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ABSTRACT

GRAPH-BASED LEARNING USING

 A NAIVE BAYESIAN 

CLASSIFIER

Publication No. ______

Robert N. Hawes, M.S.

The University of Texas at Arlington, 2006

Supervising Professor:  Diane J. Cook

Graph-based data representation is becoming increasingly more commonplace,

as graphs can represent some kinds of data more efficiently than relational tables.  As

such, interesting patterns in the form of subgraphs can be discovered by mining these

graph-based  datasets.   Because  the  learned  patterns  can  be  used  to  predict  future

occurrences, it is necessary to learn graphical concepts that can optimally classify the

data in the presence of uncertainty. 

This work explores  the  construction  and learning of optimal  naïve Bayesian

graph classifiers  to  distinguish between positive and negative graphs  given a  set  of

graphs as examples.  Whereas most previous work in graph-based data mining has been

restricted  to  exact  graph  matching  algorithms,  the  classifiers  discovered  using  this
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approach are not similarly restricted, and thus are able to classify graphs in the presence

of missing data.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Graph-based data representation is becoming increasingly more commonplace,

as graphs can represent some kinds of data more efficiently than relational tables.  As

such, interesting patterns in the form of subgraphs can be discovered by mining these

graph-based  datasets.   Because  learned  patterns  can  be  used  to  predict  future

occurrences, it is necessary to learn graphical concepts that can optimally classify the

data in the presence of uncertainty.  

Traditional  data  mining  is  the  search  for  patterns  in  data.   The  discovered

patterns may then used as classifiers to predict the relations among unseen data.  An

underlying assumption is that the patterns discovered in a given sample are indicative of

the population at large.  That is, the relations discovered among the data attributes can

be assumed to provide a categorical classification with a degree of certainty.

For example, a large terrorist database could hold information on the activity of

known terrorists,  as  well  as  suspected terrorists.   If  the  terrorists  showed repetitive

behavior or attributes just prior to an attack, a rule could be discovered with a certain

degree of confidence, say 85%, that the pattern of behavior leads to a terrorist attack.

As the use of graphs for data increases and the uncertainty within that data also

increases, it becomes more important to build classifiers for graph-based data that can
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handle uncertainty well.   Imagine what would happen if a classifier  mispredicted or

failed to predict a terrorist attack, and the counter-terrorism task force as a result was

deployed  to  the  wrong  place  at  the  wrong  time  to  arrest  the  wrong  individual.

Consequently, if the classifier is to be used to do data prediction, it must have some

basis in the actual underlying distribution of the relations predicted.

Statistics  and  probability  are  among  the  best  known  means  for  predicting

properties of an actual population given samples from that population, and as a result,

any probabilistic classifiers could only benefit from their predictive capability.  One of

the best known methods of probabilistic classification is the naïve Bayesian classifier,

which has been used with great success in other domains.

We hypothesize that  a graph-based learning algorithm built  upon probability

theory can form the basis of an accurate predictor and useful learning algorithm.  In

particular, we postulate that an algorithm that learns graph concepts using a naïve Bayes

method can achieve comparable or better performance than other learning algorithms on

structural data.  To validate this hypothesis,  we will  adapt a naïve Bayes text-based

classifier  to  handle  graph-based  data.  Specifically,  we  will  adapt  the  definition  of

attributes  as  words  to  attributes  as substructures  within  a  graph,  and define how to

determine the conditional probabilities of substructure-based attributes for naïve Bayes

learning.  We will  test  this  hypothesis  by building a classifier  learning process  and

embedding it as an alternative evaluation method in the SUBDUE algorithm [Cook and

Holder, 2000], where we further enhance the classifiers by learning a super-classifier as

a sequence of such classifiers.  This classification system will then be tested against two
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sets  of  synthetic  data  and the  mutagenesis  data  set.   The  first  set  of  synthetic  data

consists of a small space of incrementally larger training samples, so that we can do a

detailed observation of the algorithm's discovery process.  The second set of synthetic

data is a much larger set of small graph structures built by inducing random mutations in

a  common  substructure  at  a  specified  mutation  frequency  to  simulate  uncertainty.

Finally, classifiers  are built  and tested on the mutagenesis data,  which is  a  publicly

available dataset of large molecular structures and classifications on whether or not they

have been found to mutate and cause cancer.    

1.2 Thesis Outline

To  yield  strong  predictive  capability  in  graph  classification,  this  thesis

introduces an adaptation of the naïve  Bayes method specifically for graph classification

within  the  SUBDUE  framework  [Cook  and  Holder,  2000].   Therefore,  Chapter  2

provides background information on the naïve Bayesian algorithm that is being adapted.

Because this  adaption is  a probabilistic extension of SUBDUE, Chapter 3 discusses

graph-based  data  mining  and  the  SUBDUE  algorithm,  whereas  Chapter  4  is  an

introduction to probabilistic graph concepts.  After covering the required background

material,  the  naïve  Bayesian  graph  classifier  algorithm  is  presented  in  Chapter  5,

Chapter 6 details the experimental results on both synthetic data and the mutagenesis

data set, and Chapter 7 presents the conclusions of this thesis. 

3



CHAPTER 2

INTRODUCTION TO NAÏVE BAYESIAN CLASSIFIERS

The naïve Bayes classifier [Mitchell, 1997], also called the naïve Bayes learner,

is a highly practical learning method.  Its performance is comparable to that produced by

neural network and decision tree learning.

A naïve Bayes classifier applies to situations in which a function is needed that

maps a set of attributes to a single value from a finite set of values:

 fnb : a1 X a2 X...X an → v (2.1)

The classifier is given a training set that consists of attribute tuples <a1, a2,..., an > with

the corresponding target value, v, for each training instance.  It responds by generating a

function over the attributes that best predicts the training data. Afterwards, the classifier

can be given tuples of unseen attributes, <a1, a2,..., an  > and asked to predict the target

value, or classification of each new instance.

In Bayesian classification, new instances are classified by assigning the most

probable target value, known as vMAP, to the classification.  Given a set of attributes <a1,

a2,..., an > for an instance vMAP can be calculated as follows:

vMAP=argmax
v j∈V

P v j |a1 , a2 ,⋯, an (2.1)

Using Bayes theorem,  the equation for vMAP can then be rewritten as

  vMAP=argmax
v j∈V

P a1 , a2 ,⋯, an |v jP v j
P a1 , a2 ,⋯, an
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         =argmax
v j∈V

P a1 , a2 ,⋯, an |v jP v j (2.2)

The  naïve  Bayes  classifier  assumes  that  the  attribute  values  are  mutually

independent  given  a  target  value,  [Mitchell,  1997].   That  is,  the  probability  of  a

conjunction  of  attribute  values  is  simply  the  product  of  the  probabilities  of  the

individual attributes given the target value.

P a1 , a2 ,⋯, an |v j=P v j∏
i

P ai |v j (2.3)

Subsituting equation (2.3) into (2.2) produces the approach used by the naïve Bayesian

classifier:

v NB=argmax
v j∈V

P v j∏
i

P a i |v j (2.4)

in which vNB denotes the predicted class.  

[Mitchell, 1997] provides an example algorithm for text classification.  In this

example the instances to classify are text documents.  Examples of target classifications

that can be learned include “interesting news articles,” “machine learning,” and “not

interested.”  If a computer can learn to distinguish these categories based on the content,

it  can then be used to automatically filter  a large volume of online documents,  and

present  potentially interesting documents to the user.   Some probabilistic  systems to

classify text have been proposed by [Lewis, 1991], [Lang, 1995], and [Joachims, 1996].

The text classifier described in [Mitchell, 1997] is a general algorithm based on

the naïve Bayes classifier method.    In it, the instance space X is the set of all possible

text documents, each of which consists of variations of word strings and punctuation.
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The training examples form a subset of these documents and their target classifications

are discrete values within a finite set of classifications.  For example, the set of target

values could be like and  dislike, depending on whether a person considers the articles

interesting or not.

Two main design issues  are encountered when applying the naïve Bayesian-

based approach to a text classification problem.  The first issue is how to represent the

text document as a set of attributes.  The second is how to estimate the probabilities

used by the classifier.

To make the example concrete, assume we are given 1000 documents of which

700 are classified as like, and the remaining 300 as dislike.  Furthermore, assume we are

given as a  new document the paragraph above and are asked to classifiy it as  like or

dislike.  To classify the document we instantiate Equation 2.4:

vNB= argmax
v j∈{ like , dislike}

P v j∏
i  =1

44

P a i |v j

     = argmax
v j∈{ like , dislike }

P v jP a1 = two |v jP a2 = main |v jP a3 = classifier |v j

To calculate the probabilities in the above equation, the algorithm needs to learn

two kinds of estimates from the training data.  First, the a priori probabilities of each

classification, and second, the conditional probabilities of a word at a position in the

document  given each classification.   The second probability is  further simplified by

assuming a conditional independence on the location of the word in the document.

The algorithm in [Mitchell, 1997] uses the given frequencies of the documents

for the a priori values.  For example, the probability of document being like in the given
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example, P(like), is 700 / 1000 = 0.7 and for a document being dislike is 300/1000 = 0.3.

The  algorithm  then  calculates  the  conditional  probabilities  of  each  word  for  each

classification P(wj | vi) using m-conditioning as follows:

P w j |vi=
n j1

n|Vocabulary |

where nj is the number of occurences of word wj in the training set, n is the total word

count in the training set, and Vocabulary is the total set of distinct words found in the

training set.

This approach of discovering a vocabulary and determining frequencies on that

vocabulary is further extended to handle graphs in the naïve Bayesian graph learner in

Chapter 5.  In-depth analyses and extensions of the naïve Bayesian approach can be

found in [Elkan,  1997],  [Zheng, et.  al,  1999],  [Zheng, 1998],  and [Friedman et.  al.,

1997].
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CHAPTER 3

INTRODUCTION TO GRAPH-BASED DATA MINING

3.1 Graph Concepts

In order to understand the fundamentals of graph-based data mining, it is helpful

to understand some of the more important  graph concepts.   In this  section,  we will

describe graphs, subgraphs, substructures, substructure instances, graph isomorphism,

and graphs as concepts.

A graph, G is defined as a set of vertices, V, and edges, E, where each edge is

defined by a pair of vertices in V, such that:

G V , E ≡{V , E |∀ e v i , v je∈E∧v i∈V∧v j∈V }

Edges may be undirected (traversible in both directions) or directed (traversible only

from  one  node  to  the  other).   Undirected  graphs  are  typically  used  to  represent

correlations  among  vertices  or  bidirectional  transitivity.   Directed  graphs  typically

represent attributes or states and one-way relationships between those states.

For  a  definition of  subgraphs,  we can  look to  [Washio  and Motoda,  2003].

Subgraphs can be general subgraphs, induced subgraphs, connected subgraphs, ordered

or unordered trees, or paths.

1. General subgraphs are graphs whose set of vertexes form a subset of the set

of vertexes in a larger graph, and whose edges are also a subset of the edges

from the same graph.
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2. Induced subgraphs are graphs that are general subgraphs and have been

generated by removing vertices and the edges connected to those vertices.

3. Connected subgraphs are general subgraphs, where all nodes in the graph are

reachable from at least one node by traversing the edges.

4. Trees are connected subgraphs without cycles and the number of edges into a

vertex, a.k.a . the in-degree, is no larger than one.

5. Ordered trees are trees whose vertex and edge labels follow some canonical

ordering along one or more dimensions, for instance top to bottom, or left to

right.

6. Paths are trees with zero or more edges going out, a.k.a. the out-degree, of

every vertex. 

Substructure and substructure instances are defined in [Cook and Holder, 2000].

A  substructure is  a  connected  subgraph  that  is  part  of  a  given  input  graph.   A

substructure instance is a set of edges and vertices in an input graph that is considered

to match graph-theoretically to a given substructure.  

[Vanetik and Gudes, 2004] define two levels of isomorphism, or ways that two

graphs  can  be  considered  to  match.   The  first  method  is  called  an  unlabeled

isomorphism.  Two graphs G1 and G2 are said to be  isomorphic if for every edge in G1

there is a mapping or bijection function to the edges in  G2:

Unlabeled isomorphism:v ,u∈E G1⇔φv  ,φu∈E G2

In  the  second  method,  labeled  isomorphism,  vertexes  and  edges  may carry

labels, and the related elements of the graphs must also share the same labels.  [Vanetik
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and Gudes, 2004] only consider the vertex labels for their definition, but if edges are

also labeled (as they can be in SUBDUE [Cook and Holder, 2000]), edges as well as

vertices on both sides of the isomorphism must share the same label for the graphs to be

considered fully label isomorphic.

A subgraph isomorphism is an graph isomorphism between a substructure of

one graph, say G1, and another graph, G2.  In this paper, we denote the set of subgraph

isomorphisms of G1 in G2 as I G1
G2 .

A graph concept is a collection of substructures or subgraphs that by its structure

and  a  set  of  combination  rules  represents  a  potentially  recurring  idea  or  concept.

Examples of concept  learners  include  SUBDUECL [Gonzalez  et  al.,  2000]  and  the

Naïve Bayes Graph Classifier (NBGC) discussed in Chapter 5.  As an idea, a graphical

concept  defines  a  set  of  vertice  labels  and  the  relationships  between  those  labels

necessary to identify instances of the concept.  Once identified or discovered, instances

of graphical concepts in a larger graph can be replaced with a single vertex representing

the entire structure [Gonzalez et al., 2000]. 

3.2 Graph-Based Data Representation

Traditional  databases are  relational,  organized as  tables and pre-classified as

bundles of like attributes, with foreign keys representing relations among the classes.

However,  in  domains  where  the  number  of  potential  relations  among  entities  is

innumerable or some of the classes of entities are not known, representing the data as a

graph can be better.   The relations can be directly traversed,  and placeholders (null
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values in relational tables) do not have to occupy space for unknown or non-existing

attributes.

A graph-based data representation has been used for many domains, including

natural language processing [Rassinoux et al., 1998], molecular biology [Cook et al.,

2001], email classification [Aery and Chakravarthy, 2004], and world-wide-web mining

[Mendelzon et al., 1997].  

3.3 Graph-Based Data Mining

Graph-based data mining is the process of finding graph concepts in a collection

of attributes represented as a graph such that some property of the data can be predicted

given the concepts discovered.  The concepts discovered are typically subgraphs of the

original data and represent recurring relations among the attributes. 

Graph-based data mining can be supervised or unsupervised.  In supervised data

mining, positive and negative labeled examples are given to the data mining algorithm,

and the algorithm searches for subgraphs that fit the positive examples better than the

negative examples.   In  unsupervised learning,  subgraphs are sought  that best  fit  the

given examples,  typically using a frequency metric to identify “interesting” nuggets.

There  are  many examples  of  unsupervised  learners,  including SUBDUE [Cook  and

Holder,  2000],  AGM [Inokuchi  et  al.,  2003],  FSG [Kuramochi  and Karypis,  2001],

HSIGRAM/VSIGRAM [Kuramochi and Karypis, 2004],  GBI [Yoshida et al., 1994],

WARMR [Dehaspe  and Tolvonen,  1999],  FARMAR [Nijssen  and Kok,  2001],  and

MolFea  [De  Raedt  and  Kramer,  2001].   There  has  also  been  recent  research  into
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supervised graph-based learners, including SUBDUE, [Gärtner, 2005],and [Deshponde

et al., 2003].

Three  types  of  graph-based  evaluation  strategies  are  subgraph  frequency,

minimum description length, and inductive logic; the last two of which are implemented

in SUBDUE.  Examples of frequent subgraph discovery algorithms include AGM and

FSG.  Frequent subgraph discovery algorithms search for subgraphs whose frequency

are greater than a given support threshold [Vanetik et al., 2002].  Minimum description

length discovery algorithms search for the subgraph which will best compress the graph

space  using  an  information  theoretic  measure  [Cook  and  Holder,  2000].   Finally,

inductive  logic  discovery  algorithms  search  a  hypothesis  space  for  a  graph-based

concept that can be described as disjunctive normal form or conjunctive normal form,

i.e. logical rules, such that they describe more positive input examples than negative

input examples [Gonzalez et al., 2000].

3.4 The SUBDUE   Algorithm  

The SUBDUE algorithm [Cook and Holder, 2000] is a graph-based discovery

process that heuristically searches for substructures which compress the original input

graph and represent structural concepts.  The input graph can be a single labeled graph

structure or multiple graph structures.  Each vertex in the structures can support labels

to identify entities and attributes in the graph structure.  Labels can also be applied to

edges so that relationships between entities and attributes can be named.  In addition, to

support concept-based learning, the input graph instances themselves can be labeled as
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positive or negative examples of the concept to learn.  The SUBDUE algorithm is a

beam search as shown in Figure 3.1.

The SUBDUE discovery algorithm begins by initializing parent, child, and best

lists to empty sets, and the number of processed substructures to 0.  The parent list is

then updated to contain all single vertex substructures.  At this point the main loop of

the  algorithm begins.   While  there  are  still  substructures  in  the  parent  list and the

number  of  processed  substructures  has  not  exceeded  the  user  defined  limit,  the

algorithm continues.

The main processing loop of SUBDUE proceeds as follows.  For all the parents

in the list, a nested loop is entered.  In the nested loop, the parent with the best value is

removed  from the  list  and  a  set  of  child  substructures  is  generated  by finding  all

instances of parent and adding one edge extensions.  Then, each child is evaluated to

return a value and then sorted into the child list by its value, keeping the child list size at

or below the user defined beam width.

Once all the children of a parent have been processed, the parent is added to the

best list and sorted by value, truncating it to the user defined limit of best substructures

to keep.  When the current parent list is emptied, the child list becomes the parent list by

swapping the two lists.

Finally,  when there  are  no more  extensions  to  be  found or  the  user-defined

search limit has been met, the algorithm terminates and returns the best substructures

found in the best list.
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SUBDUE(Graph, BeamWidth, MaxBest, MaxSubSize, Limit)
Return the list of best substructures.
1. Initialize substructure lists.

• ParentList ← {}
• ChildList ← {}
• BestList ← {}
• ProcessedSubs ← 0
• Create a substructure from each unique vertex label and its single-vertex instances.
• Insert the remaining substructures in ParentList.

2. Perform a beam search to find the best substructures until the limit is met or there is nothing
left to search.

• while ProcessedSubs <= Limit and ParentList is not empty do:
• while ParentList is not empty do:

• Parent = RemoveHead(ParentList)
• Extend each instance of Parent in all possible ways.
• Group the extended instances into Child substructures.
• foreach Child do:

• if SizeOf(Child) <= MaxSubSize then:
• Evaluate the Child.
• Insert Child in ChildList in order by value.
• if Length(ChildList) > BeamWidth do:

• Destroy the substructure at the end of
the list.

• ProcessedSubs ← ProcessedSubs + 1
• Insert Parent in BestList order by value.
• if Length(BestList) > MaxBest then:

• Destroy the substructure at the end of BestList.
• Switch ParentList and ChildList.

3. Return the best substructures..
• Return BestList. 

Figure 3.1. The SUBDUE algorithm.

In addition, if the user has specified multiple iterations, the graph is compressed

using the best substructure, and the algorithm repeats until no more positive example

graphs remain or the graph can no longer be compressed.

In the original algorithm, the child evaluation step uses minimum description

length compressibility to determine the child values.  In the naïve Bayes graph classifier

approach (Chapter 5), we will evaluate each child by evaluating the performance of a
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classifier  built  from  the  child's  substructure  and  evaluated  over  the  user  supplied

examples.
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CHAPTER 4

PROBABILISTIC GRAPH CONCEPTS

4.1 Probabilistic Graph Concepts

Probabilistic  graph  concepts  are  graph  concepts  that  add  transitional  or

correlational  probabilities  to  components  of  a  graph.   This  means  that  the vertices,

edges, or even substructures within the graph can be assigned a probability. 

Examples  of  probabilistic  graph concepts  include  Markov  models,  Bayesian

belief  networks,  dynamic  belief  networks,  Markov  Decision  Processes,  and  linear

filters, among others.  See [Murphy, 1998] for a description of the relations between

many popular models.     

4.2 M-Estimates

One of the problems that occurs when estimating frequencies from sampled data

is the dominance of the more frequent data over the less frequent data.  When taking the

Bayesian product of multiple frequencies, it is likely that some of the properties will

have an unusually low frequency probability, due to the paucity of the training samples.

One of the methods used to deal with this is m-estimates [Mitchell, 1997].

m-estimates  use  the  prior  probability  of  the  value  being  measured  and  an

equivalent sample size to augment the frequencies.  Where the original frequency given

the sample space is count(value=X)/count(sample), the m-estimate becomes:
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P value=X | Samples= count value=X mp
count samplesm (4.1)

where m is the equivalent sample size, and p is the prior probability of the value being

X.  The uniform prior assumption [Mitchell, 1997] sets m=count(values) and p=1/count

(values).  The resulting m-estimate, and the one we will use is:

P value=X | Samples= count value=X 1
count samplescount values (4.2)

4.3 Calculating Substructure Probabilities

Three  methods  in  current  literature  for  calculating  the  probability  of  a

substructure  for  a  given  graph  are  1)  transaction-based  selection,  2)  maximum

likelihood estimation [Coble, 2005],  and 3) substructure extension.  We also derive a

method to  calculate  the  probability of  a  feature  as  a  member  of a  set  of  candidate

features.  The main distinguishing characteristic of these four methods is the granularity

of the random field drawn for sampling.  They also differ in runtime estimations.

4.3.1 Transaction-Based Selection

This technique calculates the probability that a graph instance randomly drawn

from a set of graph instances contains a given substructure [Kuramochi and Karypis,

2004].   The  graph  space  is  divided  into  independent  transactions  or  instances  of

connected graphs.  The probability of the graph being drawn at random using this metric

is:

P si |T =
|{ t j s.t. | I si

t j |0∧t j∈T }|
|T |

(4.3)
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where si is  the substructure under consideration, T is the set of transactions or user

provided graph instances in the graph space, and I is the set of subraph isomorphisms of

si in T.

Consider the set of strings {“abc”, “aab, ” “cc”}, where consecutive letters are

joined via an edge, and the graph space  The probability of “ab” would then be  2/3. 

4.3.2 Maximum Likelihood Estimation

This  technique  [Coble,  2005]  for  calculating  substructure  probabilities

calculates the probability that the substructure is encountered in the given instances or

transactions.  This formula is:

P si |T =
|V si || E si | | I si

T |
|V T  || E T  |

(4.4)

where  I is the set of isomorphic instances of substructure  s in T.   The frequency is

calculated  as  a  ratio  of  the  number  of  nodes  and  edges  that  are  part  of  the  given

substructure's instances to the total number of vertices and edges in the training data as a

whole.

Consider  the  string “abcaabcc,”   where consecutive letters  are joined via  an

edge and shown in Figure 4.1.  The size of two-character substructure like “ab”, would

be 3, represented by 2 vertices and one edge.  The probability of “ab” would then be 3 *

2 / (8+7) = 2/5. 
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Figure 4.1. Maximal likelihood coverage on example string: (a) “abcaabcc” as directed
graph, (b) two character substructure with two vertices and one edge, and (c) maximal

likelihood coverage.

4.3.3 Substructure Extension

The  substructure  extension   technique  [Noble  and  Cook,  2003]  calculates

substructure probabilities conditioned on induced subgraphs of a given size.  The child

substructures  are  considered extensions  of  their  parent  substructures,  and the parent

substructures represent the structural environmental for the children.  The formula for

this calculation conditions the probability of the child graph on its parent by counting

the  isomorphic  instances  of  the  child  and  dividing  by  the  number  of  isomorphic

instances of the parent:

P ci | p j ,T =
| I ci

T |

| I p j

T |
(4.5)

a b c aa b c c

(a)

a b

(b)

a b c aa b c c

(c)
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For example, as shown in Figure 4.2 for the string “abcaabcc,” to calculate the

probability of “ab” given “a” would be 2/3.

Figure 4.2. Substructure extension probabilities.

4.3.4 Graph Feature Selection

For  the  purposes  of  this  paper,  we  will  define  a  graph-based  feature  as  a

potentially recurring graph substructure within a specific domain.  The feature selection

technique will then be a method for calculating the probability of the existence of a

specific feature in a graph instance for a given domain.  Because features are derived

from graph-based instances, they take on domain-specific biasing as represented in the

example  instances  and form a vocabulary within  the  domain.   The  formula  for  this

calculation is to take the ratio of the number of isomorphic instances of a feature to the

number of isomorphic instances of all features:

P  f i |T =
| I f i

T |

| I F
T |

(4.6)

For example, in the string “abcaabcc,” to calculate the probability of “ab” given

minimum and maximum feature size of 2 vertexes, the substructures of that size would

first  be enumerated to yield the features  {“ab”,  “bc”,  “ca”,  “aa”,  “ab”,  “bc”,  “cc”}.

Because there are only two instances of “ab” among seven total feature instances, the

a b c aa b c c
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resulting probability of “ab” would then be 2/7.  On the other hand, if the minimum

feature size is set to 0 and the maximum to 2, as shown in figure 4.3, the features would

then be {“a”, “b”, “c”, “ab”, “bc”, “ca”, “aa”, “ab”, “bc”, “cc”, “abc”, “bca”, “caa”,

“aab”, “abc”, “bcc”}.  In this case, the total number of substructures would be 3 + 2 + 3

+ 2+ 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 = 20, and the probability of “ab” would be 2/20.

Clearly, the size of the candidate features impacts the probabilities and the number of

isomorphic checks that have to be done.

Figure 4.3. Graph feature probability. 

  If all substructures within a given size range are considered features, Equation

(4.6) can be rewritten as:

P  f i |T =
| I f i

T |
|{ S T  s.t. minFeatureSize≤| E si |≤maxFeatureSize } |

(4.7)

a

Feature based coverage with feature size <= 2
       => 20 total feature instances

3 instances

b 2 instances

c 3 instances

ba 2 instances

b c 2 instances

c a 1 instance

a a 1 instance

c c 1 instance

b ca

1 instanceb c a

2 instances

c aa 1 instance

b c c 1 instance
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where S(T) is the set of substructures in the input transaction graphs, and only those

instances between the feature size bounds are counted, avoiding the expensive graph

isomorphism checks.

4.3.4 Comparison of Techniques 

The substructure extension technique is applicable primarily to calculating  the

probability of a substucture given a subset of its nodes and vertices, and specifically

designed  for  subgraph  extensions.   The  remaining  three  techniques  calculate  the

probability of the existence of a substructure given a larger encapsulating substructure,

making  them  more  applicable  to  the  desired  conditional  calculation.  All  three

techniques require scanning the data to calculate the number of isomorphic occurrences

of the target substructure in the graph, which has been shown to be NP-complete [Cook,

1971]  and  will  therefore  dominate  all  calculations.   As  a  result,  we  focus  on  the

additional cost invoked for each algorithm.

Transaction-based estimation can terminate the isomorphic scan as soon as a

single instance is found, therefore requiring scanning half of the vertices and edges in

each transaction on average, so the number of comparisons would be O(|E(G)| + |V(G)|).

After doing the isomorphic comparisons, this method has all the information it needs

and can complete in O(C) time.

Maximum likelihood estimation adds in a calculation of the size of the graph.

This can be completed in O(|E(S)| + |V(S)|), and a one-time calculation of the size of the

graph-space, which requires counting all  nodes and edges (O(|E(G)| + |V(G)|).  This
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calculation  is  still  relatively small,  but  the  calculations  are  not  easily extensible  to

account for conditional independence between subgraphs.

Finally, graph feature selection does allow for independence between relations

by being able to control which features are in the feature set, and therefore allows for

higher statistical precision.  This precision, however, comes at a price.  In this case there

is a one time added calculation of the count, O(|F|) of subgraph extensions, since we

need to count all feature instances.

Since the naïve Bayesian method's accuracy assumes conditional independence

among the features used for classification, the graph-based feature method proves to be

the most promising of the methods.  In addition, because it is possible for features to be

completely missing from some subsets of the data, m-conditioning should be applied for

all  calculations.   Therefore,  in  the  next  chapter  we apply both  of  these  techniques,

graph-based  feature  probabilities  and  m-conditioning,   to  generate  the  a  priori  and

conditional probabilities for the Naïve Bayes Graph Classifier algorithm and embed it in

the SUBDUE algorithm [Cook and Holder, 2000]. 
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CHAPTER 5

THE NAÏVE BAYESIAN GRAPH CLASSIFIER

5.1 Classifying Graphs

The  Naïve Bayesian Graph Classifier (NBGC) determines the likelihood that a

graph belongs to a given class.  It makes the naïve Bayes assumptions that all measured

attributes occur independently of one another and occur with a normal distribution.  The

classifier is an extension based on the naïve Bayesian Text classifier.

The Naïve Bayesian Graph classifier differs from the text classifier in several

respects.  It classifies a graph, whereas the text classifier classified a document string.

In the current implementation,  because the embedding environment (SUBDUE) only

allows for two classes, NBGC also considers only two classes, positive membership and

negative membership, but can easily be extended for multiple classes like the text-based

algorithm.   Instead  of  a  vocabulary of  words,  however,  the  graph  classifier  uses  a

vocabulary of graph features.  And finally, instead of returning the most likely category,

it returns the probability of membership.

Recall  that  the probability of a classification  of independent  attributes given

Bayes theorem is:

P v j |a1 , a2 ,⋯, an=
P a1 , a2 ,⋯ , an |v jP v j

P a1 , a2 ,⋯, an
(5.1)
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The  denominator  on  the  right  hand  side  of  Equation  (5.1)  is  a  normalizing

constant  and the ratio of the numerators of the probabilities for each classification is

equal  to  the  ratio  of  the  probabilities  of  the  classification.   Therefore,  to  simplify

calculations  we  deal  with  only  result  of  the  numerators,  known  as  the  likelihood

[Mitchell, 1997], which we shall denote as  λ.  In other words, the likelihoods of each

classification are calculated by using the following calculations, assuming conditional

independence on the graph features:

For each c j∈C ,c j
=P c j∏

si∈G
∏
si∈F

P si |c j (5.2)

that is, the likelihood of each classification in the set of classifications is the product of

the  prior  probability  of  the  classification  and  the  conditional  probability  of  each

substructure in the graph that is a feature instance for the classification, iterating over all

substructure instances in the graph to classify.  However, if you allow the features in the

classifier to be position independent and iterate over the classifier substructures, you can

rewrite Equation (5.2) as follows:

c j
=P c j∏

f i∈F
P  f i |c j

| I f i

G |
(5.3)

where  I f i

G is the set of isomorphic instances of feature  f i in graph G using the

notation in Section 3.1and the main difference is that the iteration is over the feature

vocabulary instead of the substructure instances that match a feature.  Consequently, the

conditional probability for each feature given each classification is raised to the power

of the  number of isomorphic instances of the feature in  the  graph to  classify.  The

algorithm to calculate this value can now iterate over the features in the vocabulary,
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count the isomorphic instances of each feature once, and update the  likelihoods for each

classification in parallel. 

Finally, the overall probability of a classification for a graph is calculated from

the likelihoods by normalization [Mitchell, 1997].  By normalizing the likelihoods, we

are  effectively  reintroducing  the  denominator  of  Equation  (5.1).   The  graph  has

probability 1 that it belongs to one of the classifications, so the sum of the conditional

probabilities must be 1.  This is accomplished by scaling each classification's likelihood

over the total likelihood as follows:

P c j |G =
c j

∑
i
ci

(5.4)

The resulting complete algorithm instantiated for binary classification is shown

in Figure 5.1. 

Figure 5.1 NB_CLASSIFY_GRAPH algorithm

5.2 Learning a Classifier from a Set of Features

The Naïve  Bayesian Graph Classifier  uses  a set  of  probability estimates  for

determining an a posteriori estimate that a graph belongs to the class given each of its

NB_CLASSIFY_GRAPH(Graph)
Return the a posteriori probability that the Graph is classified by this classifier.
1. Initialize likelihoods to prior probabilities using Equation (5.5).
2. For each feature in the classifier, condition the likelihoods on the isomorphic occurrences of the

feature.
• For f in F:

• λ⊕ ← λ⊕ * (   ⊕P f | )|I(Graph, f)|

• λ⊖ ← λ⊖ * (   ⊖P f | ) |I(Graph, f)|

3. Return a posteriori probability of classification.
• Return λ⊕ / ( λ⊕ + λ⊖  ) 
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substructures.  The probabilities used for this calculation include the a priori estimates

of a graph belonging to the class without further information, as well as the conditional

probability that a graph belongs given each of its subgraphs.  This is done using   the

LEARN_NB_GRAPH_CLASSIFIER algorithm given in Figure 5.2.

LEARN_NB__GRAPH_CLASSIFIER takes a set of features, the target concept

for  the classifier,  and the  maximum feature size to  be  used for  classification.   The

examples  provide  the  sample  space  from  which  to  extract  probabilities,  and  the

maximum feature size is used to provide a means of avoiding overfit (the maximum

feature size  in  SUBDUE is  defaulted to  2,  as  per  experiments  in  Chapter  6).   The

algorithm calculates  (⊕P ), the prior probability that a given graph is a member of the

class.  For each subgraph of the target concept, the algorithm also calculates (P f ⊕| ), the

conditional probability that a feature can be found in the class.

Figure 5.2. LEARN_NB_GRAPH_CLASSIFIER algorithm.

A classifier for NBGC is a set of features with associated probabilities, and a

confidence threshold.  The probabilities consist of the calculated a priori values for the

LEARN_NB_GRAPH_CLASSIFIER(Features, Examples)
This functions learns the a priori values for (⊕)P  and (P ⊖), as well as the conditional probabilities (P f
 ⊕|  ) and  (P f   ⊖|  ) for every feature f in Features. Examples is a set of Graphs along with a ⊕ or ⊖

classification.  
1.  Learn the a priori values for P(⊕) and  P(⊖).  Use m-conditioning on uniform prior probility of
positive or negative.

• (⊕), (P P ⊖) ← calculate prior pobabilities using Equation (5.5)
2.  Collect the required (P f   ⊕|  )  and  (P f   ⊖|  )  for each f in Features. Use m-conditioning on
uniform prior probability of subgraphs.

• For each f in Features:
• calculate feature probabilities using Equation (5.6)
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classification  values,  and  the  probabilities  of  each  feature  for  each  possible

classification  value.  The  confidence  threshold  represents  the  minimum  amount  of

certainty that must be present to accept the classification from the classifier (see Section

5.5 for more on the confidence threshold).  For example, one of the classifiers in the

experiments (Chapter 6) was recorded as shown in Figure 5.3.  

Figure 5.3. Classifier output.

In the figure, the prior probability of a graph being a positive instance is 0.0845,

the confidence threshold is 0.831, and there are two features used for classification (see

Section 4.2.4 for definition of a graph-based feature): 1) a rectangle on a triangle on a

square,  with a  probability of  0.0220 in  positive instances  and 0.000510 in  negative

instances;  and  2)  a  square  on  a  square,    with  a  probability  of  0.0385  in  positive

instances and 0.00163 in negative instances.
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The prior probabilities in the classifier  are calculated using feature selection

probabilities  and  m-estimation.   The  prior  probability  of  a  graph  being  positive  or

negative can then be calculated using the following formula:

P c=
| I F

c |1
| I F

T ||C |
(5.5)

that is, the ratio of all isomorphic feature occurrences in transactions with classification

C to all  feature occurences in all  transactions, m-conditioned on the probability that

each classification has a uniform prior probability of occurrence. 

It is important to discount the subsumed features, as retaining them will violate

the naïve Bayesian independence assumption.  A subsumed feature is a substructure that

is subgraph isomorphic to another feature.  Naturally, a string such as “ab” has a natural

dependence on both “a” and “b”.

For example, in the string “abcaabcc,” the following are candidate substructures

for use as features if the maximum length is 3: {“a”, “b”, “c”, “ab”, “bc”, “ca”, “aa”,

“cc”, “abc”, “bca”, “caa”, “aab”, “bcc”}.  If the feature “ab” is selected, then features

“a” and “b” must not be selected.  The probability of “ab” would then be 2 / (0 + 0 + 3 +

2 + 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1) = 2/16 or 0.125 instead of 2/(3 + 2 + 16) = 2/25 =

0.08.

The next step in the algorithm is to calculate the conditional probabilities for the

features given the target classifications using the following formula:

P  f i |c j=
| I f j

ci |1

| I F
ci || F |

(5.6)
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that is, the total number of isomorphic occurrences of each feature in the transactions

with the given classification to the total number of feature occurrences in graphs with

the  target  classification,  m-conditioned  on  the  probability  that  each  feature  has  a

uniform prior probability. 

5.3 Feature Extraction

In Naïve  Bayesian text  classifiers,  the  classifiers  use  the  frequency of  word

appearance to classify text because they are the building blocks for natural language.

In natural language, the granularity of the building blocks to use for frequency could

have been set to any of a number of different levels, from phonemes, tokens, and roots

on one extreme, to phrases and clauses at the other extreme.

In a similar vein, a graph classifier should also have a measurable building block

or attribute  to  use as  the basis  for  comparison.   Because  the classifier  assumes  the

building  blocks  are  independent  from one  another,  it  also  needs  a  granularity  that

maximizes the independence assumption.

Independence granularity in a graph can exist at one of several levels.  It could

exist  at  the  vertices  themselves,  in  the  relations  between  the  vertices,  as  transitive

relations  between vertices  (acyclic  paths),  or  as  clustered  relations  between vertices

(subgraphs).  Because the first three forms of granularity are all specific instances of

subgraph granularity, the Naïve Bayesian graph classifier uses subgraph granularity for

the attributes.

To extract the features as subgraphs, NBGC extracts the features from a graph

instance using the EXTRACT_UNIQUE_SUBGRAPHS algorithm shown in Figure 5.4
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and Figure 5.5 shows the results of running the algorithm.  All unique subgraphs with

no more than a given number of edges in the target graph are used for the features.  To

extract the features, first the individual vertices are added to an empty feature list, then

the feature list is iteratively grown by adding features that have only one more edge than

than those currently in the feature list.  The algorithm terminates when there are no more

instances to add or the number of edges extended is equal to the maximum feature size.

EXTRACT_UNIQUE_SUBGRAPHS(Graph, ExtractedSubgraphs, MaxFeatureSize)
 This function extracts all unique connected subgraphs of Graph by adding one edge at a time.
ExtractedSubgraphs is the set of unique graphs already extracted from Graph.
1. Get the Root vertex instances.

• Instances = getVertexes(Graph)
• CurrentSize = 0;

2. While new instances have been extracted, add them and look for more.
• While Instances→  >  size 0 and CurrentSize < MaxFeatureSize

• ExtractedSubgraphs ← ExtractedSubgraphs ∪  Instances
• Instances = extendInstances(Instances)
• CurentSize++

 
Figure 5.4. EXTRACT_UNIQUE_SUBGRAPHS algorithm.
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 Figure 5.5. Extracting classifier features.

5.4 Discovering the Best Feature Set

Once the set of features has been extracted, they cannot be used as is.  This is

because the existence of an edge between two substructures defines a relation  between
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the substructures, and the more often this relation occurs the stronger the correlation

between the substructures.   The very existence of a graph depends on the existence of

its  subgraphs,  so  using  features  that  share  subgraph  isomorphism  violates  the

dependency assumption necessary for naïve Bayes to be accurate.

Of course,  extracting a set  of  independent  subgraphs  comes  at  a  cost.   The

number of ways to partition a graph into independent sets is exponential in the number

of edges, and what is desired is not just any feature set, but the one that best explains the

data.  To find the best independent set using brute force would therefore be expensive

computationally,  because  it  would  require  testing  an  exponential  number  of

combinations.

SUBDUE  [Cook  and  Holder,  2000]  uses  a  beam  search  to  find  the  best

subgraph.   It  does  this  to  reduce  the  search  time  from an  exponential  search  to  a

polynomial search bounded on the beam size.  When the algorithm searches for the best

subgraph, it starts with single vertex instances, gives them each a score, and discards the

candidate graphs whose score falls below the beam threshold.  It then incrementally

grows the set by adding all single edge instances to the best candidates, and iterates the

score-prune-extend procedure until no graph extensions outperform the current best.

Likewise, a beam search is  employed by NBGC to find the best classifier that

can be constructed given a candidate graph G and a set of training instances (this search

is  done  at  the  evaluate  child  step  of  the   SUBDUE algorithm of  section  3.4).   A

classifier for NBGC consists of a set of prior probabilities for each of the classifications,

a set of features with the probability of each feature given each classification, and a
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confidence threshold (discussed in Section 5.5).  For each candidate graph, NBGC finds

the  classifier  to  use  by  building  trial  classifiers  using  different  combinations  of

substructures  found  in  the  candidate  graph  and  evaluating  the  performance  of  the

constructed classifiers over the training samples provided.  

The NBGC heuristic is a greedy heuristic that starts by initializing a list of best

feature sets with an empty feature set as the only member.  The heuristic then iteratively

selects each best feature set  bfs from  the best feature set list.   If the best feature set

hasn't  changed from the  last  iteration,  that  feature set  is  returned.   If there  are any

untried independent features remaining, a classifier is built for each remaining feature

by concatenating only that  feature with the features in  bfs.   Each classifier  is tested

against the training data and the feature set is inserted into the list of feature sets ordered

by value of the classifier built using the set, truncating the list to the beam size.    In the

experiments for the NBGC SUBDUE implementation, we fixed the beam size at 3.

The  classifiers  are  scored  with  respect  to  their  ability  to  minimize  error  in

classification.  The error of a classifier with respect to a training sample is defined as the

difference between the probability returned by the classifier on a training instance and

the target probability of the training instances.  For each training instance, the target

probability is 1 if it is a member of the class  and 0, otherwise.  The average squared

error for the classifier is therefore the sum of the squared error of the training instances

divided by the number of training instances.  The score is defined as the difference from

1, so that maximizing the score is equivalent to minimizing the error:
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Error  P C |T 2≡
∑

j
 P ci |T j−P ci |T j

2

|T |
(5.7)

Score≡1− Error  P C |T 2 (5.8)

The complete algorithm is shown in Figure 5.6.  

Figure 5.6. NB_EVALUATE_CHILD algorithm.

NB_EVALUATE_CHILD(Graph, Examples, MaxFeatureSize)
This function returns the accuracy of the Graph over the Examples using naïve Bayesian classification.
1.  Collect all the features to be used for classification. 

• Features ← {}
• EXTRACT_UNIQUE_SUBGRAPHS(Graph, Features, MaxFeatureSize)
• BestFeatureSets ← {}

2. While true.
2a.  If there are no independent graphs remaining in Features score based on minimum error.

return 1 – sqrt(avgError)
2b.  For each bfs in BestFeatureSets

2b1.  For each remaining independent subgraph f in Features not in bfs
FeatureSet ← bfs ∪ f  
LEARN_NB_GRAPH_CLASSIFIER(FeatureSet, Examples)
Reset counts

correct⊕ ← 0
correct⊖ ← 0
sqerror = 0.0

Test the learned classifier against each example
For each ex in ⊕ Examples

score ← NB_CLASSIFY_GRAPH (ex)
error = 1.0 – score
sqerror += sq(error)

For each ex in ⊖ Examples
score ← NB_CLASSIFY_GRAPH (ex)
error = 0.0 – score
sqerror += sq(error)

avgError = sqerror / |Examples|
If FeatureSet is at least as good as three best, add to BestFeatureSets.

2c.  Prune all sets from BestFeatureSet that don't perform as well as the best 3.
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5.5 Learning Staged Classifiers

A modern technique to improve classification is to move from single classifiers

to  staged classifiers.   Two examples  are  hierarchical  classifiers  [Dumais  and Chen,

2000] and chain classifiers [Xiao et al., 2003].  In the chain classifier, each stage acts as

a filter, weeding out data not easily classified by a later, more finely tuned filter.  In the

hierarchical  classifier,  the  upper  levels  act  as  a  kind  of  ontological  ordering,  by

predicting the subgoups that are valid for classification at lower levels.  In both cases,

the classifiers are grouped as networks, with the express purpose of streamlining the

classification.  In  general,  a  classifier  network  takes  as  input  some  data  to  classify,

categorically subclassifies the data through a directed acyclic network of classifiers, and

determines a final category.  Examples of classifier networks are shown in Figure 5.7.    

 Figure 5.7. Classifier networks.

Chain Classifier

objectclassB Category

Hierarchical Classifier

objectclassA objectclassB Category

objectclassC

Network Classifier

objectclassA

objectclassB
objectclassC classifiers Category

objectclassA
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By combining  classifiers,  we  will  take  advantage  of  SUBDUE's  [Cook  and

Holder, 2000] compression part of the algorithm to set the stage for learning a refining

classifier on each iteration, such that when they are  all combined in a "super-classifier",

the results are  improved.   

The way classifiers are chained together depends on how the data is treated by

the classification system.  For a binary classifier, as we implement in SUBDUE based

on the naïve Bayesian Graph classifier, the two sources of error in the classifier are false

positives  and false  negatives.   If the  problem is  too  many false  positives,  then  the

classifier C1 can perform better if another classifier C2 precedes C1 that performs better

by correctly classifying the C1's false positives.  On the other hand, if there are too many

false  negatives,  then  a  separate  classifier  C2  that  performs  better  on  those  false

negatives will certainly enhance the performance of C1.        

After each iteration of SUBDUE a classifier is learned and its performance is

calculated.  The examples correctly classified by the new classifier are subsequently

removed from the training examples prior to the next iteration and the classifier details

are recorded.  

For classifiers  that  return only the category of classification,  the classifier to

learn must be determined from the performance on the training data.  For example, if the

classifier  is  generating too  many false  positives,   it  can be  made more  specific  by

chaining another classifier trained to filter out the results of the previous classifier, as in

the chained classifier shown in Figure 5.7.  To do this, the second classifier is trained on

all the samples that the first classifier classified as positive.  The overall classification
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probability is the probability of the conjunction of the classifiers' probabilities, which

can be the product of the individual probabilities if the classifiers' output is assumed to

be independent.

If, on the other hand, there are too many false negatives, the classifier can be

split  into  a  hierarchical  system  of  three  classifiers,   as  shown  in  the  hierarchical

classifier in Figure 5.7.  One classifier classA would be placed immediately before the

existing classifier,  say classB, and trained to predict  which data  classB can classify

correctly.  The data predicted as problematic for classB would be sent to a new classifier

classC, to be trained on the data classB would filter erroneously.   The probability of the

stage would then be a calculated by calculating the probability of the disjunction of the

two classifiers' probabilities, which is the the sum of the individual properties less the

probability for overlap.  The overlap calculation gets more complex with every added

classifier.

A standard classifier generally returns the most probable classification without a

degree of membership, whereas the naïve Bayesian graph classifier, implemented as a

binary classifier, returns the probability of class membership.  This returned probability

makes the calculation of the overall probability given multiple classifiers more tractable.

The ideal probability of a classification given multiple naïve Bayesian classifiers

is given by the following formulas using Bayes theorem:

P + |Classifiers , graph=
P + P Classifiers , graph | +

P Classifiers , graph
(5.8)

where  P + |Classifiers , graph represents the  conditional probability that the graph
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is a positive instance of the class given a set of classifiers for the class, and P + is

the a priori probabilitiy of a graph being a positive or negative instance.  As in single

classifier calculations, we can use the method of likelihoods [Mitchell, 1997] , treating

the numerator as the likelihood and the denominator as a normalizing constant:

+ |Classifiers , graph= P + P Classifiers , graph | + (5.9)

- |Classifiers , graph= P - P Classifiers , graph | - (5.10)

(5.11)

P + |Classifiers , graph=
+ |Classifiers , graph

+ |Classifiers , graph- |Classifiers , graph

P - |Classifiers , graph=1− P + |Classifiers , graph  (5.12)

Formulated this way, the only unknown is the probability of the classifier values

and the graph, given the positive or negative instances.   Assuming the probability of the

graph is independent of the probability of positive instances allows us to rewrite the

likelihood calculations as follows:

+ |Classifiers , graph= P +P graph | + P Classifiers | + (5.13)

- |Classifiers , graph= P -P graph | - P Classifiers | - (5.14)

where P Classifiers | + is the probability of the classifiers returning a true positive,

P Classifiers | - is the probability of the classifiers returning a false positive, and

P +P graph | + is the likelihood calculation of the graph being positive given the

set  of  classifiers.   Furthermore,  assuming  the  classifiers  are  independent,  the  final

likelihood calculations are:

+ |Classifiers , graph=∏
i
 P + |classi P classi | graph (5.15)
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- |Classifiers , graph=∏
i
 P - |classi P classi | graph (5.16)

in which each classifier  output  is  weighted with the probability of producing a true

positive or a false negative,  both values of which are available using information in the

evaluation stage during learning.

However,  there are two fundamental  problems with this  approach.  The first

problem is that it assumes the data being classified has unimodal characteristics; that is,

there is a single underlying best description of the data.  When the data is actually multi-

modal, the classifiers will tend to cancel one another out, with each classifier classifying

as negative the positive results of other classifiers.

The second fundamental problem is that the data for the second classifier is a

subset of the data used to train the first classifier, and it is unknown how the classifier

would actually perform on the original  training set.   Furthermore,  it  is  best  for  the

classifiers  to  be  as  trained  as  similarly as  possible  to  its  actual  usage  to  verify its

accuracy.   Removing  training  data  that  the  previous  classifiers  get  correct  is  not

reproducible against actual data, because you cannot tell which data the first classifier is

getting correct.

These  two  problems  necessitate  creating  an  approximation  method  to  that

above.  Instead of clustering all the classifiers into a single node, each classifier will

become one of the nodes connected together with confidence thresholds  as shown in

Figure 5.8.

40



 Figure 5.8. Classifiers chained using confidence thresholds.

Each of the sub-classifiers then becomes good at solving problems passed on

from previous classifiers. For instance, if the first classifier is equivalent to a parts clerk

looking for your order, then he will be able to handle most of your requests; when he is

not sure enough of his job, he asks the shift supervisor, and so on up the chain. 

At all stages in the classifier path except the last, the classifier's probability is

compared  against  a  threshold  to  determine  if  the  answer  is  “good  enough.”   This

confidence threshold defines  how confident  the  classifier  is  in  the probability.  We

calculate this value by scaling the probability's distance from the uniform probability of

classification  over  the  total  possible  distance,  such  that  for  a  binary classifier,  0.5

becomes 0% confidence, and 0 and 1 become 100% confidence as follows:

Confidence : P + | graph | P + | graph−0.5|
0.5 (5.17)

 If  the  classification  probability is  strong enough,  the  process  stops  and the

highest likelihood class is returned.  If, on the other hand, the probability is not strong

Chain Classifier with Transition Thresholds

objectclassB Pr(+| C)objectclassA objectclassC

Pr(+| B)Pr(+| A)

Confidence Threshold A

Confidence Threshold B
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enough, the data is then sent to the next classifier in the chain.  The last classifier in the

chain has no threshold, and simply outputs its classification probability.

Essentially  the  “super-classifier”  we  are  learning  is  a  disjunction  of

substructures, each with an embedded confidence threshold that determines whether it

can trust the probability generated for the classification.  You can picture the result as a

tree, where each node in the tree is a classifier that can output a “yes”, “no”, or "ask the

next guy" link.

In order to learn the next classifier in a chain during training, the confidence

threshold is calculated for the last classifier, and all training examples that fall above

that threshold are removed from the set.  This threshold is optimized to maximize the

number of  answers that  are confidently answered.   The  approximation  used here is

based on the threshold itself:

conf Thresh=argmax
conf i

conf i×| samples classified above confidence |
100

(5.18)

This method overcomes the weaknesses of the last method, because the classifiers are

now being trained as they are expected to be used, and once a classifier generates a

strong enough likelihood as either positive or negative, it will not be overridden.

As an example, suppose we have 10 training examples of which the first 4 are

labeled negative and the remaining 6 are labeled positive.  Furthermore, on the first

iteration the best classifier returns probabilities of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. 0.8,

0.9, 1.0}.  The confidences become {0.8, 0.6, 0.4, 0.2, 0, 0.2, 0.4, 0.6, 0.8, 1} with

unique confidences of {1, 0.8. 0.6, 0.4, 0.2, 0}.  Each confidence is then multiplied by

the percentage of occurrence at or above the value to yield {0.1, 0.16, 0.24, 0.24, 0.16,
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0.1}.  The confidence value just before the dropoff, 0.4, is selected as the threshold for

Classifier  A and  the  classifier  is  recorded  as  in  Figure  5.7.   The  training  samples

classified at or above the confidence threshold of 0.4 are now pruned from the data set,

so we remove examples 1, 2, 3, 7, 8, 9, and 10.  The new training set now consists of 1

negative example from the original set and 2 positive examples, ready to find the next

classifier, Classifier B, on the next iteration.

We implemented this  classification framework in SUBDUE with the NBGC

heuristic, and tested it against both synthetic databases, where the quality of the data is

controlled,  and  the  mutagenesis  data  set,  a  collection  of  large  graphs  representing

molecules  classified  as  to  whether  they  have  been  known  to  mutate  and  become

cancerous.  The results of these experiments of are detailed in the next chapter.
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CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Synthetic Results

6.1.1 The House Dataset

The  viability  of  the  NBGC  algorithm  was  checked  by  running  the  Naïve

Bayesian  Graph  Classifier  algorithm  against  several  simple  benchmark  data  sets

previously  developed  for  evaluating  SUBDUE  [Cook  and  Holder,  2000]  learning

algorithms  and  watching  the  results  as  data  was  added.   The  house  data  sets   are

described in Table 6.1.   In all the data sets the target concept to learn is that a house is a

triangle on a square as shown in Figure 6.1.

  Figure 6.1. Target concept, a house is a triangle on a square.

To test supervised learning, the training sets house1.g through house3.g have

both positive and negative examples.  The smallest set is house1.g with 3 positive and 3

negative examples.  More positive and negative examples are incrementally added in

house2.g and house3.g.
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Table 6.1 Description of sample data sets used.

Data Sample Description Positive
Examples

Negative
Examples

house1.g House  domain  where  a  house
consists of a triangle on a square.
Separate  examples  for  each
house.  Uniform prior  probability
for vertexes.

3 3

house2.g One  more  positive  and  negative
example added to house1.g

4 4

house3.g One more positive example added
to house2.g

5 4

6.1.1.1 Initial Discoveries

The three positive and negative examples in the house datasets are shown in

Figure 6.2, and a sample of the data representation is shown in Figure 6.3.  SUBDUE's

minimum  substructure  size  was  set  to  4  vertices  and  the  limit  on  the  number  of

substructures to evaluate was set to 1000 to get past non-discriminating structures in the

data.    The  maximum  feature  size  was  set  to  5.   The  resulting  best  substructures

discovered  by SUBDUE using  NBGC are  listed  in  Tables  6.2  and  6.3.   SUBDUE

discovered that the triangle on square substructure had the best discriminating features

in the house1 dataset,  but was still  unable to build a classifier that  got any samples

correct.  This is because SUBDUE starts with single vertex instances and expands the

best substructures found until  the no better children can be found (see Section 3.4).

NBGC can only improve the score if there are more instances of a substructure in either

the positive or the negative dataset, not if the instances are uniform  (see Chapter 5).

The smallest distinguishing substructure in house1 is 4 vertices and 3 edges large , so
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SUBDUE never gives NBGC a chance to evaluate it.  However, as more data samples

were added in house2, NBGC in SUBDUE was able to discriminate 60% of the positive

examples and 50% of the negative examples.  In this case, it selects the triangle on

square on rectangle substructure because the rectangle is the only 1 vertex substructure

that differentiates between positive and negative examples, and occurs in at least one

positive  example  (SUBDUE  draws  candidate  graphs  from  the  positive  examples).

Finally, with the addition of another positive example in house3, 80% of the positive

examples were classified in addition to 50% of the negative examples.

                                

Figure 6.2. Examples in the house datasets.

Positive Examples 

Negative Examples 

House 1
Added in
House 2

Added in
House 3
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Figure 6.3. Training sample representation in a house dataset.

Table 6.2 Best substructures found by data set
Dataset Best substructure 1 Best substructure 2 Best substructure 3
house1 triangle on square object on square on

object
triangle on object

house2 triangle on square  on
rectangle

triangle on object on
rectangle

object on square on
rectangle

house3 object on  square on
rectangle

triangle on square on
rectangle

object on object on
rectangle

Table 6.3 Evaluation of best classifier found by dataset
Dataset Value + Classified Correctly - Classified Correctly
house1 0.75 0 0
house2 0.77 3 2
house3 0.77 4 2

 
6.1.1.2 Initial Classifier Features

The  breakdown  of  the  classifier  features  of  the  best  classifier  learned  by

SUBDUE on the examples of the house3 dataset are shown in Figure 6.4.  As shown in

Table  6.4,  the  relative  likelihoods  captured  by  the  “rectangle”  feature  emphasize
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substructures that are stronger in the negative examples, whereas, the feature “object on

object on object” shows a slight positive preference.

Figure 6.4. Classifier features in house3 best substructure, 1 iteration, 6 edge maximum
for features.

Table 6.4 Relative likelihood of features of best classifier found in house3 dataset.
Feature P(Feature | +) P(Feature | -) Relative Likelihood

(+)
object on object

on object
0.0500 0.0435 53.5%

rectangle 0.0167 0.0326 33.9%

Although it may seem surprising that SUBDUE with NBGC did not discover the

"object shape house on object shape square" pattern as one of the classifying features,

this is, in reality, due to the makeup of the training data, a bias inherent in NBGC, and a

bias in the SUBDUE algorithm.  NBGC's bias is to learn features that "explain away";

that  is,  it  adds  features  more prevalent  in  other  classifications.   One of  SUBDUE's

biases  is  to  only  consider  positive  examples  for  candidate  substructures.   As  a

consequence, SUBDUE with NBGC first finds features in "positive" examples that are

more prevalent in "negative" examples.  With the house3 dataset (see Figure 6.2), there

object
on

rectangle object

object
on
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are more positive feature instances than the negative feature instances.  This results in a

higher a priori probability for positive instances than for  negative instances.  Therefore,

with no features added, NBGC already can correctly predict the majority of  example

cases  by  defaulting  to  the  a  priori  value.   Consequently,  SUBDUE  with  NBGC

discovers in the positive examples the rectangle feature, which occurs more frequently

in the  negative examples, and the "object on object on object" feature which occurs

slightly more often in the positive examples.

The next test was to evaluate the impact of the maximum number of edges to

use for a classifier attribute by adjusting the maximum number of edges between trial

runs  on  the  house3.g  dataset  and  observing  the  resulting  scores  of  the  best  three

classifiers.  The results are list in Table 6.5.  The best substructures found remained the

same  despite  the  maximum  feature  size.   However,  the  classification  probability

accuracy increased steadily through feature size three as marked the increase in score

which represents lower error classification probability (see Chapter 5).  Feature sizes

four through six resulted in the same classifiers discovered using feature size 3.

49



Table 6.5 Impact of the maximum number of edges in classifier features for house3
dataset.

Maximum
Edges

Best Substructures
Found

Value + Classified
Correctly

- Classified
Correctly

0 triangle on object on
rectangle

0.768 4 2

object on square on
rectangle

0.768 4 2

triangle on square on
rectangle

0.768 4 2

1 triangle on object on
rectangle

0.769 4 2

object on square on
rectangle

0.769 4 2

triangle on square on
rectangle

0.769 4 2

2 triangle on object on
rectangle

0.773 4 2

object on square on
rectangle

0.773 4 2

triangle on square on
rectangle

0.773 4 2

3-7 object on square on
rectangle

0.773 4 2

triangle on square on
rectangle

0.773 4 2

triangle on object on
rectangle

0.773 4 2

6.1.1.3 Learning Multiple Classifiers

To evaluate if SUBDUE with NBGC could learn the intuitive best result, the

algorithm was allowed to continue learning a new classifier for each iteration on the

house3 dataset until  no more classifiers could be learned.  The results are shown in

Table 6.6.  Two iterations were enough to generate classifiers that exhaust the sample

space.  The  classifiers from the first iteration correctly classify 67% of the 9 examples

in the training set.  By removing the covered examples using the confidence threshold, it

correctly classified all the training examples removed.  The remaining 3 samples are
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passed  on  to  one  of  the  classifiers  learned  in  iteration  2,  which  classified  at  67%

accuracy on  the  training  set  but  removed  only the  examples  it  correctly  classified.

Finally, the last classifier correctly classified the remaining positive examples.  The net

result for the combination is therefore 9 out of 9, or 100%.  This result represents a

distinct improvement over each of the the first two classifiers alone.

The combination of the bias toward smaller substructure sizes from SUBDUE

and the complexity of the target feature (4 vertices and 3 edges, see Section 6.1.1.3)

resulted in SUBDUE with NBGC overfitting the discovered features to the dataset.  For

example,  the  first  classifier  selected  as  features  “object  on  object  on  object”  and

“rectangle,” neither of which is the target feature “object shape triangle on object shape

house.”  

6.1.2 The Church Dataset

The  church  data  is  a  synthetic  dataset  generated  to  test  the  performance  of

SUBDUE with NBGC over a large number of smaller graphs with fixed uncertainty.

1000 graphs were generated using an artificial graph generator available at the UTA

SUBDUE site(http://cygnus.uta.edu/subdue/).  Each sample was generated using a core

concept of a church being a triangle on a square beside a rectangle, as shown in Figure

6.5, and nested in a larger graph with a mutation rate of 10%.
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Table 6.6 Classifiers discovered in house3 dataset.

Iteration Best

Substructures

Score Pos

Correct

Neg

Correct

Conf

Thresh

Pos

Covered

Neg

Covered

1

triangle on
object on
rectangle 0.773 4 2 0.199 4 2
object on
square on
rectangle 0.773 4 2 0.199 4 2

triangle on
square on
rectangle 0.773 4 2 0.199 4 2

2

triangle on
square on

object 0.807 0 2 0.683 0 2
triangle on
object on
rectangle 0.806 0 2 0.681 0 2

triangle on
square on
rectangle 0.806 0 2 0.680 0 2

3

triangle on
square on
rectangle 1.000 1 0 0.964 1 0

triangle on
square on

object 1.000 1 0 0.959 1 0
object on
square on
rectangle 1.000 1 0 0.959 1 0
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Figure 6.5. Church concept in church dataset, triangle on a square beside a rectangle.

In the first test, SUBDUE with NBGC was run over different sample sizes from

size 10 to size 500 selected in order from the generate church dataset.  The last 500

samples of the church dataset were set aside for validation. The algorithm was run in

Cygwin in Windows XP on a Toshiba Satellite with a 2 Ghz Intel® Celeron® processor

and 240 MB of RAM.  The maximum feature size was set to six and the minimum

graph size set to five.  The number of iterations was specified as unlimited.  Figures 6.6

and  6.7 show the error rates and training times respectively.  In sample sizes under 80,

the classifier had better accuracy on the training data than the validation data.  For larger

sample sizes, the accuracy on the unseen validation data was better than the accuracy on

the test set, indicating that the classifiers learned generalized well to unseen data.  The

validation accuracy was also surprising, because the classifier achieved 95% accuracy

after training on only 80 samples and 97.5% accuracy after training on 200 samples.
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Figure 6.6.  Accuracy of SUBDUE NBGC on church dataset.
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Figure 6.7.  Training time of SUBDUE NBGC on church dataset.

In the second test, we fixed the sample size to 200 and simulated noise in the

data set with varying degrees of mutation.  Each sample was an instance of the target

concept.  Each sample in the set had a probability equal to the noise rate of undergoing

mutation.  Each mutation had an equal probability of either adding an edge, adding a

vertex, removing an edge, or removing a vertex.  All the sample sets were tested using
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the validation samples from the previous experiment.  The results are displayed in

Figure 6.8.
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Figure 6.8.  Effect of Noise on  SUBDUE NBGC accuracy.

As can be seen in the figure, SUBDUE with NBGC tended to learn better classifiers

when there was more noise and fewer positive training examples, with the exception of

a dip in accuracy when the noise level was  around 90%. 

6.2 Mutagenesis Dataset

The purpose of the mutagenesis dataset test is to position the performance of

SUBDUE  with  NBGC as  compared  to  the  performance  of  other  classifiers  on  the

mutagenesis domain.  The mutagenesis dataset (http://ranger.uta.edu/mgd/mutagenesis-

f.pl)  is  a  collection  of  188  compounds,  each  classified  as  to  whether  or  not  the

compound is mutagenic (that is, can mutate and become cancerous).  The data structure

of each consists of a set of four continuous indicators (ind1, inda, lumo, and logp) and a
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molecular structure.  Each molecule consists of an average of 26 atoms per molecule,

each of which has properties including element, type, and charge.  In addition, there are

an average of 28 bonds per molecule linking the atoms together in pairs, and each bond

possesses a bond strength.

For this set of experiments, the prolog data format was converted to a graph

format suitable for SUBDUE.  A molecule vertex was constructed for each example.

The  atom,  molecule,  and  bond  properties  were  represented  as  labeled  edges  of  the

property names linked to vertices labeled with the property values.  Atom and bond

vertices were attached to the molecule vertices using edges named molecule_atom and

molecule_bond respectively.  Similarly, bond_atom edges were added to represent the

atoms participating in a bond. 

The large vertex degree (number of edges going in and out) of the molecule

nodes in this format prevented SUBDUE from completing the mining in an efficient

manner  necessitating  the  following  changes  from  the  original  data  structure  and

parameters to enable SUBDUE to complete in a reasonable amount of time:

1. The maximum feature size had to be dropped from six to three.

2. The graphs were denormalized from having a single molecule vertex to having a

molecule vertex for every atom and bond. 

3. SUBDUE's limit on the number of candidate graphs to evaluate was set to 200.

4. SUBDUE's pruning parameter was set,  so that child substructures of unpromising

substructures were not considered.
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The experiments  were performed in Slackware® Linux on  an E-machines®

T6522  with a  2.2  Ghz  AMD Athlon® processor,  512 KB L2 cache,  and  1  GB of

memory.

6.2.1 Linear Sampling

In this experiment,  SUBDUE with NBGC was trained on the first  n samples

from the  dataset  and  validated  on  the  last  94  samples  in  the  dataset.   n  was  set

incrementally in values ranging from 5 to 65 samples.   The training was done using a

maximum feature size of two and a maximum feature size of 3.  The accuracy results

are  plotted   in  Figure  6.9,  and  the  running  times  are  plotted  in  Figure  6.10.   The

accuracy peaked at close to 90% on the first 10 samples for both feature set sizes, but

declined soon afterward due to the clustering of samples in the data.  There was not

much difference in the accuracy between a maximum feature size two or three, even

though the maximum feature size of three used a significant amount of more time as

shown  in  Figure  6.10.   Consequently,  the  remaining  experiment  using  random

resampling was done using a maximum feature size of two.
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Figure 6.9.  Accuracy of SUBDUE NBGC on mutagenesis dataset using linear
sampling.
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Figure 6.10.  Training time of SUBDUE NBGC on mutagenesis dataset by sample size.

6.2.2 Random Sampling without Replacement

Because the data samples showed a high degree of clustering and low uniformity

during  linear  sampling,  an  experiment  was  done  to  see  if  using  random  sampling

without replacement would allow for the training curve to be observed. 

For  this  round  of  tests,  the  validation  set  for  each  training  iteration  was

generated  by drawing 90  samples  from the  sample  set  and setting them aside.  The

samples for training were generated by randomly drawing without replacement from the

remaining 97 original samples. This procedure was repeated 30 times for training sets

ranging in size from 5 to 30 samples. SUBDUE was then trained using NBGC on each

training  set  and  the  resulting  classifier  was  validated  against  its  corresponding  90

unseen training examples. Those results were then batched by training sample size to

generate the performance curves shown in Figures 6.11 and 6.12. Due to the size of the
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training instances, SUBDUE was limited to evaluating 100 graphs per iteration on the

first run, and 200 on the second run.
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Figure 6.11. Resampling performance with limit set to 100.
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Figure 6.12. Resampling performance with Limit set to 200.
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As can be seen in Figures 6.11 and 6.12, SUBDUE with NBGC and random

sampling produces a positive learning curve for the average classifier.  With the limit of

substructures to evaluate set to 100 the curve peaks at about 62% with sample sizes of

size 15, and declines steadily afterward.  Increasing the limit to 200 results in a peak

average of 70% at 25 samples, before starting to decline.  The best classifier in both

cases scores around 91% on the 90 unseen examples using only 15 training examples.

SUBDUE with NBGC compares favorably with other graph-based classifiers

trained on the mutagenesis data set [Karwath and De Raedt, 2004] [Ketkar et. al, 2005]

[Bowers et. al, 2000], as shown in Table 6.7.  NBGC boosted SUBDUE's performance

by adding the capability to discover features that classify negative examples as well as

positive examples.  However, it still does not perform as well as state-of-the-art ILP

systems for structural data [Lodhi and Muggleton, 2005] [Sebag, 1997].
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Table 6.7 Mutagenesis performance of classifiers

Classifier Performance Data Type Training and Validation
SUBDUE  [Ketkar  et.  al,
2005]

82% Graph 10-fold cross-validation

SMIREP [Karwath and De
Raedt, 2004]

85% Graph 90% training, 10%
validation

Naïve  Bayes + ILP [Lodhi
and Muggleton, 2005]

85% Structured 10-fold cross-validation

Complex Structure
Decision Trees [Bowers et.
al, 2000]

87% Graph 10-fold cross-validation

SUBDUE NBGC 91% Graph Random Sampling
Best classifier validated on
90 random samples

ILP  STILL  [Lodhi  and
Muggleton, 2005]

94% Structured 10-fold cross-validation

PPILP MFLOG [Lodhi and
Muggleton, 2005]

96% Structured 10-fold cross-validation

EMILP  RS  [Lodhi  and
Muggleton, 2005]

96% Structured 10-fold cross-validation

DISTILL [Sebag, 1997] 97% Structured 10-fold cross-validation
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CHAPTER 7

CONCLUSION AND FUTURE WORK

A graph-based learning algorithm built  upon probability theory can form the

basis of an accurate predictor and useful learning algorithm.  In particular, an algorithm

that learns graph concepts using a naïve Bayes method can achieve comparable or better

performance than other learning algorithms on structural data.

The Naïve Bayesian Graph Classifier, NBGC, is an adaption of the traditional

naïve Bayes text-based classifier adapted to handle graph-based data. Specifically, the

definition of attributes as words was adapted to attributes as substructures, or graph-

based features, within a graph.  We also defined a method for calculating the conditional

probabilities of substructure-based attributes for the naïve Bayes learning method.  

NBGC was tested by embedding it as an alternative evaluation method in the

SUBDUE  algorithm  [Cook  and  Holder,  2000],  where  we  further  enhanced  the

classifiers  by  learning  a  super-classifier  as  a  sequence  of  such  classifiers.   The

classification  system  was  then  tested  against  two  sets  of  synthetic  data  and  the

mutagenesis data set.  In the synthetic house dataset, we demonstrated that SUBDUE

with  NBGC has  a  built  in  bias  to  find  substructures  in  the  positive  examples  that

“explain  away”  from  the  a  priori  prevalent  classification.   In  the  synthetic  church

dataset,  SUBDUE  with  NBGC  was  able  to  accurately  classify  97.5%  of  unseen

examples,  and was shown to be relatively immune to  noise with  a few exceptions.
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Finally, SUBDUE with NBGC outperformed several recent classifiers built for graph-

based data, while still underperforming state-of-the-art ILP systems. 

There are a number of things that we would still like to do with NBGC.  First

and foremost, we would like to explore different methods for calculating the best feature

set and dynamically determining the best feature size.  The house example demonstrated

that  when  there  is  sufficient   uniformity  in  smaller  substructures,  the  growth  of

candidate  features  from  single  positive  vertices  can  fail  to  identify  differentiating

features.   Also,  the  algorithm  to  find  the  best  feature  set  significantly  increases

SUBDUE's runtime as the number of candidate features increases.

There  are  two  related  approaches  for  performing  supervised  graph-based

learning.  [Deshpande et al., 2003] have developed a method that first finds frequent

topological and geometric subgraphs,  encodes them as feature vectors, and then applies

SVM learning to learn a classifier.  [Gärtner, 2005] is developing kernel methods for

graphs  that  return  a  positive  real  value  which can  be  used  in  any classifier  system

developed for structural data that makes use of kernel functions.
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There  are  some  natural  extensions  that  can  be  performed  on  the  NBGC

algorithm.  One extension would be to adapt SUBDUE with NBGC to be used as a

utilitarian classifier by providing features to use or ignore as separate input.  Another

natural extension is to enable SUBDUE and NBGC to discriminate  multiple labeled

classes simultaneously, instead of just positive and negative examples.  This extension

could in turn lead to work exploring different methods for automatically building the

“super-classifier” networks, possibly through the use of a more informed confidence

threshold function, or different classifier architectures    

To  conclude,  this  first  implementation  of  NBGC in  SUBDUE resulted  in  a

surprisingly accurate classifier and useful learning algorithm built on probability theory,

NBGC demonstrates  that  the use  of the  naïve  Bayes method to classify graphs  can

achieve a classification accuracy on graph-based data comparable to within 10% of the

current learning algorithms for structured data.
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