially. After the folding of data, 

first level intervals are generated by merging adjacent time points.  

• Interval Formation: First level intervals are expanded by merging them with 

adjacent intervals and significant intervals are selected from them. 

• Cluster Formation: Overlapping significant intervals are consolidated to 

represent as clusters. 

The algorithm is implemented in main memory [SIDH] and uses database to 

store the initial results and final results. SQL is used for counting support of distinct 

time point events and also for time wrapping (which is explained in Chapter 3.2.1.1).  

The algorithm is working for daily and weekly periodicities with minute’s granularity. 

Based on the merging of intervals in interval expansion, suites of SID approaches have 

been proposed to identify significant intervals efficiently. They are SID[1], SID[1, n-1], 

SID[n-1], and SID[n-2]. These algorithms form a spectrum from the exhaustive to the 

most efficient without significant loss in the output generated. The numbers in the 
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brackets indicate how intervals from the n-1th iteration are combined to form intervals 

of the nth iteration. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.1 Significant interval subsumed 
 

Upon closer investigation, a number of issues have been identified that needed 

improvement. One such area is the proper definition of significant intervals and their 

identification. Consider a situation in MavHome (which is the predominant problem 

domain for this work) where a user turns off his TV every night at 11:00 pm. SID 

algorithm failed to identify this event as a significant event. However, it is a significant 

event and the automated home systems (e.g., MavHome), should turn off TV every 

night at 11:00 pm exactly. Such events are called “Unit Length Significant Interval” 

where a time point that meets min-Conf criteria forms an interval.  

Further, the algorithm detects the largest SI for a given value of max-Len and 

min-Conf. If there is a larger SI, which subsumes another smaller SI, the algorithm 

identifies larger interval as SI not the smaller one. This creates a problem in case of 

MavHome. Consider the Figure 1.1, B and D are SIs. Interval B is the smallest SI and 
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there are two insignificant intervals A and C. Then, the algorithm identifies that interval 

D, which encompasses A, B and C is significant even though the intervals A and C are 

not significant. Interval D is significant because it subsumes SI B. If interval B 

represents an interval with intense device activity in case of MavHome, the algorithm is 

predicting that interval D needs to be automated for that event. This introduces 

unnecessary overhead of keeping an event active in those intervals where it is not really 

significant at all.   

The implementation of SID suite of algorithms in [3] is loosely coupled with 

database. Database is used as a container to store the initial raw data and final results. 

Rest of the processing is done by fetching data from the database and storing them in 

main memory data structures. The algorithm does not store transaction data in main 

memory. It only stores folded data (which is explained in Chapter 3.2.1.1), which is 

much smaller than transaction data. Even then, the algorithm is limited by the size of 

main memory to handle large amounts of data. Consider a situation pertaining to 

MavHome in which that the system is tracking the events of an application in second’s 

granularity. Then, in the worst case there can be 31,536,000 transactions per year for a 

single device and there can be 86,400 transactions with folding on a daily basis or 

604,800 with folding on a weekly basis. If the system is tracking a number of devices, 

then this number is going to be several times larger. With scaling experiments, it was 

observed that SID stopped due to main memory limitation when data size was very 

large.  
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1.2 Focus of the Thesis 

With increase in the use of Relational Database Management Systems 

(RDBMS) to store and manipulate data, mining directly on RDBMS gives us the 

advantage of using the fruits of decades of research done in this field. Main memory 

always imposes a limitation on the size of data that can be processed. However, the use 

of RDBMS provides the benefits of using their buffer management systems specifically 

developed for freeing the user/applications from the size considerations of the data. 

Building mining algorithms to work on RDBMS also gives the advantage of mining 

over very large datasets, as RDBMS have been built to manage such large volumes of 

data. File based mining algorithms are those that work on data outside of the database. 

They generally have an upper limit on the number of transactions that can be mined. For 

example, the DBMiner has an upper limit of 64K on the number of unique transactions 

that it can process for mining. Main memory implementation of SID with new 

definitions of SI has an upper limit of 6.4 Million Transactions. With the user having a 

choice of RDBMS to use for his application, the mining algorithms should be developed 

using accepted standards so that the underlying system is not a limitation and should be 

portable to other RDBMS. Keeping this in mind, our focus in this thesis is to develop 

SQL-based SID algorithms that provide scalability in addition to the core functionality 

of the algorithm. We have tried to use queries that conform to the SQL-92 standard.  

Several improvements to the earlier SID algorithms have also been 

incorporated. The current implementation fails to identify “Unit Length Significant 

Intervals” (i.e., time points with sufficient confidence which has same start and end 
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time). Also, it identifies significant intervals that contain another significant interval. In 

this thesis, we have refined the notion of SI and take into consideration disjoint and 

overlapping SIs.  

The remainder of the thesis is organized as follows. Chapter 2 summarizes 

literature survey done. Chapter 3 describes Extended SID (SID). Chapter 4 provides the 

details of developing SQL-based algorithms for significant interval detection. It 

includes both the design and implementation aspects of SQL-based algorithms, which 

form the core contributions of this thesis. Chapter 5 has the experimental results. 

Finally, Chapter 6 concludes with future work. 
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CHAPTER 2 

RELATED WORK 

2.1 Mining Interval Time-series 

Not many data mining algorithms discuss the formation of intervals on time-

series data based on the interaction of events. Villafane et al. [5] propose a technique to 

discover temporal containment relationships using intervals. An item A is said to 

contain an item B if an event of type B occurs during the time span of an event of type 

A, and occurs frequently in the data set. As an example, let us consider a database 

application in which a data item is locked and then unlocked sometime later. Instead of 

treating the lock and unlock operations as two discrete events, it can be advantageous to 

interpret them together as a single interval event that better captures the nature of the 

lock. When there are several such events, an interval time-series is formed. Formally, 

let BeginTime(X) and EndTime(X) denote the start and end time of an event X, 

respectively. Event X is said to contain event Y if BeginTime(X) < BeginTime(Y) and 

EndTime(X) > EndTime(Y). SID focuses on finding intervals of significance for events 

rather than relationship between events. For the above case, SID finds the SIs over the 

time line for event (X) and event (Y). Then, these SIs are used to find association or 

relationship between those events. 
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2.2 Discovering Frequent Episodes in Time-series 

As in case of WinEpi [1], SID also uses the concept of sliding window for 

support counting. SID calls it folding wherein the time-series data that spans months or 

years are represented in terms of days or weeks based on the periodicity of interest. If 

the periodicity of interest is “daily”, then the entire dataset is folded over that 

periodicity (24 hours) and the number of occurrences at each time point is considered as 

the support of the event at that point. WinEpi makes multiple passes over the data for 

counting the support of the candidates in each pass. SID is closer to MinEpi as SID 

obtains the support and confidence of events in a single pass over the data and uses 

them to obtain support and confidence for the intervals. Referring to the timing 

constraints, WinEpi and MinEpi [1] finds all sequences that satisfy the time constraint 

ms (Maximum Span: maximum allowed time difference between latest and earliest 

occurrences of events in the entire sequence) and whose support exceeds a user-defined 

minimum min_sup, counted with the CWIN (One occurrence per span window) 

method. Similar concepts are used in the SID, which are called max-Len and min-Conf.  

2.3 Integrating Association Rule Mining with Relational Database Systems 

Sarawagi et al. [7] compare different architectural alternatives for coupling 

mining with database systems. These alternatives include: loose-coupling through a 

SQL cursor interface; encapsulation of a mining algorithm in a stored procedure; 

caching the data to a file system on-the-fly and mining; tight-coupling primarily using 

user-defined functions; and SQL implementations for processing in the DBMS. The 

authors’ mention that Cache Mining provides the best performance and they mention 



 12

that SQL-based implementation is the worst. They have used Association Rule Mining 

as their case. However, in this work, it is found that though Cache Mining provides a 

good performance for relatively modest data set but there is a performance bottleneck 

due to the main memory and that Cache Mining does not scale well for large datasets. 

The authors mention various advantages of SQL-based implementation. One can make 

use of the database indexing and query processing capabilities thereby leveraging more 

than a decade of effort in making these systems robust, portable, scalable, and 

concurrent. One can also exploit the underlying SQL parallelization, particularly in an 

SMP environment. The DBMS support for check pointing and space management can 

be valuable for long-running mining algorithms. We have choosen SQL-based 

implementation of SID algorithms for the purpose of scalability. 

2.4 Frequent Itemset Discovery with SQL Using Universal Quantification 

Rantzau [8] asserts that there is a need to look at SQL-based approaches for 

finding frequent itemsets even though their performance is inferior to main memory 

algorithm, the reason being the current trend among database vendors to integrate 

analysis functionalities into their query execution and optimization components. A new 

approach called “Quiver” is proposed that employs universal and existential 

quantifications. Conceptually SID is similar to Frequent Itemset Discovery (FID) if time 

points and time-intervals are thought of as items. The intervals formed from merging 

time points and time-intervals will be denoted by start and end time. Basically a record 

represents a group of time points. Understanding of FID makes it easy to understand 

SID. However, there are few subtleties that differentiate it with FID.  First, it uses the 
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concept of min-Conf instead of minimum support to decide where an interval is 

frequent (i.e., significant in case of SID) or not. Second, the candidate generation phase 

is marked by the limitation imposed by the max-Len constraint specified by the user. 

2.5 Programming the K-means Clustering Algorithm in SQL 

Ordonez in [9] concede that using SQL has not been considered an efficient and 

feasible way to implement data mining algorithms. However, he explains how to 

implement K-means clustering algorithm in SQL efficiently emphasizing on its 

correctness and performance. From a correctness point of view the author explains how 

to compute Euclidean distance, nearest-cluster queries and updating clustering results in 

SQL. From a performance point of view, he explains how to cluster large data sets by 

indexing tables, optimizing and avoiding joins, optimizing and simplifying clustering 

aggregations, and taking advantage of sufficient statistics. K-means uses Euclidean 

distance to find the nearest centroid to each input point. The algorithm has two main 

steps E and M. The E step determines the nearest cluster for each point and adds the 

point to it. That is, the E step determines cluster membership of the points. The M step 

updates all centroids by averaging points belonging to the same cluster. The algorithm 

iterates executing the E and M steps starting from some initial solution until cluster 

centroids become stable. K-means forms clusters and the number of clusters formed is 

determined by the parameter “K” specified by the user. SID is similar to clustering in 

the sense that it also forms clusters of adjacent time points as intervals. It is different 

from clustering as there is no limit set on the number of significant intervals to be 

discovered. Clustering does not maintain sequential order for data but clustering of 
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events has to maintain the sequential order as well. This is a significant departure from 

the traditional clustering algorithms. While K-means partitions all the participating 

points into one or another cluster, SID basically partitions the time points as being 

significant or insignificant. The author presents two main schemes. While Standard K-

means implementation uses SQL, Optimized K-means is an implementation 

incorporating several optimizations. As in Standard K-means, our implementation of 

SID also uses standard SQL only. The author seems to be interested in avoiding join 

even though he believes that a solution based on joins is more elegant and simpler. We 

have used joins in some of our important SQL statements. 

2.6 SQL-based Frequent Pattern Mining with FP-growth 

Xuequn et al. in [10] explain that finding frequent patterns is a fundamental 

component in data mining, which has been extensively researched and studied. Most of 

the studies adopt an Apriori-like candidate set generation and test approach; if any 

length K pattern is not frequent in the database, its length (K+1) super pattern can never 

be frequent. The aim of SID is similar as it tries to find frequent tightest intervals. SID 

has candidate generation and selection steps wherein candidate intervals are generated 

and tested to check whether they are significant or not. It is different from Apriori 

approach as (K+1) significant intervals need not be generated from kth significant 

intervals. In fact, SID tries to avoid the generation of such intervals because it is only 

interested in tightest significant interval. The authors mention that candidate set 

generation is costly. A novel method for frequent pattern mining known as frequent 

pattern growth (FP-growth) has been proposed. FP-growth method adopts the divide 
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and conquers strategy, uses only two full I/O scans of the database and avoids iterative 

candidate generation. The first scan accumulates the support of each item and then 

selects items that satisfy minimum support. In fact, this procedure generates frequent-1 

items and then stores them in frequency descending order. The second scan constructs 

FP-tree. A FP-tree is a prefix-tree structure storing frequent patterns for the transaction 

database, where the support of each tree node is no less than a predefined minimum 

support threshold. Each node in the item prefix subtree consists of three fields: item-

name, count and node-link. Node-link links to the next node in the FP-tree carrying the 

same item-name, or null if there is none. SID also avoids multiple scans of the database. 

In fact, it scans the database only once to generate support of event time points. As is 

the case of FP-tree, the results generated by SID are highly compact and is much 

smaller than its original database due to compression achieved with folding and 

representation of sequence of time points with intervals. 
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CHAPTER 3 

EXTENDED SIGNIFICANT INTERVAL DISCOVERY 

3.1 Extension of Significant Intervals Representations 

Given a time sequence T, minimum confidence min-Conf and maximum 

interval-length max-Len, we define an interval w [ts, te] to be Significant Interval in T  

(1) interval confidence  of w, ic >= min-Conf and  

(2) length of w, l <= max-Len and  

(3) there is no other window w’= [ts’, te’] in w for which  conditions (1) and (2) 

hold. In other words, a significant interval cannot subsume another significant interval 

(of length one or more).  

 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 3.1 Improved significant interval 
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Significant intervals can be either disjoint or overlapping. If the start (end) time 

of an interval w falls within start and end time of another interval w’ and the end (start) 

time of the interval is outside of the interval w’, then the intervals w and w’ are 

overlapping. Formally, Overlapping Significant Intervals are defined as two significant 

intervals w [ts, te] and w’ [ts’, te’] if (ts <= te’< te and ts’ < ts ) or (ts < ts’<= te and te’> 

te). Disjoint Significant Intervals are defined as two significant intervals (i.e., w [ts, te] 

and w’ [ts’, te’]), which do not overlap (i.e., ts’ > te and te’ is not in the interval [ts, te] 

or te’< ts and ts’ is not in the interval [ts, te]). Unit Length Significant Intervals are 

defined as significant intervals where ts = te. 

As per the revised definitions of a significant interval (SI), the algorithm would 

find only interval B as significant interval as shown in Figure 3.1. This is a refinement 

of SID explained in [3].  

3.2 Refined Significant Interval Discovery Algorithm  

Given a time-series data, SID algorithm finds the time intervals, within which 

the events appear at least as frequently as a given threshold, called min-Conf. The user 

defined parameters such as time-granularity, periodicity, max-Len and min-Conf are 

read from a configuration file and all calculations are performed accordingly. Time 

granularity is the granularity of time-stamp. It represents whether events are recorded 

using second’s or minute’s granularity and the user has to specify granularity in the 

configuration file. Periodicity represents the kind and frequency of events that are being 

searched. The user specifies daily (or weekly) periodicity if he is looking for events that 

occur on a daily basis (or weekly basis). Max-Len specifies the maximum length for the 
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intervals searched and Min-Conf specifies the minimum interval confidence needed to 

classify an interval as significant. 

SID is a level-wise iterative algorithm that consists of a sequence of steps that 

proceed in a bottom-up manner; the result of the kth step is generated from the results of 

k-1th step. This algorithm also uses the Apriori approach of candidate generation and 

selection. It differs from [3] in the deletion of significant intervals that are performed in 

each iteration. Time points and time intervals that have already participated in interval 

formation are deleted from the input. This progressively reduces the size of the data 

processed by the algorithm. The algorithm can be partitioned into 3 phases:  

• Preprocessing 

• Interval Formation  

• Post-processing 

The Figure 3.2 below illustrates the SID algorithm graphically. 
 

3.2.1 Preprocessing 
 

The algorithm starts with the folding of time-series data and formation of first 

level intervals.  Folding enables the accumulation of support for events at all the distinct 

time points in a given periodicity (and time granularity) and further it compresses the 

data. 
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Figure 3.2 Flowchart of the SID algorithm 
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3.2.1.1 Folding 

 
 

 
 
 
 
 

 
 
 

Figure 3.3 Time-series data 
 

Time-series data consists of events recorded with a time-stamp. Consider the 

Figure 3.3 which shows the occurrence of events over a time line.  This time line event 

activity can be considered to be consisting of distinct and disjoint windows of a period 

of a day or week (termed periodicity). Each event in a window represents its count. If 

the size of the window is chosen as 24 hours, then it is known as folding on a daily 

periodicity. If the time line extends for 10 days, the maximum count of any event on a 

daily periodicity can be at most 10. The events in the Figure 3.3 can be represented as 

shown in Table 3.1. 

Table 3.1 Transaction data 

Device Status Time-Stamp 
Lamp1 On 8/10/2005 1:00 
Lamp1 OFF 8/10/2005 2:00 
Lamp1 On 8/10/2005 3:00 
Lamp1 OFF 8/10/2005 4:00 
Lamp1 OFF 8/11/2005 2:00 
Lamp1 On 8/11/2005 3:00 
Lamp1 OFF 8/11/2005 4:00 
Lamp1 On 8/12/2005 1:00 
Lamp1 OFF 8/12/2005 2:00 
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Table 3.1 shows the data collection for Lamp1. After folding on a daily 

periodicity, we obtain distinct time point events with their corresponding support as 

shown in Table 3.2 below. 

Table 3.2 Input dataset after Folding 

Device Status Time of occurrence Support 
Lamp1 On 1:00 2 
Lamp1 OFF 2:00 3 
Lamp1 On 3:00 2 
Lamp1 OFF 4:00 2 

 

The process of folding also compresses the data significantly. In the above 

example, 12 records have been reduced to 4 records that will be used for significant 

interval processing (a reduction of 66%). As another example, if there are 31,536,000 

occurrences of an event over a period of one year recorded using second’s granularity, it 

will reduce to 86,400 (reduction of 99%) occurrences with folding on a daily basis. 

With folding on a weekly basis, it will reduce to 604,800 (reduction of 98%). As the 

number of points is fixed given a periodicity, greater reduction is achieved if the data 

represents larger number of periodicity units (daily, weekly, monthly etc.). 

3.2.1.2  Time wrapping 

The compression of data due to folding should occur without the loss of any 

information of interest. With folding on a daily or weekly periodicity, all intervals that 

lie within the window of a day or week can be obtained but there can be some intervals 

which might span two days or weeks. Consider a situation where an inhabitant of home 

operates his TV between 11:00 pm to 2:00 am every night. Then, the interval 11:00 pm 
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to 2:00 am becomes significant interval for automation. However, folding of data on a 

daily basis will not lead to identification of such interval and some interesting intervals 

that span two days or weeks may not be discovered at all. 

 

 
Figure 3.4 Distinct events with support obtained after folding on a daily periodicity 

 

This is taken care of in the algorithm by means of Time wrapping. Time 

wrapping allows the formation of intervals that spans two days or weeks. All time-

points that fall below the start of that day but lying below the max-Len are replicated 

and given a separate day value or week value. If max-Len is specified as 30, then time 

points, which is less than 00:30 can participate in the intervals spanning two days. After 

time wrapping, distinct events in Figure 3.4 will look like Figure 3.5 as below. 

3.2.1.3  Identification of unit length SIs 

Some of the time point events that are obtained after folding may have sufficient 

confidence to qualify as significant intervals. These are shown in Figure 3.5 with 

circles. There are 3 time points which have sufficient confidence. These time points 

form interval with themselves and they are known as “Unit Length Significant 

Intervals” (Unit SIs). 
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Figure 3.5 Unit length significant intervals 

 

Unit SIs are removed from the input before first level intervals are formed. 

Figure 3.6 shows the remaining time points. 

 

Figure 3.6 After removal of unit length significant in
 

3.2.1.4 Formation of first level intervals 

SID is a level-wise algorithm which proceeds in a bottom
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exhaustive and computationally expensive approach. Consider time point 01:00, 02:00, 

04:00, 05:00, 06:00 and others as shown in Figure 3.5 above. Time point event 01:00 

can form interval with 02:00, 04:00, 05:00 and 06:00 assuming that max-Len specified 

is 6. Then, for each interval of 01:00, interval confidence can be compared and checked 

to determine whether it is less than min-Conf specified. If it is, then that interval can be 

selected as SI. The problem with this approach is that it generates all possible intervals 

for any time point and only a few out of these intervals will be selected as SIs. 

Furthermore, if interval 01:00-02:00 has been identified as SI, still all the intervals like 

01:00-04:00 and 01:00-06:00 are calculated and selected as SIs, which violates the 3rd 

definition of SI. A better approach would be to start with a smallest interval and grow 

the interval with small units till significant intervals are obtained. The smallest interval 

that can be obtained between any two time points is the first level intervals. 

Table 3.3 First level intervals 

Device Status Start Time End Time Support 
Lamp1 On 1:00 2:00 5 
Lamp1 On 2:00 4:00 8 
Lamp1 On 4:00 5:00 8 
Lamp1 On 5:00 6:00 7 
Lamp1 On 11:00 12:00 6 
Lamp1 On 12:00 13:00 6 
Lamp1 On 22:00 23:00 7 
Lamp1 On 23:00 0:00 9 

 

From the vertical database layout, first level intervals (shown in Table 3.3) are 

formed by coalescing adjacent points, which are within max-Len specified. If any of the 

first level intervals meet the min-Conf specified, then it is selected as SI and removed 
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from the input dataset. Figure 3.7 shows 5 first level SIs. First level SIs are removed 

from the input data set and the remaining first level intervals are shown in Figure 3.8 

below.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 First level significant intervals 
 

3.2.2 Interval Formation 

The remaining first level intervals are expanded in interval formation stage. The 

algorithm follows an iterative process to grow first level intervals. In each iteration, the 

intervals obtained from previous iteration are extended by merging them with adjacent 

intervals from the first level (for naïve) and other levels (for other variants). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8 After removal of first level significant intervals  
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The condition for merging two intervals is that end time of one interval should 

coincide with start time of another interval. Interval Formation phase consists of three 

steps: 

• Candidate interval generation: Every new interval that meets the max-Len constraint 

is considered as a candidate.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Expansion of first level intervals in interval formation phase 
 

Figure 3.9 shows interval expansion of first level intervals in Figure 3.8. For 

example, intervals (11:00-12:00 and 12:00-13:00) can merge to form an interval (11:00-

13:00). Intervals (11:00-13:00, 0:00-2:00) will be considered as candidate intervals. If 

the interval (11:00-13:00) is selected as SI, then it is removed from the input dataset and 

it won’t participate further in any interval formation. Intervals (1:00-2:00, 5:00-6:00, 

22:00-23:00) could not be expanded as they don’t have any adjacent intervals, which 

can be used to expand those intervals. Revised SID algorithm follows the definitions of 

Naïve, SID[n-1], SID[n-2] approaches and corresponding merging criteria as explained 

in [3].  
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• Selection of significant intervals: New interval that meets min-Conf constraint is 

selected as a SI. 

• Deletion of intervals: For a SI, the participating time-intervals are removed from the 

input set to disable the formation of any other interval, which might subsume this 

interval. This is a significant departure form the SID algorithm explained in [3]. 

Deletion of SIs not only prevents the formation of SIs that subsume another SI, it 

also reduces the data size to be processed in each iteration thereby completing the 

iteration quickly. 

The algorithm iterates until there are no more intervals for merging or no new 

candidate intervals are generated. 

3.2.3 Post-processing 

Post-processing is done to remove redundant intervals introduced by the 

Anomaly of Time Wrapping and Subsumption. These are explained below. 

3.2.3.1  Anomaly due to Time wrapping 

Time wrapping prevents the loss of information but it may also introduce 

redundant SIs. This is known as Anomaly of Time wrapping. As we replicate time points 

to occur in two days (or weeks), they may lead to formation of intervals whose length is 

less than max-Len specified. In such cases, some intervals might be identified as SIs in 

two different days (or weeks). In Figure 3.10, intervals (2:00-4:00, 4:00-5:00) are 

repeated in two different days. If these intervals are identified as significant, then there 

will be two entries for the same interval with different dates in the database. The final 

result should contain only one set of records. 
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Figure 3.10 Anomaly introduced by time wrapping 
 

3.2.3.2  Subsumption 

Also, there are redundant significant intervals introduced by Subsumption. 

When distinct time points are found to be significant, they are selected as Unit SIs. But 

the remaining time points may lead to formation of intervals that subsume these Unit 

SIs. As shown Figure 3.11, time point 2:00 is found to be significant and is removed 

from the input set. However, time points 1:00 and 3:00 merges to form first level 

interval, which is also found to be significant. Then, interval 1:00-3:00 violates the third 

definition of SIs, which basically says that a SI cannot have another SI inside it. In case 

of 1:00-3:00 interval, it has another SI 2:00-2:00. So, interval (1:00-3:00) though 

significant has to be removed from the output as it subsumes another SI.  

Similarly, in case of SID[n-1] and SID[n-2], SIs that subsume another SIs are 

generated due to merging of intervals at different levels to form new intervals. Consider 

the intervals (1:00-3:00, 2:00-4:00 and 3:00-5:00) that are obtained in second level of 

SID[n-1]. If the interval 2:00-4:00 is found to be significant, it will be removed from the 
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data. The remaining intervals 1:00-3:00 and 3:00-5:00 will merge to form a new interval 

1:00-5:00 in third level. If 1:00-5:00 is also found to be significant then, it will subsume 

another significant interval 2:00-4:00 and violates the third definition of SI. So, 1:00-

5:00 has to be removed from the output.  

 

 
Figure 3.11 Subsumption for unit length significant interval 
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CHAPTER 4 

SQL-BASED AND MAIN MEMORY APPROACHES 

4.1 Comparison of Main Memory and SQL-based Approach 

Table 4.1 Comparison of main memory and SQL-based approaches 
 Main Memory Approach SQL-based Approach 

Coupling Data is stored in a database. The 
algorithm has to load all the 
data into main memory to 
process them. 

Data already resides in the 
database. No need to retrieve data 
into main memory as the 
algorithm is implemented in SQL.

Scalability The amount of data it can 
process is limited by size of 
main memory.  

Buffer manager of database 
enables it to handle large volumes 
of data.  

Performance Can use compression or special 
data structures to achieve 
performance gain. Can write 
optimized algorithm for fast 
processing 

Database adds the overhead that 
can make it slow. Can use some 
features like indexing and 
optimized queries to have 
performance improvement. 

Portability Language used to implement 
data mining algorithm may be 
platform specific. So, portability 
can be an issue. 

Can be implemented in SQL-92, 
which is an industry standard 
followed by all database vendors. 
So, the implementation will be 
portable to other databases. 

 
Most performance experiments have shown that SQL-based approaches are 

inferior to main memory algorithms. However, the current trend of database vendors to 

integrate analysis functionalities into their query execution and optimization 

components (i.e., “closer to the data”) suggests revisiting these results and searching for 

new, potentially better solutions. The data generated by MavHome, which is our 

predominant problem domain, resides in a database (Oracle in our case). The results 
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generated by SID are used by another algorithm called Hybrid-Apriori [HA]. HA uses 

the SIs identified by the SID algorithm to determine the patterns of device activity. It is 

implemented in SQL. Therefore, it is desirable to implement SID in SQL so that we 

have a set of algorithms to generate sequential pattern tightly coupled with database. 

The advantage of main memory algorithms is that it can make use of compression or 

complex data structures, to enhance speed. However, it is limited by main memory in 

handling large volumes of data. Further, for each algorithm, a separate buffer 

management technique needs to be developed. SQL-based approach avoids the 

limitations of main memory as it has a built-in buffer management system. So, it is 

capable of managing huge volumes of data. Further, it is scalable, portable and stable. 

4.2 SQL-based Approach [SIDQ] 

SQL is an international standard followed by all database vendors. It is used to 

create, maintain & query relational databases. A fundamental difference between SQL 

and standard programming languages is that SQL is non-procedural. Various standards 

exist for SQL (SQL-86, SQL-89, SQL-92, SQL-99, SQL-2003) but we have tried to use 

SQL-92 features of Oracle database for our implementation as it is supported by most of 

the database vendors. SQL is not a computationally complete language and it does not 

have programming constructs such as loops and conditional check, which are 

commonly used in general programming language. As SQL is a non-procedural 

language, the data structures and algorithm that are used by general programming 

language cannot be used in SQL implementation. Looping and conditional checking can 
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be implemented in SQL through JOIN and WHERE clause. So, the implementation 

challenges observed are: 

1. Implement the algorithm in a language that is not Turing complete. 

2. Design of tables in the database. 

3. Design of algorithms for SQL implementation. 

4. Finding efficient implementation of SQL using indexes where possible. 

SQL statements required for the execution of the algorithm are generated 

dynamically by a program written in JAVA and this program generates SQL statements 

based on parameters specified by the user. The parameters are: approach_number, min-

Conf, max-Len, numDays, granularity and periodicity. Approach_Number is used to 

distinguish between SID suite of algorithms as explained by Srinivasan in [3]. The 

suites of SID algorithms implemented are SID[1], SID[n-1] and SID[n-2]. NumDays 

specifies the number of days for which the data is collected. Max-Len specifies the 

maximum length of the interval to be searched. Min-Conf specifies the minimum 

interval confidence that significant intervals should have. Granularity defines the 

granularity of the time-stamp for the events. Current implementation supports minutes 

and seconds granularity. Periodicity defines the periodicity of interest for the user 

which can be Daily or Weekly. The program uses JDBC to connect to Oracle database 

and all the SQL statements generated are executed in a sequential manner. Intermediate 

results are stored in tables. The algorithm starts with the processing of raw data stored 

in TbTransload table. 
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4.2.1 Design of Tables 

The first issue in the design of SQL-based algorithm is the question about where 

to store the intermediate results. In case of main memory, various standard data 

structures are available and if they are not suitable, desired data structures can be 

created in the form of objects. In case of database, all the results have to be stored in the 

tables only. So, it was important to come up with ideal table structures. The following 

are the list of tables that have been used: 

Table 4.2 COUNTSUP table 
COUNTSUP TABLE 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL
TXTSTATUS VARCHAR2(31) NOT NULL
DTTIME VARCHAR2(10) NOT NULL
RECORDCOUNT NUMBER NOT NULL

 

• CountSup: This table stores support of all distinct time point events after folding is 

performed in daily periodicity. The field “DTTIME” is a character field and it stores 

times of the day as a character. The field “RECORDCOUNT” is a number field and 

stores the count of distinct time point events. 

Table 4.3 COUNTSUPTEMP table 
COUNTSUPTEMP TABLE 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL
TXTSTATUS VARCHAR2(31) NOT NULL
DTTIME DATE NOT NULL
RECORDCOUNT NUMBER NOT NULL
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• CountSupTemp: This table is similar in structure to “CountSup” except for 

“DTTIME” field, which is a date field instead of a character field. For SQL-based 

implementation, it was important to maintain all the time points in some increasing 

time order to allow for time wrapping. This is achieved by assigning date to all the 

time points in “CountSupTemp” table. 

Table 4.4 DISTINCTINT table 
DISTINCTINT Table 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL 
TXTSTATUS VARCHAR2(31) NOT NULL 
DTTIME DATE NOT NULL 
TIMEDIFF NUMBER NOT NULL 

 

• Distinctint: This table stores distinct time points that will form first level intervals. 

It also stores the minimum time difference it will have with the adjacent time point 

to form first level interval. The field “DTTIME” stores the start time of the first level 

interval and “TIMEDIFF” stores the minimum time difference this start time will 

have with other time point to form first level interval. 

Table 4.5 FIRSTLEVEL and CANDIDATE table 
FIRSTLEVEL AND CANDIDATE TABLES 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL
 TXTSTATUS VARCHAR2(31) NOT NULL
STARTTIME DATE NOT NULL
ENDTIME DATE NOT NULL
TIMEDIFF NUMBER NOT NULL
 INTERVALSUP NUMBER NOT NULL
STARTSUP NUMBER NOT NULL
ENDSUP NUMBER NOT NULL
INTERVALCONF NUMBER NOT NULL
DENSITY NUMBER NOT NULL
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• FirstLevel and Candidate Tables: They have the same table structure. “FirstLevel” 

table stores all the first level intervals. A new “Candidate” table is created in each 

iteration inside interval formation. It stores all the candidate intervals generated in 

that iteration. Besides storing information about the intervals (like strattime, 

endtime, time difference, interval support, interval confidence and density), they 

also store two additional informations “StartSup” and “EndSup”. “StartSup” 

represents the support of a time point that is the starting time of the interval and 

“EndSup” represents the support of a time point that is the ending time of the 

interval.  

Table 4.6 FINALFREQUENTITEMS table 
FINALFREQUENTITEMS TABLE 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL
 TXTSTATUS VARCHAR2(31) NOT NULL
STARTTIME DATE NOT NULL
ENDTIME DATE NOT NULL
TIMEDIFF NUMBER NOT NULL
 INTERVALSUP NUMBER NOT NULL
INTERVALCONF NUMBER NOT NULL
DENSITY NUMBER NOT NULL

 

Consider an interval I1 (01:00 – 03:00) and support of 01:00 is 5 and 

support of 03:00 is again 5. Consider another interval I2 (03:00 - 05:00) and support 

of 05:00 is 5:00. Intervals I1 and I2 can merge to form a new interval I3 (01:00 – 

05:00). While forming such an interval I3, the support of the new interval becomes 

sum of support of the two intervals less the support of the overlapping time point i.e. 
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(Support of I3 = Support of I1 + Support of I2 – Support of Overlapping time point). 

In this case the overlapping time point is 3:00 and its support is 5. So, support of I3 

becomes 10 + 10 – 5 = 15. In this way, “Endsup” enables to calculate the support of 

newly formed interval. 

• FinalFrequentItems: This table stores SIs that are selected in different stages of the 

algorithm. Its structure is similar to “FirstLevel” and “Candidate” except that it does 

not have the columns “Startsup” and “Endsup”. 

Table 4.7 COUNTSUPWEEK table 
COUNTSUPWEEK TABLE 

COLUMN NAME DATA TYPE NULL 
TXTDEVICEID VARCHAR2(30) NOT NULL
TXTSTATUS VARCHAR2(31) NOT NULL
DTTIME1 VARCHAR2(10) NOT NULL
DTTIME2 VARCHAR2(15) NOT NULL
DATETIME DATE NOT NULL
RECORDCOUNT NUMBER NOT NULL

 

• CountSupWeek: This table stores support of time points in weekly periodicity. The 

column “DTTIME1” is used to store the unique time of the day, “DTTIME2” is used 

to store unique day of the week and “DATETIME” field is used to maintain the time 

order among all the records. “DATETIME” field is initially populated with current 

system date and then later changed to appropriate unique date that is obtained from 

another table “WeekTable”.  

Table 4.8 WEEKTABLE table 
WEEKTABLE TABLE 

COLUMN NAME DATA TYPE NULL 
DAYS VARCHAR2(15) NOT NULL
DATETIME DATE NOT NULL
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• WeekTable: This table stores all the days of the week and they are assigned a 

unique date in time-order. 

4.2.2 Design of Algorithm 

 

! Fold time series data
! Select unit length significant intervals
! Delete time points that have been identified as significant
! Perform time wrapping
! Form first level intervals
! Select significant first level intervals
! Delete first level intervals that have been identified as significant
! While ( true ) {

! Generate candidate intervals
! Select significant intervals from candidates
! Delete candidates that have been identified as significant
! }

! Delete redundant intervals introduced by time wrapping and
subsumption

Figure 4.1 SIDQ algorithm 
 

Figure 4.1 shows the SQL-based algorithm for SID. It starts with counting of 

support of distinct time points through “Folding”. Distinct time points with their 

support are obtained in “CountSup” table and time points that meet the min-Conf 

criteria are selected as Unit SIs. They are inserted into “FinalFrequentItems” table and 

removed from “CountSup” table.  

“Time Wrapping” is performed by replicating time points that falls below max-

Len specified and assigning them next date. Then, all the distinct time points are 
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assigned current date. In this way, all the time points are maintained in time order so 

that intervals can be formed by taking difference of two time points and assuming that 

start time is always greater than end time. It is possible to form intervals by taking 

absolute difference of time points however, it leads to a large number of tuples (after 

joining two tables) and it is computationally expensive. So, all time points (replicated 

and initial distinct time points) are maintained in time order by assigning current date 

for initial distinct time points and next date for replicated time points during “Time 

Wrapping”.  

After time wrapping, all the time points are obtained in “CountSupTemp” in an 

increasing time order. Formation of first level intervals in case of SQL-based algorithm 

is separated into two distinct steps. In the first step, all the distinct time points that will 

lead to formation of first level intervals are identified and they are stored in 

“DistinctInt” table with their minimum time difference to the adjacent time point. In the 

second step, first level intervals are obtained by using the information stored in 

“DistintInt” table (i.e. start time of first level interval and their time difference). When 

“DistinctInt” and “CountSupTemp” tables are joined on this information, first level 

intervals with all their attributes are obtained and they are stored in “FirstLevel” table. 

Those first level intervals that are significant are inserted into “FinalFrequentItems” 

table and they are removed from “FirstLevel” table.  

The remaining first level intervals will participate in expansion of intervals. 

Intervals are expanded by merging them with adjacent time intervals. Two intervals can 

merge only if end time of one interval is equal to start time of another interval.  
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Srinivasan in [3] has proposed two approaches for merging. In the first 

approach, only max-Len is used to validate new intervals. SID[1] algorithm uses this 

approach and basically checks whether interval length of new interval is less than max-

Len specified. If not, newly formed interval cannot be considered as valid interval. In 

the second approach, besides max-Len, characteristics of the intervals like interval 

confidence and interval density is taken into consideration to validate new intervals. 

This approach basically means that two intervals can merge only if their confidence or 

density can be improved through merging and the length of new interval is less than 

max-Len. SID[n-1] and SID[n-2] use this approach. SID[1], SID[n-1] and SID[n-2] 

differ in the way intervals are merged for expanding. While n-1th level intervals are 

expanded with first level intervals in case of SID[1], they are expanded with intervals in 

the same level in case of SID[n-1]. In case of SID[n-2], the intervals in the level n-2 are 

expanded with intervals from the level n-1. SID[1], SID[n-1] and SID[n-2] have been 

implemented in SQL and they are referred as SIDQ[1], SIDQ[n-1] and SIDQ[n-2]. 

New intervals that meet the criteria of max-Len are known as candidate 

intervals and they are inserted into nth candidate table. From these candidate intervals, 

SIs are selected and inserted into “FinalFrequentItems” table. The expansion of 

intervals will continue until there are candidates generated in each iteration and there 

are intervals to be expanded at the end of each iteration. Once, the algorithm comes out 

of the loop of interval formation, redundant significant intervals that are introduced due 

to Anomaly of Time Wrapping and Subsumption is removed from “FinalFrequentItems” 

table. 
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4.2.2.1  Preprocessing 

This is the first phase of the algorithm. The algorithm reads all the parameters 

specified by the user from the configuration file. Transaction data is folded to obtain the 

count of distinct time points. The following SQL is used for folding on daily basis and it 

uses function COUNT to obtain support of distinct time points (assumed to be in minute 

granularity). Grouping is done on deviceid, status and time of day and the combination 

of these three represent the distinct time point event. The folded data is ordered by time 

and inserted into “CountSups” table. 

INSERT INTO countsups   

SELECT txtdeviceid, txtstatus ,TO_CHAR(dttransdatetime,'HH24:MI'),COUNT(*)   

FROM tbtransload   

GROUP BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime,'HH24:MI')   

ORDER BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime,'HH24:MI') 

From the distinct time points, unit SIs are selected and inserted into 

“FinalFrequentItems” table using the following SQL in which time points with 

confidence greater than min-Conf are selected and they are assigned same start and end 

time. Length of the interval is assigned as 1 and support of the time point becomes the 

density for such intervals. 

INSERT INTO finalfrequentitems   

SELECT txtdeviceid, txtstatus, TO_DATE(SYSDATE||' '||dttime, 'DD-MM-YY HH24:MI'),    

TO_DATE(SYSDATE||' '||dttime, 'DD-MM-YY HH24:MI'), 1,   

recordcount,TRUNC(recordcount/ NumDays,3), recordcount   

FROM countsups 

WHERE TRUNC(recordcount/NumDays, 3) >= Min-Conf 

Once, unit SIs are selected, they are removed from “CountSup” table and the 

remaining time points are used for time wrapping. All time points that fall below max-
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Len are selected and inserted into “CountSupTemp” table with day greater than the 

current date in order to create time-ordered data. 

INSERT INTO countsuptemp  

SELECT txtdeviceid, txtstatus, TO_DATE(SYSDATE+1||' '||dttime, 'DD-MM-YY HH24:MI'), recordcount  

FROM countsups  

WHERE dttime < ‘Max-Len' 

Then, all the time points in the “CountSup” table are again inserted into 

“CountSupTemp” table with current date.  

INSERT INTO countsuptemp 

SELECT txtdeviceid, txtstatus, TO_DATE(SYSDATE||' '||dttime,'DD-MM-YY HH24:MI'),  recordcount FROM countsups 

After this, first level intervals are obtained by merging adjacent time points. 

Finding first level intervals from time points is a trivial problem in case of traditional 

programming language. All the distinct time points can be time ordered and two 

consecutive time points can be considered for the formation of first level intervals. If 

they meet the max-Len specified, then they can form first level intervals. But this is not 

the case when the distinct time points are in the form of rows of a table. Cursor allows 

looping through and considering two consecutive rows (assuming that all the rows are 

time ordered) at a time but it was inefficient. Join can be used to form intervals between 

time points but it can lead to the formation of large number of intervals. Consider the 

time points (1:00, 2:00, 3:00, and 4:00). With self-join, the first level intervals obtained 

would be (1:00-2:00, 1:00-3:00, 1:00-4:00, 2:00-3:00, 2:00-4:00, 3:00-4:00) but we are 

only interested in generating (1:00-2:00, 2:00-3:00 and 3:00-4:00) as the desired first 

level intervals. We tried to achieve this using function MIN in time difference so that 

only intervals that have shortest time difference are selected (i.e., only nearest points 
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will lead to the formation of first level interval). When MIN function is used, grouping 

on rest of the attributes is not possible with all the calculations involved. So, formation 

of first level intervals is divided into two steps: 

INSERT INTO distinctint ( 

SELECT t1.txtdeviceid,t1.txtstatus,t1.dttime, MIN(((t2.dttime-t1.dttime)*24*60)+1) 

FROM countsup t1, countsup t2 

WHERE t1.dttime < t2.dttime 

AND (((t2.dttime-t1.dttime)*24*60)+1) <=Max-Len 

AND t1.txtstatus = t2.txtstatus 

AND t1.txtdeviceid = t2.txtdeviceid 

GROUP BY t1.txtdeviceid ,t1.txtstatus, t1.dttime  

) 

The first step is to find distinct time points with their minimum time difference. 

This is achieved with a following SQL which populates “DistinctInt” table. 

INSERT INTO firstlevel  (   

SELECT t1.txtdeviceid, t1.txtstatus, t1.dttime, t2.dttime,   

 ((t2.dttime-t1.dttime)*24*60)+1, t1.recordcount+t2.recordcount, t1.recordcount, t2.recordcount,  

 TRUNC((t1.recordcount+t2.recordcount)/NumDays,3),   

 TRUNC((t1.recordcount+t2.recordcount)/(((t2.dttime-t1.dttime)*24*60)+1),2)   

FROM countsuptemp t1, countsuptemp t2, distinctint d1   

WHERE  (((t2.dttime-t1.dttime)*24*60)+1) <= Max-Len   

AND t1.dttime < t2.dttime  

AND t1.txtdeviceid = d1.txtdeviceid   

AND t1.txtstatus = d1.txtstatus  

AND t1.txtdeviceid = t2.txtdeviceid   

AND t1.txtstatus = t2.txtstatus  

AND t1.dttime = d1.dttime   

AND (((t2.dttime -t1.dttime)*24*60)+1) = d1.timediff  

) 
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The second step is to find first level intervals by using information collected in 

“DistinctInt” table. It performs two joins between two copies of “CountSupTemp” and 

“DistinctInt”. The query calculates all the measures for the interval (like interval 

support, density and interval confidence) using expressions and finds first level 

intervals. Support of the start time of interval is set as “StartSup” and support of end 

time of interval is set as “EndSup”.  

Once the first level intervals are obtained, SIs are selected and inserted into 

“FinalFrequentItems” table and they are removed from “FirstLevel” table. The 

remaining intervals will participate in interval expansion. 

4.2.2.2  Interval Formation 

First level intervals are expanded in interval formation phase. This takes place 

inside the loop. Intervals are expanded by merging them with adjacent intervals. 

Intervals can merge if end time of one interval is equal to start time of another interval. 

This condition is specified in the WHERE clause. In each iteration, a new candidate 

table is generated and this is populated using the following SQL: 

INSERT INTO C1   

SELECT I1.txtdeviceid, I1.txtstatus, I1.starttime, I2.endtime, ((I2.endtime-I1.starttime)*24*60)+1,   

I2.intervalsup + I1.intervalsup - I2.startsup,I2.startsup, I2.endsup,   

TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/NumDays,3),   

TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/(((I2.endtime-I1.starttime)*24*60)+1),4)   

FROM firstlevel I1, firstlevel I2   

WHERE I1.endtime = I2.starttime   

AND ((I2.endtime-I1.starttime)*24*60)+1 < Max-Len 

AND I1.txtdeviceid = I2.txtdeviceid   

AND I1.txtstatus = I2.txtstatus 
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From these candidate intervals, SIs are selected and inserted into 

“FinalFrequentItems” table. Then, candidate table is checked to see whether any 

intervals are left for expanding. If there are intervals to be expanded, the loop iterates 

and repeats the same process. The loop stops if there are no new candidates generated. 

All SID approaches: SIDQ[1], SIDQ[n-1] and SIDQ[n-2] have the same flow except for 

the difference in merging of intervals to form candidate intervals. Till the generation of 

1st level candidates, all SID suites of algorithms have the same flow and their difference 

can be observed after the 2nd level candidate generation.  

INSERT INTO C2   

 SELECT I1.txtdeviceid, I1.txtstatus, I1.starttime, I2.endtime,  

  ((I2.endtime-I1.starttime)*24*60)+1,   

  I2.intervalsup + I1.intervalsup - I2.startsup,I2.startsup, I2.endsup,   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/NumDays,3),   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/(((I2.endtime-I1.starttime)*24*60)+1),4)   

 FROM C1 I1, firstlevel I2   

 WHERE I1.endtime = I2.starttime   

 AND ((I2.endtime-I1.starttime)*24*60)+1 < Max-Len 

 AND I1.txtdeviceid = I2.txtdeviceid   

 AND I1.txtstatus = I2.txtstatus 

The above SQL generates 2nd level candidates for SIDQ[1] and it can be seen 

that n-1th level intervals are merged with first level intervals to form new candidate 

intervals.  

The SQL given below generates 2nd level candidates for SIDQ[n-1] and it can 

be seen that n-1th level intervals are merged with intervals of the same level to form new 

candidate intervals. This SQL is different from one used for SIDQ[1] as there is one 

additional condition that is checked before two intervals are merged to form new 
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interval. This condition ensures that the densities or confidences of the merging 

intervals are in increasing order.  

INSERT INTO C2   

 SELECT I1.txtdeviceid, I1.txtstatus, I1.starttime, I2.endtime,  

  ((I2.endtime-I1.starttime)*24*60)+1,   

  I2.intervalsup + I1.intervalsup - I2.startsup, I2.startsup, I2.endsup,   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/NumDays,3),   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/(((I2.endtime-I1.starttime)*24*60)+1),4)   

 FROM c1 I1, c1 I2   

 WHERE I1.endtime = I2.starttime   

 AND ((I2.endtime-I1.starttime)*24*60)+1 < Max-Len 

 AND I1.txtdeviceid = I2.txtdeviceid   

 AND I1.txtstatus = I2.txtstatus 

 AND ((I1.intervalconf <= I2.intervalconf) or (I1.density <= I2.density))  

The same condition is applied in case of SID[n-2] as well. The following SQL is 

used to generate 2nd level candidates and in this case, n-2nd level intervals merge with n-

1th level intervals to form new candidate intervals.  

INSERT INTO C2   

 SELECT I1.txtdeviceid, I1.txtstatus, I1.starttime, I2.endtime,  

  ((I2.endtime-I1.starttime)*24*60)+1,   

  I2.intervalsup + I1.intervalsup - I2.startsup, I2.startsup, I2.endsup,   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/NumDays,3),   

  TRUNC((I1.intervalsup + I2.intervalsup - I2.startsup)/(((I2.endtime-I1.starttime)*24*60)+1),4)   

 FROM firstlevel I1, c1 I2   

 WHERE I1.endtime = I2.starttime   

 AND ((I2.endtime-I1.starttime)*24*60)+1 < Max-Len 

 AND I1.txtdeviceid = I2.txtdeviceid   

 AND I1.txtstatus = I2.txtstatus 

 AND ((I1.intervalconf <= I2.intervalconf) or (I1.density <= I2.density))  
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In case of SIDQ[n-2], for the generation of 2nd level candidates, first level 

intervals are expanded with intervals in C1 and for the generation of 3rd level 

candidates, intervals in C1 are expanded with intervals in C2. The tables to be used for 

merging the intervals are controlled by a function, which provides appropriate tables 

based on the selection of “Approach_Number” in the configuration file. 

4.2.2.3  Post-processing 

Redundant SIs, generated due to Anomaly of Time Wrapping and Subsumption, 

are removed in this phase. Due to time wrapping, there may appear two intervals with 

same start time and end time as SIs on two different days. Only one should be retained. 

The following SQL selects significant intervals that are same in all respects except that 

they appear in two different days. MAX function is used to obtain maximum date of an 

interval which appears in two days and it is deleted. 

DELETE FROM finalfrequentitems   

WHERE (txtdeviceid, txtstatus, TO_CHAR(starttime,'dd-mm-yyyy'), TO_CHAR(starttime,'HH24:MI'))   

IN (   

 SELECT f1.txtdeviceid, f1.txtstatus, TO_CHAR(MAX(f1.starttime), 'dd-mm-yyyy'), 

  TO_CHAR(f1.starttime,'HH24:MI')   

 FROM finalfrequentitems f1, finalfrequentitems f2   

 WHERE TO_CHAR(f1.starttime,'HH24:MI') = TO_CHAR(f2.starttime,'HH24:MI')   

 AND TO_CHAR(f1.endtime,'HH24:MI') = TO_CHAR(f2.endtime,'HH24:MI')   

 AND TO_CHAR(f1.starttime,'dd-mm-yyyy') != TO_CHAR(f2.starttime,'dd-mm-yyyy')   

 GROUP BY f1.txtdeviceid, f1.txtstatus, TO_CHAR(f1.starttime,'HH24:MI') 

) 

Due to unit SIs and also in case of SIDQ[n-1] and SIDQ[n-2], a SI may 

subsume unit SI or another SI. So, these redundant SIs have to be removed to meet the 
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third definition of SIs. For every SI, the following SQL statement checks whether there 

are any other SI which subsumes it. If it finds those SIs, they are deleted. 

 DELETE FROM finalfrequentitems 

 WHERE (txtdeviceid, txtstatus, starttime, endtime) 

 IN ( SELECT t2.txtdeviceid, t2.txtstatus, t2.starttime, t2.endtime 

  FROM finalfrequentitems t1, finalfrequentitems t2 

  WHERE t2.starttime <= t1.starttime  

  AND t1.endtime <= t2.endtime 

 ) 

4.2.3 Implementation of Weekly Periodicity 

for (int i = 1; i < 7; i++){ 

 INSERT INTO weektable  

SELECT TO_CHAR (SYSDATE+i,'DAY'),SYSDATE+i  FROM DUAL  

} 

INSERT INTO weektable  

SELECT TO_CHAR(SYSDATE, 'DAY'), SYSDATE  FROM DUAL 

For weekly periodicity, the algorithm uses same set of tables except for Folding. 

In case of weekly periodicity, when Folding is done, besides the time of the day, the 

day of the week information also has to be stored and furthermore, the time points in 

different days of the week have to be maintained in a time order. So, “CountSupWeek” 

table with additional field for storing day of the week is used for Folding and 

“WeekTable” is populated with the following SQL.  

INSERT INTO countsupweek 

SELECT txtdeviceid, txtstatus , TO_CHAR(dttransdatetime,'HH24:MI'),  

TO_CHAR(dttransdatetime,'DAY'), SYSDATE, COUNT(*)   

FROM tbtransload  

GROUP BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime,'HH24:MI'), TO_CHAR(dttransdatetime,'DAY')   

ORDER BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime,'HH24:MI'), TO_CHAR(dttransdatetime,'DAY')  
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Folding is performed in weekly periodicity with the above SQL statement, 

which uses COUNT function with grouping on event (i.e., the combination of deviceid, 

status, day of week and time of day). Then, “CountSupWeek” table is updated with 

corresponding date for their days by joining with “WeekTable” as follows: 

UPDATE countsupweek cw  

SET datetime = ( SELECT TO_DATE(w.dttime||' '||cw.dttime1,'DD-MM-YY HH24:MI')  

FROM weekTable w  

WHERE cw.dttime2 = w.days  

) 

Unit SIs are selected from “CountSupWeek” table with the following SQL and 

inserted them into “FinalFrequentItems” table. After time points have been selected as 

SIs, they are removed from “CountSupWeek” table. 

INSERT INTO finalfrequentitems  

SELECT txtdeviceid, txtstatus, datetime, datetime, 1, recordcount, 

 TRUNC(recordcount/numDays,3), recordcount   

FROM countsupweek  

WHERE TRUNC(recordcount/numDays, 3) >=Min-Conf 

Time Wrapping is performed in case of weekly periodicity with the following 

SQL. It duplicates those time points that fall below max-Len specified and “First-Day” 

of the week. The first day of the week is the first day of the data collection and it is 

inferred from the data. 

INSERT INTO countsuptemp 

SELECT txtdeviceid, txtstatus, datetime, recordcount  

FROM countsupweek  

WHERE dttime1 < Max-Len  

AND TRIM(dttime2) = First-Day 
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Rest of the algorithm is similar as in case of daily periodicity, which has been 

described earlier.  

4.3 Existing Main Memory Approach [SIDH] 

Srinivasan [3] implemented SID algorithms in main memory using data 

structures to store intermediate results. Important data structures used are: 

• InputStruc – data structure to store the inputs  

 

 
Figure 4.2 INPUTSTUC data structure 

 

• InputMavhome – domain specific data structure 

• OutputStruc – data structure to store the outputs 

 

 
Figure 4.3 OUTPUTSTRUC data structure 

 

SELECT TO_CHAR(dttransdatetime,'HH24:MI'), COUNT(*)  

FROM tbtransload 

WHERE txtdeviceid = ‘DeviceId’  

AND txtstatus = ‘Status’  

GROUP BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime, 'HH24:MI')  

ORDER BY txtdeviceid, txtstatus, TO_CHAR(dttransdatetime, 'HH24:MI') 

OutputStruc 

timeDiff density confidence Starttime Endtime totSupp 

InputStruc date count weekday 
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First, the algorithm finds out distinct events (combination of deviceid and 

status) and stores them in main memory data structures. For each deviceid and status, 

data is fetched from the database using the above SQL statement. 

“InputFormat” and “IncrementInterval” are the two most important classes. 

“InputFormat” class reads the configuration file, identifies the input parameters, and 

finds count for each event. “IncrementInterval” finds first level intervals and then finds 

SIs. Post-processing phase is carried out for Time Wrapping. SIs having start time 

greater than end time are assigned different dates for start time and end time within the 

same interval. This is done to represent formation of intervals spanning two days. This 

is done with a single SQL as follows: 

update TBSIGINTERVAL set dtendtime = dtendtime + 1 where dtstarttime >dtendtime 
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! Open database connection
! Find distinct events (txtdeviceid, txtstatus)
! For each event in CountSup {

! Fold time series data
! Select unit length significant intervals
! Delete time points that have been identified as significant
! Form first level intervals
! Select significant first level intervals
! Delete first level intervals that have been identified as

significant
! While ( true ) {

! Generate candidate intervals
! Select significant intervals from candidates
! Delete candidates that have been identified as significant

! }
! }
! Perform Time wrapping
! Delete  redundant intervals introducted by subsumption
! Close database connection

Figure 4.4 SIDH algorithm 
 

The basic flow of the algorithm has been maintained, however a number of 

changes has been made in the algorithm to incorporate the revised definitions of SIs. 

This revised main memory algorithm which reads data from database is named as 

Significant Interval Discovery – Hybrid (SIDH). 

4.4 Refined Main Memory Approach [SIDM] 

Previously described SIDH algorithm reads data from a database using SQL 

statements although it is a main memory algorithm. Furthermore, it executes the same 

SQL statement multiple times to fetch data for different events from the database. The 

SID algorithms find SIs for each event separately. The performance of the main 
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memory algorithm is improved when it read data from flat files. So, a file reading 

interface has been implemented in lieu of the SQL interface, which reads data from .csv 

files. This makes it a pure main memory algorithm and hence the nomenclature SIDM 

as opposed to SIDH used for the hybrid version. A new data structure “CountSup” has 

been created to maintain the count of all the distinct time points. It uses a double 

Hashtable, one for distinct events (deviceid and status) and another Hashtable for 

unique time points of the distinct event. The data structure is shown below. 

 

 

Figure 4.5 COUNTSUP data structure 
 

As data is read from the file, the data structure is updated continuously to record 

count of the distinct time point events. Once the file is read completely, time points 

stored in hashtable are sorted in time order. This is done by first converting Hashtable 

into Collections type and using sort function of collections. Then, each distinct event is 

processed sequentially as before. The implementation has been refined as per the 

revised definitions and some changes have been made in the Post-processing phase to 

prune redundant SIs to satisfy the Subsumption condition. The revised algorithm is 

shown below. 

 

Event1 Event2 Event3 … … … Events: Hashtable 

Time1 Time2 Time3 Time4 …. …. Times: Hashtable 

Count Count Count Count …. …. 
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! Open data file
! Create a double hashtable (CountSup) with (txtdeviceid, txtstatus) as key
! While (!EOF){

! Populate CountSup
! }
! Sort CountSup in time order
! For each key in CountSup {

! Select unit length significant intervals
! Delete time points that have been identified as significant
! Form first level intervals
! Select significant first level intervals
! Delete first level intervals that have been identified as significant
! While ( true ) {

! Generate candidate intervals
! Select significant intervals from candidates
! Delete candidates that have been identified as significant

! }
! }
! Perform time wrapping
! Delete of redundant intervals introducted by subsumption  

Figure 4.6 SIDM algorithm 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 Experimental Setup 

Experiments were conducted using a Linux cluster where each node is a dual 

processor of 2.4GHz 533MHz P4 Xeon CPUs with 512KB cache 533MHz FSB and 

Intel E7501 Plumas chipset. The nodes are running Redhat 7.3 with kernel extensions 

for GFS Linux version 2.4.20-18.7.gfs520p002smp as the operating system. Each node 

has 1GB of main memory and the operating system is scheduling processes on both the 

processors.  No other processes were allowed to run on these machines when the 

experiments were conducted except for the routine database operation and operating 

system processes. Oracle 9i 9.2.0.1.0 database is used. A configuration file for the 

program is provided for the user to specify the values for different parameters. The 

program is written in Java, which generates SQL statements dynamically based on the 

user specific configuration. Java HotSpot (TM) Client VM (build 1.4.2_03-b02, mixed 

mode) is used to run java program. The program uses JDBC connection to connect to 

Oracle database. 

Data set generated by the MavHome is used for the experiments. A number of 

experiments were performed with the MavHome data to verify the correctness and 

scalability of SID and its variants with respect to the Naïve approach. Synthetic datasets 

were created to verify the correctness of the algorithm in terms of meeting revised 
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definitions of Significant Intervals and boundary conditions (folding of data, time 

wrapping, generation of first level intervals, interval expansion, anomalies of time 

wrapping, Subsumption, disjoint significant intervals, overlapping significant intervals 

and unit length significant intervals). The output of SIDQ is compared against the 

output of SIDM to verify the correctness of both the algorithms.  

 
Number of Transactions 
in (thousand) 

13.42 26.84 40.26 53.68 67.1 80.52 93.94 107.36 120.78 134.2 147.62 161.04

Number of devices 1 2 3 4 5 6 7 8 9 10 11 12 
Experiment Number 1 2 3 4 5 6 7 8 9 10 11 12 
Number of Transactions 
in (thousand) 

174.46 201.78 403.56 807.12 1614.24 3228.48 6456.96 9685.44 

Number of devices 13 15 30 60 120 240 480 720 
Experiment Number 13 14 15 16 17 18 19 20 

Figure 5.1 Data set used for scaling experiments 
 

Experiments on scalability are meant to test the ability of the algorithm to 

handle large volumes of data. Synthetic data is generated for these experiments based 

on the data obtained from MavHome. The maximum size of the data generated has 

9685440 transactions and there are 720 distinct events in this dataset. The configuration 

used for all the scaling experiments are: min-Conf = 0.57, max-Len = 40, numDays = 

92, granularity = min, periodicity = daily. The experiments were conducted multiple 

times and average of the three runs is taken. Time taken is measured by the System. 

currentTimeMillis() function provided by JAVA. 
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5.2 Comparison of SIDH and SIDM 

As shown in Figure 4.6 and Figure 4.4, the difference between SIDH and SIDM 

is that in case of SIDH, folding is performed inside the loop and the same SQL query is 

executed for each event. This translates to scanning the entire table multiple times once 

for each query. So, SIDH is slower as compared to SIDM. In case of SIDM, 

transactions are available in the form on .csv file. The algorithm reads the file only once 

and populates the data structures to hold the count of all the distinct time points. In case 

of SIDH, database connection and execution of query is an overhead which has been 

replaced in SIDM with the overhead of maintaining the data structure to hold the 

support of distinct time points.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Comparison of SIDM[1] and SIDH[1] 

 

When SIDH[1] and SIDM[1] were run for different sizes of data with the same 

configuration, it was observed (shown in Figure 5.2) that the performance of the 

algorithm increased marginally when a file reading interface was introduced. However, 
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it decreased the size of the largest data set it can process. The experiments were 

conducted on the dataset as shown in Figure 5.1. 

The experiments confirmed our presumption that main memory algorithm can 

be improved with a file reading interface to replace the recurring SQL statement. 

5.3 Effect of max-Len and min-Conf 

The number of significant intervals generated by SID algorithm is affected by 

the values chosen for max-Len and min-Conf. Max-Len specifies the length of an 

interval which basically translates to the number of time points that can converge to 

form an interval.  As the max-Len is increased, more number of time points will 

converge to form an interval and consequently, the support of the interval grows. This 

leads to detection of more number of significant intervals. Min-Conf is used to select 

significant intervals from intervals generated. When min-Conf is assigned a small value, 

more number of intervals will qualify as significant intervals and when it is increased, 

the number of significant intervals detected decreases. 
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An experiment is conducted to observe the number of significant intervals 

generated by SIDQ[1] algorithm as max-Len and min-Conf are changed. This is 

conducted on the first dataset of Figure 5.1. In the first experiment as shown in Figure 

5.3, max-Len is increased keeping the rest of the parameters same. The rest of the 

parameters used are: min-Conf = 0.3, numDays = 92, granularity = min and periodicity 

= daily. It is observed that the number of significant intervals generated increased as 

max-Len is increased but the number tends to be constant after some value. SID 

algorithm finds tightest significant intervals only and the number of tightest significant 

intervals is a constant for any dataset for a particular min-Conf irrespective of max-Len. 

As max-Len is increased, more number of tightest significant intervals qualifies as 

significant intervals but this number is tending towards the maximum value for that 

particular dataset and min-Conf.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Number of significant intervals vs min-Conf 
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In the second experiment, max-Len is kept constant while min-Conf value is 

increased and the number of significant intervals generated is plotted against different 

values of min-Conf as shown in Figure 5.4. It was observed that as the min-Conf value 

is increased, the number of significant intervals generated keep on decreasing. This is 

because when min-Conf is increased, this is only restricting the selection of significant 

intervals but the overall support of the intervals are not increasing at all as max-Len is 

kept constant. So, it is only natural that if more number of significant intervals are 

obtained for less value of min-Conf, less number of significant intervals will be 

obtained for large value of min-Conf. Significant intervals are still obtained when min-

Conf exceeds 1 as interval confidence for an interval is not associated with probability 

but it is just a ratio of total support of an interval and the number of units (days or 

weeks) of data collection. 

The experiments confirmed our belief that max-Len and min-Conf affects the 

number of significant intervals discovered. So, it is important to choose those 

parameters intelligently. 

5.4 Analysis of SIDQ[1] 

SQL-based algorithm is implemented with various SQL statements. It is 

interesting to observe how various SQL statements of the algorithm affect the overall 

performance of the algorithm. We have used Join in a number of SQL statements. 

Finding distinct time points, finding first level intervals and finding candidate intervals 

are the SQL statements that use Join. While SQL statements for finding distinct time 

points and candidate generation uses join between two tables, SQL statement for 
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generation of first level use join between three tables. So, these statements should take 

the most amount of time as they have to process a large number of tuples. 
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Figure 5.5 Time taken by major steps of SIDQ [1] 

 

An experiment was conducted to analyze the performance of various steps of 

the SIDQ[1] algorithm. Dataset and configuration used for the experiment is same as 

used for the scaling experiments. Time taken to execute each query was noted and it 

was observed that generation of “CountSup”, generation of “DistinctInt”, generation of 

“Firstlevel” and generation of candidates took the most time. So, we have plotted the 

time taken by these SQL statements only in Figure 5.5. Experiments were conducted 

with different sizes of data and each experiment number corresponds to a data size as 

explained in Figure 5.1. It was observed that SQL statement for support counting took 

almost the same time with no significant change as the data size is increased. However, 

time taken by SQL statements for generation of “DistinctInt” and “FirstLevel” intervals 
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increased with the increase in data size. Time taken by these two SQL statements is 

significantly more as compared to the time taken for all iterations combined.  

The experiments confirmed out belief that a SQL statement with join is 

affecting the overall performance of the SQL-based algorithm and optimization of these 

SQL statements will have a positive effect on the overall performance of the SQL-based 

algorithms. 

5.5 Experiment for Scaling 
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Figure 5.6 Comparisons of SIDQ [1], SIDH [1] and SIDM [1] 

 

A number of experiments were conducted to observe the performance and 

scalability of various SID approaches. Comparison were made between various SID 

approaches implemented in SQL [SIDQ], implemented in main memory with file 

reading interface [SIDM] and implemented in main memory with database connection 

[SIDH]. Algorithms implemented in main memory are supposed to be faster compare to 

SQL-based as they used specialized data structures and optimized algorithms. Time 
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taken by the execution of the algorithms formed the basis of comparison. The 

experiments were conducted on the dataset shown in Figure 5.1. 

Figure 5.6 shows the comparison of SIDQ[1], SIDH[1] and SIDM[1] 

algorithms. While SIDM[1] algorithm is observed to be fastest among all, it is not very 

scalable as it failed to process data beyond 18th experiment. SIDH[1] was a bit scalable 

compared to SIDM[1] but it also has a limitation on scalability. However, SIDQ[1] 

continued to process data for very large data sizes. 
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Figure 5.7 Comparison of SIDQ[n-1], SIDH[n-1] and SIDM[n-1] 

 

Figure 5.7 shows the comparison of SIDQ[n-1], SIDH[n-1] and SIDM[n-1] 

algorithms and Figure 5.8 shows the comparison of SIDQ[n-2], SIDH[n-2] and 

SIDM[n-2]. In both the cases, main memory algorithms were observed to be faster 

compared to SQL-based while SQL-based algorithms were observed to be scalable.  
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Figure 5.8 Comparison of SIDQ[n-2], SIDH[n-2] and SIDM[n-2] 
 

The experiments confirmed that main memory algorithms are faster but they are 

not scalable while SQL-based algorithms are slower compared to main memory but 

they are scalable. So, based on the performance and scalability requirement, suitable 

algorithm can be chosen to find significant intervals from time-series data. 

5.6 Comparison of SIDQ[1], SIDQ[n-1] and SIDQ[n-2] 

Srinivasan in [3] has made the comparison of SID suite of algorithms in 

terms of accuracy (deviation & coverage), extra-fit and performance (number of 

iterations, time taken). Accuracy is expressed in terms of deviation and coverage. 

Coverage is defined as the set of all distinct points included within the significant 

intervals produced by Naïve. The amount, by which SID algorithm extends the output 

interval for the same measure level as Naïve, is referred to as extra-fit.  Percentage 

deviation indicates the amount of extra-fit produced by SID variants as compared to 

Naïve. Comparison of suites of SID suites of algorithms is made and it is found that 

these algorithms are comparable in terms of coverage. 
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Comparison of SIDQ[1], SIDQ[n-1] and SIDQ[n-2]
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Figure 5.9 Comparison of SIDQ[1], SIDQ[n-1] and SIDQ[n-2] 

 

SIDQ[1], SIDQ[n-1] and SIDQ[n-2] follow the new definitions of significant 

intervals but they use the same merging criteria and logic as explained in [3]. So, 

SIDQ[1] should be slower compared to SIDQ[n-1] and SIDQ[n-2] as expansion of 

intervals take place slowly while SIDQ[n-1] should be the fastest as expansion of 

intervals take place quickly in this case. 

Figure 5.9 shows comparison of SIDQ[1], SIDQ[n-1] and SIDQ[n-2] in terms 

of performance and it is observed that SIDQ[1] takes a long time as compared to 

SIDQ[n-1] and SIDQ[n-2]. Not much difference was observed between SIDQ[n-1] and 

SIDQ[n-2] but SIDQ[n-1] is almost half as fast as SIDQ[1]. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In many application domains, intervals provide more information on the 

characteristics of the data as compared to time points. This thesis presents 

improvements in discovery of intervals for prediction. Several implementations of SID 

approaches are compared with each other to show how SQL-based approaches are 

scalable as compared to main memory approaches.  

The current implementation of the algorithm works for Day and Week 

periodicity. However, time can be represented as a concept hierarchy, such as: Day-

>Week->Quarter->Financial Year. The ability of the algorithm to zoom in and out with 

different periods along the time hierarchy will be useful for the efficient analysis of data 

for pattern and trend detection. So, it would be useful to generalize the algorithm to 

work for different periodicity with the ability to drill-down and roll-up over the 

periodicity hierarchy. Further, SID algorithms currently identify significant intervals for 

minutes and seconds granularity. Depending upon the application domain and user 

requirement, the user may want to find significant intervals for other granularities such 

as hours or days.  It would be beneficial to make this an interactive process. The idea in 

interactive mining is that an end user be allowed to query the database for SI at differing 

values of interval-length and confidence. The goal would be to allow such interaction 

without excessive I/O or computation. The authors in [13] maintain pre-processed 
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summaries that can quickly respond to online queries. Possibility of generating pre-

processed summaries for interactive mining can be explored. 

The current algorithm generates a lot of significant intervals that are 

overlapping. The time point may appear in a number of significant intervals. Although 

it indicates that the time point is significant, it makes it difficult for a user to associate 

an interval for that time point. Some metrics need to be formulated so that it will be 

possible to distinguish between different overlapping intervals that include the same 

time point. Also, it would be useful to order the significant interval using some user (or 

system) defined measure in order to better understand them. 
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Introduction to SQL 

The relational model from which SQL draws much of its conceptual core was 

formally defined in 1970 by Dr. E. F. Codd in [12]. System/R project began in 1974 and 

developed SEQUEL or Structured English Query Language, which later revised as 

SEQUEL/2 and renamed as "SQL" with the inclusion of multi-table and multi-user 

features. SQL is used to create, maintain & query relational databases. A fundamental 

difference between SQL and standard programming languages is that SQL is non-

procedural. 

SQL was first standardized in 1986 by the American National Standards 

Institute (ANSI). Since then, it has been formally adopted as an International Standard 

by the International Organization for Standardization (ISO) and the International 

Electrotechnical Commission (IEC). Although SQL is both an ANSI and an ISO 

standard, many database products support SQL with proprietary extensions to the 

standard language.  

After 1986, a revised standard known commonly as SQL-89 or SQL1 was 

published in 1989. Due to partially conflicting interests from commercial vendors, 

much of the SQL-89 was intentionally left incomplete, and many features were labeled 

implementer-defined. SQL-92 significantly increases the size of the original 1986 

standard to include a schema manipulation language for modifying or altering schemas, 

schema information tables to make schema definitions accessible to users, new facilities 

for dynamic creation of SQL statements, and new data types and domains. Other new 

SQL-92 features include outer join, cascade update and delete referential actions, set 
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algebra on tables, transaction consistency levels, scrolled cursors, deferred constraint 

checking, and greatly expanded exception reporting. SQL-92 also removes a number of 

restrictions in order to make the language more flexible and orthogonal.  The major 

features that are introduced in SQL-99 are regular expression matching, recursive 

queries, triggers, non-scalar types and some object-oriented features. Major features in 

SQL-2003 are: XML-related features, window functions, standardized sequences and 

columns with auto-generated values (including identity-columns). 

The three standards that matter today are: 

1. SQL-92 

2. SQL-99 

3. SQL2003 

Reasons for Using SQL-92: 

1. Compatibility: This is the direct fallout of the previous point regarding 

standards. Since well-defined and established standards exist, and if the 

databases adhere to those, then portability from one SQL database to another is a 

trivial matter. Further, an SQL database conforming to set standards can be 

easily accessed by third party softwares and application tools. This will facilitate 

the development of quality applications and solutions around SQL databases. 

2. No coding required: By using standard SQL it should be easier to move 

applications between different database systems without the need to rewrite a 

substantial amount of code. 
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3. Adhoc mining: SQL-aware data mining systems have the ability to support ad-

hoc mining, i.e., allow mining arbitrary query results from multiple abstract 

layers of database systems or Data Warehouses. 
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# Different Appraoches can be used for SID 

# 1: SID[1] 

# 2: SID[n-1] 

# 3: SID[n-2] 

Approach_Number=3 

# 

# Req_Confidence is mandatory 

Req_Confidence=.57 

# 

# Interval_Length: It specifies the intevals of length that the user is interested in 

# for daily basis, the maximum length that can be specified with second’s granularity is 24*60*60  

# for weekly basis, the maximum length that can be specified with minute’s granularity is 7*24*60*60 

Interval_Length=40 

# 

# Time Granularity specifies the granularity of time for which the information is collected. 

# it can be seconds, minutes or hours. 

granularity=min  

#for minutes 

#granularity=sec  

#for seconds 

#granularity=hr  

#for hours 

# Period: This specifies the time period to be used for folding the time-series data to a particular period. 

#period=weekly  

period=daily  

# 

# Number of days is the total number of days for which data is collected. 

Number_of_Days=92 
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