
A DYNAMIC FRAMEWORK FOR TESTING THE SYNCHRONIZATION

BEHAVIOR OF JAVA MONITORS

by

ANDRES YANES

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

Copyright © by Andres Yanes 2007

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would first like to thank my family and girlfriend for the incredible patience

and understanding they have shown me while working on my thesis. Mom, Dad and

Sergio, thanks for listening during the countless conversations regarding my research

and presentation. You helped me immensely in working out many of the ideas and

problems that I encountered even though you felt you knew little about what I was

talking about. Sudha, thank you for your support and encouragement, even when this

process has required me to reprioritize my time. You have been a driving force that

moved me forward without hesitation.

I would also like to thank my supervising professor Dr. Yu Lei who has seen me

through this thesis. I have enjoyed all our talks and appreciate all the extra time you put

in during last minute meetings and phone conversations. I have learned a lot from your

example.

My thanks also go out to the CSE department staff and faculty for their efforts

and guidance during the completion of this degree. In particular I would like to thank

Ms. Camille Costabile who answered numerous questions with a smile and always kept

me on track.

Lastly, I would like to thank all my friends who have supported me with their

prayers and best wishes.

April 20, 2007

 iv

ABSTRACT

A DYNAMIC FRAMEWORK FOR TESTING THE SYNCHRONIZATION

BEHAVIOR OF JAVA MONITORS

Publication No. ______

Andres Yanes, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Yu Lei

A Java monitor is a specialized class that is used to synchronize the behavior of threads

in a Java program. The monitors in a Java program must be adequately tested to ensure

the correctness of the program. In this thesis we propose a dynamic framework in which

a Java monitor is tested by exploring its state space in a depth-first manner. The state

exploration procedure consists of dynamically creating method sequences to exercise

the possible synchronization behavior of the monitor. During exploration, new threads

will be created on the fly to simulate different scenarios that result from threads

reaching the monitor at different times. Each state reached is represented by a collection

of data members that have been identified as having an affect the synchronization

behavior of the monitor as well as an abstraction of the thread states.

 v

A prototype tool that implements our framework has been built and has been

used to evaluate the effectiveness of our approach in five case studies. In each case

study, mutations to the original source code of a Java monitor are introduced to create

variants that represent common mistakes made by programmers. The experimental

results show that our framework is effective in detecting the synchronization failures in

the case studies.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT.. iv

LIST OF ILLUSTRATIONS.. ix

LIST OF TABLES.. x

Chapter

 1. INTRODUCTION .. 1

 1.1 Java Monitors ... 2

 1.2 Testing Java Monitors... 3

 1.3 Thesis Outline ... 7

 2. RELATED WORK... 10

 3. APPROACH ... 18

 3.1 Core Concepts ... 18

 3.1.1 State Representation.. 19

 3.1.2 Monitor Initialization .. 21

 3.1.3 Methods and Method Arguments.. 22

 3.1.4 Application Specific Property Checking... 24

 3.2 The Algorithm ... 26

 3.2.1 Execution Framework ... 27

 vii

 3.2.1.1 Maximum Consecutive Duplicates Allowed (MCDA)......... 33

 3.2.2 Thread Selection and Execution.. 37

 3.2.2.1 Thread Groups... 38

 3.2.2.2 Thread Execution .. 41

 3.3 An Example Execution ... 41

 4. DESIGN OF THE PROTOTYPE TOOL ... 46

 4.1 UserProvided Package.. 46

 4.1.1 The UserProvided Factory.. 47

 4.1.2 Method Assembly ... 47

 4.1.3 Monitor Instance Creation... 48

 4.1.4 Application Specific Property Checking... 48

 4.2 Hook Package ... 49

 4.2.1 Synchronization Event Interception .. 49

 4.2.2 Synchronization Event Notification .. 50

 4.3 Framework Package .. 50

 4.3.1 Loading User Provided Content.. 51

 4.3.1.1 Factory Element .. 52

 4.3.1.2 Method Element.. 53

 4.3.1.3 Wait, Notify and NotifyAll Elements 54

 4.3.2 Test Execution... 55

 5. CASE STUDIES... 57

 5.1 Experimental Design... 57

 viii

 5.2 Monitor Tests .. 58

 5.2.1 BoundedBuffer Monitor... 59

 5.2.2 ReaderWriterSafe Monitor.. 60

 5.2.3 FairBridge Monitor... 62

 5.2.4 FairAllocator Monitor... 65

 5.2.5 BoundedOvertakingAllocator Monitor ... 68

 5.3 Results ... 70

 6. CONCLUSION AND FUTURE WORK ... 73

Appendix

 A. BOUNDEDBUFFER CASE STUDY .. 82

 B. READERWRITERSAFE CASE STUDY ... 85

 C. FAIRBRIDGE CASE STUDY .. 88

 D. FAIRALLOCATOR CASE STUDY... 92

 E. BOUNDEDOVERTAKINGALLOCATOR CASE STUDY 95

REFERENCES.. 98

BIOGRAPHICAL INFORMATION.. 103

 ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Model of a Java Monitor ... 2

3.1 The BoundedBuffer Monitor.. 23

3.2 The State-Space Exploration Algorithm.. 28

3.3 The ContinueSequence Method... 31

3.4 The BoundedBuffer Deposit Method using Notify .. 33

3.5 The Execute Method.. 38

3.6 The BoundedBuffer Deposit Method Replacing

 While with If .. 42

3.7 The State Diagram for the BoundedBuffer Example 43

4.1 Prototype Tool Package Diagram.. 46

4.2 The UserProvided Package UML Diagram .. 47

4.3 The Hook Package UML Diagram .. 49

4.4 The Framework Package UML Diagram .. 51

4.5 The UserProvided DTD File ... 52

 x

LIST OF TABLES

Table Page

 3.1 A Sample Execution Sequence.. 35

 5.1 The BoundedOvertakingAllocator Property

 Violation Sequence.. 70

 5.2 Original Monitor Test Results ... 70

 5.3 Mutant Test Results ... 71

 1

CHAPTER 1

 INTRODUCTION

Today, a large number of software solutions are multi-threaded. Many of our

desktop applications, such as word processors and web browsers, require multiple tasks

executing concurrently to implement a seamless solution. Company services, such as

purchasing or scheduling, use web-based, multi-tier solutions that must scale to allow

millions of simultaneous users to perform transactions that access shared data.

Though multi-threading enables the creation of complex systems, it introduces

complexities in their development. When multiple threads are executed within a system,

the execution order and time allotted for each is non-deterministic. As a result, they may

display different behaviors from execution to execution. This non-determinism must be

managed by means of thread synchronization to ensure that threads behave as expected.

Thread synchronization can be grouped into two general categories, mutual

exclusion and condition synchronization [33]. Mutual exclusion is used to ensure that

when two or more threads are attempting to access shared data each thread’s access

operation is atomic. One way to implement this behavior is by means of a critical

section. A critical section is a block of code that can only be executed by a single thread

at any given time. Condition synchronization is used when a thread should only be

allowed to proceed if a specified condition has been satisfied.

 2

1.1 Java Monitors

The Java language [14][39] uses a monitor-based [18] approach to thread

synchronization. A Java monitor is a specialized class that is used to encapsulate

application specific thread synchronization logic in a Java program. This class consists

of one or more synchronized methods, each of which is a critical section of the monitor

and guarded by a single lock object. This lock object is implicitly acquired and released

each time a thread enters and exits a critical section. A model of a Java monitor can be

seen in Figure 1.1.

Figure 1.1 Model of a Java Monitor

Once a thread is executing in a synchronized method of the monitor, all other

threads attempting to execute a synchronized method must wait in the monitor’s entry.

A thread that has entered a critical section, may exit the critical section either by

successful completion of its method or by making a call to one of the wait primitives. If

a wait primitive is called, the thread must release its lock after which it is moved to the

monitor’s wait queue. After a thread releases its lock and exits the critical section, a

 3

thread is selected from the entry queue, allowing it to acquire the lock and enter the

critical section.

For a threads to exit the wait queue, another thread executing in a critical

section must make a notify or notifyAll primitive call. If the wait queue is not empty at

the time these calls are made, one or more threads are moved from the wait queue to the

entry queue before execution resumes in the calling thread. This type of signaling

discipline is known as signal-and-continue. The only difference between these

primitives is that the notify call will result in the selection of a random thread from the

wait queue, while a notifyAll call affects all threads in the wait queue. It is also possible

for a thread to exit the wait queue if it called a wait primitive with a timeout argument.

In this event, if the thread is still waiting after the timeout period has expired, it will be

moved to the entry queue. We will not address this type of wait primitive in our

approach.

1.2 Testing Java Monitors

Unlike other Java classes, Java monitors are intended to be accessed by multiple

threads at the same time. Though these threads will reach the monitor’s entry queue in a

specific order, this ordering is non-deterministic. In addition, monitors are passive

objects that have no inherent thread of execution. These two properties make testing

Java monitors difficult. To verify a monitor’s synchronization behavior, test cases

consisting of a sequence of method calls must be created that simulate possible thread

interaction with the monitor.

 4

Test case creation for this problem domain is conceptually challenging. The

overall goal is to create method call sequences that collectively provide sufficient

synchronization coverage to allow the tester to verify that the monitor’s implementation

enforces its expected behavior. However, to determine the level of coverage needed,

test cases must address the following issues. Consider that a test case will start with one

thread that will be used to call each method in the test sequence. This will continue until

execution reaches a wait primitive that results in the thread being moved to the wait

queue. Once this occurs, a new thread must be created to continue the test case

sequence.

This behavior is expected, as monitors are designed to allow threads to proceed

within a synchronized method as long as certain conditions are satisfied. If one or more

of these conditions are not satisfied, the thread must wait until another thread changes

the state of the monitor and satisfies the condition. In complex monitors, conditions

may be spread across multiple methods whose combinations can only be exercised with

multiple threads. In these cases, some synchronization faults can only be detected with a

certain minimum number of threads. So an important question is, for a given monitor,

how many threads will be needed to provide sufficient coverage?

In addition, once a thread is awoken and allowed to re-enter the critical section,

it is not guaranteed to find the conditions it was waiting on to still be satisfied. This is

due to the fact that an awakened thread does not re-start execution immediately. Instead,

it has to compete with other threads to re-enter the critical section. Therefore, it is

possible that one or more threads could enter the critical section and falsify the

 5

condition, before the awoken thread is able to re-enter the critical section. In an open

system, there are an infinite number of possible sequences that can occur before an

awoken thread is allowed to re-enter, each having the potential to affect the

synchronization behavior. Given this, how many test sequences combinations must be

created to cover the effect of this non-determinism on the synchronization of both new

and awoken threads?

In this thesis we present a framework that dynamically creates and executes test

sequences that explore the state-space of a Java monitor. Each test sequence is created

according to a systematic process that guarantees reproducibility across multiple test

executions of the same monitor. This requires the framework to override the Java

scheduler behavior as well as the notify, notifyAll and wait primitives. To consider all

possible competing threads that could gain entry into the monitor, the framework will

compile a list of candidates that consists of each monitor method as well as any

awakened threads. The framework then selects the first candidate and allows it to enter

the critical section. This process will repeat at each state reached until either the current

state has been previously visited or a violation of the monitor’s expected

synchronization behavior is detected. If a previous state is reached, the current sequence

is terminated and the framework will backtrack to the previous state. After a backtrack,

the scheduler will retrieve the candidate list for the current state and select the next

candidate for execution. If execution of a test sequence requires more threads than are

currently available, new threads will be created on the fly. In this manner, the test

sequences are created according to a depth-first search of competing candidate threads,

 6

each exploring one aspects of the synchronization behavior that could be exercised by

the monitor.

A major concern of this type of approach is the state-space explosion problem.

In our framework, the monitor state is represented by the value of some selected data

and an abstraction of select thread states. The threads used in the thread abstraction

consist of those found in the wait queue as well as any threads attempting to re-enter the

critical section after being moved from the wait queue to the entry queue. The

abstraction groups threads according to the last wait primitive executed, and assigns

each group an abstract value. If a group consists of threads currently in the wait queue,

the assigned value is WAITING, while a group consisting of threads found in the entry

queue is assigned the value ENTERING. If a group consists of threads found in both

queues, the value assigned is BOTH. Using this abstraction reduces the granularity of

the thread information, resulting in fewer states to be visited. In addition, the framework

incorporates a configuration feature that allows sequences to be terminated when

specific values or range of values have been reached. This feature can be used to reduce

the number of states visited as well as restrict the sequencing of method calls that

require a specific ordering.

A mutation-based approach was used to evaluate this framework using five

monitor case studies. In each case study, mutants were created by applying one of two

categories of mutation to the original source code. The µJava [34] tool was used to

create mutants that introduce mutations representative of traditional mistakes made by

programmers. In addition, mutants were created which change the behavior of the

 7

synchronization primitives used in the monitor. The results gathered from executing

these mutants show that the framework is effective in detecting these mutations.

Our contributions in this thesis are as follows:

• We have created a new approach based on the dynamic framework of the

MonitorExplorer tool [29]. The approach redefines states, transitions and rules

used to introduce new threads during the exploration of a monitor’s state space.

As a result, we have increased the state space and number of paths that can be

visited during each monitor test.

• We have created a prototype tool that implements the approach.

• We have performed an initial evaluation of our approach using our prototype

tool.

1.3 Thesis Outline

Chapter 1 introduces the topic of concurrent programming and thread

synchronization. A conceptual model of a Java monitor is then given followed by an

explanation of a monitor’s behavior as threads interact with its synchronized methods.

The difficulties in testing a Java monitor are then discussed followed by a description of

how our framework approaches testing a Java monitor.

Chapter 2 discusses other related work in the areas of monitor testing and state-

space exploration. This discussion opens with a proposed methodology for analyzing

monitor precondition, creating test cases to exercise the preconditions and execution of

the test cases. Several approach are then described that use this methodology in several

languages. These approaches use a framework that allows for deterministic execution.

 8

In addition, a framework similar to the one proposed in this thesis is described. The

discussion ends with an overview of testing approaches that have used state-space

exploration for testing concurrent components.

Chapter 3 details the state-space exploration approach used in our framework to

test Java monitors. This begins with a discussion of core concepts used in our state-

space exploration and how they are used to configure the framework to detect

application specific properties of the monitor being tested. This is followed by a

detailed description of the state-space algorithm that shows how the core concepts

described above are used to create the dynamic test sequences that explore the monitor

synchronization behavior. An example is then presented using a bounded buffer monitor

that has been modified to contain a synchronization fault. This example shows how the

fault is detected through the exploration of the monitor’s state-space using our

approach.

Chapter 4 describes the design of the prototype tool created to implement our

approach. The first section describes the interfaces defined in the UserProvided

package. These interfaces must be implemented by the tester and provide the

application specific components used during the state-space exploration. The next

section describes the class and event interface defined in the Hook package. This

package is used by the framework to intercept notify, notifyAll and wait primitive calls.

The last section provides a description of the high level classes that make up the

prototype tool framework. The description includes the steps a tester must take to

initialize the framework as well as the steps required to execute a monitor test.

 9

Chapter 5 discuses the experimental design used to evaluate the prototype tool.

The mutation-based approach used is described as well as the different type of mutants

created. A description is given of the hardware used to test each mutant. The results for

each of the five monitors used in our case studies are then described with a summary of

their expected synchronization behavior and a presentation and analysis of the their

results.

Chapter 6 provides a summary of the framework current abilities and

limitations. Based on the observations from each case study performed, several goals

for future work are proposed that include using an abstractor for the data members in

the state representation, extending the framework to support the full set of

synchronization primitives supported by Java 1.5 and further evaluation of our approach

that focuses on performance and the effectiveness in detecting synchronization failures

in more complex monitors.

 10

CHAPTER 2

 RELATED WORK

In this section we will review research related to testing monitors and

concurrent programs. We will open with general approaches that can be used to test

monitors and follow up with a discussion of those approaches specifically designed to

test monitors implemented in Java. This will be followed by a review of approaches that

use state-space exploration to test the design and implementation of concurrent

programs and ends with an overview of tool support that can be used to verify varying

degrees of Java synchronization.

In [17], Hansen introduced a systematic methodology for testing Pascal

Monitors. This methodology involves four steps. The first is to inspect each monitor

method to determine a set of preconditions that will exercise each path in the method at

least once. Next a test sequence consisting of monitor method calls is created that

exercises each precondition identified in the previous step at least one time. The third

step is to create a driver to execute the test case using threads to execute each method

called in the sequence. To ensure correct ordering of threads in the driver, a clock

monitor is used that synchronizes the threads. The last step is to execute the driver and

compare the output with the expect output of the monitor.

Carver and Tai presented an approach in [3][4], which generalizes Hansen’s

methodology to allow for deterministic execution and replay of concurrent programs

 11

using either an implementation-based or language-based tool. Test sequences are

created based on feasible synchronization sequences that are representative of the

synchronization constructs available in the programming language begin used. Using

these sequences, the test program is transformed by the tool to ensure the correct

sequence of events. In addition, during normal execution of a concurrent program

synchronization sequences are recorded that capture the synchronization events that

occur. Using these sequences, the execution can be replayed to allow for debugging or

regression testing. Examples of how this approach could be used to testing monitors and

semaphores were given.

Hansen’s methodology was also adapted to test Java monitors [19][32][42].

Noting the differences between Java and Pascal synchronization constructs, the

preconditions identified in the first step of Hansen’s methodology was extended to

ensure loop coverage and consideration of the effect of signaling during execution for

different numbers and types of threads in the wait queue. The reason for the first

extension is based on the fact that since Java does not provide multiple condition

queues, wait primitives are usually put inside a loop construct so that a thread reentering

the critical section can verify that the condition it was waiting on is still satisfied. A tool

called ConAn was also provided to automate the third and fourth steps based on the test

sequence calls identified from the first and second steps.

To assist in creating test sequences an approach was presented in [28] that

requires a formal specification using extended UML state diagrams that captures the

system functionality and the concurrency behavior. Using this specification, state

 12

machines are generated via model checking that can then be transformed into test

sequence usable by tools such as ConAn.

In each of these approaches, the first two steps require manual analysis of the

monitor to derive the preconditions and test cases. This process can be time consuming

and produce incomplete or incorrect results if the tester does not fully identify the

necessary preconditions or introduces errors in the test created. Because our approach

dynamically creates test sequences by simulating different thread combinations that can

be executed as a monitor is used, this potential for user error is minimized and test cases

can consider more than one possible sequence of method calls that can occur. This is

important as synchronization failures will often times occur because the implementation

of a monitor did not consider a combination of thread interactions that may occur due to

the non-deterministic arrival of threads to the entry queue.

An alternative tool called MonitorExplorer was described in [29]. This tool uses

a state-space exploration based approach to dynamically evaluate different execution

sequences through a monitor. This tool allows for monitors to be tested in isolation and

allows a user to define synchronization behavior properties that must be verified at each

state reached during exploration. A unique property of this approach is that threads are

created on the fly as needed to support the simulation of different types threads trying to

compete in the entry queue for entry into the critical section. The approach described in

this thesis uses this same framework to test a Java monitor and we would like to ensure

that full credit is given for its novel approach. States visited during exploration are

represented using data member and wait and entry queue abstraction. Using this state

 13

representation allows each path explored to be bound by the constraints introduced in

the abstraction. There are three differences between this approach and the one we

present. The first is the manner in which sates and transitions are defined. The second is

the state representation used to capture each state and the last is the rules used to

introduce new threads. These differences are discussed in detail in Chapter 5.

Other state-space exploration approaches have been presented for testing

concurrent programs. Model checking is one such type of approach that is used to

analyzing the correctness of a program and traditionally is performed at the design

level. Using a design or requirements for a program, a formal abstract model is created

that is a simplified representation of a specific part of the program being evaluated.

These models are often times based on finite state machines or call graphs [5][6] that

express aspects of the design’s control flow or data flow. Using this model and a

specification that defines a set of well-defined properties of the model most commonly

expressed in temporal logic as input, tools such as SPIN [22][23] can be used to explore

the model’s state-space and evaluate the properties. Success in using this type of

approach is often dependent on creating a model that is accurate in its representation

and in the ability to express the properties of the model sufficiently. Different model

checking methods have been proposed such as [30][40][37], which have increased the

range and type of properties that can be expressed using this type of approach.

As mentioned, these type of approach can be used to verify the property of

concurrent programs at the design level, however recent efforts have also focused on

extracting models based on the implementation code. The JCAT tool [9] was the result

 14

of an effort directed at translating Java source code to Promela so a program’s

implementation can be verified using SPIN. The tool incorporates several

straightforward techniques to reduce state complexity and state explosion such as user

provided annotations to reduce the number of variables defined in a state, static analysis

to eliminate unused or redundant resources and atomic blocks around local variable

access to reduce the number of states visited. Synchronization constructs are simplified

by using template abstractions that still preserve the accuracy of the model. The

Bandera toolset [8] also has a similar goal of extracting an abstract model from Java

code. This tool, however, approaches model creation from a different direction by

creating a new model for each property specified by the user as annotations in the code

using the Bandera Specification Language. This approach allows the tool to optimize

each model using abstract interpretation and program slicing to identify only those parts

of the implementation that are necessary to verify the specified property. The created

models and specifications can then be returned in one of several popular model-

checking languages. The first generation of Java PathFinder [21] is a tool also designed

to convert Java source to Promela models. Assertions are provided to the tool for

verification using annotation in the code. Though this tool currently only supports a

subset of the Java language, it can model dynamically created objects, threads,

synchronization constructs, exceptions as well as a significant amount of language

constructs. In addition, deadlock detection and an abstraction workbench are also

incorporated within the tool. No techniques are applied to the transformation phase that

 15

reduce the model size, therefore the Java code under test must have a finite state-space

and be intended more for unit testing.

The second generation of Java PathFinder [25][41] takes a new direction on

testing Java programs by using explicit state model checking supported by a custom

JVM that interprets byte code instead of having to analyze source code. Several

techniques have been added to the tool to address the state explosion problem and allow

the tool to handle large or infinite state spaces. State compression and predicate

abstraction using the Stanford Validity Checker [2], combined with annotations of user-

provided predicates are used to reduce the state complexity and size. In addition, partial

order reductions guided by slicing information gather using the Bandera toolset are used

to minimize the state-space. Runtime analysis is also included to detect data races using

the Eraser algorithm [38] and deadlock using the LockTree algorithm [41]. Currently

the tool does not support temporal logic model checking, however, support is planned

for the future. Another tool that incorporates explicit state model checking is Verisoft

[13]. This tool uses a state-less search algorithm that incorporates sleep sets and

persistent sets to address state explosion and reduce the number transitions executed.

Using this approach deadlocks and assertion violations can be detected.

Several tools have also been presented that focus on testing Java at the

implementation level using purely static analysis techniques. The Jlint tool [1][26]

performs a global control flow analysis and local data flow analysis of Java byte code to

identify faults in a Java program. Support for multithreaded code is provided in the

analysis by means of call graphs and accessor dependency graphs but is limited to

 16

detection of race conditions and deadlock. The use of this tool requires no special

configuration from the user and is designed to be quick and efficient. A similarly easy

to use tool is FindBugs. The FindBugs tool [12][24] performs an analysis of Java byte

code and detects possible errors based on recognized bug patterns that represent

common mistakes made when implementing solutions in Java. The collection of

patterns as well as the static analysis performed by the tool includes support for

detecting possible errors related to multithreaded programs. The types of

synchronization errors that can be identified are related to general detection of possible

deadlock, race conditions and conditional synchronization. As a result, the results

generated by the tool must be analyzed by the user to evaluate whether any identified

patterns corresponds to an implementation fault and thus requires time and knowledge

of the software tested. The ESC/Java2 tool [7][11] combines static analysis and theorem

proving approaches to test a Java program. In addition to detecting common runtime

errors from a static analysis of the code, JML [27] based annotations, known as

pragmas, can be inserted into the code to customize the type of checking performed

during the analysis. These pragmas are verified using the Simplify [10] theorem prover

that is incorporated into the tool. Similar to the other tools, the support for

synchronization related faults is limited to general detection of deadlock and race

conditions. Theorem provers, such as [15][35][36], have been successfully used to

formally verify concurrent programs. This verification is typically performed at the

design level by through the use of a formal specification however limited tool support

has been added to support a transformation of code to a formal specification that can be

 17

evaluated by the prover. The formal specification, typically defined using a first order

logic language such as UNITY, is used by these provers to verify properties of the

system and is focused on what a program does and not how it does it.

These implementation based approaches are limited by the fact that each tool

requires the concurrent program tested to be a closed system. Therefore to use these

tools to test a monitor would require the creation of a driver to interact with the monitor

that defines not only the order of method executions but also the types and number of

threads that would used. This differs from the approach presented in this thesis in that a

Java monitor can be tested in isolation due to the fact that threads are created on the fly

to simulate different combinations of thread entry into the monitor’s critical section.

 18

CHAPTER 3

 APPROACH

In the following chapter we will detail the state-space exploration approach used

to test Java Monitors. The chapter consists of three parts. The first part will cover why

and how state-space concepts have been adapted to test Java monitors. The second part

will detail how the search algorithm ties these components together. In the last part we

will present an example that shows the execution of the state-space algorithm using a

bounded buffer monitor.

3.1 Core Concepts

The success of any state-space exploration approach is determined by whether

an implementation’s level of coverage is capable of meeting the needs of its designer. In

this case, our goal was to provide adequate synchronization coverage so that in a best-

case scenario, all synchronization failures of a user provided Java monitor are exposed.

A key difficulty with this problem domain is due to the fact that each Java

monitor serves an application specific need, of which the framework has no knowledge.

To overcome this problem, our state-space algorithm must be tailored according to each

monitor’s application specific qualities.

In the rest of this thesis we will define the following terminology to generalize

the key aspects of the approach:

 19

Global Signaling Primitive – any synchronization primitive that wakes up all

threads in the wait queue and moves them to the entry queue.

Random Signaling Primitive – any synchronization primitive that wakes up a

random thread from the wait queue and moves it to the entry queue.

Re-entry Thread – a thread that has been woken up and moved to the entry

queue but has not yet been allowed to re-enter the critical section.

Waiting Primitive – any synchronization primitive that results in a thread

releasing its lock, exiting the critical section and being moved to the wait queue.

3.1.1 State Representation

The core of any state-space based approach centers on how the state, which

represents a snapshot of select data at each stage of execution, will be represented. The

reason for this is that in most state-space implementations, all decisions are based in

some part on the states gathered during execution. For this reason, the techniques used

to select and represent the data that make up the state play a significant role in the

success of the algorithm.

Our state representation can be broken down into two parts. The first part is

composed of a collection of monitor data members. These members are identified by

the tester as having an effect on the synchronization behavior of the monitor. Each time

the monitor state is captured, the current value for each member is retrieved and stored.

This method of representation requires minimal analysis and interaction from the tester.

It may, however, result in a state-space explosion if one or more data members selected

by the tester increases or decreases without bound. To address this issue, the framework

 20

provides a feature, described in Section 3.1.4, which allows the tester to limit the

number of states that can be visited.

The second part of the state representation consists of data that abstracts the

state of waiting and re-entry threads. This abstraction groups threads according to the

last waiting primitive they reached and assigns each group a value based on their

collective state. If a group consists exclusively of waiting threads, the assigned value is

WAITING. A group consisting exclusively of re-entry threads is assigned a value of

ENTERING. And if a group contains both waiting and re-entry threads, the assigned

value is BOTH.

A special note must be made here regarding the effect a random primitive call

has on the state of threads in the wait queue. A goal of the framework is to simulate all

execution sequences that result from threads entering the entry queue at different times.

When a random primitive call is made, all threads in the wait queue become potential

candidates for re-entry. Because of this, the framework must consider the scenarios that

result from the selection of each candidate thread entering the monitor at different

points during an execution sequence. To enforce this behavior, the framework will

delay the affect of the random primitive call (see Section 3.2.2 for details) that can

introduce ambiguity into the thread abstraction.

As an example, consider a monitor with a wait queue containing four threads:

T1, T2, T3, T4. Threads T1 and T2 enter the wait queue from the same waiting primitive

making them one group, which we will call G1. T3 and T4 enter the wait queue from a

different waiting primitive making them a second group, which we will call G2. Since

 21

all four threads are waiting, the value of G1 and G2 in the thread abstraction would be

WAITING. Now consider that a method executing in the critical section executes two

random primitive calls. This will result in two random threads being moved from the

wait queue to the entry queue, thus affecting the thread abstraction. If T1 and T2 are

chosen the abstract value of G1 will become ENTERING. Likewise if T3 and T4 are

chosen, the abstract value of G2 will become ENTERING. If, however, one thread is

chosen from each group, G1 and G2 will have an abstract value of BOTH. Because of

this, the abstract value of both groups cannot be determined until thread selection

occurs. In order to remove this ambiguity, the framework considers all threads that

could be selected due to a random primitive call as ENTERING until selection of a

thread has occurred.

3.1.2 Monitor Initialization

During execution, it will become necessary to create instances of the monitor

under test. Even though the framework will have access to the monitor Java class,

creation and initialization of the monitor ultimately affects the direction of the test and

therefore has been delegated to the tester.

The framework requires that the tester provide a Java class, which we will call

the MonitorInitialization class, which is responsible for creating instances of the

monitor under test. This class consists of two methods; one to report the total number of

unique monitor instances that can be returned by the provided class and the other to

return a monitor instance given a monitor instance number. Combined, this

 22

functionality provides the tester with the means to automate the testing of several test

cases with a single execution of the framework.

3.1.3 Methods and Method Arguments

In addition to supplying monitor instances, the framework requires the tester to

identify the synchronized monitor methods that will be used during the state-space

exploration. Each method must be identifiable by a unique method ID. Methods

containing parameters are of special interest. Because method arguments may affect the

synchronization behavior of the monitor, the framework cannot be responsible for

determining what arguments should be used. In addition, one or more of the arguments

may be a non-standard complex data type that cannot be created and/or initialized by

the framework.

For this reason the tester must provide a Java class, which we will call the

MethodArguments class, that is responsible for providing arguments for all

synchronized methods used during execution. This class consists of two methods. The

first method accepts a unique method identifier and returns the number of argument

instances returned by the implementation for the specified method. The second method

accepts a unique method identifier and an argument instance number and returns an

array of Objects. Each member of the array must be re-castable to the expected

parameter type for the given method identifier.

 23

Figure 3.1 The BoundedBuffer Monitor

As an example, let’s return to the BoundedBuffer example in Figure 3.1. The

withdraw method has no parameters and thus would need no arguments when it is

public class BoundedBuffer {

 private int fullSlots = 0;

 private int capacity = 0;

 private int[] buffer = null;

 private int in = 0, out = 0;

 public BoundedBuffer(int bufferCapacity){

1. capacity = bufferCapacity;

2. buffer = new int[capacity];}

 public synchronized void deposit(int value){

3. while(fullSlots == capacity){

4. try {wait();} catch(InterruptedException e){}}

5. buffer[in] = value;

6. in = (in + 1) % capacity;

7. if (fullSlots++ == 0)

8. notifyAll();

 }

 public synchronized int withdraw(){

9. int value = 0;

10. while(fullSlots == 0){

11. try {wait();} catch(InterruptedException e){}}

12. value = buffer[out];

13. out = (out + 1) % capacity;

14. if (fullSlots-- == capacity)

15. notifyAll();

16. return value;

 }

}

 24

called. The deposit method, however, has an integer parameter which the framework

must supply each time the method is called. Because the framework does not

understand the application specific nature of the monitor, it cannot determine how to

configure the deposit method arguments. Therefore to initialize a test of the monitor, the

MethodArguments class instance would be created. Using this object, the framework

would query for the number of deposit argument instances supplied by the tester. Then

for each instance, a new deposit/argument combination would be added to the collection

of synchronized methods called during execution. A single argument instance is

sufficient in this situation because the synchronization behavior of the monitor is not

dependent on the value of the deposit argument. Therefore the MethodArguments object

could simply return an argument instance count of 1 for the deposit method that would

correspond to an Object array containing some integer value. If the tester decided that

they would like to consider 3 arguments for the deposit method, they would simply

need to return 3 as the argument instance count and provide an Object array containing

a single integer argument for each argument instance, such as 1, 2 and 3. Given this

scenario, the monitor would be configured to execute with 4 method calls: withdraw(),

deposit(1), deposit(2) and deposit(3).

3.1.4 Application Specific Property Checking

During execution, each monitor’s synchronization behavior may be subject to

some properties that must be verified to detect any application specific synchronization

failures. Because the application specific behavior of the monitor is unknown to the

framework, it requires guidance to detect these potential synchronization failures.

 25

To overcome this limitation, the framework requires that the tester provide a

Java class, which we will call the PropertyChecker class, with a single method that will

be queried at each state reached during the state-space exploration. This method will

have access to two aspects of the monitor under test; the current state and information

regarding completed and waiting threads. Using this information, the method must

evaluate the application specific properties of the monitor. If a failure has been detected,

the method must throw a property violation exception. If no failure has occurred, the

method may return a TRUE and execution will continue.

Because the current implementation does not use an abstraction for the data

members stored in each captured state, it is possible that there may be one or more data

members that could increase or decrease in value without bound. In addition, it may be

necessary to restrict the sequencing of method calls that require a specific ordering. To

overcome these issues, this method can also be used to terminate the current sequence

by returning a FALSE value.

It should be noted that the intent of this method is to allow the tester to detect

application specific failures using information regarding the expected behavior of the

monitor rather than implementation specific data. There are two key reasons why this is

advisable. The first is that to verify the expected behavior based on the implementation

will require the tester to analyze the underlying code of the monitor since

implementation details are not typically included in software requirements or

specifications. If the defined properties resulting from this analysis are incorrect or

incomplete, the results of the test may be inaccurate. Secondly, it is possible that the

 26

implementation may change during the lifetime of the monitor. If the tester is unaware

of these changes, the synchronization behavior properties defined using implementation

details may become insufficient or inaccurate to verify the monitor’s behavior during

execution.

Using a combination of completed and waiting thread information, many

monitor properties can be computed in an implementation-independent manner. As an

example, consider that a bounded buffer monitor must not be able to deposit more than

the maximum capacity of the buffer. One way to approach encoding this property would

be to state that 0 <= fullSlots <= capacity. Although this would indicate that no more

deposits were made than the maximum allowable, it is linked to the current

implementation of the monitor. As an alternative, the same property could be verified

by checking that the number of filled buffer slots when the monitor was initialized +

number of completed deposits – number of completed withdraws <= capacity. By

encoding the property in this manner we are still ensuring that at each state that the

number of deposited items is less than the buffer capacity, however, the property is

solely dependent on the synchronization behavior of the monitor rather than its

implementation.

3.2 The Algorithm

In the following section, we will describe the algorithm used during execution

in two parts. The first part will describe the overall structure as well as detail the

purpose and outcome of each action. The second part will provide details regarding the

framework’s thread selection and execution.

 27

3.2.1 Execution Framework

The algorithm used by the execution framework is shown in Figure 3.2. To

begin execution, the Test method must be called and the framework must know the

location of the user provided components. Optionally, a Maximum Consecutive

Duplicates Allow (MCDA) (see Section 3.2.1.1 for details) value may be supplied to

override the default value of zero.

Execution of the Test method begins by initializing the framework as seen in

lines 1 through 6. The first two operations are responsible for loading the user provided

components described in Sections 3.1.2 and 3.1.4. The third operation uses components

described in Section 3.1.3 to create the list of synchronized methods that will be used

during execution. The last three operations initialize data structures used during the

state-space exploration. Executioncontexts is a stack that will be used to maintain

ExecutionContext instances for each state reached along the current execution sequence.

States is an ordered list that will maintain a collection of reached states and context is an

instance of the complex data structure ExecutionContext that is used by the framework

to select and execute threads and will be explained in Section 3.2.2.

 28

Figure 3.2 The State-Space Exploration Algorithm

Initialize:

1. create a instance monitorinitialization of MonitorInitialization

2. create a instance propertychecker of PropertyChecker

3. let executablemethods be a list of synchronized method

4. let executioncontexts be an empty stack

5. let states be an empty list

6. let context = a ExecutionContext data structure that contains a candidate

threads list and a pointer to the next candidate to execute

Test(){

7. For monitorid = 1 to monitorinitialization.count()

 {

8. monitor = monitorinitialization.getMonitor(monitorid)

9. SaveState()

10. context = a new ExecutionContext

11. do

 {

12. while (Execute()){

13. if (ContinueSequence() AND propertychecker.check()){

14. SaveState()

15. executioncontexts.push(context)

16. context = a new ExecutionContext

 }

 else

17. Backtrack()

 }

18. Backtrack()

19. context = executioncontexts.pop()

20. let lastState = states.removeFromHead()

21 states.addToFoot(lastState)

22. }while (context != null)}

 }

SaveState(){

23. let state = getState()

24. states.addToHead(state)

 }

 29

Once the framework is initialized, the Test method will begin execution at the

outermost loop of this algorithm, seen on line 7. Each iteration of this loop will begin a

new exploration of the monitor’s state-space using a different initialized monitor as

provided by the tester. For each monitor instance available, the algorithm will initialize

the test run by acquiring a monitor instance, calling the SaveState method to save the

initial state of the monitor and create a new executioncontext, as seen in lines 8 and 10.

Each time the SaveState method is called, the current state of the monitor will be

captured according to the state representation described in Section 3.1.1. This state will

then be added to the head of the states list.

Lines 11 through 22 are responsible for driving the exploration of the monitor’s

state-space. Each iteration of the inner loop on line 12 selects a thread and allows it to

enter the critical section. Once the thread exits the critical section, the monitor is

considered to have transitioned to a new state that will be captured and evaluated by the

framework. If the state has not been previously visited and is accepted by the

propertychecker, the loop will execute another thread thus propagating the current

branch of the state-space. Otherwise, the current branch is terminated and the

exploration will backtrack to the previous state.

Execution of this loop results in a depth-first exploration of each branch of the

monitor’s state-space and will continue to iterate until a time is reached when all

possible candidate threads for the current state have been executed. When this occurs,

the exploration will attempt to backtrack to the prior state in the current branch of the

execution sequence. In the event that state prior to the backtrack was the initial state

 30

where execution began, the backtrack will not be able to restore a prior state, since it

will not exist. When this occurs, the exploration of the current monitor instance is

complete and must be terminated. The loop condition on line 22 is responsible for

detecting this event. Let us now take a detailed look at how this is behavior is

implemented by the framework.

As described previously, the Execute method loop on line 12 will select the next

candidate thread, execute it and block until the synchronized method it is executing

completes. Once the thread has finished execution of the method, the Execute method

will return a TRUE value indicating that a transition has occurred. In this case, the

newly reached state must be evaluated to determine if it the current path will continue

or be terminated.

Both the framework and the propertychecker are queried to make this

determination. As seen on line 13, the ContinueSequence method is called first to verify

if the framework will allow the current path to continue. This method can be seen in

Figure 3.3.

 31

Figure 3.3 The ContinueSequence Method

This method begins by getting the MCDA value and current state instance as

seen in lines 1 and 2. The states list is then searched for a member state that matches the

current state. If the state is found in the states list, this indicates that the state has been

visited during exploration of the current execution sequence.

The result of this search determines the value of result on line 3. If result is

equal to TRUE, then the current state was not found in either list and considered a new

state visited along the current execution sequence. If result equals FALSE, the state has

been visited and the if block is entered to check for duplicate states. On line 5, the

number of duplicate states is calculated by totaling the number of consecutive states that

are identical to the current state, starting from the head of the states list. The value of

result is then recomputed on line 6. If the number of duplicates is less than zero, the

matching state was visited at some point prior to the last state and the value of result is

FALSE. If the number of duplicates is greater than zero and also within the number of

ContinueSequence(){

1. let MCDA = the user provided MCDA value or 0 if no value provided

2. let state = getState()

3. let result = NOT (states.contains(state)

4. if (result == FALSE){

5. let duplicatestates = number of consecutive states identical to state,

 starting from the head of the states list

6. result = duplicatestates > 0 AND duplicatestates <= MCDA

 }

7. return result

 }

 32

allowed duplicates, result will be set to TRUE; otherwise it will be set to FALSE. If the

framework accepts the state for further exploration, the propertycheker is queried and

must return a TRUE value to accept the state or a FALSE to reject it. Recall that the

propertychecker’s behavior is defined by the tester and can be used to terminate select

paths that violate a required sequencing of method calls or reach a user defined bound.

In addition to accepting the state, this component must also evaluate whether any

violations of the expected behavior have occurred. If a violation has occurred, the

component will raise an exception that results in the termination of the test, a report on

the nature of the violation and a printout of the sequence that caused it.

If both the propertychecker and the framework determine that the current path

will not be terminated, lines 14 through 16 will be executed. These steps store the new

state and the previous state’s executioncontext information so it can be retrieved once

execution backtracks to the state again. If the current path is terminated, the framework

must restore the monitor to the state prior to the last transition. This task is handled by

the Backtrack method on line 17.

When the Execute method on line 12 returns a FALSE, this indicates that all

possible thread candidates have been considered for the current state. When this occurs,

the framework will backtrack to the previous state, load the ExecutionContext for the

previous state, if one exists, and move the current state the back of the states list. This

last step is necessary to ensure correct behavior when checking for duplicates states in

the ContinueSequence method. These actions are carried out on lines 18 through 21. If

the monitor to a returned to a valid state, the Execute method will be called to continue

 33

the execution sequence for the next candidate thread. In the event that the state prior to

backtracking was the initial state, the Backtrack method will have no effect and the

ExecutionContext stack will return a null value. If this is the case, the while loop on line

22 will exit, completing the test of the current monitor instance. If another monitor

instance is available, the cycle will begin again.

3.2.1.1 Maximum Consecutive Duplicates Allowed (MCDA)

Due to the thread abstraction used when a monitor state is captured, method

executions that do not change the values of state data members or the queue abstraction

will result in a duplicate state. Under normal operation, the framework would consider

this transition as having no effect on the synchronization behavior of the monitor

resulting in termination of the current sequence and a backtrack to the previous state.

There are circumstances, however, where synchronization failures can only be detected

if duplicates are allowed to occur in the execution sequence.

Figure 3.4 The BoundedBuffer Deposit Method using Notify

One notable case is when one or more synchronized methods awaken threads

using random signaling primitives instead of global signaling primitives. As an

 public synchronized void deposit(int value)

 {

1. while (fullSlots == capacity){

2. try {wait();} catch(InterruptedException e){}}

3. buffer[in] = value;

4. in = (in + 1) % capacity;

5. if (fullSlots++ == 0)

6. notify();

 }

 34

example, consider the bounded buffer monitor from Figure 3.4 with a modified deposit

method shown in Figure 3.4. In this variation, the deposit method introduces a small

change that replaces the notifyAll call with a notify.

To describe the scenario, we will use the execution sequence seen in Table 3.1.

Each method executed in the sequence is shown in the first column of each row entry

and provides two additional pieces of information regarding the effect of the transition.

The first appears in the second column and shows the state captured after each method

exits the critical section. Each captured state is encased in brackets and contains two

entries; the first is the value of fullSlots and the second is a set containing the thread

abstraction values. Since each method contains a single wait primitive, the monitor’s

thread abstraction will include two abstract values. Remember that abstract thread

values are determined by grouping all waiting or re-entry threads according to the last

waiting primitive reached and assigning a value based off the group’s collective state.

Each group abstract value in the set will be encoded as follows: group name:abstract

value. For the bounded buffer example, we will use the group names DW for the

deposit wait group and WW for the withdraw wait group. Each abstract value will be

encoded as either W for WAITING, E for ENTERING or B for BOTH. The second

piece of information, which appears in the third column, shows an ordered list of

synchronization events that occur during execution of the sequence. For each wait event

encountered, an entry Dx or Wx will be used to represent that the x
th
 deposit or withdraw

method, respectively, has been moved to the wait queue. Each notify call will be noted

 35

with a N. Events in the list will be ordered from the oldest on the right most side to the

most recent on the left most side.

Table 3.1 A Sample Execution Sequence

Method

Called

State Synchronization

Events

W1 [0, {WW:W}] W1

W2 [0, {WW:W}] W1,W2

D1 [1, {WW:E}] W1,W2, N

For this example the bounded buffer monitor will be initialized with an empty

buffer and a capacity of three. The first method executed in the sequence is a withdraw.

Since the buffer is empty, the thread cannot withdraw an item and will moved to the

wait queue, resulting in the state [0, {WW:W}]. A second withdraw is then executed

which encounters the same problem resulting in the state [0, {WW:W}]. As mentioned

previously, during normal operation the framework would consider this a duplicate state

having no affect on the synchronization behavior of the monitor, thereby terminating

the current sequence. However, in this example we will change the framework’s

behavior to allow a single duplicate to be introduced into the sequence. A deposit is

executed next, which adds a single item to the buffer and makes a single notify call,

leading to state [1, {WW:E}]. At this point, if we look at the synchronization events we

can see that there are two waiting threads, W1 and W2, and only one notify event while

our state shows that we have a buffer with one item. This violates the monitor’s

expected behavior that all waiting threads are allowed to compete for consumption of

 36

any new data deposited in the monitor. If the duplicate had not been allowed within the

sequence, this failure would not have been detectable.

The reason duplicates are needed is because verification of the synchronization

behavior in many cases must be established using completed and waiting thread

information. In these cases if duplicate states are not allowed, the additional threads

needed in the wait queue to verify the expected behavior would not be present and the

failure will go undetected. To determine the value of the MCDA, the tester must

consider what events should trigger each conditional random signaling primitive as well

as the number of threads that should be affected. In the case of the deposit method of

the bounded buffer, the event is the depositing of an item into an empty buffer and its

expected behavior requires that all waiting withdraw threads be awoken. This example

represents the simplest case where all threads are affected by a single event and no more

than one duplicate state is needed. However, if a single event affects a variable number

of threads or consecutive occurrences of the event can occur, the tester must consider

both the expected behavior as well as possible monitor states that may affect the number

of threads needed. As an example, consider a scenario where the bounded buffer

expected behavior has been modified and now requires that one waiting withdraw

thread be awakened each time a deposit occurs, assuming the wait queue is not empty.

In this case the signaling event is a new item being deposited into the buffer and the

number of threads affected should be at most one withdraw thread. To verify this

expected behavior completely would require the same number of duplicate states as the

capacity of the buffer. To understand why this is necessary requires consideration of the

 37

maximum number of times this event can occur consecutively. For this example, the

maximum number of consecutive deposits is equal to the capacity of the buffer.

Therefore to verify that only one withdraw thread is awoken for each consecutive

deposit requires capacity + 1 withdraw threads in the buffer, thus MCDA to be equal to

the capacity of the buffer.

3.2.2 Thread Selection and Execution

The Execute method is responsible for simulating the different entry queue

combinations that can occur due to threads reaching the monitor at different times. To

simulate these combinations, the framework must maintain information regarding what

thread choices are available at each state reached during the state-space exploration, as

well as which choice have already been executed during a previous visit to the current

state

Figure 3.5 shows the algorithm used by the Execute method. Lines 1 through 8

of this method are responsible for initializing the current ExecutionContext instance.

ExecutionContext initialization will only occur if the current state has been reached for

the first time along the current execution sequence. If the ExecutionContext has not

been initialized, the nextcandidate member, seen on line 5 is set to 1. This field is used

to track the next candidate thread that will be executed once the Execute method is

called. In the next section we will out explain how the candidatethreads member is

initialized.

.

 38

Figure 3.5 The Execute Method

3.2.2.1 Thread Groups

Simulating thread competition in the entry queue requires the Execute method to

determine what threads could be executed at each point in the execution sequence. Each

entry candidate can be classified into one of three groups.

The first group consists of threads attempting to enter the critical section for the

first time. The members of this group consist of all synchronized methods the user has

configured the framework to execute (see Section 3.1.3) during the test of the current

monitor and are stored in the executablemethods list. On line 6, each member of

Execute(){

1. if (NOT context.isInitialized()){

2. let context.entrycandidates be an empty list

3. let context.nextcandidate be an integer

4. let thread be a thread that can be initialized to execute a

synchronized method

5. context.nextcandidate = 1

6. create and initialize a new thread for each executablemethods

member and add it to the context.entrycandidates list

7. add each globally signaled re-entry thread to the

 context.entrycandidates list

8. add each randomly signaled thread to the context.entrycandidates

list

 }

9. let result = false

10. if (context.nextcandidate <= context.entrycandidates.size()){

11. let nextthread = context.entrycandidates.get(context.nextcandidate)

12. nextthread.execute()

13. context.nextcandidate = context.nextcandidate + 1

14. result = true

 }

15. return result

 }

 39

executablemethods is used to initialize a new thread that is added to the

candidatethreads list. The second group added to the executablemethods list on line 7,

consists of all re-entry threads that have been awoken by a global primitive call. The

third group added to the executablemethods list on line 8, consists of all waiting threads

that could be selected due to one or more random signaling primitives that have

occurred earlier in the execution sequence.

In order to provide a reproducible set of execution sequences across multiple

executions of the framework, these thread candidates must be ordered in a consistent

manner. The order of threads in group one will mimic the order in which the user has

provided the methods to the framework. Since the framework manages threads in

groups two and three, the ordering of these groups is dependent on the implementation

of the algorithm. Our approach does not specify a specific ordering for these threads. It

does, however, require that an implementation guarantee that execution of identical

sequences will result in the same ordering of these threads at each state reached during

an execution sequence.

Managing the threads in group three also poses an added challenge to the

framework. When a random signaling primitive is normally reached, a random thread is

selected from the wait queue and moved to the entry queue. However, for the

framework to consider each possible thread that could be selected, this behavior cannot

be allowed. To address this problem, the framework delays the selection a thread and

tracks which threads were affected by the random signaling primitive. Using this

approach, sequences that execute multiple random signaling primitives can result in

 40

multiple thread selection combinations. As an example consider the following sequence

of synchronization events which uses the notation described in Section 3.2.1.1:

M1, M2, N, M3, N

As we can see from the sequence, at some point during execution two methods,

M1 and M2 enter the wait queue followed by a notify call. As execution continues,

method M3 enters the queue followed by another notify call. Given this combination of

waits and notifies, multiple combinations of thread selection can occur. These

combinations are as follows: [M1, M2], [M1, M3], [M2, M1], [M2, M3]. Each

combination listed is grouped using brackets and contains two entries, each representing

the method selected by the first and second notifies respectively. Looking at the options,

we can see there are three combinations that select the M1 method. So an important

question is, if the Execute method were to select method M1 for execution, which thread

selection combination should be used?

Since the goal of our approach is to simulate all possible thread candidates that

could result due to thread competition in the entry queue, we must exercise the notifies

in a manner that yields the greatest number of group three candidates as the execution

sequence continues. Consider that if the second notify were used to awaken method M1,

the number of group three candidates at subsequent states reached along the current

path would be limited to M2. However, if the first notify is used, future group three

candidates would contain both M2 and M3. To generalize this point, when the Execute

method selects a randomly signaled thread for execution, the framework will exercise

 41

the oldest notify occurring after the selected thread to ensure the greatest number of

group three choices.

3.2.2.2 Thread Execution

Once execution has passed the initialization block, the Execute method will

execute the next thread candidate. This begins by determining whether all candidate

threads have been executed at the current position in the execution sequence, as seen on

line 10. If an unexecuted candidate exists, it will be executed and the Execute method

will block until the thread completes execution. If the executing thread does not return

within a 30 second period of time, the framework will assume that it has reached a

livelock situation and throw an exception. Once the thread returns control to the Execute

method, the nextcandidate member is incremented. The method then returns either a

true indicating that a candidate thread was executed or false indicating otherwise.

3.3 An Example Execution

In this section we will give a step-by-step example that shows the state-space

exploration of the bounded buffer monitor seen in Figure 3.1. The monitor we will test

will contain one subtle change to the deposit method, seen in Figure 3.6. On line 1 of

this method, the while loop has been changed to an if structure that will allow any

awoken thread re-entering the method after the wait on line 2 to continue without

verifying that the buffer is not full.

 42

Figure 3.6 The BoundedBuffer Deposit Method Replacing While with If

In this example, captured states will be configured to include the fullSlots data

member, as this is the only field that affects the monitor’s synchronization behavior.

The MontiorInitialization class will return one monitor instance that has a capacity of

one. The framework will be configured to initialize the executablemethods list with two

synchronized methods, deposit(1) and withdraw(). These methods make up thread

group one for this test and will be the first two entries to appear in the candidatethreads

list of the execution context.

Figure 3.7 shows the state diagram resulting from the state-space exploration of

the bounded buffer example. Each state in the diagram displays its captured state using

the notation described in Section 3.2.1.1. Transitions between states are labeled

according to the action taken. Valid transition actions include deposit method calls that

are indicated with a Dx, withdraw methods calls indicated by a Wx and backtracks

indicated by a B. The value of x associated with a method call indicates the x
th

execution of the same method call in the current sequence.

public synchronized void deposit(int value){

1. if (fullSlots == capacity){

2. try {wait();} catch(InterruptedException e){}}

3. buffer[in] = value;

4. in = (in + 1) % capacity;

5. if (fullSlots++ == 0)

6. notifyAll();

 }

 43

Figure 3.7 The State Diagram for the BoundedBuffer Example

Execution begins at the initial state [0, {}] indicating an empty buffer and no

waiting threads. Once the Execute method is called a new ExecutionContext is created

and a deposit is executed. This results in the transition labeled D1. Once the method

 44

exits, the monitor state [1, {}] is reached which has a buffer of 1 and no waiting threads.

Since this is the first time this state has been reached, execution along the current path

will continue resulting in the creation and initialization of a new ExecutionContext. This

behavior will occur each time a state is reached that is not equivalent to another state

visited along the current sequence. For the sake of brevity, each state reached that fits

this description will be labeled as a new state and will result in the same set of actions.

At this point a deposit will be executed resulting in the transition labeled D2.

This method finds the buffer full and reaches the wait primitive, moving the thread to

the wait queue. The result is the new state [1, {DW=W}] that shows the buffer has one

item and the deposit wait abstract group contains only waiting threads. A third deposit

is then executed resulting in the transition labeled D3. This leads to the state [1,

{DW=W}]. Since the MCDA was not overridden it has a default value of 0. Because of

this, no duplicate states are allowed. Since this state is a duplicate of the last state, the

framework will execute a backtrack. This action results in the transition labeled B,

which restores the previous monitor state and loads its ExecutionContext. Since this

state in the sequence has already been reached, the nextcandidate for this state will

point to the withdraw method. This method is executed and results in the transition

labeled W1. The withdraw removes an item from the buffer, executes a notifyAll and

exits the monitor at the new state [0, {DW=E}]. Since the thread executing D2 has been

awoken due to the notifyAll, it becomes a member of thread group two and will be

added to the candidatethread list during ExecutionContext initialization along the

current execution sequence. This will hold true until it is allowed to re-enter the monitor

 45

or the execution sequence backtracks to the previous state. At this point, another deposit

is executed resulting in the transition labeled D3. The deposit adds a new item to the

buffer, executes a notifyAll and exits leaving the monitor at the new state [1, {DW=E}].

A fourth deposit is executed resulting in the transition D4. This method finds the buffer

full and reaches the wait primitive, moving the thread to the wait queue. Since the

monitor now has a waiting thread and a re-entry thread which are both members of the

deposit wait abstract group, the monitor is left at the new state [1, {DW=B}]. From this

state, a deposit is executed resulting in the transition labeled D5. Since the buffer is full,

the thread reaches the wait primitive and is moved to the wait queue leaving the monitor

at the duplicate state [1, {DW=B}]. This duplicate will cause the current path to be

terminated, causing another backtrack to the previous state. The next candidate

executed is a withdraw which result in the transition labeled W2. This method removes

an item from the buffer and executes a notifyAll. Since the state reached [0, {DW=E}]

has been visited along the current sequence, execution backtracks to the previous state

once again. The final candidate executed is the re-entry thread executing D2 and results

in the transition labeled D2. Because the while loop was replaced with an if construct,

the method is allowed to overwrite an item in the buffer and increment the value of

fullSlots to 2. This leaves the monitor at the invalid state [2, {DW=B}], which will raise

a property violation exception due to having exceeded the bounds of the buffer.

 46

CHAPTER 4

 DESIGN OF THE PROTOTYPE TOOL

The design of our tool can be broken down into three major Java packages, as

seen in Figure 4.1. Each package represents a different aspect of functionality that must

be customized for the monitor under test before execution can begin. In the following

sections we will describe the purpose of each package and the customization that must

be applied.

Figure 4.1 Prototype Tool Package Diagram

4.1 UserProvided Package

The userprovided package, detailed in Figure 4.2, contains 4 abstract classes

and an exception class. The purpose of this package is to define the family of abstract

classes that must be subclassed to implement the application specific, user provided

content. The purpose of each abstract class define in this package has been outlined in

the approach section should the reader need further details.

 47

Figure 4.2 The UserProvided Package UML Diagram

4.1.1 The UserProvided Factory

The UserProvidedFactory abstract class is the first class we will discuss and

provides the link between the execution framework and the user provided classes. As its

name suggests, this class implements the abstract factory pattern and can be subclassed

multiple time to provide different test case configurations. The class consists of 3

abstract getters each of which returns a reference to one of the user provided classes.

4.1.2 Method Assembly

The first factory method, getMethodArgumentManager, returns an instance

subclass of the MethodArgumentManager abstract class. This abstract class defines the

two abstract methods, getInstanceCount and getMethodArguments, which collectively

are used by the framework to construct the base set of public synchronized method calls

that must be executed at each new state reached during the monitor’s state-space

exploration. To create this set the framework must iterate through all method ids of the

methods used during execution. For each method id, the getInstanceCount method is

called, which takes the method id as an argument and returns the number of user

provided argument combinations. By calling the getMethodArguments method, which

 48

takes the method id and instance number as arguments, an Object array containing one

combination of method arguments can be retrieved. By iterating across the full range of

instance supported by the method id, all combinations are generated.

4.1.3 Monitor Instance Creation

The next factory method, getMonitorInitializer, returns an instance subclass of

the MonitorInitializer abstract class. Similar to the MethodArgumentManager, this

abstract class defines two methods, getInstanceCount and getInitializedMonitor, which

return respectively the total number of monitor instance to be tested as well as the

initialized monitor for a given a instance. Each monitor instance represents a new test

case and a starting point for the state-space exploration.

4.1.4 Application Specific Property Checking

The last factory method, getPropertyChecker, returns an instance subclass of the

AppPropertyChecker abstract class. This class’ sole abstract method, executeCheck,

provides the means by which the tester can implement an application specific properties

check, evaluated at each state visited by the exploration. In the event that a property has

been violated, the method must throw an AppPropertyViolationException exception,

which will terminate execution for the current monitor instance and log details

regarding the method sequence leading to the failure. In addition, this method can also

be implemented to restrict illegal method sequences and terminate the current path

exploration.

 49

4.2 Hook Package

The hook package’s purpose derives out of the tool’s need to override the

monitor scheduler and queue behavior. It consists of a class and an interface, seen in

Figure 4.3, which together provide two functions.

Figure 4.3 The Hook Package UML Diagram

4.2.1 Synchronization Event Interception

The first service provided is the interception of synchronization primitive calls.

Due to the fact that true interception of these calls would require tooling at the Java

implementation level, our solution opted for a language-based approach that requires

the tester to replace all synchronization primitive calls with a similar method from the

SyncHook class. All members and methods of this class are static, allowing the user to

make necessary calls without creating or maintaining an instance of the class. The three

interception methods provided are waitThread, notifyThread and notifyAllThreads

which map to the Java synchronization primitives wait, notify and notifyAll respectively.

Each method must have as an argument the synchronization object associated with the

primitive call being made. This tool implementation does not yet support Java 5.0 and

therefore each call will use the monitor object as its synchronization object. The

waitThread method also requires a unique wait id that represents the wait point where

 50

the thread exited the monitor. This additional information will be used to abstract the

monitor queues each time the state is captured.

4.2.2 Synchronization Event Notification

In addition to interception, this package also provides an event service that is

triggered by each incoming synchronization call. Once a call is received, all event

handlers registered for the monitor from whom the call was issued, are notified. To

register an event handler, the receiver must implement the SyncEvents interface. The

registerEventHandler method is then called passing the monitor object that will be

source of the synchronization calls and the event handler object that will be called when

one or more calls are intercepted. To unregister, the receiver must call the

unregisterEventHandler method passing the same two arguments used to register the

event handler.

4.3 Framework Package

The framework package is responsible for tying together the user provided

components into the test bed and controlling the overall state-space exploration. It

consists of two public classes, XMLLoader and ExecutionManager seen in Figure 4.4,

as well as a number of support classes, visible only at the package level.

 51

Figure 4.4 The Framework Package UML Diagram

4.3.1 Loading User Provided Content

One key responsibility of the framework is to locate and load all user provided

content so the execution context can be initialized for testing. In order to begin this

process, the tester must provide information regarding several aspects of customization.

In the current implementation, the Extensible Markup Language (XML) format is used

to encode this information. In order to gather the correct information and guarantee

correct parsing, a Document Type Definition (DTD) file, seen in Figure 4.5, has been

created which defines what information the tester must provide as well as the schema

that must be used to encode the information.

The XMLLoader class parses the XML file created from this schema and uses

its contents to initialize the user provided components of the execution framework. In

order to better understand the purpose of the user provided information, we will explore

each major element in the DTD file and its significance to the runtime content

initialized by the loader class.

 52

4.3.1.1 Factory Element

The factory element’s sole purpose is to provide the full class name of the

subclass which implements the UserProvidedFactory class for the current execution.

This value must be in the form of a string, formatted using the full package path as well

as the class name. This class, or the jar file containing this class, must be placed in a

location visible to the Java runtime. This can be configured either by means of a Java

command line argument, the classpath variable or inclusion in one of the default folders

from which the JVM loads classes.

Figure 4.5 The UserProvided DTD File

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT userprovided (factory, monitor)>

<!ELEMENT factory (#PCDATA)>

<!ELEMENT monitor (method+)>

<!ELEMENT method (parameterTypes, (wait|notify|notifyAll)*)>

<!ATTLIST method

 name CDATA #REQUIRED

 id ID #REQUIRED>

<!ELEMENT parameterTypes (parameterType*)>

<!ELEMENT parameterType (#PCDATA)>

<!ELEMENT wait (variable*)>

<!ATTLIST wait

 id ID #REQUIRED>

<!ELEMENT variable (#PCDATA)>

<!ELEMENT notify (variable*)>

<!ATTLIST notify

 id ID #REQUIRED>

<!ELEMENT notifyAll (variable*)>

<!ATTLIST notifyAll

 id ID #REQUIRED>

 53

4.3.1.2 Method Element

The method elements are children of the monitor element. For each public

synchronized method to be included during the test execution, there must be a

corresponding method element in the XML file. Each entry must contain an id property

and a name property. The id property must be a string identifier for the associated

method and must be unique across all method elements listed within the XML file. This

property value is the method id for the specified method and is passed to both methods

of the MethodArgumentManager class during the method assembly phase of the loader

class. The name property must be a string indicating the name of the monitor method

associated with this element. This name may not be unique to the XML file if there are

multiple overloaded monitor methods to be included in the test.

Because of this, the element also includes a child element that consists of

parameterType elements. Each element in this collection must be a string value

corresponding to a parameter type for the current method and must be listed in the

collection according to its order in the method’s parameter list. If the parameterType

string refers to a primitive data type, then the name of the Java data type is used. If,

however, the string refers to an object, the full class name must be provided, including

the full package path. In either case, if the parameter is an array, the string must be

suffixed with an open and closed bracket ([]). If the method has no parameters, this

collection must be left empty.

 54

The combination of the method name and parameterType collection are used by

the loader class to both verify the existence of the method in the provided monitor

instance as well as verify the argument array values returned by the

getMethodArguments method.

4.3.1.3 Wait, Notify and NotifyAll Elements

In addition to a collection of parameterType elements, each method can contain

zero or more wait, notify or notifyAll child elements. For each Java synchronization

primitive call found within the method body, a corresponding child element is added to

the xml method element. Each “synchronization” element added must define an id

property, consisting of a string identifier that must be unique across all

“synchronization” elements listed within the XML file.

In addition, all class variables that affect whether the synchronization primitive

is executed, either as control flow or data flow variables, must be added as children to

the “synchronization” element in the form of variable elements. If no variable elements

are listed with a “synchronization” element, it indicates that the associated

synchronization primitive will be unconditionally called each time the method is

executed. During the loading phase, the loader class compiles a master collection of

variable elements for all wait, notify and notifyAll elements. This collection should

provide a complete list of the class variables affecting the synchronization behavior of

the monitor and as such are captured in addition to the queue abstraction each time the

monitor is requested.

 55

4.3.2 Test Execution

To begin execution, the user must create an ExecutionManager object by calling

its constructor with an object that is a subclass of the abstract Loader class. Currently,

the XMLLoader is the only option available due to the fact that user provided data has

only been persisted in the XML format. Future versions of the framework, however,

could offer alternative loader classes that gather initialization data from databases, flat

files, user interfaces, or web services to name a few. The purpose of the Loader and its

subclasses are to separate the format in which the user data is persisted from the

complex internal objects constructed using this data. This concept is similar to that of

the Builder pattern.

Once the loader has completed, it provides the framework with two objects that

encapsulate the user provided logic used during execution. The first is the property

checker object, called each time a new state is reach during exploration, and the second

a MonitorNaviagor object. The MonitorNaviagor is a simple iterator whose purpose is

to return MonitorManager objects and controls the outer loop of the execution

algorithm. These MonitorManager objects are complex and encapsulate all the resultant

user defined components generated from the XML file. As seen in the UML diagram in

Figure 4.4, they define methods that can be used to capture the monitor state, execute

new threads, or manage the monitor queues. They also maintain a collection of

MonitorMethod objects, each of which represents a combination of a method to be

tested and a set of user provided arguments.

 56

Once the framework has been initialized, the user begins the run by calling the

startTest method of the ExecutionManager object, which encapsulates the execution

algorithm (section 3.2.1). In addition, the ExecutionManager supplies implementations

to verify valid states, new states, duplicate states and productivity during execution as

well as the rollback method called at each point where a path has been terminated. A set

of inner classes implements a state pattern that is responsible for maintaining the

execution context for each state visited and implementing the execute functionality.

The only significant difference between the conceptual algorithmic approach

and the tool’s implementation arose in the backtrack functionality. To backtrack the

monitor, it would be necessary to not only restore the state of any class or global

variables that have changed, but also to restore the previous state of the monitor queues

as well as the execution frames. Because the language does not natively support this

functionality, an alternative approach was used. At each point requiring a backtrack, the

current MonitorManager instance was shutdown and a new MonitorManager instance

was created. To reconstruct the monitor state, the sequence of execution contexts that

provide the last method executed at each state along the last path, are executed. The

results of each test are outputted to the console.

 57

CHAPTER 5

 CASE STUDIES

5.1 Experimental Design

A mutation-based approach was used to evaluate the detection ability of our

prototype tool [16][31]. To conduct each case study, a collection of mutants was created

for each correctly coded monitor used. Each mutant created contains a single change to

the source code of the original monitor and represents a programming mistake that can

occur during the implementation of a Java monitor. In each case study, two general

groups of mutants were created.

The first group of mutants represents typical errors made by programmers when

implementing the logic used in a monitor. These mutants were created using a publicly

available, Java based mutation tool called µJava [34][39]. This tool creates mutants that

change the class level or method level operators used in the source of a Java class. Class

level mutants introduce syntactic faults to the object oriented operators used in the

source such as changing the access modifier or static modifier associated with a class,

method or variable. Because we are only interested in testing the synchronization

behavior of the monitor, class level mutants were not used. Method level mutants

introduce faults to common operators used to implement the body of Java methods. For

the version of µJava we used, the operators that were mutated include arithmetic

 58

operators, relational operators, conditional operators, shift operators, logical operators

and assignment operators.

The second group of mutants introduces a change that affects the

synchronization primitives or control flow structures used to implement the

synchronization behavior of the Java monitor. Each monitor created for this group

reflects one of the following changes:

• Replacement of a while loop which encases a wait primitive with an if statement.

• Replacement of a notifyAll primitive with a notify primitive.

• Removal of a wait, notify or notifyAll synchronization primitive.

Each of the mutants created was tested using our prototype tool and executed

using the Sun Microsystems Java Runtime Environment 1.5. All results were generated

on a computer running Windows XP with a 2GHz processor and 1 GB of ram.

5.2 Monitor Tests

In the following section we will describe the monitors and framework

configurations used in each case study. The monitors used for each case study were

taken from [33]. Each subsection starts by describing the purpose of the monitor and its

expected behavior. This will be followed by an explanation of how the user provided

components initialized the framework for each mutant tested. Recall that the tester is

responsible for providing an XML file that defines the methods to be included in each

test and the data members used in the state representation as well as implementations of

the MonitorInitialization, MethodArguments and PropertyChecker classes. Collectively

these implementations determine the number of different initialized monitor instances

 59

tested, the argument combinations for each method included in the test and the

verification and state acceptance properties evaluated at each state reached during the

state-space exploration. The original monitor source and configuration XML file used in

each case study can be found in Appendixes A through E.

5.2.1 BoundedBuffer Monitor

The BoundedBuffer monitor implements a solution to the producer/consumer

problem. This monitor consists of two synchronized methods, deposit and withdraw,

which allow items to be added and removed from a fixed size buffer. Each time a

deposit method is executed, a data item will be added to the buffer as long as the buffer

is not full. After the data is added to the buffer, any withdraw threads in the wait queue

must be woken up so they can compete to consume the new data. If the buffer is full,

the calling thread must be moved to the wait queue until a data item is removed from

the buffer. When the withdraw method is called a data item will be removed from the

buffer as long as the buffer is not empty. If an item is removed from the buffer, any

deposit threads in the wait queue must be woken up so they can compete to deposit their

data in the buffer. If the buffer is empty, the calling thread must be moved to the wait

queue until a data item is added to the buffer.

In this case study, 113 mutants were tested of which 101 were members of the

first mutant group and 8 were members of the second mutant group. For each test

executed, a single instance of the mutant was used that was initialized with an empty

buffer and capacity of five. The member fullSlots is an integer value that represents the

number of used slots in the monitor’s buffer. Since it is the variable that affects the

 60

synchronization behavior of the monitor it was defined as the data member used in the

state representation. The get(1) and put() methods were defined to be the two methods

executed during the state-space exploration. Though the get method passes an integer

argument each time it is called, this value does not have an affect on the monitor’s

synchronization behavior and any integer value could have been chosen. The

PropertyChecker was implemented to accept all states reached. The properties used to

verify each state reached are based on the exercised synchronization behavior of the

monitor during the execution of the current sequence. To this end, each variable upon

which the synchronization behavior is dependent has been calculated at each state using

the following formulas:

• fullSlots = # of initial slots used + # completed deposits - # completed withdraws

• capacity = the capacity value used to initialize the monitor instance

Based on these values, the properties verified during each test are as follows:

• 0 <= fullSlots <= capacity

• 0 < fullSlots < capacity → the wait queue should be empty

• fullSlots == 0 → the wait queue should be contain no deposit threads

• fullSlots == capacity → the wait queue should contain no withdraw threads

5.2.2 ReaderWriterSafe Monitor

The ReaderWriterSafe monitor implements a solution to the readers/writers

problem. In this problem there exists a shared variable that multiple threads are

attempting to either to either read or write. Before each thread accesses the shared

variable, it is required to acquire a lock that guards the shared variable. A reader may

 61

acquire the lock only if no writer has currently acquired the lock. This behavior allows

multiple readers to access the shared variable at the same time. A writer may acquire the

only if no other reader or writer has currently acquired the lock. This guarantees that

only one writer will have mutually exclusive access to the shared variable at a time.

Once a thread has finished accessing the variable it must release the lock and wake up

all other waiting threads if no other thread has the lock. The ReaderWriterSafe monitor

allows threads to acquire and release locks using one of four synchronized methods. If a

thread wants to acquire the lock for read access it must call the acquireRead method.

Once the thread has completed it must then call the releaseRead method. Likewise, the

pair of methods acquireWrite and releaseWrite must be called to acquire and release a

lock for write access.

For this case study, 28 mutants were created of which 20 were members of the

first mutant group and 8 were members of the second mutant group. A single mutant

instance was used for each test executed that was initialized using the empty

constructor. In each test the framework was configured to include all four synchronized

methods of the monitor. Two data members in the ReaderWriterSafe monitor have an

effect on the synchronization behavior of the monitor. The readers member is an integer

that keeps a count of the number of readers that have current acquired a read lock while

the writers member is a boolean that indicates whether a write lock has been acquired.

Both of these data members were used in the state abstraction. As described in the

section, the variables and properties used to verify each state reached are based on the

exercised synchronization behavior of the monitor and were defined as follows:

 62

Variables

• writers = # of completed acquireRead threads - # of completed releaseRead

threads

• readers = # of completed acquireWrite threads - # of completed releaseWrite

threads

Properties

• writers > 0 → readers == 0

• writers == 0 → the wait queue should contain no waiting acquireRead threads

• writers == 0 AND readers == 0 → wait queue should be empty

• readers > 0 → writers == 0

• writers > 0 → writers == 1

In addition, the PropertyChecker was configured to accept states only if 0 <=

readers <= 1 AND 0 <= writers <= 1 AND (# of completed acquireRead <= 2 AND #

of completed acquireWrite threads <= 2. The first two conditions guarantees the

implicit lock unlock protocol for both readers and writers as well as bounds the number

of locks at any given time to 1. The last two condition provides an upper bound of 2 on

the number of total number of locks that can be acquired in any execution sequence.

5.2.3 FairBridge Monitor

The FairBridge monitor implements a solution that is designed to prevent cars

coming in opposite direction from colliding on a one-lane bridge. To guarantee a

 63

measure of fairness, a turn-based system is used. Cars from each side of the bridge are

allowed to cross the bridge only if it is their turn or no other cars are waiting on the

other side. In either case, a car must wait until the bridge is empty of cars coming in the

opposite direction before it can cross. Because of this, the last car to cross the bridge

must signal to any waiting cars from the opposite direction that they may now cross.

Once a car from one side crosses the bridge, it becomes the turn of the other side. The

FairBridge monitor allows cars to enter and exit the bridge using four synchronized

methods. Each side of the bridge is represented by the colors blue and red. Cars coming

from the red side enter the bridge by calling the redEnter method and exit the bridge by

calling the redExit method. This same behavior is implemented for the blue side with

the methods blueEnter and blueExit.

For this case study, 61 mutants were created of which 53 were members of the

first mutant group and 8 were members of the second mutant group. Each test executed,

used a single mutant instance that was created by calling the empty monitor constructor.

The synchronized methods executed during each test were redEnter(), redExit(),

blueEnter() and blueExit(). The values of nblue, nred, waitred, waitblue and blueturn all

have an affect on the synchronization behavior of the monitor. Members nblue and nred

are integer values that represent the number of cars currently on the bridge from the

blue side or the red side. The waitred and waitblue members are integer values that

represent the number of cars from the red side or blue side that are waiting to enter the

bridge and the blueturn member is a boolean value that tracks whether it is blue’s turn

or red’s turn. Each of these values is used as data members in the state representation.

 64

Similar to the previous case studies, the variables and properties used to verify each

state reached are based on the exercised synchronization behavior of the monitor as

follows:

Variables

• blueCarsOnBridge = # of completed blueEnter threads - # of completed

blueExit threads

• redCarsOnBridge = # of completed redEnter threads - # of completed redExit

threads

• bluesTurn = (# of completed blueExits == 0 AND # of completed redExits == 0)

OR (# of completed redExits != 0 AND the last blueExit is older than the last

redExit)

• blueCarsWaiting = # of blueEnter threads in the entry and wait queues

• redCarsWaiting = # of redEnter threads in the entry and wait queues

Properties

• blueCarsOnBridge > 0 → redCarsOnBridge == 0

• blueCarsWaiting > 0 AND bluesTurn → no red cars should be on the bridge that

entered after it became blue’s turn AND after the longest waiting blue car

arrived

• blueCarsOnBridge == 0 AND (blueCarsWaiting == 0 OR NOT bluesTurn) →

the wait queue should not contain redEnter threads

• blueCarsOnBridge == 0 AND redCarsOnBridge ==0 AND bluesTurn → the

wait queue should not contain blueEnter threads

 65

• blueCarsOnBridge == 0 AND redCarsOnBridge ==0 AND NOT bluesTurn →

the wait queue should not contain redEnter threads

• redCarsOnBridge > 0 → blueCarsOnBridge == 0

• redCarsWaiting > 0 AND NOT bluesTurn → no blue cars should be on the

bridge that entered after it became red’s turn AND after the longest waiting red

car arrived

• redCarsOnBridge == 0 AND (redCarsWaiting == 0 OR bluesTurn) → the wait

queue should not contain blueEnter threads

Acceptance of states reached during the state-space exploration was determined

based off the following conditions: 0 <= blueCarsOnBridge <= 1 AND 0 <=

redCarsOnBridge <= 1 AND blueCarsWaiting <= 2 AND redCarsWaiting <= 2 AND #

of completed blueExits <= 2 AND # of completed redExits <= 2. The first two

conditions guarantee that the correct order of enters and exits are followed according to

the expected bridge protocol as well as bounds the number of cars on the bridge to no

more than 1. The next two conditions ensure that no sequence can have more than two

cars waiting on either side of the bridge. The last two conditions bound the number the

number of times that each side can cross the bridge in any execution sequence to a

maximum of 2.

5.2.4 FairAllocator Monitor

The FairAllocator monitor is implemented to manage the allocation of a pool of

balls in a first-come first-serve manner. Conceptually, each thread that interacts with the

monitor represents a customer. Customers wanting to request one or more balls must

 66

form a line according to the order in which they arrived. If there are enough balls to

service the request of the first customer in line, the requested balls will be allocated

from the ball pool to the customer and the next customer in line can submit their

request. If the first customer in line requests more balls than are currently available in

the ball pool, they and all other customers in the back of the line must wait until enough

balls are returned to fill the request. Once a customer has finished using the balls they

checked-out, they must return them to the ball pool. The FairAllocator monitor allows

threads to request and return balls on behalf of a customer using the synchronized

methods get and put.

For this case study, 60 mutants were created of which 54 were members of the

first mutant group and 6 were members of the second mutant group. For each mutant

tested, a single monitor instance was created with an initial ball pool of size 2. The get

synchronized method defined by the FairAllocator monitor passes an integer argument

that represents the number of balls requested by the thread. Since this value affects the

synchronization behavior of the monitor, two argument combinations were defined for

the get method, namely get(1) and get(2). In addition, two argument combinations were

defined for the put method resulting in put(1) and put(2) also being executed by the

framework. The data members captured as part of the state representation for this

monitor include available and next and were chosen because they affect the

synchronization behavior of the monitor. The available member is an integer value that

tracks the number of balls currently in the ball pool while the next member is an integer

that determines who is the next thread at the front of the line. Similar to the previous

 67

case studies, the variables and properties used to verify each state reached are based on

the exercised synchronization behavior of the monitor as follows:

Variables

• ballsCheckedOut = the sum of balls checked out by completed get threads - the

sum of balls returned by completed put threads

• totalBalls = the value used to initialize the monitor’s available ball count (i.e., 2)

• availableBalls = totalBalls - ballsCheckedOut

Properties

• ballsCheckedOut <= totalBalls

• # of waiting get threads > 0 AND last executed thread == longest waiting get

thread → # of balls requested by longest waiting get thread > availableBalls

• no completed get threads began execution after the longest waiting get thread

• last executed thread completed → the wait queue should be empty

The PropertyChecker implementation for each test was configured to accept

states only if ballsCheckedOut >= 0 AND (# of completed get threads) <= totalBalls *

2. The first condition is required to guarantee the correct sequencing of get and put calls

that collectively must only return up to as many balls as have been checked out. The last

condition bounds the number of threads that can execute a get to 2 times the number of

total balls in the pool.

 68

5.2.5 BoundedOvertakingAllocator Monitor

The BoundedOvertakingAllocator monitor was designed to manage the

allocation of balls in a similar manner as the FairAllocator described in Section 5.2.4.

The goal of the FairAllocator monitor is to provide a fair allocation protocol that does

not favor smaller ball requests that can be filled immediately but rather to service

requests according to the order in with the requests are made. This type of protocol can

create a situation where the first customer in line requests a large number of balls,

forcing other customers who may only want a small number of balls to wait for a long

before their request can be filled. To address this concern, the

BoundedOvertakingAllocator monitor implements a compromise. If the first customer

in line requests more balls than are currently available, the monitor will allow up to a

fixed number of customers whose order can be filled immediately to overtake all other

waiting customers and have their requests serviced. To ensure fairness as the line moves

forward, no customer may be overtaken by more than the fixed upper bound of other

customers during the time they are waiting in the line.

The framework in this case study was configured to supply a single monitor

instance with a ball pool of size two and an overtaking upper bound of 1. The

synchronized methods executed were identical to those used in the FairAllocator

configuration. Similarly, the available and next monitor members were still used in the

state representation. However, since the synchronization behavior of the monitor is also

dependent on the overtaken member, it has been added to the state representation as

well. The variables and properties defined for the BoundedOvertakingAllocator monitor

 69

are also similar to those defined for the FairAllocator monitor. The only change made

was to the property “no completed get threads began execution after the longest waiting

get thread” which was changed to “number of completed get threads that began

execution after the longest waiting get thread <= overtakingLimit”, where

overtakingLimit is equal to the limit argument passed to the monitor’s constructor. This

change reflects the new overtaking policy and verifies that each get thread at the front

of the line has not been overtaken more times than the allowed upper bound. The

PropertyChecker’s implemented state acceptance for this monitor is identical to that of

the FairAllocator monitor.

In this case study no mutants were created and tested. This is due to the fact that

when the original monitor was executed against our tool, a property violation occurred

when the execution sequence seen in Table 5.1 was reached. This sequence begins with

the thread T1 executing get(1) that results in the allocation of one of the two balls in the

monitor ball pool. When thread T2 executes get(2), there are not enough balls to fill the

request so it is moved to the wait queue. Thread T3 then executes get(1) and overtakes

T2 since there are enough balls to fill its request and no other threads have overtaken T2.

Since the ball pool is now empty, thread T4 is moved to the wait queue when it executes

get(1). The next two threads execute a put(1), which returns two balls back to the ball

pool. At this point there are two awoken threads, T2 and T4, which are competing for the

returned balls. Thread T2 is at the head of the line and has been overtaken once by T3.

Since the monitor has been configured to allow each waiting thread to be overtaken

 70

only once, it should not be possible for T4 to have its request filled before T2, however,

this action was allowed by the monitor.

Table 5.1 The BoundedOvertakingAllocator Property Violation Sequence

Thread Method Executed

T1 get(1)

T2 get(2)

T3 get(1)

T4 get(1)

T5 put(1)

T6 put(1)

T4 get(1)

5.3 Results

Table 5.2 Original Monitor Test Results

Monitor
of States

Visited

Paths

Explored
Transitions

Execution

Time

BoundedBuffer 24 49 72
0.19

Seconds

ReaderWriterSafe 72 120 147
0.28

Seconds

FairBridge 354 385 470
0.96

Seconds

FairAllocator 92 172 214
0.39

Seconds

BoundedOvertakingAllocator 8 4 12
0.4

Seconds

 71

Table 5.3 Mutant Test Results

Monitor
of

Mutants

of

Mutants

Detected

Avg # of

States/Paths/Transes

Avg/Total

Exe

Time

BoundedBuffer 109 75 12/17/28
0.12/13.39

Seconds

ReaderWriterSafe 28 25 20/26/35
0.04/11.17

Seconds

FairBridge 61 57 90/81/104
0.33/19.86

Seconds

FairAllocator 60 54 14/21/29
0.12/7.09

Seconds

Table 5.2 and Table 5.3 show the results collected from testing each of the

original monitors and mutants in each case study. In each case study a number of the

mutants tested did not raise a property violation during the execution of their test. In the

case of the BoundedBuffer, 18 of the undetected mutants contained a mutation in the

source that affected the value of either the in, out or value variables. The in and out

variables are used to manage the storage and retrieval of the data items being deposited

and withdrawn from the buffer and do not affect the synchronization behavior of the

monitor. The value variable is used to temporarily store the value of a data item being

deposited and withdrawn from the buffer and likewise does not affect the

synchronization of the buffer. Since the properties being verified are designed

specifically to detect synchronization failures it is expected that these mutants were not

detected. The remaining undetected mutants in each of the case studies were found to

implement a synchronization behavior that is equivalent to their original monitor and

thus would violate the properties being verified.

 72

When we compared the results of the BoundedBuffer and ReaderWriterSafe

case studies to the results generated by the MonitorExplorer [29] for these monitors the

following observations were made. The MonitorExplorer results for the original

BoundedBuffer explored 33 states and 47 transitions and took a total of 2.2 seconds and

the results for the original ReaderWriterSafe explored 75 states and 106 transitions and

took 3.65 seconds. In both cases our tool explored less states, however, executed a

larger number of transitions. Due to the fact that both tests did not use equivalent

hardware, our approach does not use data member abstraction in our state representation

and that no information was provided regarding the number of paths explored no

conclusions can be drawn from these observations.

 73

CHAPTER 6

 CONCLUSION AND FUTURE WORK

In this thesis we have presented a dynamic framework for testing the

synchronization behavior of Java monitors. This framework uses a state-space

exploration based approach that is driven by dynamically created sequences of

synchronized method execution calls. Each state visited in the state-space represents the

monitor under test with no thread executing in its critical section and all enabled

transitions for a state simulate possible thread interactions that could occur given the

current monitor state. By creating new threads on the fly as needed, each execution

sequence simulates a possible combination of thread interaction with the monitor, which

in turn exercises a combination of the monitor’s synchronization behavior. This

simplifies testing of a Java monitor by relieving the tester of having to design test cases

that exercise the synchronization behavior and also consider the non-deterministic

arrival of threads to the entry queue. Because each synchronized method executed may

affect the state of monitor data members as well as the monitor queues, verification that

each state reached is consistent with the expected synchronization behavior of the

monitor must be ensured using application-specific properties provided by the tester. If

these properties are not accurate or do not sufficiently cover the expected

synchronization behavior of the monitor, execution of a test may result in a false

positives that will be difficult for the tester to detect.

 74

The framework makes several assumptions about the monitor under test that

currently limit the type of monitors that can be tested. Each method that is to be

executed during a monitor test must be a synchronized method. Condition

synchronization implemented in each method must currently use only a combination of

wait, notify and notifyAll synchronization primitives. No support is current available for

synchronized blocks, timed waits or synchronization constructs added as of Java 5.0. As

a result, we would propose extending the framework to add support for these features,

as this will allow the approach to test industry level monitor implementations. Data

member captured at each state reached must be of a primitive data type. This reduces

the level of user configuration, however, limits the state-space explored in cases where

the synchronization behavior of the monitor is dependent on the value of a complex data

type or on an object instance. We would propose an extension to the data member

representation that would allow the user the option of data abstraction in situations

where data members are not of a primitive data type. This additionally could be used to

represent data values that may iterate over a large range of values yet only specific

values are significant to evaluating synchronization behavior of the monitor given the

current configuration. Currently, the approach handles these situations by either

allowing the exploration to exercise all possible values for these types of data members

or terminate a path based on user defined bound. By terminating a path based on a fixed

upper or lower bound, the approach does not have the flexibility to explore additional

states along the current path, which could be reachable using data abstraction.

 75

The framework is currently designed to test a single monitor instance in

isolation. Though a monitor is designed to be accessed by multiple threads at the same

time, due to the mutual exclusion provided by the synchronized methods, only one

thread will be allowed to execute within the critical section at any given time. As a

result, the framework currently assumes that all thread interaction with encapsulated

data members within the critical section (i.e., data primitives, complex data types or

object references) are thread safe. Since deterministic execution is implemented by a

sequential execution of threads within the critical section, there is no benefit in

executing a test on a multi-processor hardware.

Though the framework is designed to interact with a single monitor instance, it

could be extended to test multiple instance of a monitor in parallel. This extension could

be used to verify the synchronization behavior of the monitor when simulating its

execution on a multi-processor or distributed system where multiple instances may

interact with common resources. Such an extension would require the exploration driver

to provide deterministic execution of multiple instances of the monitor that simulate

different interleavings of thread interaction across each monitor instance. It would still

be assumed however that each data member that could be accessed within the critical

section provides a thread safe implementation. It should be noted here that since the

approach focuses on detecting failures in the synchronization behavior of the monitor,

detecting faults due to thread interaction with shared data members between the monitor

instances would be limited to those shared data members that affect the synchronization

 76

behavior of the monitor. In the event that a shared data member is not thread safe, the

framework may return false positives or false negatives due to race conditions.

This framework has demonstrated success in detecting synchronization failures

in each of the case studies described in Section 5. The only mutants that were not

detected either did not affect the synchronization behavior of the monitor or

implemented an equivalent synchronization behavior to that of the original monitor.

This level of detection was the same as that achieved by the MonitorExplorer [29] when

testing the BoundedBuffer and ReaderWriterSafe monitors in the first two case studies.

To discuss the potential costs of our approach against that of the

MonitorExplorer, we must consider the effect of the difference between the two. The

key differences between these two approaches are in the way states and transitions are

defined and the rules used for introducing new threads. In the MonitorExplorer,

transitions are defined at a level of granularity that is consistent with visible operations

of the monitor. Each executed transition therefore represents either a thread entering the

critical section, executing a notify/notifyAll or a wait, exiting the critical section or the

introduction of a new thread into the entry queue. In our approach, transitions represent

a thread entering the critical section, executing one or more operations within the

critical section and eventually exiting the critical section, either due to completion of the

method or having reached a wait operation. As a result of these differences, the states

visited in our approach represent a monitor at each time when no thread is executing

within the critical section while the MonitorExplorer may visit several states during the

execution a thread within the critical section. This reduction in the number of states

 77

visited during the execution of a thread in the critical section is offset by the differences

in state representation and enabled transitions that have a greater impact on the size of

the state-space that can be visited for each monitor.

Let us first consider the impact of the state representation used. In both

approaches data values defined by the user are captured at each state are and are

assumed to represent the data members that affect the synchronization behavior of the

monitor. The MonitorExplorer uses abstraction to represent the data values at each state

while our approach uses concrete values. As we mentioned previously, data abstraction

can offer a greater degree of flexibility during exploration of a path, which can allow an

approach to explore additional states that cannot be reached by explicit termination of a

path due to a data value having reached an upper or lower bound. A limitation in using

data abstraction is that based on the implementation of the monitor, there may be cases

in which several tests, each requiring a different initial configuration of the monitor, are

required to provide sufficient coverage. This can result when the data abstraction

chosen for a specific test configuration does not sufficiently explore the synchronization

behavior of the monitor. Therefore if the range of possible values each data member

will exercise is kept reasonable by the test configuration, capturing the concrete values

of the monitors can simplify the configuration process. In addition, the use of data

abstraction requires an understanding of the implementation to determine the abstract

values that will be used for each data member and tightly couples the test configuration

to the monitor’s implementation rather than its specification. Both approaches also use

thread abstraction to represent the state of select threads interacting with the monitor. In

 78

the MonitorExplorer the thread abstraction consists of abstract values assigned for three

aspects of the monitor. The first is an abstract value representing the thread currently

executing in the critical section. The second is an abstract value representing the next

thread in the entry queue that will be allowed into the critical section once it is empty.

The last is a type vector consisting of abstract values representing threads in the wait

queue. Each entry in the type vector maps to a executable synchronized method in the

test that contains at least one wait primitive and the abstract value assigned for each

entry is determined by whether there is at least one thread in the wait queue which has

reach one of the method’s wait primitives. In our approach the thread abstraction

represents the state of threads in both the entry queue and wait queue where each

abstract value assigned is based collective state of threads according to the last wait

primitive reached. Representing the state of threads based off the last wait point reached

provides a finer level of granularity than thread states defined at the method level,

however, can quickly result in a much larger state-space which must be bound by a test

configuration as it can result in state explosion. As an example, let’s consider that the

number of possible combinations for the thread abstraction used in each approach. For

the MonitorExplorer the combinations equal (M + 1)
2
* 2

Mw
 where M equals the number

of synchronized methods executed in each test and Mw equals the number of

synchronized methods executed in each test that contain at least one wait primitive. In

our approach the combinations equal 4
W
 where W equals the number of wait primitives

across all synchronized methods executed in each test. It should be noted that these

equations represent an upper bound on the number of states that can be visited based

 79

solely on the thread abstraction used in each state representation, however, not all of

these combinations will be reachable during a test of a monitor. If we consider a simple

case where each synchronized method executed during a test contains a single wait

primitive, the number of combinations for our approach will exceeded those of the

MonitorExplorer for a test with six or more methods. In situations where synchronized

methods contain a greater number of wait primitives, the number of combinations for

our approach will exceed that of the MonitorExplorer with a smaller number of

synchronized methods used in a test. This difference represents a significant cost that

can be incurred for more complex monitors, however, the potential benefit is that the

thread representation used is more sensitive to the implemented synchronization

behavior of the monitor and therefore will reflect a finer state of the monitor.

The enabled transitions in both approaches are designed to simulate different

possible thread interactions with the monitor during the state-space exploration. At each

state where no thread is executing within the critical section, the enabled transitions in

both approaches contain transitions to represent the entry of any threads that have been

awakened along the current path into the critical section or in the event that no

awakened threads are in the entry queue, transitions representing the introduction of a

new thread for each synchronized method that will compete for entry into the critical

section. The difference between the two approaches is the rules used to determine when

transitions will also be included to represent the possibility of new threads being

allowed to compete with awaken threads for entry into the critical section. In the

MonitorExplorer the decision to introduce new threads to compete with awakened

 80

threads is made at each state reached during the exploration where a notify/notifyAll is

the next visible operation to be executed by the thread in the critical section. In this

situation the enabled transitions will include transitions for each awakened thread as

well as transitions to introduce competing threads for each possible synchronized

method that can be executed during the test. This results in the possibility of a single

new thread being allowed to enter into the critical section before an awakened thread is

allowed to re-enter the critical section. This differs from our approach that allows a

variable number of possible competing new threads to be allowed into the critical

section before an awakened new thread is allowed to re-enter. This results in a larger

number of possible paths that can be explored for each awakened thread, which will

increase the cost for each test as the complexity of the conditional synchronization

increases.

Given the differences in the way the MonitorExplorer and our approach define

states and transitions, it is impossible to perform a one-to-one comparison between the

two approaches. Each difference that we have described represents costs that can be

incurred during the state-space exploration of the monitor with the potential benefit of

added coverage in specific situations. The cost to benefit ratio will largely be dependent

on the complexity of the monitor under test as well as the test configuration defined by

the user. Due to differences in testing hardware, the type and number of mutants tested

in the two overlapping case studies and the type of data recorded, there is a lack of data

to make any further analytical observations between these two approaches. Therefore

we would like to conduct additional case studies to further evaluate the coverage and

 81

performance of this approach against monitors of increasing levels of complexity both

in terms of methods executed during a test but also in terms of the condition

synchronization implemented by each method. As part of this effort we would like to

compare the fault detection and performance costs of our approach with that of the

MonitorExplorer to determine whether our potential added coverage justifies the

inherent added costs.

 82

APPENDIX A

BOUNDEDBUFFER CASE STUDY

 83

Correct BoundedBuffer Source Code

import edu.uta.monitortester.hook.SyncHook;

public class BoundedBuffer {

 private int fullSlots = 0;

 private int capacity = 0;

 private int[] buffer = null;

 private int in = 0, out = 0;

 public BoundedBuffer(int bufferCapacity)

 {

 capacity = bufferCapacity;

 buffer = new int[capacity];

 }

 public synchronized void deposit(int value)

 {

 while(fullSlots == capacity)

 {

 try

 {

 SyncHook.waitThread(this, "deposit_wait_1");

 }

 catch(InterruptedException ex) {}

 }

 buffer[in] = value;

 in = (in + 1) % capacity;

 if (fullSlots++ == 0)

 SyncHook.notifyAllThreads(this, "deposit_notify_1");

 }

 public synchronized int withdraw()

 {

 int value = 0;

 while(fullSlots == 0)

 {

 try

 {

 SyncHook.waitThread(this, "withdraw_wait_1");

 }

 catch(InterruptedException ex) {}

 84

 }

 value = buffer[out];

 out = (out + 1) % capacity;

 if (fullSlots-- == capacity)

 SyncHook.notifyAllThreads(this, "withdraw_notify_1");

 return value;

 }

}

BoundedBuffer XML Configuration File

<?xml version="1.0"?>

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd">

<userprovided>

<factory>test.boundedbuffer.userprovided.BoundedBufferUserProvidedFactory</factor

y>

 <monitor>

 <method name="deposit" id="deposit">

 <parameterTypes>

 <parameterType>int</parameterType>

 </parameterTypes>

 <wait id="deposit_wait_1">

 <variable>fullSlots</variable>

 </wait>

 <notifyAll id="deposit_notify_1">

 <variable>fullSlots</variable>

 </notifyAll>

 </method>

 <method name="withdraw" id="withdraw">

 <parameterTypes>

 </parameterTypes>

 <wait id="withdraw_wait_1">

 <variable>fullSlots</variable>

 </wait>

 <notifyAll id="withdraw_notify_1">

 <variable>fullSlots</variable>

 </notifyAll>

 </method>

 </monitor>

</userprovided>

 85

APPENDIX B

READERWRITERSAFE CASE STUDY

 86

Correct ReaderWriterSafe Source Code

import edu.uta.monitortester.hook.SyncHook;

public class ReaderWriterSafe

{

 private int readers =0;

 private boolean writing = false;

 public synchronized void acquireRead() throws InterruptedException

 {

 while (writing)

 SyncHook.waitThread(this, "acquireRead_wait_1");

 ++readers;

 }

 public synchronized void releaseRead()

 {

 --readers;

 if(readers==0)

 SyncHook.notifyAllThreads(this, "releaseRead_notify_1");

 }

 public synchronized void acquireWrite() throws InterruptedException

 {

 while (readers>0 || writing)

 SyncHook.waitThread(this, "acquireWrite_wait_1");

 writing = true;

 }

 public synchronized void releaseWrite()

 {

 writing = false;

 SyncHook.notifyAllThreads(this, "releaseWrite_notify_1");

 }

}

ReaderWriterSafe XML Configuration File

<?xml version="1.0"?>

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd">

<userprovided>

 87

<factory>test.readerwritersafe.userprovided.ReaderWriterSafeUserProvidedFactory</fa

ctory>

 <monitor>

 <method name="acquireRead" id="acquireRead">

 <parameterTypes>

 </parameterTypes>

 <wait id="acquireRead_wait">

 <variable>readers</variable>

 <variable>writing</variable>

 </wait>

 </method>

 <method name="releaseRead" id="releaseRead">

 <parameterTypes>

 </parameterTypes>

 <notifyAll id="releaseRead_notify">

 <variable>readers</variable>

 <variable>writing</variable>

 </notifyAll>

 </method>

 <method name="acquireWrite" id="acquireWrite">

 <parameterTypes>

 </parameterTypes>

 <wait id="acquireWrite_wait">

 <variable>readers</variable>

 <variable>writing</variable>

 </wait>

 </method>

 <method name="releaseWrite" id="releaseWrite">

 <parameterTypes>

 </parameterTypes>

 <notifyAll id="releaseWrite_notifyAll">

 </notifyAll>

 </method>

 </monitor>

</userprovided>

 88

APPENDIX C

FAIRBRIDGE CASE STUDY

 89

Correct FairBridge Source Code

import edu.uta.monitortester.hook.SyncHook;

public class FairBridge

{

 private int nred = 0;

 private int nblue = 0;

 private int waitblue = 0;

 private int waitred = 0;

 private boolean blueturn = true;

 public synchronized void redEnter()

 throws java.lang.InterruptedException

 {

 ++waitred;

 while (nblue > 0 || waitblue > 0 && blueturn) {

 SyncHook.waitThread(this, "redEnter_wait_1");

 }

 --waitred;

 ++nred;

 }

 public synchronized void redExit()

 {

 --nred;

 blueturn = true;

 if (nred == 0) {

 SyncHook.notifyAllThreads(this, "redExit_notify_1");

 }

 }

 public synchronized void blueEnter()

 throws java.lang.InterruptedException

 {

 ++waitblue;

 while (nred > 0 || waitred > 0 && !blueturn) {

 SyncHook.waitThread(this, "blueEnter_wait_1");

 }

 --waitblue;

 90

 ++nblue;

 }

 public synchronized void blueExit()

 {

 --nblue;

 blueturn = false;

 if (nblue == 0) {

 SyncHook.notifyAllThreads(this, "blueExit_notify_1");

 }

 }

}

FairBridge XML Configuration File

<?xml version="1.0"?>

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd">

<userprovided>

 <factory>test.fairbridge.userprovided.FairBridgeUserProvidedFactory</factory>

 <monitor>

 <method name="redEnter" id="redEnter">

 <parameterTypes>

 </parameterTypes>

 <wait id="redEnter_wait_1">

 <variable>nblue</variable>

 <variable>waitblue</variable>

 <variable>blueturn</variable>

 </wait>

 </method>

 <method name="redExit" id="redExit">

 <parameterTypes>

 </parameterTypes>

 <notifyAll id="redExit_notify_1">

 <variable>nred</variable>

 </notifyAll>

 </method>

 <method name="blueEnter" id="blueEnter">

 <parameterTypes>

 </parameterTypes>

 <wait id="blueEnter_wait_1">

 <variable>nred</variable>

 </wait>

 </method>

 91

 <method name="blueExit" id="blueExit">

 <parameterTypes>

 </parameterTypes>

 <notifyAll id="blueExit_notify_1">

 <variable>nblue</variable>

 <variable>waitred</variable>

 <variable>blueturn</variable>

 </notifyAll>

 </method>

 </monitor>

</userprovided>

 92

APPENDIX D

FAIRALLOCATOR CASE STUDY

 93

Correct FairAllocator Source Code

import edu.uta.monitortester.hook.SyncHook;

public class BoundedOvertakingAllocator

{

 private int available;

 private int turn = 0;

 private int next = 0;

 private int bound;

 private int overtaken = 0;

 public BoundedOvertakingAllocator(int n, int b)

 {

 available = n;

 bound = b;

 }

 public synchronized void get(int n)

 throws java.lang.InterruptedException

 {

 int myturn = turn;

 ++turn;

 boolean overtakenMe = false;

 while (n > available || overtaken > 0 && !overtakenMe) {

 SyncHook.waitThread(this, "get_wait_1");

 if (next >= myturn + bound && !overtakenMe) {

 overtakenMe = true;

 ++overtaken;

 }

 }

 if (overtakenMe) {

 --overtaken;

 }

 ++next;

 available -= n;

 SyncHook.notifyAllThreads(this, "get_notify_1");

 }

 public synchronized void put(int n)

 94

 {

 available += n;

 SyncHook.notifyAllThreads(this, "put_notify_1");

 }

}

FairAllocator XML Configuration File

<?xml version="1.0"?>

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd">

<userprovided>

 <factory>test.fairallocator.userprovided.FairAllocatorUserProvidedFactory</factory>

 <monitor>

 <method name="get" id="get">

 <parameterTypes>

 <parameterType>int</parameterType>

 </parameterTypes>

 <wait id="get_wait_1">

 <variable>available</variable>

 <variable>next</variable>

 </wait>

 <notifyAll id="get_notify_1">

 </notifyAll>

 </method>

 <method name="put" id="put">

 <parameterTypes>

 <parameterType>int</parameterType>

 </parameterTypes>

 <notifyAll id="put_notify_1">

 </notifyAll>

 </method>

 </monitor>

</userprovided>

 95

APPENDIX E

BOUNDEDOVERTAKINGALLOCATOR CASE STUDY

 96

Correct BoundedOvertakingAllocator Source Code

import edu.uta.monitortester.hook.SyncHook;

public class BoundedOvertakingAllocator

{

 private int available;

 private int turn = 0;

 private int next = 0;

 private int bound;

 private int overtaken = 0;

 public BoundedOvertakingAllocator(int n, int b)

 {

 available = n;

 bound = b;

 }

 public synchronized void get(int n)

 throws java.lang.InterruptedException

 {

 int myturn = turn;

 ++turn;

 boolean overtakenMe = false;

 while (n > available || overtaken > 0 && !overtakenMe) {

 SyncHook.waitThread(this, "get_wait_1");

 if (next >= myturn + bound && !overtakenMe) {

 overtakenMe = true;

 ++overtaken;

 }

 }

 if (overtakenMe) {

 --overtaken;

 }

 ++next;

 available -= n;

 SyncHook.notifyAllThreads(this, "get_notify_1");

 }

 public synchronized void put(int n)

 97

 {

 available += n;

 SyncHook.notifyAllThreads(this, "put_notify_1");

 }

}

BoundedOvertakingAllocator XML Configuration File

<?xml version="1.0"?>

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd">

<userprovided>

<factory>test.boundedovertakingallocator.userprovided.BoundedOvertakingAllocatorU

serProvidedFactory</factory>

 <monitor>

 <method name="get" id="get">

 <parameterTypes>

 <parameterType>int</parameterType>

 </parameterTypes>

 <wait id="get_wait_1">

 <variable>available</variable>

 <variable>next</variable>

 <variable>overtaken</variable>

 </wait>

 <notifyAll id="get_notify_1">

 </notifyAll>

 </method>

 <method name="put" id="put">

 <parameterTypes>

 <parameterType>int</parameterType>

 </parameterTypes>

 <notifyAll id="put_notify_1">

 </notifyAll>

 </method>

 </monitor>

</userprovided>

98

REFERENCES

[1] Artho, C. & Biere, A. "Applying static analysis to large-scale, multi-

threaded Java programs," In Proc. of the 13th Australian Software Engineering

Conference, pp.68–75, 2001.

[2] Barrett, C., Dill, D. & Levitt, J. “Validity Checking for Combinations of

Theories with Equality,” In Procs. of the 1st International Conference on Formal

Methods in Computer-Aided Design, vol. 1166, pp.187-201, 1996.

[3] Carver, Richard H. & Tai, Kuo-Chung, “Replay and Testing for Concurrent

Programs,” IEEE Software, pp.66-74, 1991.

[4] Carver, Richard H. & Tai, Kuo-Chung. Modern Multithreading, John Wiley

& Sons, 2005, ISBN: 0-471-72504-8.

[5] Clarke, E.M., Emerson, E.A. & Sistla, A.P. "Automatic verification of finite-

state concurrent systems using temporal logic specifications," ACM Transactions on

Programming Languages and Systems, 8(2):244–263, 1986.

[6] Clarke, E.M., Grumber, O. & Peled, D.A. “Model Checking,” MIT Press,

USA, 1999.

[7] Cok, D.R., & Kiniry, J. "ESC/Java2 : Uniting ESC/Java and JML. Progress

and issues in building and using ESC/Java2 and a report on a case study involving the

use of ESC/Java2 to verify portions of an internet voting tally system," Lecture Notes in

Computer Science, 3362:108-128, 2005.

99

[8] Corbett, James C., Dwyer, Matthew B., Hatcliff, John, Laubach, Shawn,

Pasareanu, Corina S., Robby, & Zheng, Hongjun. “Bandera: Extracting Finite-state

Models from Java Source Code,” In Proc. 22nd International Conference on Software

Engineering (ICSE), pp.439-448, 2000.

[9] Demartini, C., Iosif, R. & Sisto, R. “Modeling and Validation of Java

Multithreaded Applications using SPIN,” In Proc. of the 4th SPIN Workshop,

November 1998.

[10] Detlefs, D., Nelson, G. & Saxe, J.B. "A theorem-prover for program

checking," Technical Report HPL-2003-148, HP Systems Research Center, 2003.

[11] ESC/Java2 Website, http://secure.ucd.ie/products/opensource/ESCJava2/.

[12] FindBugs Website, http://findbugs.sourceforge.net/.

[13] Godefroid, P. “Model Checking for Programming Languages using

VeriSoft,” In Proc. of the 24th ACM Symposium on Principles of Programming

Languages, pp. 174-186, 1997.

[14] Gosling, J., Joy, B., Steele, G. & Bracha, G. “The Java Language

Specification, Third Edition”, Prentice Hall, 2005.

[15] Guttag, J., Horning, J., Garland, S., Jones, K., Modet, A. & Wing, J.

“Larch: Languages and Tools for Formal Specification,” Springer-Verlag, 1993.

[16] Hamlet, R.G. "Testing programs with the aid of a compiler," IEEE

Transactions on Software Engineering, 3(4):279-290, 1977.

[17] Hansen, P.B. “Reproducible Testing of Monitors,” Software Practice and

Experience, vol. 8, pp.721-729, 1978.

100

[18] Hansen, P.B. “The programming language Concurrent Pascal,” IEEE

Trans. On Software Engineering, 1(2):199-207, 1975.

[19] Harvey, C. & Strooper, P. “Testing Java monitors through deterministic

execution,” In Proc. of Australian Software. Engineering Conference, pp.61-67, 2001.

[20] Hatcliff, J. & Dwyer, M. "Using the Bandera tool set to model-check

properties of concurrent Java software," In Proc. of the 12th International Conference

on Concurrency Theory, pp.39–58, 2001.

[21] Havelund, K. & Pressburger, Tom. “Model Checking Java Programs Using

Java PathFinder,” International Journal on Software Tools for Technology Transfer

(STTT), 2(4): 366-381, 2000.

[22] Holzmann, G.J. “The model checker SPIN,” IEEE Transactions on

Software Engineering, 23(5):279–295, 1997.

[23] Holzmann, G.J. “The SPIN Model Checker,” Addison Wesley, 2004.

[24] Hovemeyer, D. & Pugh, W. “Finding bugs is easy,”

http://findbugs.sourceforge.net/docs/findbugsPaper.pdf.

[25] Java PathFinder Website, http://javapathfinder.sourceforge.net/.

[26] Jlint Website, http://artho.com/jlint/.

[27] JML Website, http://www.cs.iastate.edu/~leavens/JML/.

[28] Kim, S. K., Wildman L. & Duke, R. “A UML Approach to the Generation

of Test Sequences for Java-based Concurrent Systems,” In Proc. Of the Software

Engineering Conference, pp.100-109, 2005.

101

[29] Lei, Y., Carver, R., Kung D., Hernandez, M. & Gupta, V.. “A State

Exploration-Based Approach to Testing Java Monitors,” 17th International Symposium

on Software Reliability Engineering, pp 256-265, 2006.

[30] Lichtenstein, O. & Pnueli, A. “Checking that finite state concurrent

programs satisfy their linear specifications,” In Proc. of the 12th ACM Symposium on

Principles of Programming Langues, pp.97-107, 1985.

[31] Lipton, R.J., DeMillo, R.A. & Sayward, F.G. "Hints on test data selection:

Help for the practicing programmer," IEEE Computer, 11(4):34-41, 1978.

[32] Long, B., Hoffman, D., & Strooper, P. “Tool support for testing concurrent

Java components”, IEEE Trans. On Software Engineering, 29(6):555-566, 2003.

[33] Magee, J. & Kramer, J. “Concurrency: State Models & Java Programs”,

John Wiley & Sons, 1999.

[34] Ma, Y., Offutt, J. & Kwon, Y. “MuJava: An Automated Class Mutation

System,” Journal of Software Testing, Verification and Reliability, 15(2):97-133, 2005.

[35] Owre, S., Rushby, J., Shankar, N. & von Henke., F. "Formal verification

for fault-tolerant architectures: Prolegomena to the design of PVS," IEEE Transactions

on Software Engineering, 21:107–125, 1995.

[36] Paulson., L.C. "Isabelle: the next 700 theorem provers," Logic and

Computer Science, pp. 361–386, Academic Press, 1990.

[37] Quielle, J.P. & Sifakis, J. “Specification and verification of concurrent

systems in CESAR,” In Proc. of the 5th International Symposium on Programming, vol.

137, pp.337-351, 1981.

102

[38] Savage, S., Burrows, M., Nelson, G. & Sabalvarro, P. “Eraser: A Dynamic

Data Race Detector for Multithreaded Programs,” ACM Trans. On Computer Systems,

15(4):391-411, 1997.

[39] The Java Virtual Machine Specification, Second Edition,

http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html.

[40] Vardi, M.Y. & Wolper, P. “An automata-theoretic approach to automatic

program verification,” In Proc. of the 1st Symposium on Logic in Computer Science,

pp.322-331, 1986.

[41] Visser, W., Havelund, K., Brat, G. & Park, S. "Model checking programs,"

In Proc. of the 15th International Conference on Automated Software Engineering,

pp.3-12, 2000.

[42] Wildman, L., Long, B. & Strooper, P. "Dealing with Non-Determinism in

Testing Concurrent Java Components," 12th Asia-Pacific Software Engineering

Conference (APSEC), pp.393-400, 2005.

[43] µJava Home Page, http://ise.gmu.edu/~ofut/mujava/.

103

BIOGRAPHICAL INFORMATION

Andres Yanes received his M.S. in Computer Science and Engineering from the

University of Texas at Arlington in May 2007 and his B.S. in Biomedical Engineering

from Boston University in May 1997. His research interests include software testing

and software engineering.

