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ABSTRACT 

 

SPACECRAFT FORMATION FLIGHT: ANALYSIS OF THE  

PERTURBED 2J -MODIFIED HILL-CLOHESSY- 

WILTSHIRE EQUATIONS  

 

Publication No. ______ 

 

Jeffery S. Ginn, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Kamesh Subbarao  

With the recent technological gains made in satellite design and manufacturing, 

there has been great interest in utilizing a cluster of satellites to perform the same tasks 

performed by larger satellites.  Historically, this has been done utilizing the Clohessy-

Wiltshire equations, or the Hill’s equations, as a benchmark for understanding the 

physics of the relative motion between two spacecraft. 

A variety of different models have been derived and implemented to study the 

relative motion dynamics since the Hill-Clohessy-Wiltshire (HCW) equations.  Some of 

these models, like the HCW equations, are linearized and have analytical solutions.  
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These models make the underlying physics due to higher order perturbations more 

easily understood, as well as more computationally efficient in solving.  Perturbations to 

the relative dynamics are of necessary importance in order to obtain a model of high 

fidelity. 

The research presented in this thesis will explore an approximation of the 

relative motion under the disturbance of relative second-order differential gravity and 

the effects of the linearized second-order zonal harmonics ( 2J ), which may be 

described analytically.  This problem is the compilation of two previous models which 

each focused on solutions to one of these perturbations.  The new solution will be used 

to obtain appropriate initial conditions for the nonlinear second-order differential 

gravity model that will provide periodic solutions.  These solutions will be compared to 

those obtained by these models, as well as the HCW equations.  This will determine the 

overall fidelity of each model in describing the true relative dynamics between two 

spacecraft.     
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Over the past decade, spacecraft formation flight has become a topic of great 

interest.  With the advent of micro-satellite technology, it is possible for more 

economically viable satellites to fly in formation and accomplish the same task as 

larger, more costly satellites.  These satellite clusters may be put to use as space-based 

radars, telescopes, ground imaging, and interferometers, navigation and 

communications.1 With the onset of NASA’s New Millennium Program (NMP) and the 

Air Force Research Laboratory’s (AFRL) TechSat 21 (Technology Satellite of the 21st 

Century) program, satellites are expected to be an order of magnitude smaller and 

lighter than current versions of satellites.   

Describing the relative motion dynamics is of great importance in designing any 

mission involving spacecraft in autonomous formation.  It is important to understand 

what governs a spacecraft’s motion about an attracting body, and how that motion 

affects the relative motion with respect to another spacecraft.  “Spacecraft formation 

flight” can be a misnomer, as, for the most part, spacecraft do not “fly,” they orbit.2 The 

literature review will discuss various techniques explored and used to describe the 

relative motion dynamics between spacecraft.     
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Autonomous spacecraft formation flight is already a reality.  The first NMP 

program, Earth Observing (EO-1), and was put into formation with the Landsat 7 

satellite with the purpose of validating new technology that reduces the cost of land-

imaging missions.3, 4  

1.2 Landmark: The Gemini Program 

The desire to distribute the various tasks of large satellites amongst smaller 

satellites flying in precise formation has led to the need for high fidelity modeling of the 

motion within the satellite cluster.  The concept of spacecraft formation is not a new 

one.  The Hill-Clohessy-Wiltshire (HCW) equations, the most basic equations which 

describe the relative motion dynamics between spacecraft, were originally developed 

for the Gemini Program.  This eventually culminated into the first docking of two 

spacecraft in March, 1966 with Gemini VIII.5, 6  

The Gemini missions were designed for rendezvous and docking – short period 

motion where spacecraft are in relatively close proximity (0 - 100 meters).  For this type 

of formation the HCW equations are a valid approximation.  Because the relative 

distance is small, the perturbations ignored by the HCW equations do not affect the 

formation on such small time scales and distances.   

The HCW equations are derived for a deputy or pursuer spacecraft, with respect 

to a chief or target spacecraft.  The chief spacecraft is assumed to be in a circular orbit, 

which is used as the reference orbit for the relative motion.  Any deviation from these 

assumptions causes the HCW equations to no longer admit periodic solutions.  As such, 

the description of motion between spacecraft in eccentric orbits, and at greater relative 
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distance needs the added perturbations to more accurately describe the relative motion 

dynamics.   

1.3 Perturbations 

Perturbations are all relative to a specific problem.  In this thesis, a perturbation 

is ultimately described as any effect that disturbs the relative motion as defined by the 

HCW equations.  The two main perturbations which cause a formation in Earth orbit 

described by the HCW equations to lose periodicity are nonlinear differential gravity 

and 2J  disturbances.   

It is possible to develop a set of linearized, constant-coefficient differential 

equations that describe the linearized, periodic nature of the 2J  disturbance, and these 

equations are referred to as the 2J -Modified Hill-Clohessy-Wiltshire (MHCW) 

equations.7,8 It will be shown that the introduction of the linearized 2J  acceleration to 

the HCW equations will improve the relative out-of-plane motion dynamics, as it 

accounts for the frequency difference in the out-of-plane motion from the in-plane 

motion.  The nonlinear differential gravity terms may be added to the HCW equations 

by using the method of perturbations.9 This allows the dynamics associated with this 

perturbation to be solved for using the linear, time-varying, state transition matrix 

calculated from the solution to the HCW equations.  The addition of nonlinear 

differential gravity to the HCW equations results in an improved description on the 

relative in-plane equations of motion.  
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1.4 Organization of the Thesis 

In this thesis, these two improvements to the Hill’s equations will be combined 

to produce a higher fidelity model, which includes the effects of second-order 

differential gravity, as well as the linearized effects of the 2J  disturbance as described 

above.  The perturbations due to second-order differential gravity are added to the 

MHCW equations utilizing the state transition matrix calculated from the MHCW 

equations.  The addition of these perturbations to the HCW equations produces a better 

description of both the in-plane and out-of-plane dynamics.  The analytical solution 

gives good insight and description of the effects these two perturbations have on the 

system.  This allows for a more robust controller to be implemented in real-world 

applications. 

Chapter 2 will present the recent research contributions to the problem of 

spacecraft formation flight.  Linear and nonlinear equations of motion will be discussed.  

Chapter 3 will define the inertial and rotating reference frames, as well as the rotation 

matrices used to transform the inertial to local relative coordinate system and vice versa.  

The chapter will conclude with derivations of the relative equations of motion and the 

full nonlinear truth model.   Chapters 4-5 will derive the various dynamical models, and 

simulated results will be presented after each model is derived.  Chapter 6 compares the 

simulations to determine what is gained from the new linearized equations of motion, 

and describes some interesting properties of the perturbed MHCW equations.  
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CHAPTER 2 

PREVIOUS WORK 

2.1 Motivation 

Recent studies on the relative motion dynamics and control of spacecraft in 

formation began in the early 1990’s with interest in using multiple spacecraft for 

interferometery, space-based communications, and missions to study the 

magnetosphere.10 This topic has required research in formation dynamics and control.  

Specific insight on formation geometry is needed for mission planning and 

reconfiguration, which would not be possible without accurate description of the 

dynamics and optimal control methods.    

As with any three-dimensional dynamical system, three second-order scalar 

differential equations are required to describe the motion of a spacecraft orbiting about 

a central body.  The n-body problem admits 10 integrals of motion; six come from the 

Conservation of Total Linear Momentum (producing two vector constants of 

integration), three from the Conservation of Total Angular Momentum (one vector 

constant of integration), and one from the Conservation of Total Energy (one scalar 

constant of integration).11 Therefore, when one is considering even the absolute motion 

of two-bodies, a closed-form solution does not exist.   

The relative motion between two bodies, however, does admit closed-form 

solutions in the form of conic sections.  This is expressed most notably in terms of the 
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six orbital elements of a spacecraft in relative motion about a central body.  However, it 

is also possible to describe the motion in terms of relative position and velocity, as is 

done when using the two-body form of Newton’s Second Law of Motion (also known 

as Keplerian Motion).  In this form, the only acceleration is that of the gravitational 

attraction between the orbiting body and the central body, which is assumed to be 

spherical in nature. 

2.2 Hill-Clohessy-Wiltshire-Equations 

In order to specify a satellite formation, certain constraints must be considered 

which allow the spacecraft to follow the governing dynamics.  Ideally, a formation will 

be force-free, as the more control input needed to keep a cluster in formation, the more 

expensive the mission will become.  As such, the governing equations for the dynamics 

and control system must be as physically accurate as possible, minimizing the amount 

of fuel needed to keep the cluster in formation.  In a paper by Yeh and Sparks2, the 

Hill’s equations are used to define “legal formations,” – closed paths of relative motion 

traced out by a spacecraft under force-free motion.   

The physical laws governing spacecraft flight differ greatly than land and air 

vehicle formations.  For a chief/deputy system, where the chief defines the reference for 

relative motion of the deputy, the spacecraft will not remain in a constant relative 

position from one another unless they are both in the same circular orbit.  While not all 

missions require such a formation (for example, sparse aperture radar), it is necessary to 

define other legal formations.   
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Yeh and Sparks examine the linearized, force-free HCW equations from a 

geometrical standpoint to define these legal formations.  A legal formation which 

satisfies the HCW equations must lie on the intersection of a plane and an elliptic 

cylinder with an eccentricity of 3 / 2  in a moving coordinate system fixed to the leader 

(LVLH frame).  The plane can be at any slope that is not perpendicular to the orbit 

plane of the chief satellite, as the elliptical cylinder lies normal to the orbit plane. This 

would not yield a legal formation as the relative motion would not be closed.2 

2.3 Describing 2J  Perturbations 

An aspherical body may be modeled using spherical harmonics, which break 

down into three types – zonal, sectorial, and tesseral harmonics.  The derivation of these 

harmonics will be presented in §3.4 and Appendix A.  The 2J  zonal harmonic, which 

captures the equatorial bulge of the Earth, is the largest coefficient when describing the 

Earth’s shape.  There is about a 21km difference in equatorial and polar radii due mainly 

to this bulge.12    

In 1997, Kechihian presented a paper that derives the full set of second-order 

nonlinear differential equations for the relative motion between two spacecraft subject 

to the full effects of the 2J  perturbation and atmospheric drag. 13    By using the 

osculating elements, mapping to and from mean elements is avoided. The in-plane and 

out-of-plane relative motion is shown to be coupled, unlike the linearized solution of 

these relative equations.14  The fact that these equations are exact leaves no room for 
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error in calculating specific changes in velocity needed for rendezvous, station keeping, 

and formation keeping, unlike the linearized analytical solutions.      

Linearizing the gravitational terms in the presence of 2J  for the deputy satellite 

with respect to the chief’s reference orbit, analytical solutions similar to that of the 

HCW equations are obtained.7  These 2J -Modified Hill’s Equations describe the mean 

motion changes in both the in-plane and out-of-plane motion considerably well.  Much 

like the HCW equations, it is necessary to understand the physical geometry of the legal 

formations of these new relative equations of motion.  One way to define legal 

formations under the presence of a linearized 2J  field is by mean orbit elements.6 

If one averages the perturbing potential due to 2J  on the motion of a satellite 

over one orbit, and uses this averaged potential in Lagrange’s planetary equations, the 

mean orbit element rates due to 2J  may be calculated.  This shows that three of the six 

orbit elements show a secular drift (longitude of ascending node, right ascension of the 

ascending node, and mean anomaly).  It is shown that it is these secular drifts that need 

to be avoided for the relative orbit between two spacecraft to be 2J -invariant.  The 

conditions for 2J -invariance imply that specific values should be chosen for the semi-

major axis, eccentricity, and inclination of the deputy spacecraft in order to avoid 

drifting of the deputy and chief satellites.15 Trying to match these conditions between all 

spacecraft in the cluster compounds the problem even more.  Other changes to the orbit 

elements besides secular drift include short-period and long-period oscillations.  These 
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are not required to describe bounded relative motion, but do add to the fidelity of the 

describing dynamics. 

Vadali obtains an analytical solution to the relative equations of motion using 

the geometric method.16 These equations provide accurate results for orbits of low 

eccentricity in the presence of the secular effects of 2J  (mean orbit elements).  Further 

work done by Sengupta has derived an analytical method to propagate the relative 

motion between two spacecraft in highly elliptic orbits.17 In his Master’s thesis, 

Sengupta presents the modified unit sphere model, including the secular effects of 2J .  

Another description of the 2J  perturbation that has recently received new 

interest is the exploration of using non-osculating elements.  In a series of papers by 

Efroimsky, he correlates gauge invariance in electrodynamics to the ability to freely 

choose the submanifold in which the orbit resides.  This connection was lost due to 

Lagrange’s choice of the three extra constraints, which needed to be imposed on the 

system to solve the six functions.  The Lagrange constraint is an artificially imposed 

condition on the underdetermined dynamics that fixes the velocity of the perturbed 

solution equal to the velocity of the unperturbed solution. 18, 19    

The use of non-osculating elements has already been utilized in describing 2J  

perturbed motion.  In Ref. 20, Gurfil utilizes gauge freedom to describe the dynamics 

using non-osculating elements.  The paper derives an orbit representation in which the 

mean non-osculating periapsis is stable under the oblateness perturbation, thus 
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nullifying four planetary equations instead of three through the use of mean osculating 

elements. 

2.4 Nonlinear Differential Gravity 

The addition of nonlinear differential gravity effects to the HCW equations 

causes even the bounded solutions of the Hill’s equations to drift.  Relative drift is seen 

in formation dynamics when the period-matching constraint is not applied.  This 

constraint is prevalent in all descriptions of the relative formation dynamics, including 

the HCW equations.  The period-matching constraint is the first to be looked at when 

defining legal formations.  Spacecraft which follow Keplerian orbits cannot have 

unbounded separation.  In terms of the short-period dynamics, as is the case for the 

HCW equations, if the orbits do not commensurate then the relative motion will appear 

unbounded.  In Ref. 21, Gurfil defines the energy-matching condition needed for orbit 

commensurability using the full nonlinear equations of motion derived from the force-

free, two-body Keplerian motion (i.e., nonlinear differential gravity perturbations are 

included).  A similar condition may be derived for the relative motion including the 

oblateness effects ( 2J ), and will be explored in this thesis. 

Vaddi et al accommodate nonlinear differential gravity up to second-order as 

described in the introduction and repeated here.9 The nonlinear differential gravity 

terms may be added to the HCW equations by using the method of perturbations, which 

allow the dynamics associated with this perturbation to be solved for using the linear, 

time-varying, state transition matrix calculated from the solution to the HCW equations.  
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The addition of nonlinear differential gravity to the HCW equations applies an improved 

description on the relative in-plane equations of motion. 

Sengupta and Vadali in Ref. 22 use the Tschauner-Hempel (TH) equations 

(eccentric form of the HCW equations) to determine initial conditions for periodic 

relative motion for an arbitrary eccentric reference orbit and under the disturbance of 

second-order differential gravity.  These solutions may be obtained analytically by 

evaluating numerous integrals using the eccentric anomaly. 

All of these methods greatly improve the describing dynamics associated with 

the HCW equations.  However there is a need to strike a balance between the fidelity 

and computational efficiency of these models.  
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CHAPTER 3 

SATELLITE RELATIVE MOTION DYNAMICS 

3.1 Frames of Reference 

In this chapter various reference frames that are used to describe the motion of a 

satellite in orbit around the Earth are illustrated and defined.  This includes the 

geometry used to describe the potential due to 2J .11, 12 Fig. 3.1 displays the respective 

frames. 

  
 Fig. 3.1 ECI, LVLH and RTN reference frames 

 

 



 

 13

3.1.1. Earth-Centered Inertial 

The first frame considered is the Earth-Centered Inertial (ECI) frame.  The 

frame is defined by the Earth’s equatorial plane and axis of rotation.  The fundamental 

plane coincides with the equatorial plane, and the X-axis points toward the vernal 

equinox (principal direction) at a specific epoch, which is actually arbitrary for our 

describing functions.  The Y-axis lies in the in the equatorial plane and points in a 

direction 90o to the east of the vernal equinox.  The Z-axis passes through the North 

Pole.  This system originates at the center of the Earth, and is therefore geocentric. 

3.1.2 Local-Vertical Local Horizontal 

The local-vertical local-horizontal (LVLH) coordinate system is defined by the 

radial (in-track), transverse (along-track), and normal (cross-track) directions 

( )R T N− − .  The LVLH coordinate system is orbit-fixed, with an origin at the center 

of the satellite as it moves about its orbit.  The radial (and principal) direction points in 

the direction of the satellite radius vector.  The along-track direction completes the 

triad.  Eqn. (3.1) lists the unit vectors of the LVLH coordinate system in terms of the 

ECI system. 

 

ˆ

ˆ ˆ ˆ

ˆ

R

T h r

N

re
r

e e e
r re
rr

≡

≡ ×

×
≡

 (3.1) 
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It is noted that, in general, the transverse direction does not always coincide 

with the velocity vector.  This vector is tangent only for circular orbits, and eccentric 

orbits at apogee and perigee. 

3.1.3 Satellite-Centered Nodal Coordinate System 

The satellite-centered nodal coordinate system ( r iθ− − ) is defined in essence 

by the Earth-Centered nodal coordinate system.  It is satellite-based, with the 

fundamental plane being the satellite orbit.  Its origin is at the center of the satellite, but 

the principal axis points in the direction of the satellite’s radial position.  The inclination 

angle i  is defined as the angle between the equatorial plane and the orbit plane.  It is 

measured from the line of nodes, which is the direction of the longitude of ascending 

node.  This is the location in which the satellite’s orbit crosses the equator into the 

northern hemisphere, or equivalently from the ECI normal to the orbit normal axis.  The 

co-latitude gives the third direction, or more commonly the argument of latitude, and is 

the angle between the ascending node and the satellite radius vector at any given time, 

also shown in Fig. 3.1. 

3.1.3 The ( - -x y z ) Coordinate System 

The equations of motion derived in this paper are relative equations, describing 

the motion of a deputy satellite around that of a chief satellite, both in orbit around the 

same central body, in this case the Earth.  The x, y, and z directions will be used to 

denote the relative distance of the deputy from the chief.  As such, this system is 

satellite-centered, and is the same as the satellite-centered nodal coordinate system and 

very similar to the rectangular LVLH coordinate system.     
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3.2 Coordinate Transformations 

We define the subscript N to denote a vector in the ECI frame, and a subscript 

O  to denote a vector in the satellite-centered frame.  

The ( r iθ− − ) coordinate system is used in describing the 2J  disturbance in the 

local ( - -x y z ) coordinate system.  The presence of r and the two Euler angles, θ  and 

i , complete the geometry of the associated transform from the ECI frame to the 

( r iθ− − ) frame, utilizing the direction cosine matrix formed by the 3-1-3 Euler angle 

setsΩ , i  andθ .  This is shown in Fig. 3.1 and defined as the longitude of ascending 

node, the argument of latitude, and the inclination angle, respectively.         

cos cos sin sin cos sin cos cos sin cos sin sin
[ ] cos sin sin cos cos sin sin cos cos cos cos sin

sin sin cos sin cos

i i i
ON i i i

i i i

θ θ θ θ θ
θ θ θ θ θ

Ω − Ω Ω + Ω⎡ ⎤
⎢ ⎥= − Ω − Ω − Ω + Ω⎢ ⎥
⎢ ⎥Ω − Ω⎣ ⎦

 (3.2) 

A similar direction cosine matrix (DCM) is written in terms of the LVLH 

coordinate frame as described in the ECI frame, which is a direct rotation from ECI 

coordinates into the satellite-centered frame.  As such, these two rotations are 

equivalent. 

 [ ]
rX rY rZ

X Y Z

hX hY hZ

e e e
ON e e e

e e e
θ θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.3) 

3.3 Equations of Relative Motion 

Consider the two-body motion between a satellite and the orbited body.  If the 

orbited body, such as the Earth, is assumed to be a uniform sphere, there exists a 
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potential function Φ  that imparts a relative acceleration between the satellite and the 

orbited body.  For a point mass or uniformly distributed sphere, the gravitational 

potential is    

 
sr
μ

Φ =  (3.4)        

where μ  is the gravitational parameter and s sr r= , is the distance between the center 

of the satellite and central body.  This relative motion is free of any perturbations.  The 

equations of motion between the orbiting satellite and the Earth in the ECI frame N is 

given as  

 3s
s s

r r
r r

μ∂Φ
= = −
∂

 (3.5)      

Now consider the problem of two spacecraft orbiting a common center body 

(see Fig. 3.2).  One of these spacecraft flies on a given reference orbit and is called the 

chief satellite.  The other will be designated as the deputy satellite.  The inertial 

equations of motion for the chief and deputy satellite about a central body in the 

absence of any perturbation and control forces are then given as  

  3c c
c

r r
r
μ

= −  (3.6)     

 3d d
d

r r
r
μ

= −  (3.7) 
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 Fig. 3.2 Relative motion of a deputy satellite from a chief (reference) satellite 

 

We now wish to determine the relative equations of motion between the chief 

and deputy satellite.  The relative inertial vector as measured from the deputy satellite to 

the chief is   

 [ ] d cr rρ = −
N

 (3.8) 

 
For assumed two-body Keplerian motion, the relative inertial acceleration is 

then 

 3 3d c
d c

r r
r r
μ μρ⎡ ⎤ = − +⎣ ⎦N

 (3.9) 

In order to express the relative motion between the chief and deputy satellite in 

the rotating reference frame O, we need to express the relative motion in the inertial 

frame in terms of the Hill frame.  From the transport theorem6 
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 [ ]ρ ρ ω ρ⎡ ⎤ ⎡ ⎤= + ×⎣ ⎦ ⎣ ⎦ O N ON O
  (3.10)       

 [ ]( )2ρ ρ ω ρ ω ρ ω ω ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + × + × + × ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦O N O N O N O N ON O O O
 (3.11)    

Where [ ] [ , , ]Tx y zρ =
O

 is the position vector of the deputy satellite relative to 

the chief satellite in the rotating Hill frame O and  

 0,0,
T

cω θ⎡ ⎤= ⎣ ⎦O N  (3.12) 

is the angular velocity vector of the rotation Hill frame relative to the inertial frame in 

the orbit frame components.  ωO N  is equivalent to the angular velocity vector of the 

chief at each instant.  Unless otherwise noted, [ ]ρ ρ=
O

 throughout the remainder of 

this thesis.  The chief position is expressed in the Hill frame as ( ),0,0 T
c cr r= .  

Therefore, the position of the deputy satellite may be defined using the Hill coordinates 

( )x y z− −  as  

 [( ), , ]T
d cr r x y z= +  (3.13) 

Substituting Eqns. (3.9) and (3.12-13) into (3.11), the relative motion in the 

chief LVLH frame is then given as 

 

( )

( )( )

( )( )

( )( )

2
3 2

2 2 2 2

2
3

2 2 2 2

3
2 2 2 2

2

2

c
c c c

c
c

c c c

c

c

r x
x y y x

r
r x y z

yy x x y
r x y z

zz
r x y z

μ μθ θ θ

μθ θ θ

μ

+
− − − = − +

+ + +

+ + − = −

+ + +

= −

+ + +

 (3.14) 
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The chief inertial orbit radial and angular accelerations are shown to be 

 

2
2

2

c c c
c

c c
c

c

r r
r

r
r

μθ

θθ

= −

= −
 (3.15) 

We will refer to Eqns. (3.14-15) as the nonlinear HCW equations. 

3.4 Adding the J2 Perturbation 

The previous section assumed the central body was a sphere of uniform density.  

This allows the two-body equations of motion to be written in a more simplified form.  

However, the Earth is not a perfect sphere with uniform density.  Therefore, we would 

like to determine the gravitational potential due to an aspherical central body.  The 

geometry describing the aspherical gravitational potential is shown in Fig. 3.3. 
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 Fig. 3.3 Geometry used to derive the gravitational potential 
 

In order to determine the gravitational potential at point P, each point in the 

Earth, Qm  must be taken into account.  The angles satφ  and Qφ  are the respective co-

latitudes, Qλ  and satθ  are the longitudinal arguments, andΛ is the angle between the 

vectors Qr  and satr , also known as the ground range or total range angle.  All the above 

angle measurements are geocentric.   

The potential that describes an aspherical central body is then given as 

 
( )

( ) ( ) ( ){ }

2

, , ,
2 1

1 cos

cos cos sin

sat

sat

gc

m gc m sat m sat
m

RJ P
r

U
r R P C m S m

r

φ
μ

φ λ λ

∞
⊕

=

∞
⊕

= =

⎡ ⎤⎛ ⎞ ⎡ ⎤−⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎢ ⎥⎡ ⎤+ +⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑∑

l

l l
l

ll

l l l
l

 (3.16) 

where J l , ,mCl , and ,mSl  are gravitational coefficients (refer to Appendix A for 

derivation of Eqn. (3.16)) and R⊕  is the equatorial radius of the Earth.  The first term is 

the two-body potential, whereas the second term is the potential due to zonal harmonics 

( J l  terms, where m=0, and represent bands of latitude).  An aspherical body which only 

deviates from a perfect sphere due to zonal harmonics is axially symmetric about the Z-

axis.  The third term represents two other harmonics.  The sectorial harmonics, where 

m=l , represent bands of longitude, and tesseral harmonics, where 0m≠ ≠l , represent 

tile-like regions of the Earth (see Fig. 3.4).   
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 (a) (b) (c)  
 
Fig. 3.4 Representation of spherical harmonics which are broken down into (a) zonal, 
(b) sectorial, and (c) tesseral.  The zonal harmonics account for the Earth’s oblateness, 
the sectorial harmonics account for mass distribution in longitudinal regions, and 
tesseral harmonics model tiled regions of the Earth’s mass distribution.  
  

There are  l  bands of latitude in which the Legendre polynomial ( )cos
satgcP φ⎡ ⎤

⎣ ⎦l  

is zero, thus dividing the earth into +1 l zones, in which the function is alternately 

increasing and decreasing in signs.  The two trigonometric terms associated with the 

sectorial harmonics are zero for 2  l different values of satλ , and hence divide the sphere 

into 2  l slices of alternately increasing and decreasing functions, associated with 

meridians of longitude.  The tesseral harmonics are divided up by (   m−l ) bands of 

latitude and 2m  meridians of longitude. 

The 2J  coefficient is about 1000 times larger than the next largest aspherical 

coefficient, and is therefore very important when describing the motion of a satellite 

around the Earth.  The potential due to the 2J  disturbance is described from (3.16) as 

 ( )
2

2 2 cos
satzonal gc

R
U J P

r r
μ φ⊕⎛ ⎞ ⎡ ⎤= − ⎜ ⎟ ⎣ ⎦⎝ ⎠

 (3.17) 
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where ( )2 cos
satgcP φ⎡ ⎤

⎣ ⎦  is the associated Legendre polynomial of 2J  and the second 

zonal gravitational coefficient according to the JGM-2 model has  been calculated as12 

3
2 1.082626925638815 10J −= × . Using the spherical geometry shown in Fig. 3.3, the 

co-latitude may be written as 

 
2

2
2sin 1

satgc
Z
r

φ = −  (3.18) 

Therefore the potential due to 2J  is written as 

 ( )

2

2

2 2

2
2

23

2 2

23 2

cos

1 2 3sin
2

1 3 1
2

sat

sat

J gc

gc

RU J P
r r

R J
r

R ZJ
r r

μ φ

μ φ

μ

⊕

⊕

⊕

⎛ ⎞ ⎡ ⎤= − ⎜ ⎟ ⎣ ⎦⎝ ⎠

⎡ ⎤= − −⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞

= − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (3.19) 

The acceleration due to 2J  in the ECI frame is then calculated as the gradient of 

the potential 

 

2

2

2

2

2

2

2 2
2

2 5 2

2

2

51

3 51
2

53

J

J
J

J

ZU X
rX

U J R ZU J Y
Y r r

U ZZZ r

μ ⊕

⎡ ⎤⎛ ⎞∂⎡ ⎤ −⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ⎛ ⎞⎢ ⎥ ⎢ ⎥∇ = = = − −⎜ ⎟⎢ ⎥∂ ⎢ ⎥⎝ ⎠⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎛ ⎞⎢ ⎥⎢ ⎥ −⎜ ⎟∂ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

 (3.20) 

 We rewrite the chief and deputy equations of motion in the inertial frame as 

 23c c c
c

r r J
r
μ

= − +  (3.21)     
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 23d d d
d

r r J
r
μ

= − +   (3.22) 

The acceleration due to 2J  in the LVLH frame may be calculated from the gradient in 

the r and Z directions:  

 
2

2
2

2 4 6 5

ˆ ˆ

3 15 3ˆ ˆ
2 2

J r z

r z

U UU e e
r z

z zJ R e e
r r r

μ ⊕

∂ ∂
∇ = +

∂ ∂
⎡ ⎤⎛ ⎞

= − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (3.23) 

where the Z component may be expressed in the LVLH frame as 

 ˆ ˆ ˆ ˆsin sin sin cos cosz r T Ne i e i e i eθ θ= + +  (3.24) 

 cos sin sinz r r iφ θ= =  (3.25) 

Substituting this back into (3.23) yields the acceleration to be 

 
2

2 2

2
22

2 4

1 3sin sin
2 2

3 sin sin cos
sin cos sin

J

i

J RU J i
r

i i

θ

μ θ θ
θ

⊕

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥∇ = = −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.26) 

Adding the full effects of the 2J  perturbation to the relative equations of motion 

can be tricky.  The addition of this force adds to the number of differential equations 

needed to describe the motion, which means longer computational time.  The full 

nonlinear relative model, which includes the full, nonlinear 2J  and differential gravity 

terms, will be written in terms of the inertial truth model defined in the next section.   
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3.5 Truth Model 

The truth model for the relative motion dynamics may be written based off the 

relative motion in the ECI frame.  In this paper, the truth model is defined as the full 

nonlinear relative equations of motion, which include the full effects of 2J  and 

differential gravity.  As seen from the derivation of the nonlinear HCW equations in 

§3.3, the differential gravity effects are inherent from the relative Keplerian motion, and 

in the previous section, it is seen that the effects of 2J  are intrinsically determined from 

an aspherical central body.  We begin by defining the inertial equations of motion for 

the chief and deputy satellites as  

 23c c c
c

r r J
r
μ

= − +  (3.27)     

 23d d d
d

r r J
r
μ

= − +  (3.28) 

which are modeled as the two-body Keplerian motion with added 2J  perturbations.   

The inertial relative position and velocity is defined as the position and velocity 

of the deputy relative to the chief.  

 [ ] d cr rρ = −
N

 (3.29) 

 d cr rρ⎡ ⎤ = −⎣ ⎦N
 (3.30) 

The relative position in the LVLH is calculated using the direction cosine 

matrix,[ ]ON , defined by Eqn. (3.3) as 

 [ ] [ ][ ]ONρ ρ=
O N

 (3.31) 
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The relative velocity in the LVLH frame is defined using the transport theorem as  

 [ ]ρ ρ ω ρ⎡ ⎤ ⎡ ⎤= − ×⎣ ⎦ ⎣ ⎦ O N OO N
 (3.32) 

where ωO N  is the rotation rate of the LVLH frame, which is the angular velocity of the 

chief orbit as stated before, and is defined as the angular momentum times the 

magnitude of the position squared: 

 2
c c

c

r r
r

ω ×
=O/N  (3.33) 

As the relative position and velocity is now fully defined from the exact 

nonlinear equations of motion in the ECI frame (Eqns. (3.27-33)), we have our truth 

model to be used as a basis for comparison. 
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Example 1.  Full Nonlinear Model Simulation ( 2J  and Differential Gravity Included) 

Consider a chief satellite in circular orbit about the Earth, with an orbit 

inclination of 35o from the Earth equatorial plane, and at a radius 8000cr km= .  We 

assume at 0t  the chief is at the line of nodes, which coincides with the X-axis in the ECI 

frame.  The initial conditions are chosen to match those imposed by Vaddi et al, which 

removes secular growth terms for the HCW solution derived in §4.3 to allow for 

comparison of results.9 The initial conditions for the chief in inertial coordinates are 

given as: 

 
[ ]
[ ]

,0

,0

0 0

0 5.7821430 4.04870010 /

T
c c

T
c

R r km

R km sec

=

=
 (3.34) 

The chief orbit initial conditions are the same for all example simulations performed.

 Now consider two deputy satellites.  The first has an initial relative displacement 

that places it 5 km out from the chief in the radial direction, and 10 km above the chief 

in the cross-track (z) direction  The relative initial conditions are based off HCW initial 

conditions for a bounded formation, derived in §4.3.   

 
[ ]

3 3
1,0

1,0

5 5.7357644 10 8.1915204 10

0 5.7785291 4.046169666 /

T

d c

T
d

R r km

R km sec

− −⎡ ⎤= + − × ×⎣ ⎦

=
 (3.35) 

The second deputy satellite has displacement in the along-track (y) direction 

from the chief satellite of 10 km− .  The initial conditions for this satellite in the inertial 

frame are given as: 
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-3 -3

2,0

-3
2,0

-8.1915204 10 -5.7357644 10

4.4116832 10 5.7872039 4.0414724 /

T

d c

T

d

R r km

R km sec

⎡ ⎤= × ×⎣ ⎦

⎡ ⎤= ×⎣ ⎦

 

The relative positions in the LVLH frame will be used to compare the accuracy 

of the various models from the full nonlinear truth model.  These will be displayed as 

errors from the desired relative position in the Hill frame (the HCW equations in 

Chapter 4, and the 2J -Modified HCW equations in Chapter 5).  For now, we plot the 

full relative nonlinear dynamical system governed by Eqns. (3.27-28) and transformed 

into the relative Hill frame using Eqn. (3.31).  It is noted that the governing equations 

for the plots shown will be listed in the figure title for reference. 

The initial conditions imposed, when applied to the truth model, still causes a 

drift in the y direction, but the drift is small, as can be seen from both cases in Fig. 3.5 

and 3.6.  These plots display actual relative positions of the deputy satellites from the 

chief with full nonlinearities of 2J  and differential gravity.  The drift from a bounded 

periodic motion of 10 km for deputy satellite 1, which displays the largest drift in the 

along-track direction, is around 155m per orbit.  This is because the initial conditions 

used were obtained using a linearized solution, which does not capture the full energy-

matching constraint required for bounded relative motion. 
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Fig. 3.5 Relative Hill truth positions for deputy satellite 1 
using Eqns. (3.27-33)    

 

  
Fig. 3.6 Relative Hill truth positions for deputy satellite 2 
using Eqns. (3.27-28, 31)   
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Example 2. Ignoring 2J  Effects: the Nonlinear HCW Equations 

What if we ignore the effects of the oblateness of the Earth, as governed by the 

nonlinear HCW equations defined in Eqns. (3.14-15)?  The error between the truth 

model governed by Eqns. (3.27-28, 31) and the nonlinear HCW equations are seen in 

Fig. 3.7 and 3.8.  The absence of the 2J  perturbation causes a significant drift over 5 

orbits in the along-track direction, and as such the effects of 2J  should not be neglected 

for models of high fidelity.   

  
 Fig. 3.7 Error of nonlinear HCW governed by (3.14-3.15) 

from truth governed by (3.27-28, 31) for deputy satellite 1 
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Fig. 3.8 Error of nonlinear HCW governed by (3.14-3.15) from 
truth governed by (3.27-28, 31) for deputy satellite 2 

 
 

The truth model has been derived for the system and the simulated results of 

two deputy satellites about the same chief satellite have been presented.  The nonlinear 

HCW equations have also been compared to the truth model.  These will become the 

basis of comparison for the analytical models to be presented.   
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CHAPTER 4 

DIFFERENTIAL GRAVITY MODELS 

4.1 Hill-Clohessy-Wiltshire Equations 

We begin our analysis of various linearized approximations with the most 

simplified model.  Starting with the nonlinear HCW equations, which only include the 

effects of nonlinear differential gravity, we have the 10th order nonlinear system 

 

( )

( )( )

( )( )

( )( )

2
3 2

2 2 2 2

2 2
3

2 2 2 2

3
2 2 2 2

2

2

c
c c c

c
c

c c c

c

c

r x
x y y x

r
r x y z

yy x x y
r x y z

zz
r x y z

μ μθ θ θ

μθ θ θ

μ

+
− − − = − +

+ + +

+ + − = −

+ + +

= −

+ + +

 (4.1) 

 

2
2

2

c c c
c

c c
c

c

r r
r

r
r

μθ

θθ

= −

= −
 (4.2) 

which includes effects of eccentricity.  If we assume that the chief satellite is in a 

circular orbit ( 0e = ), then the angular velocity is equal to the mean motion, which is a 

constant, so the angular acceleration terms vanish. 

 3c c
c

n
r
μθ = =  (4.3) 
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The mean motion of the chief satellite, cn , will be referred to henceforth as n.  

The new equations of motion are now expressed as 

 

( )

( )( )

( )( )

( )( )

2
3 2

2 2 2 2

2
3

2 2 2 2

3
2 2 2 2

2

2

c

c
c

c

c

r x
x ny n x

r
r x y z

yy nx n y
r x y z

zz
r x y z

μ μ

μ

μ

+
− − = − +

+ + +

+ − = −

+ + +

= −

+ + +

 (4.4) 

 
2

2

0

c c
c

r r n
r
μ

θ

= −

=

 (4.5) 

These equations will be referred to as the circular nonlinear HCW equations.   

4.2 Differential Gravity 

The gravitational acceleration terms on the RHS due to the deputy satellite may 

be calculated from the potential function 

 
( )2 2 2

2

21 2

d
d c c

c
c

c c

U
r r r x y z

rr
r r

μ μ μ
ρ

μ

ρ ρ

= − = − = −
+ + + +

= −
⎛ ⎞⋅

+ + ⎜ ⎟
⎝ ⎠

 (4.6) 

The irrational term has the form of the generating function  

 ( ) ( ) 1/ 22, 1 2g aα γ αγ
−

= − +  (4.7) 

which is expressed as the series expansion, 
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 [ ]
0

Pα γ
∞

=
∑ l

l
l

 (4.8) 

where Pl  is the lth Legendre polynomial, 
cr
ρα = −  and c

c

r
r
ργ
ρ
⋅

= .  This potential is 

then expressed as the infinite series 

 ( )
0

1d
c c

xU P
r r
μ ρ

ρ

∞

=

⎛ ⎞ ⎛ ⎞
= − − ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑

l
l

l
l

 (4.9) 

Using the relations, 

 ( ) ( ) ( )2 1
d P z zP z P z
dz z

⎡ ⎤= −⎣ ⎦−l l l-1

l  (4.10) 

 ˆr
x e
ρ
∂

=
∂

 (4.11) 

the differential gravity field may then be calculated as the gradient of the potential, 

 ( )
2

2
1 23 2 2
ˆ ˆ1d

c c

U x xP e P e
r r y z
μ ρ ρ ρ

ρ ρ ρ

−
∞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂

= − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ + ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎣ ⎦
∑

l
l

l l-1
l=0

l  (4.12) 

where 1̂ ˆ ˆhe ye zeθ= +  and ( )2 2
2ˆ ˆ ˆ ˆr he y z e xye xzeθ= − − − .  Summing the first three terms 

(l = 0, 1, 2) gives the linearized differential gravitational acceleration as, 

 2 3 3 32
T

d

c c c c

U x y z
r r r r
μ μ μ μ

ρ
⎡ ⎤∂

= − + − −⎢ ⎥∂ ⎣ ⎦
 (4.13) 
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4.3 Unperturbed HCW Equations 

We ignore the nonlinear differential gravity terms presently, and by substituting 

(4.13) into (4.4) we obtain the equations of motion known as the Hill-Clohessy-

Wiltshire equations 

 

2

2

2 3 0
2 0

0

x ny n x
y nx
z n z

− − =
+ =

+ =

 (4.14) 

Notice that this linearized form of (4.4) has decoupled the in-plane (x-y) motion 

from the out-of-plane ( z ) motion.  The out-of-plane motion is modeled as a harmonic 

oscillator, where the in-plane motion is described as coupled harmonic oscillators.  

These second-order differential equations have the general solutions 

 

( ) cos( )

3( ) 2 sin( )
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 (4.15) 

where , , , , , andoff offA x y Bα β  are the six integral constants.  The velocities are found as 

the time derivatives of (4.15).  In order to produce bounded relative motion, the radial 

offset term must be equal to zero to eliminate the secular growth present in the along-

track direction.  We also set the in-track offset term to zero, so that the bounded 

equations now have the form 

 
( ) ( )
( ) ( )
( )

cos

2 sin

cos( )

x t A nt

y t A nt

z t B nt

α

α

β

= +

= − +

= +
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Example 3.  HCW Model Simulation 

Consider the same initial conditions for the chief and two deputy satellites as 

given in Example 1.  These initial conditions also impose a circular projection in the y-z 

plane, which imposes two more conditions to (4.15)  

 
2B A

β α
=
=

 

We may solve for the remaining four integral constants by evaluating the three 

position and three velocity equations at 0tt = .  The constants of integration for both 

satellites are given in Table 4.1. 

 Table 4.1. IC values for both cases 
 Deputy 1 Deputy 2 

A  5 km 5 km 
α  0 rad 2π km 

offx  0 km 0 km 

offy  0 km 0 km 
  

The relative positions at each instant are Eqns. (4.15) evaluated at each time t.  

When comparing the HCW solution for both satellites to the nonlinear system defined 

by Eqns. (4.4) and (4.5), the error from the linearized equations can be seen mainly as a 

secular growth in the along-track direction for both models (see Fig. 4.1 and 4.2).  The 

HCW solution is the desired relative orbit when other perturbations are ignored.  It will 

be used as comparison to the truth models calculated by nonlinear simulations. 
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Fig. 4.1 HCW model (4.15) position errors from the nonlinear 
HCW Eqns. (4.4-5) for deputy satellite 1 

 

  
Fig. 4.2 HCW model (4.15) position errors from the nonlinear 
HCW Eqns. (4.4-5) for deputy satellite 2 
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Fig. 4.3 HCW model (4.15) position errors from truth (3.27-33) 
for deputy satellite 1 

 

  
Fig. 4.4 HCW model (4.15) position errors from truth (3.27-33) for 
deputy satellite 2  

 



 

 38

As seen in Fig. 4.3 and 4.4, the HCW solutions also fail to capture the true 

relative motion, as the linear dynamics do not capture any perturbations due to the 

oblateness of the Earth.  This set of linearized constant coefficient differential equations 

is valid only under the following assumptions: a circular chief orbit governed by the 

dynamics from Eqn. (4.5), linearized differential gravity field, and a spherical central 

body of uniform density.  As such, these equations breakdown when these assumptions 

are violated.  The next sections will work on improving this model to yield higher 

fidelity linear analytical solutions to the HCW equations. 

4.4 Adding Nonlinear Differential Gravity 

We now wish to add the effects of the second-order nonlinear differential 

gravity terms to the HCW equations in order to remove growth associated with higher 

order differential gravity terms. 
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⎤
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2

2

2
32

 (4.16) 

The higher order terms due to differential gravity were ignored in the previous 

section.  These higher order terms may be expressed by the same perturbing potential 
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n
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 (4.17) 

The gradient of the perturbing potential was given in Eqn. (4.12) as 
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If we retain only the quadratic terms, which correspond to 3n = , then the perturbation 

due to second-order nonlinear differential gravity is 

 

2 2 2
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 (4.19) 

Eqn. (4.19) may be substituted into Eqn. (4.16) to yield the second-order 

nonlinear HCW equations:  
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 (4.20) 

How does this approximation compare to the full nonlinear HCW solution from 

Eqns. (4.4-5)?  This second-order approximation of the differential gravity field is a 

fairly reasonable approximation.  Fig. 4.5 and 4.6 shows the deviation of the nonlinear 

HCW in the absence of 2J  from the desired HCW bounded orbit.  Notice the drift in 

each position component is no more than about 2 m after 5 orbits in the along-track 

direction.   
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Fig. 4.5 Second-order nonlinear HCW (4.20) error from full 
nonlinear HCW solution (4.4-5) for deputy satellite 1 

 
 

  
Fig. 4.6 Second-order nonlinear HCW (4.20) error from full 
nonlinear HCW solution (4.4-5) for deputy satellite 2 
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4.5 Method of Perturbations 

The following derivations are adapted from Ref. 9, and add the effects of 

second-order differential gravity to the HCW equations.  We use the method of 

perturbations, assuming that Eqns. (4.20) have solutions of the following form: 

 
h p h p h p

h p h p h p

h p h p h p

x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

ε ε ε

ε ε ε

ε ε ε

= + = + = +

= + = + = +

= + = + = +

 (4.21) 

The subscript h refers to the solutions of the HCW equations and in this context 

will be termed the homogeneous solution; the subscript p refers to the correction due to 

the nonlinear gravitational terms added to Eqns. (4.20) and will be termed the 

perturbation solution.  We now define our perturbation parameter as 

  4

3
2 cr
με ≡  (4.22) 

It is noted that this perturbation parameter is not dimensionless.  This is done 

intentionally, in order to compare results obtained from Ref. 9.  The new nonlinear 

equations of motion are now 
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 (4.23) 

Substituting Eqns. (4.21) into (4.23) we obtain 
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As 1ε , we can expand and drop the higher order terms of ε  to obtain the 

following equations of motion for the second-order gravitational perturbation. 
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  (4.25) 

4.6 Perturbed HCW Solution 

The perturbation due to second-order differential gravity has the form of a linear 

system with a forcing function added to it.  As such, the solution of the perturbation 

may be written using the state transition matrix of the homogenous solution to Eqn. 

(4.25).  We make note of the fact that the homogeneous solution to Eqn. (4.25) is 

equivalent to the HCW solution.  A more detailed proof is provided in Appendix B (also 

see Ref. 11).  We define our perturbation state vector as the relative perturbed position 

and velocity vectors. 

 
T

p p p p p p px x y z x y z⎡ ⎤= ⎣ ⎦  (4.26) 

We may then write Eqn. (4.24) in state-space form as,  

  ( ) ( ) ( )p h p hx t x t u t= +A B  (4.27) 

The first term yields the homogeneous solution when integrated, and the second term is 

the forcing function. hA is the system matrix, and is constant, ( )hu t  is the perturbation 

term (RHS of Eqns. (4.25)), and the matrix B  is the compatibility matrix.  The general 

solution to Eqn. (4.27) may be written as 
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 ( ) ( ) ( ) ( ) ( )
0

0 0, ,
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Where the system matrices are defined as23  

2

2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3 0 0 0 2 0
0 0 0 2 0 0
0 0 0 0 0

h n n
n

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

A  

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B  

2 2 22
2
2

h h h

h h h

h h

y z x
u x y

x z

⎡ ⎤+ −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

( )

( ) ( )

( )

sin 24 3cos 0 0 1 cos 0

2 4sin 36 sin 1 0 1 cos 0

sin0 0 cos 0 0

3 sin 0 0 cos 2sin 0

6 1 cos 0 0 2sin 4cos 3 0

0 0 sin 0 0 cos

h

ntnt nt
n n

nt ntnt nt nt
n n

ntnt
n

n nt nt nt

n nt nt nt

n nt nt

⎡ ⎤− −⎢ ⎥
⎢ ⎥

−⎢ ⎥− − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

Φ  

The homogeneous solutions are substituted into , ,h h hx y z , respectively.  We 

have thus effectively approximated the solution to the second-order differential gravity 

perturbation to the HCW equations.  

Equation. (4.28) yields direct solutions for the relative position and velocity of 

the nonlinear differential gravity perturbation.  The perturbation positions as a function 

of time are written below, where 2relr A≡ .  
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 (4.31) 

The initial formation angle 'α  is defined in terms of the integral constant α  as 

 ' 2α α π≡ +  

This is due to the 90o phase difference in defining our formation with the formation in 

Ref. 9 (see Fig. 4.7). 

   
 Fig. 4.7 Deputy satellite location in the y-z plane 
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Now that the homogenous solutions are known from Eqns. (4.15) and the 

perturbed solutions are given in Eqns. (4.29-31), they may be substituted into Eqns. 

(4.21) to obtain the full solution. 

Example 4.  Perturbed HCW Simulation Error from HCW Solution 

We define the initial homogeneous conditions for the perturbed HCW solution 

as those evaluated at 0tt =  for the HCW position and velocity equations; i.e. they have 

the same initial relative position and velocities as the HCW solutions.  The 

homogeneous initial conditions for both deputy satellites are then 
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The perturbed initial conditions are calculated by utilizing a weak criterion for 

zero secular growth in the along track direction.  By inspecting Eqn. (4.29), this is 

accomplished when the secular terms are set to zero: 
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48p p
nnx y

n
ρ α⎛ ⎞− − − + =⎜ ⎟

⎝ ⎠
 (4.31) 

The more specific solution to Eqn. (4.31) used in the simulations is 
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The perturbed initial conditions for the two deputy satellites are set to zero for all 

components except the along-track velocity. 

Comparing the nonlinear simulation using the corrected initial conditions 

defined above and Eqns. (4.4-5), to the desired HCW bounded relative orbit (4.15), we 

see that the added correction based on the model which contains second-order 

differential gravity yields favorable results (see Fig. 4.8 and 4.9).  The secular growth in 

the along-track direction has almost vanished, yielding a solution that is almost 

bounded, but only when the effects of 2J  are ignored.  

    
Fig. 4.8 Errors of nonlinear HCW simulation (4.4-5) with 
corrected ICs from HCW solution (4.15) for deputy satellite 1 
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Fig. 4.9 Errors of nonlinear HCW simulation (4.4-5) with 
corrected ICs from HCW solution (4.15) for deputy satellite 2 

 

This set of differential equations is valid only under the following assumptions: 

a circular chief orbit governed by the dynamics from Eqn. (4.5), second-order 

differential gravity field, and a spherical central body of uniform density.  As such, 

these equations yield results that drift when these assumptions are violated.  Neither the 

HCW equations nor the perturbed HCW equations presented in this chapter have 

included the effects of 2J .  The next chapter will work on improving this model to yield 

higher fidelity linear analytical solutions to the HCW equations by obtaining analytical 

solutions including the linearized approximation of 2J . 
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CHAPTER 5 

LINEARIZED 2J  MODELS 

5.1 J2-Modified Hill-Clohessy-Wiltshire Equations 

It is possible to obtain an analytical solution of the relative motion that includes 

the time-averaged, linearized effects of the 2J  perturbation.7,8 Beginning with the 

regular two-body equation, the 2J  acceleration is added resulting in the following 

dynamics in the inertial frame 

 ( ) ( )2r g r J r= +   (5.1) 

where ( )g r  is the gravitational acceleration and ( )2J r  is the acceleration due to 

second-order zonal harmonics.  Both accelerations are expressed in the ( )ˆ ˆr̂ iθ  

coordinate frame as   

 ( ) 2 ˆg r r
r
μ

= −  (5.2) 

and 
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⎢ ⎥
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⎣ ⎦

(5.3)where 2J  is the 

oblateness perturbation, R⊕  is the equatorial radius of the Earth, i  is the orbit 
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inclination, which in the remainder of the text will be the chief orbit inclination, and θ  

is the argument of latitude of the satellite. 

5.1.1 Linearizing 2J  

Obtaining the relative equations of motion follows a similar procedure to that of 

the Hill’s equations.  We begin with a two-body Keplerian chief (reference) orbit, 

modeled the same as in the Hill’s equations. 

 ( )c cr g r=  (5.4) 

Linearizing Eqn. (5.1) for the deputy satellite with respect to the chief orbit results in   

 ( ) ( )( ) ( ) ( )( ) ρθρ ⋅∇++⋅∇+= drJrJrgrgr ccccd 22  (5.5) 

It is noted due to this linearization, all angles and angular velocities expressed below are 

associated with the chief satellite. 

The gradient of the gravitational force is calculated in the ( )ˆ ˆr̂ iθ  coordinate 

system, and the gradient of the 2J  perturbation is given in the ( )ˆ ˆ ˆR T N  coordinate 

system as defined in Ref. 23; which correlates with the ( )ˆ ˆr̂ iθ  system.  The 

resulting gradients are  
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 (5.6) 

and 
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 (5.7) 

The relative distance between the chief and deputy is the same as with the 

derivation of the HCW equations.  We will drop the subscript d denoting the deputy 

satellite.  

 cr rρ = −  (5.8) 

Because the chief orbit is rotating, the relative motion dynamics are still 

calculated through the use of the transport theorem. 

 ( )2 cr rρ ω ρ ω ρ ω ω ρ+ × + × + × × = −  (5.9) 

The rotation rate of the chief orbit ω  is the angular velocity vector of the chief orbit as 

previously stated.  For a circular orbit with no other external forces this is 

 3
ˆ ˆ

c

z nz
r
μω θ= = =   (5.10) 

We now substitute Eqn. (5.5) into Eqn. (5.9) to yield  

( ) ( ) ( )( ) ( ) ( )( )2 22 c c c c cg r g r J r J r rρ ω ρ ω ρ ω ω ρ ρ ρ+ × + × + × × = +∇ ⋅ + +∇ ⋅ −  (5.11) 

5.1.2 Time-Averaging 2J  

The 2J  gradient term yields problems in obtaining a closed-form solution, as it 

is only constant for the equatorial orbit case.  However, since it is periodic, we are able 
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to obtain an approximate solution by taking the average value of this gradient over one 

orbit.  The resulting term for the gradient is now 

 ( )( )
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2 3
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4 0 0
1 0 0

2
0 0 3
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s
J r d s
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π μθ
π
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where 

 ( )
2

2
2

3 1 3cos 2
8
J Rs i

r
⊕≡ +   (5.13) 

and the inclination angle i  of the chief orbit is constant. 

5.1.3 Adjusting the Period of the Chief Orbit 

The inclusion of the 2J  perturbation alters the orbital period and the crossing of 

the equatorial plane of the satellite.  This means the angular velocity vector expressed in 

Eqn. (5.10) is no longer valid when 2J  acceleration is present.  We can fix this 

discrepancy by adjusting the period of the reference orbit, which will yield a new mean 

angular velocity vector.  We start by modifying the equation of motion for the chief 

orbit, which was first assumed to be Keplerian with the following forcing term 

 ( )
2

2
0

1
2 cJ r d

π

θ
π ∫  (5.14) 

The new averaged 2J  forcing term is simply 

                                ( ) 2
2

1 ˆ
2 cJ r d n rsxθ
π

= −∫   (5.15) 
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It is noted that there is still drift associated with the longitude of ascending 

node.  In order to alleviate this drift, the normal component of the 2J  disturbance is 

added to the chief orbit equations of motion, as this is the only 2J  component that 

causes the separation of longitude of ascending node.  This condition matches the drift 

in the longitude of ascending node of both the chief and deputy satellite with respect to 

the mean osculating elements.  The additional forcing term is 

 ( )2
ˆ

cJ r N⋅  (5.16) 

The angular velocity vector of the rotating coordinate system is updated using 

the following relation 

 ( ) ( )
2

23
0

1ˆ
2c c

c

r r J r d
r

πμω ω θ
π

× × = + ∫ + ( )2
ˆ

cJ r N⋅  (5.17) 

which yields the new time-averaged angular velocity 

 ˆ ˆz nczω θ= =  (5.18) 

 1c s= +   (5.19) 

We stress the fact that the angular velocity vector we will use for this solution is 

a time-averaged angular velocity vector, and that the chief reference orbit normal is 

assumed to always point in the same direction relative to the ECI frame.  In doing so, 

we neglect the fact that the orbit normal (direction of angular momentum), and therefore 

the angular velocity, actually wobbles about the Z-axis when the inclination is not equal 

to 0o.  It is possible to alleviate this wobble in the analytical solution, but it does 

increase the number of differential equations and is not presented here. 
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5.1.4 Modified HCW Solution 

The relative equations of motion now become    
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 (5.20) 

With the appropriate substitutions, we can express the equations of motion in terms of 

the ( )Tx y zρ =  relative coordinate frame, 
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 (5.21) 
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22
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2 c

J R
k nc i

r
μ ⊕= +  (5.22) 

where k is the modified argument of latitude due to the 2J  perturbation.  The 

homogeneous solution to this system is similar to that of the HCW equations, but with 

changes in the gain and gyroscopic coefficients imposed by adding the effects of 2J   

The z equation is still a simple harmonic oscillator, and the in-plane motion is still 

coupled.  The particular solution to the RHS may be integrated directly, so the total 

solution is straightforward by the use of the method of variation of parameters for the 

coupled in-plane equations. 

The relative positions as a function of time given appropriate initial conditions 

are found to be  
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c
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Equations (5.21) will be referred to as the 2J -Modified-Hill-Clohessy-Wiltshire 

(MHCW) equations that have the general solutions presented in Eqns. (5.23-25).  The 

velocities are simply the time derivatives of the position. 

Example 5.  Error of Nonlinear Simulation from 2J -Modified HCW Simulation 

We define the initial conditions for the MHCW solution in a similar manner as 

Example 3.  The relative initial positions are those evaluated at 0tt =  for the HCW 

position equations, i.e. they have the same initial relative positions as the HCW 

solutions.  The initial cross-track velocity is also the same as the HCW initial condition.  

However the initial velocities in the radial and along-track directions are calculated in 
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order to remove the secular and drift terms associated with equations 5.23-25.  The new 

velocity initial conditions are calculated as 

 
( )

0 0

2
2

0 0

1
2 1

32 1 1 cos2
8

h h

h h
c

sx y n
s

nJ Ry n sx i
kr

⊕

−⎛ ⎞= ⎜ ⎟+⎝ ⎠

= − + + −
 

Fig. 5.1 and 5.2 shows the error of the desired bounded 2J -Modified HCW 

model from the full nonlinear model governed by Eqns. (3.27-28, 31) for both satellites.  

As can be seen, the drift in the along-track direction has not disappeared, but the growth 

in the cross-track direction has been reduced, when compared to the HCW model.  

  
Fig. 5.1 MHCW model (5.23-25) position errors from full 
nonlinear simulation (3.27-28, 31) for deputy satellite 1 
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Fig. 5.2 MHCW model (5.23-25) position errors from full 
nonlinear simulation (3.27-28, 31) for deputy satellite 2 

 
If we instead implement the MHCW initial conditions to the nonlinear equations 

defined to include only the linearized effects of 2J  and up to second order differential 

gravity, as defined by Eqn. (5.27) in the next section, we obtain similar results to the 

simulation from Example 3 (Fig. 4.1 and 4.2).  Eqn. (5.27) is in effect, the 2J -Modified 

version of Eqn. (4.4).   Fig. 5.3 and 5.4 below show the difference of this nonlinear 

simulation with the MHCW initial conditions from the desired bounded orbit defined by 

Eqns. (5.23-5.25), subject to the zero secular growth and zero offset terms as defined in 

this example.  Notice the radial and cross-track motion differences of this linearized 2J  

model are now bounded, however the along-track difference still displays a large 

secular growth.  This also comes from the fact that the initial conditions are defined 

from the Eqns. (5.23-25), which do not take into account second-order differential 
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gravity effects.  This drift may be alleviated by adding the effects of second-order 

differential gravity, as was done for the HCW equations in Chapter 4.   

  
Fig. 5.3 MHCW model (5.23-25) position errors from nonlinear 
simulation (5.27) for deputy satellite 1 
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Fig. 5.4 MHCW model (5.23-25) position errors from full nonlinear 
simulation (5.27) for deputy satellite 2 

 
 5.2 The Perturbed J2-Modified Hill-Clohessy-Wiltshire Equations 

5.2.1 Describing Dynamics 

This section follows §4.5 exactly, except now we will assume that the solutions 

to the MHCW equations are the “homogeneous” solution to the following nonlinear 

system ( 2J  terms included). 
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∫  (5.26) 

The second-order terms due to differential gravity were added to the HCW 

equations in the previous section.  These higher order terms will be added to the MHCW 

equations in the same manner.  The new nonlinear equations of motion are now 

2
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 (5.27) 

Equations (5.27) will be referred to as the nonlinear Perturbed 2J -MHCW 

equations (the perturbation being second-order differential gravity). 

We now assume that Eqn. (5.26) have solutions of the following form: 

 
h p h p h p
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 (5.28) 
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The subscript h refers to the solutions of the MHCW equations and the subscript 

p refers to the correction due to the second-order nonlinear differential gravity terms 

added to Eqn. (5.27).  The perturbation parameter is defined from the perturbation itself.  

Therefore it is the same as Eqn. (4.22) 

  4

3
2 cr
με ≡  (5.29) 

We note the following defined coefficients and lump the 2J  terms on the RHS 

together as 2xJ , 2 yJ , and 2 zJ  ( 2 zJ  is 0 in this describing model).  
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Substituting Eqns. (5.28-30) into (5.27) we obtain  
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 (5.31) 

Since 1ε , we may once again expand and drop the nonlinear terms of ε  to obtain 

the following equations of motion for the second-order gravitational perturbation. 
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5.2.2 Perturbed MHCW Solution 

The homogeneous solution proves to be the same homogeneous solution as the 

MHCW equations.  As such, the state transition matrix for the homogeneous solution to 

Eqn. (5.32) is the same as the state transition matrix for the MHCW equations.  We 

define our perturbation state vector as 

 
T

p p p p p p px x y z x y z⎡ ⎤= ⎣ ⎦  (5.33) 

We may then write Eqn. (5.32) in state-space form as,  

  ( ) ( ) ( )p h p hx t x t u t= +A B  (5.34) 

The general solution to Eqn. (5.34) (see Appendix B) is 

 ( ) ( ) ( ) ( ) ( )
0

0 0, ,
t

p h p h h
t

x t t t x t t u dτ τ τ= + ∫Φ Φ B  (5.35) 

where the system matrices are defined in Appendix C. 

The perturbation positions as a function of time are written in a simplified form 

below.  The coefficients are constant and in terms of the homogeneous and perturbed 

initial conditions.  Their defined values may be found in Appendix D.  The general 

solution follows the same procedure as discussed in §4.5. 
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 (5.38) 

   

Example 6.  Nonlinear Simulation Error with Corrected MHCW ICs from Desired 

MHCW Model 

The homogeneous initial conditions for the nonlinear simulation in this example 

are the same as defined in Example 5 
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The perturbed initial conditions are also set to zero except the along-track velocities, 

which are subject to satisfying 
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 , 0p tY =  

The general solution to this equation is 
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When compared to the desired bounded MHCW solution, the addition of 

nonlinear differential gravity to this set of linearized equations of motion does not 

alleviate the drift of the model, but does correct it (see Fig. 5.5 and 5.6).  These 

remaining drifts may be physically explained, as will be done in the next chapter. 

  
Fig. 5.5 Position errors of full nonlinear simulation (3.27-28, 31) 
with corrected MHCW initial conditions from desired MHCW 
model (5.23-25) for deputy satellite 1 
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Fig. 5.6 Position errors of full nonlinear simulation (3.27-28, 31) 
with corrected MHCW initial conditions from desired MHCW 
model (5.23-25) for deputy satellite 1 

 
However, when we apply the MHCW initial conditions corrected to include 

second-order differential gravity to the approximated nonlinear equations defined by 

(5.27), we obtain similar results to the simulation from Example 4 (Fig. 4.8 and 4.9).  

Fig. 5.7 and 5.8 below shows the difference of this nonlinear simulation with the 

corrected MHCW initial conditions from the desired bounded orbit defined by Eqns. 

(5.23-25), which are also subject to the zero secular growth and zero offset terms as 

defined in Example 5.  Notice the radial and cross-track motion differences of this 

linearized 2J  model are now bounded in the along-track direction, showing the 

corrected MHCW initial conditions have effectively removed the secular drift seen in 

Fig. 5.3 and 5.4.  
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Fig. 5.7 Position errors of nonlinear simulation (5.27) with corrected 
MHCW initial conditions from desired MHCW model (5.23-25) for 
deputy satellite 1 
 

  
Fig. 5.8 Position errors of nonlinear simulation (5.27) with corrected 
MHCW initial conditions from desired MHCW model (5.23-25) for 
deputy satellite 2 
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CHAPTER 6 

ANALYSIS OF RESULTS 

6.1 Validation of the J2 Models 

In this section we will discuss the validity of the solutions by mathematical 

comparison and simulated results.  The HCW equations need no validation as they are 

proven to be a valid linearization of the relative motion dynamical system.  Many 

references are available for describing the HCW equations.6,12,23 

We begin by comparing the 2J -Modified HCW equations to the HCW equations.  

We may do so in a variety of different ways.  The simplest form is comparison of the 

state transition matrices of the two models.  Since both models are linear equations of 

motion, their states at any time t may be calculated explicitly from the state transition 

matrix for the HCW equations.  We refer to Appendix B for describing linear systems in 

terms of the state transition matrix.  In the absence of 2J  perturbations, the state 

transition matrix for the 2J -Modified HCW equations should revert to the state 

transition matrix defined for the HCW solution. 

The state transition matrix of the HCW solution is defined as23 
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The nonzero terms for the state transition matrix for the MHCW equations are 

calculated as shown in Appendix C.  For brevity, only the nonzero terms in the first and 

second states (x and y) are shown below. It is also noted that both matrices satisfy the 

symplectic property that transition matrices display.   
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Ignoring the effects of 2J  perturbations is equivalent to setting the constant s  to 

zero.  Substituting this value in to the MHCW state transition matrix and comparing to 

the HCW, the two matrices, and therefore their solutions, are equivalent. 
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This may also be proven via simulation of the two analytical solutions, when the 

2J  perturbation is set to zero.  In this case, both the MHCW and HCW solutions should 

both yield the same solution.  Fig. 6.1 and 6.2 shows the solutions for the MHCW case 
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and the relative error between the two model simulations for both deputy satellites.  

Notice that the MHCW solutions match the HCW solutions from Example 3 as expected.  

These show that the errors are computationally zero so the models indeed match when 

2J  is ignored. 

 
Fig. 6.1 MHCW and HCW solutions and error between in the absence of 2J  for deputy 
satellite 1 

 

 
Fig. 6.2 MHCW and HCW solutions and error between in the absence of 2J  for deputy 
satellite 2 
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The two perturbed solutions may be proven in a similar manner.  Following the 

review of linear systems in Appendix B, the two perturbed solutions are inherently 

proven to be equivalent in the absence of 2J  based on the previous validation.  The two 

perturbed solutions are solved explicitly using the state transition matrix.  Since the 

state transition matrices were proven to be equivalent when 2J  is ignored, the 

homogeneous solutions to the two systems are equivalent.  Furthermore, as the forcing 

terms are equivalent when 2J  is ignored, the convoluted terms are equivalent as well.  

The way the solutions are written, the solution of the perturbed MHCW 

equations contain terms which are divided by zero when 2J  is ignored.  A simple 

alleviation in simulating the solution is to set 2J  itself to an infinitesimal value (~ 1610− ) 

but not exactly zero.   

The solution itself may still be fixed for simulation purposes.  This may be 

alleviated by evaluating the limit as 2 0J →  for all the terms with zero denominators, 

and setting them to their limit when 2 0J → .  These denominators may also be 

algebraically manipulated to ensure the denominators do not contain zeros when 2J  

effects are ignored.  The difference in the nonlinear simulation with corrected MHCW 

initial conditions from the bounded MHCW solution in the absence of 2J  are shown in 

Fig. 6.3 and 6.4.  Note that these do indeed match Fig. 4.8 and 4.9 for the respective 

deputy satellite. 
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Fig. 6.3 Perturbed MHCW solutions in the absence of 

2J  for deputy satellite 1 
 
 

    
Fig. 6.4 Perturbed MHCW solutions in the absence of 

2J  for deputy satellite 2 
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6.2 Relative Truth Errors 

Fig. 6.5 and 6.6 below show the errors of the two 2J -Modified HCW nonlinear 

simulations (3.27-33) in Chapter 5 (Ex. 5 and 6), from the desired bounded relative 

orbit solution given by Eqns. (5.23-25), which was subject to the initial conditions given 

in Example 5.  We will first discuss the comparative results for each direction, and then 

conclude with an overall performance of each model with respect to the truth model. 

In the radial component direction, the two nonlinear simulations display similar 

deviations from the MHCW solution.  They both have amplitude growth associated with 

trigonometric terms, but this still allows the errors at each passing of the ascending node 

to be zero.  Therefore all the errors are bounded over one period.  However, the growth 

in the radial direction is less for the simulation with the corrected MHCW initial 

conditions.   
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Fig. 6.5 Nonlinear simulation (3.27-28, 31) errors from 
desired trajectory for the MHCW models (5.23-25) 
subject to the first deputy satellite ICs 
 

 

  
Fig. 6.6 Nonlinear simulation (3.27-33) errors from 
desired trajectory for the MHCW models (5.23-25) 
subject to the second deputy satellite ICs 
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In the along-track direction, there is secular growth for both cases, as well as 

unbounded amplitude growths, but the nonlinear simulation with corrected MHCW 

initial conditions shows improvement in the growth from the MHCW initial condition 

simulation.  The cross-track direction shows the most significant improvements of the 

addition of 2J  perturbations to the models.  Both the 2J -modified solutions have the 

same motion in the cross-track direction and both the HCW solutions have the same 

motion in the cross-track direction, which may be seen from Fig. 6.7, noting the MHCW 

solution is indeed better than the HCW in the cross-track direction and matches well 

with the perturbed MHCW results for both deputy satellites.   

 

 
 (a) (b)  

Fig. 6.7 Cross-track errors from truth model for the HCW and MHCW solutions for (a) 
deputy satellite 1 and (b) deputy satellite 2.  It is noted that these plots show analytical 
model errors from the same truth model which includes 2J  perturbations. 
 

6.2.1 Result Comparison of the HCW Solutions to the MHCW Solutions 

Most of the example problems expressed the results of the solutions by applying 

the initial conditions found from the various analytical solutions to a nonlinear model, 
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and comparing these results from one of two desired bounded relative orbits.  The first 

being the HCW solution, which only includes the effects of linearized differential 

gravity, and the second is the 2J -MHCW solution, which includes the effects of 

linearized differential gravity, and linearized, time-averaged 2J .  In this section, the 

HCW and MHCW solutions are compared to each other to determine the effect of 

adding linearized 2J  to the analytical model. 

We begin by using the nonlinear system defined by Eqn. (5.27), and applying 

the four sets of initial conditions for numerical integration: The bounded HCW initial 

conditions, the corrected HCW initial conditions, the bounded MHCW initial conditions, 

and the corrected MHCW initial conditions.  These simulations are first compared to 

their respective desired bounded relative orbit, defined from Eqns. (4.15) for the HCW 

equations and (5.23-25) for the MHCW equations.  Fig. 6.8 and 6.9 below display the 

comparison of differences of the simulations with the HCW and MHCW initial 

conditions.  As can be seen from these two figures, under the presence of 2J  and 

nonlinear differential gravity, the HCW equations do not admit a desirable bounded 

relative orbit.  The simulation with the HCW initial conditions, when compared to the 

HCW analytical solution, displays growth in all three component directions. 
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Fig. 6.8 Nonlinear simulation (5.27) errors from desired trajectory subject 
to the first deputy satellite ICs 
 

  
Fig. 6.9 Nonlinear simulation (5.27) errors from desired trajectory subject 
to the second deputy satellite ICs 

 

However, when the effects of second order differential gravity perturbations are 

added to the initial conditions for the nonlinear simulations, the HCW orbit appears to 
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still be a desirable relative orbit.  Fig. 6.10 and 6.11 displays the comparison of 

differences of the simulations with the corrected HCW and MHCW initial conditions.  It 

is noticed that the effect of linearized 2J  is small when compared to the effect of 

differential gravity, as seen from the ability of the nonlinear simulation with corrected 

HCW initial conditions to obtain a bounded error from the analytical HCW solution, 

which contains no 2J  perturbations.  There is slight secular growth in the along-track 

direction that is also coupled with a small frequency divergence, both of which are due 

to the absence of 2J  in the HCW analytical solution governed by Eqn. (4.15). 

  
Fig. 6.10 Nonlinear simulation (5.27) errors with corrected ICs from 
desired trajectory for deputy satellite 1 
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Fig. 6.11 Nonlinear simulation (5.27) errors with corrected ICs from 
desired trajectory for deputy satellite 2 
 

We now compare the four nonlinear simulations from above to the same desired 

bounded relative orbit.  The MHCW equations provide bounded motion based on a 

higher fidelity model, and is used for this evaluation.  Fig. 6.12 and 6.13 display the 

differences of the nonlinear simulations with the HCW and MHCW initial conditions, 

and 6.14 and 6.15 present the differences of the nonlinear simulations with corrected 

initial conditions.  As can be seen from Fig. 6.12 and 6.13, the differences for the 

nonlinear simulation with the HCW initial conditions match more closely the desired 

orbit.  However, there is still secular growth associated with second order differential 

gravity.   
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Fig. 6.12 Nonlinear simulation (5.27) errors from desired MHCW 
trajectory subject to the first deputy satellite ICs 
 
 

  
Fig. 6.13 Nonlinear simulation (5.27) errors from desired MHCW 
trajectory subject to the second deputy satellite ICs 
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When the initial condition corrections for added second order differential 

gravity are imposed on the nonlinear simulations, the MHCW simulation displays a 

bounded error from the desired orbit, whereas the HCW simulation still shows a secular 

growth in the along-track direction, although the corrected initial conditions have 

reduced this growth significantly.  The differences between the HCW models and the 

MHCW models are small over a short time span, but over longer periods the deviation 

from the desired motion constitutes a larger velocity correction, meaning more fuel 

consumption if the dynamics were derived neglecting the effects of 2J .   

  
Fig. 6.14 Nonlinear simulation (5.27) errors with corrected ICs from 
desired MHCW trajectory for deputy satellite 1 
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Fig. 6.15 Nonlinear simulation (5.27) errors with corrected ICs from 
desired MHCW trajectory for deputy satellite 2 

 

6.3 Errors in the J2 Models 

The errors from the desired model that take 2J  into account still have 

unbounded growth in all three directions as seen from the nonlinear simulations in Fig. 

6.5 and 6.6.  Why do the 2J -modified solutions, which improve the errors from the 

truth model when compared to the HCW solutions, not provide more significant 

improvements to the desired trajectory?   We refer back to §5.1 when we discussed the 

calculation of the angular velocity vector.   

An important phenomenon which affects a satellite’s orbit when it rotates about 

an oblate sphere is that the orbit tends to wobble about the Z-axis in the ECI frame.  

This wobble is due to the nodal regression, and occurs because of the change in 
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direction only, of the angular-momentum vector, which precesses about the Z-axis, 

which is the axis of symmetry. 

  
Fig. 6.16 Amplified Effect of nodal regression for a satellite in an 
inclined orbit.  The green dot represents the start of the orbit, and the red 
dot represents the end of the last orbit. 
 

Precession of the angular momentum implies nodal regression, and vice versa.  

The effects of nodal regression are eliminated if both chief and deputy orbits are in 

equatorial (oblateness effects vanish completely) or polar orbits (apsidal rotation still 

occurs in eccentric orbits).  Since we assume a time-averaged angular velocity, in which 

the angular momentum vector does not precess, the linearized describing dynamics 

presented here drift from the true relative motion of the two satellites.  

This effect may still be incorporated into the linearized equations of motion.8 

This is accomplished by solving for a new time-varying period and amplitude in the 

cross-track direction.  Looking at only the MHCW equations with no perturbation due to 
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second-order differential gravity, the changing direction of the angular momentum 

vector only affects the cross-track direction, and would only show more reduction in the 

unbounded amplitude in the cross-track direction.  However, the perturbed MHCW 

equations allow for the effects of this precession to appear in the radial, and the along-

track direction via coupling of the homogeneous solutions, which should effectively 

reduce the drift of the linearized model from the truth in these two directions as well.   

The inclusion of the angular momentum precession to the equations of motion 

adds more calculations to the solution.  However these are also linearized 

approximations of the exact solutions, and therefore still analytically solvable. 
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CHAPTER 7 

CONCLUSIONS 

The research proposed in this thesis has combined two solutions to account for 

the two main perturbations which cause the HCW equations to deviate from the true 

nonlinear equations of motion.  The new model consists of an unforced linear system 

which takes on a similar form to the HCW equations, with modified coefficients due to 

the 2J  perturbation 

 HCW Equations Homogeneous MHCW Equations 

 

2

2

2 3 0
2 0

0

x ny n x
y nx
z n z

− − =
+ =

+ =

  

2 2
0 0

0
2 2

0

2 0
2 0

0

x n y n x
y n x

z n z

α

β

− − =

+ =

+ =

  

 
The particular solution to the HCW equations may be solved for by direct 

integration yielding an analytical model.  The effects of second-order differential 

gravity may be added to the 2J -Modified HCW equations using the method of 

perturbations 

 h px x xε= +  

where the homogeneous solution is the exact solution obtained from the 2J -Modified 

HCW equations, and the perturbed solution is solved by the following linear, constant-

coefficient, differential equations: 
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2 2 2 2 2
0 0

0

2 2
0

2 2

2 2

2

p p p h h h

p p h h

p p h h

x n y n x y z x

y n x x y

z n z x z

α

β

− − = + −

+ =

+ =

 

These equations may be directly integrated to obtain the closed-form solution of 

the perturbation.  When compared to the two different solutions that only take one of 

the disturbances into account, it is seen that this new combined solution yields better 

results when compared to the truth model, providing for periodically bounded solutions 

in all relative component directions.  It was expected that the addition of the 2J  

perturbation to the HCW equations would be to reduce the growth in the cross-track 

direction, and the new solution does (about 250 m maximum difference over 5 orbits).   

It was also expected that adding the perturbation associated with second-order 

differential gravity would improve upon the in-plane motion of the new solution, and is 

done so by bounding the errors from truth in the along-track direction. 

The fidelity of this new perturbed 2J -Modified HCW model may be improved 

upon to eliminate the unbounded growths in amplitude in the radial and cross-track 

direction, by taking into account the precession of the angular velocity vector.  It is also 

believed that further analysis by adding this influence will provide for a stronger 

criterion for eliminating the secular growth in the along-track direction. 
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APPENDIX A 
 
 

DERIVATION OF THE ASPHERICAL POTENTIAL 
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The following derivation follows from Refs. 11 and 24. 

A.1. Describing Geometry of the Aspherical-Potential Function  

For completion, the geometry associated with deriving the aspherical potential 

is re-described here from §3.4.  In order to determine the gravitational potential at point 

P, each point in the Earth, Qm  must be taken into account.  The angles φ  are the 

respective co-latitudes, Qλ  and satθ  are the longitudinal arguments, andΛ is the angle 

between the vectors Qr  and satr , also known as the ground range or total range angle.  

All the above angle measurements are geocentric.  See Fig. A.1 for describing 

geometry.   

 
 Fig. A.1 Geometry used to derive the gravitational potential 
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A.2 Aspherical-Potential Function 

The gravitational potential at the point P defined by satr  is defined as  

 
1

Q

Q Q

m
U G

ρ

∞

=

= ∑  (A.1) 

where Qρ  is the distance between the point P and the point mass element Qm , defined 

by their respective coordinates: 

 
( , , )

( , , )

T
sat

T
Q

r x y z

r ξ η ζ

=

=
 (A.2) 

The change in potential due to an infinitesimal mass dm⊕ , is 

 
Q

dmdU G
ρ

⊕=  (A.3) 

The summation of each mass approaches an integral, giving the total gravitational 

potential at P to be  

 ( ) ( ) ( )
1/ 22 2 2

1 1

Qbody body

U G dm G dm
x x xρ ξ η ζ

⊕ ⊕= =
⎡ ⎤− + − + −⎣ ⎦

∫ ∫
 (A.4) 

A more useful form may be introduced using the law of cosines 

 [ ] ⊕∫ Λ−+
= dm

rrrr
GU

body QsatQsat
2/122 cos2

1  (A.5) 

By making note that the rational term inside the integral is the generating function used 

to describe a series of Legendre polynomials:25 
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 ( ) [ ]1/ 22

0
1 2 Pαγ α α γ

∞−

=

− + =∑ l
l

l

 (A.6) 

We define the argument γ  

 ( )cos sat Q

sat Q sat Q

r r x y z
r r r r

ξ η ζγ
⋅ + +

= Λ = =  (A.7) 

and α  may be found by factoring out satr   

 ( )
2

2 21 2 cos 1 2Q Q
Q sat

sat sat

r r
r r

r r
ρ αγ α

⎛ ⎞
= − Λ + = − +⎜ ⎟

⎝ ⎠
 (A.8) 

 Q

sat

r
r

α =  (A.9) 

The potential is then written as: 

 [ ]
0sat

GU P dm
r

α γ
∞

⊕
=

= ∑ l
l

l

 (A.10) 

and the conventional Legendre polynomials may be defined using the Rodrigues’ 

formula25 

 
[ ] ( )

( ) ( )
( ) ( )

2

2

0

11
2 !

1 2 2 !1
2 ! ! 2 !

j
j

j

d
P

d

j
j j j

γ
γ

γ

γ −

=

−
=

− −
=

− −∑

ll

l l l

l
l

l

l

l
l l

 (A.11) 

Addition Theorem for Legendre polynomials 

Using the cosine law of spherical trigonometry, the range angle Λ  may be described as 

 ( ) ( ) ( ) ( ) ( ) ( )cos cos cos sin sin cos
Q sat Q satgc gc gc gc sat Qφ φ φ φ θ λΛ = + −  (A.12) 
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We rewrite the Legendre polynomials utilizing the addition theorem for Legendre 

polynomials 

 [ ] ( ) [ ]/ 22
, 1

mm

m
dP P
d

γ γ γ
γ

= −l ll  (A.13) 

This form is known as the associated Legendre functions of the first kind of degree m 

and order l .  The Legendre polynomial may then be written in terms of the spherical 

coordinates by substituting (A.13) into (A.12) 

 
( ) ( ) ( )

( )
( ) ( ) ( ) ( )( )

cos cos cos

!
2 cos cos cos

!

Q sat

sat Q sat Q
m

P P P

m
P P m

m

φ φ

φ φ θ λ
=

⎡ ⎤⎡ ⎤ ⎡ ⎤Λ =⎣ ⎦ ⎣ ⎦⎣ ⎦
− ⎡ ⎤⎡ ⎤+ −⎣ ⎦ ⎣ ⎦+∑

l l l

l

l, m l, m
l

l
l

 (A.14) 

The gravitational potential due to an aspherical central body is written as 

 
( )

( ) ( ) ( ){ }

2

, , ,
2

1 cos

cos cos sin

sat

sat

gc

m gc m sat m sat
m

RJ P
r

U
r R P C m S m

r

φ
μ

φ λ λ

∞
⊕

=

∞
⊕

= =

⎡ ⎤⎛ ⎞ ⎡ ⎤−⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎢ ⎥⎡ ⎤+ +⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑∑

l

l l
l

ll

l l l
l l

 (A.15)

 where ,0J C= −l l , ,mCl , ,mCl  are the associated gravitational coefficients which are 

determined empirically by satellite observations. 
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APPENDIX B 
 
 

REVIEW OF LINEAR SYSTEMS 
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B.1 Linear System Theory 
 

The following derivation is adapted from Refs. 11 and 24. 

B.1.1 Homogeneous Linear Systems 

Homogeneous linear time-varying equations of motion may be written in the 

form  

 ( )dx t x
dt

= A   (B.1)  

where x  is the state vector defined in our case as the states to the three-dimensional, 

second-order differential equations of motion 

 [ ]Tx x y z x y z=   (B.2) 

( )tA  is the state matrix which defines the overall stability of the system.  Eqn. 

(B.1) for our system admits six linearly independent solutions.  We may describe these 

solutions as the columns of a square matrix Φ  whose dimensions are equal to the 

number of states (6 in this case).  Furthermore, if the initial conditions are defined such 

that the nth state has all the column components of the nth row of Φ  to be zero except 

the nth diagonal component, and the nth component is 1, then the matrix Φ  will be a 

function of both t  and 0t , which satisfies the matrix differential equation 

 ( ) ( ) ( )0 0, ,d t t t t t
dt

=Φ A Φ  (B.3) 

subject to  

 ( )0 0,t t =Φ I   (B.4) 
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Φ  is known as the state transition matrix, which represents the partial 

derivatives of the state at time t to the initial states at 0t .  If the initial states are known, 

then the states at any time t  are obtained from the initial states as 

 ( ) ( ) ( )0 0,x t t t x t=Φ  (B.5) 

We now define an important property of the state transition matrix using Eqn. 

(B.5).  By interchanging t  and 0t  in Eqn. (B.5) 

 ( ) ( ) ( )0 0 ,x t t t x t=Φ   

Therefore, 

 ( ) ( )1
0 0, ,t t t t− =Φ Φ  (B.6) 

Equation (B.6) implies that the state transition matrix is symplectic.   

A square matrix is symplectic if  

 T =Φ JΦ J  (B.7) 

Where J  is analogous to the pure imaginary number in complex algebra: 

 
2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
=

0 I
J

-I 0

J -I

 (B.8) 

In order to determine if the state transition matrix is indeed symplectic, we begin 

with the initial state.  From Eqns. (B.4) and (B.6), 

 
( ) ( ) ( )

( ) ( )

1
0 0 0 0 0 0

0 0 0 0

, & , ,

, ,T

t t t t t t

t t t t

−= =

∴ =

Φ I Φ Φ

Φ JΦ J
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Therefore, in order for the state transition matrix to be symplectic for all time t , 

it must satisfy 

    ( ) ( )0 0, ,Td t t t t
dt
⎡ ⎤ =⎣ ⎦Φ JΦ 0  (B.9) 

Substituting Eqn. (B.3) into (B.9), the symplectic condition in terms of the 

system matrix becomes 

 ( ) ( ) ( ) ( )0 0, ,T Tt t t t t t⎡ ⎤+ =⎣ ⎦Φ A J JA Φ 0   

B 1.2 Forced Linear Dynamical Systems 

Any linear system subject to outside disturbances may be written in terms of the 

homogeneous portion and the forcing function 

 ( ) ( )dx t x u t
dt

= +A B  (B.10) 

where B is known as the compatibility matrix.  For the systems defined in this thesis, 

 3 3

3 3

×

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
B

I
 

The non-homogeneous solution to Eqn. (B.10) may be written using the state 

transition matrix of the homogeneous system, via Lagrange’s method of variation of 

parameters, so that the solution to (B.10) becomes 

 ( ) ( ) ( ) ( ) ( )0 0 0, ,x t t t g t g t x t= =Φ  (B.11) 

where ( )g t  is an 1n×  vector to be determined.  Differentiating (B.11) and substituting 

Eqn. (B.3) for Φ  yields 

 ( ) ( ) ( ) ( ) ( ) ( )0 0, ,x t t t g t t t t g t= +Φ A Φ   (B.12) 
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By substituting Eqns. (B.11) and (B.12) into (B.10), we obtain 

 ( ) ( ) ( ) ( ) ( )0 0, ,t t g t t t t g t+Φ A Φ ( ) ( ) ( )0,t t t g t= A Φ ( )u t+ B  

Solving for ( )g t  yields 

 ( ) ( ) ( ) ( )1
0,g t t t t u t−=Φ B  (B.13) 

We integrate (B.13) to obtain 

 ( ) ( ) ( ) ( )
0

1
0 0,

t

t

g t x t t u dτ τ τ−= + ∫Φ B   (B.14) 

Substituting Eqn. (B.14) into (B.10) yields 

 ( ) ( ) ( ) ( ) ( ) ( )
0

1
0 0 0, 0 , ,

t

t

x t t t x t t t u dτ τ τ−= + ∫Φ Φ Φ B  (B.15) 

Using the symplectic nature of the state transition matrix it is easily shown that  

 ( ) ( ) ( )1 1
0 0, , ,t t t tτ τ− −=Φ Φ Φ  (B.16) 

The solution of the inhomogeneous system is then found to be 

 ( ) ( ) ( ) ( ) ( )
0

0, 0 ,
t

t

x t t t x t u dτ τ τ= + ∫Φ Φ B  (B.17) 
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APPENDIX C 
 
 

2J -MODIFIED HCW SYSTEM MATRICES
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C.1 State Matrix 

2 2
0 0

0
2 2

0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 2 0
0 0 0 2 0 0
0 0 0 0 0

h n n
n

n

α

β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

A   

C.2 Compatibility Matrix 
 

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

B   

 
C.3 Forcing Functions Due to 2nd Order Nonlinear Differential Gravity 
 

2 2 22
2
2

h h h

h h h

h h

y z x
u x y

x z

⎡ ⎤+ −
⎢ ⎥
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C.4 Nonzero Terms of the State Transition Matrix 
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APPENDIX D 
 
 

PERTURBATION SOLUTIONS TO THE 2J -MODIFIED HCW EQUATIONS 
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D.1 Perturbed Solutions 
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D.2 x Perturbed Coefficients 
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