
MULTI-SENSOR FUSION BASED CONTROL FOR

AUTONOMOUS OPERATIONS: RENDEZVOUS

AND DOCKING OF SPACECRAFT

by

JONATHAN BRYAN MCDONALD

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2006



Copyright c© by Jonathan Bryan McDonald 2006

All Rights Reserved



ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Subbarao. He has been a tremendous

mentor, a true inspiration and an outstanding resource for me. His patience, inde-

fatigable attitude, and demand for excellence is something I will aspire to in all my

future engineering endeavors. It has truly been a pleasure to work with someone so

enthusiastic about engineering and research.

I must also thank my parents, Bill and Carla, for their continuous support dur-

ing my education. They have given me much freedom during this process supported

me and my decisions along the way. Without their support I would not be where I

am today.

Finally I would like to thank Dr. Wilson and Dr. Dogan for taking the time to

serve on my committee.

November 27, 2006

iii



ABSTRACT

MULTI-SENSOR FUSION BASED CONTROL FOR

AUTONOMOUS OPERATIONS: RENDEZVOUS

AND DOCKING OF SPACECRAFT

Publication No.

Jonathan Bryan McDonald, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: Kamesh Subbarao

The project considers the problem of motion synchronization of free flying

robotic spacecraft and serviceable floating objects in space. The synchronization

maneuvers are based on sample and hold nonlinear translational and attitude control

laws. GPS pseudorange signals and a vision based sensor unit are modeled to give

position measurements; position and velocity estimates are extracted from the mea-

surements based on Extended Kalman Filter models. A sensor data fusion algorithm

in the form of a Federated Extended Kalman Filter is implemented that blends the es-

timates of the individual filters into a global estimate. Nonlinear simulations where a

Pursuer spacecraft attempted to rendezvous with an uncontrolled free-floating Target

spacecraft based on the estimation algorithms were performed. Effects of perturba-

tions including non-uniform gravity and atmospheric drag were imposed to study the

robustness of the algorithms.
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CHAPTER 1

INTRODUCTION

For the last half-century, space program engineers and scientists have continu-

ally addressed the problem of spacecraft rendezvous. One early 1960s Gemini Mission

goal was ‘to develop effective methods of rendezvous and docking with other orbiting

vehicles, and to maneuver the docked vehicles in space.’ During Gemini VIII, the

first manned spacecraft successfully rendezvoused and docked on March 16, 1966 [1].

Since that time, spacecraft rendezvous and docking has served multiple pur-

poses, including: return from the moon in the Apollo missions; repair and mainte-

nance of the Hubble Space Telescope by astronauts; and refueling/resupply of space

stations, including the International Space Station (ISS).

Nearly all past satellite servicing missions have been carried out by astronauts

and in a few instances robotic manipulators have aided the mission, but it is both

expensive and dangerous for astronauts to capture uncontrolled spinning satellites

(even slowly spinning satellites). Thus, it is desirable to develop a free-flying robotic

space vehicle capable of carrying out such satellite service missions [2].

One goal of NASA’s Space Launch Initiative (SLI) program is to develop such

a vehicle, a space transportation system with automated rendezvous and docking

generally less expensive and more safe and reliable than today’s Space Shuttle [3].

The Space Shuttle currently uses a partially manual system for rendezvous, but a

fully autonomous rendezvous system could be more dependable and less dangerous

[4].

1
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Several projects dealing with autonomous rendezvous and docking of orbiting

satellites have been developed over the past decade, including the Progress spacecraft,

Demonstration of Autonomous Rendezvous Technology (DART), and Engineering

Test Satellites VII (ETS-VII).

The Progress spacecraft, a Russian expendable unmanned freighter originally

developed to supply the Russian space stations, is currently being used to help re-

supply the ISS. Though proximity operations1 are monitored and can be overridden

by a backup system on the ISS, each Progress’ rendezvous and docking operation is

capable of being totally autonomous [5]. This procedure, though impressive, is sim-

plified because the ISS (and formally other space stations) is in a controlled orbit, can

control its attitude, and manual control can be implemented by the ISS astronauts if

problems arise.

While the Progress rendezvous can include ISS manual control, DART and ETS-

VII Missions are characterized by two autonomous satellites attempting to rendezvous

and dock. Mitsubishi Electric successfully docked two unmanned satellites (ETS-VII)

for the first time in 1998 under the funding and direction of Japan’s National Space

Development Agency (JAXA). Their test established the feasibility of autonomous

docking of satellites and provided evidential insight for overcoming various mishaps

that could occur [6].

In April 2005, the DART Mission attempted to become the first American

autonomous satellite rendezvous; however, approximately 11 hours into what was to

be a 24-hour mission, DART detected its propellant supply was depleted and it began

a series of maneuvers for departure and retirement. NASA determined most of its

1‘Proximity operations’ are defined as the navigation and control of two or more vehicles that
are operating in the vicinity of each other [4].



3

mission goals were not achieved [7], and autonomous satellite rendezvous continues

to remain a developing technology.

As orbital activity continues to increase, it becomes more and more imperative

that an autonomous space vehicle capable of capturing a tumbling object in orbit be

developed, so that it might remove space debris, service a malfunctioning satellite,

refuel a powerless satellite, and/or install improved technology.

The launch of just one autonomous servicing system maintained in orbit could

provide tremendous savings to the satellite industry by servicing multiple malfunc-

tioning satellites, replacing the current system of launches for every single critical

malfunction. Use of such a system would also eliminate the danger astronauts face

in colliding with satellites as they repair them. However, the development of such a

system is very complex and even tasks such as mission phasing can vary greatly in

complexity.

In a broad perspective, the satellite rendezvous mission must carry out sequen-

tial tasks corresponding to each phase of the mission. Researchers from JAXA have

developed such a phased mission plan using a new system concept called Hyper-

Orbital Servicing Vehicle (HOSV). This system consists of a bulky ‘mother ship’

(which has components similar to a conventional satellite, such as solar panels and

a large communication antenna) and a deployable operation vehicle that is agile and

compact [8].

The HOSV concept has the servicing/rescue vehicle docked at a mother ship

(such as the International Space Station) from which it departs and returns after each

mission. Note: From this point on the rescue satellite will be known as the ‘Pursuer’

and the satellite to be serviced will be known as the ‘Target’. Before a mission is

commenced, knowledge of the Target’s orbit must be obtained; once obtained, the

entire mission can be roughly divided into seven phases, generally outlined as follows:
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Phase I. Departure from mother ship

Phase II. Orbit transfer to Target’s orbit & long range approach

Phase III. Target identification & motion characterization

Phase IV. Proximity approach including guidance & control for docking

Phase V. Docking & capture

Phase VI. Service & maintenance

Phase VII. Pursuer return to mother ship

The first phase, Phase I, consists of the Pursuer departing from the mother ship. In

Phase II (which can be optimized for fuel or time consumption) the Pursuer transfers

from its docked orbit to that of the Target and approaches the Target’s area until

a positive identification can be made (Phase III). Phase IV begins after the Target

has been positively identified and its motion has been characterized. In this phase,

the Pursuer’s sensors and controllers synchronize the Pursuer’s motion with that of

the Target until the proper docking alignment is achieved. Once accomplished, the

Pursuer can capture and dock with the Target (Phase V). In Phase VI, the Pursuer

services the Target and, finally, the Pursuer separates from the Target and returns to

its mother ship (unless it is a recovery mission, in which case both return) in Phase

VII.

The mission procedure described above is just a general overview of one poten-

tial mission, each segment having several different aspects and levels of complexity.

This thesis research focuses on Phase IV, the Pursuer’s proximity operations just

prior to docking.

To achieve the motion synchronization aspect of Phase IV, the dynamical char-

acteristics (translational and rotational motion) of the Target and Pursuer must be

known. If the Target is in a free-floating orbit, the Pursuer does not have to account

for orbital maneuvers by the Target, but the Target’s rotational motion or spin must
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be accounted for. All satellites have some type of rotational motion, either for stabi-

lization or caused by gravity gradients or other natural perturbations. However, not

all satellites rotate at the same rate (because of various factors — geometry, mission

design, mechanical failure, disturbances, etc.), affecting the motion synchronization

necessary for rendezvous and capture.

Satellite capture can be roughly categorized into four classifications based upon

the attitude error and rate of the Target. The classifications and categories II, III,

and IV, shown in Figure 1, are called non-cooperative target captures [8]. The

I Satellite with three-axis attitude control
- Direct capture by single chaser satellite

equipped with specialized capturing mecha-
nism.

II Satellite with gravity gradient stabilization
- Direct capture by single chaser satellite

equipped with manipulator.
III Slowly tumbling Satellite

- Local motion synchronized capture by agile
space robot.

IV Spinning Satellite
- Spinning motion synchronizing capture by agile

space robot.
- Capturing after damping target spin rate.

Figure 1.1 Categorization of Satellite Motion.

capture of a spinning satellite (Category IV) is relatively rare, so the remainder of

this thesis will focus on estimation and control to achieve motion synchronization for

docking with a slowly tumbling satellite (Category III).

Attempting to use grasping equipment without accompanying motion synchro-

nization in a satellite capture is not practically feasible unless the Target is tumbling

within the capabilities of the dynamic response of the manipulator, and failure to

grasp the Target could result in detrimental collision. Successful capture, then, can
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be ensured with a control system combining attitude synchronization and relative

position tracking, safely maneuvering the Pursuer so that its docking component is

always facing the docking component of the Target. While maintaining this attitude

orientation through attitude synchronization, the relative position of the satellites

gradually decreases until grasping is established. This method effectively couples the

translational and rotational dynamics of the system, discussed at length in Chapter

2.

As previously stated, the dynamical characteristics (position, velocity, attitude,

rotation rate, inertia, etc.) of both satellites in question must be known, and the Pur-

suer must have robust control laws for the relative position and orientation needed

in the desired rendezvous and docking trajectory. Since dynamical values can never

be known exactly, the Pursuer must employ sensors to take measurements and filters

in order to estimate those dynamics based on measured data. Potential sensors for

navigational use in low earth orbit (LEO) are the Global Positioning System (GPS),

a vision-based navigation system, and an attitude determination system, each hav-

ing unique advantages and disadvantages in terms of measurement and navigation

performance. This thesis studies the fusion of multiple sensors (GPS and vision) to

produce a more robust form of navigation which minimizes the impact of each sensor’s

particular disadvantages.

GPS navigation alone is inadequate because it is subject to outages from block-

age [9, 10], atmospheric ionization during re-entry, and delta-v maneuvers, as well

as multipath errors and integrity problems. As an example, when a spacecraft ap-

proaches the ISS to perform rendezvous and docking, signals from GPS satellites may

be degraded as they reflect off the ISS before reaching the GPS receiver, or may be

completely blocked by the ISS structure, possibly resulting in fewer measurements

and a poorer estimate [10].
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A form of navigation that has received much attention in recent years (partic-

ularly for satellite guidance) has been the integration of GPS and inertial navigation

systems (INS)2 [10, 11, 12]. This fused sensor system has sparked much interest as

a possible navigation solution for all spacecraft flight phases: ascent, on-orbit, prox-

imity operations, re-entry, and landing. Often GPS/INS integration is implemented

through a centralized Kalman filter architecture, a form of sensor fusion described in

more detail in Chapter 7. Gaylor [10] concluded that a GPS/INS sensor system is

feasible for rendezvous with the ISS if an additional sensor were available to aid the

INS within 10 to 20 meters of the ISS. Other multi-sensor rendezvous systems should

be considered to see if a better solution can be found.

Vision-based sensor systems have also received much attention in recent years.

A vision-based system such as the one developed in [13] can be very accurate for rela-

tive position determination, but is not a viable navigation option when the Target is

not within proximity of the Pursuer. Sun and Crassidis [14] have shown that, for large

distances, the vision-based measurements become colinear and state observability is

lost.

In most missions it is likely the position, velocity, and attitude sensors of the

Target are operational, thereby providing the Pursuer with the state data neces-

sary for a rendezvous. But for instances when the Target is powerless, Lichter and

Dubowsky [15] have developed an approach utilizing 3-D vision sensors that provide

input to a Kalman filter during an observation phase, and the filter then extracts

the full dynamic state and inertial parameters of the Target. This study assumes the

Target is in a free-floating orbit and is slowly tumbling, but its communications and

sensor systems are operational, enabling it to transmit its dynamical characteristics to

2Inertial navigation systems generally consist of a set of three mutually orthogonal accelerometers
and three mutually orthogonal gyroscopes used for position and attitude determination respectively.
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the Pursuer (i.e. the Pursuer has perfect knowledge of the Target’s position, velocity,

attitude, and angular velocity at all times).

1.1 Research Contributions

This thesis fuses GPS and vision-based sensor systems, utilizing a synchroniza-

tion approach which ensures that docking components of the two vehicles are aligned

for all time. High-fidelity simulations of this fusion implements the natural nonlin-

earity of the system as well as force disturbances due to differential gravity and drag.

An extended Kalman filter is designed that estimates the position and velocity of the

Pursuer utilizing GPS pseudorange measurements. As the Pursuer approaches the

Target, a vision-based navigation system is initialized to also provide state estimates

for use in the control algorithm. A sensor data fusion algorithm utilizes the estimates

from the GPS and vision sensor to create a global/master estimate in the form of an

Federated Extended Kalman Filter (FEKF).

1.2 Research Outline

This section provides an outline of the remaining chapters of this thesis:

Chapter 2: details the dynamics and control governing the spacecraft in this study.

Chapter 3: gives a general outline of how the sensor measurements were filtered to

provide state estimates.

Chapter 4: briefly describes the Global Positioning System and gives the measure-

ment and estimation model state estimation.

Chapter 5: provides an outline of the selected vision-based navigation system and

gives the measurement and estimation model used for relative navigation.
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Chapter 6: describes the method used to measure and filter the satellite attitude

estimates.

Chapter 7: gives a brief description of different sensor fusion methods then develops

algorithm for the FEKF and applies it to the GPS and vision sensors models

used in this thesis.

Chapter 8: presents the results and analysis for the GPS/vision fusion simulations.

Chapter 9: summarizes the research, states conclusions, and lists possible future

work that can be done.



CHAPTER 2

KINEMATICS, DYNAMICS, & CONTROL

2.1 Reference Frames

To adequately describe the motion of a body, one or more reference frames

in which the motion takes place must be established. One such reference frame, a

rectangular coordinate system, can be created by defining the system’s origin and

sense of direction. In this thesis, all such systems will have a right-handed sense in

which the positive directions of each axis will form an orthogonal triplet. Three base

unit vectors will be used to represent the three orthogonal axes and any other vector

in the system will be described by a linear combination or those base unit vectors

[16].

An inertial reference frame is one in which Newton’s Laws of Motion apply.

To qualify as an inertial frame, the origin of the frame must be non-rotating and

non-accelerating. In practice, a truly inertial reference frame cannot be defined in

the vicinity of the solar system due to the gravitational fields of the sun, planets, and

other bodies orbiting the sun. However, it is possible to define reference systems that

are ‘inertial enough’ so that the deviation of the actual motion of an object from the

motion predicted by Newton’s Laws is insignificant over the time span of interest [10].

The simulations described in this thesis will utilize both inertial and non-inertial

reference frames. The frames used will be described in the next sections and include:

Earth Centered Inertial (ECI), Hill’s Relative Orbit Frame (O-frame), Target Frame

(T -frame), and Pursuer Frame (P -frame). The ECI frame is inertial while the O,T,

and P -frames are considered non-inertial because of satellite motion.

10
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2.1.1 Earth Centered Inertial (ECI) Reference Frame (N-frame)

The ECI frame’s origin is located at the center of mass of the Earth and its

fundamental plane is the Earth’s equator. The frame’s X-axis points towards the

Vernal Equinox, the Y-axis lays 90 degrees to the east in the equatorial plane of the

equator, and the Z-axis points towards the North Pole. Since the equinox and plane

of the equator move very slowly over time, the ECI frame can only be considered

‘pseudo’ inertial if the equator and equinox are referred to at a particular epoch [16].

The J2000 system represents the best realization of an ideal, inertial frame at the

J2000 epoch. The motion of the equator and the equinox can be accounted for, so

inertial frames at other times defined by the equator and equinox of date can be

transformed to the J2000 ECI frame. These other inertial frames are called true-of-

date because they reference the true equator and true equinox at a particular date.

The ECI frame’s unit vectors will be denoted by {n̂1, n̂2, n̂3}.

2.1.2 Hill’s Relative Orbit Frame (O-frame)

The origin of the O-frame is located at the center of mass of the Target satellite

and its orientation is given by the vector triad {ôr, ôθ, ôh} shown in Figure 2.1. The

vector ôr is in the orbit radius direction, while ôh is parallel to the orbit momentum

vector in the orbit normal direction. The vector ôθ then completes the right-handed

coordinate system. Mathematically, these O-frame orientation vectors are expressed

as

ôr = RT

RT

ôh = hT

hT

ôθ = ôh × ôr

where RT is the radius vector of the Target satellite from the center of the earth,

hT = RT × ṘT is the angular momentum vector of the Target’s orbit, and RT and hT
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are the magnitudes of the RT and hT vectors respectively. Note: bold will represent a

vector and the corresponding non-bold character will represent the magnitude of that

vector for the remainder of the thesis. (Note: if the inertial target orbit is circular

then ôθ is parallel to the satellite velocity vector) This rotating reference frame is

sometimes also referred to as the local-vertical-local-horizontal (LVLH) frame [17].

Figure 2.1 General Relative Orbit Illustration.

2.1.3 Body-Fixed Reference Frames

Two body-fixed reference frames are used in this study: the Target Reference

Frame (T − frame) and the Pursuer Reference Frame (P − frame). The Target Frame,

denoted by
{
t̂1, t̂2, t̂3

}
is the body-fixed reference frame of the Target satellite with

the origin located at the Target’s center of mass. The frame’s origin is coincident
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with the Hill’s frame origin and is fixed to the Hill’s frame origin as it travels through

inertial space. However, the Target Frame is able to rotate freely in inertial space

and therefore does not necessarily have the same orientation as the Hill’s frame.

The Pursuer Frame is the body-fixed reference frame of the Pursuer satellite

with the origin located at the Pursuer’s center of mass and is denoted by {p̂1, p̂2, p̂3}.
These frames provide a foundation in which the governing dynamics and kine-

matics can be consistently described. In the following section the kinematics and

dynamics governing the rigid body spacecraft in this study are discussed.

2.2 Rigid Body Kinematics & Dynamics

Dynamics is a body’s resulting motion due to applied forces and torques and

can generally be divided up into translational motion (how a body moves in space)

and rotational motion (how a body rotates and reacts to applied torques). In the

following sections, the translational and rotational dynamics applicable to satellite

motion in this study will be discussed.

2.2.1 Translational Dynamics

This section discusses the dynamics governing translational motion assumed

to be acting on the rigid body satellites in this study. Since this study focuses on

spacecraft, the dynamics described will focus on orbital mechanics.

The GPS constellation and the Target and Pursuer spacecraft are all assumed

to follow general two-body motion. The Target and Pursuer are considered to be

under the additional influence of J2 and drag perturbations. The GPS satellites

are not subject to perturbations because it is assumed that they are in controlled

orbits to maintain the constellation formation. Additional acceleration to the Pursuer
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spacecraft can be applied in the form of a control force. The general spacecraft

translational acceleration can then be described in vector form as

R̈s/c = as/c = a2−Body + aJ2 + aDrag + uTrans (2.1)

2.2.1.1 2-Body Motion

The most general orbital dynamics motion is two-body motion and can be given

by

a2−Body = −µR

R3
(2.2)

This motion assumes that both bodies in question can be treated as point masses and

that the mass of one body is several orders of magnitude larger than that of the other

body. The term µ is known as the gravitational parameter; for 2-body motion in the

vicinity of the earth, µ is given by µ = GME where G is the universal gravitational

constant, ME is the mass of the earth, and R is the radius vector of the satellite.

The accelerations aJ2 and aDrag in (2.1) are due to perturbation forces caused

by differential gravity and atmospheric drag.

2.2.1.2 Perturbation Effects on Translational Motion

Perturbations are deviations from a normal, idealized, or undisturbed motion.

A spacecraft in orbit is likely to face several different perturbing forces such as atmo-

spheric drag, solar-radiation pressure, magnetic field disturbances, third body effects

(sun, moon, planets, etc.), and asphericity of the central body [16]. In this study, the

effects of a second order oblate earth model and of atmospheric drag are considered.

Differential Gravity (J2): As can be seen in the two-body equation, gravita-

tional forces are based on the magnitude of separation and the masses of the bodies
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in question. However, as previously stated, two-body motion assumes the bodies can

be approximated as point masses. This assumption is accurate for short periods of

time, but in reality the earth is not a perfect sphere, and its mass density is not evenly

distributed – so the gravitational force acting upon a satellite in orbit about the earth

varies depending on the satellite’s orbital position. The inertial acceleration due to a

second order oblate earth model is given by

aJ2 =




−3J2µR2
EX

2R5

(
1− 5Z2

R2

)

−3J2µR2
EY

2R5

(
1− 5Z2

R2

)

−3J2µR2
EZ

2R5

(
3− 5Z2

R2

)




(2.3)

where J2 is a constant, RE, it the average equatorial radius of the earth, and {X, Y, Z}
are the three components of the inertial radius vector R.

Atmospheric Drag: Atmospheric drag is a significant force on vehicles in

motion on the earth, but its effects reduce significantly as the vehicle’s altitude above

the surface of the earth increases. However, for satellites in low earth orbits (LEO),

atmospheric drag is a significant problem and can severely shorten a satellite’s orbit

lifespan if orbit maintenance is not performed. In general, the acceleration on a rigid

body due to atmospheric drag is given by

aDrag = −1

2
ρ
cDA

m
v2

rel

vrel

‖vrel‖ (2.4)

where ρ is the density of the atmosphere, cD is the spacecraft’s coefficient of drag, A

is the exposed area, m is the mass of the spacecraft, and vrel is the velocity of the

spacecraft relative to the earth’s rotating atmosphere given by vrel = Ṙ − ωE × R
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where ωE =

[
0 0 ωE

]T

is the angular velocity of the earth. The term cDA
m

in

(2.4) is sometimes called the ‘ballistic coefficient’ and is denoted by

B =
cDA

m
(2.5)

The density of the earth’s upper atmosphere cannot be known exactly because

of factors such as seasonal variations and solar radiation. However, many models have

been developed to approximate the atmosphere’s density at high altitudes. One such

approximation method, known as the exponential atmosphere model, was chosen to

approximate the atmospheric density in this study. In the exponential atmosphere

model, the density varies exponentially according to

ρ = ρ◦ exp

[
−hellp − h◦

H

]

where ρ◦ is the reference density, ho is the reference altitude, hellp is the actual altitude

above the ellipsoid, and H is the scale height. Each of these values are based upon

the spacecraft’s altitude and are given in appendix A.
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Combining equations (2.2), (2.3), and (2.4) into (2.1) gives the uncontrolled

spacecraft acceleration governing the Target and Pursuer in inertial space as

Ẍ = −µX

R3
− 3µJ2R

2
EX

2R5

(
1− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ẋ + ωEY

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2

Ÿ = −µY

R3
− 3µJ2R

2
EY

2R5

(
1− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ẏ − ωEX

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2

Z̈ = −µZ

R3
− 3µJ2R

2
EZ

2R5

(
3− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ż

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2

(2.6)

The inertial translational motion of the spacecraft has been established, but for a

rendezvous engagement involving two spacecraft the motion of one spacecraft with

respect to another must also be known. Therefore, the dynamics governing the relative

motion between spacecraft in orbit must also be established.

2.2.1.3 Spacecraft Relative Motion Dynamics

The previous section described the motion of a single spacecraft in inertial

space, but to study a rendezvous scenario, the relative motion between all spacecraft

involved must be known. This section develops the relative orbit equations of motion

that govern Target and Pursuer satellites in this study.

The relative orbit position vector, r, is shown in Figure 2.1 above and can be

expressed in the rotating Hill frame or O-frame components as r = [x y z]T . Use

of this frame is advantageous because the {x, y} coordinates define motion in the

Target’s orbit plane, and the z coordinate describes out-of-plane motion.
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The position vector of the Target in Hill frame components is

RT = RT ôr (2.7)

and the position of the Pursuer can be written in vector form as

RP = RT + r = (RT + x) ôr + yôθ + zôh (2.8)

Taking the derivative of equation (2.8) with respect to the inertial frame and using

the transport theorem gives

ṘP = ṘT +
Od

dt
r + ωO/N × r (2.9)

where ωO/N is the angular velocity of the rotating Hill frame given by

ωO/N =

∥∥∥RT × ṘT

∥∥∥
‖RT‖2 ôh = θ̇ôh (2.10)

Differentiating equation (2.9) and using the transport theorem again gives the Pur-

suer’s acceleration vector as

R̈P = R̈T +
Od2

dt2
r + 2ωO/N ×

Od

dt
r + ω̇O/N × r + ωO/N ×

(
ωO/N × r

)
(2.11)

where

ω̇O/N = θ̈ôh = −2
ṘT

RT

θ̇ôh (2.12)
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The acceleration of the Target can be found by twice differentiating (2.7) with

respect to the inertial frame and is given by

R̈T =
(
R̈T −RT θ̇2

)
ôr = − µ

R2
T

ôr (2.13)

Equating vector components in equation (2.13), the Target orbit radius acceleration

is expressed as

R̈T = RT θ̇2 − µ

R2
T

(2.14)

Then substituting equations (2.12) and (2.14) into (2.11), the Pursuer acceleration

vector is reduced to

R̈P =

(
ẍ− 2θ̇

(
ẏ − y

ṘT

RT

)
− xθ̇2 − µ

R2
T

)
ôr +

(
ÿ + 2θ̇

(
ẋ− x

ṘT

RT

)
− yθ̇2

)
ôθ + z̈ôh

(2.15)

Substituting the kinematic acceleration expression from equation (2.15) into

the orbit equations of motion, the Pursuer’s orbital equations of motion are given by

R̈P = − µ

R3
P

O




RT + x

y

z




(2.16)
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with RP =
√

(RT + x)2 + y2 + z2. Equating equations (2.15) and (2.16) yields the

exact nonlinear Hills relative equations of motion.

ẍ = 2θ̇ẏ + θ̈y + θ̇2x− µ(RT +x)

((RT +x)2+y2+z2)
3/2 + µ

R2
T

ÿ = −2θ̇ẋ− θ̈x + θ̇2y − µy

((RT +x)2+y2+z2)
3/2

z̈ = − µz

((RT +x)2+y2+z2)
3/2

R̈T = RT θ̇2 − µ
R2

T

θ̈ = −2ṘT θ̇
RT

(2.17)

The only assumption that has been made is that no disturbances are acting

on the satellites, and thus Keplerian motion assumption in the orbital equations of

motion is correct. The relative equations of motion are valid for arbitrarily large

relative orbits, and the Target orbit may be eccentric [17].

2.2.2 Rigid Body Kinematics

Many applications require knowledge of a rigid body’s attitude, also known

as orientation. The ability to determine a rigid body’s orientation and control that

orientation is vital to many modern operations in a variety of fields, including: a solar

panel following the sun as it crosses the horizon; a surveillance satellite monitoring a

specific location for an extended period of time; and a passenger airplane. In the case

of spacecraft rendezvous, the attitude of all spacecraft in question must be known

accurately in order for a rendezvous to occur. Onboard computers must know the

orientation before firing thrusters to decrease the relative separation of the spacecraft.

The attitude must also be known for the spacecraft to align their respective docking

ports for rendezvous and possibly for communications.
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Numerous forms of attitude representation have been developed, each with ad-

vantages and disadvantages. Euler angles are a simple minimal and intuitive means of

attitude determination but prone to singularities in the attitude kinematics. In fact,

all minimal parameter attitude sets have singularities. One parameter set, based on

Euler’s Principal Rotation Theorem1, is known at Euler Parameters or quaternions

and eliminates singularities, but they are an over parameterized set and therefore

require an additional constraint. Another attitude representation based on Euler’s

Theorem is known as Modified Rodrigues Parameters (MRP) [17]. MRPs were se-

lected for use in this study and are are described below.

2.2.2.1 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) are an efficient and robust form

of attitude parameters based on Euler’s Principal Rotation Theorem. The MRP

vector can be expressed in terms of the principal rotation elements as σ = ê tan
(

φ
4

)

where ê is the vector about which the rotation takes place and φ is the angle of

rotation. MRPs are a minimal parameter representation and, as with all minimal

parameter representations, have a singularity. However, MRPs are more robust than

other minimal parameter forms because they are accurate and effective for small and

large angles of rotation and only encounter singularities when φ = ±360◦ (or one full

rotation). One effective method to avoid this singularity is to break up the rotation

into smaller successive rotations.

1

Theorem 2.2.1 (Euler’s Principal Rotation Theorem) A rigid body or coordinate reference
frame can be brought from an arbitrary initial orientation to an arbitrary final orientation by a
single rigid rotation through a principal angle φ about the principal axis ê; the principal axis is a
judicious axis fixed in both the initial and final orientation [17].
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The MRP representation can provide a transformation from the inertial frame,

N, to a general body frame, B, through a direction cosine matrix or rotation matrix

given by the relation

[BN ] = [I3×3] +
8 [σ×]2 − 4 (1− σ2) [σ×]

(1 + σ2)2 (2.18)

where [BN ] is the rotation matrix from the body frame to the inertial frame, I3×3

is a 3 × 3 identity matrix and [σ×] is a cross product matrix that follows the form

a× b = [a×]b, with

[a×] =




0 −a3 a2

a3 0 −a1

−a2 a1 0




The kinematic differential equation of the MRPs in vector form is given by

σ̇ =
1

4

[(
1− σ2

)
[I3×3] + 2 [σ×] + 2σσT

]
ω =

1

4
[B (σ)] ω (2.19)

and gives the time rate of change of the MRP [17].

2.2.3 Rotational Dynamics

The previous section discussed how the satellite’s orientation can be described

mathematically in multiple reference frames and how that orientation can change

over time with respect to an inertial frame. However, to give a complete description

of a rigid body’s rotational motion, its rotational dynamics must be discussed. The

attitude kinematics described above do not give a complete picture of the rotational

motion governing the rigid bodies in this study because they do not account for the
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rigid body’s inertia or applied torques (controlled and uncontrolled). The following

section describes the rotational dynamics used.

The torque applied to a rigid body equals the inertial rate of change of the

angular momentum

T =
Nd

dt
h (2.20)

where T is the applied torque and h is the angular momentum of the rigid body. The

angular momentum of a rigid body is given by the expression

h = [I] ωB/N (2.21)

where [I] is the rigid body’s moment of inertia matrix and ωB/N is the rigid body’s

rotation rate with respect to the inertial frame. This form for the angular momen-

tum is convenient because the inertia matrix is constant in body frame components

(because of rigid-body assumption). However, a relationship must be found to relate

the inertial derivative of the angular momentum to the body frame components. The

time derivative of a vector with respect to the inertial frame is related to the time

derivative with respect to the body frame by

Nd

dt
r =

Bd

dt
r + ωB/N × r (2.22)

This relationship is sometimes referred to as the transport theorem. Applying the

transport theorem to (2.20) the torque then becomes

T =
Bd

dt
[I] ωB/N + ωB/N × [I] ωB/N (2.23)
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Remembering that in the body frame the inertia is constant (2.23) can be reduced to

T = [I] ω̇B/N + ωB/N × [I] ωB/N (2.24)

which is known as Euler’s equation [18].

Figure 2.2 General Rendezvous Mission Orbit Setup.
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The previous sections described the uncontrolled kinematics and dynamics of

the spacecraft being studied but did not cover the stability or controllability of the

dynamics. For two spacecraft to engage in a rendezvous, the dynamics of at least one

of the vehicles must be controlled.

2.3 Control

As stated previously, it is assumed that the Target is in an uncontrolled orbit

and is arbitrarily tumbling such that it cannot modify its orbit or control its atti-

tude. The Pursuer spacecraft is controllable and able to modify its orbit and attitude

through the use of translational and rotational control forces denoted by uTrans and

uRot. These control forces are assumed to be arbitrary, such that no distinction is

made whether the control force is provided by thrusters, momentum wheels, solar

sails, etc.

The main focus of this study is estimation and sensor fusion; therefore, Proportional-

Derivative (PD) controllers have been chosen because they are simple and robust. A

PD controller follows the form

u = −kPe− kDė (2.25)

where u is the control, kP is the proportional gain, kD is the derivative gain, and e

and ė are the error vectors given by

e = r− rdes (2.26a)

ė = ṙ− ṙdes (2.26b)
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where r, ṙ is the actual vector and its time derivative and rdes, ṙdes is the desired

vector and its time derivative. Proportional gain primarily influences the rise time

and overshoot of the controlled response, while the derivative gain will alter response’s

settling time and overshoot.

Now that the control type has been established the components that will form

the translational and rotational controllers can be given.

Translational Controller: Translational control allows the Pursuer to alter

its orbit so that it can position itself in the proper relative location (i.e. along the

radius vector of the Target’s docking port). Following the form given in (2.25) the

translational control can be computed by

uTrans = −kP
Trans

(r− rdes)− kDTrans
(ṙ− ṙdes) (2.27)

where uTrans is the translational control, kP
Trans

and kD
Trans

are the gains, r is the

separation between the satellites shown in 2.2 and rdes is the desired position for the

Pursuer to reach relative to the Target.

Attitude Controller: Attitude control allows the Pursuer to alter its orienta-

tion such that its docking port faces the Target’s docking (i.e. the respective docking

ports are aligned). The PD form for the attitude controller is given by

uRot = −kP
Rot

(σ − σdes)− kDRot
(σ̇ − σ̇des) (2.28)

where σ is the MRP orientation of the Pursuer, σ̇ is given in (2.19), and σdes and

σ̇des are the desired MRP orientation and its time derivative. The desired effects of

the two controllers is shown in Figure 2.3.
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Figure 2.3 Desired Control Effect.

Combining the translational control with the dynamics given in (2.29) gives the

equations that govern the translational acceleration of the Pursuer in inertial space

Ẍ = −µX

R3
− 3µJ2R

2
EX

2R5

(
1− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ẋ + ωEY

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2 + NuTrans1

Ÿ = −µY

R3
− 3µJ2R

2
EY

2R5

(
1− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ẏ − ωEX

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2 + NuTrans2

Z̈ = −µZ

R3
− 3µJ2R

2
EZ

2R5

(
3− 5Z2

R2

)

− 1

2

ρcDA

m

(
Ż

) √(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2 + NuTrans3

(2.29)
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Control can also be applied to the relative dynamics given in (2.17) by rotating

the inertial translational control into the O-frame such that OuTrans = [ON ] NuTrans

yielding

ẍ = 2θ̇ẏ + θ̈y + θ̇2x− µ(RT +x)

((RT +x)2+y2+z2)
3/2 + µ

R2
T

+ OuTrans1

ÿ = −2θ̇ẋ− θ̈x + θ̇2y − µy

((RT +x)2+y2+z2)
3/2 + OuTrans2

z̈ = − µz

((RT +x)2+y2+z2)
3/2 + OuTrans3

R̈T = RT θ̇2 − µ
R2

T

θ̈ = −2ṘT θ̇
RT

(2.30)

The Pursuer’s controlled rotational motion can be found by combining the

rotational control in (2.28) with (2.24)

ω̇B/N = − [I]−1 (
ωB/N × [I] ωB/N

)
+ [I]−1 uRot (2.31)

This chapter has given the equations governing the six degree-of-freedom mo-

tion of the Target and Pursuer satellites, however, to gain knowledge of the system’s

motion (i.e. position, velocity, attitude, etc.) the system’s parameters must be iden-

tified.

The only way to identify a parameter, such as relative position, is to take

measurements which, in turn, requires some type of sensor. Since all real-world sensor

measurements are inherently noisy to some degree, the quantities measured are altered

from the true values by an unknown amount of error. If numerous measurements are

taken, an estimation process (or filtering) can be applied to filter out some of the

measurement noise and provide estimates of the true values.

In this study, filtering algorithms were utilized to provide position, velocity, and

attitude estimates based on measurements from a GPS sensor, a vision based sensor,
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and an attitude sensor. The calculated estimates were used in the translational and

attitude controllers to initiate and complete the rendezvous engagement scenario.

The following chapters will provide a brief description of each of the sensors used

and give the mathematical models used to simulate sensor measurements and provide

estimates based on those measurements.



CHAPTER 3

ESTIMATION OF DYNAMICAL SYSTEMS

In this study the controllers described previously are dependent on estimated

parameters provided by filters. To understand how the filters estimated the state

parameters requires a discussion on filtering/estimation. This chapter will define

filtering at it applies to this thesis and provide a brief description of various estimation

techniques. Then the Extended Kalman Filter, the filter of choice for this thesis, will

be discussed, including how it is mathematically modeled and why it was chosen.

3.1 Introduction to Estimation

In general filtering is determining the current state using current (and past) ob-

servations. In the estimation of any variable or parameter there are three quantities of

interest: the true value, the measured value, and the estimated value. In practice the

true value (or ‘truth’) is rarely known and is the value sought of the quantity being

approximated by the estimator. The measured value denotes the quantity which is

determined from a sensor (whether by direct or indirect means). Measurements are

never perfect, since they will always contain errors (i.e. electronic noise, computa-

tional error, unknown bias, etc.) and are usually modeled using a function of the true

values plus some error. The measured values of the truth, x, are typically denoted by

x̃ [19].

Estimated values of x are determined from the estimation process itself, and

are found using a combination of static/dynamic modeling and measurements and are

denoted by x̂. Other quantities used commonly in estimation are the measurement

30
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error (measurement value minus true value), and the residual error (measurement

value minus estimated value). Thus, for a measurable quantity x, the following two

equations hold [19]:

measured value = true value + measurement error

x̃ = x + υ

and

measured value = estimated value + residual error

x̃ = x̂ + e

Similar to the true value, the actual measurement error (υ) is never known in

practice. However, the errors in the mechanism that physically generate this error are

usually approximated by some known process (often by a zero-mean Gaussian noise

process with known variance).

Two of the most common forms of estimation are Least Squares and the Kalman

Filter, both of which have a variety of forms and are applicable to different situations.

Some of the variations of Least squares include: batch, sequential, weighted, nonlin-

ear, and maximum-likelihood; however, all forms of Least squares ‘minimize the sum

of the squares of the residuals’. The residuals will be the difference in the actual ob-

servations and those obtained using the state vector solution [16]. For a more detailed

discussion on Least Squares and its variants see [19].

Rudolf E. Kalman’s contribution combined statistical mathematics with linear

system theory to produce a recursive algorithm for computing ‘maximum-likelyhood’

estimates of a system state. The principle of maximum-likelihood seeks to find an

estimate of the state that maximizes the probability of having obtained the given ob-

servational data set. Simply speaking, the Kalman filter is a technique for computing
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the best estimate of the state of a time-varying process (i.e. a dynamical system).

It uses a predictor-corrector technique ideally suited for computer applications, given

imperfect observations and uncertain dynamics. It differs from the Least-Squares

technique in two ways. First, it continuously updates the epoch time, thus estimat-

ing the state at each successive observation time. Of course this assumes we have

data available over a period of time. Second, it carries all the information concerning

the past measurements in its current state and covariance estimates and therefore

doesn’t need to reprocess all of the past measurement information at each step [16].

The Kalman filter works well for linear systems, but all real-world systems are

inherently nonlinear so the Kalman filter’s effectiveness is reduced. However, the

Extended Kalman Filter (EKF) attempts to filter nonlinear systems by linearizing

the system dynamics through a first-order Taylor series expansion. This method is

generally effective (assuming frequent updates) and is widely used in practice.

The Kalman filter and Extended Kalman filter have advantages and disadvan-

tages when compared to least squares and sequential least squares. Some of the

advantages are [16]:

- It’s not limited by the accuracy of the force models in the fit span, but it is still

constrained during subsequent propagation.

- It’s a very fast, recursive process that is ideally suited for real-time control

of a system because it doesn’t require iteration (Viking Lander, Apollo Lunar

Landers, Missiles).

- It may require less memory storage and processor time, but that depends on

the computer software. Because the filter uses more frequent updates, we can

use less accurate propagation models in some situations.

- It allows solving for measurement biases simultaneously in the state space, which

accommodates the true time-varying bias (if the bias is observable enough).
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- It is more adept at modeling time-varying coefficients such as of drag and solar-

radiation pressure (assuming the quantities are observable enough).

3.2 Continuous-Discrete Extended Kalman Filter

Even with the EKF there are several possible variations applicable for estima-

tion: the continuous-EKF (dynamics and measurements are considered continuous),

continuous-discrete EKF (continuous dynamics, discrete updates), discrete-discrete

(dynamics updated at discrete time intervals and measurements are taken at discrete

time intervals). Continuous-discrete EKF models were applied to each sensor used

in this thesis (GPS, vision, attitude) to calculate state and parameter estimates of

the Pursuer satellite. Because the system dynamics are treated as continuous rather

than discrete they must be numerically integrated.

A general Continuous-Discrete EKF consists of five components: the model, ini-

tialization, calculation of the gain, update the estimated state vector and covariance,

and propagating the estimated state and covariance.

Continuous-Discrete EKF Model: The model consists of the true system

dynamics and the measurement model. The system’s true dynamics can be general-

ized as

ẋ (t) = f (x (t) ,u (t) , t) + G (t)w (t) , w (t) ∼ N (0, Q (t)) (3.1)

where f (x (t) ,u (t) , t) is the noiseless dynamics and w (t) is the process noise with

zero mean and standard deviation Q (t) (i.e. E
{
wkw

T
j

}
=





0 k 6= j

Qk k = j
). Process

noise, w, is a mathematical model of the errors in the system dynamics and quantifies

the ability to accurately model the actual dynamics before and after a given epoch
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[16]. It should be noted that in general the process noise is very hard to model and the

filter’s performance could degrade or even diverge if enough process noise is present.

The measurement model for any sensor at some iteration k can be generalized

as

ỹk = h (xk) + vk, vk ∼ N (0, Rk) (3.2)

where ỹk is the kth measurement, h (xk) is the measurement model at the kth iteration,

and vk is the measurement noise which is assumed to be zero mean and have a

standard deviation of Rk (i.e. E
{
vkv

T
j

}
=





0 k 6= j

Rk k = j
). It must also be stated

that wk and vk are assumed to be uncorrelated so that E
{
vkw

T
k

}
= 0 for all k.

Continuous-Discrete EKF Initialization: One of the drawback to all forms

of Kalman filtering is the initial estimated state and covariance must be initialized by

some other means than the filter. If the initial state of the system is not well known

then a poor initial estimate could result and lead to filter instability or divergence.

The same issue could arise if the initial covariance is too small and the initial errors lie

outside the radius of convergence. The estimated state and covariance are generally

initialized as

x̂ (t0) = x̂0

P0 = E
{
x̃ (t0) x̃

T (t0)
} (3.3)

Continuous-Discrete EKF Gain: The Kalman gain is the primary param-

eter governing the measurement update process and can be computed as

Kk = P−
k HT

k

(
x̂−k

) [
Hk

(
x̂−k

)
P−

k HT
k

(
x̂−k

)
+ Rk

]−1
(3.4)

where Kk is the gain, P−
k is the pre-update covariance at the kth iteration, Rk is the

measurement noise matrix, and Hk

(
x̂−k

)
is the observation or basis function matrix.



35

The observation matrix is a function of the pre-updated state estimate x̂−k and is

given by

Hk

(
x̂−k

) ≡ ∂h

∂x

∣∣∣∣
x̂−k

(3.5)

Continuous-Discrete EKF Update: After the gain has been calculated the

estimated state vector and its corresponding covariance at the kth iteration can be

updated by

x̂+
k = x̂−k + Kk

[
ỹk − h

(
x̂−k

)]
(3.6a)

P+
k =

[
I −KkHk

(
x̂−k

)]
P−

k (3.6b)

x̂+
k is the updated state vector, x̂−k is the estimated state vector before the update, I

is an identity matrix of proper dimensions and the quantity
[
ỹk − h

(
x̂−k

)]
is known

as the residual error. The covariance matrix contains the estimates for the closeness

of the fit with the chosen dynamics. The diagonal terms are the variances of the

estimated state parameters and the square roots of the diagonal terms are the cor-

responding standard deviations. The off-diagonal elements are called the covariance

terms and represent the degree of correlation among the elements, with zero being no

correlation. Positive signs indicate a direct correlation, while negative signs imply an

inverse relationship. It is desired that all off-diagonal terms are zero or nearly zero

[16]. The state propagation and discrete update method of the continuous-discrete

EKF is visualized in Figure 3.1

Continuous-Discrete EKF Propagation: Once the state and covariance

have been updated they can be propagated forward in time to the next iteration step.

As stated before the filter of choice for this study is a Continuous-Discrete EKF so

the state and covariance must be numerically integrated. The propagation model for
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Figure 3.1 Mechanism for the Continuous-Discrete Kalman Filter.

the estimated state is the same as the truth model except there is no process noise

and estimated parameters are used rather than true parameters.

˙̂x (t) = f (x̂ (t) ,u (t) , t) (3.7)

The covariance is propagated by integrating

Ṗ (t) = F (x̂ (t) , t) P (t) + P (t) F T (x̂ (t) , t) P (t) + G (t) Q (t) GT (t) (3.8)

where F is the partial of the estimated state dynamics with respect to the state and

is given by

F (x̂ (t) , t) ≡ ∂f

∂x

∣∣∣∣
x̂−(t)

(3.9)

The EKF process is recursive, therefore at the end of the propagation phase the

process will start over with a new measurement at the k +1 iteration and then follow
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with a new calculated gain, update the state and covariance again, and propagate

the state and covariance forward again. The primary difference between the first loop

through the EKF and subsequent iterations is the state and covariance initialization

will have already taken place in the prior iteration. The continuous-discrete EKF

model is summarized in Table 3.1

Table 3.1 Continuous-Discrete Extended Kalman Filter

Model
ẋ (t) = f (x (t) ,u (t) , t) + G (t)w (t) , w (t) ∼ N (0, Q (t))

ỹk = h (xk) + vk, vk ∼ N (0, Rk)

Initialize x̂ (t0) = x̂0

P0 = E
{
x̃ (t0) x̃

T (t0)
}

Gain Kk = P−
k HT

k

(
x̂−k

) [
Hk

(
x̂−k

)
P−

k HT
k

(
x̂−k

)
+ Rk

]−1

Hk

(
x̂−k

) ≡ ∂h
∂x

∣∣
x̂−k

Update x̂+
k = x̂−k + Kk

[
ỹk − h

(
x̂−k

)]
P+

k =
[
I −KkHk

(
x̂−k

)]
P−

k

Propagation
˙̂x (t) = f (x̂ (t) ,u (t) , t)

Ṗ (t) = F (x̂ (t) , t) P (t) + P (t) F T (x̂ (t) , t) + G (t) Q (t) GT (t)
F (x̂ (t) , t) ≡ ∂f

∂x

∣∣
x̂−(t)

The next three chapters will discuss the sensors utilized for the rendezvous sim-

ulation in this study: GPS, vision, attitude. Each chapter will give a brief description

of a sensor system and give the model to how measurements were simulated and how

the EKF was implemented for that sensor system.



CHAPTER 4

GPS NAVIGATION

The Global Positioning System (GPS) was originally developed for the U.S.

military to enable determination of position and time for military troops and guided

missiles. Over time, however, the GPS has spread into civilian applications and

become a basis for position and time measurements in the scientific community and

in a multi-billion dollar commercial industry.

Interest in the application of the GPS to spacecraft navigation and attitude

determination has grown significantly in recent years [19]; this chapter briefly de-

scribes the Global Positioning System, some of the advantages and disadvantages

of GPS navigation, the assumptions made for simulation purposes, and the mathe-

matical models used to simulate the GPS constellation and generate simulated GPS

measurements.

4.1 GPS Constellation

Positions and velocities of GPS satellites are required for simulation of GPS

pseudorange measurements. This section presents a description of the GPS constel-

lation model used in this thesis and the equations needed to determine the positions

and velocities of the satellites within the constellation.

The Global Positioning System has three segments: the space segment, the

control segment, and the user segment. In the space segment, a varying number1

of satellites spread equally over six orbital planes are orbiting the earth in nearly

1The exact number of satellites operating at any one particular time varies depending on the
number of satellite outages and operational spares in orbit [20].

38
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circular 12-hour orbits at 55◦ inclinations. The control segment consists of centers

that collect ground station tracking data, calculate satellite ephemerides and clock

corrections using a Kalman filter, and then upload the data to the satellites. The

user segment consists of GPS receivers and the user community. The GPS receivers

convert the satellites’ signals into position, velocity, and time estimates for navigating,

positioning, distributing time, or geodesy [16].

The GPS constellation of this study was constructed from NORAD Two-Line

Element Sets (TLE) given on the CelesTrak website [21]. TLE contain orbital data for

a satellite, embedded in a set of two lines that include the satellite’s inclination, right

ascension of the ascending node, eccentricity, argument of perigee, mean anomaly, and

mean motion at a given epoch. From this data, a satellite’s position and velocity at the

given epoch time can be extracted. The epoch time for each TLE is not necessarily the

same, however – so each satellite’s orbital position must be propagated to a common

specific time, or the constellation formation will not be maintained. TLE data was

taken for 29 operational GPS satellites on April 19, 2005 and all of the satellites’

orbits were propagated forward to midnight Coordinated Universal Time (UTC) on

April 20, 2005.

4.2 GPS Signals

Each satellite within the GPS constellation transmits navigation signals on two

L-band frequencies, called L1 (1575.42 MHz) and L2 (1227.60 MHz), upon which two

pseudorandom noise PRN-codes (the C/A-Code and the P-Code) are superimposed.

Each GPS satellite’s PRC is unique, guaranteeing the receiver will not confuse mul-

tiple incoming signals. Serving as the basis for civilian use is the Coarse Acquisition

(C/A) code which is the modulated PRC at the L1 carrier, repeating 1023 bits and

modulating at a 1MHz rate. Another PRC, the Precise (P) code, which repeats on a
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seven-day cycle and modulates both the L1 and L2 carriers 10MHz rate, is intended

for military use and can be encrypted. Position determination is made possible by

comparing how late in time the GPS’s PRC appears to the receiver’s code. Multiply-

ing the travel time by the speed of light, one obtains the distance to the GPS satellite.

This requires very accurate timing in the receiver, which is provided by using a fourth

GPS satellite to correct a ‘clock bias’ in the internal clock receiver [19].

4.3 GPS Error Sources

Many error sources affect GPS accuracy using PRC. GPS signals may slow down

as they pass through charged particles in the ionosphere or through water vapor in

the troposphere. Solar flares may cause GPS receivers to fail. Signals may bounce

off local obstructions before arriving at the receiver (known as multipath errors), or

may be completely blocked by obstructions (blockage). Ephemeris (or known satellite

position errors) can contribute to location inaccuracy as well. In another potential

error source, Geometric Dilution of Precision (GDOP), GPS sightlines to the receiver

can be near colinear and result in degraded accuracy [19].

Because the GPS system is very complex, several assumptions were made to

simplify the GPS navigation model, including:

- GPS receivers are all-in-view, meaning all GPS satellites within line of sight2

are tracked and used for measurement.

2Assume you know two arbitrary vectors (a and b). Using the dot product, the cosine of the
angle between the two vectors is: cos (θ) = a·b

|a||b| If you now fix the maximum perpendicular distance
between the central point and the line-of-sight vector to 1 Earth Radius, you can determine two half
angles θ1 and θ2. These angles are given by cos (θ1) = 1

|a| and cos (θ2) = 1
|b| No quadrant check is

required because all the angles are less than 180◦. If the sum of θ1 + θ2 ≤ θ, there is no line-of-sight.
For more information see [16].
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- GPS receivers are able to instantly acquire and lock on to new GPS satellites

as they become visible, but receivers will also immediately lose the signal from

a GPS satellite when it passes out of line-of-sight.

- The line-of-sight model used assumes a spherical Earth.

- Errors due to multipath and blockage were ignored.

- Errors from receiver noise and atmospheric effects were all grouped into the

measurement noise.

4.4 GPS Navigation Measurement Equations

A minimum of four GPS satellites are required so that, in addition to the three-

dimensional position of the user, the time of the solution can be determined and used

to correct the user’s clock. The GPS pseudorange measurements are assumed to be

modeled as

ρ̃i =
√

(e1i −X)2 + (e2i − Y )2 + (e3i − Z)2 + τ + vi i = 1, 2, ..., n (4.1)

ρ̃i is the measured pseudorange from the ith GPS satellite, {e1i, e2i, e3i} are the ECI

coordinates of the ith GPS satellite, {X, Y, Z} are the inertial coordinates of the

satellite being measured, τ is the clock bias3 assumed to be the same for all GPS

satellites, vi is the measurement noise which is assumed to be a zero-mean Gaussian

noise process with variance σ2 and σ is assumed to be the same for all GPS satellites

and n is the number of observable GPS satellites. It was assumed that the GPS clock

3Biases are a constant offset from the ‘true’ value, wheras noise is a statistical indication (actually
a standard deviation) of the random variation about the measured mean. In other words, noise is
scattering about the observed mean value. Drift represents a slow and unpredictable variation over
time of the observed mean value over an interval of time. The nice feature of biases is that, if we
known them, we can simply subtract them from each observation [16].
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bias could be modeled as a random walk process such that the truth model is given

by

τ̇ (t) = wτ (t)

where wτ (t) is assumed to be a zero-mean Gaussian noise process with known variance

Qbias

The estimated pseudorange is obtained similarly to the measured pseudorange

by

ρ̂i =

√(
e1i − X̂

)2

+
(
e2i − Ŷ

)2

+
(
e3i − Ẑ

)2

+ τ̂ i = 1, 2, ..., n (4.2)

where ρ̂i is the estimated pseudorange,
{

X̂, Ŷ , Ẑ
}

are the estimated ECI coordinates

of the satellite being measured, and τ̂ is the estimated clock bias. In terms of the

general EKF discussed in Chapter 3, ρ̃i in (4.1) is the measured value ỹk in (3.2) and

ρ̂i in (4.2) is h
(
x̂−k

)
in (3.6a).

4.5 State Estimation from GPS Pseudorange Measurements

An extended Kalman filter (EKF) was implemented to estimate the joint state

vector involving the states and the parameters, xGPS. The joint state vector estimated

by GPS measurements included the inertial position and velocity of the Pursuer, GPS

clock bias, τ , the J2 coefficient, and the Pursuer’s ballistic coefficient, B with B = cDA
m

.

xGPS =

[
XP XP ZP ẊP ẎP ŻP τ J2 B

]T
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Figure 4.1 General setup for GPS pseudorange measurements.

For GPS pseudorange measurements the observation matrix used to calculate

the Kalman gain and covariance update in (3.4) and (3.6b) is given by

Hk

(
x̂−k

)
=

∂ρ̂

∂xGPS

∣∣∣∣
x̂(t)

=




∂ρ̂1

∂x̂
∂ρ̂1

∂ŷ
∂ρ̂1

∂ẑ
0 0 0 1 0 0

∂ρ̂2

∂x̂
∂ρ̂2

∂ŷ
∂ρ̂2

∂ẑ
0 0 0 1 0 0

...
...

...
...

...
...

...
...

...

∂ρ̂n

∂x̂
∂ρ̂n

∂ŷ
∂ρ̂n

∂ẑ
0 0 0 1 0 0




(4.3)
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where the partials of the pseudorange estimates that form the first three columns of

Hk are
∂ρ̂i

∂X̂
= − (e1i−X̂)q

(e1i−X̂)
2
+(e2i−Ŷ )

2
+(e3i−Ẑ)

2

∂ρ̂i

∂Ŷ
= − (e2i−Ŷ )q

(e1i−X̂)
2
+(e2i−Ŷ )

2
+(e3i−Ẑ)

2

∂ρ̂i

∂Ẑ
= − (e3i−Ẑ)q

(e1i−X̂)
2
+(e2i−Ŷ )

2
+(e3i−Ẑ)

2

After the gain, Kk, has been calculated, the updated state estimate, x̂+
k , and

updated covariance, P+
k , can be calculated at discrete instants by (3.6). Once FGPS =

∂ ˙̂xGPS

∂x̂GPS
(given in appendix B) has been calculated, the state and covariance are propa-

gated between discrete measurement instants by numerically integrating the equations

of motion given in (2.29) and (3.8). The matrices associated with process noise and

needed for the covariance propagation are given by

GGPS =




03×3 03×1

I3×3 03×1

03×3

[
1 0 0

]T




QGPS = diag (αi) I4×4

where αi are appropriate positive tuning parameters.

This chapter has described the GPS sensor system and developed the measure-

ment and estimation models used for simulation purposes in this thesis. The next

chapter will give a similar discussion for the vision based navigation system.



CHAPTER 5

VISION-BASED NAVIGATION

5.1 Vision-Based Navigation System Setup

Vision-based navigation is a relatively new potential form of relative navigation

and attitude determination. In general the system consists of a camera sensor and

light beacons. An illustration of the vision-based sensor setup is provided in Fig.

5.1. The camera sensor and light beacons are both stationary and at known locations

with respect to the P -frame and T -frame respectively. The camera sensor ‘sees’ the

beacons from the light landing on the image plane and can measure the relative

distance between the two bodies from the location of the landing on the image plane

(xi, zi).

A few advantages of this type of navigation system is that it can be used at any

location (i.e. between cars on a road, two planes refueling in midair, two spacecraft

in orbit about Mars, etc.) and it can provide very accurate (within a few cm) relative

position, velocity, and attitude estimates. However, this system has range problems

due to the beacons reaching collinearity as the relative separation grows [14].

The vision-based navigation system utilized for the autonomous rendezvous and

docking of the Pursuer and Target system is similar to the model found in [13]. In

that paper, measurements from the vision-based system were used to estimate relative

position as well as attitude using a Gaussian Least Squares Differential Correction

algorithm (GLSDC). In this study the vision sensor setup and measurement model

provided estimates of the relative position and relative velocity through the use of an

Extended Kalman Filter algorithm.

45
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Figure 5.1 Vision-Based Navigation Setup.

5.2 Vision Based Navigation Measurement Model

In this study it was assumed that vision sensor was initially turned off (due to

range limitations) and the initial estimates for the vision sensor’s EKF process were

provided by the GPS estimation process.

Active beacons are assumed to be mounted on the Target with the number of

beacons being n (four beacons are shown in Figure 5.1 because four beacons were used

in the simulations) and the position of each beacon is known in T -frame components.

Note: Four beacons is also the minimum number that can achieve a unique solution

for attitude and position determination. The position of the ith beacon is given by

the object space (T -frame) coordinates {Xi, Yi, Zi}.
The electro-optical sensor is a camera mounted on the Pursuer with a focal

length f . The body fixed frame attached to the Pursuer (P -frame) is defined such

that the image plane of the camera coincides with the (p̂1, p̂3) plane and the vector

to the center of the lens is known and given by f = fp̂2. The vector rc is the radius

vector from the T -frame to the center of the camera lens and is generalized in the

T -frame as rc = Xct̂1 + Yct̂2 + Zct̂3. The centroid of the incident light from the ith
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beacon is located on the image plane at coordinates (xi, zi). The ideal (i.e. noiseless)

transformation projection from the object space to the centroid of the coordinates in

the image space is given by the collinearity equations

xi = −f C11(Xi−Xc)+C12(Yi−Yc)+C13(Zi−Zc)
C21(Xi−Xc)+C22(Yi−Yc)+C23(Zi−Zc)

zi = −f C31(Xi−Xc)+C32(Yi−Yc)+C33(Zi−Zc)
C21(Xi−Xc)+C22(Yi−Yc)+C23(Zi−Zc)

i = 1, 2, ..., n (5.1)

where Cxx are terms in the direction cosine matrix from the object frame to the sensor

frame (C = [PT ]), and {Xc, Yc, Zc} are the components of the camera lens’ position

which is known in the P -frame.

Equation (5.1) can be expressed in unit vector form hi = Cri where the sensor

frame unit vectors are

hi =
1√

f 2 + x2
i + z2

i




f

xi

zi




(5.2)

and the object frame unit vectors are

ri =
1

di




Xi −Xc

Yi − Yc

Zi − Zc




(5.3)

where di =
√

(Xi −Xc) + (Yi − Yc) + (Zi − Zc). It is important to point out that

the unit vector ri is not the same as the relative position vector between the Target

and the Pursuer.

It is likely that the focal length, f , in (5.2) is a known and constant value

and does not need to be measured. Therefore, to save computing power a small
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refinement of the above equations is provided. Equation (5.2) can be expressed in a

more convenient form by

hi = Dri (5.4)

where

D =




C11 C12 C13

C31 C32 C33




To construct the full set of measurements from n beacons at each instant,

k, the measurement vector from each beacon can be stacked in a column vector

bk =
[
hT

1 ,hT
2 , . . . ,hT

n

]T
. The measurement is modeled by

b̃k = bk + vk (5.5)

where vi is a zero-mean Gaussian noise with covariance R.

5.3 State Estimation from Vision Based Navigation Measurements

To yield estimates of the relative position and velocity between the Target and

Pursuer an Extended Kalman Filter is implemented. The estimated state vector for

this system contained the relative position and velocity in O-frame components

x̂vision =

[
Ox Oy Oz Oẋ Oẏ Oż

]T

The vision’s system dynamics, ẋ, is the relative motion between the satellites given

in equation (2.30).
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The gain for the vision sensor’s EKF is computed by equation (3.4) where the

observability matrix is given by

Hk =

[
HT

1 HT
2 · · · HT

n

]T

(5.6)

and the individual elements of Hk are given by

Hi =
∂hi

∂xvision

=

[
−D

I3×3−rir
T
i

di
02×3

]

The state and covariance are then updated for the vision EKF by using equa-

tion (3.6) and the resulting updates are propagated to the next iteration through

equations (2.30) and (3.8). The matrices dealing with process noise and needed for

the covariance propagation, G and Q are given below and Fvision = ∂ ˙̂xvision

∂x̂vision
is given

in appendix B.

Gvision =




03×3 03×3

03×3 I3×3




Qvision = α [I6×6]

where α is an appropriate tuning parameter.

This and the previous chapter have established sensor systems and models to

provide position and velocity determination but no sensor model has been established

for attitude determination, an integral part of the control algorithm to engage in the

rendezvous. The next chapter will describe the attitude estimation system used in

this study.



CHAPTER 6

ATTITUDE ESTIMATION

Applying attitude estimation in this study was more for completeness of the

simulation than the focus of the study. The focus of this thesis is to study sensor

fusion covered in the next chapter.

Many sensors have been developed to allow satellites to determine their attitude

while in orbit such as: star cameras, sun sensors, magnetometers, GPS, and rate-

integrating gyros; gyros are also frequently used to estimate a vehicle’s rotational

velocity.

To control a rigid-body’s attitude using the PD controller described in Chapter

2 the attitude and its rate of change must be known. This in turn requires that

the rotational velocity of the body be known (for calculation of the attitude rate of

change). Rather than create two separate models, one for attitude estimation one for

rotational velocity estimation, a hybrid model was created to estimate the satellite’s

attitude and the gyro bias.

6.1 Attitude & Gyro Measurement Models

Attitude measurements were assumed to be measured directly such as

σ̃P = σP + v (6.1)

where σ̃P is the measured attitude (in MRP form), σP is the Pursuer’s true attitude,

and v is a zero-mean Gaussian white noise process with known covariance R.
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Gyro measurements for the Pursuer were assumed to be measured in the form

ω̃P/N = ωP/N + β + ηv (6.2a)

β̇ = ηu (6.2b)

where ω̃P/N is the measured rotational velocity of the P-frame with respect to the

inertial frame, ωP/N is the true rotational velocity, β is the gyro bias vector, and ηv

is the gyro measurement noise which is assumed to be a zero-mean Gaussian white

noise process. The gyro bias vector is modeled as a random walk process where ηu

is a zero-mean Gaussian white-noise process. The covariances of ηv and ηu are given

by σvI
2
3×3 and σuI

2
3×3 respectively [22].

The estimated angular velocity is given by

ω̂ = ω̃ − β̂ (6.3)

where ω̂ is the estimated angular velocity, ω̃ is the measured angular velocity, and β̂

is the estimated gyro bias which is given by [22]

˙̂
β = 0 (6.4)

6.2 State Estimation from Attitude and Angular Velocity Measurements

The attitude estimation state contained the Pursuer’s MRP attitude terms and

the gyro bias.

x̂MRP =

[
σ1 σ2 σ3 β1 β2 β3

]T
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Measurements for the EKF were computed by

ỹMRP = Hk

(
x̂−k

)
xMRP + v (6.5)

where the observation matrix Hk

(
x̂−k

)
is

Hk

(
x̂−k

)
=

∂σMRP

∂x̂MRP

=

[
I3×3 03×3

]

The estimated state was computed by

ŷMRP = Hk

(
x̂−k

)
x̂MRP (6.6)

The EKF gains, state, and covariance updates are then computed by the

continuous-discrete equations (3.4) and (3.6).

The matrices needed to propagate the covariance are given by [22]

F =




∂f
∂σ

∂f

∂β

03×3 03×3




G ≡




Ĝ11 03×3

03×3 I3×3




Q =




σuI3×3 03×3

03×3 σ2
uI3×3




(6.7)
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where [22]

f = 1
2

{
1
2

(
1− σT σ

)
I3×3 + [σ×] + σσT

}
(ω̃ − β)

∂f
∂σ

∣∣
x=x̂

= 1
2

{
σ̂ω̂T − ω̂σ̂T − [ω̂×] +

(
ω̂T σ̂

)
I3×3

}

∂f

∂β

∣∣∣
x=x̂

= −1
2

{
1
2

(
1− σ̂T σ̂

)
I3×3 + [σ̂×] + σ̂σ̂T

} ≡ Ĝ11



CHAPTER 7

MULTI-SENSOR FUSION

The previous chapters have described individual sensor systems that are used

for navigation and control in this thesis. Both the GPS and vision sensor systems

have advantages and disadvantages for navigation, specifically rendezvous, however,

it is possible to use multiple sensors in conjunction to improve estimation performance

and in turn improve the control performance. Use of multiple sensors in conjunction

to create a single global or master estimate of the desired state parameters is known

as sensor fusion and is the main focus of this thesis.

Sensor fusion is generally achieved through two means: a centralized filter or a

decentralized filter. The following chapter will describe the difference between these

two filter types, develop the algorithm for the decentralized filter, and apply that filter

to the GPS and vision sensors previously developed to create a global state estimate

in the form of a Federated Extended Kalman Filter.

7.1 Centralized Kalman Filter Architecture

A general centralized Kalman filter architecture is depicted in Figure 7.1. In

this setup, a series of independent local sensors provide uncorrelated measurements

(Y1, . . . ,YN) on some larger global system. The measurements from these sensors

can be fed to a conventional Kalman filter to obtain an optimal estimate of the

global state called a global or centralized Kalman filter. Although this global filter

can provide an optimal linear minimum-variance (LMV) solution to the estimation

problem, the large number of states in the global system often requires processing

54
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data rates that cannot be maintained in practical real-time applications. For this

reason, and because smaller parallel structures can often provide improved failure

detection and correction, improved redundancy management, and lower costs for

system integration, there has been considerable recent interest in decentralized (or

distributed) Kalman filter architectures [23].

Figure 7.1 Centralized Kalman Filter Architecture.

7.2 Decentralized Kalman Filter Architecture

The basic goal of decentralized Kalman filtering methods has been the deter-

mination of efficient parallel processing structures that, like the centralized Kalman

filter, provide in some sense optimal estimates of the global system’s states. A de-
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centralized Kalman filter architecture generally seeks to replace the architecture in

Figure 7.1 with one depicted in Figure 7.2. In this architecture each local sensor has

a local processor to provide optimal estimates for some subset of the global system

state vector. The individual estimates are then passed to the global fusion processor

to create an optimal estimate of the global system. If a local system model has the

same states as the global system, it is said to have full-order. If its states are a smaller

subset of the global system states, it is said to have reduced-order [23].

Figure 7.2 Decentralized Kalman Filter Architecture.

The application of decentralized Kalman filtering methods to integrated navi-

gation systems has been well studied and is summarized in Ref [24]. Carlson applied

an optimal global fusion procedure, developed in Ref [25] to a decentralized Kalman

filter architecture proposed by Kerr in Ref [26] for integrated navigation systems.

Although the Federated Kalman Filter (FKF) developed by Carlson is conservatively

suboptimal, it forms the basis for the nonlinear state and measurement models used
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in this study. Since the state and measurement models dealt with in this study

are nonlinear the FKF will be referred to as the Federated Extended Kalman Filter

(FEKF).

7.3 The Federated Extended Kalman Filter

The output of the decentralized Kalman filter discussed in the previous section,

and illustrated in Figure 7.2, contains different state estimates and error covariance

matrices for states that are common to the local systems. That is, in the output of the

decentralized Kalman filter, each local filter contributes to its own estimate (and the

corresponding error covariance matrix) for the common system states. The federated

Kalman filter architecture includes a second stage of processing that provides a means

to optimally integrate this common information. This optimal fusion algorithm is

described in the following paragraphs.

If it is assumed that all of the local systems contain common state variables the

global system state can be expressed as a stack of N common state vectors xc,k and

the master filter global state estimate can be represented as [23]

x̂M
k =




x̂M
c,k

...

x̂M
c,k




(7.1)

and the performance index can be expressed as [23]

J =
N∑

i=1

(
x̂i,k − x̂M

c,k

)T
P−1

ii,k

(
x̂i,k − x̂M

c,k

)
(7.2)

The performance index achieves its minimum value at the point where its partial

derivative with respect to x̂M
c,k is zero. Then taking the partial of (7.2) with respect
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to x̂M
c,k, setting the resultant to zero, and solving for x̂M

c,k yields the optimal integrated

state. The partial derivative of J with respect to x̂M
c,k can be expressed as [23]

2
N∑

i=1

P−1
ii,k

(
x̂i,k − x̂M

c,k

)
(7.3)

Setting (7.3) equal to zero and solving for x̂M
c,k yields the optimal global state estimate

x̂M
c,k =

(
P−1

11,k + . . . + P−1
NN,k

)−1 (
P−1

11,kx̂1,k + . . . + P−1
NN,kx̂N,k

)
(7.4)

The error covariance matrix for the estimate x̂M
c,k, denoted PM

c,k, can be determined

by noting that

xc,k − x̂M
c,k =

(
P−1

11,k + . . . + P−1
NN,k

)−1[
P−1

11,k (xc,k − x̂1,k) + . . . + P−1
NN,k (xc,k − x̂N,k)

]

=
(
P−1

11,k + . . . + P−1
NN,k

)−1
[

P−1
11,k . . . P−1

NN,k

]
(xk − x̂k)

So that the associated covariance for the global state estimate, denoted as PM
c,k, can

be calculated by

PM
c,k

∆
= E

{(
xc,k − x̂M

c,k

) (
xc,k − x̂M

c,k

)T
}

=
(
P−1

11,k + . . . + P−1
NN,k

)−1
[

P−1
11,k . . . P−1

NN,k

]
Pk

[
P−1

11,k . . . P−1
NN,k

]T (
P−1

11,k + . . . + P−1
NN,k

)−1

=
(
P−1

11,k + . . . + P−1
NN,k

)−1

(7.5)

The final form of equations (7.4) and (7.5) can be simplified to [23]

x̂M
c,k = PM

c,k

(
P−1

11,kx̂1,k + . . . + P−1
NN,kx̂N,k

)
(7.6a)
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PM
c,k =

(
P−1

11,k + . . . + P−1
NN,k

)−1
(7.6b)

and provide the simplest form for a global fusion of the local estimates that is in

essence an optimal weighted least squares estimate with the specific weight as chosen

in (7.6b).

7.4 Implementing Sensor Fusion Through the Federated Extended Kalman
Filter

The GPS and vision-based navigation sensors were chosen as the local sensor

components in the FEKF described above and the global estimated state vector, x̂M
c,k,

was chosen to be the inertial position and velocity of the Pursuer satellite

x̂M
k =




NRP

NṘP


 =

[
NX NY NZ NẊ N Ẏ N Ż

]T

GPS position and velocity measurements are in inertial frame components but the

vision-based navigation sensor measures the relative separation and velocity between

the Target and Pursuer. To utilize the FEKF as described above, the estimated state

and covariance from the vision sensor must be transformed into inertial components.

The vision-based navigation state estimate can be represented as

Ox̂vision =

[
OrT OṙT

]T

where Or is the relative separation and Oṙ is the relative velocity in Hills frame

components. Ox̂vision can be rotated into the inertial frame and in turn be used
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in the global estimate through the use of the transport theorem which yields the

following transformation

N x̂vision =




Nr

N ṙ


 =




NRT + [NO] Or

NṘT + [NO] Oṙ + OωO/N × Or


 (7.7)

where NRT and NṘT are the Target’s inertial position and velocity, ωO/N is the

rotation rate of the O-frame with respect to the inertial frame, and [NO] is the

rotation matrix from the O-frame to the N -frame.

To transform the covariance terms of the vision sensor’s estimates into the

inertial frame a similar procedure is performed. The general covariance used in the

local vision sensor system can be expressed as

OPvision =




OP11
OP12

OP21
OP22


 (7.8)

where OP11,
OP12,

OP21,
OP22 constitute the four quadrants of OPvision and are each

3 × 3 in size. The transformed covariance to be used in the global estimate can be

represented by

NPvision =




NP11
NP12

NP21
NP22


 (7.9)

where the terms NP11,
NP12,

NP21 and NP22 are derived in Appendix C. The deriva-

tions yield

NP11 = [NO] OP11 [ON ] (7.10a)

NP12 = [NO]
(

OP12 − OP11

[
OωO/N×

])
[ON ] (7.10b)

NP21 = [NO]
(

OP21 +
[
OωO/N×

]
OP11

)
[ON ] (7.10c)
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NP22 = [NO]
(

OP22 − OP21

[
OωO/N×

]
+

[
OωO/N×

]
OP12+

[
OωO/N×

]
OP11

[
OωO/N×

])
[ON ]

(7.10d)

Once the vision sensor’s transformed state vector, N x̂vision, and covariance, NPvision,

have been formed they can be implemented in (7.6) with the GPS sensor’s state vector

and covariance. The final form of the sensor fusion equations used in this thesis at

the kth iteration are

x̂M
k = PM

k

(
P−1

GPS,kx̂GPS,k + NP−1
vision,k

N x̂vision,k

)
(7.11a)

PM
k =

(
P−1

GPS,k + NP−1
vision,k

)−1
(7.11b)

7.5 Resetting the Local Estimates & Error Covariances

In the federated Kalman filter algorithm, the master filter computes an optimal

weighted least-squares estimate of the global system state and its error covariance

according to the methods described in the preceding sections. Then, as illustrated

in Figure 7.3, this information can be fed back to the local filters to reset the local

estimates and local error covariances. The local state estimates and local error co-

variances are reset with values that have the effect of resetting the global estimate

and the global error covariance computed in the first stage of processing, x̂k and Pk,

to the corresponding values computed by the master fusion filter.

Each local processor can be reset by the global filter. Since the GPS state and

covariance are in the same reference frame as the global state and covariance the GPS

state vector reset can be implemented directly by

x̂−GPS,k+1 = x̂M
k

P−
GPS,k+1 = PM

k

(7.12)
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Figure 7.3 Decentralized Kalman Filter Architecture with feedback.

However, to reset the vision state vector the global state must be transformed from

inertial components to orbit frame components. The transformation can be given by

Ox̂vision =




Or̂

O ˙̂r


 =




[ON ]
(

NR̂P − NRT

)

[ON ]
(

N ˙̂RP − NṘT

)
− ωO/N ×

(
NR̂P − NRT

)


 (7.13)

A transformation similar to (7.10) is performed to make PM available for resetting

the vision’s local estimator. The final result is

OPvision =




Preset11 Preset12

Preset21 Preset2


 (7.14)
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where

Preset11 = [ON ]PM
11 [NO]

Preset12 = [ON ]PM
12 [NO] + [ON ]PM

11 [NO]
[
OωO/N

]

Preset21 = [ON ]
[
PM

12

]T
[NO]− [

OωO/N×
]
[ON ]

[
PM

11

]T
[NO]

Preset22 = [ON ]
(
PM

22 + PM
21

[
NωO/N×

]− [
NωO/N×

]
PM

12

− [
NωO/N×

]
PM

11

[
NωO/N×

])
[NO]

The preceding chapters have given the governing system dynamics and devel-

oped the estimation models used for the simulations in this thesis. The next chapter

will outline the simulations performed, give the parameters used for those simulations

and discuss the results.



CHAPTER 8

SIMULATIONS & RESULTS

8.1 Simulation Descriptions

The results of the GPS/vision fusion based estimate simulations are discussed

in this chapter. For this study two simulations employing sensor fusion were carried

out: the first keeps local estimators independent of the Master filter and the second

implements reinitialization of each sensor’s common local state vector and covari-

ance by the Master filter after each update. The simulations were carried out using

MATLAB.

For a more accurate determination of the effects of state and covariance reini-

tialization the simulation parameters for both simulations were the same. The initial

conditions for the simulations are shown in Table 8.1, the sensor parameters are listed

in 8.2, and the control law parameters are given in 8.3.

The rendezvous scenario was simulated for an arbitrary time of 100 seconds

to show that the specified control laws and estimation algorithms worked as desired.

GPS pseudorange, vision-based, and attitude measurements were all taken at a rate

of 25Hz. The local state estimates (GPS, vision, attitude) and the Master state

estimate were also updated at a rate of 25Hz. Control inputs were updated at a

rate of 5Hz, held constant between updates, and saturation limits were imposed to

limit the amount of translational and attitude control available (for a more realistic

simulation).

Initially only the GPS and attitude sensors are actively providing measure-

ments. Because the vision sensor is not initially active, Master filter estimates are

64
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based only on GPS data until the vision sensor is turned on. When the Master state

estimate relative separation magnitude is less than 100m the vision sensor is switched

on and sensor fusion in the form of the FEKF is implemented (i.e. the Master estimate

now depends on GPS and vision measurements).

Translational controller calculations are based on the Master state estimate

and rotational control calculations are based on the attitude sensor’s estimate. It

should be noted that the translational controller was highly damped to avoid problems

with the vision sensor activation as the Pursuer crossed the vision sensor activation

distance.

Once the Pursuer is estimated to be less than 100m from the Target the GPS

standard deviation and covariance were artificially increased to roughly simulate the

effects of signal blockage and multipath errors. The standard deviation is linearly

increased by 1m for every meter of separation under 100m (i.e. the standard deviation

increase is 0m at a separation of 100m and is 100 at a separation of 0m.

The Pursuer began the simulations trailing the Target by 200m in the ôθ di-

rection with no relative velocity and an arbitrary orientation. The Target is in a

free-floating orbit and aligned with and rotating at the same rate as the O-frame.

The desired relative separation vector for the Pursuer to reach was 5m along the −t̂2

axis.

Docking ports for the Target and Pursuer were assumed to be along the −t̂2

and p̂2 axes respectively and the desired Pursuer orientation was to align its docking

port with the Target’s docking port. Both satellites were assumed to be cubes with

side length 2m and evenly distributed mass. Four light beacons for the vision-based

sensor were located at the Target’s four corners on the
(
t̂1, t̂3

)
plane and facing the

−t̂2 direction.
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Table 8.1 Satellite Initial Conditions for Both Simulations
Description Value

Target Initial Orbital Elements: NRT0

a = 6737km
e = 5.1181× 10−4

i = 51.66◦

Ω = 209.05◦

ω = 282.18◦

ν = 281.81◦

Pursuer Initial Position: RP0 RT0 − [200m] ôθ

Target & Pursuer Coefficient of Drag cD = 2.2

Target & Pursuer Exposed Area A = 24m2

Target & Pursuer Mass mass = 500kg

Target & Pursuer Principal Moment of
Inertia [I] =




333.33 0 0
0 333.33 0
0 0 333.33


 kgm2

Target Initial Attitude (Aligned with
the O-frame) σT0 =



−.241084
−.010657
.222592




Pursuer Initial Attitude σP0 = −σT0

Target Initial Angular Velocity ωT0/N = ωO/N =
[

RT0
×ṘT0

R2
T0

]
rad
s

Pursuer Initial Angular Velocity ωP0/N = 2ωT0

rad
s

8.2 Simulation Results: No Local Reinitialization by the Master Estimate

This simulation carried out the above described rendezvous engagement scenario

without reinitialization by the Master estimator (i.e. the GPS and vision estimators
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Table 8.2 Sensor Estimation, & Control Parameters for Both Simulations
Description Value

GPS Standard Deviation σGPS = 10m

GPS Clock Bias τ = 50km

GPS G Matrix

GGPS =




03×3 03×1

I3×3 03×1

03×3

[
1 0 0

]T




GPS Q Matrix
QGPS =

[
10−5 × I3×3 03×1

01×3 .2

]

Beacon Positions (T -frame)



X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4


 =




−1 1 1
−1 1 −1
1 1 −1
1 1 1


 m

Camera Position (P -frame)
[

Xc Yc Zc

]T
=

[
0 1 0

]T
m

Vision Standard Deviation σvision = 5cm

Vision G Matrix

Gvision =

[
03×3 03×3

03×3 I3×3

]

Vision Q Matrix Qvision = 10−5I6×6

Attitude Standard Deviation σMRP = 1× 10−4cm

remained local as depicted in Figure 7.2). The resulting plots from this simulation

are given below.

Figure 8.1 shows the relative separation between the Target and Pursuer in the

O-frame. It is seen that Pursuer follows the desired trajectory fairly well and the

estimated position is generally no more than a few meters from the true position
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Table 8.3 Control Law Parameters for Both Simulations
Description Value

Translational Gains kPTrans
= I3×3

kDTrans
= 8I3×3

Rotational Gains kPRot
= 300I3×3

kDRot
= 400I3×3

Translational Saturation (each axis) uTransmax = ±1m
s2

Torque Saturation (each axis) uRotmax = ±10Nm

Desired Separation Vector rDes =
[

0t̂1 −5t̂2 0t̂3
]T

m

Desired Orientation σDes = σT
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Figure 8.1 Relative Position and Velocity for Simulation 1.
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indicating that the control and estimation algorithms work as intended. The true

trajectory does not follow the desired trajectory perfectly because of multiple factors:

the control is held constant between updates, the control calculations are based on

estimated data which is errant in nature, and the selected control was not optimized.
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Figure 8.2 GPS Position and Velocity Estimation Error for Simulation 1.

The position and velocity estimation errors of the GPS sensor system are shown

in Figure 8.2. It can be seen that the GPS system works well and generally has errors

under 5m along each inertial axis when the satellite’s separation magnitude is large

enough to ignore blockage and multipath errors. However, as the relative separation

decreases the GPS estimation errors increase substantially and are probably large

enough to disallow a safe rendezvous engagement when GPS navigation alone is used.
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The dashed lines indicate the 3σ1 bounds of the GPS estimates and the GPS estimates

lie within the bounds in this case indicating confidence in the estimation algorithm.
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Figure 8.3 Vision Position and Velocity Estimation Error for Simulation 1.

Position and velocity estimation errors from the vision-based sensor system

are shown in Figure 8.3. Approximately the first 20 seconds of the vision-based

estimates is GPS data fed to the vision sensor primarily for plotting purposes. Once

the Pursuer comes within 100m of the Target the vision sensor is switched on and it

can be seen that the position and velocity estimation errors are very small, generally

on the order of millimeters with slightly more error in the velocity estimate than

the position estimate. The low estimation error indicates that the vision navigation

1If Data is from a normal distribution then 1 standard deviation (1σ) covers 68% of the popula-
tion, 2σ covers 95%, and 3σ 99.7% of the population.
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system may be a viable option to assist proximity navigation when GPS signals may

be too erroneous for valid navigation.
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Figure 8.4 Master Filter Position and Velocity Estimation Error for Simulation 1.

Figure 8.4 shows the position and velocity estimation error calculated by the

fused state estimates. The initial errors are all due to GPS because the vision sensor

had yet to be switched on. The transition to sensor fusion is clearly seen by the

jump in estimation error and 3σ bounds at about 20 seconds. This occurs because

the vision estimates had not converged while the GPS estimates had converged by

that point. The optimal weighting performed by the fusion algorithm is easily seen

as well. From Figures 8.2 and 8.3 it is seen that the vision estimation has a better

performance than the GPS sensor (less estimation error and smaller corresponding
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covariance). The vision’s smaller covariance weights the vision estimates more than

the corresponding GPS in the fusion algorithm. As a result the Master estimate

performs similarly to the vision sensor system once the vision system has settled.
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Figure 8.5 Attitude Estimation Error and Gyro Bias Estimation Error for Simulation
1.

The attitude and gyro bias estimator performed adequately with errors generally

less than 1× 10−3 for the MRP once the filter had converged giving desired attitude

estimation results.

The right side plots of Figure 8.6 show the desired orientation for the Pursuer to

reach and its true and estimated orientation during the simulation. The convergence

of the true and desired orientations indicates that the rotational control laws are

effective in achieving synchronization. The left hand side of the figure shows the
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Figure 8.6 Attitude Synchronization and Control Torque Input for Simulation 1.

corresponding control torques applied to the Pursuer to reach the desired attitude.

Torque saturation limits were imposed during roughly the first third of the simulation

as indicated by the constant magnitude sections, especially along the n̂1 and n̂3 axes.

As the estimated attitude approaches the desired attitude the control torque used

decreases to near zero, however, the necessary torque never be completely zero due

to the constant rotation of the Target and subsequent constant necessary motion

synchronization.

The translational control accelerations used by the Pursuer to reach the desired

position vector rdes are shown in Figure 8.7. The constant areas are where the control

saturations were imposed. The necessary control was calculated in the O-frame and
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Figure 8.7 Translational Control Acceleration in the Inertial and Orbit Frames for
Simulation 1.

then rotated into the inertial frame so that it could be applied to the inertial equations

of motion.

It appears the GPS sensor system did a good job of estimating the clock bias, J2,

and ballistic coefficient terms because the estimation errors were very small in Figure

8.8. Note that it was assumed that these parameters were observable enough to be

estimated by the GPS estimator. A full observability analysis was not performed to

determine ‘how observable’ these parameters are.

8.3 Simulation Results: Local Reinitialization by the Master Estimate

When the local estimators are reinitialized by the Master estimate the resulting

estimates improve and lead to a better performance by the translational controller



75

0 20 40 60 80 100
−100

−50

0
τ 

[k
m

]

GPS Parameter Estimation Errors

0 20 40 60 80 100
−1

0

1
x 10

−9

J 2

0 20 40 60 80 100
−2

0

2
x 10

−7

B
 [m

2 /k
g]

time [s]

Figure 8.8 GPS Clock Bias, J2, and Ballistic Coefficient Estimation Errors for Simu-
lation 1.

as shown by Figure 8.9. The trajectory taken by the pursuer in this case is much

smoother and follows the desired much more closely than in the first simulation. This

is likely due to the improved estimates given by the Master filter shown in Figure

8.12. The resulting oscillatory motion is due to the fusion process trying to settle

down once reinitialization has been implemented.

Reinitialization has a transition time that takes a significant amount of time to

converge as shown by the semi-erratic decaying sinusoidal estimation errors in Figures

8.10, 8.11, 8.12. After the Master estimate has settled down the local estimates settle

within the 3σ bounds and the estimation error becomes very small. Although the

transition is erratic implementing reinitialization seems to improve the estimation

process because of the smaller errors and improved trajectory tracking.
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Figure 8.9 Relative Position and Velocity for Simulation 2.

Reinitialization did not affect attitude or gyro bias estimates and in turn did

not affect the resulting control torques. Attitude estimation results should not differ

significantly between the first and second simulations.

The second simulation uses much more control acceleration than the first sim-

ulation does. Figure 8.15 shown a significant increase in the control acceleration

around the halfway point of the simulation. This is due to the increased estimation

errors in the Master estimate. The Master estimate believes the Pursuer is farther

away from the Target than it actually so the resulting control acceleration is larger to

try and close the gap. However, the control acceleration does eventually settle down

and tracks the desired position vector much better than in the first case.
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Figure 8.10 GPS Position and Velocity Estimation Error for Simulation 2.
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Figure 8.11 Vision Position and Velocity Estimation Error for Simulation 2.
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Figure 8.12 Master Filter Position and Velocity Estimation Error for Simulation 2.
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Figure 8.13 Attitude Estimation Error and Gyro Bias Estimation Error for Simulation
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Figure 8.14 Attitude Synchronization and Control Torque Input for Simulation 2.
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Figure 8.15 Translational Control Acceleration in the Inertial and Orbit Frames for
Simulation 2.
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Figure 8.16 GPS Clock Bias, J2, and Ballistic Coefficient Estimation Errors for Sim-
ulation 2.



CHAPTER 9

CONCLUSIONS

The research dealt with multi-sensor fusion for autonomous estimation and con-

trol and applied it to rendezvous and docking of spacecraft. A system consisting of a

free-floating (i.e. uncontrollable) Target spacecraft and an active (controllable) Pur-

suer spacecraft was constructed and estimation and control algorithms were imposed

on the system to achieve motion synchronization for rendezvous and docking.

GPS and vision-based sensor systems were modeled to provide inertial and

relative position measurements respectively. Filters were developed for each of the

sensor systems to provide estimates of the inertial and relative positions and velocities.

Estimates from each filter were also fed to a Master estimate in the form of a Federated

Extended Kalman Filter. The Master estimate applied a fusion algorithm to the

estimates provided by GPS and vision sensor filters to get a fused estimate of the

system’s relative position and velocity.

Proportional Derivative control laws were applied to the system to achieve the

desired relative position and attitude for autonomous rendezvous and docking. The

translational controller based its calculations on the position and velocity data from

the Master estimate.

Perturbations including J2 and atmospheric drag were imposed to test the ro-

bustness of the estimation and control algorithms.

Two simulations were performed. In the first simulation, GPS and vision sensors

systems each had a local filter to provide estimates based off of the individual sensor’s

84
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measurements. These local filters were tuned and operated independently of each

other and independently of the Master Estimate.

In the second simulation, the local filters state and covariance matrices were

reinitialized by the Master Estimate at each estimation iteration.

The vision estimation performance showed slight improvement between the first

and second case. The Master Estimate showed an improvement of about an order

of magnitude in the second simulation reducing the average estimation error from

10 − 20cm along each axis to about 1 − 2cm. A vast improvement of several orders

of magnitude in the GPS estimation was shown when reinitialization by the Master

Estimate was performed.

9.1 Future Work

There are a number of future research paths that can be explored as an extension

of this research project. A more realistic attitude determination sensor could be

developed and applied to the system.

The relative position tracking controls could be optimized. For a rescue mission

the trajectory taken by the Pursuer could be optimized to reduce flight time while in

non-emergency cases the flight path could be optimized to reduce fuel consumption.

Another way to potentially improve the tracking procedure is to prescribe a trajectory

and at regular intervals recalculate and update the prescribed trajectory.

Observability analysis could also be performed to determine when the vision

sensor should be activated and to see ‘how observable’ such parameters as J2 and the

satellite’s ballistic coefficient are. Work could also be done to smooth the transition

when a sensor is suddenly cut on/off and when local sensors are reinitialized by the

fused estimate.
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Although a very simple approach, this method yields moderate results for gen-

eral studies. This model uses the U.S. Standard Atmosphere (1976) for 0km, CIRA-72

for 25− 500km, and CIRA-72 with exospheric temperature, exospheric temperature,

T∞ = 1000K for 500− 1000km. The scale heights have been adjusted to maintain a

piecewise-continuous formulation of the density [16].

Standard Atmosphere (0− 1000) km: The Standard Atmosphere has been

published twice (1962 and 1976) in an attempt to provide a standard reference model.

It is an ideal, steady-state model of the Earth’s atmosphere at a latitude of 45◦N

during moderate solar activity. The U.S. Committee on Extension of the Standard

Atmosphere (COESA) has adopted two definitions that show its intent:

A hypothetical vertical distribution of atmospheric temperature, pressure,

and density which, by international agreement, is roughly representative

of year-round, midlatitude conditions. Typical usages are as a basis for

pressure altimeter calibrations, aircraft performance calculations, aircraft

and rocket design, ballistic tables, and meteorological diagrams. The air is

assumed to obey the perfect gas law and the hydrostatic equation which,

taken together, relate temperature, pressure and density with geopoten-

tial. Only one standard atmosphere should be specified at a particular

time and this standard atmosphere must not be subjected to amendment

except at intervals of many years. (US Standard, 1976, xiv).

Satellites operating at much higher altitudes required the Committee to adopt

another goal for the Standard Atmosphere:

This atmosphere shall also be considered to rotate with the Earth, and be

an average over the diurnal cycle, semi-annual variation, and the range of

conditions from active to quiet geomagnetic, and of active to quiet sunspot
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conditions. Above the tropopause (about 110 km) generalized forms of

the hydrostatic equations apply. (US Standard, 1976, xiv) [16].

CIRA (25− 2500) km: The Committee on Space Research (COSPAR) of the

International Council of Scientific Unions periodically determines an atmospheric

model. The current version is the COSPAR International Reference Atmosphere

(CIRA-90) model. The first model was produced in 1965 (CIRA-65), which was

basically a new model for altitudes from 30 − 300km, based on Champion (1963)

and the Harris-Priester (1962) model from 120 − 800km. CIRA-72 included mean

values from 25 − 500km, and Jacchia (1971) prepared models from 110 − 2000km.

The model is a semi-theoretical technique, but it does have some free variables. Data

comes mainly from measurements of satellite drag and ground-based measurements

[16].
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Table A.1 Exponential Atmosphere Model
Altitude Base Nominal Scale

hellp Altitude Density Height
(km) h◦ (km) ρ◦ (kg/m3) H (km)

0-25 0 1.225 7.249
25-30 25 3.899× 10−2 6.349
30-40 30 1.774× 10−2 6.682
40-50 40 3.972× 10−3 7.554
50-60 50 1.057× 10−3 8.382
60-70 60 3.206× 10−4 7.714
70-80 70 8.770× 10−5 6.549
80-90 80 1.905× 10−5 5.799
90-100 90 3.396× 10−6 5.382
100-110 100 5.297× 10−7 5.877
110-120 110 9.661× 10−8 7.263
120-130 120 2.438× 10−8 9.473
130-140 130 8.484× 10−9 12.636
140-150 140 3.845× 10−9 16.149
150-180 150 2.070× 10−9 22.523
180-200 180 5.464× 10−10 29.740
200-250 200 2.789× 10−10 37.105
250-300 250 7.248× 10−11 45.546
300-350 300 2.418× 10−11 53.628
350-400 350 9.518× 10−12 53.298
400-450 400 3.725× 10−12 58.515
450-500 450 1.585× 10−12 60.828
500-600 500 6.967× 10−13 63.822
600-700 600 1.454× 10−13 71.835
700-800 700 3.614× 10−14 88.667
800-900 800 1.170× 10−14 124.64
900-1000 900 5.245× 10−15 181.05

1000- 1000 3.019× 10−15 268.00
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In this appendix the F matrices used in the Extended Kalman Filter covariance

propagation models are used. F is calculated by taking the Jacobian of the state’s

dynamics with respect to the state.

F (x̂ (t) , t) ≡ ∂ẋ

∂x

∣∣∣∣
x̂(t)

B.1 GPS Model

The estimated state vector for the GPS estimation model is

xGPS =

[
XP XP ZP ẊP ẎP ŻP τ J2 B

]T

and the equations of motion that govern the state vector are where

ẋGPS =
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Ẋ Ẏ Ż Ẍ Ÿ Z̈ τ̇ J̇2 Ḃ
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For this model F is given by

FGPS =


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∂Ẏ
=

∂Ẋ
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∂Ẋ

∂τ
=

∂Ẋ
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∂Ẏ

∂X
=

∂Ẏ
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∂Ẏ
=

∂Ż
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∂Ẍ

∂Ẋ
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Ż

2Ω

∂Ẍ
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∂Ÿ

∂Ż
= −

Bρ
(
Ẏ − ωEX

)
Ż

2Ω

∂Ÿ

∂τ
= 0

∂Ÿ

∂J2

= −3µR2
EY

2R5
P

(
1− 5Z2

R2
P

)

∂Ÿ

∂B
= −

ρΩ
(
Ẏ − ωEX

)

2
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∂Z̈

∂X
=

3µXZ

R5
P

+
15µJ2R

2
EXZ

2R7
P

(
3− 5Z2

R2
P

)
− 15µJ2R

2
EXZ3

R9
P

−
BρωE

(
−Ẏ + ωEX

)
Ż

2Ω

∂Z̈

∂Y
=

3µY Z

R5
P

+
15µJ2R

2
EY Z

2R7
P

(
3− 5Z2

R2
P

)
− 15µJ2R

2
EY Z3

R9
P

−
BρωE

(
Ẋ + ωEY

)
Ż

2Ω

∂Z̈

∂Z
= − µ

R3
P

+
3µZ2

R5
P

− 3µJ2R
2
E

2R5
P

(
3− 5Z2

R2
P

)
+

15µJ2R
2
EZ2

2R7
P

(
3− 5Z2

R2
P

)

−3µJ2R
2
EZ

R5
P

(−10Z

R2
P

+
10Z3

R4
P

)

∂Z̈

∂Ẋ
= −

Bρ
(
Ẋ + ωEY

)
Ż

2Ω

∂Z̈

∂Ẏ
= −

Bρ
(
Ẏ − ωEX

)
Ż

2Ω

∂Z̈

∂Ż
= −BρŻ2

2Ω
− BρΩ

2

∂Ÿ

∂τ
= 0

∂Z̈

∂J2

= −3µR2
EZ

2R5
P

(
3− 5Z2

R2
P

)

∂Z̈

∂B
= −ρΩŻ

2

where Ω =

√(
Ẋ + ωEY

)2

+
(
Ẏ − ωEX

)2

+ Ż2

B.2 Vision Based Model

The estimated state vector for the vision model is

xvision =

[
x y z ẋ ẏ ż

]T
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and the dynamics governing the relative motion is

ẋvision =




ẋ

ẏ

ż

ẍ

ÿ

z̈




=




ẋ

ẏ

ż

2θ̇ẏ + θ̈y + θ̇2x− µ(RT +x)

((RT +x)2+y2+z2)
3/2 + µ

R2
T

−2θ̇ẋ− θ̈x + θ̇2y − µy

((RT +x)2+y2+z2)
3/2

− µz

((RT +x)2+y2+z2)
3/2




F is again computed by taking the Jacobian of the dynamics with respect to

the state vector

Fvision =




∂ẋ
∂x

∂ẋ
∂y

· · · ∂ẋ
∂ż

∂ẏ
∂x

∂ẏ
∂y

· · · ∂ẏ
∂ż

...
...

. . .
...

∂z̈
∂x

∂z̈
∂y

· · · ∂z̈
∂ż




6×6

Taking the partials yields

∂ẋ
∂x

= ∂ẋ
∂y

= ∂ẋ
∂z

= ∂ẋ
∂ẏ

= ∂ẋ
∂ż

= 0, ∂ẋ
∂ẋ

= 1

∂ẏ
∂x

= ∂ẏ
∂y

= ∂ẏ
∂z

= ∂ẏ
∂ẋ

= ∂ẏ
∂ż

= 0, ∂ẏ
∂ẏ

= 1

∂ż
∂x

= ∂ż
∂y

= ∂ż
∂z

= ∂ż
∂ẋ

= ∂ż
∂ẏ

= 0, ∂ż
∂ż

= 1
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∂ẍ

∂x
= θ̇2 − µ

(
(RT + x)2 + y2 + z2

)3/2
+

3µ (RT + x)2

(
(RT + x)2 + y2 + z2

)5/2

∂ẍ

∂y
= θ̈ +

3µy (RT + x)
(
(RT + x)2 + y2 + z2

)5/2

∂ẍ

∂z
=

3µz (RT + x)
(
(RT + x)2 + y2 + z2

)5/2

∂ẍ

∂ẋ
= 0

∂ẍ

∂ẏ
= 2θ̇

∂ẍ

∂ż
= 0

∂ÿ

∂x
= −θ̈ +

3µy (RT + x)
(
(RT + x)2 + y2 + z2

)5/2

∂ÿ

∂y
= θ̇2 − µ

(
(RT + x)2 + y2 + z2

)3/2
+

3µy2

(
(RT + x)2 + y2 + z2

)5/2

∂ÿ

∂z
=

3µyz
(
(RT + x)2 + y2 + z2

)5/2

∂ÿ

∂ẋ
= −2θ̇

∂ÿ

∂ẏ
= 0

∂ÿ

∂ż
= 0
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∂z̈

∂x
=

3µz (RT + x)
(
(RT + x)2 + y2 + z2

)5/2

∂z̈

∂y
=

3µyz
(
(RT + x)2 + y2 + z2

)5/2

∂z̈

∂z
=

µ
(
(RT + x)2 + y2 + z2

)3/2
+

3µz2

(
(RT + x)2 + y2 + z2

)5/2

∂z̈

∂ẋ
= 0

∂z̈

∂ẏ
= 0

∂z̈

∂ż
= 0
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The covariance for the local vision sensor system can be expressed as

OPvision =




OP11
OP21

OP12
OP22


 =




E
{

Or̃Or̃T
}

E
{

Or̃O ˙̃r
T
}

E
{

O ˙̃rOr̃T
}

E
{

O ˙̃rO ˙̃r
T
}


 (C.1)

where each term is an expectation value. However, the vision’s covariance needs to be

in inertial components for integration into the fusion algorithm. The vision covariance

needs to take the form

NPvision =




NP11
NP21

NP12
NP22


 =




E
{

N r̃N r̃T
}

E
{

N r̃N ˙̃r
T
}

E
{

N ˙̃rN r̃T
}

E
{

N ˙̃rN ˙̃r
T
}


 (C.2)

Recall that in general

RP = RT + r (C.3)

Setting RP in the inertial reference frame gives

NRP = NRT + Nr = NRT + [NO] Or (C.4)

and the derivative of (C.4) can be found through the use of the transport theorem

which gives

NṘP = NṘT + [NO] Oṙ + [NO]
[
OωO/N×

]
Or (C.5)
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Looking at vision covariance’s first term OP11 = E
{

Or̃Or̃T
}

and plugging in

for Or̃ where Or̃ = [ON ]
(

NR̃P − NRT

)
gives

OP11 = E
{

Or̃Or̃T
}

= E
{

[ON ]
(

NR̃P − NRT

)(
NR̃T

P − NRT
T

)
[NO]

}

= [ON ] E
{(

NR̃P − NRT

)(
NR̃T

P − NRT
T

)}
[NO]

= [ON ] E
{

N r̃N r̃T
}

[NO]

= [ON ] NP11 [NO]

(C.6)

Premultiply equation (C.6) by [NO] and postmultiply it by [ON ] to find the first

term in the vision’s inertial covariance

NP11 = [NO] OP11 [ON ] (C.7)

OP12 = E
{

Or̃O ˙̃r
T
}

= E

{
[ON ]

(
NR̃P − NRT

) ([
N ˙̃R

T

P − NṘT
T

]
[NO]− Or̃T

[
OωO/N×

]T
)}

= E

{
[ON ]

(
NR̃P − NRT

) (
N ˙̃R

T

P − NṘT
T

)
[NO]

− [ON ]
(

NR̃P − NRT

) (
Or̃T

[
OωO/N×

]T
)}

= E
{

[ON ] N r̃P
N ˙̃r

T

P [NO] + Or̃P
Or̃T

P

[
OωO/N×

]}

= [ON ] NP12 [NO] + OP11

[
OωO/N×

]

solve for NP12

NP12 = [NO]
(

OP12 − OP11

[
Oω11×

])
[ON ] (C.8)



102

OP21 = E
{

O ˙̃rOr̃T
}

= E
{(

[ON ]
[

N ˙̃RP − NṘT

]
− [

OωO/N×
]

Or̃
)(

NR̃T
P − NRT

T

)
[NO]

}

= E
{

[ON ]
(

N ˙̃RP − NṘT

)(
NR̃T

P − NRT
T

)
[NO]

− [
OωO/N×

]
Or̃

(
NR̃T

P − NRT
T

)
[NO]

}

= E
{

[ON ] N ˙̃rN r̃T [NO]− [
OωO/N×

]O
r̃Or̃T

}

= [ON ] NP21 [NO]− [
OωO/N×

]
OP11

solve for NP21

NP21 = [NO]
(

OP21 +
[
Oω×]

OP11

)
[ON ] (C.9)
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NP22 can be found in a similar manner.

OP22 = E
{

O ˙̃rO ˙̃r
T
}

= E
{(

[ON ]
[

N ˙̃RP − NṘT

]
− [

OωO/N×
]

Or̃
)

([
N ˙̃R

T

P − NṘT
T

]
[NO]− Or̃T

[
OωO/N×

]T
)}

= E

{
[ON ]

[
N ˙̃RP − NṘT

] [
N ˙̃R

T

P − NṘT
T

]
[NO]

− [ON ]
[

N ˙̃RP − NṘT

]
Or̃T

[
OωO/N×

]T

− [
OωO/N×

]
Or̃

[
N ˙̃R

T

P − NṘT
T

]
[NO]

+
[
OωO/N×

]
Or̃Or̃T

[
OωO/N×

]T
}

= E
{

[ON ] N ˙̃rN ˙̃r
T

[NO] + O ˙̃rOr̃T
[
OωO/N×

]− [
Oω×]

Or̃O ˙̃r

− [
OωO/N×

]
Or̃Or̃T

[
OωO/N×

]}

= [ON ] NP22 [NO] + OP21

[
OωO/N×

]− [
OωO/N×

]
OP12

− [
OωO/N×

]
OP11

[
OωO/N×

]

(C.10)

Solving for NP22 gives

NP22 = [NO]
(

OP22 − OP21

[
OωO/N×

]
+

[
OωO/N×

]
OP12+

[
OωO/N×

]
OP11

[
OωO/N×

])
[ON ]

(C.11)
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