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ABSTRACT

PERFORMANCE ANALYSIS AND DESIGN OF SPACE-TIME CODES

Publication No.

Chen Liao, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Vasant K. Prabhu

Wireless communication technologies have evolved from the original analog net-

works to IP-based network. Today’s wireless communications have been affected by in-

creasing customer expectations on wireless wideband internet services and continuously

evolving improvements on technologies. Wireless communication systems must increase

their ability to respond to the challenges. The new generation wireless systems (3G/4G)

are designed for this purpose. The notable characteristic of 3G/4G is that it provides high

data rate transmission at data rate up to 348kbps/2Mbps for 3G and 100Mbps/1Gbps

for 4G.

Designing the system for such high data rate transmission has become very chal-

lenging for wireless systems where the multipath fading is an important factor. In recent

years, researches are ongoing in the industry and academic to increase capacity perfor-

mance of wireless systems through antenna diversity. Multiple Input Multiple Output

(MIMO) is one of the major recent developments in the study of high data rate transmis-

sion. There has been considerable attention paid to remarkable performance improve-

ments in MIMO in terms of capacity. Another technology that has been traditionally
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adopted for wireless communications is the channel coding. Combining MIMO with

channel coding has received increasing interest to support a variety of high data rate

applications. These schemes have been termed as “space-time codes”. Space-time codes

are currently an area of exciting activity and have been studied as promising candidates

for future 3G/4G systems. The most important characteristic of space-time codes is that

it can provide full diversity gain as well as coding gain.

In this dissertation, both performance analysis of upper bound of Pair-Wise Error

Probability (PEP) and exact PEP are performed. In the derivation of exact PEP, a new

method is presented. The method is straightforward and comprehensible. The upper

bound provides the insight to understand the performance behavior for high Signal-to-

Noise Ratio (SNR), while the exact PEP provides a better understanding of the perfor-

mance behavior to other range of SNR.

Design criteria for space-time codes had been first developed by Tarokh, which

utilize the analysis of the upper bound on PEP to maximize diversity gain and coding

gain from the property of the codeword distance matrix. These criteria are the most

widely accepted, which form the basis for space-time codes. The criteria assume that the

performance of space-time codes is dominated by the dominant error events. However,

there are no dominant error events in fading channel for space-time codes. Therefore,

Tarokh’s criteria do not provide design guideline for the coding gain. Union bound

analysis offers a alternative solution to this problem. The union bound technique is a

more attractive method that allows us to analyze the contribution of all error events to

the performance. In this thesis, the performance of space-time codes are analyzed using

union bound analysis. Based on the union bound on Frame Error Rate (FER), new design

criteria are proposed. This is achieved by applying more accurate upper bound of PEP

in the union bound analysis. With the proposed criteria, new coding gain performance
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metrics had been defined. New codes based on the new performance metrics are designed

and their coding gain performance superiority are demonstrated.

Space-time block codes have been initially designed to provide full diversity order

with low decoding complexity, but without coding gain. By integrating space-time trellis

codes with space-time block codes, super-orthogonal space-time trellis codes can signifi-

cantly enhance the coding gain performance. However, the super-orthogonal space-time

trellis codes improve performance only in slow fading channel, but do not perform well

in fast fading channel. In fast fading channel, the orthogonal design of space-time block

codes has little effect on the coding gain and does not lead to noticeable improvement.

Furthermore, super-orthogonal space-time trellis codes introduce the diversity gain loss

in fast fading channel. It is well known that the performances of space-time codes are

dominated by diversity gain and any diversity gain loss may cause substantial loss in

performance. We therefore develop orthogonal space-time trellis codes, which improve

performance in diversity gain in fast fading channel. The improvement is achieved by

transferring the vector output of space-time trellis codes into an orthogonal matrix of

space-time block codes, and meanwhile maintaining the symbol Hamming distance of

space-time trellis codes. Theoretical analysis and simulation results had demonstrated

that the proposed codes can improve diversity gain linearly with an increase in the num-

ber of transmit antennas.

Performance saturation and decoding complexity increase with the increased num-

ber of trellis states are the major problems that trellis-based codes have to face in practice.

Turbo codes that allow for reaching near Shannon limit performance are a significant ad-

vance in digital communications. Space-time turbo codes have been developed to achieve

high performance. In a perfect world, system designers would like to achieve high per-

formance while maintaining a full code rate. Therefore, puncture operation is always

used in space-time turbo codes. The problem with the puncture operation in space-time
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turbo codes is that codeword distance matrix is rank deficient for small diversity gain

in slow fading channel, which constitutes a major problem with space-time turbo codes.

Space-time turbo codes that concern the rank deficiency have been developed. The codes

improve performance by reducing the effect of rank deficiency on performance, but exist

high complexity in both code structure and design criteria. This limitation makes the

codes not suitable for the design of complex codes with large trellis state and/or large

numbers of transmit antennas. A new space-time turbo codes have been proposed in

this research. In previous works, it has been demonstrated the systematic structure with

the rotation of the output of the low constitute encoder can effectively reduce the rank

deficient effect on performance. Our new codes utilize the systematic characteristic to

construct a simple code structure. Further, a simple but very effective trace criterion

has been proposed. With the simple codes structure and design criteria, the design of

complex codes can be achieved with significant improvement in coding gain performance

for the systems with small diversity gain in slow fading channel.

Overall, this dissertation presents new design criteria and new codes that contribute

to improving performances of space-time codes.
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CHAPTER 1

INTRODUCTION

1.1 Motivations and Background

Wireless communications have undergone rapid development in the last ten years

with remarkable improvements in performance. However, the development has not been

able to meet the demand for high data rate applications. The internet and broadband

services have been the major driving force for increase in the capacity growth for wireless

communication systems. The increasing demand on broadband services for wireless sys-

tems is expected to continue, which has led to the move towards next generation wireless

communication systems (3G/4G). In some extent, the history of wireless communications

is the history of seeking for high data rate transmission.

Now, wireless communications have become a part of our lives. However, when

the first generation of wireless communication system began to emerge to provide voice

service in the early 1980s, it was considered as a luxury. The 1G, called Analog Mobile

Phone Service (AMPS), first introduced the concept of cellular service with Frequency

Division Multiple Access (FDMA) technology. It exists and has low spectral efficiency

and low power efficiency.

In the early 1990’s, the second generation (2G) technology was developed using

digital techniques. 2G provides basic voice service and Short Messaging Service (SMS).

The majority of 2G deployed around world are Global System for Mobile communication

(GSM) network. GSM is based on Time Division Multiple Access (TDMA) technologies

and supports a data rate of 9.6 kbps. Since 1990’s, 2G has evolved to meet the needs of

rapidly increased demand for data service, such as wireless internet access. Enhanced 2G
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(2.5G), for example the General Packet Radio Service (GPRS), has already conceived

most of the basic ideas of what future network might be. GPRS is based on packet

switching technology and offers wireless internet access with data rate up to 144 kbps.

As the nineties progressed, 2G/2.5G, coupled with the maturity and proven per-

formance, have been widely deployed throughout the world, and the market of 2G/2.5G

continues to develop. Currently, wireless systems are developing continuously, but several

factors significantly affect the wireless market. The major one is that customer expec-

tations have risen to demand high data rate multimedia applications, such as real-time

video applications. The second factor is the rapid development of internet and multime-

dia technology. 3G is a new standard that tries to challenge these factors. Services in

3G were broadened from regular telephone service to include high-speed internet access

and video communications. The response of industry to meeting these services has led

to significant increase in data rate. 3G applies code division multiple access technology

(WCDMA, CDMA2000, TD-SCDMA) to offer data rate of 384 kbps for mobile and 2

Mbps for indoor.

4G is an extension of 3G, and offers a more wide range of multimedia applications.

The distinguishing feature of 4G is that it is a complete IP-based network and the sig-

nificant increase in data rate at which we’re able to access Wireless Local Area Networks

(WLAN) at data rate of up to 100 Mbps for mobile with guaranteed Quality of Service

(QoS) and a rate of 1Gbps for indoor application.

As the industry migrates to 3G/4G, wireless system designers are facing two signif-

icant technical challenges, namely bandwidth limitations and effect of multipath fading.

Multipath fading is an inherent phenomenon in wireless communications that occurs

while the transmitted signal experiences reflection and scattering. The characteristic of

multipath fading signals is the rapid fluctuation of the amplitude of a radio signal over

a short period of time or travel distance [1]. As a consequence, performance of wire-
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Figure 1.1. BER performance of BPSK in Rayleigh and AWGN channel.

less communication system is significantly degraded in multipath fading environment as

shown in Fig. 1.1. Fig. 1.1 displays the Bit Error Rate (BER) performance of BPSK in

both Additive White Gaussian Noise (AWGN) and Rayleigh channel. The degradation

is up to 15 dB for voice communication (at the BER of 10−3 ) and up to more than

40 dB for data communication (at the BER of 10−6) in Rayleigh fading channel. Since

the frequency resources are sparse, multipath fading appears to be the most limiting

characteristics and is becoming a major bottleneck as the data rate increase in wireless

communication systems.

Great efforts have been undertaken to combat multipath fading. Attempts made

to overcome this problem are equalization, diversity, and channel coding, which can be

used independently or in tandem to improve received signal quality [1]. In flat fading

channel, diversity technique is of particular concern, given the simple but very effective
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means of alleviating multipath fading. The diversity technique is a method of making the

replicas of transmitted signal. This technique was developed based on the principle that

the replicas will experience different fading condition and the probability that all replicas

are in deep fading is low. The replicas can be created in temporal domain, frequency

domain, and spatial domain. Among these methods, spatial diversity is technically sim-

pler, improves performance without bandwidth expansion and thus is preferred in most

high data rate applications.

Traditionally, spatial diversity denotes transmit diversity or receive diversity. In

transmit diversity and receive diversity, multiple antennas are equipped either at trans-

mitter side or receiver side. Historically, the popular means of spatial diversity is to use

only a receive diversity. Receive diversity is a simple and practical method for improving

performance in fading channels, and has been adopted in IEEE 802.11b for 3G system.

On May 04, 2005, QUALCOMM announced sampling of the industry’s first single-chip

receive diversity device for increased CDMA2000 network capacity. The QUALCOMM’s

solution gives CDMA2000 operator partners a significant improvement in network per-

formance with increased network data and voice capacity and fewer dropped calls [2].

However, capacity improvement of receive diversity is still limited to the high data rate

services.

This situation has stimulated research in a variety of areas, including MIMO sys-

tem. MIMO is a recent research field, but the history of MIMO can be traced back to

1984 when MIMO was initially developed by Jack Winters of Bell laboratories. MIMO

has attracted attention from industry only since 1998, which primarily was due to the

development in fundamental theory [3][4][5], where MIMO was showed significant im-

provements in capacity performance on fading channel. Since then, MIMO has been

widely studied. The application of MIMO has broken new ground in implementing high

data rate transmission in wireless environment.
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MIMO is combined transmit-receive diversity. This technology establishes radio

links with multiple antennas at both transmitter and receiver side. The MIMO channel

is equivalent to independent parallel sub-channel. The capacity of MIMO is the sum

of the capacity of sun-channel. Therefore there is linear increase in MIMO capacity

with the minimum of number of transmit and receive antennas. In contrast to the

linear logarithmic increase in receive diversity, MIMO results in remarkable capacity

improvements.

To date, MIMO has been recognized as a key innovation in 3G/4G and has already

been incorporated into the IEEE 802.11n standard to attain a data rate of 100 Mbits/s

for WLAN. Channel features when designing wireless network for such high data rate

transmission are of the frequency selective. An equalizer or a Rake receiver is commonly

used to alleviate the Inter-Symbol Interference (ISI), which results from delay spread

in frequency selective channel, with increased complexity of receiver. However, these

technologies are impractical to use in MIMO channel because the complexity of receiver

is too high. The severe frequency-selective fading environment can be mitigated by

combining MIMO with Orthogonal Frequency Division Multiplexing (OFDM). In OFDM,

wideband is divided into a set of orthogonal narrow band channels. A very attractive

feature of OFDM is that the mild channel conditions are encountered since we have a

large number of subcarrier. This feature eliminates the need for equalizer or reduces

to a simple a one-tap equalizer, thereby significantly simplifying wireless system. As a

practical consequence of the advantage, MIMO-OFDM has been a planning technique

used to strengthen 4G. Therefore, the research on MIMO systems has only considered

flat fading MIMO channels in this thesis, without Channel State Information (CSI) at

transmitter.
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Figure 1.2. Illustrates the basic concept of MIMO.

1.2 MIMO system model

A MIMO system consists of multiple antennas on both side of a communication link.

Fig. 1.2 illustrates the basic concept of MIMO, which consists of nt transmit antennas

and nr receive antennas. We consider that the channel is a Rayleigh channel, which

is certainly a worst case situation. The channel coefficient from transmit antenna i to

receive antenna j, hj,i(t), is modeled by using independent samples of complex Gaussian

random variables with a mean of zero and a variance of 0.5 per dimension. Flat fading

channel like above is to be expected in MIMO-OFDM system. Therefore, we will limit

our analysis of performance to flat fading channel.

At each time slot t, the encoder of space-time codes output nt encoded M-PSK

symbols, denoted by ct = [c1(t), · · · , cnt(t)]
T where ci(t) is the transmitted M-PSK sym-
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bol in the i -th transmit antenna at time t. These multiple symbols are transmitted

simultaneously out of nt antennas over frequency nonselective fading channel, and are

corrupted by AWGN at receiver. Thus the system model can then be described by the

following equation

rj(t) =
nt∑
i=1

hj,i(t)ci(t) + nj(t), j = 1, · · · , nr (1.1)

where, rj(t) is the received signal in the j -th receive antenna at time t, and nj(t) is the

complex AWGN with a mean of zero and a variance of N0/2 per dimension in the j -th

receive antenna at time t.

The total transmitted power is given by

P = E{c(t)Hc(t)} (1.2)

where, E{·} denote the expectation operation and (·)H denote the Hermitian conjugate.

The channel coefficients are assumed to be perfectly known at receiver only and

there is no channel knowledge known at transmitter. The transmitted power is equally

distributed to each antenna. Thus, the transmitted symbol energy is

Es = P/nt (1.3)

The channel coefficients of flat fading channel can be further classified into two

types: slow fading and fast fading. In slow fading channel, the channel coefficients are

constant over the time of a frame and independently vary from frame to frame. In fast

fading channel, the channel coefficients remain constant over one symbol duration and

independently vary from symbol to symbol.

The model of MIMO system may be described in form of matrix. Let us introduce

the channel matrix
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Ht =




h1,1(t) h1,2(t) · · · h1,nt(t)

h2,1(t) h2,2(t) · · · h2,nt(t)

...
...

. . .
...

hnr,1(t) hnr,2(t) · · · hnr,nt(t)




(1.4)

Thus, we can write the system of (1.1) as a matrix equation

rt = Htct + nt (1.5)

where

r t =

[
r1(t) r2(t) · · · rnr(t)

]T

(1.6)

n t =

[
n1(t) n2(t) · · · nnr(t)

]T

(1.7)

1.3 MIMO System Capacity

In this section MIMO system capacity was analyzed. In a communication system,

the capacity of a channel is measured by well-known Shannon capacity, which is defined

as the maximum bit rate at which information data can be communicated through this

channel without error. In AWGN channel, the Shannon capacity can be expressed as the

spectrum efficiency [6]

C = log2(1 + ρ) (1.8)

where, C is channel capacity in bps/Hz, and ρ is the signal-to-noise ratio expressed as a

pure ratio.

Obviously, observing from (1.8), the capacity is controlled by the value of SNR. In

a wireless fading channel, SNR is modified by multiplying SNR by time-variant channel
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coefficients. Thus, the effect of fading on capacity in a wireless fading channel without

antenna diversity is modeled by the formula

C = log2(1 + ρ|h|2) (1.9)

where h is complex channel coefficient.

In the following analysis for the capacity of MIMO system, we consider that Max-

imum Ratio Combining (MRC) receive diversity processing is used, no channel informa-

tion know at transmitter (open loop MIMO), the total transmit power is limited to P

regardless of the number of transmit antennas, and the power is equally distributed to

all transmit antennas. Thus the transmit power at each transmit antenna is given by

p = P/nt (1.10)

For receive diversity with MRC, the total SNR is obtained simply by summing the

SNR at individual receive antenna, resulting in

C = log2

(
1 + ρ

nr∑
i=1

|hi|2
)

(1.11)

The capacity for transmit diversity is formulated in the same way as for receive

diversity. However, the situation on the SNR is somewhat different for transmit diversity,

where transmit power is distributed equally to the antenna elements. From (1.10), this

behavior is characterized by replacing ρ with ρ/nt

C = log2

(
1 +

ρ

nt

nt∑
i=1

|hi|2
)

(1.12)

A comparison between equation (1.11) with (1.12) shows, that the capacity of

receive diversity is superior to that of transmit diversity because of the inclusion of divisor

nt in (1.12), as reflected in figure 1.3 and 1.4. Fig. 1.3 depicts the capacity of transmit
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Figure 1.3. Capacity of transmit diversity.

diversity given by (1.12) as a function of number of transmit antennas. The figure shows

that the capacity curve is almost flat over the range of more than two transmit antennas.

Over the range of less than two transmit antenna, the capacity increases are limited.

This result indicates that it is difficult to obtain a noticeable improvement in capacity

by means of transmit diversity. This can be explained by the asymptotic behavior of

capacity as nt goes to infinity

lim
nt→∞

C = log2(1 + ρ) (1.13)

Fig. 1.4 plots the capacity of receive diversity given by (1.11) as a function of

the number of receive antennas. The figure shows that receive diversity have a more

noticeable capacity gain, which appears to be a linear increase of capacity with the

logarithm of number of receive antennas. This result shows that receive diversity seems
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Figure 1.4. Capacity of receive diversity.

to be quite promising for high data rate transmission. As a result, receive diversity has

been traditional method of enhancing the capacity and currently applied in practice.

However, receive diversity still cannot meet the demand of high data rate transmission

for 3G/4G.

The situation with combined transmit-receive diversity (MIMO) is much more com-

plicated. In order to take all possible diversity paths into account, the system model in

matrix form given by (1.5) is thus used. Decomposing the channel matrix using the

Singular Value Decomposition (SVD), we obtain

H t = UDVH (1.14)

where U is an nr×nr unitary matrix, V is an nt×nt unitary matrix, and D is a diagonal

matrix of dimension nr×nt whose elements are the singular values of the original matrix

in descending order.

Substituting equation (1.14) into equation (1.5) yields
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rt = UDVHct + nt (1.15)

Multiplying both side of equation (1.15) by UH we get

rt
′ = Dct

′ + nt
′ (1.16)

where

rt
′ = UHr t (1.17)

ct
′ = VHct (1.18)

nt
′ = UHnt (1.19)

The number of nonzero diagonal elements of matrix D is equal to the rank of H.

Let r be the rank of H,
√

λi the i -th singular values of H. Then, the i -th entry of rt
′ is

given by

ri(t)
′ =

√
λici(t)

′ + ni(t)
′, i = 1, . . . , r (1.20)

Due to the unitary property of U matrix, ni(t)
′ is an independent Gaussian ran-

dom variable with zero mean and variance of N0/2 per dimension. Thus equation (1.20)

can be considered as a standard model of single input single output wireless communi-

cation system with input ci(t)
′, output ri(t)

′, and channel coefficient
√

λi. The physical

interpretation of (1.20) is therefore that the MIMO channel is equivalent to r parallel

independent sub-channel with channel gain of
√

λi. This is the secret behind how MIMO

is able to create so much good performance.

The total transmitted power on signal c′t is given by
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P ′ = c′Ht c′t = cH
t ct (1.21)

This equation states that signal c′t carries the same transmitted power as the signal

ct. Assuming that the transmitted power on each sub-channel has an uniform distribution

of all P. Thus, the capacity of sub-channel can be expressed as

Ci = log2

(
1 + λi

ρ

nt

)
, i = 1, · · · , r (1.22)

Summing up these equation for i = 1, · · · , r, one obtains the capacity of MIMO

C =
r∑

i=1

log2

(
1 + λi

ρ

nt

)
= log2

r∏
i=1

(
1 + λi

ρ

nt

)
(1.23)

The λi can be easily proved to be the eigenvalue of HHH . From the definition of

eigenvalue, we know

r∏
i=1

(λ− λi) = det
(
λInr −HHH

)
(1.24)

Let λ = −nt

ρ
, equation (1.24) can be manipulated to the form

r∏
i=1

(
1 + λi

ρ

nt

)
= det

(
Inr +

ρ

nt

HHH

)
(1.25)

Combining (1.23) and (1.25), we can obtain the capacity of MIMO

C = log2 det

(
Inr +

ρ

nt

HHH

)
(1.26)

Fig. 1.5 plots the MIMO capacity for nt = nr. Fig. 1.5 shows there is a lin-

ear increase in the capacity as a function of the number of antennas. This monotonic

relationship offers an enormous gain in capacity, as shown in Table 1.1

In above derivation, the channel coefficients are time-varying random variables.

Thus the capacity given in (1.11) (1.12) (1.26) is actually the instantaneous capacity.
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Figure 1.5. Capacity of MIMO for nt = nr.

Capacity plotted in Fig. 1.3, 1.4, and 1.5 are the average capacity obtained by averaging

the instantaneous capacity over the channel realization of H. The capacity above is

actually the capacity of a fast fading channel. For the slow fading channel, the channel

matrix has a Rayleigh distribution but constant within the duration of a frame. In

this scenario, there is a nonzero probability that the Shannon capacity might be zero

for particular realization of H [7]. Therefore, the capacity is measured by the capacity

Table 1.1. Numerical results of the capacity of space diversity, SNR=30 dB

System Configuration Capacity (bps/Hz)

MISO 4Tx1Rx 9.78

SIMO 1Tx4Rx 11.77

MIMO 2Tx2Rx 34.92
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Figure 1.6. Capacity of MIMO for nt = nr.

cumulative distribution function (ccdf) in slow fading channels. The ccdf describes the

probability that a specific capacity can be provided by system. Fig. 1.6 shows the

ccdf of MIMO capacity. The figure indicates that capacity approaches an asymptote and

becomes independent of the number of antennas as the increase of the number of antenna

elements. This result is consistent with the result in fast fading channel as shown in Fig.

1.5.

1.4 Space-Time Codes

While MIMO discussed above significantly improves capacity performance, further

gain can be obtained by applying channel coding in system. Channel coding has been

traditionally adopted for wireless communications. For example, convolution codes have
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Figure 1.7. Space-time codes.

been applied in GSM to provide additional link margin and turbo codes have been pro-

posed as a key technology in 3G. Starting with Shannon’s information theory, channel

coding has been developed toward the goal of approaching Shannon limit on channel

capacity. However, diversity and channel coding are usually used separately or indepen-

dently in a wireless system. Recently, the joint design of MIMO and channel coding has

been receiving increasing attentions in wireless research community. The most conspic-

uous result of the activity of combining antenna diversity with channel coding is that

diversity gain can be achieved, as well as coding gain. This method of operation has been

referred to as the “space-time codes” [5].

The concept of space-time codes is illustrated in Fig. 1.7. Space-time codes map

information symbol into an encoded symbol vector at each time slot. The vector con-

sists of nt M-PSK symbol. These multiple symbols are transmitted simultaneously at

each time slot through multiple antennas. Thus, the transmitted symbols are inherently

correlated in space. Because of the memory of the space-time codes, all encoded symbol

vector are also correlated in time. This is the reason of naming them as “space-time

codes”.

Throughout the years there have been various efforts to achieve significant in-

creased capacity using space-time codes. For this reason, space-time codes have emerged
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as attractive means for new next generation wireless networks (3G/4G). Bell Laborites

Layered Space-Time (BLAST) system is the first MIMO system for high data rate trans-

mission [8]. In BLAST, a high data rate stream is divided into multiple lower data rate

sub-streams. The multiple data sub-streams are simultaneously transmitted through

multiple antennas using same frequency band. At receiver, each receive antenna out-

put is made up of a linear combination of the multiple transmitted data streams. The

data streams can be successfully separated using sophisticated signal processing tech-

nique relying on the assumption that the channel state information is perfectly known

to the receiver. The spectral efficiency increase in BLAST is roughly proportional to the

number of transmit antennas. BLAST had been successfully demonstrated. Its perfor-

mance of spectral efficiencies was found to be about 20-40 bps/Hz, which is believed to

be unprecedented wireless spectral efficiencies.

A simple but elaborate technique that provides a good illustration of the key con-

cepts of space-time codes has been developed by Alamouti [9]. The prototype system of

Alamouti’s scheme was designed with two transmit antennas. Alamouti code operates

on a block of input symbols. Each block consists of two symbols. The block is converted

into an orthogonal matrix 1. The orthogonal matrix is created to reduce the decoding

complexity in addition to allowing full diversity gain. Thus Alamouti code does not pro-

vide coding gain. Based on the principle of Alamouti code, orthogonal space-time codes

for more than two antennas have been developed and are referred to as Space-Time Block

Codes (STBC) [12][11].

Based on Trellis Coded Modulation (TCM), space-time trellis codes had been pro-

posed [5] to provide high performance. Space-time trellis codes can be considered as TCM

1In many mathematical texts, including [10], orthogonality is defined only for square matrices. In

our case, we define a matrix to be orthogonality if its rows are mutually orthogonal, no matter if it is

square. In [11], the non-square matrix with row orthogonality is called generalized orthogonal matrix
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with multiple outputs. Space-time trellis codes are more attractive due to its coding gain

advantage. In trellis-based codes, a better performance can be obtained by increasing the

number of trellis states. However, the performance of trellis-based code are limited by

the inevitable saturation of performance and the extremely high complexity of decoder

realization with the increased number of states.

One way to achieve better performance is to use the turbo concept codes. Possibly

one of the biggest advances in coding technology was the introduction of turbo codes,

proposed by Berrou in 1993 [13]. The turbo codes successfully concatenate two recursive

convolutional codes in parallel and decode iteratively, which make the codes powerful

and allow achieving near Shannon capacity. Schemes that apply the principle of turbo

codes into space-time codes had been referred to as space-time turbo codes.

Another way is by concatenating an outer code with inner space-time block codes.

These codes make use of the orthogonal property of space-time block codes to improve

the coding gain of outer codes. The outer codes may be a convolutional code, TCM, or

space-time trellis codes. A well known such code is super orthogonal space-time trellis

codes [14], whose outer codes is a space-time trellis codes with super-trellis structure.

1.5 Objectives

The objectives of this dissertation are to improve performance of space-time codes.

Specifically, the aims are to increase diversity gain and coding gain for space-time codes.

This dissertation proposes improved schemes in several applications, including space-time

trellis codes, space-time turbo codes, and orthogonal space-time trellis codes. The perfor-

mance of the proposed techniques had been theoretically analyzed. Detailed simulations

are used to show that the implementations described in this dissertation can achieve the

improved performance.



CHAPTER 2

PERFORMANCE ANALYSIS AND DESIGN CRITERIA

2.1 Introduction

In developing the concepts of space-time codes, Tarokh [5] had developed design

criteria based on the upper bound of PEP. Other improved design criteria were later

developed by [15][16][17]. Although subsequent works have demonstrated that limitations

remain in Tarokh’s criteria, they are still viewed as valuable for preliminary understanding

of space-time codes because they provide good principles in designing codes. In this

chapter, the performances of space-time codes are analyzed by deriving the upper bound

of PEP. Design criteria based on the PEP are also introduced. The improved design

criteria will be introduced later in next chapter.

The analysis for the upper bound of PEP has been studied previously [5]. In this

chapter, we will review the analysis in a simplified form following the analysis given in

[5]. For the first time, we also had derived the exact PEP of space-time codes. The

derivation of the exact PEP given in this chapter is new and simple, which is totally

different from previous derivation.

2.2 Pair-wise error probability (PEP)

Performances of space-time codes are characterized by diversity gain and coding

gain. For the performance analysis, a codeword matrix is defined, allowing us to estimate

the diversity gain and the coding gain. In space-time codes, the information symbols are

segmented into a frame of length L. The encoded outputs associated with the frame are

organized into a matrix, and is called a codeword matrix. A codeword is represented by

19
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an nt×L matrix whose entry is ci(t) where i is the row index with range 1 ≤ i ≤ nt and

t is the column index with range 1 ≤ t ≤ L

c =




c1(1) c1(2) · · · c1(L)

c2(1) c2(2) · · · c2(L)

...
...

. . .
...

cnt(1) cnt(2) · · · cnt(L)




(2.1)

The entries in each column correspond to the output signal on the trellis transition.

At the decoder, the Maximum Likelihood (ML) algorithm with the assumption that the

channel coefficients are perfectly known was used to estimate the transmitted codeword.

Let e be an estimate of transmitted codeword at the decoder. In ML decoding, ML

algorithm searches over all possible transmitted codewords and choose the most likely

codeword with the highest probability P (r/e) as decoded output, where r is the receive

signal given in (1.1) expressed in form of matrix

r =




r1(1) r1(2) · · · r1(L)

r2(1) r2(2) · · · r2(L)

...
...

. . .
...

rnr(1) rnr(2) · · · rnr(L)




(2.2)

.

Ignoring the common terms in P (r/e), P (r/e) is typically expressed by the accu-

mulated branch metric along the survivor path

AM(e) =
L∑

t=1

nr∑
j=1

∣∣∣∣∣rj(t)−
nt∑
i=1

hj,i(t)ei(t)

∣∣∣∣∣

2

(2.3)

The final decision on output codeword is made, choosing the codeword with the

highest P (r/e) or the lowest accumulated branch metric
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e = arg max
e∈D

[P (r/e)] = arg min
e∈D

[AM(e)] (2.4)

where D is the set of codewords

PEP is the probability that decoder erroneously selects codeword e as the trans-

mitted codeword, while the codeword c is in fact transmitted. This will happen if

AM(c) > AM(e) (2.5)

Thus, the PEP conditioned on H is given by

P (c→ e/H) = P (AM(c) > AM(e)) (2.6)

Averaging P (c→ e/H) over the probability density function of H , yields the PEP

as follows

P (c→ e) =

∫
P (c→ e/H)P (H)dH (2.7)

where P(H) is the probability density function of H

2.3 PEP for slow fading channel

In slow fading channels, the channel coefficients are constant over the duration of

a frame. Thus the time dependence in channel coefficient in (1.5) can be omitted. The

system model can be rewritten as

r = Hc + n (2.8)
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where

n =




n1(1) n1(2) · · · n1(L)

n2(1) n2(2) · · · n2(L)

...
...

. . .
...

nnr(1) nnr(2) · · · nnr(L)




(2.9)

Taking into account equation (2.8), equation (2.3) can be rewritten as

AM(e) = Tr
[
(r−He) (r−He)H

]

= Tr
[
rrH −HerH − reHHH + HeeHHH

] (2.10)

where Tr [·] is trace operator of square matrix.

The term rrH is the common term for all codeword. It should, therefore, be

omitted. Substituting equation (2.10) into equation (2.5), we get

Tr
[−HcrH − rcHHH + HccHHH

]
> Tr

[−HerH − reHHH + HeeHHH
]

(2.11)

which, after rearranging, is equivalent to

Tr
[
H (e− c) rH + r

(
eH − cH

)
HH

]
> Tr

[
H

(
eeH − ccH

)
HH

]
(2.12)

Substituting (2.8) into (2.12) and making rearrangement of it yields

Tr
{
2Re

[
H (e− c)nH

]}
> Tr

[
H (c− e) (c− e)H HH

]
(2.13)

Let

Dce = c− e (2.14)

is a codeword difference matrix, and

A = DceD
H
ce (2.15)



23

is often called a codeword distance matrix, which is a square matrix of dimension nt.

The rank, determinant and trace of A are important features of space-time trellis codes.

Performances of space-time codes are highly dependent on these parameters.

The right hand side of (2.13) thus becomes

δ = Tr
[
HAHH

]
(2.16)

which is defined as modified squared Euclidean distance between codeword c and e .

The right hand side of (2.13) is a constant, and the left hand side of (2.13) is a

Gaussian random variable with zero mean. Therefore, the PEP conditioned on H is then

given by

P (c→ e/H) = Q

(√
Es

2N0

δ

)
(2.17)

Consider the inequality

Q(x) ≤ 1

2
e−x2/2 (2.18)

The PEP conditioned on H is then upper bounded by

P (c→ e/H ) ≤ 1

2
exp

(
−δ

Es

4N0

)
(2.19)

Utilizing the singular value decomposition, we have

A = USV H (2.20)

where U and V are unitary orthogonal matrices and S is a diagonal matrix with real,

non-negative eigenvalue elements λi in descending order
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S =




λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λnt




(2.21)

Consider a Hermitian matrix A,

A = AH (2.22)

Then

U = V (2.23)

gives

δ = Tr
(
HUSUHHH

)

=
nt∑
i=1

nr∑
j=1

λi |βj,i|2
(2.24)

where βj,i is the dot product of the j-th row vector of H and the i-th column vector of

U , defined as

βj,i =
nt∑

k=1

hj,kuk,i (2.25)

Thus (2.19) becomes

P (c→ e/H) ≤ 1

2
exp

(
−

nr∑
j=1

nt∑
i=1

λi |βj,i|2 Es

4N0

)
(2.26)

Note that since U is an unitary orthogonal matrix, βj,i is an independent complex

Gaussian variable. |βj,i| hence has a Rayleigh distribution

p (|βj,i|) = 2 |βj,i| exp
(− |βj,i|2

)
(2.27)
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Integrating the PEP conditioned on H over random variable |βj,i| gives

P (c→ e) ≤ ∫∞
|βnr,nt |=0

· · · ∫∞|β1,1|=0
1
2
exp

(
−

nr∑
j=1

nt∑
i=1

λi |βj,i|2 Es

4N0

)

p (|β1,1|) · · · p (|βnr,nt|) d |β1,1| · · · d |βnr,nt |
(2.28)

we finally obtain

P (c→ e) ≤
(

nt∏
i=1

1

1 + Es

4N0
λi

)nr

(2.29)

Assuming SNR is high, the PEP can be simplified as

P (c→ e) ≤
(

r∏
i=1

λi

)−nr (
Es

4N0

)−rnr

(2.30)

where r is the rank of A.

2.4 PEP for fast fading channel

In fast fading channels, the system model is given by (1.5). The ML metric is

therefore

AM(c) =
L∑

t=1

{
Tr

[
(rt −Htct) (r t −Htct)

H
]}

(2.31)

Consequently, equation (2.5) can be written in the form

L∑
t=1

Tr
{
2Re

[
Ht (et − ct)n

H
t

]}
>

L∑
t=1

Tr
[
HtAtH

H
t

]
(2.32)

where the codeword distance matrix is now defined as

At = (ct − et) (ct − et)
H (2.33)

At is sometime called as sub-codeword distance matrix. Since the matrix is related

to the branch output, we refer to it as branch codeword distance matrix.
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Since (ct − et) is a column vector, At is a singular matrix with rank one. In this

case, the eigenvalue of At is equal to the squared Euclidean distance between ct and et

λt
1 =

nt∑
i=1

|ci(t)− ei(t)|2 (2.34)

Therefore, the modified squared Euclidean distance between codeword c and e is

δ =
L∑

t=1

nr∑
j=1

λt
1

∣∣βt
j,1

∣∣2 (2.35)

By continuing in the same manner for the PEP in the slow fading channel, the

upper bound of PEP can be written as

P (c→ e) ≤
L∏

t=1

(
1

1 + Es

4N0
λt

1

)nr

=
∏

t∈v(c,e)

(
1

1 + Es

4N0
λt

1

)nr

(2.36)

where ν(c, e) is the set of time instance 1 ≤ t ≤ L at which the squared Euclidean

distance λt
1 is not equal to zero.

By assuming SNR is high enough, equation (2.36) is reduced to

P (c→ e) ≤ (dp)
−nr

(
Es

4N0

)−δHnr

(2.37)

where δH is the symbol Hamming distance which is defined as the number of elements

in ν(c, e), and

dp =
∏

t∈v(c,e)

λt
1 (2.38)

is defined as the product distance of codeword pair (c, e)
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2.5 Design criteria

The upper bound of PEP on quasi-static flat fading channels and fast fading chan-

nels have been developed using Chernoff bound in [5], and were described by (2.30) and

(2.37). Based on the bound, the design criteria can be derived as follows.

In (2.30) the importance of the rank of A to the PEP is that it determines the slope

of the logarithm of the PEP plotted against the logarithm of SNR. This implies that the

rank of A is a dominant factor in determining PEP performance. The product of nonzero

eigenvalue,
r∏

i=1

λi, will result in PEP shift along the SNR axis. Following the definition in

[5], the exponent term rnr is called the diversity gain, and the term

(
r∏

i=1

λi

)−nr

is called

the coding gain. The rank and determinant criteria has been developed by minimizing

the worst PEP [5] as follows:

• The rank criterion: In order to achieve the maximum diversity, the matrix Dce has

to be full rank for any codewords c and e. If Dce has minimum rank r over the set

of two-tuples of distinct codewords, then a diversity of rnr is achieved.

• The determinant criterion: Suppose that a diversity benefit of rnr is our target.

The minimum of rth roots of the sum of determinants of all r×r principal cofactors

of A(c, e) = DceD
H
ce taken over all pairs of distinct codewords e and c corresponds

to the coding advantage, where r is the rank of A(c, e). Special attention in the

design must be paid to this quantity for any codewords e and c. The design target

is making this sum as large as possible. If a diversity of ntnr is the design target,

then the minimum of the determinant of A(c, e) taken over all pairs of distinct

codewords e and c must be maximized.

The upper bound of PEP for fast fading channel is described by (2.37). Similarly,

minimizing the worst upper bound of PEP lead to the design criteria [5]:
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• The distance criterion: In order to achieve the diversity vnr in a rapid fading

environment, for any two codewords c and e the strings ct = [ct(1)ct(2) · · · ct(nt)]

and et = [et(1)et(2) · · · et(nt)] must be different at least for v values of 1 to L.

• The product criterion: Let v(c, e) denote the set of time instances 1 ≤ t ≤ L such

that [ct(1)ct(2) · · · ct(nt)] 6= [et(1)et(2) · · · et(nt)] and let

|ct − et|2 =
nt∑
i=1

|ci(t)− ei(t)|2

Then to achieve the most coding advantage in a rapid fading environment, the

minimum of the products

∏

t∈v(c,e)

|ct − et|2

taken over distinct codewords c and e must be maximized.

2.6 A derivation of exact PEP for space-time codes

2.6.1 Introduction

Performance analysis of space-time codes by deriving the upper bound of PEP has

been developed in [5] and has been reviewed previously. The upper bound on PEP offers

the insight in relationship between the performance and the code parameters, which

has been summarized into design criteria. This forms the basis for the development of

space-time codes.

Traditional theoretical analysis has paid little attention to the exact PEP, because

design criteria based on upper bound can provide design guideline for the diversity gain

which dominate the code performance. However, design criteria based on upper bound

has no guideline for the coding gain. It has been found that codes designed according to

such criteria may have same code parameters (determinant, trace, or product distance)
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but have quite different coding gain in low SNR range. In order to precisely evaluate the

code performance over entire SNR range, exact PEP is required. Previous derivations of

exact PEP are based on residue technique combined with characteristic function [18], and

moment generating function method [19]. Here we describe a straightforward method

for finding exact PEP of space-time codes. In the method, the derivation is by finding

the pdf of modified Euclidean distance, and the PEP conditioned on the distance is then

averaged over the distance to obtain the exact PEP. In comparison to method in [18][19],

our derivations are simpler and easier.

2.6.2 Exact PEP for space-time codes in slow fading channel

The derivation begins with classic equation of PEP conditioned on channel estima-

tion, given in (2.17).

Let

µi =
nr∑

j=1

λi |βj,i|2 (2.39)

which is a chi-square variable with 2nr degrees of freedom. The Laplace transform of its

pdf is given by

Xµi
(s) =

1

(1 + sλi)
nr

(2.40)

Combining (2.39) into equation (2.24) gives

δ =
r∑

i=1

µi (2.41)

Because of the statistical independence of µi, the Laplace transform of the pdf of

δ is given by
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Xδ (s) =
r∏

i=1

1

(1 + sλi)
nr

(2.42)

Applying partial fraction expansion to Xδ (s) results in

Xδ (s) =
r∑

i=1

nr∑
j=1

ai,j

(1 + sλi)
j (2.43)

where

ai,j =
1

(nr − j)!

dnr−j

dsnr−j
[(1 + sλi)

nr Xδ (s)]

∣∣∣∣∣∣∣ s = −1/λi

(2.44)

The terms in sum of (2.43) are the standard Laplace transform of Gamma pdf.

Taking inverse Laplace transformation to (2.43) yields the pdf of δ

pδ (δ) =
r∑

i=1

nr∑
j=1

ai,jδ
j−1

λj
iΓ (j)

e
− δ

λi (2.45)

The conditional error probability of (2.17) can now be averaged over the δ distri-

bution to obtain exact PEP

P (c→ e) =
∫

δ
P (c→ e/H)pδ (δ)dδ

=
r∑

i=1

nr∑
j=1

∫∞
0

Q
(√

Es

2N0
δ
)

ai,jδj−1

λj
i Γ(j)

e
− δ

λi dδ
(2.46)

By iterative use of integration parts, this integral can be evaluated in closed form

as (see appendix A)

P (c→ e) =
r∑

i=1

nr∑
j=1

ai,j

2


1−

√
γλi

1 + γλi

j−1∑

k=0




2k

k


 1

(4 + 4γλi)
k


 (2.47)

where
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γ =
Es

4N0

Two examples of the application of (2.47) are illustrated as follows. First let us

consider the particular case of equal eigenvalue, where λ = λ1 = λ2 = · · · = λr. Then

from (2.42)

Xδ (s) =
1

(1 + sλ)rnr
(2.48)

Equation (2.48) above is obviously the Laplace transform of chi-square variable

with 2rnr degrees of freedom. From (2.43), it can be considered to be a term with

coefficient equal to 1 and exponent equal to rnr in sum. From (2.45) and (2.46), we have

P (c→ e) =
1

2


1−

√
γλ

1 + γλ

rnr−1∑

k=0




2k

k


 1

(4 + 4γλ)k


 (2.49)

This particular case can be applied to space-time block codes [11] and super-

orthogonal space-time codes [14].

We now consider the case of the system with one receive antenna. In this case,

(2.47) can be simplified as

P (c→ e) =
r∑

i=1

ai,1

2

(
1−

√
λiγ

1 + λiγ

)
(2.50)

For such a system with two transmit antennas and full diversity order, (2.44) would

yield two coefficients

a1,1 = λ1

λ1−λ2

a2,1 = − λ2

λ1−λ2

(2.51)

Substituting (2.51) into (2.50) gives
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Figure 2.1. PEP of space-time codes with two transmit and one receive antennas.

P (c→ e) =
1

2

[
1− 1

λ1 − λ2

(
λ1

√
γλ1

1 + γλ1

− λ2

√
γλ2

1 + γλ2

)]
(2.52)

The significance of exact PEP can be seen in Fig. 2.1, which plots the exact PEP

described in (2.52) and compares it to the upper bound. The codes in the figure have

different eigenvalues, but have same upper bound because the upper bound is dependent

on the product of eigenvalues or determinant. However, in the low SNR range, PEP

is found to be different, such that code with large trace (the sum of eigenvalues) offers

superior performance. These results hint that, in the low SNR range, the upper bound

may not serve as an useful forecast to the performance of space-time codes. Therefore,

more accurate upper bound had been proposed in subsequent papers [15][16][17].
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2.6.3 Exact PEP for space-time codes in fast fading channel

In fast fading channel, the modified squared Euclidean distance between codeword

c and e is given in (2.35) as follows

δ =
L∑

t=1

nr∑
j=1

λt
1

∣∣βt
j,1

∣∣2 (2.53)

Compare the distance with that in slow fading channel, one can easily get the PEP

in fast fading channel by replacing corresponding variables of (2.47) as

P (c→ e) =
∑

t∈v(c,e)

nr∑
j=1

at,j

2


1−

√
γλt

1

1 + γλt
1

j−1∑

k=0




2k

k


 1

(4 + 4γλt
1)

k


 (2.54)



CHAPTER 3

SPACE-TIME TRELLIS CODES

3.1 Introduction

By integrating spatial diversity and trellis based coding techniques, space-time

trellis codes have received considerable attention, mainly because it offer coding gain as

well as diversity gain, unlike space-time block codes, which only offer diversity gain.

Design issues concerning the code design criteria of space-time trellis code are

discussed and the improved design criteria for space-time trellis codes are proposed in this

chapter. The improved design criteria are designed to minimize frame error probability.

The new codes based on proposed criteria have been successfully designed and simulated.

The simulation results show that the performance of new codes based on proposed criteria

can be improved compared to some existing codes.

3.2 Space-time trellis codes encoder

A Space-Time Trellis Code (STTrC), as shown in Fig. 3.1, is a multiple output

trellis coded modulation.

The encoder encodes information data into M-PSK symbols. In order to guaran-

tee full rate and avoid parallel trellis transition, the encoder has k parallel branches of

register, where k = log2 M . Let i -th branch contains vi register. Then the memory of

encoder is the sum of the number of registers of each branch

v =
k∑

i=1

vi (3.1)

34
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Figure 3.1. M-PSK space-time trellis code with nt transmit antennas.

Error event length is the number of stages that the diverging state path must pass

through to merge back to correct path. The diversity gain of space-time trellis cods in

fast fading channel is directly dependent on the minimum error event length. Therefore,

the minimum error event length is an important parameter to consider when designing a

space-time trellis codes. The minimum error event length is equal to the minimum value

of vi plus one. The optimal choice of the vi to obtain the optimal error event length for

a given memory is given by

vi = bv + i− 1

k
c (3.2)

where b·c denotes floor operation.

The inputs to the encoder are information symbols which are represented by k bit

of information data. At each symbol epoch t, each k bit binary data, denoted by vector

It = [I1(t); · · · ; Ik(t)], are directly applied to encoder in parallel and are encoded to nt

M-PSK symbols, which we present as a column vector of length nt
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ct = [c1(t), · · · , cnt(t)]
T (3.3)

where the variable ci(t) is the encoded symbol in the i -th transmit antenna at time t.

The encoder is characterized by the feed forward polynomial. The output symbol

and the polynomial coefficients are related by the following equation

ci(t) =
k∑

j=1

vj∑

k=0

Ij(t− k)gj
k,i mod M (3.4)

where, gi
j,k is feed forward polynomial coefficient. Its values are the integer from 0 to

M − 1.

The encoder may be characterized by a generator matrix g.

gi =




gi
0,1 · · · gi

0,nt

...
. . .

...

gi
vi,1

· · · gi
vi,nt




(3.5)

where i = 1, 2, · · · , k

The generator in polynomial form is

Gi(D) =
[
1 D · · · Dvi−1

]
gi (3.6)

The sequence of binary input to the i -th branch is now represented in polynomial

form

Ii(D) = Ii(0) + Ii(1)D + Ii(2)D2 + Ii(3)D3 + · · · (3.7)

From (3.6) and (3.7), the resulting output can be written in polynomial form
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c(D) =

[
c1(D) c2(D) · · · cnt(D)

]

=
k∑

i=1

Ii(D)Gi(D) mod M

(3.8)

The encoder can be also described by state diagram and its transfer function.

Generator matrix is more convenient to the computer search of optimal codes, which

is achieved by seeking optimal generator matrix to maximize the minimum distance of

codeword distance matrix.

3.3 Code design criteria for space-time trellis codes in slow fading channels

3.3.1 Introduction

The early works of Tarokh [5] provided theoretical background on space-time codes.

Tarokh developed the rank and determinant criteria for the quasi-static flat fading chan-

nel. The rank criterion may lead to full diversity, and makes Tarokh’s criteria extremely

useful for MIMO systems.

Rank and determinant design criteria have been widely viewed as the best way

to code design. Many existing optimal codes had been designed based on rank and

determinant criteria [20][21]. The weakness of Tarokh’s criteria is that the code design

criteria are based on minimizing the worst upper bound of PEP. Essentially, these criteria

are also based on the assumption that the error events with minimum determinant are

dominant. Although this is true for AWGN channel, this is not always the case for

the quasi-static flat fading channel where there are no dominant error events [22][23].

Thus, although the rank criterion is of great importance, the determinant criterion does

not provide guidelines for optimal coding gain. We will prove this by showing that the

performance of the 4 state space-time trellis codes proposed by [5] is superior to that

of some existing codes proposed in [20][21] for two transmit antennas and one receive

antenna.
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Since the introduction of the design criteria, the improved criteria had been pro-

posed in subsequent works [15][16][17] to enhance the coding gain performance. However,

these approaches are still based on PEP. In practice, the performance of space-time codes

is evaluated in terms of FER. Thus, for successful code design it is important to develop

design criteria based on FER over fading channel. In [23], [24], [25], and [26], the perfor-

mance of space-time codes is predicted by union bound on FER, which is the function

of the PEP and the Distance Spectrum (DS). A DS is a enumeration that contains the

multiplicity of certain metrics of error events, which allows us to analyze the contribution

of all error events to the performance. Thus, the union bound analysis is an attractive

method of evaluating MIMO system performance in fading channel.

In this thesis, we described an improved design criteria based on the FER per-

formance. The idea is to minimize the union bound on FER, leading to the improved

design criteria. The similar techniques had been employed in [27]. Our method is similar

to that in [27], except that we utilized the PEP proposed by Yuan [15] to upper bound

the FER and the distance spectrum is calculated using alternate method. The PEP pro-

posed by Yuan is more accurate expression for PEP. It takes into account the dependence

of diversity gain on PEP. Yuan suggested that the rank and determinant criteria hold

only for small diversity gain and the performance could be improved by introducing a

trace criterion for large diversity gain. The trace criterion is the main improvement in

rank and determinant criteria among the various improved criteria. In the union bound

analysis, the coding gain mainly depends on the distance spectrum, instead of solely on

distance. The difficulty associated with the distance spectrum search is the extremely

high complexity of the search which limit the accurate measurement of coding gain.
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3.3.2 Improved code design criteria

Several modifications to the rank and determinant criteria had been proposed in

[15][16][17]. When considering the region of diversity gain, Tarokh’s criteria were found to

be less accurate. Thus, an important improvement over the basic rank and determinant

criteria was to take into account the dependence of diversity gain on PEP [15]. In [15],

Yuan suggested that the PEP is in fact diversity gain dependent. For rnr < 4, the PEP

can be given by (2.30). For rnr ≥ 4, the PEP is given by

P (c→ e) ≤ 1

4
exp

(
−nr

Es

4N0

r∑
i=1

λi

)
(3.9)

The diversity gain boundary condition on PEP is chosen to be 4. This value is

chosen to ensure that fading channels converge to Gaussian channels. Based on (3.9),

the trace criterion was introduced in [15].

The rank, determinant, and trace criteria had been developed to minimize the

worst PEP. These criteria reveal that good code construction requires two properties:

full diversity gains and best code gain, and have been extensively used to describe the

performance of space-time codes. Although the rank criterion will lead to best diversity

gain, there are no guidelines for the code gain design. This is because that there are

no dominant error events in quasi-static channels [22][23]. An alternative approach to

performance analysis of space-time codes is to use the union bound technique, which

allows us to analyze the contribution of all error events to the performance. Several

performance analysis schemes based on the union bound analysis have been developed

and applied in [23][26]. Generally, the union bound on FER is calculated from the PEP

via a sum of PEP, given by
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PFER =
∑
c∈ D

∑

e ∈ D

e 6= c

P (c)P (c→ e) (3.10)

where D is the set of transmitted codewords and P (c) is the probability of transmitted

codeword c.

We first study the case of small diversity gain. Considering the rank is the domi-

nant factor in determining the performances of space-time codes, we can assume in this

research that the codes under consideration always have a full rank of nt. This assump-

tion is reasonable because it is easy to achieve full rank for the small diversity gain

where the matrix size of A is only up to 3 × 3. With this assumption, the product of

nonzero eigenvalues of A is equal to the determinant of A. This leads to the following

simplification of (2.30)

P (d) ≤ d−nr

(
Es

4N0

)−ntnr

(3.11)

where d is the determinant of A and P (d) is the PEP of the codeword error pair (c, e)

with determinant d.

By combining the terms with same distance, equation (3.10) can be reduced to the

weighted sum of PEP

PFER =
∑

d

N(d)P (d) (3.12)

where N(d) is the distance spectrum of space-time trellis codes for small diversity gain,

which is defined as the average number of error events with determinant d.

Thus, for the small diversity gain, the FER, given by substituting (3.11) into (3.12),

is
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PFER ≤
∑

d

N(d)d−nr

(
Es

4N0

)−ntnr

(3.13)

From (3.13), clearly, we can see that the diversity gain plays the same role of

determining the slope of FER as in PEP. This result means that the rank criterion can

be directly applicable to FER. Similar in concept to PEP, the coding gain is defined as

η =
∑

d

N(d)d−nr (3.14)

Based on (3.13) and (3.14), code design criteria for the small diversity gain are

designed to yield a minimum FER as following:

• Rank criterion [5]: in order to achieve the maximal diversity gain ntnr, the codeword

distance matrix A has to be full rank for any codeword pairs (c,e).

• To achieve optimal coding gain, the code that could provide the minimum value of

η should be chosen.

Similarly, for the large diversity gain, the FER can be given by

PFER ≤ 1

4

∑
T

N(T ) exp

(
−nr

Es

4N0

T

)
(3.15)

where T is the trace of codeword distance matrix A. N(T ) is the distance spectrum of

space-time trellis codes for large diversity gain, which is defined as the average number

of error events with trace T .

We see from (3.15) that the trace is the exponent of the base of natural, which

is scaled by SNR. This implies that the performance of FER is dominant by minimum

trace for high SNR. This makes sense because the fading channels converge to AWGN

channel with the increase of the diversity gain. The trace of A is equal to the squared

Euclidean distance of the code, and the minimum squared Euclidean distance is usually
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called as free distance. Therefore, the design criteria for the large diversity gain are to

achieve optimal free distance and its spectrum:

• Trace criterion [15]: make sure that diversity gain rnr is larger than or equal to 4,

and maximize the free distance or minimum trace of codeword distance matrix A.

• Minimize the average number of error events with free distance or minimum trace

N(T0) , where T0 denotes free distance or minimum trace of codeword distance

matrix A.

3.3.3 Distance spectrum search

In order to apply proposed design criteria to space-time codes, we need to compute

the distance spectrum N(d) and N(T ). By definition, the distance spectrum is straight-

forward to compute from all error events or all pairs of distinct codewords. Although the

rank can be obtained through systematic design, the distance spectrum is still based on

search. In this research, the distance spectrum is obtained by the exhaustive computer

search.

However, the complexity of distance spectrum search for time and resource grows

exponentially with the length of frame and the number of trellis states, and makes it dif-

ficult to implement. The number of codewords is very large, for example 2260 for a simple

QPSK code with frame length of 130. The number of error events is the combination of

any two distinct codewords

N = (2260

2 ) = 2518 (3.16)

With such a lot of error events, an exhaustive computer search over all error events

is infeasible.

Geometrically uniform codes will be helpful to reduce the complexity of search. The

distance spectrum search for geometrically uniform code is the simplest to implement. It
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is accomplished by computing the distance to all zero path, which serves as a reference.

Although geometrically uniform code can significantly reduce the number of error events

in search, it still has strict requirements on the length of frame and the number of trellis

states for complete distance spectrum search. Furthermore geometrically uniform codes

do not yield best performance for space-time codes in fading channel.

In practice, to reduce the computation complexity in our implementation, trun-

cated distance spectrum is typically used. In truncated distance spectrum, the distance

spectrum was chosen to include only the single error events with limited length of error

event. An error event is said to be a single error event if the state path of the error event

diverge and merge only once. Let u be the number of states. Let σi
t denote the state

along the codeword path i at time t, where 0 ≤ σi
t ≤ u − 1 and 1 ≤ t ≤ L. An simple

error event with length l, associated with path i and j, is defined by

σi
t = σj

t , t = 1

σi
t 6= σj

t , 1 < t < l − 1

σi
t = σj

t , t > l

(3.17)

The truncated distance spectrum is the subset of the complete distance spectrum

and constitutes only a small proportion of the complete distance spectrum. Thus the

coding gain based on the truncated distance spectrum is only a rough estimation. The

accuracy of the coding gain depends on the way to determine the distance spectrum.

Several truncated distance spectrum have been proposed [22][26]. In [22] the all zero path

is assumed to be transmitted. In such a scheme, an error event, for example, is defined

as that error paths diverge and merge only at zero state. However, as mentioned, this

requires that the codes are geometrically uniform codes and the geometrically uniform

codes do not guarantee the best performance. In [26] the distance spectrum is limited
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to the first 3 minimum distance measures. However, only three measures is a very small

subset and inadequate to estimate coding gain.

In this research, we compute the distance spectrum of all single error events with

limited error events length, for example, single error events with l ≤ lmax are included in

the distance spectrum. The General Algorithm (GA) [28] is employed for the distance

spectrum search. GA is an efficient approach to the implementation of distance spectrum

search, which is the most commonly used algorithm in distance spectrum search. GA

works on super-state. Super-state is a state vector that contains two state i and j,

denoted by
∑

ij. Let σi be the state i of the trellis. A super-state transition from
∑

ij to

∑
pq corresponds to the transition from σi to σp and transition from σj to σq, as shown

in Fig. 3.2. Thus a simple error event that diverges at state i and merges at state j can

be represented by a sequence of super-state

Figure 3.2. Transition of super-state:
∑

ij →
∑

pq.
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∑
ii · · ·

∑
pq · · ·

∑
jj, p 6= q (3.18)

Fig. 3.2 shows that each transition has been assigned a column vector, which is the

encoded output associated with the transition. The codeword distance matrix associated

with the super transition form
∑

ij to
∑

pq is defined as

A
(∑

ij →
∑

pq

)
= (yip − yjq)(yip − yjq)

H (3.19)

A single error event with length k consists of k -step super-state transition. The

codeword distance matrix of such error event is the sum of the codeword distance matrix

of the super transition given in (3.19). For slow fading channel, the distance is either the

determinant or trace of A. Thus, the situation for the search of space-time codes is a little

more complex than the situation described in [28]. Firstly, for the determinant search,

the decision that if an error event should be included in distance spectrum is made at

the step that the diverging path re-merge. This increases the complexity of search and

the requirement for memory. Secondly, in addition to the distance spectrum, the rank

of matrix also need to be carefully considered in determining the distance. The modified

version of GA that concerns these issues is described as follows:

1. Initialization

At the beginning of a search, a distance target is set. This value is used as a

threshold to stop the algorithm. For N(d) search, the value is the maximal error

event length lmax. For N(T ) search, the values is the maximal trace Tmax. The

GA starts with collecting the set of codeword distance matrix for each super-state.

All error events diverge at this step. Thus, the restriction at this step is that the

super-state transition leaves from a common state.
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Therefore, the initialization is the process of storing codeword distance matrix

associated with the transition from common state to state i and j into an array.

The initialization array has u elements and is expressed as

M1 (
∑

ij) = (A (
∑

00 →
∑

ij) , A (
∑

11 →
∑

ij) ,

· · · , A
(∑

(u−1)(u−1) →
∑

ij

)
)

(3.20)

where i, j ∈ 0, · · · , u− 1, and i 6= j, the subscript of M is the step index l which is

set to 1 at this step.

If the transition from a common state to state i and j does not exist, the corre-

sponding matrix element is empty or replaced by zero.

2. Main step

The codeword array is updated at this step. The step index is set to l = l + 1 first.

Let v be the number of information bits that apply to the encoder at each time

slot. Let M = 2v. Thus there are M2 precursor super-state for each super-state.

The update is performed by

Ml+1 (
∑

ij) ← Ml

(∑
pi(0)pj(0)

)
+ A

(∑
pi(0)pj(0) →

∑
ij

)

...

Ml+1 (
∑

ij) ← Ml

(∑
pi(0)pj(M−1)

)
+ A

(∑
pi(0)pj(M−1) →

∑
ij

)

...

Ml+1 (
∑

ij) ← Ml

(∑
pi(M−1)pj(M−1)

)
+ A

(∑
pi(M−1)pj(M−1) →

∑
ij

)

(3.21)

where the + operator adds the codeword distance matrix to each entry in the matrix

array, the symbol ←− represents the operation that adds the distance obtained in

the right-hand side of (3.21) into the matrix Ml (
∑

ij), pi(0) · · · pi(M − 1) and

pj(0) · · · pj(M − 1) are the M precursor states of σi and σj, respectively.

The update process is illustrated in Fig. 3.3
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Figure 3.3. Main step.

3. Comparison

For the trace search, eliminating the entries of Ml (
∑

ij), whose trace is larger than

the preset threshold Tmax. Then combining all the entries of Ml (
∑

ij) with same

trace T. The resulting coefficients would be the multiplicity of the trace, denoted

by nij(T, l).

4. Check for merging path

The existence of nonempty entry in Ml (
∑

ii) implies an error event merged at state

i. Let n(T, l) represent the number of error events with trace T and length l. Then

n(T, l) =
u−1∑
i=0

nii(T, l) (3.22)

For determinant search, combining all the entries in Ml (
∑

ii) with same determi-

nant d and obtaining the multiplicity of the determinant, denoted by nij(d, l). let

n(d, l) represent the number of error events with determinant d and length l. So

n(d, l) =
u−1∑
i=0

nii(d, l) (3.23)
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5. End of algorithm

The algorithm stops if all arrays are empty for trace search, or the step index is

larger than lmax for determinant search.

6. Distance spectrum calculation

The distance spectrum N(d) is the average number of error events having the same

determinant and can be expressed as [28]

N(d) =
1

u

lmax∑

l=2

2 · n(d, l)

(2v)l
(3.24)

Thus (3.14) then becomes

η(lmax) =
1

u

∑

d

lmax∑

l=2

2 · n(d, l)

(2v)l
d−nr (3.25)

Similarly, the distance spectrum N(T0) can be expressed as

N(T0) =
1

u

∑

l

2 · n(T0, l)

(2v)l
(3.26)

The primary advantage of GA is the efficiency in time. However, GA is memory

limited. As an improvement to the memory problem, a modification to GA described

by Aktas [26] was also applied to the search. The modification results in a super-state

reduction of a factor of 3.55.

Although the computational complexity of the truncated distance spectrum is not

prohibitive, it is still extremely time consuming for the determinant spectrum N(d)

search. To facilitate the computation, we imposed several constraints on the search: (a)

the frequencies of occurrence of signal that corresponds to the state transition are equal.

(b) signal associated with state transition branches that diverge from or merge at the

same state should differ by at least one symbol. The codes that violate the constraints

will be excluded from the search.
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In contrast to distance spectrum N(d), the free distance spectrum N(T0), may be

easily determined. In searching of N(T0), at each step, the error events whose trace is

large than T0 will be dropped because the trace is monotonic increase and the search is

terminated when all error events are dropped.

3.3.4 Some new codes based on new criteria and distance spectrum

Based upon proposed criteria and the truncated distance spectrum, new codes have

been designed through systematic searches and were presented in Tables 3.1, 3.2, and 3.3

together with some existing codes. Although the use of the truncated distance spectrum

for the implementation of searches substantially achieves computational improvements,

unfortunately, within this implementation the coding gain η(lmax) may not agree with

performance. In other words, the coding gain η(lmax) only provides an estimate of per-

formance. This is because the error event length is taken to be significantly less than

frame length, and as a result, the information about the long error events are not avail-

able. In Tables 3.1 and 3.2, the new codes that are chosen depended not only on coding

gain η(lmax) but also on the further simulation results. In Table 3.3, the codes with the

maximum value of minimum trace and minimum weight N(T0) are directly chosen from

the search.

The distance spectrums of the first 3 minimum determinants are also listed in

Tables 3.1 and 3.2, where di denote the i -th determinant and Ni denote the average

number of error events with di. By definition of coding gain given in (3.14), it is shown

that the contribution of the minimum determinant to the coding gain is insignificant.

Despite possible inaccuracies in coding gain which are caused by the limited length of

error events, these results justify that there is no dominant error events in space-time

codes over quasi-static flat fading channel for the small diversity gain.
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Table 3.1. 4 states, QPSK space-time trellis codes in slow fading channels, 1Rx

Codes Generator
matrices

r Det η(7) d1,N1 d2,N2 d3,N3

TSC
[5]

G1=[(0 2) (2 0)]
G2=[(0 1) (1 0)]

2 4 8.099 4, 2 12, 4 16, 1

BBH
[20]

G1=[(2 2) (1 0)]
G2=[(0 2) (3 1)]

2 8 8.817 8, 3 12, 1.63 16, 0.78

CVYL
[21]

G1=[(0 2) (1 0)]
G2=[(2 2) (0 1)]

2 8 8.628 8, 3 12, 2.13 20, 3

New
code

G1=[(0 1) (2 0)]
G2=[(0 2) (1 0)]

2 4 7.818 4, 1 8, 2 12, 1

Table 3.2. 8 states, QPSK space-time trellis codes in slow fading channels, 1Rx

Codes Generator matrices r Det η(6) d1,N1 d2,N2 d3,N3

TSC
[1]

G1=[(0 2) (2 0)]
G2=[(0 1) (1 0) (2 2)]

2 12 3.726 12, 2 16, 1 20, 4

BBH
[5]

G1=[(2 2) (2 0)]
G2=[(0 1) (1 0) (2 2)]

2 12 3.405 12, 3 16, 1 20, 1.5

CVYL
[6]

G1=[(0 2) (2 0)]
G2=[(2 1) (1 2) (0 2)]

2 16 3.224 16, 1 20, 5 28, 3.13

New
code

G1=[(0 2) (2 1)]
G2=[(2 0) (1 3) (0 2)]

2 16 3.156 16, 1 20, 3.5 28, 0.66

Table 3.3. 8 states, QPSK space-time trellis codes in slow fading channels, 2Rx

Codes Generator matrices Rank Trace N(T0)

CVYL
[6]

G1=[(2 2) (2 1)]
G2=[(2 0) (1 2) (0 2)]

2 12 2

New
code

G1=[(0 2) (2 2)]
G2=[(2 1) (1 1) (0 2)]

2 12 1
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3.3.5 Simulation

To verify the effectiveness of the proposed criteria, the performances of new codes

list in Tables 3.1, 3.2, and 3.3 were evaluated by simulation. In the simulation, the

encoder generates 130 symbols in each frame and transmits them over quasi-static flat

fading channels. At the decoder, the ML algorithm was considered for the estimation of

the transmitted codewords. The channel coefficients are assumed to be perfectly known

at the decoder. The performances of the new codes are compared with those of the

existing codes.

The performances of new codes are depicted in Figs. 3.4-3.6. Fig. 3.4 and 3.5

present the performance of 4 state and 8 state codes for the small diversity gain, respec-

tively. Fig. 3.6 presents the performance of 8 state codes for the large diversity gain. All

simulations show that the new codes perform better than existing codes. These results

are in good agreement with the results of coding gain η and N(T0) shown in Tables 1, 2

and 3. The improvement in FER is about 0.3 dB, 0.2dB, and 0.4 dB at the FER of 10−3

for 4 states QPSK STTrC with two transmit antennas and one receive antenna, 8 states

QPSK STTrC with two transmit antennas and one receive antenna, and 8 states QPSK

STTrC with two transmit antennas and two receive antennas, respectively.

In Fig. 3.4, it is important to notice that the TSC code and the new code with

determinant 4 have better performance than the BBH and CVYL code with determinant

8. The BBH and CVYL codes seem to be best suited to determinant criterion, indicating

that the determinant criterion is not valid for FER performance under the condition of

the small diversity gain. This simulation result demonstrates the limitation in the design

criterion derived from PEP, for example the determinant criterion.

It can be noticed in Table 3.1-3.2 and Fig. 1-2 that a discrepancy occurs between

performance and coding gain metrics. For example, in Table 3.2, the value of η(6) of TSC

is larger than that of BBH, but Fig. 2 shows that the performance of TSC is better than
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that of BBH. The reasons for this inconsistency are that the error event length is taken

to be significantly less than the frame length, and as a result, the information about the

long error events are not available, as we described above.
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−2

SNR(dB)

F
E

R

TSC, 4 states, QPSK, 2Tx1Rx
BBH, 4 states, QPSK, 2Tx1Rx
CVYL, 4 states, QPSK, 2Tx1Rx
New code, 4 states, QPSK, 2Tx1Rx

Figure 3.4. Performance of 4 states, QPSK, space-time trellis codes.

3.4 Code design criteria for space-time trellis codes in fast fading channel

3.4.1 Introduction

Designing space-time codes requires careful consideration of diversity gain and cod-

ing gain. Design criteria for space-time trellis codes in fast fading channel, namely, sym-

bol Hamming distance criterion and product distance criterion, had been proposed in [5].

Based on these criteria, space-time trellis codes had been designed to provide maximum

diversity gain with coding gain as large as desired [29].
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Figure 3.5. Performance of 8 states, QPSK, space-time trellis codes.
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Figure 3.6. Performance of 8 states, QPSK, space-time trellis codes.
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However, we also see certain problems in the criteria. In [5], Tarokh’s criteria are

derived to optimize the upper bound of PEP and the multiplicity of product distance

are ignored. However, trellis codes with large numbers of states may result in a large

multiplicity that cannot be ignored in assessing the overall coding gain [30]. Moreover,

Tarokh’s criteria have been developed in high SNR regions, and their analytical expres-

sions cannot be used in low SNR regions.

Therefore, some improvements have been made to overcome these problems. Sasazaki

and Ohtsuki [31] had developed an improved criteria aimed at optimizing the FER for

fast fading channel. In the design, first, PEP was approximated as a function of prod-

uct distance or trace, depending on the region of SNR; second, coding gain performance

was further improved by using union bound analysis [23][26]. In this section, improved

design criteria for space-time trellis codes in fast fading channel are introduced and uti-

lized. The criteria are based on union bound analysis and derived from the optimal FER

performance. The union bound analysis had considered the region of SNR. In the high

SNR region the performance is governed primarily by symbol Hamming distance and the

product criterion achieves an optimal coding gain, while in the low SNR region optimal

coding gain is achieved by the trace criterion. Finally, simulation results show that the

proposed criteria are effective by comparing the performances of different codes. Our

design is close to that in [31], but the expression of coding gain is more accurate for high

SNR and the performance behavior for moderate SNR region were discussed.

3.4.2 Design criteria

Let L denote the frame length. At each time slot t, nt M-PSK symbols are transmit-

ted, and are presented in form of column vector ct = [c1(t), · · · , cnt(t)]
T
, where 1 ≤ t ≤ L.

A transmitted codeword is the nt by L matrix and its i-th column corresponds to the
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transmitted symbol vector at time i. The codeword matrix can be written in terms of

column vector ct

c =

[
c1 · · · ct · · · cL

]
(3.27)

In [5], the system performance is characterized by the PEP. The PEP is the proba-

bility that the decoder erroneously selects codeword e as the transmitted codeword while

the codeword c is in fact transmitted, where

e =

[
e1 · · · et · · · eL

]
(3.28)

For the fast fading channel, the PEP is given by [5]

P (c → e) ≤
L∏

t=1

(
1 + dt

E

Es

4N0

)−nr

(3.29)

where dt
E is the squared Euclidean distance between ct and et, and is given by

dt
E = |ct − et|2 =

nt∑
i=1

∣∣ci(t)− ei(t)
∣∣2 (3.30)

In [5], by assuming that SNR is sufficient large, Tarokh described the PEP by the

simplified expression

P (c→ e) ≤

 ∏

t∈ν(c,e)

dt
E



−nr (

Es

4N0

)−nrδH

(3.31)

where ν(c, e) is the set of time instance 1 ≤ t ≤ L at which the squared Euclidean

distance dt
E is not equal to zero. δH is the symbol Hamming distance which is defined as

the number of elements in ν(c, e).

In (3.31), δH decides the slope of PEP in logarithm domain. Analogous to the slow

fading channel, the slope term nrδH is often called the diversity gain. The product term
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is defined as the product distance and contributes to the coding gain. Optimizing the

worst PEP led to the symbol Hamming distance and product distance criteria [5].

It is well known that the symbol Hamming distance criterion is effective in realizing

the best diversity gain, but the product distance criterion provides just rough guidelines

on coding gain because the product distance criterion ignores the multiplicity of product

distance. Moreover the criteria also does not account for the fact that the PEP may be

approximated by different expression in different SNR region.

A commonly used method to analyze the performance of trellis codes is that of

union bound analysis, which has the advantage of being able to exploit the benefits of

distance spectrum. With this method, it is expected that the coding gain performance

can be enhanced. The union bound on FER was obtained by summing the PEP weighted

by distance spectrum. In the high SNR region, where SNR >>1, the PEP may be well

approximated by (3.31). Thus the union bound on FER can be written as

P ≤
L∑

δH=δHmin

∑
dp∈D(δH)

W
dp

δ d−nr
p

(
Es

4N0

)−nrδH

=
L∑

δH=δHmin

Inr

δH

(
Es

4N0

)−nrδH
(3.32)

and

Inr
δH

=
∑

dp∈D(δH)

W
dp

δH
d−nr

p (3.33)

where dp is the product distance, D(δH) denote the set of product distance caused by

error events with symbol Hamming distance δH . Each product distance dp in D(δH) has

a weight associated with it. The weight is defined as the average number of error events

with symbol Hamming distance δH and product distance dp, and is denoted by W
dp

δH
. Inr

δH

can be interpreted as the coding advantage contributed by the error events with symbol

Hamming distance δH .
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It is seen that Inr
δH

is nrδH-order coefficient of inverse SNR. At high SNR, the

dominant term in (3.32) is the lowest term. Hence, equation (3.32) reduces to the ap-

proximation

P ≤ Inr
δHmin

(
Es

4N0

)−nrδHmin

(3.34)

The design objective of this study is to minimize FER. Thus the design criteria for

high SNR are as follow:

• Symbol Hamming distance criterion [5]: in order to achieve the maximum diversity

in a fast fading environment, the symbol Hamming distance for any two codewords

c and e must be maximized.

• Product distance criterion: in order to achieve optimal coding advantage, Inr
δHmin

must be minimized.

For small SNR region, where SNR<<1, PEP has a trace dependence given by the

following equation [31]

P (c→ e) ≤
(

L∑
t=1

dt
E

Es

4N0

)−nr

(3.35)

In (3.35), the sum term,
L∑

t=1

dt
E, is the squared Euclidean distance between code

pair (c, e). Since this distance is equal to the trace of codeword distance matrix, the

criterion based on squared Euclidean distance is also called as trace criterion. Using a

similar analysis, FER can be written as

P ≤
∑

de∈D

Wded
−nr
e

(
Es

4N0

)−nr

= Inr
E

(
Es

4N0

)−nr

(3.36)

and
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Inr
E =

∑

de∈D

Wded
−nr
e (3.37)

where de is the squared Euclidean distance or trace, D is the set of trace, Wde is the

average member of error events with de, Inr
E is recognized as the coding gain.

The coding gain is measured in terms of trace, which is equal to the weighted sum

of d−nr
e . It should be noted that the sum, Inr

E , runs over all trace. This implies that

all error events contribute equally to the FER. Thus when applying the design criteria

for small SNR, it is important to have detailed information about the complete distance

spectrum. Minimizing FER with respect to trace, led to the following criterion:

• Trace criterion: In order to achieve optimal coding performance, Im
E should be

minimized.

For the moderate SNR region, the approximation expression (3.35) and (3.31) are

no longer valid and it is difficult to obtain a good approximation of PEP that has an

explicit trace or product distance dependence. Equation (3.32) provides useful informa-

tion about the properties of PEP in this region. From (3.32), we can conclude that the

dominant contribution from the lowest-order coefficients to FER for high SNR become

less significant for moderate SNR, whereas the contributions from high-order coefficients

are comparable to that from the lowest-order coefficients.

3.4.3 Some new codes based on new criteria and distance spectrum

Based on proposed criteria, some new codes are obtained through computer search

of distance spectrum over all candidate codes and listed in Table 3.4 together with FVY

codes, where FVY codes are based on Tarokh’s criteria. The method applied to the dis-

tance spectrum search is simple, but its computer implementation is time consuming and

requires a large memory capacity. The computation time and required memory increase

exponentially with the number of states and the length of frame. With these limitations,
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the exhaustive search over all error events is infeasible. For the sake of computational

tractability, the practical method is to calculate the truncated distance spectrum. To do

that, in this dissertation, error events have restricted to those with the first two minimum

symbol Hamming distance for the trace search. As mentioned above, design criterion for

low SNR requires complete distance spectrum. Thus, the calculation of coding gain in-

volving truncated distance spectrum of trace becomes less accurate. As a result, finding

the codes that satisfy trace criterion is an iterative computational/simulation procedure

that obtains near optimal codes. For high SNR, coding advantages are determined over

error events with the minimum symbol Hamming distance. Thus the optimal results for

Inr
δH

were obtained from the best product distance spectrum.

All new codes in Table 3.4 possess the same diversity gain as the FVY codes.

Thus, differences in performance between the new and FVY codes will be defined by the

differences in coding gain. The new 32 states code ‘a’ achieves optimal coding gain for

high SNR, whereas new 32 states code ‘b’ achieves optimal coding gain for low SNR. The

rest of the new codes are optimal for both high and low SNR.

3.4.4 Simulation

In this section, we evaluated the performance of new codes over fast fading channel

by simulation. In simulation, we considered a wireless system with two transmit antennas,

QPSK symbol constellation, and 130 symbols per frame. The performance of the new

codes was then compared with that of FVY.

Fig. 3.7 shows the performance of 8 states STTrC. The performance improvement

compared with FVY is slight for one and two receive antennas. This is explained by

the fact that both codes have the same coding advantage for large values of SNR. The

difference in FER performance between new and FVY codes become apparent as the
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Table 3.4. QPSK STTrC with two transmit antennas

code state generator δH , dp I1
δHmin

Inr
E

FVY
[29]

8 G1=[(2,2)(1,2)]
G2=[(0,2)(1,3)(2,0)]

2, 48 2.08e-2 I8
E=1.05e-8

New 8 G1=[(1,2)(2,2)]
G2=[(2,0)(2,1)(0,2)]

2, 48 2.08e-2 I8
E=6.92e-9

FVY
[29]

16 G1=[(0,2)(0,1)(2,2)]
G2=[(2,0)(1,2)(0,2)]

3, 64 3.39e-2 I4
E=2.04e-4

New 16 G1=[(0,2)(2,2)(0,2)]
G2=[(2,1)(1,1)(2,3)]

3, 128 2.17e-2 I4
E=1.63e-4

FVY
[29]

32 G1=[(1,3)(1,2)(2,1)]
G2=[(0,1)(2,0)(3,0)(1,2)]

3, 96 9.40e-3 I4
E=1.67e-4

New
(a)

32 G1=[(1,2)(2,1)(2,2)]
G2=[(2,0)(2,2)(0,2)(0,2)]

3, 288 3.47e-3 I4
E=1.60e-4

New
(b)

32 G1=[(0,2)(2,1)(2,2)]
G2=[(2,2)(1,2)(1,0)(0,2)]

3, 192 5.21e-3 I4
E=6.74e-5

number of receive antennas increase. The improvement at FER of 10−3 is about 0.2 dB

for eight receive antenna.

Fig. 3.8 shows the performance of 16 states STTrC. It was shown that new codes

have superior performance. These results agree with the numerical data in Table 3.4.

The improvement at FER of 10−3 is about 0.6 dB, 0.5 dB, and 0.4 dB for one receive

antenna, two receive antennas, and four receive antennas, respectively.

Fig. 3.9 shows the performance of 32 states STTrC. It is interesting to note that

these codes present very different properties. From the results presented in Table 3.4,

the new code ‘a’ shows that good performance is to be expected for one receive antenna.

However, Fig. 3.9 indicates that the new code ‘b’ yields the better performance. This

may be due to the fact that since the new codes are designed for high and low SNR

applications, they suffer performance uncertainty in moderate SNR. This uncertainty
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Figure 3.7. Performance of 8 states, QPSK, space-time trellis codes.

Figure 3.8. Performance of 16 states, QPSK, space-time trellis codes.
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is due primarily to the omitted contribution from high-order coefficient for high SNR,

which can be significant for moderate SNR. A further calculations show that I1
4=1.95e-2,

5.12e-2, and 5.20e-2 for new code ‘b’, new code ‘a’, and FVY, respectively. These results

explain the phenomenon of Fig. 3.9 to some extent. The improvement of new code ‘b’

against FVY in FER performance is about 0.9 dB and 0.7 dB for one receive antenna

and two receive antennas, respectively.

Figure 3.9. Performance of 32 states, QPSK, space-time trellis codes.

3.5 Conclusions

In this chapter, the improved design criteria based on union bound analysis for

space-time trellis codes in both slow and fast fading channel have been presented. The

design are performed by employing union bound analysis and by considering performance

dependence on diversity gain and region of SNR. The proposed criteria were successfully
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applied to space-time trellis codes. The new codes had been designed based on the new

coding gain metrics and distance spectrum. The simulation results show that the new

codes result in improvement in performance of FER. The improvements are about 0.2-0.9

dB at FER of 10−3 ,which are big number in terms of method applied.



CHAPTER 4

ORTHOGONAL SPACE-TIME TRELLIS CODES

4.1 Introduction

Space-time codes provide an effective means and method of enormously increasing

system capacity for wireless communications. Tarokh, et al., first described the per-

formance characteristics of space-time codes in terms of diversity gain and coding gain

[5]. As the diversity gain determines the asymptotic slope of PEP in logarithm domain,

it is the most important factor in the design of space-time codes. The design of first

space-time trellis codes has focused therefore more on implementing full diversity order,

but non-optimal coding gain [5]. The various improved codes have been developed to

enhance the coding gain performance in subsequent works. The improvement may be

implemented by finding more powerful codes that yield the minimum PEP in terms of

Tarokh’s criteria through exhaustive computer search [20], developing improved design

criteria based on more accurate mathematical expression of PEP [15][16], and performing

union bound and distance spectrum analysis [23][26]. However, as the development of

space-time codes with the state of art techniques, these methods may now only provide

marginal improvement.

The improvement can be increased further by introducing the orthogonal design of

space-time block codes into space-time trellis codes. In slow fading channel, the coding

gain depends on the minimum determinant of full rank codeword distance matrix [5].

The codeword distance matrix is a Hermitian matrix. Thus, the optimal determinant

will be obtained if the codeword distance matrix is also a diagonal matrix with equal

eigenvalues. Based on this principle, concatenated space-time block coding with trellis

64
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coded modulation had been proposed [32][33]. The scheme, shown in Fig. 4.1, concate-

nates an outer trellis coded modulation with an inner space-time block code. Essentially,

this code is still a space-time block code with extra coding gain provided by outer code.

Figure 4.1. Concatenated space-time block coding with trellis coded modulation.

Super Orthogonal Space-Time Trellis Codes (SOSTTrC) have been developed in

[14]. Super orthogonal space-time trellis codes are essentially the space-time trellis codes

with super-trellis structure, which is illustrated in Fig. 4.2. The approach orthogonal-

izes the output on super-trellis transition by using Alamouti orthogonal matrix [9]. The

codeword distance matrix of Alamouti code is a Hermitian diagonal matrix in which the

diagonal elements are non-zero equal positive real elements. Due to its additive property,

the resulting codeword distance matrix of SOSTTrC will also be a Hermitian diagonal

matrix with equal eigenvalues. This full rank diagonal matrix with equal eigenvalues will

result in marked improvement in the determinant of codeword distance matrix, and there-

fore the coding gain in slow fading channel. The essential difference between SOSTTrC

and concatenated space-time block coding with trellis coded modulation is that SOST-

TrC enhance the coding gain of space-time trellis codes by orthogonalizing the output

of space-time trellis codes. Therefore, SOSTTrC is more attractive. Similar ideas have

been proposed in [34][35]. These approaches in [14][34][35] can be applied only to two
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transmit antennas. In a later paper [36], super-quasi-orthogonal space-time trellis codes

for four transmit antennas were developed.

Figure 4.2. Super orthogonal space-time trellis codes.

SOSTTrC have been known to be an very effective technique for improving coding

gain performance in slow fading channels. However, this code is not ideally suited for

fast fading channels, because it may give rise to the diversity loss in fast fading channels

[34]. In SOSTTrC, the super-trellis transition is induced by two information symbols.

This super-trellis operation ensures the full rate codes, but inevitably results in parallel

trellis transition. On fast fading channel, diversity gain depends on Minimum Symbol

Hamming Distance (MSHD). The symbol Hamming distance measures the number of

symbol positions where they differ between two codewords. Thus, the codes that exhibit

parallel trellis transitions have the MSHD at most one. Although the practical MSHD

is 2 because of the use of Alamouti matrix as the encoded output, however, compared

to its counterpart with the same number of states but the MSHD of larger than 2 in

STTrC, SOSTTrC would incur diversity loss in fast fading channels. Especially for the

systems that have a large number of transmit antenna and/or a high order constellation

modulation, it is very difficult to prevent parallel trellis transition from happening. Some

examples are shown in the Table 4.1 below.
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Table 4.1. A comparison in MSHD between QPSK STTrC and QPSK SOSTTrC

State Codes MSHD Order loss?

4 STTrC 2

4 SOSTTrC 2 No

8 STTrC 2

8 SOSTTrC 2 No

16 STTrC 3

16 SOSTTrC 2 Yes

32 STTrC 3

32 SOSTTrC 2 Yes

64 STTrC 4

64 SOSTTrC 2 Yes

Since the diversity gain of space-time codes corresponds to the asymptotic slope

of the PEP, any diversity loss can translate into significant performance degradation.

Thus, diversity loss is an important issue to be taken into account in space-time codes.

We have, therefore, developed the Orthogonal Space-Time Trellis Codes (OSTTrC) in

this dissertation, which are aimed at improving diversity gain in fast fading channels. The

approach is also based on the orthogonal design of space-time block codes. But different

from SOSTTrC, the parallel transition is avoided in our design. Theoretical analysis and

simulation results indicate that OSTTrC have an advantage over STTrC with regards to

diversity gain. However, on the other hand, OSTTrC offers a disadvantage in that it is

bandwidth inefficient.

4.2 Orthogonal space-time trellis codes

SOSTTrC is particularly attractive for the design of space-time codes because of its

great performance in slow fading channels. However, except for the diversity gain loss in
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fast fading channels, coding gain performance depends on the product distance and the

orthogonal design provides no significant benefit in improving coding gain performance in

fast fading channels. Therefore, there is a need for developing a better way to improve the

performance in fast fading channels. Our performance analysis shows that, in fast fading

channels the practical diversity gain is the product of symbol Hamming distance and

the rank of the branch codeword distance matrix. This makes it possible to improve the

performance of the diversity gain by increasing the rank of the branch codeword distance

matrix, and meanwhile maintaining the symbol Hamming distance of STTrC. By making

use of this principle, in this chapter, we intend to propose the orthogonal space-time trellis

codes, which are aimed at improving diversity gain in fast fading channel. The orthogonal

space-time trellis codes are particularly simple, constructing with STTrC and space-time

block codes encoder as shown in Fig. 4.3, where the space-time trellis codes is the same

as in [15] and the encoder of space-time block codes encode the output of STTrC into an

orthogonal matrix of space-time block codes.

Figure 4.3. Orthogonal space-time trellis codes.

The orthogonal space-time trellis codes are generated in the following manner. At

each time slot t, a parallel b bit information data are input to the STTrC encoder and
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are encoded into nt M-PSK symbols, where b = log2 M . We represent the output by a

column vector of dimension nt

st =

[
c1
t c2

t · · · cnt
t

]T

(4.1)

where T denotes transpose operation, and ci
t is the transmitted symbol in i-th transmit

antenna at time t.

This symbol vector is passed to the STBC encoder where these nt elements are

transformed into an orthogonal matrix. The resulting nt×p orthogonal matrix takes the

form:

ct =




c1
t x1

t (1) · · · x1
t (p− 1)

...
...

. . .
...

cnt
t xnt

t (1) · · · xnt
t (p− 1)




(4.2)

where p = nt for nt = 2, 4, 8, and p > nt for nt = 3, 5, 6, 7, 9 · · · .
The column vectors in equation (4.2)

xt(i) =

[
x1

t (i) x2
t (i) · · · xnt

t (i)

]T

, i ∈ 1, · · · , p− 1 (4.3)

are M-PSK symbol vector. Its elements are the linear combination of ci
t and (ci

t)
∗

where

the superscript ∗ represents the conjugate operation, and are chosen so that the following

equation is true

ctc
H
t =

(∣∣c1
t

∣∣2 +
∣∣c2

t

∣∣2 + · · ·+ |cnt
t |2

)
Int (4.4)

where Int is the nt × nt identity matrix.

The equation above is the sufficient condition for the orthogonal design in STBC.

The methods for generating such orthogonal matrix are described in [11]. From (4.4)
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it is noted that the rows of ct matrix are mutually orthogonal. For nt = 2, 4, 8, ct is a

orthogonal matrix. For nt = 3, 5, 6, 7, 9 · · · , ct is a matrix with orthogonal rows. In [11],

the non-square matrices are called generalized orthogonal matrix. In this dissertation,

ct is in general terms referred to as the orthogonal matrix. The orthogonal matrix was

originally designed to offer full diversity order, but no coding gain with low complexity

in decoding hardware implementation for STBC. However, when applying the technique

of orthogonal design to SOSTTrC, the state-of-the-art improvement in coding gain over

STTrC can be yielded. This is due to the factor that the orthogonal matrix has two

important advantages that bring the excellent performance in slow fading channels. First,

it achieves guaranteed full diversity order. Secondly, the unique orthogonality property in

it leads its codeword distance matrix to be a diagonal matrix with equal eigenvalues. The

performance analysis of OSTTrC, which is discussed in more detail later in next section,

shows that, for the purpose of improving diversity gain, the encoded output matrix is not

necessary to be an orthogonal matrix. A matrix that yields codeword distance matrix

that has at least a rank of two is sufficient to assure the diversity gain improvement. The

primary reason that we consider the orthogonal matrix in this work is to fully exploit its

two advantages to achieve optimal performance on both diversity gain and coding gain.

A well-known example of such orthogonal matrix is the Alamouti matrix of form

ct =




c1
t − (c2

t )
∗

c2
t (c1

t )
∗


 (4.5)

In OSTTrC, the orthogonalization is performed for each information symbol. Thus,

the approach avoids parallel transition and maintains the symbol Hamming distance

features of STTrC. However, there is a penalty to be paid by this approach: the data

rate loss. In OSTTrC, a time slot consists of b information bits and is further divided

into p sub-time slots. The orthogonal matrix is transmitted column by column within
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time slot t, such that the i-th row is transmitted from i-th antenna, and each column

is transmitted in corresponding sub-time slot. This indicates that number of transmit

symbol in one information symbol duration is p at each transmit antenna, so that the

code rate is 1/p. Therefore, the scheme may be less suited for the bandwidth limited

applications.

4.3 Performance analysis and design criteria

Performances of space-time codes have been analyzed by formulating upper bound

on the PEP [5]. PEP refers to the probability that the decoded codeword at receiver

is different from transmitted codeword. Let L be the length of frame, c be transmitted

codeword and e be erroneously decoded codeword. Let ct and et denote the encoded

output matrix of size nt × p at time t in codeword c and e , respectively. We define

codeword c and e such that c and e are matrix formed by concatenating ct and et,

respectively,

c = [c1c2 · · · ct · · · cL] (4.6)

e = [e1e2 · · · et · · · eL] (4.7)

Let

Bt = ct − et (4.8)

be a difference matrix between ct and et. Since this matrix is associated with the branch

output, we refer it as branch difference matrix. A branch codeword distance matrix

between ct and et is defined as the Hermitian square of the difference matrix of size

nt × nt
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At = BtB
H
t (4.9)

PEP of space-time codes has been developed significantly, originally considering

only the branch output is a symbol vector. When the branch output is a matrix as in

OSTTrC, the upper bound of PEP in fast Rayleigh fading channels is given by

P (c→ e) ≤
L∏

t=1

r∏
i=1

(
1 + λi

t

Es

4N0

)−nr

(4.10)

where λi
t is the i-th eigenvalue of At in descending order and r is the rank of At

In the following derivation, SNR is assumed to be sufficient large. Hence, PEP

expression in (4.10) can be approximated by

P (c→ e) ≤
L∏

t=1

r∏
i=1

(
λi

t

)−nr

(
Es

4N0

)−rnr

(4.11)

which is equivalent to

P (c→ e) ≤
(

Es

4N0

)−δHrnr ∏

t∈v(c,e)

(
r∏

i=1

λi
t

)−nr

(4.12)

where v(c, e) is the set of time instance 1 ≤ t ≤ L at which the At is not a null matrix,

δH is the number of elements in v(c, e) which is recognized as the symbol Hamming

distance between codeword pair (c, e).

This expression describes the diversity gain as a product of the symbol Hamming

distance and the rank of At, according to the definition of diversity gain. In STTrC, Bt

is a column vector, thus r=1. In this case, only symbol Hamming distance contributes

to the diversity gain. This leads to well-known symbol Hamming and product distance

criteria for STTrC [5]. In OSTTrC, the symbol Hamming distance maintains the exact

symbol Hamming distance of STTrC. Therefore, if r takes a value larger than one, the

performance of diversity gain can be improved linearly with the rank r of At.
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By examining the inequality (4.12), one can see that the product term of eigenvalues

determines the coding gain. Recognizing that the product term of eigenvalues is equal

to the determinant of matrix At if matrix At has full rank, the design criteria to yield

minimum PEP for OSTTrC are as follows:

• Symbol Hamming distance criterion: the minimum symbol Hamming distance of

STTrC must be maximized.

• Rank criterion: branch codeword distance matrix At, where t ∈ v(c, e), must have

a full rank of nt. Using this criterion together with above symbol Hamming distance

criterion will offer optimal diversity gain.

• Determinant criterion: in order to provide optimal coding gain, the minimum de-

terminant of At must be maximized.

The orthogonal matrix defined in (4.4) is very attractive in terms of above criteria.

As mentioned, the orthogonal matrix provides guaranteed full rank for At. It also offers

unique feature for At. It can easily be proven that At can be expressed as [11]

At =
(∣∣c1

t − e1
t

∣∣2 +
∣∣c2

t − e2
t

∣∣2 + · · ·+ |cnt
t − ent

t |2
)

Int (4.13)

Equation (4.13) states that At is a full rank diagonal matrix, in which the diagonal

elements are identical and equal to the Euclidean distance of encoded outputs of STTrC.

Thus, ideally the orthogonal matrix should be chosen to make the codes robust on both

diversity and coding gain. In this case, from (4.13), it can be seen that the eigenvalues

will be

λi
t =

∣∣c1
t − e1

t

∣∣2 +
∣∣c2

t − e2
t

∣∣2 + · · ·+ |cnt
t − ent

t |2 (4.14)

for i = 1, 2, · · · , nt.

Applying the property given in (4.14) to (4.12) yields



74

P (c→ e) ≤ d−ntnr
p

(
Es

4N0

)−δHntnr

(4.15)

where

dp =
∏

t∈v(c,e)

(∣∣c1
t − e1

t

∣∣2 +
∣∣c2

t − e2
t

∣∣2 + · · ·+ |cnt
t − ent

t |2
)

(4.16)

is the product distance of STTrC.

The important properties of OSTTrC that can be observed from (4.15) are as

follows. First, the diversity gain is nt times that of STTrC. Secondly, the exponent term of

the product distance gives 10 log10 nt dB advantage of coding gain over STTrC. In general,

the orthogonal matrix is a square matrix of size nt only for nt = 2. Considering the effect

of bandwidth inefficiency on decoding, the performance improvement in OSTTrC is due

solely to the diversity gain, with loss of coding gain performance for nt > 2 and without

loss of coding gain performance for nt = 2. As a consequence of these properties, symbol

Hamming and product distance criteria developed for STTrC can be directly applied to

OSTTrC.

4.4 Simulation

The performances of OSTTrC have been theoretically analyzed. In this section,

the performances are evaluated through simulation. In simulation, we consider a MIMO

system with two transmit antennas and one receive antenna. The orthogonal matrix is the

Alamouti matrix given in (4.5). Thus, the code rate of OSTTrC is 1/2. A frame consists

of 130 QPSK information symbols. To compare the results of this study with previous

results, OSTTrC are formed from existing STTrC. In fast fading channels, OSTTrC is

based on FVY code proposed in [29]. In slow fading channels, OSTTrC is based on CVYL

code proposed in [21].
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Fig. 4.4 shows the performance comparison between OSTTrC and STTrC in fast

fading channels for different states, two transmit antennas, one receive antenna, and

QPSK codes. The integer numbers refer, from right to left, to 4, 8, 16 state. As ex-

pected, in all cases the OSTTC show diversity gain increase of a factor of two. The

FER is plotted against SNR. For a fair comparison, considering the code rate loss, the

practical improvement in performance is 3 dB less than the observed improvement. The

performance improvements at the FER of 10−3 are about 9.9 dB, 8.5 dB, 5.9 dB for 4,

8, 16 states code, respectively.

Figure 4.4. Performance of OSTTrC and STTrC in fast fading channels.

In Fig. 4.5, we show the performance comparison between 8 states OSTTrC and

STTrC in slow fading channels for two transmit antennas, one receive antenna, and

QPSK codes. We can see that OSTTrC also make significant improvement in slow fading
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channel, which is the benefit of coding gain improvement. But there is no diversity

gain improvement. This can be illustrated by the fact that the slope of the new code is

parallel to the slope of the space-time trellis codes. Considering the code rate loss, the

performance improvement at the FER of 10−3 is about 2.6 dB.

Figure 4.5. Performance of OSTTrC and STTrC in slow fading channels.

4.5 Conclusion

Performances of space-time codes are measured by the diversity gain and coding

gain, and depend strongly on diversity gain. This chapter presents the orthogonal space-

time trellis codes for fast fading channel, which improve diversity gain performance.

This is accomplished by transforming the vector output of space-time trellis codes into

an orthogonal matrix, while still maintaining the minimum symbol Hamming distance
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of space-time trellis codes. The orthogonal design of STBC can contribute to both

diversity gain and coding gain improvement, but only diversity gain improvement can

be achieved compared to STTrC. With this code, diversity gain can increase by a factor

that is equal to the number of transmit antennas in fast fading channels, which is a

significant improvement over STTrC. Performances of proposed codes have been studied

analytically and the design criteria have been suggested. Finally, an example is presented

to demonstrate the codes. In this example, the orthogonal matrix is the Alamouti matrix.

The simulation results show considerable performance improvement benefited from the

improved diversity gain. A more than 5 dB improvement can be achieved in fast fading

channel. The major drawback of the codes is the bandwidth inefficiency.



CHAPTER 5

FULL RATE SPACE-TIME TURBO CODES

5.1 Introduction

It has been shown that space-time trellis codes can achieve significant improvements

in performance on fading channel with moderate complexity. However, the performance

of trellis-based codes is limited by inevitable saturation of performance with increased

number of trellis states. In addition, the complexity of decoder also becomes particularly

complicated with increased number of trellis states. Turbo principle may offer poten-

tial for further significant improvements in performance. Turbo codes are well known

for its ability to reach near Shannon limit performance, which has been successfully

demonstrated by Berrou [13]. Since the introduction of turbo codes, the turbo principles

have been widely applied to significantly improve performance in many applications, for

example, turbo equalization and turbo multiuser detection. Space-Time Turbo Codes

(STTuC) for MIMO systems have been recently studied by [37][38][39][40][41]. In [37]

[38], space-time turbo codes are constructed based on turbo codes. In [37], the outputs

of turbo codes are assigned to multiple antennas. In [38], the outputs of the component

code are mapped to QPSK symbols first, and then delivered to two antennas. How-

ever, these codes are poorly suited to a large number of transmit antennas (for example,

more than two antennas) and high order bandwidth efficient modulation (for example,

8-PSK). In [39][40][41], space-time turbo codes are constructed of parallel concatenated

space-time trellis codes. The outputs of first and second component code are alternately

punctured to provide bandwidth efficient codes. The advantage of this approach is that

it is bandwidth efficient with any number of transmit antennas.

78
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In [5], the performance of space-time codes over slow fading channel is evaluated by

the upper bound of PEP, which is the function of two metrics: the rank and determinant

of codeword distance matrix. Minimizing the worst PEP yields the rank and determinant

design criteria that provide a basis for the code design of space-time codes. Since the

PEP decays exponentially with the rank, the performance of space-time codes over slow

fading channel is dominated by the error events with minimum rank of codeword distance

matrix. Therefore, the rank criterion is crucial for space-time codes. In above approaches

[39][40][41], the puncture operation was applied to ensure the bandwidth efficient codes.

However, the punctured trellis codes may lead to a rank deficient problem [37][39][41].

The rank deficient problem is an important issue to be taken into account in space-time

codes because of the reasons we mentioned above. This had been studied by [37][41]. In

[37], the simulation results show that the performance degradation caused by puncturing

can be remedied by the rotated construction of outputs of second component encoder.

In [41], a systematic method to reduce the impact of rank-deficient on performance has

been proposed. In this method, each component encoder is systematic and the outputs

of second component encoder are rotated during multiplexing. This structure increases

the number of candidates that satisfy the significant full rank criterion. This work has

demonstrated the significant improvement on performance. Unfortunately, this approach

suffers from the limitation of high design complexity due to the complicated design of the

component encoder and is suitable only for simple codes with a small number of transmit

antennas and low order constellation modulation.

In contrast to [41], a space-time turbo code proposed in [40] is a simple structure,

suitable for the design of codes with a large number of transmit antennas. The codes are

based on the space-time trellis code modulation proposed by [21]. It has the advantages

of low design complexity, and can create very complicated codes, for example, 16 states,

8PSK and four antennas STTuC [42]. However, since there was no consideration given
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to the rank deficient problem, the codes are dedicated to the system with high diversity

gain and are not optimal for the system with small diversity gain.

In this chapter, we presented a new space-time turbo codes that exploit the ad-

vantages of [40] and [41]. In our design, the approach to reduce the impact of the

rank-deficient problem on the performance shown in [41] has been followed and adapted.

It means that the component code is a systematic code. The parity encoder is as same as

in [40]. Thus the disadvantage associated with the design complexity has been overcome.

Design criteria and performance of our new codes are also studied. In particular, we have

studied the effect of rank deficient on the FER performance for small and large diversity

gain. For the small diversity gain, our codes offer equivalent performance to the codes

in [41]. For the large diversity gain, rank deficient has little effect on performance, and

the codes in [40] provide comparable performance to our codes. A fairly simple design

criterion for our new codes had been proposed. The criterion provides a especially low

complexity, but very effective solution to complex codes. We provide examples in the

end of the chapter to illustrate the performance of our codes.

The design in this study only deal with slow fading channel. For fast fading channel,

rank deficient issue has no effect on the performance of STTuC. Very powerful STTuC

for fast fading channel have been proposed in [40][42].

5.2 Space-time turbo codes

In the original paper of Berrou [13], a typical turbo code consists of two parallel

concatenated recursive systematic convolutional encoders, an interleaver, and a puncture

or multiplexer. STTuC is of similar construction as shown in Fig. 5.1. It consists of two

parallel concatenated recursive space-time trellis code encoders connected by an odd-even

symbol-wise interleaver. A puncture may be used to ensure bandwidth efficient codes.
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Figure 5.1. Space-time turbo codes.

In order to have the full rate, puncture operation is always performed in STTuC.

In this operation, the encoded symbols at the upper encoder, which correspond to the

information symbols at odd time slot, are selected to transmit. To avoid some information

symbols are transmitted twice, and some information symbols are never transmitted,

the lower encoder should only transmits the encoded symbols which correspond to the

information symbols at even time slot [40]. For this purpose, in [40], a deinterleaver,

which performs the inverse operation of interleaver, is placed at the output of the lower

encoder. When the deinterleaver is applied to the encoder, it is necessary to introduce an

interleaver identical to the encoder interleaver in the lower decoder. However, the use of

interleaver without specific design would introduce a long sequence of zero in the received

signal of the lower decoder. This may deteriorate performance. Furthermore, it has a

negative effect on the performance for the delay sensitive applications. These problems

can be solved by considering the use of an odd-even interleaver, which maps odd positions

to odd positions and even positions to even positions. When considering the odd-even



82

interleaver, the deinterleaver may be removed as shown in Fig. 5.1. The removal of the

deinterleaver from the lower encoder will benefit the delay sensitive applications.

In turbo codes, the performance is deeply influenced by the interleaver, which is

responsible for the random-like property in turbo codes. Performance comparisons of

symbol-wise and bit-wise interleaver have been studied by [43][44][41][42]. The sim-

ulations in [41][42] have demonstrated that the bit-wise interleaver achieves the same

performance as the symbol-wise interleaver on slow fading channel, but the bit-wise in-

terleaver can perform better than the symbol-wise interleaver over fast fading channel.

The purpose of this research is to compare the performance of our codes with some ex-

isting codes. Therefore, the symbol-wise interleaver is employed as the simplification for

decoder.

The inputs to the encoder are the information symbols which are represented by

k bits of information data, where k = log2 M . At each symbol epoch t, each k bits

binary data It = [I1(t), · · · , Ik(t)] are directly applied to upper encoder in parallel and

are encoded to nt M-PSK symbols c1
t = [c1

1(t), · · · , c1
nt

(t)]T , where c1
t is a column vector

of length nt and the variable c1
i (t) is the encoded symbol of the upper encoder in the

i -th antenna at time t. In the lower encoder, the input data are first passed through the

interleaver and then passed through the lower encoder. The output of the lower encoder

are similarly denoted as c2
t = [c2

1(t), · · · , c2
nt

(t)]T . The symbol vector ci
t, where i=1, 2, is

alternately delivered to the transmit antennas.

As has been stated, the obstacle to the STTuC is the rank deficient problem. The

approach taken to overcome this problem was to rotate the output of the lower encoder.

In this way, the output of the lower encoder can be written as

c2
t = [c2

nt
(t), · · · , c2

1(t)]
T (5.1)
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The effect of this altering is to assure that the corner of the codeword distance ma-

trix on the main diagonal has none-zero entries [41]. The number of rank deficient matrix

would be greatly reduced by using this arrangement on the output of lower encoder.

The information symbols are segmented into fixed-size frames. The encoded output

which correspond to a frame are arranged into a matrix, which is referred to codeword

matrix. Let L denote the frame length, which is also the interleaver length. A codeword

matrix is the nt by L matrix whose j -th column vector corresponds to the transmitted

symbols at time j. Thus, the codeword matrix of the i -th encoder can be written in

terms of column vector ci
t

ci =

[
ci
1 ci

2 · · · ci
j . . . ci

L

]
(5.2)

where i=1 for upper encoder and i=2 for lower encoder.

After puncturing, the punctured symbols are replaced by zero. Thus the transmit-

ted codeword of the upper encoder is given by

c1 =

[
c1
1 0 c1

3 0 c1
5 · · ·

]
(5.3)

Similarly, the codeword of the lower encoder can be presented as

c2 =

[
0 c2

2 0 c2
4 0 · · ·

]
(5.4)

The resulting codeword of STTuC is thus given by

c = c1 + c2 =

[
c1 c2 · · · cL

]
(5.5)

where ci = c1
i at odd time intervals, and ci = c2

i at even time intervals.
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5.3 Constituent encoder design

When applying the space-time codes technique in slow fading channel, full diversity

advantage would be achieved if codeword distance matrix has full rank [5]. However, in

punctured trellis codes, the full rank requirement is no longer satisfied [37][39][41], lead-

ing to low diversity gain. A solution to the rank deficient problem due to the puncture

operation had been developed in [41]. The puncture operation does not allow codes to

be designed to be full rank. Instead, in [41] codes are designed to reduce the number of

rank deficient matrix. The approach taken in designing the codes was to create a sys-

tematic characteristic and the output of lower encoder were rotated during multiplexing.

Simulation results [41] have indicated that a significant performance improvement can

be achieved.

One problem encountered with this approach is in the design complexity of the

component codes. The recursive characteristic that is responsible for the sparse distance

spectrum is critical in turbo coding techniques. In [41], the feedback connection of

one branch of register is also connected to other branches of register. These mutual

connections between branches complicate the code design, as it will result in a large

number of candidates of codes. For example, for nt = 2, 8 states and QPSK codes, there

are 238 candidates. With this many candidates, an exhaustive computer search would be

infeasible. In order to minimize the computation time and achieve the design goal, in [41]

the codes are restricted to the case of nt = 2, 8 states and QPSK with further constraints

on feedback connection. This low antenna array with constraints may produce a small

candidate set as low as 1024. However, if the mutual connection involves more than two

and transmit antennas are more than two, it is not easy to find such a small candidate

set.

In contrast to [41], a simpler space-time turbo code, which consists of parallel

concatenated space-time trellis code modulation proposed in [21], has been developed by
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[40]. The advantages of the code are relevant in feedback connections. Since there are

no mutual connections between the branches, it has the clear advantage of low design

complexity. However, because the approach does not account for the rank deficient

problem, it was not able to produce an optimal performance for the punctured trellis

codes.

Impressed by the considerable improvement in performance in [41] and in order to

design more complicated codes for a system with small diversity gain, we proposed a new

space-time turbo code that exploited the advantages of [40] and [41]. In our design, the

approach to reduce the impact of the rank deficient on the performance shown in [41] has

been followed and adapted. It means that the component encoder is a systematic encoder.

The parity encoder is the same as in [40], and thus the disadvantage associated with the

design complexity has been overcome. Compared with its counterparts in [40][41], this

approach results in a low design complexity. For example, for nt = 2, 8 state and QPSK

code, the candidates of codes are only 1024. The new recursive systematic space-time

trellis code encoder for M-PSK is shown in Fig. 5.2.

The encoder has k parallel branches of register where k = log2 M . At each time

slot t, k bit information are applied to each branch in parallel. Let i -th branch contains

vi register. Then the memory of encoder is the sum of the number of register of each

branch

v =
k∑

i=1

vi (5.6)

The encoder is characterized by the feed forward and feedback polynomial. The

parity symbol output and the polynomial coefficients are related by the following equation

ci(t) =
k∑

j=1

vj∑

k=0

xj(t− k)gj
k,i mod M (5.7)
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Figure 5.2. M-PSK Recursive systematic STTrC encoder.

where, 2 ≤ i ≤ nt, ci(t) is the parity symbol, and gj
k,i is feed forward polynomial coeffi-

cient. The value of gj
k,i is the integer from 0 to M−1. xj(t) can be calculated from the

following equation

xj(t) = Ij(t) +

vj∑

k=1

xj(t− k)qj
k mod 2 (5.8)

where qj
k is binary feedback polynomial coefficient.

5.4 Decoding algorithm

Decoding for turbo codes is an iterative decoding process based on the Maximum

A Posteriori (MAP) algorithm. The MAP algorithm is optimized decoding algorithm for
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minimizing symbol error rate. Because of the high computational complexity, however,

the MAP algorithm is rarely used in hardware implementation. With the invention of

turbo coding, the MAP algorithm has become attractive to turbo-based codes because

it provides the A Posteriori information symbol Probability (APP), which is required for

iterative decoding. The APP is defined as the probability of correctly decoding symbols

conditioned on the received sequence, and is expressed as:

P (ut = k/r), k ∈ I (5.9)

where, ut is the information symbol at time t, k is M-PSK symbol, I is the M-PSK

symbol set denoted by {0, 1, · · · ,M − 1}, and r is the received sequence.

In trellis-based codes, a codeword corresponds to a state path at which the tran-

sition of state depends on the information symbols. In other word, if the transition

is known, then the information symbol corresponding to the transition will be known.

Hence, the equation (5.9) is directly related to the state transition and may be rewritten

as

P (ut = k/r) =
∑

(i,j)∈Ut=k

P (st = i, st+1 = j/r) (5.10)

where, st is the present trellis state, st+1 is the next trellis state, (i, j) is the transition

set corresponding to ut = k .

By employing Bayes’ rule, the APP can be expressed as:

∑

(i,j)∈ut=k

P (st = i, st+1 = j/r) =
∑

(i,j)∈ut=k

P (st = i, st+1 = j, r)

P (r)
(5.11)

In the above equation, the denominator, Pr(r), is constant and common to all APP,

and can be omitted in log-likelihood ratio. Therefore, the APP calculation is equivalent

to estimating the probability of P (sr = i, sr+1 = j, r).
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The received sequence, r , is denoted by {r1, r2, · · · , rL}, where L is the frame

length. Dividing the received sequence into three parts: two subsequences {r1, r2, · · · , rt−1}
and {rt+1, rt+2, · · · , rL}, and the current received signal rt, then Pr(st = i, st+1 = j, r)

can be written as by using Bayes’ rule (see appendix B):

P (st = i, st+1 = j, r) = αt−1(i)γt(j, i)βt(j) (5.12)

where,

αt−1(i) = P (st = i, {r1, · · · , rt−1})

βt(j) = P ({rt+1, · · · , rL}/st+1 = j)

γt(j, i) = P (st+1 = j, rt/st = i)

We can express αt(i) and βr(j) as a recursive expression by Using Bayes’ rule and

∑
b

P (a, b) = P (a). That is

αt(j) = Pr(st+1 = j, {r1, · · · , rt})
=

∑
states i

Pr(st = i, st+1 = j, {r1, · · · , rt})

=
∑

states i

Pr(st = i, {r1, · · · , rt−1})Pr(st+1 = j, rt/st = i, {r1, · · · , rt−1})

=
∑

states i

Pr(st = i, {r1, · · · , rt−1})Pr(st+1 = j, rt/st = i)

=
∑

states i

αt−1(i)γt(i, j)

(5.13)

and
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βt(j) = Pr({rt+1, · · · , rL}/st+1 = j)

=
∑

states i

Pr(st+2 = i, {rt+1, · · · , rL}/st+1 = j)

=
∑

states i

Pr(st+2 = i, {rt+2, · · · , rL}, rt+1/st+1 = j)

=
∑

states i

Pr(st+2 = i, rt+1/st+1 = j)Pr({rt+2, · · · , rL}/st+2 = i)

=
∑

states i

βt+1(i)γt+1(i, j)

(5.14)

γt(j, i) is the branch transition probability and can be expressed as follows

γt(j, i) = Pr(st+1 = j, rt/st = i)

= Pr(st=i,st+1=j,rt)
Pr(st=i)

= Pr(rt/st=i,st+1=j)Pr(st=i,st+1=j)
Pr(rt=i)

= Pr(rt/st = i, st+1 = j)Pr(st+1 = j/st = i)

= Pr(rt/ct)Pr(ut)

(5.15)

where, ct is the output of encoder on the trellis transition from state i to state j, ut is

the input symbol of encoder to cause the transition from state i to state j , Pr(ut) is the

a priori probability of ut, and Pr(rt/ct) is the conditional pdf of rt given by

Pr(rt/ct) = exp


− 1

2σ2

nr∑
m=1

∣∣∣∣∣rm(t)−
nt∑

n=1

hmn(t)cn(t)

∣∣∣∣∣

2

 (5.16)

The MAP may be summarized as follows:

Step 1. Initialize α0(0) = 1, α0(j) = 0 for all nonzero states (j 6= 0) of the encoder,

and βL+1(0) = 1, βL+1(j) = 0 for all nonzero states (j 6= 0) of the encoder. Let t=1.

Step 2. Calculate γt(j, i) using (5.15) and αt(j) using (5.13) for all state j.

Step 3. If t < L, let t = t + 1 and go to step 2; else go to step 4.

Step 4. Calculate βt(j) using (5.14). Calculate Pr(st = i, st+1 = j, r) from (5.12).

Step 5. If t > 1, let r = r − 1 and go to step 4; else go to step 6.
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Step 6. Terminate the algorithm and output all values Pr(st = i, st+1 = j, r).

The iterative turbo decoder makes use of APP in the form of Log-Likelihood Ratio

(LLR) to exchange information between decoders. MAP was originally developed to

deal with BPSK symbol. For space-time codes, the MAP estimation can be implemented

with some slight modification to incorporate the multiple symbol, leading to the following

updating formula:

L(ut = k/r) = ln
P (ut = k/r)

P (ut = 0/r)
= ln

∑
(i,j)∈ut=k

αr−1(i)γr(j, i)βr(j)

∑
(i,j)∈ut=0

αr−1(i)γr(j, i)βr(j)
, k 6= 0, k ∈ I (5.17)

where L(ut = k/r) is the APP in the form of LLR.

Substituting (5.15) into (5.17), L(ut = k/r) can be expressed as

L(ut = k/r) = ln

P
(i,j)∈ut=k

αt−1(i)Pr(rt/ct)βt(j)

P
(i,j)∈ut=0

αt−1(i)Pr(rt/ct)βt(j)
+ ln P (ut=k)

P (ut=0)

= Le(ut) + L(ut)

(5.18)

where

Le(ut = k) = ln

∑
(i,j)∈ut=k

αt−1(i)Pr(rt/ct)βt(j)

∑
(i,j)∈ut=0

αt−1(i)Pr(rt/ct)βt(j)
(5.19)

is the extrinsic information, and

L(ut = k) = ln
P (ut = k)

P (ut = 0)
(5.20)

is the LLR of the a priori probability of symbol k.

The extrinsic information represents the extra knowledge about the message being

transmitted from the priori information and the received information sequence. The

iterative decoding of turbo codes exchanges the extrinsic information between component
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Figure 5.3. Turbo decoder: iterative decode process.

decoder. From (5.18), a priori information is needed for decoder. At the first iteration,

the prior information of the first component decoder is initially set to zero. Next, all

decoder use the extrinsic information of other decoder as the prior information. An

illustration of the iterative decoding is shown in Fig. 5.3

The iteration process is terminated if the termination condition is reached. The

final decision on output symbol is made in terms of the LLR of second decoder, such

that, if all LLP is negative values, the decoded output symbol is zero; if there is at least

one positive LLR, the decoder take the symbol with maximum LLR.

5.5 Code design criteria

In [5], the system performance is characterized by PEP. The PEP is the proba-

bility that decoder erroneously selects codeword e as the transmitted codeword while

the codeword c is in fact transmitted. A codeword difference matrix Dce is defined by

subtracting codeword e from codeword c

Dce = c− e (5.21)
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For the performance analysis, a codeword distance matrix is defined as

A = Dce(Dce)
H (5.22)

Let Ai, where i=1, 2, represents the codeword distance matrix of i -th encoder,

then we can write the codeword distance matrix in the form

A = A1 + A2 (5.23)

In [5], the PEP for slow fading channel had been extensively studied, and is de-

scribed by

P (c→ e) ≤
(

r∏
i=1

λi

)−nr (
Es

4N0

)−rnr

(5.24)

where r is the rank of A and λi is the none zero eigenvalues of A.

This equation shows the importance of the rank that determines the slope of PEP

in logarithm domain. To optimize the worst PEP, r turns out to be full rank and term
r

Π
i=1

λi turns out to be as large as desired. This lead to well-known rank and determinant

criteria that had been widely applied in space-time coding design. The exponent term

rnr is known as the diversity gain.

The improvement to the rank and determinant criteria had been proposed in the

subsequent works [16][17][15]. In [15], the PEP is expressed as a function of the rank and

determinant, or the trace depending on the diversity gain. If the diversity gain is less

than 4, (5.24) holds. If the diversity gain is larger than and equal to 4, the PEP is given

by

P (c→ e) ≤ 1

4
exp

(
−nr

Es

4N0

r∑
i=1

λi

)
(5.25)
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where, the term
r∑

i=1

λi is equal to the trace of A.

In (5.25), the trace is scaled by SNR. Thus the degradation of PEP performance

becomes significant for the small values of trace at high SNR. Therefore, the dominant

component of PEP at high SNR is the error event with minimum trace. This can be

explained from the fact that the fading channel converges to AWGN channel with the

increased diversity gain. Maximizing the minimum trace of A would lead to another

important criterion: trace criterion [15]. The trace of A is equal to the squared Euclidean

distance. Thus the intent of the trace criterion is to maximize the free distance of the

codes.

Based on the design criteria mentioned above, a code design method for the punc-

tured STTuC was proposed in [41]. The design relies on the knowledge of the overall

distance spectrum of the punctured STTuC and assumes that the uniform random inter-

leaver is used in calculation of the DS. However, this assumption is particularly question-

able for the DS of determinant. The requirements of using uniform random interleaver

on codes mean that the overall distance should be equal to the sum of the distance of

the component codes, such that

dis(A) = dis(A1) + dis(A2) (5.26)

where dis() is the distance of codeword distance matrix.

Obviously, from (5.23), this requirement is not satisfied if the distance is the de-

terminant of A.

It can be seen from (5.25) that the performance is not being influenced by the rank

deficient matrix. Therefore, unlike the importance of the rank for small diversity gain,

the rank is not the primary concern for large diversity gain. Thus, the trace criterion

is applicable to the space-time turbo codes for the large diversity gain. Therefore, the
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authors [40][42] have considered applying trace criterion in the code design for large

diversity gain. The design strategy is that the codes under consideration are chosen

so that the component codes have the optimal trace. Although this is a simple design

strategy and the trace is determined without taking into account the puncture operation,

the simulations in [40][42] have indicated that the trace criterion can be considered to

be reliable in the design of space-time turbo codes for large diversity gain in slow fading

channel.

As mentioned, the full rank is no longer satisfied in punctured trellis codes. With

this issue, the optimal rank and determinant may not give the correct performance eval-

uation. Therefore, the codes with optimal rank and determinant for nonpunctured trellis

code may result in less than optimal performance for punctured trellis codes. Rank cri-

terion reveals that the minimum rank is the dominant factor for PEP. It is obvious that

the worst case of rank deficient is r=1. In this case, it is easy to prove that the product

of none-zero eigenvalue will be equal to the trace of A. Therefore, for small diversity

gain, our goal is to seek the optimal trace for the coding gain in punctured trellis codes,

instead of seeking the optimal determinant as usual as in nonpunctured trellis codes.

The trace criterion has been employed successfully in STTuC [40][42] for high di-

versity gain. However, this criterion is only a rough guideline on code design since in this

criterion only the optimal trace is considered, and their multiplicity is ignored. Trellis

codes with large number of states may result in a large multiplicity that cannot be ignored

in assessing the overall coding gain [30]. Unlike the previous work, in this dissertation,

the multiplicity of the free distance will be considered in the design as well as optimal

free distance. The multiplicity can be found by computer search very accurately without

introduction of significant design complexity since the trace is monotonically increased

with time.
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In this dissertation, based on the design strategy presented in [40][42], the trace

criterion will be employed to the component code design for both small and large diversity

gain. Minimizing the multiplicity of the free distance was also considered in the design.

Based on the design criteria, new codes were obtained through the free distance spectrum

search and listed in Table 5.1 together with some existing codes. The feed forward

coefficients are obtained through computer search with respect to the trace criterion.

The primitive recursive characteristic is required in order to achieve better free distance

spectrum for the turbo-based codes. In this paper, the primitive polynomial is chosen to

have maximum order. The free distance spectrums are also listed in Table 5.1, where T0

denotes the free distance and Nfree denotes the average number of the error events with

T0.

Table 5.1. QPSK space-time turbo codes in slow fading channels

Codes State Feed forward Feedback T0

Nfree

New
STTuC

8 g1=[0, 2]
g2=[2, 1, 1]

q1=1+x
q2=1+x+x2

12, 3

FCVY
[40]

8 g1=[(2 2),(2 1)]
g2=[(2 0),(1 2),(2 0)]

q1=1+x
q2=1+x+x2

12, 2

Tujkovic
[41]

8 Qa=[10;10;01;10] [101;110;001;100]

New
STTuC

4 g1=[0, 2]
g2=[2, 1]

q1=1+x
q2=1+x

10, 4

FCVY
[40]

4 g1=[(0 2),(1 2)]
g2=[(2 3),(2 0)]

q1=1+x
q1=1+x

10, 2

New
STTuC

16 g1=[0, 2, 0]
g2=[2, 1, 2]

q1=1+x+x2

q2=1+x+x2

16, 14

FCVY
[40]

16 g1=[(1 2),(1 3),(3 2)]
g2=[(2 0),(2 2),(2 0)]

q1=1+x+x2

q2=1+x+x2

16, 14
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5.6 Simulation

The performances of the new codes were evaluated using simulation. In simulation,

130 symbols are generated in each frame, the interleaver is a symbol-wise odd-even s-

random interleaver, quasi-static flat fading was considered, and the channel coefficients

are perfectly known at the receiver. The simulation results are shown at 10th iterations.

The performances of the new codes are compared with that of existing codes. In plot,

the codes proposed in [40] are labeled as FCVY, the codes proposed in [41] are labeled

as Tujkovic, the codes proposed in [5] are labeled as TSC, and the codes proposed in [21]

are labeled as CVYL.

A performance comparison among the 8 state codes listed in Table 5.1 are shown in

Fig. 5.4 for the 2Tx1Rx system. The FER performance of our new code was essentially

identical to that of Tujkovic’s code. Both codes achieve a significant improvement on

FER performance compared to FCVY code. It was found the improvement is more than

5 dB at the FER of 10−3. The significant improvement can also be seen in Fig. 5.6 and

Fig. 5.7 for 4 states and 16 states codes, respectively. The rank deficient in punctured

trellis codes is demonstrated through the comparison to the TSC space-time trellis codes.

Although significant performance improvement had been achieved, it was shown that the

new codes are unable to produce full rank. This can be illustrated by the fact that the

slope of the new codes is parallel to the slope of the TSC space-time trellis codes.

Performance considering both small diversity gain and large diversity were studied.

Fig. 5.5 shows the performance comparison between proposed code and some existing

codes for various space diversity configurations. From (5.25), we expect that the rank

deficient has little effect on the performance for the large diversity gain. This was re-

flected in Fig. 5.5, from which the results indicate that the impact of rank deficient

on performance becomes less severe with the increased diversity gain. As a result, the

FCVY code provides comparable performance as the new codes for large diversity gain.
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Figure 5.4. Performance of 8 states QPSK STTuC for small diversity gain.

Figure 5.5. Performance of 8 states QPSK STTuC for different space diversity.
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Figure 5.6. Performance of 4 states QPSK STTuC for different space diversity.

In Fig. 5.6 and Fig. 5.7, performance of codes labeled as STTuC-CVYL for various

states are shown. The STTuC-CVYL are constructed based on STTrC proposed in

[21] for small diversity gain using rank and determinant criteria. The component codes

of FCVY are designed according to the trace criteria for large diversity gain. To the

best of our knowledge, the STTrC based on the rank and determinant criteria have

superior performance compared to STTrC based on trace criterion for small diversity

gain. However, when applying these codes to STTuC, the performance in STTuC is

inconsistent with the design criteria in STTrC as shown in Fig. 5.6 and Fig. 5.7, where

performance of FCVY codes is shown to outperform that of CVYL for small diversity

gain. These results indicated that trace criterion is more suitable for STTuC with small

diversity gain than rank and determinant criterion, which are commonly employed for

STTrC with small diversity gain.
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Figure 5.7. Performance of 16 states QPSK STTuC for different space diversity.

5.7 Conclusions

In this chapter, the problem of designing full rate STTuC has been addressed. The

rank of codeword distance matrix is an important design parameter for the small diversity

gain in space-time codes. For the large diversity gain, the performance is independent

to the rank. Thus, the rank deficient problem, an inherently existing phenomenon in

the punctured trellis codes, has little effect on performance. As a consequence, previous

works had designed successfully STTuC for the large diversity gain. However, for the

small diversity gain, the rank deficient problem must be accounted for in successful code

design.

New STTuC have been presented. The proposed codes reduce the impact of rank

deficient on the FER performance and has the advantage of low design complexity. Since

rank of codeword distance matrix determine the diversity gain, the proposed codes actu-

ally provide improvement in diversity gain. Design criteria for the proposed codes were
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introduced. In comparison to the previous works, the simulation results have shown that

the proposed codes are successful in design for small diversity gain in slow fading channel.

The proposed codes result in more than 5 dB improvement at FER of 10−3 .



CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this dissertation, performance and design of space-time codes have been studied.

The main objective of this dissertation has been to improve the performance of space-time

codes. This dissertation covers a wide range of topics in space-time codes. It involves

theoretical analysis, design, and implementation for space-time trellis codes, space-time

turbo codes, and orthogonal space-time trellis codes. The main contributions of this

dissertation include the following:

• A new derivation of exact PEP is given. The design criteria based on the upper

bound of PEP can provide insight on performance property only for high SNR

because the upper bound of PEP is loose in low SNR range. For a system with high

diversity gain, the interested SNR may be in low SNR range. Thus the exact PEP

is required for analyzing performance over the entire SNR range. The derivation

utilizes the statistical independence properties in modified Euclidean distance to

obtain the pdf of the modified Euclidean distance, and then the exact PEP can be

calculated by taking the average of the PEP conditioned on the modified Euclidean

distance. The exact PEP suggests that the upper bound of PEP becomes loose

and inaccuracy for a certain region of SNR values. This result provides added

insights into understanding space-time codes. Compared to previous derivations,

our derivation is simple and comprehensible.

• Improved design criteria for space-time trellis codes in both slow and fast fading

channel using union bound analysis had been proposed to provide coding gain

101
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improvement. Criteria based on PEP are established on the basis of assumption

that only dominant error event contribute to the performance. However, there are

not dominant error events for space-time codes in fading channel. Union bound

on FER is a function of PEP and distance spectrum and allows to analyze the

contribution of all error events to performance. In our design, a more accurate

PEP applied in union bound analysis leads to more accurate coding gain metrics.

In order to ensure the effectiveness of using the distance spectrum as an evaluation

tool in evaluating coding gain performance, a improved distance spectrum search

has been proposed. With the criteria, optimal codes were searched through new

coding gain performance metrics in consideration of the distance spectrum. The

resulted codes were compared with so-called optimal codes and better performance

were obtained. The improved design criteria can result in an improvement of 0.2-0.9

dB in FER performance at FER of 10−3

• Orthogonal space-time trellis codes have been proposed. Significant improvements

in coding gain performance can be achieved when space-time trellis codes are con-

catenated with space-time block codes, for instance, the super-orthogonal space-

time trellis codes. Super-orthogonal space-time trellis codes provide significant

improvement on coding gain in slow fading channel, but result in diversity gain

loss in fast fading channel. The orthogonal space-time trellis codes take advantage

of the benefits of the orthogonal design in space-time block codes and maintain

the symbol Hamming distance in the meanwhile. The novelty to the approach

is that the diversity gain are improved with a factor of the number of transmit

antennas, in comparison to the super-orthogonal space-trellis codes where coding

gain is improved. This fundamental difference in properties gives the hopes of

achieving remarkable improvement in performance. The proposed codes provide

an improvement of more than 5 dB at FER of 10−3.
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• New full rate space-time turbo codes for slow fading channel have been developed.

Turbo-based codes are very promising to improve performance significantly. The

full rank of codeword distance matrix is key characteristics to the performance of

space-time codes. However, in full rate space-time turbo codes, the codeword dis-

tance matrix is a rank-deficient matrix due to the puncture operation. This limits

the expected performance improvement that could result from turbo-based codes.

The new space-time turbo code we proposed can reduce the impact of the rank

deficient on performance with low design complexity. This is achieved by reducing

the number of the rank deficient codeword distance matrix. A simple but effec-

tive design criterion has been proposed to mitigate the performance deterioration

caused by rank-deficient problem. Essentially, the proposed approach improves the

diversity gain of rank-deficient codes since the rank of codeword distance matrix is

directly related to diversity gain. Therefore, the proposed codes could achieve con-

siderable improvement on FER performance over quasi-static flat fading channel

for the small diversity gain. The improvement is more than 5 dB at FER of 10−3.

6.2 Future works

In this dissertation, a comprehensive study of space-time codes has been presented

on the performance analysis and design, but some problems still deserve further inves-

tigation. First of all, our performance analysis currently employed is based on a model

in which channel information are perfectly known at receiver. However, this model is

not the reality that it represents. In practice, the channel estimation is never perfectly

known. In high data rate transmission this estimation error can’t be ignored because the

length of training codeword is limited for the purpose of enhancing spectral efficiency.

Thus, future work will extend the analysis to imperfect channel estimation. The analy-
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sis results obtained are expected to further help investigators to understand space-time

codes in different scenario.

We have shown how the use of distance spectrum can provide valuable information

on the coding gain. The method of distance spectrum search used in this dissertation

is not only time consuming but also memory limited. Therefore, the use of truncated

distance spectrum has to be considered; so that the coding gain relies on rough estimation.

We have proposed improved search method, trying to obtain spectrum as abundant as

possible. However this is still far to ensure a reliable estimate on the coding gain. In order

to fully benefit from distance spectrum, it would be interesting to apply other distance

spectrum search method. For example, transform function may be a good candidate. The

transform function is derived from the state diagram. It can provide detailed information

on distance spectrum without memory limitation. Applying transform function to space-

time codes might be beneficial in systematic design of space-time codes for coding gain.

Moreover, this is an unexplored area in this field.

We have concentrated on identifying the performance of space-time turbo codes

using MAP algorithm, which is optimized decoding algorithm used in turbo codes. How-

ever, besides performance, the complexity of decoding algorithm in turbo codes is also

an important topic. Because of the high complexity in hardware implementation, MAP

is not used in practical applications. Thus, decoding with reduced complexity is an

important future work. One could use sub-optimal algorithm, for example, soft output

Viterbi algorithm (SOVA) [45][46], MAX-log-MAP, log-MAP, and log-MAP with look-up

table [47], to reduce the complexity of decoder. The choice of approach depends on the

trade-off between complexity and performance.



APPENDIX A

THE INTEGRAL IN THE DERIVATION OF EXACT PEP
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Consider the integral

Ij =
∫∞
0
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Making a substitution of the form

δ = λδ

So
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Let
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Eb

4N0

and

a =
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Integration by parts gives
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The first term on the right-hand side is the gamma function. That is

∫ ∞

0

e−(1+γλ)δδj−1− 1
2 dδ = (1 + γλ)−j+ 1

2 Γ

(
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2

)
(A.4)

From the result above, the integral then becomes

Ij = −
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The integral in (A.5) can be solved as follows
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Combing (A.6) and (A.5), we have

Ij = a (j − 1)!
√

2π
2
−

j−1∑
i=0

a




j − 1

i


 i!

√
γλ
2

(1 + γλ)−j+i+ 1
2 Γ

(
j − i− 1

2

)

= 1
2

[
1− 1√

π

j−1∑
i=0

√
γλ

(j−1−i)!
(1 + γλ)−j+i+ 1

2 Γ
(
j − i− 1

2

)]
(A.7)

Replacing i with j -1-i in the sum, we have the result

Ij = 1
2

[
1− 1√

π

j−1∑
i=0

√
γλ
i!

(1 + γλ)−i− 1
2 Γ

(
i + 1

2

)]

= 1
2

[
1−

√
γλ

1+γλ

j−1∑
i=0

(i−0.5)(i−1.5)···0.5
i!

(1 + γλ)−i

]

= 1
2


1−

√
γλ

1+γλ

j−1∑
i=0




2i

i


 1

(4+4γλ)i




(A.8)
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The equivalent a posteriori information symbol probability is

P (st = i, st+1 = j, r)

= P (st = i, st+1 = j, {r1, · · · , rt−1} , rt, {rt+1, · · · , rL})
(B.1)

Using Bayes’ rule, the equation can be written as

P (st = i, st+1 = j, r)

= P ({rt+1, · · · , rL} /st = i, st+1 = j, {r1, · · · , rt−1})
P (st = i, st+1 = j, {r1, · · · , rt−1} , rt,)

= P ({rt+1, · · · , rL} /st = i, st+1 = j, {r1, · · · , rt−1})
P (st+1 = j, rt/st = i, {r1, · · · , rt−1}) P (st = i, {r1, · · · , rt−1})

(B.2)

In the first term of (B.2), if st+1 is given, the receive vector rt+1, · · · , rL will only

dependent on it. Therefore, we have

P ({rt+1, · · · , rL} /st = i, st+1 = j, {r1, · · · , rt−1})
= P ({rt+1, · · · , rL} /st+1 = j)

(B.3)

Similarly, in the second terms of (B.2), rt is only dependent on st, thus

P (st+1 = j, rt/st = i, {r1, · · · , rt−1}) = P (st+1 = j, rt/st = i) (B.4)

Substituting (B.3) and (B.4) into (B.2) to give the final equation

P (st = i, st+1 = j, r)

= P (st = i, {r1, · · · , rt−1}) P (st+1 = j, rt/st = i)

P ({rt+1, · · · , rL} /st+1 = j)

(B.5)
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