
AN EMPERICAL EVALUATION OF ADEQUACY CRITERIA FOR TESTING

CONCURRENT PROGRAMS

by

GAURAV SAINI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2005

ii

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my supervising advisor

Dr. Yu Lei and co-supervising advisor Dr. R.H. Carver for their advice, support, and

continual encouragement throughout the thesis process. Sincere appreciation is

expressed to Dr. Yu Lei, Dr. Leonidas Fegaras, and Mr. David Levine for their

guidance as members of the author’s graduate committee.

Finally, my earnest gratefulness is bestowed on all of my family

members. Their love and encouragement contribute greatly to my master degree studies.

July 12, 2005

iii

ABSTRACT

AN EMPERICAL EVALUATION OF ADEQUACY CRITERIA FOR TESTING

CONCURRENT PROGRAMS

Publication No. ______

Gaurav Saini, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Jeff (Yu) Lei

A concurrent program contains two or more threads that execute concurrently

and work together to perform some task. Concurrency increases the efficiency of a

program. Testing of concurrent programs has been a challenging task because of the

inherent non-determinism. Most approaches proposed for concurrent program testing

employ, explicitly or implicitly, a coverage criterion to measure test adequacy. In order

to apply those approaches, we must first choose a criterion that suits best for our

programs.

There is a need for quantitative results of evaluation regarding the effectiveness

of the various coverage criteria used for the testing of concurrent programs. Such an

evaluation can be useful to select a particular criterion for a specific set of concurrent

iv

programs. This thesis tries to evaluate the effectiveness of some of these criteria and

puts forth the quantitative results for such an evaluation.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... viii

LIST OF TABLES... ix

Chapter

1. INTRODUCTION …………………………………………………… 1

1.1 Overview……………………………………………………………….. 1

1.2 Evaluation Methodology ... 2

1.3 Organization………... 4

2. BACKGROUND AND RELATED WORK .. 6

2.1 Background………….. 6

2.2 Related Work …………………………………………………….......... 9

2.2.1 Formal analysis……………………………………………... 10

2.2.2 Simulation……………………………………………... 10

2.2.3 Statistical experiment……………………………………………... 10

2.2.4 Test adequacy……………………………………………............... 11

3. PRELIMINARIES…………………………………………………………. 14

3.1 Overview…………………….. 14

3.2 Approaches to testing concurrent programs .. 14

vi

3.2.1 Non-deterministic testing.. 15

3.2.2 Deterministic testing…………………………………………. 16

3.2.3 Combination of Deterministic and Non-deterministic testing.. 17

3.2.4 Reachability testing…………………………………………. . 18

3.3 Evaluation of adequacy criteria ... 19

4. COVERAGE CRITERIA.. 20

4.1 Overview……………………………………………………………….. 20

4.2 Evaluated Coverage Criteria.. 22

5. EVALUATION AND RESULTS ... 24

5.1 Objective………………….. 24

5.2 Methodology……………………………………………………………. 25

5.2.1 Construction of Synchronization Sequences……………………..... 25

5.2.1.1 The Example Program SWP………………………………… 26

5.2.1.2 The construction of SYN-Sequence………………………… 28

5.2.2 Deterministic execution of the SYN-Sequence…………………..... 32

5.2.3 Mutation Testing…………………………………………………… 34

5.2.4 Analysis of output file…………………………………………….. 36

5.3 Results…………………………………………………………………… 38

5.3.1 Evaluation of all synchronization pair coverage criterion………… 39

5.3.2 Evaluation of all branches coverage criterion…………………….. 39

5.3.3 Evaluation of all decision/condition coverage criterion…………… 40

5.3.4 Evaluation of all du-pair coverage criterion……………………….. 40

vii

5.3.5 Evaluation of all Sync-pair and all branches coverage……………. 41

5.3.6 Evaluation of all Sync-pair and all decision/condition coverage…. 41

5.3.7 Evaluation of all Sync-pair and all du-pair coverage……………… 42

5.4 Comprehensive Evaluation Results……………………………………… 42

6. CONCLUSION AND FUTURE WORK.. 47

6.1 Conclusion…………………………………….. 47

6.2 Future work…………………….. 48

Appendix

A. EXAMPLE PROGRAM SLIDING WINDOW PROTOCOL...................... 49

REFERENCES .. 67

BIOGRAPHICAL INFORMATION... 73

viii

LIST OF ILLUSTRATIONS

Figure Page

2.1 The linear sequential model or waterfall model.. 7

2.2 Illustration of the dependence of fault detecting probability
on test adequacy .. 12

4.1 Hierarchy of sequential structural coverage criteria
based on subsumes relation ... 22

5.1 Objective…………………………………………………………………….. 25

5.2 Structure of the SWP implementation... 27

5.3 seqGen converts labels into complete rendezvous events............................... 31

5.4 Complete SYN-sequence .. 31

5.5 Number of Mutants killed ... 44

5.6 Number of Synchronizations... 45

5.7 Mutants killed per Synchronization .. 46

ix

LIST OF TABLES

Table Page

5.1 Evaluation of all synchronization pair coverage criterion 39

5.2 Evaluation of all branches coverage criterion ... 40

5.3 Evaluation of all decision/condition coverage criterion.................................. 40

5.4 Evaluation of all du-pair coverage criterion.. 41

5.5 Evaluation of all Sync- pair and all branches coverage 41

5.6 Evaluation of all Sync-pair and all decision/condition coverage.................... 42

5.7 Evaluation of all Sync-pair and all du-pair coverage...................................... 42

5.8 Comprehensive Evaluation Results... 43

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Concurrent programs are gaining more popularity in the ever growing world of

software development. A concurrent program can be defined as one that contains

multiple processes and/or threads which execute concurrently and work together to

perform a given task. Concurrency can be used to improve the computational efficiency

of a program. While one process (thread) is awaiting user input, another process

(thread) can perform computational tasks in the background. In addition, concurrency is

inherent in many problem domains that can be solved easily by creating multiple

threads. For example, a web server typically creates separate threads to service

incoming client requests. Other applications where concurrency arises naturally include

operating systems, user interfaces, etc.

 Although concurrent programs have a lot of advantages, testing of a concurrent

program has always been a challenging task because of the inherent non-determinism

displayed by concurrent programs [1]. Multiple executions of a concurrent program

with the same input may exercise different sequences of synchronization events (or

SYN-sequences) and may produce different results, making testing a difficult task. A

few approaches have been proposed for concurrent program testing in the past. Most

approaches employ, explicitly or implicitly, a coverage criterion to measure test

2

adequacy [2, 3, 5, 6, 10]. In order to apply those approaches, we must first choose a

criterion that suits best for our programs.

There has been no formal evaluation performed and no quantitative results of

evaluation put forth regarding the effectiveness of various coverage criteria used for

testing concurrent programs. This thesis tries to evaluate the effectiveness of these

criteria and puts forth the quantitative results for such an evaluation to aid a fellow

concurrent program tester in making a decision to choose one of the numerous coverage

criteria for testing of concurrent programs.

1.2 Evaluation Methodology

In this thesis we present an evaluation of adequacy criteria for testing concurrent

programs. Most of the approaches for the testing of concurrent programs employ a

coverage criterion to measure test adequacy, but we still don’t have any experimental

results to guide us towards any one specific coverage criterion appropriate for the needs

of a particular program testing.

At times a robust testing coverage may be essential during testing a particular

concurrent program i.e., there can not be a compromise on the adequacy of the test,

even at the expense of increase in cost. On other occasions, robustness of the test could

be of moderate importance but the testing approach should be cost effective. As of now

it is difficult to suggest a particular coverage criterion that is supported by empirical

evaluation results. This work is an effort to address this problem.

3

The results of the proposed evaluation of this thesis can be used to guide a

fellow concurrent program tester for selecting a specific coverage criterion. The

following points dictate the methodology adopted by us during our evaluation:

1. As our first step we were required to select the coverage criteria which we

seek to evaluate. After spending a lot of time and effort going through

several different coverage criteria [2,3,5,6,10,21,22,36,38], we short listed

the following seven criteria based on their importance in concurrent program

testing and the feasibility of their empirical evaluation:

• All synchronizable statement-pairs coverage

• All branches coverage

• All decision/condition coverage

• All du-pair coverage

• All synchronizable statement pairs & all branches coverage

• All synchronizable statement pairs & all conditions coverage

• All synchronizable statement pairs & all du-pair coverage

2. Our next step was to choose one or more concurrent programs which are

suitable for the proposed evaluation and also has an added mechanism for

deterministic execution [5]. Deterministic execution is to force a specific

sequence to be exercised by the execution of a concurrent program. We are

using a sliding window protocol implementation in Ada as our example of

concurrent program; this program also has a support for deterministic

execution [11].

4

3. Next we construct a sequence of synchronization events (SYN-sequences)

[5] of the example program following the respective coverage criteria. These

sequences will be deterministically executed on our example program

during testing. The effort spent in construction of these sequences for every

approach is measured in terms of the number of synchronizations each

sequence has. The number of total synchronizations per criterion represents

the cost of testing using that coverage criterion.

4. In the last step of our evaluation, mutation-based testing is used to assess the

robustness of the SYN-sequences and consequently the robustness of the

criterion which is covered by those SYN-sequences.

5. Finally, comprehensive empirical results of the evaluation of all the

coverage criteria are analyzed and compared to aid the selection of a specific

criterion on the analysis of its robustness and cost, in testing of concurrent

programs.

1.3 Organization

Chapter 2 gives a basic idea about testing of concurrent programs and

discusses the background of research in the relevant field of testing concurrent

programs. Chapter 3 presents preliminary information about testing concurrent

programs and the challenges faced while testing concurrent programs. Chapter 4 is

primarily dedicated to the elaboration and explanation of the seven coverage criteria

which we are evaluating in this Thesis. Chapter 5 gives an in-depth view of the

evaluation method and the analysis of results of evaluation, separately for each

5

coverage criteria followed by a comprehensive comparison. Finally the conclusion and

suggestions for future work are presented in chapter 6.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Background

Software testing can be defined as exercising the program using data similar to

real data that the program is designed to execute, observing the outputs, and inferring

the existence of errors or inadequacies from anomalies in that output [37]. Software

testing is one of the most significant procedures in software engineering. It is a process

used to identify the correctness, completeness and quality of developed software. In the

conventional approach this is done by executing the program with a selected set of test

cases. This is a non-trivial procedure and has long been studied and researched since the

dawn of computer era, to the extent that it can be called as the heart of software

development circle. Figure 2.1 shows the classic software life circle. A significant

amount of research in software testing, validation, and verification has been proposed

over the past two decade.

The conventional method to test a sequential program involves executing it with

specific input and comparing the output with the expected result. If testing is carried out

without analyzing the inner structure of the program, the test method is called “black

box” approach. It considers the software-under-test to be an opaque box. This approach

doesn’t work with any kind of concurrent programs, which includes parallel,

7

distributed, or centralized message-passing programs [17, 19]. In later chapters more

general details in testing concurrent software can be found.

Test

Analysis

Design

Code

Support

Figure 2.1 The linear sequential model or waterfall model

Another test strategy called the “white box”, or “structural-based” testing

requires analysis of the control and/or data flow of a program. A tester requires to

generate a test case by selecting specific sequence of statements or branches based on

different testing criteria. If such a test case exists, we call this path a “feasible path”;

otherwise, it is called an “infeasible path”.

A goal to select testing criteria is to decide when the testing efforts are sufficient

enough to terminate the testing process with a level of confidence. This is called “Test

Adequacy Criteria”. Formally, a test data adequacy criterion can be termed as a

stopping rule. If a test data adequacy criterion focuses on the structural properties of a

program or code, it is said to be a program-based adequacy criterion, including

executing every statement or every branch in a program at least once [20]. These

8

criteria are called “all-statement coverage” and “all-branch coverage”, respectively.

To satisfy the all-statement coverage, for example, test cases must cause the program

being tested to execute every statement within the program at least once.

In additional to the two basic coverage criterions above, “all-du-path coverage”

is another major test data adequacy criterion. The all-du-path (definition-use) criterion

requires that every definition-clear sub-path from every definition to all the successor

nodes of each use reached by that definition to be tested. Uses may occur in predicates

or in computations. In [21], Yang et al., have proposed the idea to extend this criterion,

originally developed to test sequential program, to be applicable to parallel program

testing.

Yang and Chung [35] proposed a model to represent the execution behavior of a

concurrent program, and described a test execution strategy, testing process and a

formal analysis of the effectiveness of applying path analysis to detect various faults in

a concurrent program. An execution is viewed as involving a concurrent path (C-path),

which contains the flow graph paths of all concurrent tasks. The synchronizations of the

tasks are modeled as a concurrent route (C-route) to traverse the concurrent path in the

execution, by building a rendezvous graph to represent the possible rendezvous

conditions. The testing criterion is to examine the correctness of each concurrent route

along all concurrent paths of concurrent programs. Their paper acknowledges the

difficulty of C-path generation; however, the actual methodologies for the selection of

C-paths and C-routes are not presented in the paper.

9

In [36], Taylor et al., proposes the notion of structural testing criteria to

concurrent programs. Coverage criteria described include concurrency state coverage,

state transition coverage, and synchronization coverage, which are analyzed after

building a concurrency graph. No claim is made that a particular criterion suggested is

ideal; rather the paper acknowledges that it is impractical to analyze a large program by

building a concurrency graph.

Katayama et al., in [3] propose a test-case generation method with the event

interaction graph (EIAG) and the interaction sequence testing criteria (ISTC). The

proposed ISTC are based on sequences of interaction. A major problem with this

approach is that path generation has exponential complexity.

All the aforementioned approaches propose a certain coverage criterion, which

is accepted as the stopping condition for that approach. In the literature on testing

concurrent programs, we can find no research work done to present empirical

evaluation results of these criteria. In this Thesis we will provide the evaluation of some

these commonly used coverage criteria, and present the quantitative comparison

between them.

In the context of sequential programs, several researches have examined and

evaluated test coverage criteria; we will be discussing them in the next section.

2.2 Related Work

In this section we discuss the research done in the field of evaluating adequacy

criteria for sequential programs. There are a number of papers on the evaluation of test

adequacy criteria in context to sequential programs [47]. In this section we provide a

10

brief description of the related work done on evaluation and comparison of test

adequacy criteria for sequential programs.

Three approaches to evaluate software testing methods have been proposed and

developed, they are:

2.2.1 Formal analysis

Formal analysis of fault detecting ability is usually based on an abstract relation

defined on test adequacy criteria. For instance, the studies of subsume relation, which

defines a strictness order on adequacy criteria. This method has dominated the research

in evaluation of test adequacy criteria [39, 40, 41]. It defines abstract relations on

adequacy criteria, formally proves that particular pairs of adequacy criteria satisfy or

dissatisfy the defined relation, and studies their relationships with fault detecting ability

in various testing scenarios.

2.2.2 Simulation

Simulation is usually based on some simplified model of software testing [42,

43]. It can produce results in an ideal testing scenario and avoid some complicated

factors, such as human factors [42]. However, it is difficult to apply this method to

compare software test adequacy criteria of subtle differences.

2.2.3 Statistical experiment

Statistical experiment has the advantage of the universal applicability to

compare all types of testing methods [44, 45, 46]. However, to prevent statistical

experiment from certain potential invalidating factors, the experiments should be

carefully designed and conducted. This will become clear in the next paragraph.

11

 The basic form of statistical experiment with test adequacy criteria consists of

three elements:

• A set of sample software systems.

• For each sample software system, there is a collection of adequate test

sets with respect to the adequacy criteria under comparison.

• For each sample software system, there is a collection of known faults of

the software.

As mentioned earlier, there are some potential invalidating factors in the

application of this method. In [46], Hamlet pointed out the following two issues:

1. Sample programs: The particular collection of programs used in the

experiment may be too small or too peculiar for the results to be trusted.

2. Test data: The particular test data created for each testing method may

have good or bad properties that are not related to the testing method.

In addition to the above two problems, there can be another potential

invalidating factor. That is:

3. Sample faults: The particular collection of known faults in each

program used in the experiment may not be representative to the faults in

real software development. They could be too easy or too difficult to be

detected. They may have a peculiar distribution over the types of faults.

2.2.4 Test adequacy

Frankl and Weiss[40] in their experiments studied branch coverage and the use

coverage data flow adequacy criterion using nine small programs of several different

12

application areas. Their experiment attempted to avoid the human factors in the

comparison of test adequacy criteria. Instead of using a small sample of adequate test

sets generated by human testers for each criterion, they randomly generated a fairly

large number of adequate test sets and calculated the probabilities of fault detecting.

They found that the probability of fault detecting is clearly dependent on the

extent of test adequacy in such a way that only when the test adequacy is in the range of

97% to 100% coverage, can the probability of fault detecting be close to 1. The

probability of fault detection drops rapidly when test adequacy is lower than 97%. This

has been observed for both of the test adequacy criteria used in their experiment. Figure

2.2 provides an illustration of the dependence of the fault detecting probability on test

adequacy [47].

Figure 2.2 Illustration of the dependence of fault detecting probability on test adequacy

The perception that stricter adequacy criteria should have better fault detecting

ability is confirmed by a number of experiments, such as Frankl and Weiss's experiment

13

[40], and Ntafos' [42] work on comparison of data flow and control flow test adequacy

criteria.

14

CHAPTER 3

PRELIMINARIES

3.1 Overview

This chapter gives a brief overview about the testing of concurrent programs.

Some terminologies and definitions relevant to our evaluation are also provided; this

will be helpful in understanding the methodology of our experiment in the forthcoming

chapters. In section 3.2 we discuss the common testing approaches for concurrent

programs. Section 3.3 presents groundwork towards understanding evaluation and

comparison of coverage criteria developed for various approaches of testing sequential

and concurrent programs.

3.2 Approaches to testing concurrent programs

A concurrent program P or a sequential program is typically subjected to two

types of testing:

• black-box testing: In this category, access to P's implementation

is not allowed. Hence, only the specification of P can be used for

test generation, and only the result (including the output and

termination condition) of each execution of P can be collected.

• white-box testing: In this category, access to P's implementation

is allowed. Here, both the specification and implementation of P

15

can be used for test generation. Also, any desired information

about each execution of P and the structure of P can be collected.

Due to its complexity and size of the code or the inability to access code, white-

box testing may not be practical during system or acceptance testing. There is a third

type of testing, which is some where between the first two approaches:

• limited white-box testing: During an execution of P, only the

result and SYN-sequence can be collected. An execution of a

concurrent program P exercises a sequence of synchronization

events, called a synchronization-sequence (SYN-sequence) [9].

Thus, only the specification and the SYN-sequences of P can be

used for test generation. Also, an input and a SYN-sequence can

be used to deterministically control the execution of P.

Deterministic testing is described in the forthcoming subsection.

3.2.1 Non-deterministic testing

Non-deterministic testing of a concurrent program P involves the following

steps:

1. Selection of a set of inputs for P

2. For each selected input X, P is executed with X many times and the

result of each execution is examined.

If we execute P multiple times, then these non-deterministic executions of P

with input X may exercise different SYN-sequences of P and thus may detect more

failures than a single execution of P with input X. This approach can be used during

16

(limited) white-box and black-box testing. The purpose of non-deterministic testing is to

exercise as many distinct SYN-sequences as possible. However, experiments have

shown that repeated executions of a concurrent program are not likely to execute

different SYN-sequences [9, 19,23, 30, 31].

In general, non-deterministic executions are easy to perform and cost effective

for many applications; however, each execution creates additional work since the result

of the execution must be checked.

3.2.2 Deterministic testing

Deterministic testing of a concurrent program P involves the following steps:

1. Selection of a set of tests, each of the form (X, S), where X and S are an

input and a complete SYN-sequence of P respectively.

2. For each selected test (X, S), a deterministic execution of P with input X

according to S is forced. This execution determines whether S is feasible

for P with input X. (Since S is a complete SYN-sequence of P, the result

of such an execution is deterministic.)

3. Comparison of the expected and actual results (including the output,

feasibility of S, and termination condition) of the forced execution. If the

expected and actual results are different, a fault is detected in the

program (or the test sequence). Fault can be located by using a replay

tool. P is corrected after the fault has been located, P can be executed

with each test (X, S) to verify that the fault has been removed and that in

doing so, no new faults were introduced.

17

For deterministic testing, a test for P is not just an input of P. A test consists of

an input and a SYN-sequence, and is referred to as an IN-SYN test. Deterministic

testing provides several advantages over non-deterministic testing:

• Non-deterministic testing may leave certain portions or paths of

P uncovered. Deterministic testing allows carefully selected

SYN-sequences to be used to test specific portions or paths of P.

• Non-deterministic testing exercises feasible SYN-sequences

only; thus, it can detect the existence of invalid, feasible SYN-

sequences of P, but not the existence of valid, infeasible SYN-

sequences of P. Deterministic testing can detect both types of

faults.

• After P has been modified to correct an error or enhance its

functionality, deterministic regression testing with the inputs and

SYN-sequences of previous executions of P provides more

confidence about the correctness of P than non-deterministic

testing of P with the inputs of previous executions.

3.2.3 Combination of Deterministic and Non-deterministic testing

Although deterministic testing has advantages over non-deterministic testing, it

requires considerable effort for selecting SYN-sequences and determining their

feasibility. This effort can be reduced by combining deterministic and non-deterministic

testing.

18

Prefix-Based Testing and Mutation-Based Testing are examples of a

combination of Deterministic and Non-Deterministic Testing.

3.2.4 Reachability testing

Reachability testing is an approach that combines non-deterministic and

deterministic testing. It is based on prefix-based testing; Prefix-based testing controls a

test run up to a certain point, and then lets the run continue non-deterministically. The

controlled portion of the test run is used to force the execution of a “prefix SYN-

sequence”, which is the beginning part of one or more feasible SYN-sequences of the

program. The non-deterministic portion of the execution randomly exercises one of

these feasible sequences

3.3 Evaluation of adequacy criteria

Most of the approaches we have mentioned in the previous section for testing

concurrent programs make use of a certain coverage criteria to measure the test

adequacy. A coverage criteria is used to determine when testing can stop and to guide

generation of input values for test cases. In-spite of the fact that there has been a lot of

research on evaluation of adequacy criteria for sequential programs, comparison of fault

detecting ability is still remains notoriously difficult even in the case of sequential

programs and especially in the case of concurrent programs.

The approach which we will follow in our evaluation of adequacy criteria falls

under the category of statistical experiment [47] it has been discussed earlier in section

2.2. The following steps are involved in this approach of evaluation:

Assume that C1, C2,..., Cn are the test adequacy criteria under comparison.

19

• The experiment starts with the selection of a set of sample programs, say

P1, P2,..., Pm.

• Each program has a collection of faults, which are known due to

previous experience in the software development process or planted

artificially, say, by applying mutation operations or manually.

• For each program Pi, i=1,2,..., m, and adequacy criterion Cj, j=1,2,...,n,k;

test sets T1ij, T2ij,..., Tkij, are generated in some fashion so that Tuij is

adequate to test Pi according to criterion Cj.

• The proportion ruij of faults detected by the test Tuij over the total number

of known faults in the program Pi is calculated.

• Finally, statistical inferences are made based on the data ruij, i=1, 2,..., n,

j=1, 2,..., m, and u=1,2,..., k.

As any experimental method, there are some potential invalidating factors in the

application of the method which have been previously discussed in section 2.2.

This thesis is essentially following the above stated approach of statistical

experiment for the evaluation of adequacy criteria for the testing of concurrent.

20

CHAPTER 4

COVERAGE CRITERIA

4.1 Overview

In this chapter we will be presenting the description of all the coverage criteria

that we are evaluating in this thesis. Coverage criteria are used to determine when

testing can stop and to guide the generation of test cases. A number of coverage criteria

have been developed for sequential programs. For instance, the all-paths criterion

requires every path to be executed at least once; it is one of the strongest coverage

criterions. Since the number of paths in a program may be very large or infinite, it may

be impractical to cover them all. Thus, a number of weaker criteria have been defined

by G.J. Meyers in [16].

The minimum structural coverage criterion is statement coverage, which

requires every statement in the program to be executed at-least once.

Some stronger coverage criteria focus on the predicates in the program. The

predicates in if-else and loop statements divide the input domain into partitions in the

program. Simple predicates contain single condition which is either a single Boolean

variable (e.g., if (B)) or a relational expression (e.g., if (e1 < e2)), possibly with one or

more negation operators (!). Compound predicates contain two or more conditions

connected by the logical operators AND (∧) and OR (∨), (e.g., if ((e1 < e2) ∧ (e2 <

e3))). Predicate coverage criteria require certain types of tests for each predicate:

21

Decision coverage: requires that every (simple or compound) predicate evaluate

to true and false at least once. Branch coverage is also knows as branch coverage.

Condition coverage: requires that each condition in each predicate evaluate to

true and false at least once. Note that decision coverage can be satisfied without testing

each condition in the predicate. For example, for the predicate (A ∧ B), decision

coverage is satisfied by the two tests (A=true, B=true) and (A=true, B=false), neither of

which causes A to be false. Condition coverage requires A to be false at least once.

Decision/condition coverage: requires that both decision coverage and condition

coverage be satisfied. Note that condition coverage can be satisfied without satisfying

decision coverage. For example, for the predicate (A ∨ B), condition coverage is

satisfied by the two tests (A=true, B=false) and (A=false, B=true), neither of which

causes the predicate to be false. Decision/condition coverage requires the predicate to

be false at least once.

Multiple-condition coverage: requires all possible combinations of condition

outcomes in each predicate to occur at least once. Note that for a predicate with N

conditions, there are 2N possible combinations of values for the conditions.

The criteria can be compared based on subsumes relation. A coverage criterion

C1 is said to subsume another criterion C2 if and only if any set of paths that satisfies

criterion C1 also satisfies criterion C2. For example, decision coverage subsumes

statement coverage since covering all decisions necessarily covers all statements. This

does not mean, however, that a coverage criterion that subsumes another is also more

22

effective at detecting errors. Fig. 4.3 shows a hierarchy of criteria based on subsumes

relation.

Fig. 4.1 Hierarchy of sequential structural coverage criteria based on subsumes
relation.

4.2 Evaluated Coverage Criteria

This section discusses all the coverage criteria that our work evaluates, in terms

of their respective adequacy. The selection of the specific coverage criteria listed in this

section is a result of rigorous effort and time spent in the study of several different

approaches which are proposed for testing concurrent programs, including those

mentioned in section 2.1. We studied all the approaches and the respective coverage

criterion employed by that approach. These coverage criteria were scrutinized for their

relative importance in testing concurrent programs and their ease of empirical

evaluation. We have already mentioned some of the possible problems that might arise

in the evaluation of certain coverage criteria in section 2.1.

Following is the final list of seven coverage criteria that have been selected for the

purpose of our evaluation:

multiple condition

decision/condition

decision coverage condition

statement coverage

23

All synchronization pair coverage criterion: The all synchronization-pair

coverage criterion requires that every possible pair of statements that can be

synchronized is actually synchronized at least once during testing.

All branches coverage criterion: This criterion requires that all the branches in

the program are covered at least once during testing. This criterion is same as the

aforementioned decision coverage criterion.

All decision/condition coverage criterion: This criterion requires that the truth

and falseness of every simple condition in a branching statement is covered at least once

by a test case. All conditions coverage criterion subsumes the all branches coverage

criterion and is the same as all decision/condition coverage criterion to the.

All du-pair coverage criterion: This criterion requires that every distinct

definition and use pair of all the variables in the concurrent program are covered at least

once in the test execution.

All synchronization-pair and all branches coverage: This criterion requires the

coverage of both the previously mentioned all-synchronizable-statement-pairs coverage

AND all-branches coverage.

All synchronization-pair and decision/condition coverage: This criterion

requires the coverage of both the previously mentioned all-synchronizable-statement-

pairs coverage AND all decision/condition coverage.

All synchronization-pair and all du-pair coverage: This criterion requires the

coverage of both the previously mentioned all-synchronizable-statement-pairs coverage

AND all-du-pair coverage.

24

CHAPTER 5

EVALUATION AND RESULTS

5.1 Objective

Once we finalized the seven coverage criteria to be evaluated, we start with the

formal evaluation procedure. The purpose of this thesis is to provide a useful and

quantitative evaluation of the seven coverage criteria that can be useful in the selecting

one or many of these coverage criteria for the testing of specific concurrent programs.

Keeping this in mind all the way through the evaluation procedure we have

opted for a generic example of a concurrent program. The example program we are

using for our evaluation is the implementation of the sliding window protocol and also

includes the simulation of an unreliable medium and the application programs, in Ada.

We received this program from the research work of R.H.Carver [11].

In our evaluation we are trying to come up with results on the testing of our

example program following the seven approaches mentioned in chapter 4. We are

expecting to measure the robustness of each coverage criterion in terms of the number

of mutants which are killed by that criterion [6]. At the same time we are also going to

keep a track of the cost, specifically the effort and time spent in following a coverage

criterion to generate the synchronization sequences for our example. This can be done

by keeping a track of the number of synchronizations generated in a particular

synchronization sequence.

25

Evaluation objective is to determine:

1. Number of mutants killed.

2. Total number of synchronizations in the synchronization sequence.

Number of Mutants Killed →signifies Robustness of a Coverage Criteria

Number of Synchronization in a SYN-sequence →signifies Cost of the Coverage Criteria

Figure 5.1 Objective.

5.2 Methodology

For every coverage criteria the basic design of our evaluation involves the four

major steps.

1. Construction of synchronization sequences

2. Deterministic execution of SYN-sequence

3. Mutation testing

4. Analysis of output file

These four steps will be explained in detail in the forthcoming subsections.

5.2.1 Construction of Synchronization Sequences

An execution of a concurrent program P exercises a sequence of synchronization

events, called a Synchronization-sequence (or SYN-sequence) [9]. A feasible SYN-

sequence is a sequence of synchronization events that can be exercised during the

execution of a concurrent program. Construction of a synchronization sequence which

covers a particular coverage criterion is the costliest part in the deterministic testing of

concurrent programs.

26

Before we explain the construction of the SYN-sequence we will briefly give an

explanation about the example program that we have used in our evaluation; this

follows in the forthcoming subsection.

5.2.1.1 The Example Program SWP

For the purpose of our evaluation we needed such a concurrent program that is

non-trivial and exemplifies the complexity and inter-process (inter-task) communication

of concurrent programs that are used in real world scenarios.

We have used as our example an implementation of the Sliding Window

Protocol in Ada language; this program has been adopted from “Selecting and Mapping

Test Sequences from Formal Specifications of Concurrent Programs” [11]. Our version

of the Sliding Window Protocol (SWP) consists of one Sender and one Receiver

communicating across an unreliable medium. Messages are sent tagged with sequence

numbers in the range 1..6, and these sequence numbers also constitute the

acknowledgments. The size of the window is two. This Ada implementation of SWP

has eight tasks (processes) and 530 statements.

In the forthcoming section on mutation testing we will see that this SWP

program is later used in generating 1007 SWP mutants that will be tested with the SYN-

sequence for each coverage criterion.

Figure 5.2 depicts the basic structure of the SWP implementation. Every ellipse

depicts a task of the SWP program. The direction of the solid arrows shows the entry

call, for instance, Sender task gives an entry call that is accepted by Medium_SR task.

Synchronization in Ada is achieved by blocking entry and accept calls.

27

Client_S and Client_R simulate the application programs; Medium_SR and

Medium_RS simulate the non-reliable medium from the sender to the receiver. The

window size is 2 so there are two timers required at any instance of time; Timer1,

Timer0.

Figure 5.2 Structure of the SWP implementation

The following behaviors can be identified:

• Sender: local behavior of the sender.

• Receiver: local behavior of the receiver.

• Sender-to-Receiver: end-to-end behavior involving the flow of messages from

the sender to the receiver.

Client_S (8)

Medium_SR (2)

Sender (4)

Medium_RS (3)

Client_R (9)

Receiver
(5)

Timer0 (6)Timer1 (7)

Task id

28

• Receiver-to-Sender: end-to-end behavior involving the flow of

acknowledgements from the receiver to the sender.

5.2.1.2 The construction of the SYN-sequence

The format of a test sequence for deterministic testing depends upon the

concurrent programming constructs used in the program under test. Formal definitions

of test sequences for various constructs and languages can be found in [12,13]. In Ada,

processes are called tasks. Tasks communicate through ports, which are called entries.

Communication occurs using synchronous message passing called rendezvous, in which

messages are sent using blocking entry call statements, and received using blocking

accept statements.

Every specific coverage criterion amongst the seven that we have chosen to

evaluate in this thesis requires the fulfillment of certain conditions while testing, in

order to claim that a specific test run covers the respective coverage criterion. We have

to carefully select the sequence of synchronization events in order to fulfill this for

every criterion. Selection of such synchronization sequences can be done by using

reachability graph, but this becomes too intricate because of the state explosion

problem. Moreover with our SWP example program having around 500 nodes in its

control flow graph this problem becomes very pronounced. We followed a manual

generation of synchronization sequences due to the absence of any available automation

in this regard.

29

For P and each adequacy criterion Cj, k SYN-sequences S1j, S2j,...,Skj, are

generated in some fashion so that k SYN-sequences are adequate to test SWP program

according to criterion Cj.

We have kept no restrictions on the length of the generated sequences or the

number of different sequences required to cover a specific coverage criterion, except for

the restrictions imposed explicitly by the SWP program and Ada language. There is no

maximum length of the feasible synchronization sequences for the SWP program; this is

because of the presence of multiple while loops which can run through infinitely many

iterations if the required conditions are met in the program flow. While generating the

SYN-sequence our sole concern is the corresponding coverage criteria for which the

SYN-sequence is being generated, the length of the sequence should be as small as

possible. The length of a SYN-sequence symbolizes the cost of generating the SYN-

sequence, therefore it should be kept in mind that the length of the sequence should be

towards the minimum required to cover the coverage criteria. Absolute care is taken to

generate as small sequences as possible, still their can be instances where the sequence

which we are using for specific coverage might not be the smallest possible, such

instances are minimized. Following this methodology will make our final result stronger

and reliable in terms of calculation of cost and robustness of each coverage criteria.

After the generation of feasible SYN-sequence we are required to transform this

SYN-sequence into a format that is readable by another program that will

deterministically force this sequence on the example SWP program [5].

30

A test sequence for a concurrent Ada program is a sequence of rendezvous

events. A rendezvous event is denoted by (L, C, U, N, D), where L is a label (optional),

C denotes the calling task, U the accepting task, N the entry name, and D other

information for this rendezvous event. Thus a sequence of rendezvous events, referred

to as a rendezvous sequence or R-sequence, can be represented by:

((L1,C1,U1,N1,D1), ((L2,C2,U2,N2,D2),…

(Li,Ci,Ui,Ni,Di),...)

For the conversion of labels to complete formatted sequence we developed a

simple java program named “seqGen” which could convert labels of specific

rendezvous events in the SYN-sequence to formatted events having the complete

rendezvous information about that event in a form readable by another program named

Feasibility Control, a detailed explanation of such deterministic execution can be found

in [5]. This program checks and deterministically runs the input SYN-sequence. Figure

5.3 provides a high level diagrammatic representation of the seqGen.

31

Figure 5.3 seqGen converts labels into complete rendezvous events.

 Figure 5.4 depicts the complete SYN-sequence generated by seqGen when a

sequence of labels is provided as an input.

Figure 5.4 Complete SYN-sequence.

32

The next step to be followed after the creation of the feasible SYN-sequence is

deterministic testing, which is explained in the forthcoming subsection.

5.2.2 Deterministic execution of the SYN-Sequence

In this section, we briefly describe the work done by Richard Carver and K. C.

Tai in [5], which shows how to accomplish deterministic execution testing of a

concurrent Ada program according to a given SYN-sequence.

As a first step the format of a SYN-sequence that provides sufficient information

for deterministic execution is defined. Then it is shown how to transform a concurrent

Ada program P into a slightly different program P* (also written in Ada) so that an

execution of P* with (X, S) as input, where X and S are an input and SYN-sequence of

P respectively, determines whether or not S is feasible for P with input X and produces

the same result as P with input X and SYN-sequence S would, provided that S is

feasible [5]. Tools for transforming concurrent Ada programs for deterministic

execution testing are also described in [5].

Deterministic execution testing is needed not only for detecting errors in P but

also for verifying corrections made to the concurrent Ada program. Assume that an

execution of P with input X has exercised a SYN-sequence S, which is invalid

according to P’s specification. After an attempt has been made to correct the error(s)

detected by this erroneous execution, we need to verify that S is infeasible for the

corrected version of P with input X. Deterministic execution (regression) testing is also

needed to verify that corrections made to P do not produce unexpected effects for

previous successful executions of P.

33

There is also a description of the development of a language-based approach to

solving the SYN-sequence definition, collection, and feasibility problems for language

L. This approach is applied to concurrent Ada programs as follows.

1. The format of a SYN-sequence of an Ada program is defined in terms of

the synchronization constructs available in Ada so that a SYN-sequence

provides sufficient information for deterministic execution.

2. A SYN-sequence collection tool for Ada is developed which transforms

a program P written in Ada into a slightly different program P’ (also

written in Ada) so that P’ is equivalent to P except that during an

execution of P’ the SYN-sequence of this execution is also collected.

3. A SYN-sequence feasibility tool for Ada is developed which transforms

an Ada program P into a slightly different program P* (also written in

Ada) so that an execution of P* with (X, S) as input, where X and S are

an input and SYN-sequence of P respectively, determines whether or not

S is feasible for P with input X and produces the same result as P with

input X and SYN-sequence S would, provided that S is feasible.

A language-based approach to deterministic execution testing has the following

advantages: (a) Since the transformation of a concurrent program for SYN-sequence

collection or feasibility produces a program written in the same language, this approach

does not create a portability problem; (b) the definition of a SYN-sequence and the

development of a SYN-sequence collection or feasibility tool for a concurrent language

are independent of the implementation of this language; and (c) the source

34

transformation for SYN-sequence collection or feasibility for a concurrent language L

can serve as a high-level design for L’s implementation-based testing tools.

(Implementation-based tools have the advantage of having less run-time overhead

because the control of synchronization events is performed at the implementation level

instead of the source level) Also, a language-based solution to SYN-sequence collection

or feasibility may suggest an efficient implementation-based solution. More discussion

of this language-based approach can be found in [10].

5.2.3 Mutation Testing

Mutation-based software testing is a powerful technique for testing software

systems. It requires executing many slightly different versions of the same program to

evaluate the quality of the test cases used to test the program. Mutation-based testing

has been applied to sequential software; however, problems are encountered when it is

applied to concurrent programs. These problems are a product of the non-determinism

inherent in the executions of concurrent programs [6].

Mutation-based testing [7, 8] helps the tester in creating test cases and improves

the quality of the tests. It involves constructing a set of mutants of the program under

test. Each mutant differs from the program under test by one mutation. A mutation is a

single syntactic change that is made to a program statement (generally inducing a

typical programming error) [6].

Test cases are used to kill mutant programs by differentiating the output of the

mutants from that of the program under test. If a test case causes a mutant program to

produce incorrect output, then that test case is strong enough to detect the programming

35

errors represented by that mutant, and the mutant is considered to be dead. The goal of

mutation-based testing is to kill a large number of mutant programs. Each set of test

cases is used to compute a mutation score; a score of 100% indicates that the test cases

kill all mutants of the program under test. (Some mutants are functionally equivalent to

the original test program and can never be killed. This is factored into the mutation

score.)

In our evaluation to measure the adequacy of the generated test sequences, we

have adopted the semi-automatically mutated Ada SWP implementation from [11]

which was implemented using mutation operators of the Mothra mutation system [l4].

(Mothra was used to generate mutations of Fortran statements, and then these mutations

were transformed into Ada.) Since Mothra was developed for Fortran 77, a few of the

mutations were not applicable or they needed to be modified slightly for Ada.

In all we have 1007 different mutant programs (mutants) of our example SWP

program. The generated SYN-sequence should be deterministically executed on all of

these mutants. An SWP mutant is considered to be distinguished (killed) if a forced

execution of the mutant according to a valid (invalid) test sequence is found to be

infeasible (feasible), or the execution resulted in an incorrect result. The test execution

is carried on a Windows platform, this execution is automated by writing a batch file

which carries commands for the compilation, execution and finally writing the output

generated for each execution in a text file.

Throughout the period of our mutation testing during the deterministic execution

of the mutants we have to keep checking if an execution has ended up in a deadlock

36

situation. If a mutant encounters a deadlock during the execution, then it is considered

killed by the SYN-sequence. While this information will automatically be written in our

output file we still have to break the deadlock of the execution manually and resume the

execution of the batch file again from the next mutant onwards. On a UNIX system,

script could have been written to avoid this manual termination in case of a deadlock,

but I could not find a similar script for the Windows platform. Each mutant that

encounters a deadlock is noted for the respective sequence of the respective coverage

criteria. During the test execution of all the mutants the detailed output is written in the

output file that is later analyzed for the number of mutants killed.

5.2.4 Analysis of output file

The final output file generated after the deterministic execution of the SYN-

sequence on all the mutants, carries the final results and information about the number

of mutants killed by that respective SYN-sequence. The output file has information

about every mutant, which has been tested followed by its mutant number, which

sequentially increases from 0 to 1146, for every SYN-sequence. In all there are 1007

different mutants within the range 1 to 1146.

Analysis of the final output file is done by analyzing the output produced by

every mutant program. A mutant is assumed to be killed if the output produced by the

mutant doesn’t match with the output produced on a simple unaltered program, the

unaltered SWP program in our case. Whenever there is a mismatch of output then the

mutant is assumed to be killed and the mutant number is noted. All the mutants which

produce the same output as that of an unaltered SWP program are the ones which have

37

not been killed by the SYN-sequence. These mutants are separately noted under the list

of mutants not killed by that specific SYN-sequence. In the end of the execution of all

the 1007 mutants, we have a comprehensive list containing:

• Mutants killed

• Mutants not killed

• Mutants which ended up in a deadlock

This list corresponds to a single SYN-sequence, which is one of the many used for a

specific coverage criterion under test. A specific coverage criterion can require multiple

SYN-sequences to cover the requirements of that coverage criterion. After the execution

of all the SYN-sequences of a particular coverage criterion a final list of results is

generated for that particular coverage criterion. This list also has the same three

columns of the previous lists and includes all the mutants, which have been killed by all

the SYN-sequences. From the complete set of 1007 mutants the mutants killed are

marked and we are left with the total number of mutants which are not killed by this

coverage criterion.

The set of mutants killed by a coverage criterion m = {MutKilledm}

Total mutants killed by ith SYN-sequence covering m = {Killedi}

Thus we have the relation:

{MutKilledm } = ∪∪∪∪ { Killedi }

38

Total number of mutants killed by a specific coverage criterion will be the

number of elements in the set MutKilledm. Total number of mutants not killed will be

1007 less the number of elements in MutKilledm.

Total number of mutants killed by coverage criterion m = num{MutKilledm}

Total number of mutants not killed by coverage criterion m = 1007 – num{MutKilledm}

5.3 Results

This section presents the comprehensive results of the final evaluation of each

of the seven coverage criteria against all the mutants.

In the results we have even included some very explicit details about the SYN-

sequences used; these can be qualified as program specific to our example program of

sliding window protocol. An SWP program essentially runs on messages passing from a

receiver to the sender, in each SYN-sequences there essentially is going to be en

exchange of at-least one or more messages and acknowledgements between the sender

and the receiver within the program. In the results for every coverage criteria we have

relevant data about the following:

1. Number of Mutants killed

2. Total number of Synchronizations

3. Total number of different sequences

4. Total number of messages sent

Of course, for the purpose of our evaluation we just require the first two

statistics for each coverage criterion and hence the latter are not shown in the final

evaluation results. The results are presented in the following subsections.

39

5.3.1 Evaluation of all synchronizable pair coverage criterion

This coverage criterion is specific for concurrent programs. We are definitely

curious to know how well this criterion does in comparison to the other more traditional

criteria, which are more frequently used in the testing of sequential programs.

After examining the results of this criterion (Table 5.1) we can infer that around

64% of the total mutants have been killed by this coverage, and additionally the

required SYN-sequence used didn’t have a lot of synchronizations. Even though the

All-sync pair coverage criterion doesn’t kill maximum number of mutants the cost

incurred in testing through this coverage criteria is significantly less.

Table 5.1 Evaluation of all synchronization pair coverage criterion.
Total number of mutants tested 1007

Total number of mutants killed 644

Total number of Synchronizations (Rendezvous events) 54

5.3.2 Evaluation of all branches coverage criterion

The All Branches Coverage Criterion is typically used in the testing of

sequential programs, our evaluation results with this coverage criterion show that it

doesn’t come out to be very expensive in terms of the cost (Total number of

synchronizations) but still we are able to kill around 74% of all the mutants.

40

Table 5.2 Evaluation of all branches coverage criterion.
Total number of mutants tested 1007

Total number of mutants killed 748

Total number of Synchronizations (Rendezvous events) 81

5.3.3 Evaluation of all decision/condition coverage criterion

The Criterion of All decision/condition coverage is stronger than all branches

coverage as explained in Chapter 4. The results also present a conforming view. The

distinguishing feature in the evaluation results of this criterion is the number of

synchronizations required for the coverage. There is a steep rise in the effort required

for testing using this coverage criterion as compared to the afore mentioned criteria,

which is measure in the terms of number of synchronization sequences.

Table 5.3 Evaluation of all decision/condition coverage criterion.
Total number of mutants tested 1007

Total number of mutants killed 876

Total number of Synchronizations (Rendezvous events) 485

5.3.4 Evaluation of all du-pair coverage criterion

There isn’t any strong subsumes relationship between the all Du-pair coverage

criterion and the other control flow based criteria used in our evaluation. This criterion

appears quite strong in its coverage, and this can also be inferred from the number of

mutants killed by the criterion. On the down side, this criterion is very demanding in

terms of effort and time spent in the generation of SYN-sequence for this criterion. We

41

are able to kill 96% of all the mutants, but the cost increases manifold. It should also be

noted that the generation of SYN-sequences for this criterion required effort and time

which is manifolds the cost required for previously evaluated criteria.

Table 5.4 Evaluation of all du-pair coverage criterion
Total number of mutants tested 1007

Total number of mutants killed 967

Total number of Synchronizations (Rendezvous events) 1023

5.3.5 Evaluation of all Sync-pair and all branches coverage

This is our first approach in which we are combining two different coverage

criteria, moreover, it should be noted that one of the criteria is specific for concurrent

programs and the other one is specific for sequential programs. A substantial increase in

the number of mutants killed can be eminent; at the same time there isn’t a huge

increase in the number of different synchronizations. It is important to note the

difference between the cost required for this testing criterion from the other criterions.

Table 5.5 Evaluation of all Sync-pair and all branches coverage.
Total number of mutants tested 1007

Total number of mutants killed 801

Total number of Synchronizations (Rendezvous events) 142

5.3.6 Evaluation of all Sync-pair and all decision/condition coverage

The results of the evaluation of this combined coverage criterion are pretty

consistent with the results of the two criteria presented separately, earlier in this section.

42

We can notice some increase in the number of mutants killed but the trade-off against

cost cannot be ignored. This coverage is able to kill 89% of all the mutants.

Table 5.6 Evaluation of all Sync-pair and all decision/condition coverage.
Total number of mutants tested 1007

Total number of mutants killed 897

Total number of Synchronizations (Rendezvous events) 517

5.3.7 Evaluation of all Sync-pair and all du-pair coverage

The evaluations of this coverage criterion yields the best results in terms of the number

of mutants killed, we are able to kill 97% of all the mutants which is the maximum

amongst all the criteria which we have evaluated. However, criterion required the

maximum number of synchronizations and hence the maximum cost. It can be inferred

that this criteria is practically not very economical.

Table 5.7 Evaluation of all Sync-pair and all du-pair coverage
Total number of mutants tested 1007

Total number of mutants killed 974

Total number of Synchronizations (Rendezvous events) 1055

5.4 Comprehensive Evaluation Results

In the final table we are presenting the overall picture of the evaluations of all

the coverage criteria. We can get a precise representation of the relative comparisons of

robustness and the cost of each criterion. Amongst our seven criteria it can be discerned

that the all sync-pair & all du-pair coverage criteria is the strongest amongst the seven.

43

At the down side this criterion happens to be one of the costliest criteria; this can be

determined by comparing the huge number of synchronizations required for this

specific coverage.

The most economic coverage criterion in terms of cost is the all-synchronizable

pair coverage, but at the same time this criterion is the one which is the least strong in

terms of number of killed mutants.

If we strictly analyze the final comprehensive evaluation results then we can

infer that all sync-pair & all branches coverage criterion is the best suited if we consider

the trade-off between the robustness and the cost of coverage of all the coverage

criteria.

Table 5.8 Comprehensive Evaluation Results.
Coverage criteria Num. of

mutants killed
(Total=1007)

Total number
of Sync.

Num of
mutants killed
per Sync.

All sync pair 644 54 11.93

All branches 748 81 9.23

All decision/condition 876 485 1.81

All du-pair 967 1023 0.95

All sync pair & all branches 801 142 5.64

All sync pair & all
decision/condition

897 517 1.74

All sync pair & all du-pair 974 1055 0.92

44

Figure 5.5 presents comprehensive evaluation result of all our seven coverage

criteria in terms of their robustness to kill the mutants. The coverage criteria in this table

are arranged in the ascending order of the respective number of mutants killed by each

criterion. The bars indicate the robustness of the approach.

Inference drawn from this part of evaluation:

“All Synchronization pair & all du-pair coverage” is the most robust amongst

the coverage criteria evaluated in our experiment.

Number of Mutants Killed (Total = 1007)

0
200
400
600
800

1000
1200

A
ll

S
yn

ch
ro

ni
za

tio
n

A
ll

B
ra

nc
he

s
C

ov
er

ag
e

A
ll

S
yn

c-
pa

ir
&

A
ll

B
ra

nc
he

s

A
ll

D
ec

is
io

n/
C

on
di

ti

A
ll

S
yn

c-
pa

ir
&

A
ll

A
ll

D
u-

pa
ir

C
ov

er
ag

e

A
ll

S
yn

c-
pa

ir
&

A
ll

D
u-

pa
ir

Number of Mutants
Killed (Total = 1007)

Figure 5.5 Number of Mutants killed.

Figure 5.6 presents comprehensive evaluation result of all our seven coverage

criteria in terms of the number of synchronizations required in their SYN-sequence.

 The coverage criteria in this table are arranged in the ascending order of the

respective number of synchronizations required in their SYN-sequence. The bars

indicate the cost of each approach.

45

Inference drawn from this part of evaluation:

“All Synchronization pair & all du-pair coverage” is the most costly amongst

the coverage criteria evaluated in our experiment.

Number of Synchs.

0
200
400
600
800

1000
1200

A
ll

S
yn

ch
ro

ni
za

tio
n

A
ll

B
ra

nc
he

s
C

ov
er

ag
e

A
ll

S
yn

c-
pa

ir
&

A
ll

B
ra

nc
he

s

A
ll

D
ec

is
io

n/
C

on
di

ti

A
ll

S
yn

c-
pa

ir
&

A
ll

A
ll

D
u-

pa
ir

C
ov

er
ag

e

A
ll

S
yn

c-
pa

ir
&

A
ll

D
u-

pa
ir

Number of Synchs.

Figure 5.6 Number of Synchronizations.

Figure 5.7 presents comprehensive evaluation result of all our seven coverage

criteria in terms of the number of mutants killed per synchronization.

 The coverage criteria in this table are arranged in the ascending order of the

respective number of mutants killed per synchronization. The height of the bars indicate

the number of mutants killed per synchronization.

Inference drawn from this part of evaluation:

“All synchronization pair coverage” is the least costly amongst the coverage

criteria evaluated in our experiment.

46

Mutants killed per Synch

0
2
4
6
8

10
12
14

A
ll
 S

y
n

c
-p

a
ir

 &
 A

ll
D

u
-p

a
ir

 C
o

v
e

ra
g

e

A
ll
 D

u
-p

a
ir

C
o

v
e

ra
g

e

A
ll
 S

y
n

c
-p

a
ir

 &
 A

ll
D

e
c
is

io
n

/C
o

n
d

it
io

n
s
 C

o
v
e

ra
g

e

A
ll

D
e

c
is

io
n

/C
o

n
d

it
io

n
s
 C

o
v
e

ra
g

e

A
ll
 S

y
n

c
-p

a
ir

 &
 A

ll
B

ra
n

c
h

e
s

C
o

v
e

ra
g

e

A
ll
 B

ra
n

c
h

e
s

C
o

v
e

ra
g

e

A
ll
 S

y
n

c
h

ro
n

iz
a

ti
o

n
p

a
ir

 C
o

v
e

ra
g

e

Mutants killed per Synch

Figure 5.7 Mutants killed per Synchronization.

47

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The primary objective of this thesis was to provide an empirical evaluation of

adequacy criteria for testing concurrent programs. We provided evaluation results of

seven different coverage criteria used in testing of concurrent programs based on our

experiments.

We have used mutation based testing to set out benchmark for robustness.

Following are the contributions of this thesis based on the evaluation of the

seven coverage criteria studied in the thesis:

• All synchronization pair coverage is the least costly amongst the

coverage criteria evaluated in our experiment but it is not as robust in its

adequacy as compared to the other six criteria.

• All branches coverage criterion is more robust than the all

synchronization pair coverage but also happens to be a little costlier.

• All decision/condition coverage criteria lies somewhere in between all

the coverage criteria in terms of its cost and robustness.

• All synchronization pair & all du-pair coverage is the most costly

amongst the coverage criteria evaluated in our experiment.

• All synchronization pair & all du-pair coverage is the most robust

amongst the coverage criteria evaluated in our experiment at the same

48

time it also happens to be the most costly of all the coverage criteria we

evaluated.

• If we strictly analyze the final comprehensive evaluation results then we

can infer that all sync-pair & all branches coverage criterion is the best

suited if we consider the trade-off between the robustness and the cost of

coverage of all the coverage criteria.

Sequential program testing criteria are more effective than expected when they

are applied for testing concurrent programs.

6.2 Future work

Following are the suggestions for future work:

• The empirical results of evaluation of this thesis are based on the

experiments conducted on just one example, more examples can be used

to further consolidate the evaluation

• We studied several different coverage criteria and short-listed the seven

criteria based on their importance in concurrent program testing and the

feasibility of their empirical evaluation. More coverage criteria can be

evaluated to make the list very comprehensive.

• Future work can be directed towards evaluation of

multithreaded/distributed Java programs.

• Propose new coverage criteria that are more effective, efficient and

scalable.

49

APPENDIX A

EXAMPLE PROGRAM SLIDING WINDOW PROTOCOL

50

EXAMPLE PROGRAM SLIDING WINDOW PROTOCOL

Here we are presenting the actual code of the SWP program that we have used for our

evaluation. The program is in Ada and has sufficient comments to make it self-

explanatory.

with fea_control; use fea_control;
Package SWP is
-- Sliding Window Protocol Implementation 2: two timers
 max_msg: constant integer := 100;

-- messages are integers in the range 1..max_msg;
-- sent in ascending order.
window_size: constant integer := 2; -- max window size;
-- window_size is adjustable, but depends on seq_no range.
max_seq_no: constant integer := 6; -- max sequence number
min_seq_no: constant integer := 1; -- min sequence number
-- min_seq_no must be 1; max_seq_no is adjustable;
subtype msg_type is integer range 1..max_msg;
subtype seq_no_type is integer range min_seq_no..max_seq_no;
procedure get_next_msg(m:in msg_type; myid: integer);
-- Called by Client_S to send a message to Client_R
procedure deliver_msg(m: in out msg_type; s: in out seq_no_type;

myid: integer);
-- Called by Client_R to receive message from Client_S

end SWP;

with fea_control; use fea_control;
with text_io; use text_io;
Package body SWP is

subtype window_type is integer range 0..window_size-1;
subtype acked_seq_no_type is integer range 0..max_seq_no;
trap_flag:boolean:=false;

task Medium_SR is
entry ttgetid(x: in TASK_ID);

entry send(m:msg_type; s:seq_no_type; caller_id: integer);
end Medium_SR;

task Medium_RS is
entry ttgetid(x: in TASK_ID);

entry reply(a:acked_seq_no_type; caller_id: integer);
end Medium_RS;

51

task Sender is
entry ttgetid(x: in TASK_ID);

entry next_msg(m:msg_type; caller_id: integer);
entry ack(a_no:acked_seq_no_type; caller_id: integer);
entry timeout(t_no:window_type; caller_id: integer);

end Sender;

task Receiver is
entry ttgetid(x: in TASK_ID);

entry msgs(m:msg_type;s:seq_no_type; caller_id: integer);
entry deliver(m:in out msg_type; s:in out seq_no_type;

caller_id: integer);
end Receiver;

task type timer_task_type is
entry ttgetid(x: in TASK_ID);

entry time(caller_id: integer);
entry cancel(caller_id: integer);
entry get_timer_no(t_no:window_type; caller_id: integer);

end timer_task_type;

Timer: array(0..1) of timer_task_type;

procedure get_next_msg(m:in msg_type; myid: integer) is
begin
control.req_call_permit(myid)(4,"next_msg ");

Sender.next_msg(m,myid);
end get_next_msg;

procedure deliver_msg(m:in out msg_type; s: in out seq_no_type;
myid: integer) is

begin
control.req_call_permit(myid)(5,"deliver ");

Receiver.deliver(m,s,myid);
end deliver_msg;

function succ(x: in seq_no_type) return seq_no_type is -- value
in 1..6

-- 1->2, 2->3, 3->4, 4->5, 5->6, 6->1
t:integer range 0..max_seq_no;

begin -- succ
t:=(x+1) mod max_seq_no;
if t=0 then
 return(max_seq_no);
else return(t);
end if;

end succ;

function pred(x: in seq_no_type) return seq_no_type is -- value
in 1..6

-- 6->5, 5->4, 4->3, 3->2, 2->1, 1->6
t:integer range 0..max_seq_no;

begin --pred

52

t:=(x-1) mod max_seq_no;
if t=0 then return(max_seq_no); else return(t);
end if;

end pred;

task body timer_task_type is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;
one_arrival: BOOLEAN;
event_label: entry_name_type;

 timer_no:window_type;
 D: duration := 0.001;
begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;
control.req_accept_permit(myid)("get_timer_no ");
 accept get_timer_no(t_no:window_type; caller_id: integer) do
if t_no=0 then
 event_label:= "get_timer_no0 ";
else
 event_label:= "get_timer_no1 ";
end if;
control.accepted(myid)(caller_id,"get_timer_no ",

event_label);
 timer_no := t_no;
control.req_finish_accept(myid)(caller_id,"get_timer_no

");
 end get_timer_no;
 loop
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := time'count + cancel'count +

get_timer_no'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := time'count + cancel'count +

get_timer_no'count;
end loop;

end if;
 select

accept time(caller_id: integer) do
if timer_no=0 then
 event_label:= "time0 ";
else
 event_label:= "time1 ";
end if;

53

control.accept_selected(myid)(caller_id,"time
",

event_label);
control.req_finish_select_accept(myid)(caller_id,"time

");
end;
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := time'count + cancel'count +

get_timer_no'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := time'count + cancel'count +

get_timer_no'count;
end loop;

end if;
select
 accept cancel(caller_id: integer) do

if timer_no=0 then
 event_label:= "cancel0 ";
else
 event_label:= "cancel1 ";
end if;
control.accept_selected(myid)(caller_id,"cancel

",
event_label);

control.req_finish_select_accept(myid)(caller_id,"cancel
");

end;
or delay D;

 event_label:= "tau ";
control.delay_selected(myid)(event_label);

 loop
 event_label:= "tau ";
control.req_cond_timed_permit(myid)(call_successful,"timeout

",4,event_label);
if call_successful then
control.req_call_permit(myid)(4,"timeout ");

 Sender.timeout(timer_no,myid);
exit;

 else
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := time'count + cancel'count +

get_timer_no'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := time'count + cancel'count +

get_timer_no'count;

54

end loop;
end if;

 select
 accept cancel(caller_id: integer) do

if timer_no=0 then
 event_label:= "cancel0 ";
else
 event_label:= "cancel1 ";
end if;
control.accept_selected(myid)(caller_id,"cancel

",
event_label);

control.req_finish_select_accept(myid)(caller_id,"cancel
");

end;
 exit;

 else
 event_label:= "tau ";
control.else_selected(myid)(event_label);

 null;
control.req_finish_else(myid);

 end select;
end if;

 end loop;
control.req_finish_delay(myid);

end select;
 or

 terminate;
 end select;
 end loop;
end timer_task_type;

task body Medium_SR is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;
one_arrival: BOOLEAN;
event_label: entry_name_type;

msg: msg_type;
seq_no: seq_no_type;
D: duration := 0.0001;

begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;
 loop
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := send'count;
arrivals_needed := current_arrivals + 1;

55

control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := send'count;
end loop;

end if;
 select
 accept send(m:msg_type; s:seq_no_type; caller_id: integer)

do
 if s=1 then

 event_label:= "send1 ";
elsif s=2 then
 event_label:= "send2 ";
elsif s=3 then
 event_label:= "send3 ";
elsif s=4 then
 event_label:= "send4 ";
elsif s=5 then
 event_label:= "send5 ";
elsif s=6 then
 event_label:= "send6 ";
end if;
control.accept_selected(myid)(caller_id,"send

",
event_label);

msg := m; seq_no := s;
control.req_finish_select_accept(myid)(caller_id,"send

");
 end send;
 event_label:= "tau ";
control.req_cond_timed_permit(myid)(call_successful,"msgs

",5,event_label);
if call_successful then
control.req_call_permit(myid)(5,"msgs ");

Receiver.msgs(msg,seq_no,myid);
else

--or
--delay D;
--put_line("lm");
null; -- loose it

end if;
 or
 terminate;
 end select;
 end loop;
end Medium_SR;

task body Medium_RS is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;

56

one_arrival: BOOLEAN;
event_label: entry_name_type;

acked_seq_no: acked_seq_no_type;
D: duration := 0.001;

begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;
 loop
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := reply'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := reply'count;
end loop;

end if;
 select
 accept reply(a:acked_seq_no_type; caller_id: integer) do
if a=0 then
 event_label:= "rep0 ";
elsif a=1 then
 event_label:= "rep1 ";
elsif a=2 then
 event_label:= "rep2 ";
elsif a=3 then
 event_label:= "rep3 ";
elsif a=4 then
 event_label:= "rep4 ";
elsif a=5 then
 event_label:= "rep5 ";
elsif a=6 then
 event_label:= "rep6 ";
end if;
control.accept_selected(myid)(caller_id,"reply

",
event_label);

acked_seq_no := a;
control.req_finish_select_accept(myid)(caller_id,"reply

");
 end reply;
 event_label:= "tau ";
control.req_cond_timed_permit(myid)(call_successful,"ack

",4,event_label);
if call_successful then
control.req_call_permit(myid)(4,"ack ");

Sender.ack(acked_seq_no,myid);
else

-- put_line("la");
null; -- loose it

57

end if;
 or
 terminate;
 end select;
 end loop;
end Medium_RS;

task body Sender is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;
one_arrival: BOOLEAN;
event_label: entry_name_type;
h_s:seq_no_type; -- added for validty calculations

subtype num_unacked_msgs_type is integer range 0..window_size;
num_unacked_msgs:num_unacked_msgs_type:=0; -- unacknowledged

messages;
lowest_unacked:seq_no_type:= min_seq_no; -- lowest msg sent and

unacked
highest_sent:seq_no_type:= max_seq_no; -- highest msg sent

and unacked
msg:msg_type; -- message to be sent
timer_no:window_type; -- timed out timer:

0..window_size-1
 acked_seq_no:acked_seq_no_type;

-- acknowledged sequence number 0..max_seq_no
seq_no:seq_no_type;
upper:seq_no_type;
type msg_record_type is record
 msg:msg_type;seq_no:seq_no_type;
end record;
type store_type is array(window_type) of msg_record_type;
msg_store:store_type;

function compute_num_unacked_msgs(highest_sent:seq_no_type;
 lowest_unacked:seq_no_type)

 return num_unacked_msgs_type is
begin -- compute_num_unacked_msgs

if highest_sent = pred(lowest_unacked) then
return(0);

elsif highest_sent < lowest_unacked then -- wrapped
return ((highest_sent+max_seq_no)-lowest_unacked+1);

else return(highest_sent-lowest_unacked+1); -- not
wrapped

end if;
end compute_num_unacked_msgs;

function is_unacked_msg(acked_seq_no:acked_seq_no_type;
highest_sent:seq_no_type;lowest_unacked:seq_no_type)
return Boolean is

58

begin -- is_unacked_msg
if highest_sent = pred(lowest_unacked) then -- no unacked

msgs
return(false);

elsif highest_sent < lowest_unacked then -- wrapped
return(((lowest_unacked<=acked_seq_no) and

(acked_seq_no<=max_seq_no))
or ((min_seq_no<=acked_seq_no) and
 (acked_seq_no<=highest_sent)));

else
return((lowest_unacked<=acked_seq_no) and

(acked_seq_no<=highest_sent)); -- ~wrapped
end if;

end is_unacked_msg;

Package Store_Messages is
procedure store(msg_store:in out store_type;msg:msg_type;

seq_no:seq_no_type);
-- store msg and seq_no for possible resending in
-- position seq_no mod window_size.
function

retrieve_msg(msg_store:store_type;position:window_type)
return msg_type;

-- retrieve message stored in position position.
function retrieve_seq_no(msg_store:store_type;

position:window_type) return seq_no_type;
-- retrieve seq_no stored in position position.

end Store_Messages;

Package body Store_Messages is
procedure store(msg_store:in out store_type;msg:msg_type;

seq_no:seq_no_type) is
-- store msg and seq_no for possible resending in
-- position seq_no mod window_size.
begin
 msg_store(seq_no mod window_size).msg := msg;
 msg_store(seq_no mod window_size).seq_no := seq_no;
end store;

function
retrieve_msg(msg_store:store_type;position:window_type)

return msg_type is
-- retrieve message stored in position position.
begin
 return(msg_store(position).msg);
end retrieve_msg;

function retrieve_seq_no(msg_store:store_type;
position:window_type) return seq_no_type is

-- retrieve seq_no stored in position position.
begin
 return(msg_store(position).seq_no);

end retrieve_seq_no;

59

end Store_Messages;
use Store_Messages;

begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;

 for i in window_type loop
control.req_call_permit(myid)(6+i,"get_timer_no ");
timer(i).get_timer_no(i,myid);

 end loop;
 loop
 num_unacked_msgs :=
compute_num_unacked_msgs(highest_sent,lowest_unacked);

control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := next_msg'count + ack'count + timeout'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := next_msg'count + ack'count + timeout'count;
end loop;

end if;
 select

when num_unacked_msgs < window_size
 => accept next_msg(m:msg_type; caller_id: integer) do
h_s := succ(highest_sent);
if h_s =1 then
 event_label:= "next_msg1 ";
elsif h_s =2 then
 event_label:= "next_msg2 ";
elsif h_s =3 then
 event_label:= "next_msg3 ";
elsif h_s =4 then
 event_label:= "next_msg4 ";
elsif h_s =5 then
 event_label:= "next_msg5 ";
elsif h_s =6 then
 event_label:= "next_msg6 ";
end if;
control.accept_selected(myid)(caller_id,"next_msg

",
event_label);

msg := m;
control.req_finish_select_accept(myid)(caller_id,"next_msg

");
 end next_msg;
highest_sent := succ(highest_sent); -- value in

1..max_seq_no
store(msg_store,msg,highest_sent); -- save msg and its seq_no
control.req_call_permit(myid)(2,"send ");
Medium_SR.send(msg,highest_sent,myid); -- send msg and seq_no

60

 timer_no := highest_sent mod window_size;
control.req_call_permit(myid)(6+timer_no,"time

");
Timer(timer_no).Time(myid); -- start timer

 or
accept timeout(t_no:window_type; caller_id: integer) do
if t_no =0 then
 event_label:= "timeout0 ";
else
 event_label:= "timeout1 ";
end if;
control.accept_selected(myid)(caller_id,"timeout

",
event_label);

timer_no := t_no; -- value in 0 .. window_size-1
 control.req_finish_select_accept(myid)(caller_id,"timeout
");

end timeout;
msg := retrieve_msg(msg_store,timer_no);
seq_no := retrieve_seq_no(msg_store,timer_no);
control.req_call_permit(myid)(2,"send ");
Medium_SR.send(msg,seq_no,myid); -- resend msg and seq_no
control.req_call_permit(myid)(6+timer_no,"time

");
Timer(timer_no).time(myid); -- restart timer
-- (no need to cancel timer first, as timer timed out)
-- resend all unacked messages sent after timed out message, if

any.
seq_no := succ(seq_no); -- seq_no of next msg to resend,

if any
upper := succ(highest_sent); -- seq_no of succe of last msg to

be resent
while seq_no /= upper loop
 msg := retrieve_msg(msg_store,seq_no mod window_size);
control.req_call_permit(myid)(2,"send ");
 Medium_SR.send(msg,seq_no,myid); -- resend msg and seq_no
 timer_no := seq_no mod window_size;
control.req_call_permit(myid)(6+timer_no,"cancel

");
 Timer(timer_no).cancel(myid); -- cancel timer
control.req_call_permit(myid)(6+timer_no,"time

");
 Timer(timer_no).time(myid); -- restart timer
 seq_no := succ(seq_no);
end loop;

 or
accept ack(a_no:acked_seq_no_type; caller_id: integer) do --

accept acknowledgement
if a_no=0 then
 event_label:= "ack0 ";
elsif a_no=1 then
 event_label:= "ack1 ";
elsif a_no=2 then

61

 event_label:= "ack2 ";
elsif a_no=3 then
 event_label:= "ack3 ";
elsif a_no=4 then
 event_label:= "ack4 ";
elsif a_no=5 then
 event_label:= "ack5 ";
elsif a_no=6 then
 event_label:= "ack6 ";
end if;
control.accept_selected(myid)(caller_id,"ack

",
event_label);

acked_seq_no:=a_no;
control.req_finish_select_accept(myid)(caller_id,"ack

");
end ack;
if is_unacked_msg(acked_seq_no,highest_sent,lowest_unacked) then

-- cancel timers and move window
 timer_no := lowest_unacked mod window_size;
control.req_call_permit(myid)(6+timer_no,"cancel

");
 Timer(timer_no).cancel(myid);
 lowest_unacked := succ(lowest_unacked); -- value in

1..max_seq_no
 while lowest_unacked /= succ(acked_seq_no) loop
 timer_no := lowest_unacked mod window_size;
control.req_call_permit(myid)(6+timer_no,"cancel

");
 Timer(timer_no).cancel(myid);
 lowest_unacked := succ(lowest_unacked); -- value in

1..max_seq_no
 end loop;
end if; -- else ignore ack

 or
 terminate;
 end select;
 end loop;
end Sender;

task body Receiver is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;
one_arrival: BOOLEAN;

next_required:seq_no_type:= min_seq_no;
highest_received:seq_no_type:= max_seq_no;
already_received : array(window_type) of boolean := (others =>

false);
seq_no:seq_no_type;

62

event_label: entry_name_type;
msg:msg_type;

 received_first_one:boolean:=false;
type msg_record_type is record
 msg:msg_type;seq_no:seq_no_type;
end record;
type store_type is array(window_type) of msg_record_type;
msg_store:store_type;

function in_window(seq_no:seq_no_type;next_required:seq_no_type)
return boolean is
upper:integer range 0..max_seq_no;

begin
upper := (next_required + window_size - 1) mod max_seq_no;
if upper = 0 then upper := max_seq_no; end if;
-- window = next_required .. upper
if upper < next_required then -- wrapped
 return(((next_required<=seq_no) and

(seq_no<=max_seq_no))
or ((min_seq_no<=seq_no) and (seq_no<=upper)));

else -- not wrapped
 return((next_required<=seq_no) and (seq_no<=upper));
end if;

end in_window;

function max(seq_no:seq_no_type;next_required:seq_no_type;
highest_received:seq_no_type) return seq_no_type is

-- returns max of two seq_no's in the window
upper:integer range 0..max_seq_no;

begin
upper := (next_required + window_size - 1) mod max_seq_no;
if upper = 0 then upper := max_seq_no; end if;
-- window = next_required .. upper
if highest_received = pred(next_required) then -- empty window

return(seq_no); -- max by default
elsif upper > next_required then
-- not wrapped: next_required..upper..max_seq_no
 if seq_no > highest_received then
 return(seq_no);
 else
 return(highest_received);
 end if;

-- | ---------- A -------| |------- B -----|
else -- wrapped: next_required....max_seq_no min_seq_no...upper

if ((min_seq_no<=seq_no) and (seq_no<=upper)) and
((next_required<=highest_received) and
(highest_received<=max_seq_no)) then
-- 1: seq_no in B, highest_received in A
 return(seq_no);
elsif ((min_seq_no<=seq_no) and (seq_no<=upper)) and
((min_seq_no<=highest_received) and
(highest_received<=upper)) then
-- 2: seq_no in B, highest_received in B

63

 if seq_no > highest_received then
 return(seq_no);
 else
 return(highest_received);
 end if;
elsif ((next_required<=seq_no) and (seq_no<=max_seq_no))
and ((next_required<=highest_received) and

 (highest_received<=max_seq_no)) then
-- 3: seq_no in A, highest_received in A

 if seq_no > highest_received then
 return(seq_no);
 else
 return(highest_received);
 end if;
elsif ((min_seq_no<=highest_received) and

(highest_received<=upper)) and
((next_required<=seq_no) and (seq_no<=max_seq_no)) then
-- 4: seq_no in A, highest_received in B

 return(highest_received);
-- else
-- bail out!!

end if;
end if;

end max;

Package Store_Messages is
procedure store(msg_store:in out store_type;msg:msg_type;

seq_no:seq_no_type);
-- store msg and seq_no for possible resending in
-- position seq_no mod window_size.
function

retrieve_msg(msg_store:store_type;position:window_type)
return msg_type;

-- retrieve message stored in position position.
function retrieve_seq_no(msg_store:store_type;

position:window_type) return seq_no_type;
-- retrieve seq_no stored in position position.

end Store_Messages;

Package body Store_Messages is
procedure store(msg_store:in out store_type;msg:msg_type;

seq_no:seq_no_type) is
-- store msg and seq_no for possible resending in
-- position seq_no mod window_size.
begin
 msg_store(seq_no mod window_size).msg := msg;
 msg_store(seq_no mod window_size).seq_no := seq_no;
end store;

function
retrieve_msg(msg_store:store_type;position:window_type)

return msg_type is
-- retrieve message stored in position position.

64

begin
 return(msg_store(position).msg);
end retrieve_msg;

function retrieve_seq_no(msg_store:store_type;
position:window_type) return seq_no_type is

-- retrieve seq_no stored in position position.
begin
 return(msg_store(position).seq_no);
end retrieve_seq_no;

end Store_Messages;
use Store_Messages;

begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;

 loop
control.req_select_permit(myid)(one_arrival);
if one_arrival = TRUE then
current_arrivals := msgs'count + deliver'count;
arrivals_needed := current_arrivals + 1;
control.start_a_sequence;
while current_arrivals < arrivals_needed loop
 delay 0.1;
current_arrivals := msgs'count + deliver'count;
end loop;

end if;
 select

accept msgs(m:msg_type;s:seq_no_type; caller_id: integer) do
if s=1 then
 event_label:= "msg1 ";
elsif s=2 then
 event_label:= "msg2 ";
elsif s=3 then
 event_label:= "msg3 ";
elsif s=4 then
 event_label:= "msg4 ";
elsif s=5 then
 event_label:= "msg5 ";
elsif s=6 then
 event_label:= "msg6 ";
end if;
control.accept_selected(myid)(caller_id,"msgs

",
event_label);

 msg := m; seq_no := s;
control.req_finish_select_accept(myid)(caller_id,"msgs

");
end msgs;
if in_window(seq_no,next_required) and
not(already_received(seq_no mod window_size)) then

 if not(received_first_one) and seq_no=1 then

65

 received_first_one := true;
 end if;

 store(msg_store,msg,seq_no); -- save msg for later delivery to
user

 already_received(seq_no mod window_size) := true; -- note
reception

 highest_received :=
max(seq_no,next_required,highest_received);

 while already_received(next_required mod window_size) and
next_required /= succ(highest_received) loop

-- deliver(retrieve(msg_store,next_required mod
window_size));

-- deliver msg
control.req_accept_permit(myid)("deliver ");

accept deliver(m:in out msg_type; s: in out seq_no_type;
caller_id: integer) do

if next_required=1 then
 event_label:= "deliver1 ";
elsif next_required=2 then
 event_label:= "deliver2 ";
elsif next_required=3 then
 event_label:= "deliver3 ";
elsif next_required=4 then
 event_label:= "deliver4 ";
elsif next_required=5 then
 event_label:= "deliver5 ";
elsif next_required=6 then
 event_label:= "deliver6 ";
end if;
control.accepted(myid)(caller_id,"deliver ",

event_label);
 m:=retrieve_msg(msg_store,next_required mod

window_size);
 s:=next_required;

control.req_finish_accept(myid)(caller_id,"deliver
");

end deliver;
already_received(next_required mod window_size) := false;
next_required := succ(next_required);

 end loop;
end if;

 delay 0.001;
 if received_first_one then

control.req_call_permit(myid)(3,"reply ");
 Medium_RS.reply(pred(next_required),myid);

 else
control.req_call_permit(myid)(3,"reply ");

 Medium_RS.reply(0,myid);
 end if;

-- return ack0 until get first msg1, 1..6 thereafter
 or

terminate;
 end select;

66

 end loop;
end Receiver;

-- Notes:
-- return Ack0 until receive msg1, then 1..6 thereafter.
-- may move compute to end of select so can derive a[# ;-> ?in]
-- make explicit the assumption about max_seq_no and window_size
(Holzmann)

begin
medium_sr.ttgetid(2);
medium_rs.ttgetid(3);
sender.ttgetid(4);
receiver.ttgetid(5);
timer(0).ttgetid(6);
timer(1).ttgetid(7);
end SWP;

with fea_control; use fea_control;
with SWP; use SWP;
with text_io; use text_io;
procedure SWP_Test is
 max_msgs: constant integer := 30;

 task Client_S is
entry ttgetid(x: in TASK_ID);

 end;
 task Client_R is

entry ttgetid(x: in TASK_ID);
 end;

 task body Client_S is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;
call_successful: BOOLEAN;
one_arrival: BOOLEAN;

 begin
accept ttgetid(x: in TASK_ID) do
 myid := x;
end;

 for i in 1..max_msgs loop
get_next_msg(i,myid);

 end loop;
 end Client_S;

 task body Client_R is
myid: TASK_ID;
arrivals_needed: INTEGER;
saved_count: INTEGER;
current_arrivals: INTEGER;

67

call_successful: BOOLEAN;
one_arrival: BOOLEAN;

 m:msg_type;
 seq_no:seq_no_type;
 seq_check:integer range 0..max_seq_no;
 package my_integer_io is new integer_io(integer);
 use my_integer_io;
 begin

accept ttgetid(x: in TASK_ID) do
 myid := x;
end;

 for i in 1..max_msgs loop
 deliver_msg(m,seq_no,myid);
 put(m);put(" ");put(seq_no);put_line(" ");
 seq_check := i mod max_seq_no;
 if seq_check = 0 then
 seq_check := max_seq_no;
 end if;
 if m /= i or seq_no /= seq_check then
 put_line("infeasible: invalid output");
 end if;

 end loop;
 end Client_R;
begin
 pragma main;
client_s.ttgetid(8);
client_r.ttgetid(9);
 null;

end SWP_Test

68

REFERENCES

[1] K. C. Tai, “Testing of Concurrent Software”, Computer Software and Applications

Conference, 1989, COMPSAC 89, Proc. of the 13th Annual International, 20-22 Sep

1989, pp. 62-64.

 [2] Yu Lei and K. C. Tai, “Efficient Reachability Testing of Asynchronous Message-

Passing Programs”, Proc. of the 8th IEEE International Conference on Engineering for

Complex Computer Systems, Dec. 2002, pp. 35-44.

[3] Tetsuro Katayaam, Eisuke Itoh, Zengo Furukawa, Kazuo Ushijima, “Test-cse

Ganeration for Concurret Programs with the Testing Criteria Using Interaction

Sequence” Proceedings of Asia Pacific Software Engineering Conference'99

(APSEC'99), pp.590-597, 1999.

[4] Pichate Pluempatanakij, “Improving non-deterministic testing of message-passing

programs”; MS Thesis, UTA, 2005.

[5] R. Carver and K.C. Tai, "Deterministic Execution Testing of Concurrent Ada

Programs," Proceedings of TRI-Ada '89 -- Ada Technology In Context: Application,

Development, and Deployment, October 23-26, 1989, Association for Computing

Machinery, New York, New York, pp. 528 - 544.

[6] Richard H. Carver, “Mutation-Based Testing of Concurrent Programs.” ITC 1993:

845-853.

69

[7] DeMillo, R. A, Lipton, R. J., and Sayward, F.G., "Hints on test data selection: help

for the practicing programmer," IEEE Computer, 11(4), 1978, pp. 34-41.

[8] King, K. N., and Offutt, A. J., "A Fortran Language System for Mutation-Based

Software Testing," Software-Practice and Experience, Vol. 21(7), July 1991, pp. 685-

718.

[9] Tai, K. C., "On Testing Concurrent Programs," Proc. of COMPSAC 85.

[10] Tai, K C., and Carver, R. H., “Testing and debugging of concurrent software by

deterministic execution”, TR-87- 19, Dept. of Computer Science, North Carolina State

University, 1987.

[11] Jian Chen, Richard H. Carver, “Selecting and mapping test sequences from formal

specifications of concurrent programs” HASE 1996.

[12] K. C. Tai, R. H. Carver, and E. E. Obaid. “Debugging concurrent Ada programs by

deterministic execution.”, IEEE Trans. Sofi. Eng., 17(1):45-63, Jan. 1991.

[13] K. C. Tai and R. H. Carver, “Testing of Distributed Programs, Parallel and

Distributed Computing Handbook”, 1996.

[14]A. J. Offutt, C. Z. Rothermel, and C. Zapf. “An experimental evaluation of selective

mutation.”, In Proc. International Conference on Software Engineering, 1993.

[15] Course-pack, Concurrent Programming , CSE6323, UTA, 2004.

[16] Myers, G. J., “The Art of Software Testing”. John Wiley and Sons, IBM Systems

Research Institute, Myers 1979.

[17] J. Gait, “A probe effect in concurrent programs”, Software-Practice and

Experience, Vol. 16, Issue 3, 1986, pp. 255-233.

70

[18] Ledoux, C.H., and D. Stott Parker. 1985, “Saving traces for Ada debugging”. 1985

International Ada conference, Cambridge University Press, 97-108.

[19] K. C. Tai, “Testing of Concurrent Software”, Computer Software and Applications

Conference, 1989, COMPSAC 89, Proc. of the 13th Annual International, 20-22 Sep

1989, pp. 62-64.

[20] B. Beizer, “Software Testing Techniques”, second edition, Van Nostrand Reinhold,

New York, 1990.

[21] Cheer-Sun D. Yang, Amie L. Souter and Lori L. Pollock, “All-du-path Coverage

for Parallel Programs”, International Symposium on Software Testing and Analysis,

Proc. of the 1998 ACM SIGSOFT Software Testing and Analysis, 1998, pp. 153-162.

[22] M. Pezze, R. N. Taylor and M. Young, “Graph Models for Reachability of

Concurrent Programs”, ACM Trans. On Software Engineering and Methodology, Vol.

4, Issue 2, April 1995, pp. 171-213.

[23] R. Carver and K. C. Tai, “Replay and Testing for Concurrent Programs”, IEEE

Software, Vol 8., No. 2, March 1991, pp. 66-74.

[24] Jong-Deok Choi and Harini Srinivasan, “Deterministic Replay of Java

Multithreaded Applications”, Proc. of the SIGMETRICS symposium on Parallel and

distributed tools, August 03-04, 1998, pp. 48-59.

[25] R. H. B. Netzer, B. P. Miler; “Optimal Tracing and Replay for Debugging

Message-Passing Parallel Programs”, Proc. of the 1992 ACM/IEEE conference on

Supercomputing, December 1992, pp. 502-511.

71

[26] Michiel Ronsse and Koen De Bosschere, “RecPlay: A Fully Integrated Practical

Record/Replay System”, ACM Transactions on Computer Systems, Vol. 17, No2, 1999,

pp. 133-152.

[27] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski, “jRapture: A

Capture/Replay Tool for Observation-based Testing”, Proc. of the International

Symposium on Software Testing and Analysis, 2000, pp. 158-167.

[28] P. V. Koppol and K. C. Tai, “An Incremental Approach to Structural Testing of

Concurrent Software”, Proc of ACM International Symposium on Software Testing and

Analysis, 1996, pp. 14-23.

[29] M. Pezze, R. N. Taylor and M. Young, “Graph Models for Reachability of

Concurrent Programs”, ACM Trans. On Software Engineering and Methodology, Vol.

4, Issue 2, April 1995, pp. 171-213.

[30] S. D. Stoller, “Testing Concurrent Java Programs using Randomized Scheduling”,

Proc. of the Second Workshop on Runtime Verification (RV), Vol. 70, Issue 4 of

Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[31] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur., “Multithread Java Program

Test Generation”, IBM Systems Journal, Vol. 41, Issue 1, 2002, pp. 111-125.

[32] K. C. Tai, “Race Analysis of Traces of Asynchronous Message-Passing Programs”,

Proc. of 17th International Conference on Distributed Computing Systems, May 1997,

pp. 261-268.

[33] C. Yang and L. L. Pollock, “Identifying Redundant Test Cases for Testing Parallel

Language Constructs”, ARL-ATIRP First Annual Technical Conference, 1997.

72

[34] M. Weiser, “Program Slicing”, IEEE Transaction on Software Engineering, Vol.

10, Issue 4, 1984, pp. 352-357.

[35] Netzer, Robert H.B., and Barton P. Miller. 1992. “What are race conditions? Some

issues and formalizations.”, ACM Letters on Programming Languages and

Systems(LOPLAS) Vol.1, Issue 1, 74-88.

 [36] Taylor, R.N.; Levine, D.L.; Kelly, C.D., “Structural testing of concurrent

programs Software Engineering”, IEEE Transactions, Volume: 18 , Issue: 3 , March

1992 Pages:206 – 215.

[37] Sommerville, “Concepts of Software Engineering,” 1985.

[38] Yang, R.-D. , Chung, C.-G., “A path analysis approach to concurrent program

testing”, Computers and Communications, 1990. Conference Proceedings., Ninth

Annual International Phoenix Conference on , Pages:425 – 432, 21-23 March 1990.

[39] Clarke, L.A., Podgurski, A., Richardson, D.J., & Zeil, S.J., “A formal Evaluation of

data flow path selection criteria,” IEEE Transactions on Software Engineering, Vol.15,

No.11, pp1318-1332, November 1989.

[40] Frankl, P.G. & Weyuker, J.E., “A formal analysis of the fault-detecting ability of

testing methods”, IEEE Transactions on Software Engineering, Vol. 19, No. 3, March

1993, pp202- 213.

[41] Zhu, H., “A formal analysis of the subsumes relation between software test

adequacy criteria”, Technical Report No. 94/18, Department of Computing, The Open

University, U.K., August, 1994.

73

[42] Duran, J.W. & Ntafos, S., “An evaluation of random testing, IEEE Transaction on

Software Engineering”, Vol. SE_10, No. 4, pp438-444, July 1984.

[43] Hamlet, D. and Taylor, R., “Partition testing does not inspire confidence”, IEEE

Transactions on Software Engineering, Vol. 16, pp206~215, Dec. 1990.

[44] Basili, V.R., and Selby, R.W., “Comparing the effectiveness of software testing”,

IEEE Transactions on Software Engineering, Vol. SE-13, No.12, pp1278-1296,

December 1987.

[45] Box, G.E.P., Hunter, W.G. and Hunter, J.S., “Statistics for Experimenters”, New

York, Wiley, 1978.

[46] Hamlet, R., “Theoretical comparison of testing methods”, Proceedings of the Third

Symposium on Software Testing, Analysis and Verification, Florida, December 13-15,

1989, pp28-37.

[47] Hong Zhu, “Adequate Testing of Computer Software”, Textbook Oxford Brookes

University, August 1995, Chapter 8-9.

74

BIOGRAPHICAL INFORMATION

Gaurav Saini was born December 5th, 1979 in Jaipur, India. He received his

Bachelor of Engineering degree in Computer Science and Engineering from Rajasthan

University, Rajasthan, India in July 2003. In fall 2003 he started his graduate studies in

Computer Science at the University of Texas at Arlington. He received his Master of

Science from University of Texas at Arlington in July 2005. His research interests

include Software Engineering and Concurrent Programming.

