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ABSTRACT 

 

A DYNAMIC FRAMEWORK FOR TESTING THE SYNCHRONIZATION 

BEHAVIOR OF JAVA MONITORS 

 

Publication No. ______ 

 

Andres Yanes, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Yu Lei  

A Java monitor is a specialized class that is used to synchronize the behavior of threads 

in a Java program. The monitors in a Java program must be adequately tested to ensure 

the correctness of the program. In this thesis we propose a dynamic framework in which 

a Java monitor is tested by exploring its state space in a depth-first manner. The state 

exploration procedure consists of dynamically creating method sequences to exercise 

the possible synchronization behavior of the monitor. During exploration, new threads 

will be created on the fly to simulate different scenarios that result from threads 

reaching the monitor at different times. Each state reached is represented by a collection 

of data members that have been identified as having an affect the synchronization 

behavior of the monitor as well as an abstraction of the thread states. 



 v

A prototype tool that implements our framework has been built and has been 

used to evaluate the effectiveness of our approach in five case studies. In each case 

study, mutations to the original source code of a Java monitor are introduced to create 

variants that represent common mistakes made by programmers. The experimental 

results show that our framework is effective in detecting the synchronization failures in 

the case studies. 
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CHAPTER 1 

 INTRODUCTION 

 

Today, a large number of software solutions are multi-threaded. Many of our 

desktop applications, such as word processors and web browsers, require multiple tasks 

executing concurrently to implement a seamless solution. Company services, such as 

purchasing or scheduling, use web-based, multi-tier solutions that must scale to allow 

millions of simultaneous users to perform transactions that access shared data.  

Though multi-threading enables the creation of complex systems, it introduces 

complexities in their development. When multiple threads are executed within a system, 

the execution order and time allotted for each is non-deterministic. As a result, they may 

display different behaviors from execution to execution. This non-determinism must be 

managed by means of thread synchronization to ensure that threads behave as expected. 

Thread synchronization can be grouped into two general categories, mutual 

exclusion and condition synchronization [33]. Mutual exclusion is used to ensure that 

when two or more threads are attempting to access shared data each thread’s access 

operation is atomic. One way to implement this behavior is by means of a critical 

section. A critical section is a block of code that can only be executed by a single thread 

at any given time. Condition synchronization is used when a thread should only be 

allowed to proceed if a specified condition has been satisfied.  
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1.1 Java Monitors 

The Java language [14][39] uses a monitor-based [18] approach to thread 

synchronization. A Java monitor is a specialized class that is used to encapsulate 

application specific thread synchronization logic in a Java program. This class consists 

of one or more synchronized methods, each of which is a critical section of the monitor 

and guarded by a single lock object. This lock object is implicitly acquired and released 

each time a thread enters and exits a critical section. A model of a Java monitor can be 

seen in Figure 1.1. 

Figure 1.1 Model of a Java Monitor 

Once a thread is executing in a synchronized method of the monitor, all other 

threads attempting to execute a synchronized method must wait in the monitor’s entry. 

A thread that has entered a critical section, may exit the critical section either by 

successful completion of its method or by making a call to one of the wait primitives. If 

a wait primitive is called, the thread must release its lock after which it is moved to the 

monitor’s wait queue. After a thread releases its lock and exits the critical section, a 
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thread is selected from the entry queue, allowing it to acquire the lock and enter the 

critical section. 

For a threads to exit the wait queue, another thread executing in a critical 

section must make a notify or notifyAll primitive call. If the wait queue is not empty at 

the time these calls are made, one or more threads are moved from the wait queue to the 

entry queue before execution resumes in the calling thread. This type of signaling 

discipline is known as signal-and-continue. The only difference between these 

primitives is that the notify call will result in the selection of a random thread from the 

wait queue, while a notifyAll call affects all threads in the wait queue. It is also possible 

for a thread to exit the wait queue if it called a wait primitive with a timeout argument. 

In this event, if the thread is still waiting after the timeout period has expired, it will be 

moved to the entry queue. We will not address this type of wait primitive in our 

approach.  

1.2 Testing Java Monitors 

Unlike other Java classes, Java monitors are intended to be accessed by multiple 

threads at the same time. Though these threads will reach the monitor’s entry queue in a 

specific order, this ordering is non-deterministic. In addition, monitors are passive 

objects that have no inherent thread of execution. These two properties make testing 

Java monitors difficult. To verify a monitor’s synchronization behavior, test cases 

consisting of a sequence of method calls must be created that simulate possible thread 

interaction with the monitor.  
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Test case creation for this problem domain is conceptually challenging. The 

overall goal is to create method call sequences that collectively provide sufficient 

synchronization coverage to allow the tester to verify that the monitor’s implementation 

enforces its expected behavior. However, to determine the level of coverage needed, 

test cases must address the following issues. Consider that a test case will start with one 

thread that will be used to call each method in the test sequence. This will continue until 

execution reaches a wait primitive that results in the thread being moved to the wait 

queue. Once this occurs, a new thread must be created to continue the test case 

sequence.  

This behavior is expected, as monitors are designed to allow threads to proceed 

within a synchronized method as long as certain conditions are satisfied. If one or more 

of these conditions are not satisfied, the thread must wait until another thread changes 

the state of the monitor and satisfies the condition. In complex monitors, conditions 

may be spread across multiple methods whose combinations can only be exercised with 

multiple threads. In these cases, some synchronization faults can only be detected with a 

certain minimum number of threads. So an important question is, for a given monitor, 

how many threads will be needed to provide sufficient coverage? 

In addition, once a thread is awoken and allowed to re-enter the critical section, 

it is not guaranteed to find the conditions it was waiting on to still be satisfied. This is 

due to the fact that an awakened thread does not re-start execution immediately. Instead, 

it has to compete with other threads to re-enter the critical section. Therefore, it is 

possible that one or more threads could enter the critical section and falsify the 
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condition, before the awoken thread is able to re-enter the critical section. In an open 

system, there are an infinite number of possible sequences that can occur before an 

awoken thread is allowed to re-enter, each having the potential to affect the 

synchronization behavior. Given this, how many test sequences combinations must be 

created to cover the effect of this non-determinism on the synchronization of both new 

and awoken threads? 

In this thesis we present a framework that dynamically creates and executes test 

sequences that explore the state-space of a Java monitor. Each test sequence is created 

according to a systematic process that guarantees reproducibility across multiple test 

executions of the same monitor. This requires the framework to override the Java 

scheduler behavior as well as the notify, notifyAll and wait primitives. To consider all 

possible competing threads that could gain entry into the monitor, the framework will 

compile a list of candidates that consists of each monitor method as well as any 

awakened threads. The framework then selects the first candidate and allows it to enter 

the critical section. This process will repeat at each state reached until either the current 

state has been previously visited or a violation of the monitor’s expected 

synchronization behavior is detected. If a previous state is reached, the current sequence 

is terminated and the framework will backtrack to the previous state. After a backtrack, 

the scheduler will retrieve the candidate list for the current state and select the next 

candidate for execution. If execution of a test sequence requires more threads than are 

currently available, new threads will be created on the fly. In this manner, the test 

sequences are created according to a depth-first search of competing candidate threads, 
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each exploring one aspects of the synchronization behavior that could be exercised by 

the monitor.  

A major concern of this type of approach is the state-space explosion problem. 

In our framework, the monitor state is represented by the value of some selected data 

and an abstraction of select thread states. The threads used in the thread abstraction 

consist of those found in the wait queue as well as any threads attempting to re-enter the 

critical section after being moved from the wait queue to the entry queue. The 

abstraction groups threads according to the last wait primitive executed, and assigns 

each group an abstract value. If a group consists of threads currently in the wait queue, 

the assigned value is WAITING, while a group consisting of threads found in the entry 

queue is assigned the value ENTERING. If a group consists of threads found in both 

queues, the value assigned is BOTH. Using this abstraction reduces the granularity of 

the thread information, resulting in fewer states to be visited. In addition, the framework 

incorporates a configuration feature that allows sequences to be terminated when 

specific values or range of values have been reached.  This feature can be used to reduce 

the number of states visited as well as restrict the sequencing of method calls that 

require a specific ordering. 

A mutation-based approach was used to evaluate this framework using five 

monitor case studies. In each case study, mutants were created by applying one of two 

categories of mutation to the original source code. The µJava [34] tool was used to 

create mutants that introduce mutations representative of traditional mistakes made by 

programmers. In addition, mutants were created which change the behavior of the 
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synchronization primitives used in the monitor. The results gathered from executing 

these mutants show that the framework is effective in detecting these mutations.  

Our contributions in this thesis are as follows: 

• We have created a new approach based on the dynamic framework of the 

MonitorExplorer tool [29]. The approach redefines states, transitions and rules 

used to introduce new threads during the exploration of a monitor’s state space. 

As a result, we have increased the state space and number of paths that can be 

visited during each monitor test. 

• We have created a prototype tool that implements the approach. 

• We have performed an initial evaluation of our approach using our prototype 

tool. 

1.3 Thesis Outline 

Chapter 1 introduces the topic of concurrent programming and thread 

synchronization. A conceptual model of a Java monitor is then given followed by an 

explanation of a monitor’s behavior as threads interact with its synchronized methods. 

The difficulties in testing a Java monitor are then discussed followed by a description of 

how our framework approaches testing a Java monitor.  

Chapter 2 discusses other related work in the areas of monitor testing and state-

space exploration. This discussion opens with a proposed methodology for analyzing 

monitor precondition, creating test cases to exercise the preconditions and execution of 

the test cases. Several approach are then described that use this methodology in several 

languages. These approaches use a framework that allows for deterministic execution. 
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In addition, a framework similar to the one proposed in this thesis is described. The 

discussion ends with an overview of testing approaches that have used state-space 

exploration for testing concurrent components. 

Chapter 3 details the state-space exploration approach used in our framework to 

test Java monitors. This begins with a discussion of core concepts used in our state-

space exploration and how they are used to configure the framework to detect 

application specific properties of the monitor being tested. This is followed by a 

detailed description of the state-space algorithm that shows how the core concepts 

described above are used to create the dynamic test sequences that explore the monitor 

synchronization behavior. An example is then presented using a bounded buffer monitor 

that has been modified to contain a synchronization fault. This example shows how the 

fault is detected through the exploration of the monitor’s state-space using our 

approach.   

Chapter 4 describes the design of the prototype tool created to implement our 

approach. The first section describes the interfaces defined in the UserProvided 

package. These interfaces must be implemented by the tester and provide the 

application specific components used during the state-space exploration. The next 

section describes the class and event interface defined in the Hook package. This 

package is used by the framework to intercept notify, notifyAll and wait primitive calls. 

The last section provides a description of the high level classes that make up the 

prototype tool framework. The description includes the steps a tester must take to 

initialize the framework as well as the steps required to execute a monitor test.       
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Chapter 5 discuses the experimental design used to evaluate the prototype tool. 

The mutation-based approach used is described as well as the different type of mutants 

created. A description is given of the hardware used to test each mutant. The results for 

each of the five monitors used in our case studies are then described with a summary of 

their expected synchronization behavior and a presentation and analysis of the their 

results. 

Chapter 6 provides a summary of the framework current abilities and 

limitations. Based on the observations from each case study performed, several goals 

for future work are proposed that include using an abstractor for the data members in 

the state representation, extending the framework to support the full set of 

synchronization primitives supported by Java 1.5 and further evaluation of our approach 

that focuses on performance and the effectiveness in detecting synchronization failures 

in more complex monitors.  
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CHAPTER 2 

 RELATED WORK 

 

In this section we will review research related to testing monitors and 

concurrent programs. We will open with general approaches that can be used to test 

monitors and follow up with a discussion of those approaches specifically designed to 

test monitors implemented in Java. This will be followed by a review of approaches that 

use state-space exploration to test the design and implementation of concurrent 

programs and ends with an overview of tool support that can be used to verify varying 

degrees of Java synchronization. 

In [17], Hansen introduced a systematic methodology for testing Pascal 

Monitors. This methodology involves four steps. The first is to inspect each monitor 

method to determine a set of preconditions that will exercise each path in the method at 

least once. Next a test sequence consisting of monitor method calls is created that 

exercises each precondition identified in the previous step at least one time. The third 

step is to create a driver to execute the test case using threads to execute each method 

called in the sequence. To ensure correct ordering of threads in the driver, a clock 

monitor is used that synchronizes the threads. The last step is to execute the driver and 

compare the output with the expect output of the monitor.  

Carver and Tai presented an approach in [3][4], which generalizes Hansen’s 

methodology to allow for deterministic execution and replay of concurrent programs 
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using either an implementation-based or language-based tool. Test sequences are 

created based on feasible synchronization sequences that are representative of the 

synchronization constructs available in the programming language begin used. Using 

these sequences, the test program is transformed by the tool to ensure the correct 

sequence of events. In addition, during normal execution of a concurrent program 

synchronization sequences are recorded that capture the synchronization events that 

occur. Using these sequences, the execution can be replayed to allow for debugging or 

regression testing. Examples of how this approach could be used to testing monitors and 

semaphores were given. 

Hansen’s methodology was also adapted to test Java monitors [19][32][42]. 

Noting the differences between Java and Pascal synchronization constructs, the 

preconditions identified in the first step of Hansen’s methodology was extended to 

ensure loop coverage and consideration of the effect of signaling during execution for 

different numbers and types of threads in the wait queue. The reason for the first 

extension is based on the fact that since Java does not provide multiple condition 

queues, wait primitives are usually put inside a loop construct so that a thread reentering 

the critical section can verify that the condition it was waiting on is still satisfied. A tool 

called ConAn was also provided to automate the third and fourth steps based on the test 

sequence calls identified from the first and second steps.  

To assist in creating test sequences an approach was presented in [28] that 

requires a formal specification using extended UML state diagrams that captures the 

system functionality and the concurrency behavior. Using this specification, state 



 

 12

machines are generated via model checking that can then be transformed into test 

sequence usable by tools such as ConAn.   

In each of these approaches, the first two steps require manual analysis of the 

monitor to derive the preconditions and test cases. This process can be time consuming 

and produce incomplete or incorrect results if the tester does not fully identify the 

necessary preconditions or introduces errors in the test created. Because our approach 

dynamically creates test sequences by simulating different thread combinations that can 

be executed as a monitor is used, this potential for user error is minimized and test cases 

can consider more than one possible sequence of method calls that can occur. This is 

important as synchronization failures will often times occur because the implementation 

of a monitor did not consider a combination of thread interactions that may occur due to 

the non-deterministic arrival of threads to the entry queue. 

An alternative tool called MonitorExplorer was described in [29]. This tool uses 

a state-space exploration based approach to dynamically evaluate different execution 

sequences through a monitor. This tool allows for monitors to be tested in isolation and 

allows a user to define synchronization behavior properties that must be verified at each 

state reached during exploration. A unique property of this approach is that threads are 

created on the fly as needed to support the simulation of different types threads trying to 

compete in the entry queue for entry into the critical section. The approach described in 

this thesis uses this same framework to test a Java monitor and we would like to ensure 

that full credit is given for its novel approach. States visited during exploration are 

represented using data member and wait and entry queue abstraction. Using this state 
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representation allows each path explored to be bound by the constraints introduced in 

the abstraction. There are three differences between this approach and the one we 

present. The first is the manner in which sates and transitions are defined. The second is 

the state representation used to capture each state and the last is the rules used to 

introduce new threads. These differences are discussed in detail in Chapter 5. 

Other state-space exploration approaches have been presented for testing 

concurrent programs. Model checking is one such type of approach that is used to 

analyzing the correctness of a program and traditionally is performed at the design 

level. Using a design or requirements for a program, a formal abstract model is created 

that is a simplified representation of a specific part of the program being evaluated. 

These models are often times based on finite state machines or call graphs [5][6] that 

express aspects of the design’s control flow or data flow. Using this model and a 

specification that defines a set of well-defined properties of the model most commonly 

expressed in temporal logic as input, tools such as SPIN [22][23] can be used to explore 

the model’s state-space and evaluate the properties. Success in using this type of 

approach is often dependent on creating a model that is accurate in its representation 

and in the ability to express the properties of the model sufficiently. Different model 

checking methods have been proposed such as [30][40][37], which have increased the 

range and type of properties that can be expressed using this type of approach.  

As mentioned, these type of approach can be used to verify the property of 

concurrent programs at the design level, however recent efforts have also focused on 

extracting models based on the implementation code. The JCAT tool [9] was the result 
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of an effort directed at translating Java source code to Promela so a program’s 

implementation can be verified using SPIN. The tool incorporates several 

straightforward techniques to reduce state complexity and state explosion such as user 

provided annotations to reduce the number of variables defined in a state, static analysis 

to eliminate unused or redundant resources and atomic blocks around local variable 

access to reduce the number of states visited. Synchronization constructs are simplified 

by using template abstractions that still preserve the accuracy of the model. The 

Bandera toolset [8] also has a similar goal of extracting an abstract model from Java 

code. This tool, however, approaches model creation from a different direction by 

creating a new model for each property specified by the user as annotations in the code 

using the Bandera Specification Language. This approach allows the tool to optimize 

each model using abstract interpretation and program slicing to identify only those parts 

of the implementation that are necessary to verify the specified property. The created 

models and specifications can then be returned in one of several popular model-

checking languages. The first generation of Java PathFinder [21] is a tool also designed 

to convert Java source to Promela models. Assertions are provided to the tool for 

verification using annotation in the code. Though this tool currently only supports a 

subset of the Java language, it can model dynamically created objects, threads, 

synchronization constructs, exceptions as well as a significant amount of language 

constructs. In addition, deadlock detection and an abstraction workbench are also 

incorporated within the tool. No techniques are applied to the transformation phase that 
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reduce the model size, therefore the Java code under test must have a finite state-space 

and be intended more for unit testing.  

The second generation of Java PathFinder [25][41] takes a new direction on 

testing Java programs by using explicit state model checking supported by a custom 

JVM that interprets byte code instead of having to analyze source code. Several 

techniques have been added to the tool to address the state explosion problem and allow 

the tool to handle large or infinite state spaces. State compression and predicate 

abstraction using the Stanford Validity Checker [2], combined with annotations of user-

provided predicates are used to reduce the state complexity and size. In addition, partial 

order reductions guided by slicing information gather using the Bandera toolset are used 

to minimize the state-space. Runtime analysis is also included to detect data races using 

the Eraser algorithm [38] and deadlock using the LockTree algorithm [41]. Currently 

the tool does not support temporal logic model checking, however, support is planned 

for the future. Another tool that incorporates explicit state model checking is Verisoft 

[13]. This tool uses a state-less search algorithm that incorporates sleep sets and 

persistent sets to address state explosion and reduce the number transitions executed. 

Using this approach deadlocks and assertion violations can be detected.  

Several tools have also been presented that focus on testing Java at the 

implementation level using purely static analysis techniques. The Jlint tool [1][26] 

performs a global control flow analysis and local data flow analysis of Java byte code to 

identify faults in a Java program. Support for multithreaded code is provided in the 

analysis by means of call graphs and accessor dependency graphs but is limited to 
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detection of race conditions and deadlock. The use of this tool requires no special 

configuration from the user and is designed to be quick and efficient. A similarly easy 

to use tool is FindBugs. The FindBugs tool [12][24] performs an analysis of Java byte 

code and detects possible errors based on recognized bug patterns that represent 

common mistakes made when implementing solutions in Java. The collection of 

patterns as well as the static analysis performed by the tool includes support for 

detecting possible errors related to multithreaded programs. The types of 

synchronization errors that can be identified are related to general detection of possible 

deadlock, race conditions and conditional synchronization. As a result, the results 

generated by the tool must be analyzed by the user to evaluate whether any identified 

patterns corresponds to an implementation fault and thus requires time and knowledge 

of the software tested. The ESC/Java2 tool [7][11] combines static analysis and theorem 

proving approaches to test a Java program. In addition to detecting common runtime 

errors from a static analysis of the code, JML [27] based annotations, known as 

pragmas, can be inserted into the code to customize the type of checking performed 

during the analysis. These pragmas are verified using the Simplify [10] theorem prover 

that is incorporated into the tool. Similar to the other tools, the support for 

synchronization related faults is limited to general detection of deadlock and race 

conditions. Theorem provers, such as [15][35][36], have been successfully used to 

formally verify concurrent programs. This verification is typically performed at the 

design level by through the use of a formal specification however limited tool support 

has been added to support a transformation of code to a formal specification that can be 
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evaluated by the prover. The formal specification, typically defined using a first order 

logic language such as UNITY, is used by these provers to verify properties of the 

system and is focused on what a program does and not how it does it.  

These implementation based approaches are limited by the fact that each tool 

requires the concurrent program tested to be a closed system. Therefore to use these 

tools to test a monitor would require the creation of a driver to interact with the monitor 

that defines not only the order of method executions but also the types and number of 

threads that would used. This differs from the approach presented in this thesis in that a 

Java monitor can be tested in isolation due to the fact that threads are created on the fly 

to simulate different combinations of thread entry into the monitor’s critical section. 
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CHAPTER 3 

 APPROACH 

In the following chapter we will detail the state-space exploration approach used 

to test Java Monitors. The chapter consists of three parts. The first part will cover why 

and how state-space concepts have been adapted to test Java monitors. The second part 

will detail how the search algorithm ties these components together. In the last part we 

will present an example that shows the execution of the state-space algorithm using a 

bounded buffer monitor. 

3.1 Core Concepts 

The success of any state-space exploration approach is determined by whether 

an implementation’s level of coverage is capable of meeting the needs of its designer. In 

this case, our goal was to provide adequate synchronization coverage so that in a best-

case scenario, all synchronization failures of a user provided Java monitor are exposed.  

A key difficulty with this problem domain is due to the fact that each Java 

monitor serves an application specific need, of which the framework has no knowledge. 

To overcome this problem, our state-space algorithm must be tailored according to each 

monitor’s application specific qualities.  

In the rest of this thesis we will define the following terminology to generalize 

the key aspects of the approach: 
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Global Signaling Primitive – any synchronization primitive that wakes up all 

threads in the wait queue and moves them to the entry queue.  

Random Signaling Primitive – any synchronization primitive that wakes up a 

random thread from the wait queue and moves it to the entry queue.  

Re-entry Thread – a thread that has been woken up and moved to the entry 

queue but has not yet been allowed to re-enter the critical section. 

Waiting Primitive – any synchronization primitive that results in a thread 

releasing its lock, exiting the critical section and being moved to the wait queue.  

3.1.1 State Representation 

The core of any state-space based approach centers on how the state, which 

represents a snapshot of select data at each stage of execution, will be represented. The 

reason for this is that in most state-space implementations, all decisions are based in 

some part on the states gathered during execution. For this reason, the techniques used 

to select and represent the data that make up the state play a significant role in the 

success of the algorithm.  

Our state representation can be broken down into two parts. The first part is 

composed of a collection of monitor data members. These members are identified by 

the tester as having an effect on the synchronization behavior of the monitor. Each time 

the monitor state is captured, the current value for each member is retrieved and stored. 

This method of representation requires minimal analysis and interaction from the tester. 

It may, however, result in a state-space explosion if one or more data members selected 

by the tester increases or decreases without bound. To address this issue, the framework 
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provides a feature, described in Section 3.1.4, which allows the tester to limit the 

number of states that can be visited.  

The second part of the state representation consists of data that abstracts the 

state of waiting and re-entry threads. This abstraction groups threads according to the 

last waiting primitive they reached and assigns each group a value based on their 

collective state. If a group consists exclusively of waiting threads, the assigned value is 

WAITING. A group consisting exclusively of re-entry threads is assigned a value of 

ENTERING. And if a group contains both waiting and re-entry threads, the assigned 

value is BOTH.  

A special note must be made here regarding the effect a random primitive call 

has on the state of threads in the wait queue. A goal of the framework is to simulate all 

execution sequences that result from threads entering the entry queue at different times. 

When a random primitive call is made, all threads in the wait queue become potential 

candidates for re-entry. Because of this, the framework must consider the scenarios that 

result from the selection of each candidate thread entering the monitor at different 

points during an execution sequence. To enforce this behavior, the framework will 

delay the affect of the random primitive call (see Section 3.2.2 for details) that can 

introduce ambiguity into the thread abstraction.  

As an example, consider a monitor with a wait queue containing four threads: 

T1, T2, T3, T4. Threads T1 and T2 enter the wait queue from the same waiting primitive 

making them one group, which we will call G1. T3 and T4 enter the wait queue from a 

different waiting primitive making them a second group, which we will call G2. Since 
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all four threads are waiting, the value of G1 and G2 in the thread abstraction would be 

WAITING. Now consider that a method executing in the critical section executes two 

random primitive calls. This will result in two random threads being moved from the 

wait queue to the entry queue, thus affecting the thread abstraction. If T1 and T2 are 

chosen the abstract value of G1 will become ENTERING. Likewise if T3 and T4 are 

chosen, the abstract value of G2 will become ENTERING. If, however, one thread is 

chosen from each group, G1 and G2 will have an abstract value of BOTH. Because of 

this, the abstract value of both groups cannot be determined until thread selection 

occurs. In order to remove this ambiguity, the framework considers all threads that 

could be selected due to a random primitive call as ENTERING until selection of a 

thread has occurred. 

3.1.2 Monitor Initialization 

During execution, it will become necessary to create instances of the monitor 

under test. Even though the framework will have access to the monitor Java class, 

creation and initialization of the monitor ultimately affects the direction of the test and 

therefore has been delegated to the tester.  

The framework requires that the tester provide a Java class, which we will call 

the MonitorInitialization class, which is responsible for creating instances of the 

monitor under test. This class consists of two methods; one to report the total number of 

unique monitor instances that can be returned by the provided class and the other to 

return a monitor instance given a monitor instance number. Combined, this 
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functionality provides the tester with the means to automate the testing of several test 

cases with a single execution of the framework. 

3.1.3 Methods and Method Arguments 

In addition to supplying monitor instances, the framework requires the tester to 

identify the synchronized monitor methods that will be used during the state-space 

exploration. Each method must be identifiable by a unique method ID. Methods 

containing parameters are of special interest. Because method arguments may affect the 

synchronization behavior of the monitor, the framework cannot be responsible for 

determining what arguments should be used. In addition, one or more of the arguments 

may be a non-standard complex data type that cannot be created and/or initialized by 

the framework. 

For this reason the tester must provide a Java class, which we will call the 

MethodArguments class, that is responsible for providing arguments for all 

synchronized methods used during execution. This class consists of two methods. The 

first method accepts a unique method identifier and returns the number of argument 

instances returned by the implementation for the specified method. The second method 

accepts a unique method identifier and an argument instance number and returns an 

array of Objects. Each member of the array must be re-castable to the expected 

parameter type for the given method identifier.  
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Figure 3.1 The BoundedBuffer Monitor 

As an example, let’s return to the BoundedBuffer example in Figure 3.1. The 

withdraw method has no parameters and thus would need no arguments when it is 

public class BoundedBuffer { 

 

    private int fullSlots = 0; 

    private int capacity = 0; 

    private int[] buffer = null; 

    private int in = 0, out = 0; 

 

    public BoundedBuffer(int bufferCapacity){ 

1.       capacity = bufferCapacity; 

2.       buffer = new int[capacity];} 

 

    public synchronized void deposit(int value){ 

3.       while(fullSlots == capacity){ 

4.            try {wait();} catch(InterruptedException e){}} 

 

5.        buffer[in] = value; 

6.        in = (in + 1) % capacity; 

 

7.        if (fullSlots++ == 0) 

8.            notifyAll(); 

    } 

 

    public synchronized int withdraw(){ 

9.        int value = 0; 

10.      while(fullSlots == 0){ 

11.          try {wait();} catch(InterruptedException e){}} 

 

12.      value = buffer[out]; 

13.      out = (out + 1) % capacity; 

 

14.      if (fullSlots-- == capacity) 

15.          notifyAll(); 

 

16.      return value; 

    } 

} 
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called. The deposit method, however, has an integer parameter which the framework 

must supply each time the method is called. Because the framework does not 

understand the application specific nature of the monitor, it cannot determine how to 

configure the deposit method arguments. Therefore to initialize a test of the monitor, the 

MethodArguments class instance would be created. Using this object, the framework 

would query for the number of deposit argument instances supplied by the tester. Then 

for each instance, a new deposit/argument combination would be added to the collection 

of synchronized methods called during execution. A single argument instance is 

sufficient in this situation because the synchronization behavior of the monitor is not 

dependent on the value of the deposit argument. Therefore the MethodArguments object 

could simply return an argument instance count of 1 for the deposit method that would 

correspond to an Object array containing some integer value. If the tester decided that 

they would like to consider 3 arguments for the deposit method, they would simply 

need to return 3 as the argument instance count and provide an Object array containing 

a single integer argument for each argument instance, such as 1, 2 and 3. Given this 

scenario, the monitor would be configured to execute with 4 method calls: withdraw(), 

deposit(1), deposit(2) and deposit(3). 

3.1.4 Application Specific Property Checking 

During execution, each monitor’s synchronization behavior may be subject to 

some properties that must be verified to detect any application specific synchronization 

failures. Because the application specific behavior of the monitor is unknown to the 

framework, it requires guidance to detect these potential synchronization failures.   
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To overcome this limitation, the framework requires that the tester provide a 

Java class, which we will call the PropertyChecker class, with a single method that will 

be queried at each state reached during the state-space exploration. This method will 

have access to two aspects of the monitor under test; the current state and information 

regarding completed and waiting threads. Using this information, the method must 

evaluate the application specific properties of the monitor. If a failure has been detected, 

the method must throw a property violation exception. If no failure has occurred, the 

method may return a TRUE and execution will continue.  

Because the current implementation does not use an abstraction for the data 

members stored in each captured state, it is possible that there may be one or more data 

members that could increase or decrease in value without bound. In addition, it may be 

necessary to restrict the sequencing of method calls that require a specific ordering. To 

overcome these issues, this method can also be used to terminate the current sequence 

by returning a FALSE value. 

It should be noted that the intent of this method is to allow the tester to detect 

application specific failures using information regarding the expected behavior of the 

monitor rather than implementation specific data. There are two key reasons why this is 

advisable. The first is that to verify the expected behavior based on the implementation 

will require the tester to analyze the underlying code of the monitor since 

implementation details are not typically included in software requirements or 

specifications. If the defined properties resulting from this analysis are incorrect or 

incomplete, the results of the test may be inaccurate. Secondly, it is possible that the 
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implementation may change during the lifetime of the monitor. If the tester is unaware 

of these changes, the synchronization behavior properties defined using implementation 

details may become insufficient or inaccurate to verify the monitor’s behavior during 

execution. 

Using a combination of completed and waiting thread information, many 

monitor properties can be computed in an implementation-independent manner. As an 

example, consider that a bounded buffer monitor must not be able to deposit more than 

the maximum capacity of the buffer. One way to approach encoding this property would 

be to state that 0 <= fullSlots <= capacity. Although this would indicate that no more 

deposits were made than the maximum allowable, it is linked to the current 

implementation of the monitor. As an alternative, the same property could be verified 

by checking that the number of filled buffer slots when the monitor was initialized + 

number of completed deposits – number of completed withdraws <= capacity. By 

encoding the property in this manner we are still ensuring that at each state that the 

number of deposited items is less than the buffer capacity, however, the property is 

solely dependent on the synchronization behavior of the monitor rather than its 

implementation. 

3.2 The Algorithm 

In the following section, we will describe the algorithm used during execution 

in two parts. The first part will describe the overall structure as well as detail the 

purpose and outcome of each action. The second part will provide details regarding the 

framework’s thread selection and execution. 



 

 27

3.2.1 Execution Framework 

The algorithm used by the execution framework is shown in Figure 3.2. To 

begin execution, the Test method must be called and the framework must know the 

location of the user provided components. Optionally, a Maximum Consecutive 

Duplicates Allow (MCDA) (see Section 3.2.1.1 for details) value may be supplied to 

override the default value of zero.  

Execution of the Test method begins by initializing the framework as seen in 

lines 1 through 6. The first two operations are responsible for loading the user provided 

components described in Sections 3.1.2 and 3.1.4. The third operation uses components 

described in Section 3.1.3 to create the list of synchronized methods that will be used 

during execution. The last three operations initialize data structures used during the 

state-space exploration. Executioncontexts is a stack that will be used to maintain 

ExecutionContext instances for each state reached along the current execution sequence. 

States is an ordered list that will maintain a collection of reached states and context is an 

instance of the complex data structure ExecutionContext that is used by the framework 

to select and execute threads and will be explained in Section 3.2.2. 
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Figure 3.2 The State-Space Exploration Algorithm 

 

 

Initialize: 

1. create a instance monitorinitialization of MonitorInitialization 

2. create a instance propertychecker of PropertyChecker 

3. let executablemethods be a list of synchronized method 

4. let executioncontexts be an empty stack 

5. let states be an empty list 

6. let context = a ExecutionContext data structure that contains a candidate  

threads list and a pointer to the next candidate to execute 

 

Test(){ 

7.   For monitorid = 1 to monitorinitialization.count() 

     { 

8.         monitor = monitorinitialization.getMonitor(monitorid) 

9.         SaveState() 

10.       context = a new ExecutionContext 

 

11. do 

 { 

12.  while (Execute()){ 

13.       if (ContinueSequence() AND propertychecker.check()){ 

14.   SaveState() 

15.   executioncontexts.push(context) 

16.   context = a new ExecutionContext 

     } 

       else 

17.   Backtrack() 

  } 

18.  Backtrack() 

19.  context = executioncontexts.pop() 

20.  let lastState = states.removeFromHead() 

21  states.addToFoot(lastState) 

22. }while (context != null)} 

     }   

SaveState(){ 

23.   let state = getState() 

24.   states.addToHead(state) 

     }  
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Once the framework is initialized, the Test method will begin execution at the 

outermost loop of this algorithm, seen on line 7. Each iteration of this loop will begin a 

new exploration of the monitor’s state-space using a different initialized monitor as 

provided by the tester. For each monitor instance available, the algorithm will initialize 

the test run by acquiring a monitor instance, calling the SaveState method to save the 

initial state of the monitor and create a new executioncontext, as seen in lines 8 and 10. 

Each time the SaveState method is called, the current state of the monitor will be 

captured according to the state representation described in Section 3.1.1. This state will 

then be added to the head of the states list.  

Lines 11 through 22 are responsible for driving the exploration of the monitor’s 

state-space. Each iteration of the inner loop on line 12 selects a thread and allows it to 

enter the critical section. Once the thread exits the critical section, the monitor is 

considered to have transitioned to a new state that will be captured and evaluated by the 

framework. If the state has not been previously visited and is accepted by the 

propertychecker, the loop will execute another thread thus propagating the current 

branch of the state-space. Otherwise, the current branch is terminated and the 

exploration will backtrack to the previous state.  

Execution of this loop results in a depth-first exploration of each branch of the 

monitor’s state-space and will continue to iterate until a time is reached when all 

possible candidate threads for the current state have been executed. When this occurs, 

the exploration will attempt to backtrack to the prior state in the current branch of the 

execution sequence. In the event that state prior to the backtrack was the initial state 
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where execution began, the backtrack will not be able to restore a prior state, since it 

will not exist. When this occurs, the exploration of the current monitor instance is 

complete and must be terminated. The loop condition on line 22 is responsible for 

detecting this event. Let us now take a detailed look at how this is behavior is 

implemented by the framework.  

As described previously, the Execute method loop on line 12 will select the next 

candidate thread, execute it and block until the synchronized method it is executing 

completes. Once the thread has finished execution of the method, the Execute method 

will return a TRUE value indicating that a transition has occurred. In this case, the 

newly reached state must be evaluated to determine if it the current path will continue 

or be terminated.  

Both the framework and the propertychecker are queried to make this 

determination. As seen on line 13, the ContinueSequence method is called first to verify 

if the framework will allow the current path to continue. This method can be seen in 

Figure 3.3.  
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Figure 3.3 The ContinueSequence Method 

 

This method begins by getting the MCDA value and current state instance as 

seen in lines 1 and 2. The states list is then searched for a member state that matches the 

current state. If the state is found in the states list, this indicates that the state has been 

visited during exploration of the current execution sequence.  

The result of this search determines the value of result on line 3. If result is 

equal to TRUE, then the current state was not found in either list and considered a new 

state visited along the current execution sequence. If result equals FALSE, the state has 

been visited and the if block is entered to check for duplicate states. On line 5, the 

number of duplicate states is calculated by totaling the number of consecutive states that 

are identical to the current state, starting from the head of the states list. The value of 

result is then recomputed on line 6. If the number of duplicates is less than zero, the 

matching state was visited at some point prior to the last state and the value of result is 

FALSE. If the number of duplicates is greater than zero and also within the number of 

ContinueSequence(){ 

1.   let MCDA = the user provided MCDA value or 0 if no value provided 

2.   let state = getState() 

3.   let result = NOT (states.contains(state)  

 

4.   if (result == FALSE){ 

5.    let duplicatestates = number of consecutive states identical to state, 

                                        starting from the head of the states list 

6. result = duplicatestates > 0 AND duplicatestates <= MCDA 

 } 

 

7.   return result 

   } 
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allowed duplicates, result will be set to TRUE; otherwise it will be set to FALSE. If the 

framework accepts the state for further exploration, the propertycheker is queried and 

must return a TRUE value to accept the state or a FALSE to reject it. Recall that the 

propertychecker’s behavior is defined by the tester and can be used to terminate select 

paths that violate a required sequencing of method calls or reach a user defined bound. 

In addition to accepting the state, this component must also evaluate whether any 

violations of the expected behavior have occurred. If a violation has occurred, the 

component will raise an exception that results in the termination of the test, a report on 

the nature of the violation and a printout of the sequence that caused it.  

If both the propertychecker and the framework determine that the current path 

will not be terminated, lines 14 through 16 will be executed. These steps store the new 

state and the previous state’s executioncontext information so it can be retrieved once 

execution backtracks to the state again. If the current path is terminated, the framework 

must restore the monitor to the state prior to the last transition. This task is handled by 

the Backtrack method on line 17.  

When the Execute method on line 12 returns a FALSE, this indicates that all 

possible thread candidates have been considered for the current state. When this occurs, 

the framework will backtrack to the previous state, load the ExecutionContext for the 

previous state, if one exists, and move the current state the back of the states list. This 

last step is necessary to ensure correct behavior when checking for duplicates states in 

the ContinueSequence method. These actions are carried out on lines 18 through 21. If 

the monitor to a returned to a valid state, the Execute method will be called to continue 
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the execution sequence for the next candidate thread. In the event that the state prior to 

backtracking was the initial state, the Backtrack method will have no effect and the 

ExecutionContext stack will return a null value. If this is the case, the while loop on line 

22 will exit, completing the test of the current monitor instance. If another monitor 

instance is available, the cycle will begin again. 

3.2.1.1 Maximum Consecutive Duplicates Allowed (MCDA) 

Due to the thread abstraction used when a monitor state is captured, method 

executions that do not change the values of state data members or the queue abstraction 

will result in a duplicate state. Under normal operation, the framework would consider 

this transition as having no effect on the synchronization behavior of the monitor 

resulting in termination of the current sequence and a backtrack to the previous state. 

There are circumstances, however, where synchronization failures can only be detected 

if duplicates are allowed to occur in the execution sequence.  

 

Figure 3.4 The BoundedBuffer Deposit Method using Notify 

One notable case is when one or more synchronized methods awaken threads 

using random signaling primitives instead of global signaling primitives. As an 

    public synchronized void deposit(int value) 

    { 

1.        while (fullSlots == capacity){ 

2.            try {wait();} catch(InterruptedException e){}} 

3.        buffer[in] = value; 

4.        in = (in + 1) % capacity; 

 

5.        if (fullSlots++ == 0) 

6.            notify(); 

    } 
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example, consider the bounded buffer monitor from Figure 3.4 with a modified deposit 

method shown in Figure 3.4. In this variation, the deposit method introduces a small 

change that replaces the notifyAll call with a notify. 

To describe the scenario, we will use the execution sequence seen in Table 3.1. 

Each method executed in the sequence is shown in the first column of each row entry 

and provides two additional pieces of information regarding the effect of the transition. 

The first appears in the second column and shows the state captured after each method 

exits the critical section. Each captured state is encased in brackets and contains two 

entries; the first is the value of fullSlots and the second is a set containing the thread 

abstraction values. Since each method contains a single wait primitive, the monitor’s 

thread abstraction will include two abstract values. Remember that abstract thread 

values are determined by grouping all waiting or re-entry threads according to the last 

waiting primitive reached and assigning a value based off the group’s collective state. 

Each group abstract value in the set will be encoded as follows: group name:abstract 

value. For the bounded buffer example, we will use the group names DW for the 

deposit wait group and WW for the withdraw wait group. Each abstract value will be 

encoded as either W for WAITING, E for ENTERING or B for BOTH. The second 

piece of information, which appears in the third column, shows an ordered list of 

synchronization events that occur during execution of the sequence. For each wait event 

encountered, an entry Dx or Wx will be used to represent that the x
th
 deposit or withdraw 

method, respectively, has been moved to the wait queue. Each notify call will be noted 



 

 35

with a N. Events in the list will be ordered from the oldest on the right most side to the 

most recent on the left most side.  

 

 

Table 3.1 A Sample Execution Sequence 

Method 

Called 

State Synchronization 

Events 

W1 [0, {WW:W}] W1 

W2 [0, {WW:W}] W1,W2 

D1 [1, {WW:E}] W1,W2, N 

 

For this example the bounded buffer monitor will be initialized with an empty 

buffer and a capacity of three. The first method executed in the sequence is a withdraw. 

Since the buffer is empty, the thread cannot withdraw an item and will moved to the 

wait queue, resulting in the state [0, {WW:W}]. A second withdraw is then executed 

which encounters the same problem resulting in the state [0, {WW:W}]. As mentioned 

previously, during normal operation the framework would consider this a duplicate state 

having no affect on the synchronization behavior of the monitor, thereby terminating 

the current sequence. However, in this example we will change the framework’s 

behavior to allow a single duplicate to be introduced into the sequence. A deposit is 

executed next, which adds a single item to the buffer and makes a single notify call, 

leading to state [1, {WW:E}]. At this point, if we look at the synchronization events we 

can see that there are two waiting threads, W1 and W2, and only one notify event while 

our state shows that we have a buffer with one item. This violates the monitor’s 

expected behavior that all waiting threads are allowed to compete for consumption of 
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any new data deposited in the monitor. If the duplicate had not been allowed within the 

sequence, this failure would not have been detectable. 

The reason duplicates are needed is because verification of the synchronization 

behavior in many cases must be established using completed and waiting thread 

information. In these cases if duplicate states are not allowed, the additional threads 

needed in the wait queue to verify the expected behavior would not be present and the 

failure will go undetected. To determine the value of the MCDA, the tester must 

consider what events should trigger each conditional random signaling primitive as well 

as the number of threads that should be affected. In the case of the deposit method of 

the bounded buffer, the event is the depositing of an item into an empty buffer and its 

expected behavior requires that all waiting withdraw threads be awoken. This example 

represents the simplest case where all threads are affected by a single event and no more 

than one duplicate state is needed. However, if a single event affects a variable number 

of threads or consecutive occurrences of the event can occur, the tester must consider 

both the expected behavior as well as possible monitor states that may affect the number 

of threads needed. As an example, consider a scenario where the bounded buffer 

expected behavior has been modified and now requires that one waiting withdraw 

thread be awakened each time a deposit occurs, assuming the wait queue is not empty. 

In this case the signaling event is a new item being deposited into the buffer and the 

number of threads affected should be at most one withdraw thread. To verify this 

expected behavior completely would require the same number of duplicate states as the 

capacity of the buffer. To understand why this is necessary requires consideration of the 
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maximum number of times this event can occur consecutively. For this example, the 

maximum number of consecutive deposits is equal to the capacity of the buffer. 

Therefore to verify that only one withdraw thread is awoken for each consecutive 

deposit requires capacity + 1 withdraw threads in the buffer, thus MCDA to be equal to 

the capacity of the buffer. 

3.2.2 Thread Selection and Execution 

The Execute method is responsible for simulating the different entry queue 

combinations that can occur due to threads reaching the monitor at different times. To 

simulate these combinations, the framework must maintain information regarding what 

thread choices are available at each state reached during the state-space exploration, as 

well as which choice have already been executed during a previous visit to the current 

state 

Figure 3.5 shows the algorithm used by the Execute method. Lines 1 through 8 

of this method are responsible for initializing the current ExecutionContext instance. 

ExecutionContext initialization will only occur if the current state has been reached for 

the first time along the current execution sequence. If the ExecutionContext has not 

been initialized, the nextcandidate member, seen on line 5 is set to 1. This field is used 

to track the next candidate thread that will be executed once the Execute method is 

called. In the next section we will out explain how the candidatethreads member is 

initialized. 

.  
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Figure 3.5 The Execute Method 

3.2.2.1 Thread Groups 

Simulating thread competition in the entry queue requires the Execute method to 

determine what threads could be executed at each point in the execution sequence. Each 

entry candidate can be classified into one of three groups.   

The first group consists of threads attempting to enter the critical section for the 

first time. The members of this group consist of all synchronized methods the user has 

configured the framework to execute (see Section 3.1.3) during the test of the current 

monitor and are stored in the executablemethods list. On line 6, each member of 

Execute(){ 

1.    if (NOT context.isInitialized()){ 

2. let context.entrycandidates be an empty list 

3. let context.nextcandidate be an integer 

4. let thread be a thread that can be initialized to execute a  

synchronized method 

 

5. context.nextcandidate = 1 

6. create and initialize a new thread for each executablemethods  

member and add it to the context.entrycandidates list 

7. add each globally signaled re-entry thread to the  

             context.entrycandidates list 

8. add each randomly signaled thread to the context.entrycandidates  

list 

   } 

 

9.    let result = false 

10.  if (context.nextcandidate <= context.entrycandidates.size()){ 

11.    let nextthread = context.entrycandidates.get(context.nextcandidate) 

12. nextthread.execute() 

13. context.nextcandidate = context.nextcandidate + 1 

14. result = true 

       } 

15.  return result 

 } 
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executablemethods is used to initialize a new thread that is added to the 

candidatethreads list. The second group added to the executablemethods list on line 7, 

consists of all re-entry threads that have been awoken by a global primitive call. The 

third group added to the executablemethods list on line 8, consists of all waiting threads 

that could be selected due to one or more random signaling primitives that have 

occurred earlier in the execution sequence.  

In order to provide a reproducible set of execution sequences across multiple 

executions of the framework, these thread candidates must be ordered in a consistent 

manner. The order of threads in group one will mimic the order in which the user has 

provided the methods to the framework. Since the framework manages threads in 

groups two and three, the ordering of these groups is dependent on the implementation 

of the algorithm. Our approach does not specify a specific ordering for these threads. It 

does, however, require that an implementation guarantee that execution of identical 

sequences will result in the same ordering of these threads at each state reached during 

an execution sequence.  

Managing the threads in group three also poses an added challenge to the 

framework. When a random signaling primitive is normally reached, a random thread is 

selected from the wait queue and moved to the entry queue. However, for the 

framework to consider each possible thread that could be selected, this behavior cannot 

be allowed. To address this problem, the framework delays the selection a thread and 

tracks which threads were affected by the random signaling primitive. Using this 

approach, sequences that execute multiple random signaling primitives can result in 
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multiple thread selection combinations. As an example consider the following sequence 

of synchronization events which uses the notation described in Section 3.2.1.1:  

M1, M2, N, M3, N 

As we can see from the sequence, at some point during execution two methods, 

M1 and M2 enter the wait queue followed by a notify call. As execution continues, 

method M3 enters the queue followed by another notify call. Given this combination of 

waits and notifies, multiple combinations of thread selection can occur. These 

combinations are as follows: [M1, M2], [M1, M3], [M2, M1], [M2, M3]. Each 

combination listed is grouped using brackets and contains two entries, each representing 

the method selected by the first and second notifies respectively. Looking at the options, 

we can see there are three combinations that select the M1 method. So an important 

question is, if the Execute method were to select method M1 for execution, which thread 

selection combination should be used?  

Since the goal of our approach is to simulate all possible thread candidates that 

could result due to thread competition in the entry queue, we must exercise the notifies 

in a manner that yields the greatest number of group three candidates as the execution 

sequence continues. Consider that if the second notify were used to awaken method M1, 

the number of group three candidates at subsequent states reached along the current 

path would be limited to M2. However, if the first notify is used, future group three 

candidates would contain both M2 and M3. To generalize this point, when the Execute 

method selects a randomly signaled thread for execution, the framework will exercise 
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the oldest notify occurring after the selected thread to ensure the greatest number of 

group three choices.  

3.2.2.2 Thread Execution 

Once execution has passed the initialization block, the Execute method will 

execute the next thread candidate. This begins by determining whether all candidate 

threads have been executed at the current position in the execution sequence, as seen on 

line 10. If an unexecuted candidate exists, it will be executed and the Execute method 

will block until the thread completes execution. If the executing thread does not return 

within a 30 second period of time, the framework will assume that it has reached a 

livelock situation and throw an exception. Once the thread returns control to the Execute 

method, the nextcandidate member is incremented. The method then returns either a 

true indicating that a candidate thread was executed or false indicating otherwise. 

3.3 An Example Execution 

In this section we will give a step-by-step example that shows the state-space 

exploration of the bounded buffer monitor seen in  Figure 3.1. The monitor we will test 

will contain one subtle change to the deposit method, seen in Figure 3.6. On line 1 of 

this method, the while loop has been changed to an if structure that will allow any 

awoken thread re-entering the method after the wait on line 2 to continue without 

verifying that the buffer is not full.  
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Figure 3.6 The BoundedBuffer Deposit Method Replacing While with If 

In this example, captured states will be configured to include the fullSlots data 

member, as this is the only field that affects the monitor’s synchronization behavior. 

The MontiorInitialization class will return one monitor instance that has a capacity of 

one. The framework will be configured to initialize the executablemethods list with two 

synchronized methods, deposit(1) and withdraw(). These methods make up thread 

group one for this test and will be the first two entries to appear in the candidatethreads 

list of the execution context. 

Figure 3.7 shows the state diagram resulting from the state-space exploration of 

the bounded buffer example. Each state in the diagram displays its captured state using 

the notation described in Section 3.2.1.1. Transitions between states are labeled 

according to the action taken. Valid transition actions include deposit method calls that 

are indicated with a Dx, withdraw methods calls indicated by a Wx and backtracks 

indicated by a B. The value of x associated with a method call indicates the x
th 

execution of the same method call in the current sequence.  

 

 

public synchronized void deposit(int value){ 

1.       if (fullSlots == capacity){ 

2.            try {wait();} catch(InterruptedException e){}} 

 

3.        buffer[in] = value; 

4.        in = (in + 1) % capacity; 

 

5.        if (fullSlots++ == 0) 

6.            notifyAll(); 

    } 
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Figure 3.7 The State Diagram for the BoundedBuffer Example 

 

Execution begins at the initial state [0, {}] indicating an empty buffer and no 

waiting threads. Once the Execute method is called a new ExecutionContext is created 

and a deposit is executed. This results in the transition labeled D1. Once the method 
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exits, the monitor state [1, {}] is reached which has a buffer of 1 and no waiting threads. 

Since this is the first time this state has been reached, execution along the current path 

will continue resulting in the creation and initialization of a new ExecutionContext. This 

behavior will occur each time a state is reached that is not equivalent to another state 

visited along the current sequence. For the sake of brevity, each state reached that fits 

this description will be labeled as a new state and will result in the same set of actions.  

At this point a deposit will be executed resulting in the transition labeled D2. 

This method finds the buffer full and reaches the wait primitive, moving the thread to 

the wait queue. The result is the new state [1, {DW=W}] that shows the buffer has one 

item and the deposit wait abstract group contains only waiting threads. A third deposit 

is then executed resulting in the transition labeled D3. This leads to the state [1, 

{DW=W}]. Since the MCDA was not overridden it has a default value of 0. Because of 

this, no duplicate states are allowed. Since this state is a duplicate of the last state, the 

framework will execute a backtrack. This action results in the transition labeled B, 

which restores the previous monitor state and loads its ExecutionContext. Since this 

state in the sequence has already been reached, the nextcandidate for this state will 

point to the withdraw method. This method is executed and results in the transition 

labeled W1. The withdraw removes an item from the buffer, executes a notifyAll and 

exits the monitor at the new state [0, {DW=E}]. Since the thread executing D2 has been 

awoken due to the notifyAll, it becomes a member of thread group two and will be 

added to the candidatethread list during ExecutionContext initialization along the 

current execution sequence. This will hold true until it is allowed to re-enter the monitor 
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or the execution sequence backtracks to the previous state. At this point, another deposit 

is executed resulting in the transition labeled D3. The deposit adds a new item to the 

buffer, executes a notifyAll and exits leaving the monitor at the new state [1, {DW=E}]. 

A fourth deposit is executed resulting in the transition D4. This method finds the buffer 

full and reaches the wait primitive, moving the thread to the wait queue. Since the 

monitor now has a waiting thread and a re-entry thread which are both members of the 

deposit wait abstract group, the monitor is left at the new state [1, {DW=B}]. From this 

state, a deposit is executed resulting in the transition labeled D5. Since the buffer is full, 

the thread reaches the wait primitive and is moved to the wait queue leaving the monitor 

at the duplicate state [1, {DW=B}]. This duplicate will cause the current path to be 

terminated, causing another backtrack to the previous state. The next candidate 

executed is a withdraw which result in the transition labeled W2. This method removes 

an item from the buffer and executes a notifyAll. Since the state reached [0, {DW=E}] 

has been visited along the current sequence, execution backtracks to the previous state 

once again. The final candidate executed is the re-entry thread executing D2 and results 

in the transition labeled D2. Because the while loop was replaced with an if construct, 

the method is allowed to overwrite an item in the buffer and increment the value of 

fullSlots to 2. This leaves the monitor at the invalid state [2, {DW=B}], which will raise 

a property violation exception due to having exceeded the bounds of the buffer.  
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CHAPTER 4 

 DESIGN OF THE PROTOTYPE TOOL 

The design of our tool can be broken down into three major Java packages, as 

seen in Figure 4.1. Each package represents a different aspect of functionality that must 

be customized for the monitor under test before execution can begin. In the following 

sections we will describe the purpose of each package and the customization that must 

be applied.  

Figure 4.1 Prototype Tool Package Diagram 

4.1 UserProvided Package 

The userprovided package, detailed in Figure 4.2, contains 4 abstract classes 

and an exception class.  The purpose of this package is to define the family of abstract 

classes that must be subclassed to implement the application specific, user provided 

content. The purpose of each abstract class define in this package has been outlined in 

the approach section should the reader need further details.  
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Figure 4.2 The UserProvided Package UML Diagram 

4.1.1 The UserProvided Factory 

The UserProvidedFactory abstract class is the first class we will discuss and 

provides the link between the execution framework and the user provided classes. As its 

name suggests, this class implements the abstract factory pattern and can be subclassed 

multiple time to provide different test case configurations.  The class consists of 3 

abstract getters each of which returns a reference to one of the user provided classes. 

4.1.2 Method Assembly 

The first factory method, getMethodArgumentManager, returns an instance 

subclass of the MethodArgumentManager abstract class. This abstract class defines the 

two abstract methods, getInstanceCount and getMethodArguments, which collectively 

are used by the framework to construct the base set of public synchronized method calls 

that must be executed at each new state reached during the monitor’s state-space 

exploration. To create this set the framework must iterate through all method ids of the 

methods used during execution. For each method id, the getInstanceCount method is 

called, which takes the method id as an argument and returns the number of user 

provided argument combinations. By calling the getMethodArguments method, which 
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takes the method id and instance number as arguments, an Object array containing one 

combination of method arguments can be retrieved. By iterating across the full range of 

instance supported by the method id, all combinations are generated.  

4.1.3 Monitor Instance Creation 

The next factory method, getMonitorInitializer, returns an instance subclass of 

the MonitorInitializer abstract class. Similar to the MethodArgumentManager, this 

abstract class defines two methods, getInstanceCount and getInitializedMonitor, which 

return respectively the total number of monitor instance to be tested as well as the 

initialized monitor for a given a instance. Each monitor instance represents a new test 

case and a starting point for the state-space exploration. 

4.1.4 Application Specific Property Checking 

The last factory method, getPropertyChecker, returns an instance subclass of the 

AppPropertyChecker abstract class. This class’ sole abstract method, executeCheck, 

provides the means by which the tester can implement an application specific properties 

check, evaluated at each state visited by the exploration. In the event that a property has 

been violated, the method must throw an AppPropertyViolationException exception, 

which will terminate execution for the current monitor instance and log details 

regarding the method sequence leading to the failure. In addition, this method can also 

be implemented to restrict illegal method sequences and terminate the current path 

exploration.  
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4.2 Hook Package 

The hook package’s purpose derives out of the tool’s need to override the 

monitor scheduler and queue behavior. It consists of a class and an interface, seen in 

Figure 4.3, which together provide two functions. 

 

Figure 4.3 The Hook Package UML Diagram 

4.2.1 Synchronization Event Interception 

The first service provided is the interception of synchronization primitive calls. 

Due to the fact that true interception of these calls would require tooling at the Java 

implementation level, our solution opted for a language-based approach that requires 

the tester to replace all synchronization primitive calls with a similar method from the 

SyncHook class. All members and methods of this class are static, allowing the user to 

make necessary calls without creating or maintaining an instance of the class. The three 

interception methods provided are waitThread, notifyThread and notifyAllThreads 

which map to the Java synchronization primitives wait, notify and notifyAll respectively. 

Each method must have as an argument the synchronization object associated with the 

primitive call being made. This tool implementation does not yet support Java 5.0 and 

therefore each call will use the monitor object as its synchronization object. The 

waitThread method also requires a unique wait id that represents the wait point where 
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the thread exited the monitor. This additional information will be used to abstract the 

monitor queues each time the state is captured. 

4.2.2 Synchronization Event Notification 

In addition to interception, this package also provides an event service that is 

triggered by each incoming synchronization call. Once a call is received, all event 

handlers registered for the monitor from whom the call was issued, are notified. To 

register an event handler, the receiver must implement the SyncEvents interface. The 

registerEventHandler method is then called passing the monitor object that will be 

source of the synchronization calls and the event handler object that will be called when 

one or more calls are intercepted. To unregister, the receiver must call the 

unregisterEventHandler method passing the same two arguments used to register the 

event handler. 

4.3 Framework Package 

The framework package is responsible for tying together the user provided 

components into the test bed and controlling the overall state-space exploration. It 

consists of two public classes, XMLLoader and ExecutionManager seen in Figure 4.4, 

as well as a number of support classes, visible only at the package level. 
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Figure 4.4 The Framework Package UML Diagram 

4.3.1 Loading User Provided Content 

One key responsibility of the framework is to locate and load all user provided 

content so the execution context can be initialized for testing. In order to begin this 

process, the tester must provide information regarding several aspects of customization. 

In the current implementation, the Extensible Markup Language (XML) format is used 

to encode this information. In order to gather the correct information and guarantee 

correct parsing, a Document Type Definition (DTD) file, seen in Figure 4.5, has been 

created which defines what information the tester must provide as well as the schema 

that must be used to encode the information.  

The XMLLoader class parses the XML file created from this schema and uses 

its contents to initialize the user provided components of the execution framework. In 

order to better understand the purpose of the user provided information, we will explore 

each major element in the DTD file and its significance to the runtime content 

initialized by the loader class.  
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4.3.1.1 Factory Element 

The factory element’s sole purpose is to provide the full class name of the 

subclass which implements the UserProvidedFactory class for the current execution. 

This value must be in the form of a string, formatted using the full package path as well 

as the class name. This class, or the jar file containing this class, must be placed in a 

location visible to the Java runtime. This can be configured either by means of a Java 

command line argument, the classpath variable or inclusion in one of the default folders 

from which the JVM loads classes. 

 

Figure 4.5 The UserProvided DTD File 

 

 

<?xml version="1.0" encoding="UTF-8"?> 

<!ELEMENT userprovided (factory, monitor)> 

<!ELEMENT factory (#PCDATA)> 

<!ELEMENT monitor (method+)> 

<!ELEMENT method (parameterTypes, (wait|notify|notifyAll)*)> 

<!ATTLIST method 

          name CDATA #REQUIRED 

          id ID #REQUIRED> 

<!ELEMENT parameterTypes (parameterType*)> 

<!ELEMENT parameterType (#PCDATA)> 

<!ELEMENT wait (variable*)> 

<!ATTLIST wait 

          id ID #REQUIRED> 

<!ELEMENT variable (#PCDATA)> 

<!ELEMENT notify (variable*)> 

<!ATTLIST notify 

          id ID #REQUIRED> 

<!ELEMENT notifyAll (variable*)> 

<!ATTLIST notifyAll 

          id ID #REQUIRED> 
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4.3.1.2 Method Element 

The method elements are children of the monitor element. For each public 

synchronized method to be included during the test execution, there must be a 

corresponding method element in the XML file. Each entry must contain an id property 

and a name property. The id property must be a string identifier for the associated 

method and must be unique across all method elements listed within the XML file. This 

property value is the method id for the specified method and is passed to both methods 

of the MethodArgumentManager class during the method assembly phase of the loader 

class. The name property must be a string indicating the name of the monitor method 

associated with this element. This name may not be unique to the XML file if there are 

multiple overloaded monitor methods to be included in the test.  

Because of this, the element also includes a child element that consists of 

parameterType elements. Each element in this collection must be a string value 

corresponding to a parameter type for the current method and must be listed in the 

collection according to its order in the method’s parameter list. If the parameterType 

string refers to a primitive data type, then the name of the Java data type is used. If, 

however, the string refers to an object, the full class name must be provided, including 

the full package path. In either case, if the parameter is an array, the string must be 

suffixed with an open and closed bracket ([]). If the method has no parameters, this 

collection must be left empty. 

 



 

 54

The combination of the method name and parameterType collection are used by 

the loader class to both verify the existence of the method in the provided monitor 

instance as well as verify the argument array values returned by the 

getMethodArguments method. 

4.3.1.3 Wait, Notify and NotifyAll Elements 

In addition to a collection of parameterType elements, each method can contain 

zero or more wait, notify or notifyAll child elements. For each Java synchronization 

primitive call found within the method body, a corresponding child element is added to 

the xml method element. Each “synchronization” element added must define an id 

property, consisting of a string identifier that must be unique across all 

“synchronization” elements listed within the XML file.  

In addition, all class variables that affect whether the synchronization primitive 

is executed, either as control flow or data flow variables, must be added as children to 

the “synchronization” element in the form of variable elements. If no variable elements 

are listed with a “synchronization” element, it indicates that the associated 

synchronization primitive will be unconditionally called each time the method is 

executed. During the loading phase, the loader class compiles a master collection of 

variable elements for all wait, notify and notifyAll elements. This collection should 

provide a complete list of the class variables affecting the synchronization behavior of 

the monitor and as such are captured in addition to the queue abstraction each time the 

monitor is requested. 
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4.3.2 Test Execution 

To begin execution, the user must create an ExecutionManager object by calling 

its constructor with an object that is a subclass of the abstract Loader class. Currently, 

the XMLLoader is the only option available due to the fact that user provided data has 

only been persisted in the XML format. Future versions of the framework, however, 

could offer alternative loader classes that gather initialization data from databases, flat 

files, user interfaces, or web services to name a few. The purpose of the Loader and its 

subclasses are to separate the format in which the user data is persisted from the 

complex internal objects constructed using this data. This concept is similar to that of 

the Builder pattern.  

Once the loader has completed, it provides the framework with two objects that 

encapsulate the user provided logic used during execution. The first is the property 

checker object, called each time a new state is reach during exploration, and the second 

a MonitorNaviagor object. The MonitorNaviagor is a simple iterator whose purpose is 

to return MonitorManager objects and controls the outer loop of the execution 

algorithm. These MonitorManager objects are complex and encapsulate all the resultant 

user defined components generated from the XML file. As seen in the UML diagram in 

Figure 4.4, they define methods that can be used to capture the monitor state, execute 

new threads, or manage the monitor queues. They also maintain a collection of 

MonitorMethod objects, each of which represents a combination of a method to be 

tested and a set of user provided arguments. 
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Once the framework has been initialized, the user begins the run by calling the 

startTest method of the ExecutionManager object, which encapsulates the execution 

algorithm (section 3.2.1). In addition, the ExecutionManager supplies implementations 

to verify valid states, new states, duplicate states and productivity during execution as 

well as the rollback method called at each point where a path has been terminated. A set 

of inner classes implements a state pattern that is responsible for maintaining the 

execution context for each state visited and implementing the execute functionality.  

The only significant difference between the conceptual algorithmic approach 

and the tool’s implementation arose in the backtrack functionality. To backtrack the 

monitor, it would be necessary to not only restore the state of any class or global 

variables that have changed, but also to restore the previous state of the monitor queues 

as well as the execution frames. Because the language does not natively support this 

functionality, an alternative approach was used. At each point requiring a backtrack, the 

current MonitorManager instance was shutdown and a new MonitorManager instance 

was created. To reconstruct the monitor state, the sequence of execution contexts that 

provide the last method executed at each state along the last path, are executed. The 

results of each test are outputted to the console. 
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CHAPTER 5 

 CASE STUDIES 

5.1 Experimental Design 

A mutation-based approach was used to evaluate the detection ability of our 

prototype tool [16][31]. To conduct each case study, a collection of mutants was created 

for each correctly coded monitor used. Each mutant created contains a single change to 

the source code of the original monitor and represents a programming mistake that can 

occur during the implementation of a Java monitor. In each case study, two general 

groups of mutants were created.  

The first group of mutants represents typical errors made by programmers when 

implementing the logic used in a monitor. These mutants were created using a publicly 

available, Java based mutation tool called µJava [34][39]. This tool creates mutants that 

change the class level or method level operators used in the source of a Java class. Class 

level mutants introduce syntactic faults to the object oriented operators used in the 

source such as changing the access modifier or static modifier associated with a class, 

method or variable. Because we are only interested in testing the synchronization 

behavior of the monitor, class level mutants were not used. Method level mutants 

introduce faults to common operators used to implement the body of Java methods. For 

the version of µJava we used, the operators that were mutated include arithmetic 
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operators, relational operators, conditional operators, shift operators, logical operators 

and assignment operators.  

The second group of mutants introduces a change that affects the 

synchronization primitives or control flow structures used to implement the 

synchronization behavior of the Java monitor. Each monitor created for this group 

reflects one of the following changes: 

• Replacement of a while loop which encases a wait primitive with an if statement. 

• Replacement of a notifyAll primitive with a notify primitive. 

• Removal of a wait, notify or notifyAll synchronization primitive. 

Each of the mutants created was tested using our prototype tool and executed 

using the Sun Microsystems Java Runtime Environment 1.5. All results were generated 

on a computer running Windows XP with a 2GHz processor and 1 GB of ram.  

5.2 Monitor Tests 

In the following section we will describe the monitors and framework 

configurations used in each case study. The monitors used for each case study were 

taken from [33]. Each subsection starts by describing the purpose of the monitor and its 

expected behavior. This will be followed by an explanation of how the user provided 

components initialized the framework for each mutant tested. Recall that the tester is 

responsible for providing an XML file that defines the methods to be included in each 

test and the data members used in the state representation as well as implementations of 

the MonitorInitialization, MethodArguments and PropertyChecker classes. Collectively 

these implementations determine the number of different initialized monitor instances 
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tested, the argument combinations for each method included in the test and the 

verification and state acceptance properties evaluated at each state reached during the 

state-space exploration. The original monitor source and configuration XML file used in 

each case study can be found in Appendixes A through E.   

5.2.1 BoundedBuffer Monitor 

The BoundedBuffer monitor implements a solution to the producer/consumer 

problem. This monitor consists of two synchronized methods, deposit and withdraw, 

which allow items to be added and removed from a fixed size buffer. Each time a 

deposit method is executed, a data item will be added to the buffer as long as the buffer 

is not full. After the data is added to the buffer, any withdraw threads in the wait queue 

must be woken up so they can compete to consume the new data. If the buffer is full, 

the calling thread must be moved to the wait queue until a data item is removed from 

the buffer. When the withdraw method is called a data item will be removed from the 

buffer as long as the buffer is not empty. If an item is removed from the buffer, any 

deposit threads in the wait queue must be woken up so they can compete to deposit their 

data in the buffer. If the buffer is empty, the calling thread must be moved to the wait 

queue until a data item is added to the buffer.  

In this case study, 113 mutants were tested of which 101 were members of the 

first mutant group and 8 were members of the second mutant group. For each test 

executed, a single instance of the mutant was used that was initialized with an empty 

buffer and capacity of five. The member fullSlots is an integer value that represents the 

number of used slots in the monitor’s buffer. Since it is the variable that affects the 
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synchronization behavior of the monitor it was defined as the data member used in the 

state representation. The get(1) and put() methods were defined to be the two methods 

executed during the state-space exploration. Though the get method passes an integer 

argument each time it is called, this value does not have an affect on the monitor’s 

synchronization behavior and any integer value could have been chosen. The 

PropertyChecker was implemented to accept all states reached. The properties used to 

verify each state reached are based on the exercised synchronization behavior of the 

monitor during the execution of the current sequence. To this end, each variable upon 

which the synchronization behavior is dependent has been calculated at each state using 

the following formulas: 

• fullSlots = # of initial slots used + # completed deposits - # completed withdraws 

• capacity = the capacity value used to initialize the monitor instance  

Based on these values, the properties verified during each test are as follows: 

 

• 0 <= fullSlots <= capacity 

• 0 < fullSlots < capacity → the wait queue should be empty 

• fullSlots == 0 → the wait queue should be contain no deposit threads 

• fullSlots == capacity → the wait queue should contain no withdraw threads 

5.2.2 ReaderWriterSafe Monitor 

The ReaderWriterSafe monitor implements a solution to the readers/writers 

problem. In this problem there exists a shared variable that multiple threads are 

attempting to either to either read or write. Before each thread accesses the shared 

variable, it is required to acquire a lock that guards the shared variable. A reader may 
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acquire the lock only if no writer has currently acquired the lock. This behavior allows 

multiple readers to access the shared variable at the same time. A writer may acquire the 

only if no other reader or writer has currently acquired the lock. This guarantees that 

only one writer will have mutually exclusive access to the shared variable at a time. 

Once a thread has finished accessing the variable it must release the lock and wake up 

all other waiting threads if no other thread has the lock. The ReaderWriterSafe monitor 

allows threads to acquire and release locks using one of four synchronized methods. If a 

thread wants to acquire the lock for read access it must call the acquireRead method. 

Once the thread has completed it must then call the releaseRead method. Likewise, the 

pair of methods acquireWrite and releaseWrite must be called to acquire and release a 

lock for write access.  

For this case study, 28 mutants were created of which 20 were members of the 

first mutant group and 8 were members of the second mutant group. A single mutant 

instance was used for each test executed that was initialized using the empty 

constructor. In each test the framework was configured to include all four synchronized 

methods of the monitor. Two data members in the ReaderWriterSafe monitor have an 

effect on the synchronization behavior of the monitor. The readers member is an integer 

that keeps a count of the number of readers that have current acquired a read lock while 

the writers member is a boolean that indicates whether a write lock has been acquired. 

Both of these data members were used in the state abstraction. As described in the 

section, the variables and properties used to verify each state reached are based on the 

exercised synchronization behavior of the monitor and were defined as follows: 
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Variables 

• writers = # of completed acquireRead threads - # of completed releaseRead 

threads 

• readers = # of completed acquireWrite threads - # of completed releaseWrite 

threads 

Properties 

• writers > 0 → readers == 0 

• writers == 0 → the wait queue should contain no waiting acquireRead threads 

• writers == 0 AND readers == 0 → wait queue should be empty 

• readers > 0 → writers == 0 

• writers > 0 → writers == 1 

In addition, the PropertyChecker was configured to accept states only if 0 <= 

readers <= 1 AND 0 <= writers <= 1 AND (# of completed acquireRead <= 2 AND # 

of completed acquireWrite threads <= 2. The first two conditions guarantees the 

implicit lock unlock protocol for both readers and writers as well as bounds the number 

of locks at any given time to 1. The last two condition provides an upper bound of 2 on 

the number of total number of locks that can be acquired in any execution sequence.  

5.2.3 FairBridge Monitor 

The FairBridge monitor implements a solution that is designed to prevent cars 

coming in opposite direction from colliding on a one-lane bridge. To guarantee a 



 

 63

measure of fairness, a turn-based system is used. Cars from each side of the bridge are 

allowed to cross the bridge only if it is their turn or no other cars are waiting on the 

other side. In either case, a car must wait until the bridge is empty of cars coming in the 

opposite direction before it can cross. Because of this, the last car to cross the bridge 

must signal to any waiting cars from the opposite direction that they may now cross. 

Once a car from one side crosses the bridge, it becomes the turn of the other side. The 

FairBridge monitor allows cars to enter and exit the bridge using four synchronized 

methods. Each side of the bridge is represented by the colors blue and red. Cars coming 

from the red side enter the bridge by calling the redEnter method and exit the bridge by 

calling the redExit method. This same behavior is implemented for the blue side with 

the methods blueEnter and blueExit. 

For this case study, 61 mutants were created of which 53 were members of the 

first mutant group and 8 were members of the second mutant group. Each test executed, 

used a single mutant instance that was created by calling the empty monitor constructor. 

The synchronized methods executed during each test were redEnter(), redExit(), 

blueEnter() and blueExit(). The values of nblue, nred, waitred, waitblue and blueturn all 

have an affect on the synchronization behavior of the monitor. Members nblue and nred 

are integer values that represent the number of cars currently on the bridge from the 

blue side or the red side. The waitred and waitblue members are integer values that 

represent the number of cars from the red side or blue side that are waiting to enter the 

bridge and the blueturn member is a boolean value that tracks whether it is blue’s turn 

or red’s turn. Each of these values is used as data members in the state representation. 
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Similar to the previous case studies, the variables and properties used to verify each 

state reached are based on the exercised synchronization behavior of the monitor as 

follows:  

Variables 

• blueCarsOnBridge = # of completed blueEnter threads - # of completed 

blueExit threads 

• redCarsOnBridge = # of completed redEnter threads - # of completed redExit 

threads 

• bluesTurn = (# of completed blueExits == 0 AND # of completed redExits == 0) 

OR (# of completed redExits != 0 AND the last blueExit is older than the last 

redExit) 

• blueCarsWaiting = # of blueEnter threads in the entry and wait queues 

• redCarsWaiting = # of redEnter threads in the entry and wait queues 

Properties 

• blueCarsOnBridge > 0 → redCarsOnBridge == 0 

• blueCarsWaiting > 0 AND bluesTurn → no red cars should be on the bridge that 

entered after it became blue’s turn AND after the longest waiting blue car 

arrived 

• blueCarsOnBridge == 0 AND (blueCarsWaiting == 0 OR NOT bluesTurn) → 

the wait queue should not contain redEnter threads 

• blueCarsOnBridge == 0 AND redCarsOnBridge ==0 AND bluesTurn → the 

wait queue should not contain blueEnter threads 
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• blueCarsOnBridge == 0 AND redCarsOnBridge ==0 AND NOT bluesTurn → 

the wait queue should not contain redEnter threads 

• redCarsOnBridge > 0 → blueCarsOnBridge == 0 

• redCarsWaiting > 0 AND NOT bluesTurn → no blue cars should be on the 

bridge that entered after it became red’s turn AND after the longest waiting red 

car arrived 

• redCarsOnBridge == 0 AND (redCarsWaiting == 0 OR bluesTurn) → the wait 

queue should not contain blueEnter threads 

Acceptance of states reached during the state-space exploration was determined 

based off the following conditions: 0 <= blueCarsOnBridge <= 1 AND 0 <= 

redCarsOnBridge <= 1 AND blueCarsWaiting <= 2 AND redCarsWaiting <= 2 AND # 

of completed blueExits <= 2 AND # of completed redExits <= 2. The first two 

conditions guarantee that the correct order of enters and exits are followed according to 

the expected bridge protocol as well as bounds the number of cars on the bridge to no 

more than 1. The next two conditions ensure that no sequence can have more than two 

cars waiting on either side of the bridge. The last two conditions bound the number the 

number of times that each side can cross the bridge in any execution sequence to a 

maximum of 2.  

5.2.4 FairAllocator Monitor 

The FairAllocator monitor is implemented to manage the allocation of a pool of 

balls in a first-come first-serve manner. Conceptually, each thread that interacts with the 

monitor represents a customer. Customers wanting to request one or more balls must 
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form a line according to the order in which they arrived. If there are enough balls to 

service the request of the first customer in line, the requested balls will be allocated 

from the ball pool to the customer and the next customer in line can submit their 

request. If the first customer in line requests more balls than are currently available in 

the ball pool, they and all other customers in the back of the line must wait until enough 

balls are returned to fill the request. Once a customer has finished using the balls they 

checked-out, they must return them to the ball pool. The FairAllocator monitor allows 

threads to request and return balls on behalf of a customer using the synchronized 

methods get and put.  

For this case study, 60 mutants were created of which 54 were members of the 

first mutant group and 6 were members of the second mutant group. For each mutant 

tested, a single monitor instance was created with an initial ball pool of size 2. The get 

synchronized method defined by the FairAllocator monitor passes an integer argument 

that represents the number of balls requested by the thread. Since this value affects the 

synchronization behavior of the monitor, two argument combinations were defined for 

the get method, namely get(1) and get(2). In addition, two argument combinations were 

defined for the put method resulting in put(1) and put(2) also being executed by the 

framework. The data members captured as part of the state representation for this 

monitor include available and next and were chosen because they affect the 

synchronization behavior of the monitor. The available member is an integer value that 

tracks the number of balls currently in the ball pool while the next member is an integer 

that determines who is the next thread at the front of the line. Similar to the previous 
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case studies, the variables and properties used to verify each state reached are based on 

the exercised synchronization behavior of the monitor as follows: 

Variables 

• ballsCheckedOut = the sum of balls checked out by completed get threads - the 

sum of balls returned by completed put threads 

• totalBalls = the value used to initialize the monitor’s available ball count (i.e., 2) 

• availableBalls = totalBalls - ballsCheckedOut 

Properties 

• ballsCheckedOut <= totalBalls 

• # of waiting get threads > 0 AND last executed thread == longest waiting get 

thread → # of balls requested by longest waiting get thread > availableBalls 

• no completed get threads began execution after the longest waiting get thread 

• last executed thread completed → the wait queue should be empty 

The PropertyChecker implementation for each test was configured to accept 

states only if ballsCheckedOut >= 0 AND (# of completed get threads) <= totalBalls * 

2. The first condition is required to guarantee the correct sequencing of get and put calls 

that collectively must only return up to as many balls as have been checked out. The last 

condition bounds the number of threads that can execute a get to 2 times the number of 

total balls in the pool.  
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5.2.5 BoundedOvertakingAllocator Monitor 

The BoundedOvertakingAllocator monitor was designed to manage the 

allocation of balls in a similar manner as the FairAllocator described in Section 5.2.4. 

The goal of the FairAllocator monitor is to provide a fair allocation protocol that does 

not favor smaller ball requests that can be filled immediately but rather to service 

requests according to the order in with the requests are made. This type of protocol can 

create a situation where the first customer in line requests a large number of balls, 

forcing other customers who may only want a small number of balls to wait for a long 

before their request can be filled. To address this concern, the 

BoundedOvertakingAllocator monitor implements a compromise. If the first customer 

in line requests more balls than are currently available, the monitor will allow up to a 

fixed number of customers whose order can be filled immediately to overtake all other 

waiting customers and have their requests serviced. To ensure fairness as the line moves 

forward, no customer may be overtaken by more than the fixed upper bound of other 

customers during the time they are waiting in the line. 

The framework in this case study was configured to supply a single monitor 

instance with a ball pool of size two and an overtaking upper bound of 1. The 

synchronized methods executed were identical to those used in the FairAllocator 

configuration. Similarly, the available and next monitor members were still used in the 

state representation. However, since the synchronization behavior of the monitor is also 

dependent on the overtaken member, it has been added to the state representation as 

well. The variables and properties defined for the BoundedOvertakingAllocator monitor 
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are also similar to those defined for the FairAllocator monitor. The only change made 

was to the property “no completed get threads began execution after the longest waiting 

get thread” which was changed to “number of completed get threads that began 

execution after the longest waiting get thread <= overtakingLimit”, where 

overtakingLimit is equal to the limit argument passed to the monitor’s constructor. This 

change reflects the new overtaking policy and verifies that each get thread at the front 

of the line has not been overtaken more times than the allowed upper bound. The 

PropertyChecker’s implemented state acceptance for this monitor is identical to that of 

the FairAllocator monitor. 

In this case study no mutants were created and tested. This is due to the fact that 

when the original monitor was executed against our tool, a property violation occurred 

when the execution sequence seen in Table 5.1 was reached. This sequence begins with 

the thread T1 executing get(1) that results in the allocation of one of the two balls in the 

monitor ball pool. When thread T2 executes get(2), there are not enough balls to fill the 

request so it is moved to the wait queue. Thread T3 then executes get(1) and overtakes 

T2 since there are enough balls to fill its request and no other threads have overtaken T2. 

Since the ball pool is now empty, thread T4 is moved to the wait queue when it executes 

get(1). The next two threads execute a put(1), which returns two balls back to the ball 

pool. At this point there are two awoken threads, T2 and T4, which are competing for the 

returned balls. Thread T2 is at the head of the line and has been overtaken once by T3. 

Since the monitor has been configured to allow each waiting thread to be overtaken 



 

 70

only once, it should not be possible for T4 to have its request filled before T2, however, 

this action was allowed by the monitor.  

Table 5.1 The BoundedOvertakingAllocator Property Violation Sequence 

Thread Method Executed 

T1 get(1) 

T2 get(2) 

T3 get(1) 

T4 get(1) 

T5 put(1) 

T6 put(1) 

T4 get(1) 

 

5.3 Results 

Table 5.2 Original Monitor Test Results 

Monitor 
# of States 

Visited  

Paths 

Explored 
Transitions 

Execution 

Time 

BoundedBuffer 24 49 72 
0.19 

Seconds 

ReaderWriterSafe 72 120 147 
0.28 

Seconds 

FairBridge 354 385 470 
0.96 

Seconds 

FairAllocator 92 172 214 
0.39 

Seconds 

BoundedOvertakingAllocator 8 4 12 
0.4 

Seconds 
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Table 5.3 Mutant Test Results 

Monitor 
# of 

Mutants 

# of 

Mutants 

Detected 

Avg # of 

States/Paths/Transes 

Avg/Total 

Exe  

Time  

BoundedBuffer 109 75 12/17/28 
0.12/13.39 

Seconds 

ReaderWriterSafe 28 25 20/26/35 
0.04/11.17 

Seconds 

FairBridge 61 57 90/81/104 
0.33/19.86 

Seconds 

FairAllocator 60 54 14/21/29 
0.12/7.09 

Seconds 

 

Table 5.2 and Table 5.3 show the results collected from testing each of the 

original monitors and mutants in each case study. In each case study a number of the 

mutants tested did not raise a property violation during the execution of their test. In the 

case of the BoundedBuffer, 18 of the undetected mutants contained a mutation in the 

source that affected the value of either the in, out or value variables. The in and out 

variables are used to manage the storage and retrieval of the data items being deposited 

and withdrawn from the buffer and do not affect the synchronization behavior of the 

monitor. The value variable is used to temporarily store the value of a data item being 

deposited and withdrawn from the buffer and likewise does not affect the 

synchronization of the buffer. Since the properties being verified are designed 

specifically to detect synchronization failures it is expected that these mutants were not 

detected. The remaining undetected mutants in each of the case studies were found to 

implement a synchronization behavior that is equivalent to their original monitor and 

thus would violate the properties being verified.  
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When we compared the results of the BoundedBuffer and ReaderWriterSafe 

case studies to the results generated by the MonitorExplorer [29] for these monitors the 

following observations were made. The MonitorExplorer results for the original 

BoundedBuffer explored 33 states and 47 transitions and took a total of 2.2 seconds and 

the results for the original ReaderWriterSafe explored 75 states and 106 transitions and 

took 3.65 seconds. In both cases our tool explored less states, however, executed a 

larger number of transitions. Due to the fact that both tests did not use equivalent 

hardware, our approach does not use data member abstraction in our state representation 

and that no information was provided regarding the number of paths explored no 

conclusions can be drawn from these observations.  
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CHAPTER 6 

 CONCLUSION AND FUTURE WORK 

 

In this thesis we have presented a dynamic framework for testing the 

synchronization behavior of Java monitors. This framework uses a state-space 

exploration based approach that is driven by dynamically created sequences of 

synchronized method execution calls. Each state visited in the state-space represents the 

monitor under test with no thread executing in its critical section and all enabled 

transitions for a state simulate possible thread interactions that could occur given the 

current monitor state. By creating new threads on the fly as needed, each execution 

sequence simulates a possible combination of thread interaction with the monitor, which 

in turn exercises a combination of the monitor’s synchronization behavior. This 

simplifies testing of a Java monitor by relieving the tester of having to design test cases 

that exercise the synchronization behavior and also consider the non-deterministic 

arrival of threads to the entry queue. Because each synchronized method executed may 

affect the state of monitor data members as well as the monitor queues, verification that 

each state reached is consistent with the expected synchronization behavior of the 

monitor must be ensured using application-specific properties provided by the tester. If 

these properties are not accurate or do not sufficiently cover the expected 

synchronization behavior of the monitor, execution of a test may result in a false 

positives that will be difficult for the tester to detect. 
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The framework makes several assumptions about the monitor under test that 

currently limit the type of monitors that can be tested. Each method that is to be 

executed during a monitor test must be a synchronized method. Condition 

synchronization implemented in each method must currently use only a combination of 

wait, notify and notifyAll synchronization primitives. No support is current available for 

synchronized blocks, timed waits or synchronization constructs added as of Java 5.0. As 

a result, we would propose extending the framework to add support for these features, 

as this will allow the approach to test industry level monitor implementations. Data 

member captured at each state reached must be of a primitive data type. This reduces 

the level of user configuration, however, limits the state-space explored in cases where 

the synchronization behavior of the monitor is dependent on the value of a complex data 

type or on an object instance. We would propose an extension to the data member 

representation that would allow the user the option of data abstraction in situations 

where data members are not of a primitive data type. This additionally could be used to 

represent data values that may iterate over a large range of values yet only specific 

values are significant to evaluating synchronization behavior of the monitor given the 

current configuration. Currently, the approach handles these situations by either 

allowing the exploration to exercise all possible values for these types of data members 

or terminate a path based on user defined bound. By terminating a path based on a fixed 

upper or lower bound, the approach does not have the flexibility to explore additional 

states along the current path, which could be reachable using data abstraction.  
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The framework is currently designed to test a single monitor instance in 

isolation. Though a monitor is designed to be accessed by multiple threads at the same 

time, due to the mutual exclusion provided by the synchronized methods, only one 

thread will be allowed to execute within the critical section at any given time. As a 

result, the framework currently assumes that all thread interaction with encapsulated 

data members within the critical section (i.e., data primitives, complex data types or 

object references) are thread safe. Since deterministic execution is implemented by a 

sequential execution of threads within the critical section, there is no benefit in 

executing a test on a multi-processor hardware.  

Though the framework is designed to interact with a single monitor instance, it 

could be extended to test multiple instance of a monitor in parallel. This extension could 

be used to verify the synchronization behavior of the monitor when simulating its 

execution on a multi-processor or distributed system where multiple instances may 

interact with common resources. Such an extension would require the exploration driver 

to provide deterministic execution of multiple instances of the monitor that simulate 

different interleavings of thread interaction across each monitor instance. It would still 

be assumed however that each data member that could be accessed within the critical 

section provides a thread safe implementation. It should be noted here that since the 

approach focuses on detecting failures in the synchronization behavior of the monitor, 

detecting faults due to thread interaction with shared data members between the monitor 

instances would be limited to those shared data members that affect the synchronization 
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behavior of the monitor. In the event that a shared data member is not thread safe, the 

framework may return false positives or false negatives due to race conditions.  

This framework has demonstrated success in detecting synchronization failures 

in each of the case studies described in Section 5. The only mutants that were not 

detected either did not affect the synchronization behavior of the monitor or 

implemented an equivalent synchronization behavior to that of the original monitor.  

This level of detection was the same as that achieved by the MonitorExplorer [29] when 

testing the BoundedBuffer and ReaderWriterSafe monitors in the first two case studies. 

To discuss the potential costs of our approach against that of the 

MonitorExplorer, we must consider the effect of the difference between the two. The 

key differences between these two approaches are in the way states and transitions are 

defined and the rules used for introducing new threads. In the MonitorExplorer, 

transitions are defined at a level of granularity that is consistent with visible operations 

of the monitor. Each executed transition therefore represents either a thread entering the 

critical section, executing a notify/notifyAll or a wait, exiting the critical section or the 

introduction of a new thread into the entry queue. In our approach, transitions represent 

a thread entering the critical section, executing one or more operations within the 

critical section and eventually exiting the critical section, either due to completion of the 

method or having reached a wait operation. As a result of these differences, the states 

visited in our approach represent a monitor at each time when no thread is executing 

within the critical section while the MonitorExplorer may visit several states during the 

execution a thread within the critical section. This reduction in the number of states 
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visited during the execution of a thread in the critical section is offset by the differences 

in state representation and enabled transitions that have a greater impact on the size of 

the state-space that can be visited for each monitor.  

Let us first consider the impact of the state representation used. In both 

approaches data values defined by the user are captured at each state are and are 

assumed to represent the data members that affect the synchronization behavior of the 

monitor. The MonitorExplorer uses abstraction to represent the data values at each state 

while our approach uses concrete values. As we mentioned previously, data abstraction 

can offer a greater degree of flexibility during exploration of a path, which can allow an 

approach to explore additional states that cannot be reached by explicit termination of a 

path due to a data value having reached an upper or lower bound. A limitation in using 

data abstraction is that based on the implementation of the monitor, there may be cases 

in which several tests, each requiring a different initial configuration of the monitor, are 

required to provide sufficient coverage. This can result when the data abstraction 

chosen for a specific test configuration does not sufficiently explore the synchronization 

behavior of the monitor. Therefore if the range of possible values each data member 

will exercise is kept reasonable by the test configuration, capturing the concrete values 

of the monitors can simplify the configuration process. In addition, the use of data 

abstraction requires an understanding of the implementation to determine the abstract 

values that will be used for each data member and tightly couples the test configuration 

to the monitor’s implementation rather than its specification. Both approaches also use 

thread abstraction to represent the state of select threads interacting with the monitor. In 
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the MonitorExplorer the thread abstraction consists of abstract values assigned for three 

aspects of the monitor. The first is an abstract value representing the thread currently 

executing in the critical section. The second is an abstract value representing the next 

thread in the entry queue that will be allowed into the critical section once it is empty. 

The last is a type vector consisting of abstract values representing threads in the wait 

queue. Each entry in the type vector maps to a executable synchronized method in the 

test that contains at least one wait primitive and the abstract value assigned for each 

entry is determined by whether there is at least one thread in the wait queue which has 

reach one of the method’s wait primitives. In our approach the thread abstraction 

represents the state of threads in both the entry queue and wait queue where each 

abstract value assigned is based collective state of threads according to the last wait 

primitive reached. Representing the state of threads based off the last wait point reached 

provides a finer level of granularity than thread states defined at the method level, 

however, can quickly result in a much larger state-space which must be bound by a test 

configuration as it can result in state explosion. As an example, let’s consider that the 

number of possible combinations for the thread abstraction used in each approach. For 

the MonitorExplorer the combinations equal (M + 1)
2 
* 2

Mw
 where M equals the number 

of synchronized methods executed in each test and Mw equals the number of 

synchronized methods executed in each test that contain at least one wait primitive. In 

our approach the combinations equal 4
W
 where W equals the number of wait primitives 

across all synchronized methods executed in each test. It should be noted that these 

equations represent an upper bound on the number of states that can be visited based 
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solely on the thread abstraction used in each state representation, however, not all of 

these combinations will be reachable during a test of a monitor. If we consider a simple 

case where each synchronized method executed during a test contains a single wait 

primitive, the number of combinations for our approach will exceeded those of the 

MonitorExplorer for a test with six or more methods. In situations where synchronized 

methods contain a greater number of wait primitives, the number of combinations for 

our approach will exceed that of the MonitorExplorer with a smaller number of 

synchronized methods used in a test. This difference represents a significant cost that 

can be incurred for more complex monitors, however, the potential benefit is that the 

thread representation used is more sensitive to the implemented synchronization 

behavior of the monitor and therefore will reflect a finer state of the monitor. 

The enabled transitions in both approaches are designed to simulate different 

possible thread interactions with the monitor during the state-space exploration. At each 

state where no thread is executing within the critical section, the enabled transitions in 

both approaches contain transitions to represent the entry of any threads that have been 

awakened along the current path into the critical section or in the event that no 

awakened threads are in the entry queue, transitions representing the introduction of a 

new thread for each synchronized method that will compete for entry into the critical 

section. The difference between the two approaches is the rules used to determine when 

transitions will also be included to represent the possibility of new threads being 

allowed to compete with awaken threads for entry into the critical section. In the 

MonitorExplorer the decision to introduce new threads to compete with awakened 
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threads is made at each state reached during the exploration where a notify/notifyAll is 

the next visible operation to be executed by the thread in the critical section. In this 

situation the enabled transitions will include transitions for each awakened thread as 

well as transitions to introduce competing threads for each possible synchronized 

method that can be executed during the test. This results in the possibility of a single 

new thread being allowed to enter into the critical section before an awakened thread is 

allowed to re-enter the critical section. This differs from our approach that allows a 

variable number of possible competing new threads to be allowed into the critical 

section before an awakened new thread is allowed to re-enter. This results in a larger 

number of possible paths that can be explored for each awakened thread, which will 

increase the cost for each test as the complexity of the conditional synchronization 

increases.   

Given the differences in the way the MonitorExplorer and our approach define 

states and transitions, it is impossible to perform a one-to-one comparison between the 

two approaches. Each difference that we have described represents costs that can be 

incurred during the state-space exploration of the monitor with the potential benefit of 

added coverage in specific situations. The cost to benefit ratio will largely be dependent 

on the complexity of the monitor under test as well as the test configuration defined by 

the user.  Due to differences in testing hardware, the type and number of mutants tested 

in the two overlapping case studies and the type of data recorded, there is a lack of data 

to make any further analytical observations between these two approaches. Therefore 

we would like to conduct additional case studies to further evaluate the coverage and 
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performance of this approach against monitors of increasing levels of complexity both 

in terms of methods executed during a test but also in terms of the condition 

synchronization implemented by each method. As part of this effort we would like to 

compare the fault detection and performance costs of our approach with that of the 

MonitorExplorer to determine whether our potential added coverage justifies the 

inherent added costs. 
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APPENDIX A 

 

 

BOUNDEDBUFFER CASE STUDY 
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Correct BoundedBuffer Source Code 

import edu.uta.monitortester.hook.SyncHook; 

 

public class BoundedBuffer { 

 

    private int fullSlots = 0; 

    private int capacity = 0; 

    private int[] buffer = null; 

    private int in = 0, out = 0; 

 

    public BoundedBuffer(int bufferCapacity) 

    { 

        capacity = bufferCapacity; 

        buffer = new int[capacity]; 

    } 

 

    public synchronized void deposit(int value) 

    { 

        while(fullSlots == capacity) 

        { 

            try 

            { 

                SyncHook.waitThread(this, "deposit_wait_1"); 

            } 

            catch(InterruptedException ex) {} 

        } 

 

        buffer[in] = value; 

        in = (in + 1) % capacity; 

                                                                           

        if (fullSlots++ == 0) 

            SyncHook.notifyAllThreads(this, "deposit_notify_1"); 

    } 

 

    public synchronized int withdraw() 

    { 

        int value = 0; 

        while(fullSlots == 0) 

        { 

            try 

            { 

                SyncHook.waitThread(this, "withdraw_wait_1"); 

            } 

            catch(InterruptedException ex) {} 
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        } 

        value = buffer[out]; 

        out = (out + 1) % capacity; 

 

        if (fullSlots-- == capacity) 

            SyncHook.notifyAllThreads(this, "withdraw_notify_1"); 

 

        return value; 

    } 

 

} 

 

BoundedBuffer XML Configuration File 

<?xml version="1.0"?> 

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd"> 

 

<userprovided> 

    

<factory>test.boundedbuffer.userprovided.BoundedBufferUserProvidedFactory</factor

y> 

    <monitor> 

        <method name="deposit" id="deposit"> 

            <parameterTypes> 

                <parameterType>int</parameterType> 

            </parameterTypes> 

            <wait id="deposit_wait_1"> 

                <variable>fullSlots</variable> 

            </wait> 

            <notifyAll id="deposit_notify_1"> 

                <variable>fullSlots</variable> 

            </notifyAll> 

        </method> 

        <method name="withdraw" id="withdraw"> 

            <parameterTypes> 

            </parameterTypes> 

            <wait id="withdraw_wait_1"> 

                <variable>fullSlots</variable> 

            </wait> 

            <notifyAll id="withdraw_notify_1"> 

                <variable>fullSlots</variable> 

            </notifyAll> 

        </method> 

    </monitor> 

</userprovided>
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READERWRITERSAFE CASE STUDY
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Correct ReaderWriterSafe Source Code 

import edu.uta.monitortester.hook.SyncHook; 

 

public class ReaderWriterSafe 

{ 

    private int readers =0; 

    private boolean writing = false; 

 

    public synchronized void acquireRead() throws InterruptedException 

    { 

        while (writing) 

            SyncHook.waitThread(this, "acquireRead_wait_1"); 

        ++readers; 

    } 

 

    public synchronized void releaseRead() 

    { 

        --readers; 

        if(readers==0) 

            SyncHook.notifyAllThreads(this, "releaseRead_notify_1"); 

    } 

 

    public synchronized void acquireWrite() throws InterruptedException 

    { 

        while (readers>0 || writing) 

            SyncHook.waitThread(this, "acquireWrite_wait_1"); 

        writing = true; 

    } 

 

    public synchronized void releaseWrite() 

    { 

        writing = false; 

        SyncHook.notifyAllThreads(this, "releaseWrite_notify_1"); 

    } 

} 

 

 

ReaderWriterSafe XML Configuration File 

<?xml version="1.0"?> 

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd"> 

 

<userprovided> 
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<factory>test.readerwritersafe.userprovided.ReaderWriterSafeUserProvidedFactory</fa

ctory> 

    <monitor> 

        <method name="acquireRead" id="acquireRead"> 

            <parameterTypes> 

            </parameterTypes> 

            <wait id="acquireRead_wait"> 

                <variable>readers</variable> 

                <variable>writing</variable> 

            </wait> 

        </method> 

        <method name="releaseRead" id="releaseRead"> 

            <parameterTypes> 

            </parameterTypes> 

            <notifyAll id="releaseRead_notify"> 

                <variable>readers</variable> 

                <variable>writing</variable> 

            </notifyAll> 

        </method> 

        <method name="acquireWrite" id="acquireWrite"> 

            <parameterTypes> 

            </parameterTypes> 

            <wait id="acquireWrite_wait"> 

                <variable>readers</variable> 

                <variable>writing</variable> 

            </wait> 

        </method> 

        <method name="releaseWrite" id="releaseWrite"> 

            <parameterTypes> 

            </parameterTypes> 

            <notifyAll id="releaseWrite_notifyAll"> 

            </notifyAll> 

        </method> 

    </monitor> 

</userprovided>
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FAIRBRIDGE CASE STUDY 
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Correct FairBridge Source Code 

import edu.uta.monitortester.hook.SyncHook; 

 

public class FairBridge 

{ 

 

    private int nred = 0; 

 

    private int nblue = 0; 

 

    private int waitblue = 0; 

 

    private int waitred = 0; 

 

    private boolean blueturn = true; 

 

    public synchronized void redEnter() 

        throws java.lang.InterruptedException 

    { 

        ++waitred; 

        while (nblue > 0 || waitblue > 0 && blueturn) { 

            SyncHook.waitThread(this, "redEnter_wait_1"); 

        } 

        --waitred; 

        ++nred; 

    } 

 

    public synchronized void redExit() 

    { 

        --nred; 

        blueturn = true; 

        if (nred == 0) { 

            SyncHook.notifyAllThreads(this, "redExit_notify_1"); 

        } 

    } 

 

    public synchronized void blueEnter() 

        throws java.lang.InterruptedException 

    { 

        ++waitblue; 

        while (nred > 0 || waitred > 0 && !blueturn) { 

            SyncHook.waitThread(this, "blueEnter_wait_1"); 

        } 

        --waitblue; 
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        ++nblue; 

    } 

 

    public synchronized void blueExit() 

    { 

        --nblue; 

        blueturn = false; 

        if (nblue == 0) { 

            SyncHook.notifyAllThreads(this, "blueExit_notify_1"); 

        } 

    } 

 

} 

 

FairBridge XML Configuration File 

<?xml version="1.0"?> 

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd"> 

 

<userprovided> 

    <factory>test.fairbridge.userprovided.FairBridgeUserProvidedFactory</factory> 

    <monitor> 

        <method name="redEnter" id="redEnter"> 

            <parameterTypes> 

            </parameterTypes> 

            <wait id="redEnter_wait_1"> 

                <variable>nblue</variable> 

                <variable>waitblue</variable> 

                <variable>blueturn</variable> 

            </wait> 

        </method> 

        <method name="redExit" id="redExit"> 

            <parameterTypes> 

            </parameterTypes> 

            <notifyAll id="redExit_notify_1"> 

                <variable>nred</variable> 

            </notifyAll> 

        </method> 

        <method name="blueEnter" id="blueEnter"> 

            <parameterTypes> 

            </parameterTypes> 

            <wait id="blueEnter_wait_1"> 

                <variable>nred</variable> 

            </wait> 

        </method> 



 

 91

        <method name="blueExit" id="blueExit"> 

            <parameterTypes> 

            </parameterTypes> 

            <notifyAll id="blueExit_notify_1"> 

                <variable>nblue</variable> 

                <variable>waitred</variable> 

                <variable>blueturn</variable> 

            </notifyAll> 

        </method> 

    </monitor> 

</userprovided> 
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Correct FairAllocator Source Code 

import edu.uta.monitortester.hook.SyncHook; 

 

public class BoundedOvertakingAllocator 

{ 

 

    private int available; 

 

    private int turn = 0; 

 

    private int next = 0; 

 

    private int bound; 

 

    private int overtaken = 0; 

 

    public BoundedOvertakingAllocator( int n, int b ) 

    { 

        available = n; 

        bound = b; 

    } 

 

    public synchronized void get( int n ) 

        throws java.lang.InterruptedException 

    { 

        int myturn = turn; 

        ++turn; 

        boolean overtakenMe = false; 

        while (n > available || overtaken > 0 && !overtakenMe) { 

            SyncHook.waitThread(this, "get_wait_1"); 

            if (next >= myturn + bound && !overtakenMe) { 

                overtakenMe = true; 

                ++overtaken; 

            } 

        } 

        if (overtakenMe) { 

            --overtaken; 

        } 

        ++next; 

        available -= n; 

        SyncHook.notifyAllThreads(this, "get_notify_1"); 

    } 

 

    public synchronized void put( int n ) 
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    { 

        available += n; 

        SyncHook.notifyAllThreads(this, "put_notify_1"); 

    } 

 

} 

 

FairAllocator XML Configuration File 

<?xml version="1.0"?> 

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd"> 

 

<userprovided> 

    <factory>test.fairallocator.userprovided.FairAllocatorUserProvidedFactory</factory> 

    <monitor> 

        <method name="get" id="get"> 

            <parameterTypes> 

                <parameterType>int</parameterType> 

            </parameterTypes> 

            <wait id="get_wait_1"> 

                <variable>available</variable> 

                <variable>next</variable> 

            </wait> 

            <notifyAll id="get_notify_1"> 

            </notifyAll> 

        </method> 

        <method name="put" id="put"> 

            <parameterTypes> 

                <parameterType>int</parameterType> 

            </parameterTypes> 

            <notifyAll id="put_notify_1"> 

            </notifyAll> 

        </method> 

    </monitor> 

</userprovided>
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BOUNDEDOVERTAKINGALLOCATOR CASE STUDY 
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Correct BoundedOvertakingAllocator Source Code 

import edu.uta.monitortester.hook.SyncHook; 

 

public class BoundedOvertakingAllocator 

{ 

 

    private int available; 

 

    private int turn = 0; 

 

    private int next = 0; 

 

    private int bound; 

 

    private int overtaken = 0; 

 

    public BoundedOvertakingAllocator( int n, int b ) 

    { 

        available = n; 

        bound = b; 

    } 

 

    public synchronized void get( int n ) 

        throws java.lang.InterruptedException 

    { 

        int myturn = turn; 

        ++turn; 

        boolean overtakenMe = false; 

        while (n > available || overtaken > 0 && !overtakenMe) { 

            SyncHook.waitThread(this, "get_wait_1"); 

            if (next >= myturn + bound && !overtakenMe) { 

                overtakenMe = true; 

                ++overtaken; 

            } 

        } 

        if (overtakenMe) { 

            --overtaken; 

        } 

        ++next; 

        available -= n; 

        SyncHook.notifyAllThreads(this, "get_notify_1"); 

    } 

 

    public synchronized void put( int n ) 
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    { 

        available += n; 

        SyncHook.notifyAllThreads(this, "put_notify_1"); 

    } 

 

} 

 

 

BoundedOvertakingAllocator XML Configuration File 

<?xml version="1.0"?> 

<!DOCTYPE userprovided SYSTEM "UserProvided-schema.dtd"> 

 

<userprovided> 

    

<factory>test.boundedovertakingallocator.userprovided.BoundedOvertakingAllocatorU

serProvidedFactory</factory> 

    <monitor> 

        <method name="get" id="get"> 

            <parameterTypes> 

                <parameterType>int</parameterType> 

            </parameterTypes> 

            <wait id="get_wait_1"> 

                <variable>available</variable> 

                <variable>next</variable> 

                <variable>overtaken</variable> 

            </wait> 

            <notifyAll id="get_notify_1"> 

            </notifyAll> 

        </method> 

        <method name="put" id="put"> 

            <parameterTypes> 

                <parameterType>int</parameterType> 

            </parameterTypes> 

            <notifyAll id="put_notify_1"> 

            </notifyAll> 

        </method> 

    </monitor> 

</userprovided>
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