
 

 

STRUCTURE BASED XML INDEXING 

 

 

 

by 

 

NIROJ MANANDHAR 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

August 2005



 

 ii

ACKNOWLEDGEMENTS 
 

I would like to thank my supervising professor, Dr. Ramez Elmasri, for his 

guidance and support, and for giving me an opportunity to work on this thesis. I 

appreciate his insights and suggestions, which led to the successful completion of this 

work. I would also like to thank Dr. John Patterson and Dr. Leonidas Fegaras for their 

time and valuable suggestions. 

I owe my sincere thanks to Sunit Shrestha for his constant support and 

encouragement throughout this thesis. I would like to thank friends who are working on 

XML project and friends at ITLab.  

I am thankful to my parents and my grandmother for their support and 

encouragement throughout my academic career.  

July 21, 2005 

 



 

 iii

 
 

ABSTRACT 
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Supervising Professor:  Ramez Elmasri  

The increase in the usage and popularity of semi-structured data has received 

considerable attention, and a lot of research is going on for the efficient retrieval and 

storage of semi-structured data.  A popular model and language for semi-structured data 

is XML. In this thesis we focus on the structure based indexing of XML. As a part of an 

ongoing XML indexing project, we study and implement A(k)-index, which is a 

structure based indexing technique; and propose the use of offset, length pair to retrieve 

nodes of interest. We record offset and length of every node using the SAX parser, and 

then we use Random Access File to retrieve nodes from a XML file using the A(k)-

index. It can accurately support all path expressions of length up to k, and retrieve the 
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result directly from the XML file. We also compare the performance of the indexing 

technique when different k values are used. 
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CHAPTER 1 

INTRODUCTION 

In recent years, Extensible Markup Language (XML) has gained more and more 

support as a language for data exchange in the web. It is rapidly emerging as the de 

facto standard of exchanging and querying documents over World Wide Web [2].  Most 

of the data used in the web are semi-structured, and it does not follow any predefined 

schema. XML data is semi-structured in nature, and are often modeled by tree 

hierarchies.  

With the increasing popularity of XML the need of efficient querying of XML 

data has received considerable attention. Several XML query languages [1, 3, 4, 10, 12, 

21, 28] have been proposed. Among the proposed query languages, XQuery [3], XPath 

[28], Lorel [21] and Quilt [4] use path expression to traverse a XML data graph, and to 

retrieve the matching data nodes. The data nodes are extracted if some path to that node 

has a sequence of labels matched by the path expression, thus navigation of data graph 

is the most important part of processing XML queries. The similar looking nodes of 

data graph may be scattered at different locations in an XML file, so querying and 

retrieving interesting nodes may take extra time. To improve the performance of query 

execution, indexing can be used.  

Indexes in general speed up the performance of querying and improve the 

efficiency of an XML database. An index on XML data helps retrieve any information 
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based on the tagged content. Traditional relational databases force all data to adhere to 

an explicitly specified schema but XML does not follow a specified schema, so 

additional flexibility is needed to query XML databases. 

A lot of research is going on for the efficient indexing of XML data and several 

techniques have been proposed for it. Li et al. in [15] has surveyed XML indexing 

techniques, and in [22], Shalli Prabhakar has categorized those indexing techniques into 

sequence based indexes, structural indexes, dimension based indexes, and keyword 

based indexes. In sequence based indexing, the XML data is transferred into sequences 

using either Prufers sequence [11], depth-first traversal or breadth first traversal. Then a 

one to one correspondence is created between the XML tree and the sequence [22]. In 

dimension based indexing, the pre-order or the post-order rank of a particular node on 

the XML tree is mapped to either a linear interval [14] or to coordinates in two-

dimension plane [23]. The keyword based indexing is based on proximity search. In this 

technique the focus is on keyword search in which users do not have to learn any 

schema or query language. In this approach the distance between keywords is used to 

find the most relevant result. The authors in [5, 9, 26] have suggested this approach. 

Finally in structural summary a summary graph is constructed based on similarity of 

nodes. Structural summary of graph has been proposed by authors in [6, 13, 17, 19, 24]. 

A simple evaluation that scans the whole database is very expensive and it is not 

practical. As in the case of relational database, we need to use some indexes to speed up 

the evaluation of XML queries. Keeping all these in mind we focus on structure based 

indexing in this thesis.  
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The structural summaries of graph structured data are based on the notion of 

bisimilarity [13]. Two nodes are bisimilar if the path labels into them are identical. Path 

expressions can be directly evaluated in the summary graph and they can retrieve label 

matching nodes without referring to the original data graph. A(k)-index [19] is our 

choice among the structure based indexing techniques. It is implemented and evaluated 

with various values of k. A(k)-index helps to find a particular node information in XML 

node quickly. Information on nodes and summary structure can be stored in the 

database [17], or they can be stored in main memory. The advantage of storing in the 

database is that it enables to store summary structure for large XML files. However, the 

use of database comes with the added overhead of database engine and database 

connection, which might reduce the performance of queries.  In that respect, main 

memory storage seems to be attractive but it may be limited by the size of the main 

memory to process larger XML files. We propose a new technique of storing summary 

information of nodes in main memory. Each node in the XML file can be represented as 

a pair consisting of [offset, length]. �Offset� is the position of the starting node and 

�Length� is the length of the string that begins from �<� of the start node tag and ends 

after �>� of the end node tag. This pair of information enables to access any interesting 

nodes in the XML file through Random Access File API of Java. 

The contributions of this thesis are: 

• Implementation of structure based indexing, A(k)-index in main memory  

• Proposal to use offset, length pair to store node information 

• Design and implementation of query processing algorithm.  
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The remainder of this paper is organized as follows. In Chapter 2, we give an 

overview of XML, XPath and XQuery. In chapter 3, we discuss structure based 

indexing for XML. We proceed to describe the data structures and implementation of 

A(k)-index using offset, length pair, and query processing in chapter 4. In chapter 5, we 

discuss experimental results. We discuss related work in chapter 6 and conclude in 

chapter 7. 
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CHAPTER 2 

XML OVERVIEW 

XML data is a semi-structured data that does not conform to traditional data 

models like relational data models. Several languages have been proposed to process 

XML data, such as XPath and XQuery. In this section we will give an overview of 

XML, XPath and XQuery. We will also discuss XML data graph. This chapter is based 

on material from [13, 15, 27, 28]. 

2.1 Overview of XML 

XML is a Markup Language for documents containing structured information 

developed by W3C (World Wide Web Consortium). XML looks like HTML but it is 

different in the sense that it is designed to describe data, not to display information. 

XML documents can be either data-centric or document-centric Data-centric XML 

documents have regular structure, so it is easier to process. Document-centric XML 

documents have less regular or irregular structure. An XML document should be well 

formed, i.e. it conforms to the XML syntax. A well-formed XML document has the 

following properties:  

• XML document can have only one root element. 

• XML element must be closed after its entire children element is closed. 

• Any entities that are referenced must be well formed. 



 

 

XML consists of hierarchically nested elements as shown in Figure 1.2, and it 

can be modeled as a labeled rooted graph as shown in Figure 2.2. The nodes of the 

graph represent elements, attributes and simple values, and the edges of the graph 

represent element-sub element, element-attribute, or element-value relationships 

between nodes. Each node in the graph has a label and a unique id. There is a single 

root element with the distinguished label, e.g. �uta� in Figure 2.2. The structure in the 

Figure 2.2 is actually a tree, with edges representing element-sub element or element-

value relationships between nodes.  

 

 

 
 

 

 

 

 

 

 

 

 

<?xml version="1.0" ?>  
                   <uta> 
               <student> 
                       <undergrad> 
                         <name>Jacob</name> 
                       </undergrad> 
                       <dept>CSE</dept> 
                    </student> 
                    <student> 
                      <grad> 
                        <name>Emily</name> 
                      </grad> 
                      <dept>Math</dept> 
                   </student> 
                   <student> 
                     <grad> 
                       <name>Andrew</name> 
                     </grad> 
                     <dept>Math</dept> 
                   </student> 
                 </uta> 
6

 
Figure 2.1 Sample XML Document 
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Let us take an example data graph G given in Figure 2.2. In the figure nodes are 

represented by v0 v1 �� vn and edges are labeled l0 l1�� ln. Paths are represented by 

path p =  v0 → v1→�.→ vn.  

 
 

 

 

 

 

 

 

 

 

 
Figure 2.2 Sample XML Database 

 

A node path in the data graph G is a sequence of nodes v0 v1 �� vn, such that 

there exists an edge between nodes vi and vi+1, for 0 ≤ i ≤ n-1. A label path is a sequence 

of labels l1 l2 �� ln. A node path matches a label path if label (vi) = li, for 0 ≤ i ≤ n. A 

label path l1 l2 �� ln matches a node v if there is some node path ending in node v that 

matches l1 l2 �� ln. A regular path expression, R, is defined in the usual way in terms 

of sequence (.), alternation (|), repetition (*) and optional expression (?), as follows[13]: 

R = ΣG|_|R.R|R|R|(R)|R?|R* 



 

 

2.2 Overview of XPath 

XPath is a well accepted language used for selecting nodes from XML 

documents. It uses path expressions like a URL address to navigate an XML document. 

It follows the matching nodes and may travel to multiple directions. It indicates nodes 

by position, relative position, type, content and several other criteria. 
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 1.  /uta/student/grad/name ! gives name of all grad who are students of uta.

 2.  /student/*/name !  give name of all students whether grad or undergrad. 

 3.  //name ! gives all names from data graph. 
8

 
Figure 2.3 Sample XPath  

 

Some examples of XPath expressions are shown in Figure 2.3. XPath specifies a 

ree traversal via two parameters: context node and sequence of location steps. Context 

ode is a starting point of traversal, which need not be the root of the document. A 

equence of location steps is set of nodes relative to the context node. It is separated by 

ackslash �/� and evaluated from left to right. For example given the expression 

/student/grad/name�, the first segment expression �student� is evaluated to locate the 

ode-set �Node Set 1� consisting of all student nodes; next, the segment expression 

grad� is applied to �Node Set 1� to locate the node-set �Node Set 2� consisting of all 

rad children of student nodes; and finally the segment expression �name� is applied to 

Node Set 2� to locate all name children of grad nodes. 
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XPath can also be used as a query language for XML. XPath query consists of 

location path and output expression, e.g. �/student [gpa > 3.5]/name�. A location path is 

a path from the context node to a desired node, and it may be relative or absolute. A 

relative location path is a sequence of one or more locations steps separated by 

backslash �/�. Each location step selects a set of nodes relative to a context node. The 

selected set may be empty or it may contain multiple nodes, which are evaluated from 

left to right. The location step has two parts: an axes and a node test. The axes returns 

node sets reachable from the context node and defines a direction to travel. The node 

test identifies a node within an axis. 

 The result of evaluating an XPath expression on an XML data graph is the set 

of nodes from the data graph that matches the XPath expression. For example, the path 

expression, �student/grad/name� in Figure 2.2 returns v7 and v11; the more complicated 

path expression, �student.*.name� returns v3, v7 and v11, i.e. the name of all students 

regardless of grad or undergrad. XPath operates on an XML document as a tree. There 

are seven XPath node types [28]. They are root node, element node, attribute node, 

namespace nodes, processing instruction nodes, text nodes and comment nodes. 

2.3 Overview of XQuery 

XML queries are queries over data that conforms to a labeled data graph or 

labeled tree. As most of the query languages an XML query forms a pattern language. 

An XML query retrieves sub-structures of a data graph that match the query structure.  

XQuery is a query language for XML released by the World Wide Web 

Consortium. It is designed to be broadly applicable across many types of XML data 



 

 

sources [27]. It is closely related to XPath, so it is also seen as the superset of XPath. It 

supports the same data models, operators and functions as XPath. XQuery, like XPath 

also contain values and wildcards �*� and �//�. Unlike XPath, XQuery does not support 

some of the less common axes: ancestor, ancestor-or-self, following-sibling, preceding, 

preceding-sibling and namespace.  

XQuery is an expression based query language, which reads a sequence of 

atomic values and returns a sequence. There are two kinds of expressions, single path 

expressions and branching path expressions. A single path expression defines queries on 

one element, e.g. it evaluates to �find all the name of students�. A branching path 

expression defines queries on two or more elements, e.g. it evaluates to �find all the 

name of students who have taken the database course�. XQuery is case sensitive; and 

keywords in XQuery are not reserved and are lower case characters.  
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 1.  document(�uta.xml�)//grad/name ! gives name of grad only. 

 2.  document(�uta.xml�)//student/*/name !  gives name of all students whether 

grad or undergrad. 
10

Figure 2.4 Sample XQuery  
 

There are 7 types of expressions in XQuery: path expression, element 

onstructors, FLWOR expressions, expressions involving operators and functions, 

onditional expressions, quantified expressions and expressions that test or modify data 

ypes [27]. The FLWOR expression is similar to the select-from-where construction in 

QL and forms the skeleton of the XQuery expression. A FLWOR expression consists 
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of: For (binds variables to a value and iterates over values), Let (binds variable without 

iterating), Where (contains one or more predicates that filters), Order by (imposes an 

order) and Return (generates the result of the FLWOR expression). Some examples of 

path expressions are shown in Figure 2.4.  In addition to the built-in functions, XQuery 

also supports user-defined functions whose definitions appear in the query prolog. The 

function parameters and results could be sequences, nodes or primitive values [22]. 
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CHAPTER 3 

STRUCTURE BASED INDEXING FOR XML 

We mentioned in Chapter 2 that an XML query extracts sub-structures of the 

data graph that match the query structure. The sub-structures or data nodes that we want 

to retrieve may be scattered over the data graph causing slower extraction. A simple 

grouping of data nodes can give a good index graph. Structural summary is one of the 

techniques that groups nodes by label and construct efficient index. Structural 

summaries can speed up query evaluation on XML data reducing the search space. In 

this section we will explain structure based XML indexing. Then we will discuss 

construction of a type of structural index called A(k)-index in detail. We will also look 

at the definition of bisimulation and k-bisimilarity. This chapter is based on materials 

from [2, 13, 17, 18, 19, 24]. 

3.1 Structure Based Indexing for XML 

In Chapter 2 we explained that an XML query use path expressions to traverse 

an XML data graph; and nodes that have a sequence of labels and conditions that 

matches the path expressions are selected. So traversal of sequences of labels on the 

data graph is essential in query processing. A structural summary can be constructed to 

speed up the traversal and evaluation process. Structural summary prunes the search 

space and preserves paths and properties. All data nodes in the data graph that match a 
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particular path expression will be grouped under a single node on the index graph. All 

data nodes belonging to a grouped single node become the extent of the index node.  

Structural summaries speed up query evaluation on XML data by restricting the 

search to only relevant portion of the XML data [2]. A structural summary for the data 

is a labeled summary graph with fewer numbers of edges and nodes. All data nodes in 

the data graph that match a particular path expression are grouped together and 

represented as a single node on the index graph. This allows evaluation of path 

expression on the summary graph instead of the original data graph. The summary 

graph can be achieved with a refinement of the data graph. A partition P1 of the data 

nodes is a refinement of another partition P2 if the following condition holds: whenever 

two nodes are in the same equivalence class P1, they are in the same equivalence class 

P2 as well. If P1 is a refinement of P2, then P2 is coarser than P1 [18]. A structural 

summary makes query processing efficient by associating an extent with each node in 

the summary to produce an index graph. Figure 3.2 and Figure 3.3 shows examples of 

structural summary for data graph of Figure 3.1. 

According to [19], let us assume that there is a data graph G that has a structural 

index graph denoted by IG. The result of executing a path expression, P on IG   is the 

union of the extents of the index nodes in IG   that matches P. The mapping from the data 

nodes to index nodes is required to be safe: if l1  l2 �� lk is a label path that matches a 

path to node v in G, then there is some node A in index graph IG for which v ε extent 

(A). Extent is a set of data nodes in the data graph, with a single node in the summary 
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graph. This guarantees that the evaluation result of any path expression, P, on G is 

contained in the result of evaluating P on the index graph, IG.    

 
 

 
 

 

 

 

 

 
Figure 3.1 Data Graph 
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Similarly, an index graph that is precise for simple path expressions has the 

property that if v ε extent(A) and l1  l2 �� lk is a valid label path for A in an index 

graph IG ,  then l1  l2 �� lk is a valid label path for every node in extent(A) in G.  

Index graph IG can be obtained by associating an index node with each 

equivalence class in the data graph, G. Then each index node�s extent is defined to be 

the equivalence class that formed it. Finally if there is an edge from some data node in 

extent (A) to some data node in extent (B), an edge is added from index node A to index 

node B in IG.  

 
 

 

 

 

 
 
 
 
 
 
 

Figure 3.4 Bisimulation 
 

3.2 Overview of Bisimulation 

Bisimulation technique is used to compress the state space graph in a manner 

that preserves some properties and behaviors of the state space [13]. Existing index 

structures for semi-structured data or XML are based on the notion of bisimulation.

root
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 Definition of bisimilarity: A symmetric, binary relation ≈ on VG is called a 

bisimulation if, for any two data nodes u and v with u ≈ v, we have that 

a. u and v have the same label, and  

b. if u' is a parent of u, then there is a parent v' of v such that u' ≈ v', and 

vice versa. 

Two nodes u and v in data graph G are said to be bisimilar, denoted by u ≈b v, if 

there is some bisimulation ≈ such that u ≈ v. 

For example, in Figure 2.2, node v7 and v11 (the name nodes) are bisimilar. 

Nodes v3 and v7 (the name nodes) are not bisimilar, since there parents nodes v2 and v6 

are not bisimilar. In simple terms we can say that two nodes are bisimilar if the set of 

incoming paths to the nodes are the same. Bisimulation can be computed in time O(m 

log n) where n is the number of nodes and m is the number of edges in the data graph, 

using an algorithm proposed by Paige and Tarjan [20].  

3.3 A(k)-index  

Structural indexing can be constructed as an accurate structural summary or 

approximate structural summary of the semi-structured databases. A structural summary 

is accurate if it is the true reflection of the structure of the original data graph. Some 

examples of accurate structural summaries are strong Data Guides [17] and 1-index 

[24].  

A structural summary is approximate if the nodes of an XML tree are grouped 

according to the local structure, i.e., the incoming path of length of a certain parameter. 

Local similarity required for a node is obtained by checking the maximum size of a 
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query. In approximate structural summary only paths shorter than given parameter are 

of significance. Some examples of approximate structural summaries are Approximate 

Data Guides [17], A(k)-index [19], D(k)-index [13], and M(k)-index [6]. 

Among all the approximate structural indexing we focus on A(k)-index. In [19], 

A(k)-index was proposed based on the observation that long and complex paths tend to 

contribute disproportionately to the complexity of an accurate structural summary. The 

main idea of A(k)-index is to group nodes based on their local similarity instead of the 

global path information. It groups nodes according to a local path up to path length k. 

This reduces the storage overhead, and allows faster extraction of interesting nodes. 

A(k)-index technique groups database objects into equivalence classes containing 

objects that are indistinguishable with respect to a class of paths defined by a path [19]. 

Bisimulation concept discussed above is used to find the equivalence classes. It 

constructs non deterministic automata whose states represent the equivalence classes 

and whose transitions correspond to edges between objects in those classes. 

It assumes that most queries involve short path expressions, so it relaxes the 

equivalence condition and considers only incoming paths whose lengths are no longer 

than k. It groups paths of length up to k, based on a property called k-bisimilarity, 

which is defined below. A(k)-index can accurately support all path expressions of 

length up to k, but path expressions longer than k must be validated in the data graph. 

Since A(k)-index only considers local similarity it is significantly smaller than a fully 

accurate structure and it is significantly faster for shorter path expressions. The local 

similarity can be varied by changing the value of parameter k. 
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k-bisimilarity (≈ k) is defined inductively:  

1. For any two nodes, u and v, u ≈ 0 v iff u and v have the same label; 

2. Node u ≈ k v iff u ≈ k-1 v and for every parent u� of u, there is a parent v� 

of v such that u� ≈k-1 v�, and vice versa. 

   

 

 

 

 

 

 

 

 
Figure 3.5 k-bisimilarity 

 

In Figure 3.5 k-bisimilarity is shown. Node u�� and v�� are ≈ 0  similar since they 

have same label. Node u� and v� are ≈ 1 similar since parent of u� and v� are ≈ 0 similar. 

Similarly node u and v are ≈ 2 similar since parent of u and v are ≈ 1 similar. In other 

word we can say that paths of length up to 2 are similar for node u and v. The k-

bisimilarity shown in Figure 3.5 is different than the bisimilarity shown in Figure 3.2. In 

Figure 3.2 all the paths up to u is same as all the path up to v, but in Figure 3.5 the first 

location path from root to u� and root to v� is different, so the similarity in Figure 3.5 is 

considered local. It must be kept in mind that the evaluation result of the A(k)-index is 
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accurate if the length of a path expression is less than or equal to k.  The A(k)-index can 

be constructed in O(km) time, where m is the number of edges in the data graph.  

Given a data graph and a refinement ≈ , the A(k)-index is a rooted, labeled graph 

defined as follows. Its nodes are equivalence classes [v] of ≈ ; for each v !a v� in data 

graph there exists and edge [v] ! a [v�] in index graph. The root r in data graph would 

be root [r] in index graph. 

 
 

 

 

 

 

 
 
 
 
      (a)                     (b)                     (c)                     (d)                      (e) 

Figure 3.6 A(k)-index 
(a)A(1)-index, (b)A(2)-index, (c)A(3)-index, (d)A(4)-index, 

(e)A(5)/A(max)-index 
 

The A(k)-index has following properties 

1. If nodes u and v are k-bisimilar, then the set of label paths of length ≤ k 

into them is the same. 

2. The set of label-paths of length m(m ≤ k ) into an A(k)-index node is the 

set of label paths of length m into any data node in its extent. 

F 

B 

D D 

A 

C 

8 

6 2 

3 7 

4 

1 

5 9 
F 

E E 

F

B

DD

A

C

8

62

3 7

4

1

5,9
F

E E

F 

B 

D D 

A 

C 

8 

6 2 

3 7 

4 

1 

5 9 
F 

E E 

B 

D 

A 

C

F 

E 

62 

3,7 

4,8 

1 

5,9 

D

62

3 7

4,8

1

5,9
F

B

DD

A

C

E E 



 

 20

3. The A(k)-index is safe i.e. , its results on a path expression always 

contain the data graph results for that query. 

4. The A(k)- index is sound for any path expression of length less than or 

equal to k. 

 
 

 

 

 

 

 
                          (a)                                                                       (b) 

Figure 3.7 A(k)-index for Figure 2.1 
(a)A(1)-index, (b)A(2)-index 

 

Finding objects reachable by a given labeled path through the database is 

important part of query processing [8]. To evaluate a regular path expression, 

automaton evaluation is used and A(k)-index result set is obtained from a data graph. 

Then nodes in the result set are validated against the original data graph to extract the 

accurate result set for the path expression. The length of a path, i.e. parameter k 

determines the performance and the size of the A(k)-index. If the value of k is small, the 

size of index will be small, but k does not cover longer paths so more validation is 

required. If the value of k is large the size of index will be large too, but it will require 

fewer validation. For example in the Figure 3.7 when k is 1 all names are in same 
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equivalence class. The index graph is small but the query result of �/grad/name� will 

also contain names of undergrads, so validation of the result is required. In the same 

data if k is 2 then index graph will be as shown in Figure 3.8. Index shown in Figure 

3.7(b) is larger than index shown in Figure 3.7(a). For query �/grad/name�, the result set 

will be correct, it does not require validation. As k increases in A(k)-indexing, the 

partition induced by equivalence relation keeps getting refined and at some value of k it 

would be maximal bisimilarity as shown in Figure 3.6. In Figure it is clearly seen that 

every time k is increased the index graph is getting large requiring less and less 

validation. So there is a trade off between index size and validation required.  
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CHAPTER 4 

DESIGN AND IMPLEMENTATION OF A(K)-INDEX 

Various structural indexing techniques have proposed different ways to store 

and retrieve summary graphs. In this thesis we implement A(k)-index in main memory, 

and nodes are retrieved using a [offset, length] pair. �Offset� is the position of the 

starting node and �Length� is the length of the string that begins from �<� of the start 

node tag and ends after �>� of the end node tag. This pair of information enables to 

access any nodes of interest in the XML file through the Random Access File API of 

Java. This is very effective when the data graph is static. This concept is based on the 

location of nodes in original data graph. We record the starting position of a node and 

its length in the XML file. Then when we query the XML file we find the result set and 

retrieve individual results using the offset and length stored for nodes that satisfy the 

query. In this chapter we will discuss the design and implementation of  the A(k)-index 

data structure. Section 4.1 presents the data structures used in the indexing, and section 

4.2 describes our implementation. 

4.1 Data Structures 

4.1.1 Start of Tag 

XML data has a tag name for every node. Every element starts with a tag and 

ends with a tag. As shown in Figure 4.1, there is start of tag and end of tag for every 

node. Start of tag means the offset in a file where a node starts. The SAX parser is used 



 

 

to get the exact position of the start tag of a node. This start position serves as pointer 

into an XML file, which will be used to retrieve nodes later. In Figure 4.1 the starting 

position of tag �name� is �A�. 
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</name>↑E 
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Figure 4.1 Example of Start and End Position of Node 
 

ode 

th of a node is the second component of node information. It is the 

g starting from the beginning of the node to the end of the node. When 

encounters the character string after start and end of a node tag, it 

on of that character. The position of the character encountered after the 

is used to find the offset next to the end of node. Then the length of 

 subtracting the position of start tag by position after end of tag. What 

tween start tag and end tag is used to update the position of pointer in 

is information about each node is used to get the length of all the nodes 

re 4.1 a start tag position is �A� and end tag position �E�, so the length 

subtracting A from E.  

t  

ects are created to record information about nodes. Node object stores 

t nodes like node name, starting position and length. A node number is 
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assigned to each node so that nodes with the same element name have different identity. 

Node objects also have a successor vector consisting of all successors of a node. 

Besides this information, a node object also has an access flag. Access flags will be 

used during query processing so that the same node is not visited twice. 

4.1.4 Initial Equivalence Class Hash Table 

  Table 4.1 Initial Equivalence Class Hash Table 
Key Value(vector) 

student 1,5,9 

dept 4,8,12 

 

As the name suggests initial equivalence class hash table is a hash table that 

contains initial equivalence classes. Each unique element name is a hash key and vector 

containing node number of all nodes with that element names is the value for that key. 

Figure 4.1 shows the sample initial hash table for the data graph of Figure 2.2. 

4.1.5 Successor Vector 

Table 4.2 Successor Vector 
Node Nodes in successor vector 

0 1,5,9 

5 4,8,12 

 

Every non leaf node has set of successors. A successor vector is created for each 

node and children nodes are in the vector. The table 4.2 shows a sample successor 

vector for data graph of Figure 2.2.  
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4.1.6 Final Node Object 

Table 4.3 Final Node Object 
Equivalence class node ID Node name Member nodes objects in vector 

2 Student 1,5,9 

5 Dept 4,8,12 

 

A final node object that represents the final equivalence class is created before 

the index tree is created. Each final equivalence class is given a new node number. Then 

a final node object is created that has node number, node name and vector containing 

member node objects of this equivalence class. The final node object also has an access 

flag that will be used in query processing so that the same final node is not traversed 

twice. A sample final node object is shown in Figure 4.3 for the data graph of Figure 

2.2. 

4.1.7 Index Tree 

Table 4.4 Index Tree 
Key (node no. , node name pair) Successors in vector 

0:uta 2:student 

2:student 3:undergrad 
4:grad 
5:dept 

 

After creating the final node object, the index tree is created. Index tree is a hash 

table, which has a unique key made up of element name and final equivalence class 

node id. Actually a hash key is an object of final node type. For simplicity it can be 

represented as a combination of element name and node id. A final node type is chosen 
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to represent a key because same element name can be shared by more than one 

equivalence class. The value in hash table is a vector that consists of objects of final 

node type representing successor final equivalence class nodes. The sample structure of 

an index tree is show in table 4.4 for data graph of Figure 2.2.  

4.2 Implementation 

A(k)-index and query processing is implemented in java programming language 

using SAX parser and Random Access File.  In order to construct an A(k)-index, the 

bisimilarity partition algorithm proposed by the authors of [19] is followed. The 

algorithm is presented in Appendix A.  

 In order to examine the data source, data graph is traversed according to depth 

first method. Each time a new element name is encountered, a node object and an 

equivalence class for that element name is created. Then A(k)-index algorithm is 

implemented using the offset, length pair that we proposed earlier. The A(1) index and 

A(2) index that is constructed for the data graph of Figure 2.1 is shown in Figure 3.7 

and Figure 3.8 respectively. The resulting A(k)-index satisfies the requirement that for 

each label, all nodes in the A(k)-index with such a label have a local similarity larger 

than or equal to the required one. The storage of A(k)-index consists of the index graph 

I  and the sum of all extents.  

In this sub section we will explain our implementation of A(k)-index in detail. 

Our implementation procedure is shown in Figure 4.2. Before explaining our 

implementation we will overview SAX parser and Random Access File. 
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4.2.1 Overview of SAX Parser 

XML data is simply ASCII or Unicode data that can be envisioned as a logically 

structured text document [7]. XML records are stored in a file and it can be loaded in 

XML parsers like a DOM parser or a SAX parser. The DOM parser allows a random 

access of XML contents by selecting one or more XML nodes. It uses XPath pattern to 

get to the node. SAX parser provides fast sequential access by tokenizing the XML 

nodes in the file. So we use SAX parser to parse the XML document. The SAX parser is 

event oriented, its API provides a simple, lower level access to an XML document. The 

SAX events are shown in Table 4.5. SAX parser splits XML file into several chunks, 

each of which is usually of size 2048 characters. This property of SAX parser makes it 

possible to parse documents that are larger than system memory. The SAX parser calls 

procedure �startElement� whenever it encounters an XML opening element tag. It has 

parameters uri, localname, raw and atts. The parameter local contains the name of an 

element and the parameter atts contains either the list of attribute names or nil. The 

SAX parser calls procedure �endElement� whenever it encounters an XML closing tag. 

The procedure �endElement� has parameters uri, localname and qname. The parameter 

of interest localname contains the name of the ending tag. The SAX parser calls a 

procedure �characters� whenever it encounters a character string. This procedure 

contains parameters character array, start and length. The parameter length contains the 

length of the string being processed, and the parameter start is a starting position of the 

string in character array.  
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The three procedures of the SAX parser mentioned in the previous paragraph 

were modified to get the information that we require of all nodes. Besides the 

procedures mentioned above, SAX has a procedure �startDocument� that is called when 

an XML document starts, and procedure �endDocument� that is called when the XML 

document ends.  

Table 4.5 SAX Events 
XML Document Events 

<?xml version="1.0" ?> 
   <undergrad> 
      <name>Jacob</name> 
   </undergrad> 
 

start document                                        
start element: undergrad 
start element: name 
characters: Jacob 
end element: name 
end element: undergrad 
end document 

 

4.2.2 Overview of Random Access File 

One contribution of our thesis is the use of random access files to retrieve nodes 

of interest from a data graph. For this purpose we must have a quick access to the nodes 

of interest. The use of random access file is proposed to serve this purpose. The random 

access file class implements both data input and data output interfaces and it can be 

used for both reading and writing. It behaves like a large array of bytes stored in the file 

system, and it has an index into the implied array, called the file pointer. Random access 

file provides two methods that are used to access a file. First it has �seek� procedure, 

which can take a pointer to the desired location in the file. Then it has �read� procedure, 

which returns a string of given length beginning from the location of the pointer.  
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4.2.3 Node Object Implementation 

The current position of a pointer is set to 0 in the beginning. Then the XML 

document is processed in depth first manner. Every time an element is encountered a 

node number is assigned to it and a node object is created. For every node object, a 

node name and starting position is set as element name and current position 

respectively. Then the node object is pushed in a stack and a start element flag is set to 

true.  

If end of element is encountered it is compared with the element name of node 

object that is at the top of stack. If the comparison returns true the node object is popped 

and is added to the successor vector of node object that is below it in the stack. Then, an 

end element flag and extra character flag is set to true. Extra character flag signals that a 

character after end tag is being processed.  

If the parser encountered a character string, the character buffer is checked to 

find if it has changed or not. If the character buffer has changed, the total buffer size 

(2048 * number of buffer) is added to the start value returned by procedure �characters� 

of SAX parser. Then according to the updated value of start, the current position pointer 

is updated.  

There is one more thing that needs to be accounted for properly, a position 

jumped. If the tag name does not fit in the buffer it goes to new buffer leaving some 

space in the previous buffer unused. The position jumped is calculated and is subtracted 

from current position pointer. A position returned from SAX parser and Random access 

file position may differ due to various reasons, so all the possible cases where buffer 
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can change are examined and appropriate calculations are done to keep the current 

position pointer up-to-date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 Construction of A(k)-index 
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Figure 4.3 Constructions of Node Object and Equivalence Class 
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The value of the extra character flag is checked when a character string is 

encountered. If the value of the extra character flag is true, it means that the position 

behind the end tag is being processed. Once it is determined that the end position of the 

node has been encountered, the start position of that node object is retrieved. Then the 

length of the node is calculated and corresponding node object length is set. The length 

is actually the difference between current position and starting position retrieved. The 

value of the start element flag is also checked in the procedure �characters�. If the value 

of the start element flag is true, the length is added to current position. 

Beside node object, for each unique element name an equivalence class hash 

table is also created whenever a start element name is encountered. This hash table is 

called initial equivalence class hash table. The data graph is visited in depth first order 

and if an element is encountered the table is checked to find if that element is already 

present. If the element name does not exist in the hash table, a new element is created in 

hash table and the node number of that element is added into the vector that represents 

the group of elements belonging to that element name. If the element is already present 

in hash table, the equivalence class vector is retrieved and current node number is added 

to the vector. This gives the initial equivalence class, which is also be referred to as 

A(0)-index. The node object construction step is shown in Figure 4.3. 

4.2.4 Query Implementation 

An XPath query is evaluated on the index graph rather than data graph to 

improve performance. If several nodes in the index graph satisfy the query path, then 

the result is the union of all the nodes that are member of the satisfying nodes of index 
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graph. The Query is parsed and location paths are retrieved one location path at a time. 

The query path is examined to find if it is //, * or a regular path and processed 

accordingly. If the path location is //, the result is directly retrieved from the initial 

equivalence class hash table. If the query is *, all the successors of the final node are 

iterated. If the path is a regular path string, the final node object that has a path 

matching the location path is retrieved from index hash table and is processed further. 

For example if a query is �/grad/name�, then the vector value from index hash for hash 

key �grad� is retrieved. The substring �name� and vector value that is retrieved for hash 

key �grad� is passed to query procedure to process further. This is a recursive method 

which goes on until it finds the last location path of query. Once it gets to the last 

location path, all member node objects are retrieved from member vector; then the 

query result is extracted from initial hash table. In summary, the index tree, i.e. the 

index hash table is traversed to get to the result node, but the result is retrieved from the 

initial equivalence class hash table where start position and length of node resides as 

part of node object. Some final node objects in the index hash table and node objects in 

the initial hash table may be encountered more than once resulting in duplicate 

traversal. This can be prevented by use of a access flag. Every time a node is 

encountered the access flag is set to true; and if the same node is encountered again, 

then that node is skipped. In the implementation several queries can run sequentially, so 

the access flag is set to false before a new query is processed. The query processing step 

is shown in Figure 4.4. 
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Figure 4.4 Query Processing Steps 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

In this section, we describe the XML data that are used in our experiment, and 

list various results of the experiment. As for our experiment we constructed A(k)-index 

using different values for k. We obtained the cost for creating index, and noted the 

reduction in the size of data graph. We used several XPath queries to study performance 

of query on the index graph. We used a machine with Pentium 4 processor, 2.2 GHz, 

512 MB of RAM and 28 GB hard drive. The experiment consists of (a) building an 

A(k)-index and (b) processing XPath queries given in table 4.4. 

5.1 Data 

Two different XML data sets are used for our experiment. The current 

implementation does not support attributes, so the XML data that are used for our 

experiment do not have attributes. The first XML data is drawn from the website of 

Niagara Experimental Data, The University of Wisconsin Madison [29]. A XML data 

�medicine.xml� which has 2840 nodes is chosen for the purpose. It contains information 

about students, staff and faculty of a department. 

The second XML data is �othello.xml�, which has been widely used in various 

experiments. It is a part of plays by Shakespeare, distributed by Jon Bosak [30]. It 

contains 6194 nodes, and it describes various acts and scenes of a play. The data is 

modified a bit so that the change brought by different values of k can be well noticed.  
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We notice that XML documents are built in different ways, for example in some files 

several start tags are in a same line and in some file start tag of each node starts in new 

line. In our approach the position of the character string encountered after an end tag is 

used to calculate the length of node in bytes. So the calculation of length would not be 

correct if a second tag starts after first tag with no space in between. The start tag of 

nodes in Medicine and Othello XML documents start in a new line. The number of 

nodes, labels, heights and size on disk of XML data used are shown in Table 5.1. 

Table 5.1 XML Data Sets 
Data Set Nodes Labels Height Size on disk 

Medicine.xml 2840 18 4 88 KB 

Othello.xml 6194 14 5 252 KB 

 

5.2 Cost of Building Index 

The cost of building an index is defined as the total time taken to build it. The 

A(k)-index can be constructed in O(km) time, where m is the number of edges in the 

data graph. The time taken to build A(k)-index with higher k is more than the time 

taken to create A(k)-index with smaller k, because higher k requires more partition. The 

total time taken to build index with various values of k is recorded, and it is presented in 

Table 5.2. 

5.3 Index Size 

The index size depends on number of distinct labels, and longest path in data 

graph. One of the benefits of indexing is reduction in graph size, which is measured by 
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counting the number of non leaf nodes in the index graph. The storage of A(k)-index 

consists of the index graph I and the sum of all extents. The difference between the 

number of data nodes and number of index nodes in Table 5.2 shows how the original 

data graph has been reduced. The medicine data graph reduced from 2840 nodes to 31 

nodes in A(1)-index and reduced to 40 nodes in A(2) and A(3) index. In the Othello 

A(1), A(2), A(3), A(4), A(5), A(6) and A(7) reduced data graph from 6194 nodes to 

27,31,43,55,56,56 and 56 nodes respectively. It is noticed that after a certain value of k, 

the index graph did not change. In the Othello data, the maximum bisimulation is 

reached in A(5), after which the index graph does not change even when k is increased.  

Table 5.2 Result of Indexing 
Medicine Othello  

Index Data 
Nodes 

Index 
Nodes 

Time 
Elapsed(ms)

Data 
Nodes 

Index 
Nodes 

Time 
Elapsed(ms) 

A(1) 2840 31 650 6194 27 812 

A(2) 2840 40 702 6194 31 1180 

A(3) 2840 40 806 6194 43 1619 

A(4) 2840 40 923 6194 55 2096 

A(5) - - - 6194 56 2656 

A(6) - - - 6194 56 3094 

A(7) - - - 6194 56 3156 

 

5.4 Performance of Queries 

XML documents are queried using the simple XPath queries given in Table 5.3. 

The queries include search operators like wild cards. In the experiment the path notation 

�/� , �//� and �*� are used.  



 

 

Table 5.3 Sample Queries 
Query Path Expressions                                                         Datasets 
Q1 /gradstudent/email Medicine 
Q2 //phone Medicine 
Q3 /gradstudent/address/city Medicine 
Q4 /department/*/phone Medicine 
Q5 /department/gradstudent/address/city Medicine 
Q11 //stagedir Othello 
Q12 /play/act1/acttitle Othello 
Q13 /play/*/acttitle Othello 
Q14 /play/act1/acttitle/scene Othello 
Q15 /play/act1/acttitle/scene/speech Othello 
Q16 /play/act1/acttitle/scene/speech/line Othello 
Q17 /act1/acttitle/scene/speech/line Othello 
Q18 /acttitle/scene/stagedir Othello 
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                      <grad> 
                        <name>Emily</name> 
                      </grad> 
                      <grad> 
                       <name>Andrew</name>
                      </grad> 
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Figure 5.1 Query Result Format 
 

our experiment the correct result is obtained for most of the queries except 

queries with length greater than value k of A(k)-index. In the time 

al to the length of a label path, A(k)-index was able to access all nodes 

via that path, independent of the size of the source.  The result retrieved from 

t only contained value, it also contained starting tag and ending tag. For 

e result for query �//grad� on XML document shown in Figure 1.1 in Figure 
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The query results of different A(k)-index for medicine are presented in Table 

5.4. The result of query Q3 and Q5 for A(1)-index included some incorrect result, 

because the query length is greater than 1. The incorrect results are highlighted by using 

bold and italic letters in Table 5.4. A(2)-index and A(3)-index index gave correct result 

for all queries. It is noticed that A(1)-index has the advantage of small index but it may 

return wrong results requiring validation. If most of the queries are of type Q1 and Q2 

then A(1) is best.  

Table 5.4 Query Performance on Medicine 
A(1) A(2) A(3) Query 

Nodes 
visited 

Time 
elapsed 

Result 
Set 

Nodes 
visited

Time 
elapsed

Result 
Set 

Nodes 
visited 

Time 
elapsed 

Result 
Set 

Q1 3 260 74 3 260 74 3 312 74 
Q2 1 630 256 1 614 256 1 750 256 
Q3 4 640 238 4 338 74 4 234 74 
Q4 15 609 256 15 645 256 15 776 256 
Q5 5 604 238 5 177 74 5 203 74 

 

The query results of different A(k)-index for Othello are presented in Table 5.5, 

Table 5.6 and Table 5.7. The number of nodes visited by the query processor is 

significantly lower than the original graphs. A(1), A(2) and A(3) indexes are 

constructed in less time; and number of index nodes are fewer in those index than 

number of index nodes in A(4), A(5) and A(6) indexes. But query results for A(1), A(2) 

and A(3)-index included some incorrect result, those incorrect numbers are highlighted 

using bold and italic letters in Table 5.5.  
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Table 5.5 Query Performance on Othello (Nodes in result set) 
Nodes in result set  

    Query 
A(1) A(2) A(3) A(4) A(5) A(6) 

Q11 208 208 208 208 208 208 
Q12 5 5 5 5 5 5 
Q13 26 26 26 26 26 26 
Q14 15 3 3 3 3 3 
Q15 1181 1181 163 163 163 163 
Q16 3556 3556 3556 737 737 737 
Q17 3556 3556 3556 737 737 737 
Q18 129 129 129 129 129 129 

 

Table 5.6 Query Performance on Othello (Time elapsed) 
Time elapsed (ms)  

Query 
A(1) A(2) A(3) A(4) A(5) A(6) 

Q11 625 633 677 671 645 672 
Q12 250 213 208 265 271 265 
Q13 2390 2157 3390 3141 3049 1822 
Q14 2421 360 266 291 375 297 
Q15 2289 1625 1053 1078 1305 1219 
Q16 860 517 415 464 412 478 
Q17 969 625 447 406 377 453 
Q18 344 512 571 478 470 491 

 

Table 5.7 Query Performance on Othello (Nodes visited) 
                                       Nodes visited      

Query 
A(1) A(2) A(3) A(4) A(5) A(6) 

Q11 1 1 1 1 1 1 
Q12 4 4 4 4 4 4 
Q13 26 26 26 26 26 26 
Q14 5 5 5 5 5 5 
Q15 6 6 6 6 6 6 
Q16 7 7 7 7 7 7 
Q17 6 6 6 6 6 6 
Q18 8 16 16 16 16 16 
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5.4.1 Elapsed CPU Time 

Elapsed CPU time is defined as the total time taken by the query. In our 

experiment the total time taken to process the query are recorded, it is shown in Table 

5.4 and Table 5.6. During the experiment it is found that the time taken to get access of 

result nodes is very small when compared to time taken to print the result. So to find 

actual time taken to access the result nodes two sets of experiment were performed for 

Othello. In the first experiment the total number of nodes in result set and nodes visited 

are recorded, and in second experiment the total time taken to print out maximum 5 

nodes from result set are recorded. Only 5 nodes are printed so that the time recorded is 

close to the time taken to access it.  

5.4.2 Number of Elements Scanned 

The cost of a query is defined to be the number of nodes visited in the index 

graph during path expression evaluation. The number of nodes visited in the index data 

graph is recorded for each of our queries. The individual nodes within the extent of a 

matched index node(nodes belonging to traversed equivalence class nodes) are not 

counted. The experimental results of visited nodes are shown in Table 5.4 and Table 

5.7. 

 To simplify our experiment result let us see the following example. Suppose we 

have a query �/department/gradstudent/address/city� for medicine.xml which has 2840 

nodes. With out any summary graph, first all �department� nodes have to be found from 

the root. Then all �gradstudent� children of the department node have to be found, in 

turn all �address� children of gradstudent have to be found, and finally return all �city� 
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children of address. Here thousands of nodes have to be traversed. If A(3)-indexing is 

used, a index graph with 40 nodes is created. Then some index nodes, which are very 

few compared to original number of nodes, are traversed. In the query given, only 5 

nodes have to be traversed to get the result as given in Table 5.4. When traversing the 

index tree, the path may not exist. For this type of query, such finding guarantees that 

the query result is empty. 

From our experiment above we found that the smaller the value of k the smaller 

the size of index graph and the less time it takes to construct the index. But smaller k 

may include incorrect results of queries whose length is more than k. In Table 5.5 A(1), 

A(2), A(3)-index gave more result for queries Q17 than A(4), A(5), A(6)-index for the 

same queries, so it is clear that they have some incorrect result. More over it is noticed 

that A(1)-index gave incorrect result for 4 queries, A(2)-index gave incorrect result for 

3 queries and A(3)-index gave incorrect result for 2 queries. So the larger the value of k 

is, the fewer incorrect results. The larger value of k gives larger index graph and it takes 

more time to construct, but it also ensures accurate result and no validation is required. 

So there is a trade off between larger index graph that gives correct result and smaller 

index graph that may give some incorrect result, requiring more validation. So if query 

length is studied and the appropriate value of k is chosen the A(k)-index will be very 

efficient and dependable.  
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CHAPTER 6 

RELATED WORK  

In this chapter we will discuss some other works which are closely related to the 

structural indexing that we have implemented.  

6.1 DataGuides 

In [17] the authors have proposed a method for extracting all possible path 

information from a data graph. DataGuides are dynamically generated and maintained 

to represent the state of the database. DataGuides introduces the concept of target sets, 

which is the set of nodes that are reachable via that path. DataGuide precisely encode all 

paths in the data graph, including long and complex paths. Each path in the data graph 

is represented exactly once regardless of the number of times it appears in the source 

data graph. Since each path is represented once, the target set of DataGuide overlaps for 

nodes that can be reached from two or more different parent nodes. Thus, even when 

two nodes are locally similar, they may be stored in different target sets due to a variety 

of complex paths. So the storage for DataGuide can be exponentially larger than the 

size of the data graph.  It is constructed by using a non-deterministic finite automation 

(NFA) and equivalent deterministic finite automation (DFA) is obtained. Since single 

NFA can have multiple DFA, source data graph may have multiple DataGuides. It is 

also possible that multiple label paths lead to the same object in the DataGuide.  
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The improved version of DataGuide is a strong DataGuide. It induces a straight 

forward one-to-one correspondence between source target sets and DataGuide objects 

[17]. This property helps the incremental maintenance and query processing. As with 

the DataGuide, target set of a strong DataGuide may overlap. In the worst case, the 

number of index nodes in the strong DataGuide can be exponentially larger than the size 

of the data graph.  

DataGuide can be constructed by performing a depth first exploration of the 

source data graph. When a new path is discovered, a node is created for that target set 

and stored in the hash table. If a path for a node is already present in the hash table, an 

edge is added in the DataGuide. DataGuides can be built and incrementally maintained 

as a comprehensive path index for all possible path expressions. Each object in the 

strong DataGuide is linked to its corresponding target set in the source data graph. So, 

the time taken to find source objects through a path is proportional to the length of a 

label path. DataGuide are not useful in complex queries with several paths.  

DataGuide construction of cyclic databases is expensive, so in [16] authors 

proposed Approximate DataGuide. It relaxes certain aspects of DataGuides and allows 

some inaccuracy. It keeps important properties, but does not keep all DataGuide paths. 

DataGuides are stored directly in Lore as Object Exchange Model (OEM) objects. As 

with relational database systems, user may access and query the DataGuide through 

Lore�s standard interfaces [17]. 
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6.2 1-index 

The authors in [24] have proposed a structural summary index called 1-index. 

This index is based on the computation of a bisimulation relation. If nodes have the 

same set of incoming paths, 1-index groups them together in an equivalence class. In 

the worst case, the total size of all extents (i.e. set of nodes in the equivalence class in 1-

index) is exactly same as the number of nodes in the data graph. So 1-indexes can be 

constructed and stored more efficiently than DataGuides. It can be thought of as a non-

deterministic finite automaton.  

A(k)-index is better than 1-index because A(k)-index uses local similarity to 

reduce the size of index graph.1-index also precisely encodes all paths in the data graph, 

including long and complex paths. Even when two nodes are locally similar, they may 

be stored in different extents. The authors do not discuss how the node information is 

stored and accessed.  

6.3 D(k)-index 

In [13], the authors have proposed an indexing technique called D(k)-index. It is 

an adaptive structural summary for data graph. The main difference between this and 

the earlier structural indexing is that D(k) indexing assigns different local similarity to 

different nodes based on the query requirement. So index size in D(k)-index is smaller. 

D(k)-index generates equivalence classes of various length according to the current 

query workload requirement. In D(k)-index, local similarity of parent plus one, can not 

be less than the local similarity of its child. A larger k can be used for longer path 
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expressions, while a smaller k can be used for shorter path expressions.  The authors do 

not mention how the information is stored and accessed. 

6.4 M(k)-index 

In [6], the authors have proposed an indexing technique called M(k)-index. It is 

also adaptive summary of data graph, but is an improvement over D(k)-index. Like 

D(k)-index, M(k)-index allows different index nodes to have different local similarity 

requirements, providing finer partitioning only for parts of the data graph targeted by 

longer path expressions. The difference between M(k)-index and D(k)-index is that 

M(k)-index does not over-refine the irrelevant data nodes, so M(k)-index has a smaller 

size. The authors noted that over-refinement is still possible due to over-qualified parent 

index nodes. So the M*(k)-index is proposed which maintains k-bisimilarity 

information for all k up to some desired maximum, which can be different across nodes 

and adjusted dynamically according to the query workload. This feature allows the 

M*(k)-index to avoid over-refinement due to overqualified parents and support both 

short and long path expression queries over the same data nodes at the same time[15]. 
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CHAPTER 7 

CONCLUSION 

7.1 Conclusion 

This thesis has been primarily motivated by the need of efficient retrieval of 

information from XML documents. We also want to gain the capability to retrieve a 

node from XML file directly using the position of the node in the file. We studied 

structure based XML indexing and implemented A(k)-index in main memory. We 

proposed the use of offset, length pair to record all nodes of a data graph. We used the 

SAX parser to get information of nodes and stored them in such a way that we were 

able to retrieve any of the nodes directly by using random access file. We investigated 

the cost of building A(k)-index and cost of querying using various values of k. We also 

found that for typical database it is easy and fast to create A(k)-index. The performance 

of A(k)-index depends directly on the structure of the database, but even so the direct 

access to nodes enables the query processor to retrieve interesting nodes very 

efficiently. 

7.2 Future Work 

As part of our on going project on various XML indexing, we plan to run more 

experiments using various benchmark databases, and compare cost and performance 

with other indexing techniques. As for the future work, we will conduct research on 

constructing the structural indexing when an entire XML data graph does not fit in main 
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memory. During our experiment we faced different kinds of XML documents that 

required different procedures for handling update of offset. We will identify some 

standard XML documents and run experiments on them. There are some special 

characters that are treated differently by SAX parser and random access file. For 

example &amp and &gt are treated as & and > respectively, which have different byte 

size. Also, after the special character the rest of the string is cut off.  We plan to build a 

table of special characters and their corresponding update to offset value. We also plan 

to implement a validation procedure to validate the results of queries whose length is 

longer than the value k of an A(k)-index.  
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APPENDIX A 
 
 

ALGORITHM FOR A(K)-INDEX CONSTRUCTION 
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1. Algorithm for finding equivalence class 

Input: XML document 

Output: In memory Initial Equivalence class hash table HT1 

while not end of xml file 

when ever element with element name EA is encountered 

assign node number N to EA 

if the element name EA  is present in hash table 

get vector value VV for that element and add node number  N to vector  

else 

create a new vector NV and add node number N to it 

put element name EA and vector NV in hash table 

end 
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2. Algorithm for finding successor, and building initial tree 

Input: XML document 

Output: In memory Tree hash table HT2 

while not end of xml file 

when ever new node object NO is created push object in stack S 

when end element EE is encountered  

while stack S is not empty and corresponding node object NO is not found  

peek the stack, check top of stack and get node object NO1 

get node number NN1 of NO1 

if NO1 = NO 

set corresponding node object NO found 

else 

pop the stack, get the node object NO 

add NO1 into successor vector SS 

if successor vector size is greater than 0 

put node number of NN1 and successor vector SS in hash table 

set successor vector of NO1 = vector SS 

end 
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3. Algorithm for computing k-bisim 

Input: Set S1 obtained using values of Initial equivalence class hash table HT1  

 Tree hash table created by successor algorithm, i.e. Algorithm 2 

 and local similarity requirements of label nodes k 

Output: In memory Final equivalence class set S2 

copy set S1 to set S2, S1 = S2 

for i =1 to i = k  

for each value of set S2 

compute successor set �succS2� of S2 using successor tree hash table 

for each value A of set S1 

set_intersect  =  A ∩ succS2 

set_minus =  A � succS2 

replace A by set_intersect and set_minus, resulting new set S1  

if A splits then 

break 

copy set  S1 to set S2 

end 
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4. Algorithm for computing A(k)-index 

Input: Set S2 created by Algorithm 3, which has final equivalence class  

 Tree hash table HT2 created by successor algorithm, i.e. Algorithm 2 

Output: In memory Index tree  

for each equivalence class in set �S2� 

create an index node I for each equivalence class 

ext[I] = data nodes in the final equivalence class stored in set S2 

for each edge from u to v in tree hash table HT2  

I[u] = index node containing u 

I[v] = index node containing v 

If there is no edge from I[u] to I[v]  then 

add an edge from I[u] to I[v]  

end 
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APPENDIX B 
 
 

ALGORITHM FOR QUERY 
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1. Algorithm for processing of query 

Input: String XPath query 

In memory Hash table index tree 

In memory Hash table initial equivalence class 

Output: Result of query  

 

1.1 Main 

get the query string and parse it at backslash / 

S1 = substring after first slash 

call procedure firstQuery, pass S1 
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1.2 Procedure firstQuery(String S1) 

parse S1 

S2 = current location path 

S3 = remaining sub string  

if S2 is empty, i.e. double slash encountered in the beginning 

Call procedure directToEnd, pass S3 to 

else  

while index hash has more element 

get element final node NO 

if access flag of NO is false 

get element name EA of NO 

set access flag of NO to true 

if EA equals S2 

get vector V1 value for NO 

if length of S3 is greater than 0 

call procedure processAkQuery, pass V1 and S3 
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1.3 Procedure directToEnd(String S3) 

if initial equivalence class hash table contains key S3 

get vector value V2 for S3 

for each nodes object N in vector V2  

ST = start position of node N 

LT = length of node N 

call random access file method, pass ST and LT 
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1.4 Procedure processAkQuery (Vector V1,String S3) 

parse S3 

if S3 is last location path of query 

call procedure lastAkQuery, pass V1 and S3 

else 

S4 = current location path 

S5 = remaining sub string  

while vector V1 has more elements  

get element E 

get final node object FN1 for element E 

if access flag of FN1 is false 

      set access flag of FN1 to true 

if S4 equals �*� 

call procedure starQuery, pass FN1 and S5 

else 

get element name EN1 of FN1 

if S4 equals EN1 

get vector value V2 of final node object FN1 

for all elements of V2 

 recursive call procedure processAKQuery, pass V2 and S5 
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1.5 Procedure starQuery(Final node object FN1, String S5) 

if index hash contains FN1 

get vector value V3 of FN1 

call procedure processAkQuery, pass V3 and S5 

end 

1.6 Procedure lastAkQuery(Vector V, String S) 

while vector V has more elements  

      get element E 

get final node object FN for element E 

if access flag of FN is false 

set access flag of FN to true 

set element name EN of FN 

if EN equals S 

get member vector value V1 for FN 

while V1 has more elements 

get element E1 

get node object NO for element E1 

ST = start position of node N 

LT = length of node N 

call random access file method, pass ST and LT 

end 
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APPENDIX C 
 
 

SAMPLE XML FILE 
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<department> 
<deptname>cse</deptname> 
<gradstudent> 
  <name> 
  <lastname>Papadopoulos</lastname> 
  <firstname>Johnathan</firstname> 
  </name> 
  <phone>755917</phone> 
  <email>Papadopoulos.Johnathan@foo.edu</email> 
  <url>http://www/~[Ljava.lang.String;@f44ebe</url> 
  <address> 
  <city>Janesville</city> 
  <state>  WI</state> 
  <zip>53708</zip> 
  </address> 
  <office>6152</office> 
  <gpa>1.8668671963852623</gpa> 
</gradstudent> 
<gradstudent> 
  <name> 
  <lastname>Abiteboul</lastname> 
  <firstname>Ralf</firstname> 
  </name> 
  <phone>8987305</phone> 
  <email>Abiteboul.Ralf@foo.edu</email> 
  <address> 
  <city>Janesville</city> 
  <state>  WI</state> 
  <zip>53708</zip> 
  </address> 
  <office>9533</office> 
  <gpa>0.43996358085274956</gpa> 
</gradstudent> 
<undergradstudent> 
  <name> 
  <lastname>Robertson</lastname> 
  <firstname> Joan </firstname> 
  </name> 
  <phone>8767892</phone> 
  <email>Robertson.Joan@foo.edu</email> 
  <address> 
  <city>Janesville</city> 
  <state>  WI</state> 
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  <zip>53708</zip> 
  </address> 
  <gpa>0.717747091607051</gpa> 
</undergradstudent> 
<staff> 
  <name> 
  <lastname>Newman</lastname> 
  <firstname>Cleopatra</firstname> 
  </name> 
  <phone>8415977</phone> 
  <email>Newman.Cleopatra@foo.edu</email> 
  <office>3896</office> 
</staff> 
<faculty> 
  <name> 
  <lastname>Tzavaras</lastname> 
  <firstname>Ivan</firstname> 
  </name> 
  <phone>7765691</phone> 
  <email>Tzavaras.Ivan@foo.edu</email> 
  <office>871</office> 
</faculty> 
</department> 
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APPENDIX D 
 
 

INTERMEDIATE RESULTS AS OBTAINED IN A(K)-INDEX CONSTRUCTION 
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The initial equivalence class hashtable 
 

   1) key =gpa [ node 14   st 400   len 29 ;  node 26   st 739   len 30 ;  node 37   st 1083   
len 28 ; ] 
   2) key =address [ node 9   st 278   len 93 ;  node 21   st 617   len 93 ;  node 33   st 978   
len 101 ; ] 
   3) key =deptname [ node 1   st 14   len 24 ; ] 
   4) key =url [ node 8   st 225   len 49 ; ] 
   5) key =state [ node 11   st 318   len 19 ;  node 23   st 657   len 19 ;  node 35   st 1018   
len 19 ; ] 
   6) key =undergradstudent [ node 27   st 787   len 345 ; ] 
   7) key =phone [ node 6   st 151   len 21 ;  node 19   st 550   len 22 ;  node 31   st 911   
len 22 ;  node 42   st 1249   len 22 ;  node 49   st 1465   len 22 ; ] 
   8) key =gradstudent [ node 2   st 40   len 405 ;  node 15   st 447   len 338 ; ] 
   9) key =lastname [ node 4   st 67   len 33 ;  node 17   st 474   len 30 ;  node 29   st 819   
len 38 ;  node 40   st 1155   len 35 ;  node 47   st 1374   len 37 ; ] 
   10) key =office [ node 13   st 375   len 21 ;  node 25   st 714   len 21 ;  node 44   st 
1318   len 21 ;  node 51   st 1531   len 20 ; ] 
   11) key =faculty [ node 45   st 1351   len 212 ; ] 
   12) key =staff [ node 38   st 1134   len 215 ; ] 
   13) key =email [ node 7   st 176   len 45 ;  node 20   st 576   len 37 ;  node 32   st 937   
len 37 ;  node 43   st 1275   len 39 ;  node 50   st 1491   len 36 ; ]\ 
   14) key =city [ node 10   st 291   len 23 ;  node 22   st 630   len 23 ;  node 34   st 991   
len 23 ; ] 
   15) key =firstname [ node 5   st 104   len 32 ;  node 18   st 508   len 27 ;  node 30   st 
861   len 35 ;  node 41   st 1194   len 40 ;  node 48   st 1415   len 35 ; ] 
   16) key =department [ node 0   st 0   len 1578 ; ] 
   17) key =zip [ node 12   st 341   len 16 ;  node 24   st 680   len 16 ;  node 36   st 1041   
len 24 ; ] 
   18) key =name [ node 3   st 57   len 90 ;  node 16   st 464   len 82 ;  node 28   st 809   
len 98 ;  node 39   st 1145   len 100 ;  node 46   st 1364   len 97 ; ] 
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The successor hashtable 
 
   1) key =33 [ node 36   st 1041   len 24 ;  node 35   st 1018   len 19 ;  node 34   st 991   
len 23 ; ] 
 
   2) key =28 [ node 30   st 861   len 35 ;  node 29   st 819   len 38 ; ] 
 
   3) key =27 [ node 37   st 1083   len 28 ;  node 33   st 978   len 101 ;  node 32   st 937   
len 37 ;  node 31   st 911   len 22 ;  node 28   st 809   len 98 ; ] 
 
   4) key =21 [ node 24   st 680   len 16 ;  node 23   st 657   len 19 ;  node 22   st 630   
len 23 ; ] 
 
   5) key =9 [ node 12   st 341   len 16 ;  node 11   st 318   len 19 ;  node 10   st 291   len 
23 ; ] 
 
   6) key =46 [ node 48   st 1415   len 35 ;  node 47   st 1374   len 37 ; ] 
 
   7) key =45 [ node 51   st 1531   len 20 ;  node 50   st 1491   len 36 ;  node 49   st 1465   
len 22 ;  node 46   st 1364   len 97 ; ] 
 
   8) key =16 [ node 18   st 508   len 27 ;  node 17   st 474   len 30 ; ] 
 
   9) key =15 [ node 26   st 739   len 30 ;  node 25   st 714   len 21 ;  node 21   st 617   
len 93 ;  node 20   st 576   len 37 ;  node 19   st 550   len 22 ;  node 16   st 464   len 82 ; 
] 
 
   10) key =39 [ node 41   st 1194   len 40 ;  node 40   st 1155   len 35 ; ] 
 
   11) key =3 [ node 5   st 104   len 32 ;  node 4   st 67   len 33 ; ] 
 
   12) key =38 [ node 44   st 1318   len 21 ;  node 43   st 1275   len 39 ;  node 42   st 
1249   len 22 ;  node 39   st 1145   len 100 ; ] 
 
   13) key =2 [ node 14   st 400   len 29 ;  node 13   st 375   len 21 ;  node 9   st 278   len 
93 ;  node 8   st 225   len 49 ;  node 7   st 176   len 45 ;  node 6   st 151   len 21 ;  node 3   
st 57   len 90 ; ] 
 
   14) key =0 [ node 45   st 1351   len 212 ;  node 38   st 1134   len 215 ;  node 27   st 
787   len 345 ;  node 15   st 447   len 338 ;  node 2   st 40   len 405 ;  node 1   st 14   len 
24 ; ] 
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The original set Q 
 
 [0 ] [1 ] [27 ] [13 25 44 51 ] [10 22 34 ] [6 19 31 42 49 ] [5 18 30 41 48 ] [45 ] [8 ] [14 
26 37 ] [2 15 ] [9 21 33 ] [4 17 29 40 47 ] [7 20 32 43 50 ] [12 24 36 ] [3 16 28 39 46 ] 
[11 23 35 ] [38 ]  
 
 

The final equivalence class A(3) 
 
 [29 ] [27 ] [38 ] [24 12 ] [8 ] [0 ] [19 6 ] [3 16 ] [10 22 ] [44 ] [1 ] [42 ] [46 ] [45 ] [43 ] 
[49 ] [31 ] [11 23 ] [36 ] [37 ] [9 21 ] [17 4 ] [28 ] [32 ] [35 ] [39 ] [30 ] [48 ] [20 7 ] [40 
] [33 ] [41 ] [14 26 ] [50 ] [34 ] [2 15 ] [51 ] [18 5 ] [47 ] [25 13 ]  
 
 
 

The equivalence class with edges(indexHash) 
 
 Hash Key 12:name 
 27:firstname  :{ mem 48 st at 1415 len 35;} 
 38:lastname  :{ mem 47 st at 1374 len 37;} 
 
 Hash Key 13:faculty 
 36:office  :{ mem 51 st at 1531 len 20;} 
 33:email  :{ mem 50 st at 1491 len 36;} 
 15:phone  :{ mem 49 st at 1465 len 22;} 
 12:name  :{ mem 46 st at 1364 len 97;} 
 
 Hash Key 20:address 
 3:zip  :{ mem 24 st at 680 len 16; mem 12 st at 341 len 16;} 
 17:state  :{ mem 11 st at 318 len 19; mem 23 st at 657 len 19;} 
 8:city  :{ mem 10 st at 291 len 23; mem 22 st at 630 len 23;} 
 
 Hash Key 2:staff 
 9:office  :{ mem 44 st at 1318 len 21;} 
 14:email  :{ mem 43 st at 1275 len 39;} 
 11:phone  :{ mem 42 st at 1249 len 22;} 
 25:name  :{ mem 39 st at 1145 len 100;} 
 
 Hash Key 30:address 
 18:zip  :{ mem 36 st at 1041 len 24;} 
 24:state  :{ mem 35 st at 1018 len 19;} 
 34:city  :{ mem 34 st at 991 len 23;} 
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Hash Key 35:gradstudent 
 32:gpa  :{ mem 14 st at 400 len 29; mem 26 st at 739 len 30;} 
 39:office  :{ mem 25 st at 714 len 21; mem 13 st at 375 len 21;} 
 20:address  :{ mem 9 st at 278 len 93; mem 21 st at 617 len 93;} 
 28:email  :{ mem 20 st at 576 len 37; mem 7 st at 176 len 45;} 
 6:phone  :{ mem 19 st at 550 len 22; mem 6 st at 151 len 21;} 
 7:name  :{ mem 3 st at 57 len 90; mem 16 st at 464 len 82;} 
 4:url  :{ mem 8 st at 225 len 49;} 
 
 Hash Key 5:department 
 13:faculty  :{ mem 45 st at 1351 len 212;} 
 2:staff  :{ mem 38 st at 1134 len 215;} 
 1:undergradstudent  :{ mem 27 st at 787 len 345;} 
 35:gradstudent  :{ mem 2 st at 40 len 405; mem 15 st at 447 len 338;} 
 10:deptname  :{ mem 1 st at 14 len 24;} 
 
 Hash Key 25:name 
 31:firstname  :{ mem 41 st at 1194 len 40;} 
 29:lastname  :{ mem 40 st at 1155 len 35;} 
 
 Hash Key 22:name 
 26:firstname  :{ mem 30 st at 861 len 35;} 
 0:lastname  :{ mem 29 st at 819 len 38;} 
 
 Hash Key 1:undergradstudent 
 19:gpa  :{ mem 37 st at 1083 len 28;} 
 30:address  :{ mem 33 st at 978 len 101;} 
 23:email  :{ mem 32 st at 937 len 37;} 
 16:phone  :{ mem 31 st at 911 len 22;} 
 22:name  :{ mem 28 st at 809 len 98;} 
 
 Hash Key 7:name 
 37:firstname  :{ mem 18 st at 508 len 27; mem 5 st at 104 len 32;} 
 21:lastname  :{ mem 17 st at 474 len 30; mem 4 st at 67 len 33;} 
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